A Roadmap to Metacomputation by
Supercompilation”

Robert Gluck & Morten Heine Sgrensen

DIKU, Department of Computer Science, University of Copenhagen
Universitetsparken 1, DK-2100 Copenhagen @), Denmark
E-mail: {glueck,rambo}@diku.dk

Abstract. This paper gives a gentle introduction to Turchin’s super-
compilation and its applications in metacomputation with an emphasis
on recent developments. First, a complete supercompiler, including pos-
itive driving and generalization, is defined for a functional language and
illustrated with examples. Then a taxonomy of related transformers is
given and compared to the supercompiler. Finally, we put supercompila-
tion into the larger perspective of metacomputation and consider three
metacomputation tasks: specialization, composition, and inversion.

Keywords: Program transformation, supercompilation, driving, gener-
alization, metacomputation, metasystem transition.

1 Introduction

Over the years a number of automatic program transformers have been de-
vised and implemented. The most popular is partial evaluation which performs
program spectalization. The possibility, in principle, of partial evaluation is con-
tained in Kleene’s s—m—n Theorem [41]. The idea to use partial evaluation as
a programming tool can be traced back to work beginning in the late 1960’s by
Lombardi and Raphael [50, 49], Dixon [15], and Chang and Lee [10]. Important
contributions were made in the seventies by Futamura [19, 20], by Sandewall’s
group [5], by Ershov [16, 17], and later by Jones’ group [39, 40]. In the eighties
program specialization became a research field of its own, e.g. [7, 46, 38, 12].
Supercompilation [75], conceived by Turchin in the early seventies in Russia
for the programming language Refal, achieves the effects of partial evaluation
as well as more dramatic optimizations. Turchin formulated the transforma-
tions necessary for supercompilation, including the central rule of driving and
the outside-in strategy, in 1972 [68, 69] and the main results concerning self-
application, metasystem transition, in 1973. The book [83] defined all three Fu-
tamura projections in terms of metasystem transition. In the English language,
the work on supercompilation was first described in [71, 72, 73, 74] and then
developed further in [86, 75, 77, 81]. Despite these remarkable contributions,
supercompilation has not found recognition outside a small circle of experts.

* Partially supported by the DART project funded by the Danish Natural Sciences
Research Council. The first author was also supported by an Erwin-Schrodinger-
Fellowship of the Austrian Science Foundation (FWF') under grant JO780 & J0964.

This paper gives a gentle introduction to the principles of supercompilation in
terms of a positive supercompiler [29, 62, 64, 65, 63] comprising two components,
driving (Sect. 2) and generalization (Sect. 3). The supercompiler is compared to
related program transformers (Sect. 4), and put it into the larger perspective of
metacomputation (Sect. 5). We give references to the literature throughout the
text, which can hopefully be used as a starting point for further reading. The
bibliography contains a comprehensive list of Russian and English titles on the
topic.

1.1 Object Language

We are concerned with a first-order functional language; the intended operational
semantics is normal-order graph reduction to weak head normal form in the sense
of Bird and Wadler [6].

The syntax of our language appears in Fig. 1 (where m > 0,n > 0). We
assume denumerable, disjoint sets of symbols for variables v € V, constructors
¢ € C, and functions f € F and g € G; symbols all have fixed arity. A given
program makes use of a finite number of different symbols.

A program g € @Q is a sequence of function definitions d € D where the right
side of each definition is a term ¢ € 7 constructed from variables, constructors,
function calls, and conditionals. We require that no two patterns p; and p; in a
g-function definition contain the same constructor ¢, that no variable occur more
than once in a pattern, and that all variables on the right side of a definition be
present in its left side. Figure 2 shows the function a for appending two lists.?

Q0>q == di...dm (program)

D>d == fuvi...uopn=1t (f-function definition, no patterns)
| gpLuL...Un = £

: (g-function definition with patterns)
GPm U1 ...0n = bm

Tt == v (variable)

| cty.. .ty (constructor)

| ftr.. .ty (f-function call)

| gtoty...tn (g-function call)

| if t1=t, then t; else t4 (conditional with equality test)
Po>p = cuvi...vn (fat pattern)

Fig. 1. Syntax of programs, definitions, terms, and patterns.

Remark. Our language contained case-expressions in [63, 65], g-functions in [64].
The connection of positive supercompilation and deforestation stands out clear-
est for case-expressions. However, g-functions (“named case-expressions”) [18]
lead to a simpler presentation of generalization.

2 We use the usual notation [] and (z : s) for the list constructors nil and cons x xs.

al]ys =ys
a(z:zs)ys=x:arsys

Fig. 2. Example program append.

2 Driving

Driving takes a term and a program and constructs a possibly infinite process
tree, representing all possible computations with the term, in a certain sense.
Figure 3 shows part of the infinite process tree for the term a (a zs ys) zs (note
the repeated variable xs).

Fig. 3. Example process tree for a (a s ys) zs.

Each node contains a term ¢ and its children contain the terms that arise
by one normal-order reduction step from t. Whenever the reduction step has
different possible outcomes there are several children so as to account for all
possibilities. For instance, the topmost branching in Fig. 3 corresponds to the
cases zs = [] and zs = (&' : s').

In Sect. 2.1 we define normal-order reduction, and in Sect. 2.2 we introduce
process trees and define driving.

2.1 Normal-Order Reduction

A value is a term built exclusively from constructors and variables. An observable
is either a variable or a term with a known outermost constructor. Any term
which is not an observable can be decomposed into the form e[r] where the
redex r 1s the outermost reducible subterm and the evaluation context e 1s the
surrounding part of the term.

More precisely, define values, observables, redexes, and evaluation contexts by
the syntactic classes B, O, R and &, respectively, as in Fig. 4. Define ¢[t] to be
the result of substituting ¢ for the “hole” ¢ in e.

Lemmal (the unique decomposition property). For any ¢ € 7T either there
exists a unique pair (e,r) € £ x R such that t = e[r] or ¢t € O.

B3b == v | ch...by (value)

O>50 == v | cti...tn (observable)

Ror u= fti.. .tn (redex)
| goty...tn
| if b1=b, then t; else ¢,

Ede = o (evaluation context)
| gety ...ty
| if d=t, then t; else t,4
| if b=d then t; else t4

d = € | Cbl...b,‘_ldt,‘+1...tn

Fig. 4. Values, observables, redexes, evaluation contexts.

Figure 5 shows example decompositions. In (1) the outermost call to the f-
function f can be unfolded; the evaluation context is empty. In (2) the call to f
has to be unfolded; the call to the g-function ¢ cannot be unfolded because the
term f ¢ does not have a known outermost constructor. In (3) the call to f has
to be unfolded; both sides of an equality test must be values.

| t e r
(1) flgt) ° flg)
(2) g(ft) g ft
(3) if z=c(f t) then t' else t" if z=c o then ¢’ else t" It

Fig. 5. Examples of decomposition into redex and evaluation context.

The rules for normal-order reduction are given by the map N from terms to
ordered sequences (t1,...,t,) of terms in Fig. 6. The rules of A" are mutually
exclusive and together exhaustive by the unique decomposition property.

NIt]

t
e 0
(tr, ... tn)
(e[sfvi = £:},]) if for.. v =s
) elg ety) tigr - ta] (e[s{vi =t D) i g(cvr. . v)vigr . vom =8
(

(elsi{ve = tidim{e=pi, - (elsm{ve =t D{z=pm})

if {gp;uvi... 00 =s5}0,
(e[t]) if b,b" are ground, b =¥’
(6) e[if b=b" then ¢ else t']< {e[t']) if b,b" are ground, b £V’

((e[€]))[b,b'],e[t']) if b,b" are not both ground

Fig. 6. Normal-order reduction step.

4

Notation: the expression t{v; := t;}?_; denotes the result of simultaneously
replacing all occurrences of v; by the corresponding term ¢; where 1 < ¢ < n.
The expression [b,b'] denotes an idempotent most general unifier {v; := ¢;}7,
of b and V' if it exists, and fail otherwise, where we stipulate ¢ fail = t. A value is
ground if 1t contains no variables. To avoid name capture, the variables occurring
in left hand sides in clauses (3)-(5) must be fresh.

Note the substitutions in clauses (5) and (6). The assumed outcome of the
test is propagated to the terms resulting from the step. We call this unification-
based information propagation (c.f. Sect. 4).

2.2 Process Trees

A process tree is a tree where each node is labeled with a term ¢ and all edges
leaving a node are ordered. Every node may have an additional mark.

Definition2. Let T be a process tree and an unmarked leaf node in 7.

Then UNFOLD(T, @) is the process tree® obtained by marking (¢) and adding
n unmarked children labeled ¢4, ...,%,, where Nt]={t1,...,tn).

Driving is the action of constructing process trees using two essential principles:
normal-order strategy and unification-based information propagation.

Algorithm 3 (driving.)

1. INPUT o € T, q € Q
2. LET Tt be the process tree with unmarked node labeled to. SET ¢ = 0.
3. WHILE there exists an unmarked leaf node N in T;:
(a) Tiy1 = UNFOLD(T;, N)
(b) SETi=1+1
4. OUTPUT T;

3 A Positive Supercompiler

In the previous section we used driving to construct a potentially infinite process
tree. The purpose of generalization is to ensure that one constructs instead a
finite partial process tree from which a new term and program can be recovered.

The idea 1s that if a leaf node M has an ancestor L and it “seems likely”
that continued driving will generate an infinite sequence L,... M, ... then M
should not be driven any further; instead we should perform generalization.
In Subsect. 3.1 we define a criterion, a so-called whistle, that formalizes the
decision when to stop. In Subsect. 3.2 we introduce some notions that are used in
Subsect. 3.3 to define generalization. This culminates in a definition of a positive
supercompiler.

3 UNFOLD and subsequent operations appear in graphical form in Appendix A.

3.1 When to Stop?

We stop driving at a leaf node with label ¢ if one of its ancestors has label s
and s < ¢, where < is the homeomorphic embedding relation known from term
algebra [14]. Variants of this relation are used in termination proofs for term
rewrite systems [14] and for ensuring local termination of partial deduction [8].
After it was taken up in [63], it has inspired more recent work [4, 47, 82].

The rationale behind this relation i1s that in any infinite sequence tg,%1,...
that arises during driving of a program, there definitely exists some ¢ < j with
t; < t;, so driving cannot proceed infinitely. Moreover, if ¢; < ¢; then all the
subterms of ¢; are present in ¢; embedded in extra subterms. This suggests that
t; might arise from ¢; by some infinitely continuing system, so driving will be
stopped for a good reason.

The homeomorphic embedding < is the smallest relation on 7 satisfying the
rules in Fig. 7, where h € Y UCUF UG U {ifthenelse}, 2,y € X', and s,s;,L € T.

Variable Diving Coupling

s < t; for some ¢ s1 <Dt1,...,80 iy
rdy

Sﬂh(fl,...,tn) h(sl,...,sn)ﬂh(tl,...,tn)

Fig.7. Homeomorphic embedding.

Diving detects a subterm embedded in a larger term, and coupling matches the
subterms of two terms. Some examples and non-examples appear in Fig. 8. It is
not hard to give an algorithm WHISTLE(M, N) deciding whether M < N.

b < a(b) a(c(b)) A c(b)
c(b) 9 e(a(b)) a(c(b)) A c(a(b))
d(b,b) S d(a(b),a(b)) a(c(b)) A ala(a(b)))

Fig. 8. Examples and non-examples of embedding.

3.2 Most Specific Generalization

We define the generalization of two terms ¢1, {2 as the most specific generalization
(msg) [t1,t2]. A well-known result in term algebra states that any two ¢,s € T
have an msg which is unique up to renaming. Examples are shown in Fig. 9.

st | ty 01 02
b < a(b) T {z:=1b} {z :=a(b)}
(b) < ela®) @) =t} {r=al)}
(y) 9 claly))) =yl e =aly)
d(b,b) < d(a(d),a(b)) d(z,z) {z :=a(b)} {z :=a(b)}

Fig. 9. Examples of most specific generalization.

Definition4 (instance, generalization, msg, distinct). Given 1,1, € 7.

1. An wnstance of t; 1s a term of the form ¢,0 where 0 1s a substitution.

2. A generalization of 1,15 s a triple (¢4, 61, 62) where t,6; = t1 and t,605 = 4.
3. A generalization (t,,61,02) of t1 and ¢y is most specific (msg) if for every
generalization (tj,0,65) of t; and t5 it holds that ¢, is an instance of ¢

4. Two terms t; and 5 are disjoint if their msg is of form (z, 1, 02).

Algorithm 5 (msg.) An msg [s,¢] of s,t € T is computed by exhaustively
applying the rewrite rules in Fig. 10 to the initial triple (z, {z := s}, {# :=t}):

ty te{z :=h(y1,...,yn)}

{z:=h(s1,...,52) UG — {y1:=s1,... yn =82} U b1

{z:=h(tr,...,tn)} Ubs {y1:=t,...,yn i =ta} Ub
tg to{r ==y}
{z:=s,y:=s}Ubf — {y:=s} U 6
{z:=ty:=t} U {y:=t} U 6

Fig. 10. Computing most specific generalizations.

3.3 Partial Process Trees

A partial process tree differs from a process tree in that it may contain an extra
kind of nodes, generalization-nodes, with label of form let z1=t; ...x,=t, int’
and n—+1 children labeled t1, . .., ,,t, respectively, where x4, ..., 2, do not occur
in t1,...,t,. This kind of node has the distinct feature that the n + 1’st edge
may go to an ancestor of the node instead of going to a child; such an edge is
called a return edge. We regard a partial process tree as an acyclic graph by
ignoring return edges, so ancestor, leaf, etc. apply only to non-return edges. The
labels on generalization nodes are unrelated to all other labels wrt. <.
The following definition is inspired by [51].

Definition 6. Let 1" be a partial process tree with node @ with ancestor @
1. If ¢ is an instance of s, i.e. t = s{x1:=t1,...,2p:=ty }, then FOLD(T, @,)
is the tree obtained as follows. Replace (¢) by Clet 1=ty ...2p,=l, ins)which
i1s marked, has return edge to @, and n unmarked children @, ce .
2. I [5,t] = (ty, {zr:=t1, ..., 2p:=t,},6), then GENERALIZE(T,(s),(1)) is the
partial process tree obtained as follows. Delete all descendants of @, and

replace @ by @et ri=t; ... T,=ty in th with a mark and n + 1 unmarked

children @, e ,@, . Return edges from@or its descendants are erased.

3. Ift =hty...t, then SPLIT(T, @,) is the partial process tree obtained as

follows. Let t, = h zq, ..., %, where z1,...,z, are new variables, replace @

by Clet ri=t;...ry,=t, in th which has a mark and n + 1 unmarked children

OO0

Algorithm 7 (positive supercompilation.)

1. INPUT ¢, € T, g€ Q
2. LET Tg be the partial process tree with unmarked node labeled to. SET ¢ := 0.
3. WHILE there exists an unmarked leaf node N in T;:
(a) IF there exists no ancestor M such that WHISTLE(M, N)
THEN T4, := UNFOLD(T;, N)
ELSE
i. LET M be an ancestor such that WHISTLE(M, N)
ii. IF node N is an instance of M THEN T;1, := FOLD(T;, M, N)
ELSE IF N and M are disjoint THEN T;y, := SPLIT(T;, M, N)
ELSE T;4, := GENERALIZE(T;, M, N)
(b) SET i:=i+1
4. OUTPUT T;

The following is a consequence of Kruskal’s Tree Theorem, see [14].
Theorem 8. Algorithm 7 always terminates.

As for correctness, it is easily proved that each step of the transformation
rules preserves normal-order graph reduction semantics; extending rigorously
the proof to account for folding is more involved. A general technique due to
Sands [60] can be used to prove this for (positive) supercompilation, see [59].

3.4 Discussion of the algorithm

A number of choices are left open or settled in an arbitrary way in our algorithm.
First, our algorithm follows Turchin’s generalization principle [T7] which states
that a generalization between two terms has a meaning only in the context of
the computation process in which they take part. Indeed, our algorithm searches
only the ancestors of a leaf node. However, to avoid the generation of duplicate
definitions one might imagine searching across different branches; see e.g. [33].

Second, our algorithm does not specify a particular strategy for selecting
unmarked leaf nodes. One may chose a breath-first or depth-first strategy.

Third, in case driving stops the algorithm may employ different strategies for
selecting ancestors for generalization. For instance, one may choose the closest
ancestor, or the ancestor that gives the most specific generalization.

Fourth, when we perform a GENERALIZE(T, M, N) step we replace node
M . Instead one could replace N, since this avoids destroying the whole subtree
with root M ; other branches from M can be retained with no loss of information.

Fifth, the operator |e,] and the stop criterion can be varied; e.g. [47]. The
operation SPLIT(T, s,t) may be refined to split ¢ in another way; e.g. if s = hx
and ¢ = [(k (hy)) then split such that t; = [(k2) (Turchin’s algorithm [77]
maintains a stack structure of common contexts to determine split points).

Finally, one can imagine various optimizations of which we will discuss only
one, namely transient reductions. A term of form e[g x t; .. .1,] is non-transient,
all other terms are transient. The optimization consists in adding the disjunction
“or the label of N is transient” to the condition in (3a) of Algorithm 7. So only

terms that involve a choice at run-time are compared to ancestors for whistling
in the partial process tree. The rationale is that any loop in the program must
pass through a choice point unless there is an unconditional loop in the program.
However, this means that the partial process tree in principle can be infinite—a
risk considered worth taking in the area of partial evaluation [38]. The partial
process tree for a (a zs ys) zs using transient reductions appears in Fig. 11.

let zs=zsina (a zsys) zs>

@ Qet ys=ys' in a ys zs} @ Qet rs=zs’ ina(axsys) zs>

Fig. 11. Example partial process tree with transient reductions.

From this tree one can generate the term @’ xs ys rs and a new program
(Fig. 12). This is noteworthy because the initial term requires passing the list
xs twice, whereas the new term passes xs only once.

a'[lys zs = a" ys zs

a' (z:xs)yszs=x:a xsyszss
a’[]zs = zs
a’(y:ys)zs =y:a"yszs

Fig. 12. More efficient double append program.

3.5 Comparative Remarks

From its very inception, supercompilation has been tied to a specific program-
ming language, called Refal [67], a language inspired by Markov algorithms. A
Refal program is a sequence of rewrite rules, used to transform data in the form
of associative and possibly nested symbol strings and offers certain advantages
for programming, e.g. [78, 53]. Running interpreters were available by the end of
the 1960’s; different versions of the language were implemented [83, 43, 78, 35].

The equivalence transformations necessary for supercompilation of Refal, in-
cluding the central rule of driving and the outside-in strategy, were formulated
in 1972 [68, 69].

Driving and generalization for our language are simplified considerably due
to simpler data structures, untyped variables, and flat patterns (essentially ele-
mentary contractions [77]). Due to Refal’s data structure most general unifiers
do not always exist; a generalized matching algorithm is needed [44, 72, T5].

We should note that supercompilation, as defined by Turchin, is a normal-
order transformation that is applied to programs with call-by-value semantics,
and that transformed programs are again interpreted call-by-value. As a result,
supercompilation may make programs terminate more often. The positive super-
compiler defined here transforms programs with normal-order graph reduction
semantics into programs with the same semantics and the same termination
properties.

Process trees correspond to Turchin’s graph of states [73], sometimes called
Refal graphs. A version of driving was used in the seventies in a system for
interpretive inversion, called URA; c.f. [55] (see Sect. 5.2). Several supercompil-
ers have been developed for Refal [86, 57, 42, 77, 34, 85]; the first ‘non-Refal’
supercompiler was [29]. Driving has been used for neighborhood analysis [72] to
determine sets of data that pass, up to a certain point, through a computa-
tion process in identical ways; the use of neighborhoods has been suggested for
generalization [77] and program testing [2, 3].

4 Related Program Transformers

In this section we compare positive supercompilation briefly to partial evaluation,
deforestation, partial deduction, perfect supercompilation, and generalized partial
computation. First we introduce a number of axes along which transformers can
be compared, and then enter the coordinates of the above transformers.

4.1 Some Dimensions in Automatic Program Transformation

Information propagation. Every program transformer maintains a certain
level of information propagation; we consider constant propagation, unification-
based information propagation, and constraint-based information propagation.
The three levels differ in how much information is recorded about pattern
matching and tests, corresponding to the transformation rules in Fig. 13.

|T[[ifu=vthentelses] = | information propagation
(a) |ifu=vthenT[t]elseT s] constant propagation
(d) |if u=v then T t{u:=v} Jelse T s] unification-based
(¢) |ifu=vthenT[t]{u=v}elseT[sJ{u#v} constraint-based

Fig. 13. Information propagation.

10

In constant propagation the outcome of tests are ignored. In unification-
based propagation substitutions into the transformed terms are used to represent
the outcome of tests. In constraint-based propagation the transformer explicitly
maintains sets of constraints recording previous tests (restrictions [72, 29]). De-
pending on the programming language other abstract properties may be propa-

gated, e.g. [61, 13, 66, 37].

Evaluation strategy. One can view a program transformer as an extension
of an interpreter, e.g. [29, 27, 52, 65]. This implies that the transformer has
an evaluation strategy that it inherits from the underlying interpreter. More
concretely, the transformer processes nedsted function calls in some order. We
consider transformers that use inside-out (or call-by-value or applicative order)
and outside-in (or call-by-name or normal-order).

Control restructuring. Control restructuring is concerned with the relation-
ship between program points in the subject and the residual program [9, 58]:

Monovariant: any program point in the subject program gives rise to zero or
one program point in the residual program.

Polyvariant: any program point in the subject program can give rise to one or
more program points in the residual program.

Monogenetic: any program point in the residual program is produced from a
single program point of the subject program.

Polygenetic: any program point in the residual program may be produced from
one or more program points of the subject program.

4.2 A Taxonomy of Transformers

Deforestation, due to Wadler [87], performs program composition by eliminating
intermediate data structures. Deforestation performs, as a special case, program
specialization [64]. Deforestation is very similar to positive supercompilation ex-
cept that 1t uses constant propagation rather than unification-based information
propagation, and it does not incorporate generalization; instead it is guaranteed
to terminate for a certain class of programs.

Partial evaluation performs program specialization and, as presented in [38],
uses only constant propagation [29, 64, 65]. This limitation applies to all vari-
ants of partial evaluation: offline and online approaches with and without par-
tially static structures. The usual evaluation strategy for partial evaluators is
applicative-order, see [52].

Partial deduction, as in [48, 45, 22], and positive supercompilation have es-
sential aspects in common [33]: the way in which goals are unified and how the
resulting substitutions are applied to the goals in the next transformation step
(construction of a partial SLDNF tree), is much like in the clauses of driving.

Since in logic programs predicates cannot occur inside predicates, there is no
direct correspondence to the rules for nested function calls which achieve defor-
estation. However, local variables in logic programs often represent intermediate
data structures that could be removed by more sophisticated techniques. Partial

11

deduction in logic programming is not capable of removing them; this requires
an extension of the techniques, see e.g. [54].

Turchin’s supercompiler [75] and our positive supercompiler are identical with
respect to the propagation of positive information, except for certain trivial dif-
ferences. The main difference between the two is that the former also maintains
negative information, i.e. the information that a test failed, and this is main-
tained in the form of constraints (see perfect driving [29]).

Generalized partial computation (GPC), due to Futamura [21], has a similar
effect and power as supercompilation, but has arbitrary tests in conditionals
rather than just equality tests. The underlying logic for the tests can be any
logic system, for example predicate logic, and may be undecidable for certain
logic formulas. In this view, positive supercompilation can be seen as propagating
structural predicates that can always be resolved.

These observations are summarized in Fig. 14. For a more detailed discus-
sion on information propagation see [29, 64, 33, 65], and for more on evaluation
strategies see [11, 52]. These papers also give examples of optimizations that
require the transformer to use a specific evaluation strategy or level of infor-
mation propagation. For instance, to pass the so-called KMP-test [64], at least
unification-based propagation is required; to eliminate intermediate data struc-
tures in general, normal-order strategy is required.

transformer information | evaluation | control restruct. | KMP | data
propagation | strategy variant | genetic | test struct.
Partial evaluation | constant in-out poly mono - -
Deforestation constant out-in poly poly - +
Partial deduction | unification | unspecified | poly mono + -
Positive SCP unification out-in poly poly + +
Perfect SCP constraint out-in poly poly + +
GPC constraint out-in poly poly + +

Fig. 14. A taxonomy of transformers.

5 Larger Perspectives of Supercompilation

Supercompilation achieves program specialization, but is not limited to this ap-
plication: it is a much wider framework for equivalence transformation of pro-
grams. Program inversion is one of the more advanced applications of supercom-
pilation which we will outline in this section.

We refer to any process of simulating, analyzing or transforming programs by
means of programs as metacomputation; the term stresses the fact that this activ-
ity is one level higher than ordinary computation (“programs as data objects”).
Program specialization, composition, and inversion are different metacomputa-
tion tasks; programs that carry out these tasks, are metaprograms. The step
from a program to the application of a metaprogram to the encoded form of

12

the program is a metasystem transition; repeated use of metasystem transition
leads to a multi-level metasystem hierarchy. We adopt a language-independent
formalization [26] based on [72, 23, 30, 84].

Metasystem transition is a key ingredient of Turchin’s approach [71]: the
construction of hierarchies of metasystems (e.g. supercompilers) was taken as
the basis for program analysis and transformation. The book [83] defined all
three Futamura projections in terms of metasystem transition.

Sect. 5.1 introduces a formalism for metacomputation, in Sect. 5.2 discusses
supercompilation and program inversion, and Sect. 5.3 presents metasystem tran-
sition.

5.1 Metacomputation Revisited

Computation. We assume a fixed set D in which programs written in different
languages, as well as their input and output data, are members. To express
the application of programs to data we define an application language A by the
grammar

A =D | <4 A™>

where the symbols <, > ¢ D denote the application of a program to its inputs.
Capitalized names in typewriter font denote arbitrary elements of D. They are
free variables of the meta-notation in which the paper is written. For instance,
the intended meaning of the A-expression <P X Y> is the application of program
P € D to the input X, Y € D.

We are not interested in a specific programming language for writing pro-
grams. For simplicity, let all source-, target- and metalanguages be identical.

We write a = D to denote the computation of an expression a € A toD € D.
For instance, <P X Y> = OUT is the computation of program P € D with inputs
X,Y € D and output OUT € D. Two A-expressions a,b € A are computationally
equal if they can be reduced to identical D-expressions:

a="b iff VXeD:(a=X iff b=1X)

Abstraction. To represent sets of A-expressions, we define a metacomputation
language B by the grammar

B :=D| M| <B B*>

where M is a set of metavariables. A metavariable m € M 1s a placeholder
that stands for an unspecified data element D € D). We use lowercase names in
typewriter font to write elements of M. A B-expression b is an abstraction
that represents the set of all A-expressions obtained by replacing metavariables
m € M by elements of D. We write a € b to denote that a € A is an element of
the set represented by b € B. We refer to a B-expression also as a configuration.

Encoding. Expressions in the metacomputation language need to be repre-
sented as data in order to manipulate them by means of programs (ordinary

13

computation cannot reduce B-expressions because metavariables are not in A).
A metacoding [72] is an injective mapping B — D to encode B-expressions in
D. We are not interested in a specific way of metacoding and assume some
metacoding ¢ : B — D. Repeated metacoding is well-defined because D C B.

Metacomputation. It follows from our notation that <MC 5> = D denotes
metacomputation on an expression b € B using a metaprogram MC € D. The
application of MC to the metacoded B-expression is an A-expression that can
be reduced by ordinary computation. We should stress that this characteriza-
tion of metacomputation says nothing about its concrete nature, except that it
involves a metaprogram MC that operates on a metacoded configuration b. Dif-
ferent metaprograms may perform different operations on b, such as program
specialization, program composition, or program inversion.

Definition9 (program inverter). A program INV € D is a program inverter

if for every program P € D injective in its first argument,* every input X,Y € D
and metavariable x € M, there exists a program P~! € D such that

<INV <P x ¥>> =P~ ! and <P7!' <P X ¥>> =X

In general when P is not injective, P~! must return a list of results.’

5.2 Interpretive Inversion by Supercompilation

Supercompilation is capable of interpretive inversion [69, 55, 1] (we show later
how metasystem transition can be used to generate an inverse program P~1).
The formulation of interpretive inversion is as follows. Let EQ be a program that
tests the equality of two data elements. Given Y, Z find an X such that

<EQ <P X Y> Z> = ‘True’

where ‘True’ is some distinct element of D. Supercompilation, more specifically
driving, can be used to obtain a program ANSWER with answers for x internalized:

<DRIVE <EQ <P x Y> Z>> = ANSWER

Ezrample 1. Let numbers be represented by lists of length n. Then program ap-
pend a (Fig. 2) implements the addition of two numbers. Using driving (Sect. 2)
we can compute z — y by interpretive inversion of addition. The result of inter-
pretive inversion for z = 1 and y = 0, i.e. driving eg (a zs []) [1], appears in
Fig. 15. The answer, = 1, can be extracted mechanically from the program.

1 P is injective in its first argument if for all X1,X2,Y € D: <P X1 Y> =<P X2 Y>
implies that X1 and X2 are the same element of D.

® There are two types of inversions: either we are interested in an ezistential solution
(one of the possible results), or in a universal solution (all possible results).

14

g1 [] = False 92 [] = True

g1 (z:28) = g2 s g2 (z:28) = False

Fig. 15. Result of driving eq (a =s []) [1].

Ezrample 2. Using supercompilation instead of driving one may produce a finite
program even when the list of possible answers is infinite. This may be used
for theorem proving [74, 86]. An example is shown in Fig. 16 where the super-
compiler (Sect. 3) is applied to eq (a zs []) xs which represents the proposition
Vn.(n + 0 = n) which can be proven only by using induction. The residual
program constructed returns True for all lists. This proves the theorem.

g1 [] = True
g1 (z:38) = gy xs

Fig. 16. Result of supercompiling eq (a zs []) ws.

One of the first results for interpretive inversion by driving were obtained in
1972 by performing subtraction by interpretive inversion of binary addition [68].
In 1973 S.A. Romanenko and later S.M. Abramov implemented an algorithm,
Universal Resolving Algorithm (URA), in which driving was combined with a
mechanical extraction of answers, see [55]. For program inversion see also [55,
36, 56, 81]. The generation of an algorithm representing binary subtraction from
binary addition by self-application was reported in [34].

In logic programming, one defines a predicate by a program <P x y> and
solves the inversion problem for Z = ‘True’. Theorem proving and program
transformation are indistinguishable in the approach outlined above; they are
two applications of the same equivalence transformation. The definition of a
predicate may be perceived as non-procedural, but their semantics 1s still de-
fined in terms of computation. The application of supercompilation to problem
solving and theorem proving has been discussed in [74, 75], the connection to
logic programming in [1, 24, 33].

5.3 Metasystem Transition

Having introduced the basic concepts of metacomputation, we now consider the
use of multi-level metasystem hierarchies together with a supercompiler. During
the construction of multi-level hierarchies, we will frequently need to replace
metacoded subexpressions by metavariables. The correct treatment of metacode
is so essential in self-application [23], that we make elevated metavariables [84] an
integral part of the MST-language. We define a metasystem transition language
C by the grammar

C =D | My | <C C*>

where My is a set of elevated metavariables myg,H € IN. An elevated metavari-
able mpg ranges over data metacoded H-times. We will denote by DY the set of

15

-H
metacode D of all D € D. A metavariable without elevation has 0 as its eleva-
tion index. A C-expression ¢ represents the set of all A-expressions obtained by
substituting elevated metavariables myg by elements of DH.

Metasystem Transition. The construction of each next level in a metasystem
hierarchy, referred to as a metasystem transition (MST) [83], is done in three
steps [31]:

(A) given an initial A-expression a,
(B) define a C-expression ¢ such that a € ¢,
(C) apply a metaprogram MC to the metacode c.

The expression obtained in the last step is again an A-expression and the same
procedure can be repeated. Expressions obtained by MST are called MST-
formulas. This definition says nothing about the goal of the MST, except that
it is an abstraction of an A-expression a to a configuration ¢, followed by the
application of a metaprogram MC to c.

Generating Inverse Programs. The interpretive inversion of a program can
always be performed using driving, but the performance can be poor whilst often
more efficient inverse programs are known to exist. Figure 17 show how MST can
be used to synthesize inverse programs by specialization of the universal resolving
algorithm URA; see [55, 1]. For notational convenience let <Q x y 2> be defined
by <EQ <P x y> z>. A specializer SPEC is used for the sake of generality, but it
should be clear that a supercompiler SCP can be used instead.

— 1st MST Define a C-expression (B0) by replacing X by xq in the A-expression
(A0), and apply URA to the metacoded C-expression (Al) to perform inter-
pretive inversion: the 1st MST. Interpretive inversion of Q is achieved.

— 2nd MST Define a C-expression (Bl) by replacing Y,Z by y1,21 in the
A-expression (A1)%, and apply SPEC’ to the metacoded C-expression (A2)
to specialize URA and remove its interpretive overhead: the 2nd MST. The
result is an inverted program Q~' that returns ANSWER given Y, Z.

— 3rd MST Define a C-expression (B2) by replacing Q by g2 in the A-
expression (A2), and apply SPEC” to the metacoded C-expression (A3): the
3rd MST. The result is an inverter INV that converts a program Q into Q~'.

— 4th MST Define a C-expression (B3) by replacing URA by uras in the A-
expression (A3), and apply SPEC”' to the metacoded C-expression (A4): the
4th MST. The result is an inverter generator INVGEN.

A hierarchy of metasystems can be visualized using a 2-dimensional notation”:
(i) an expression is moved down one line down for each metacoding; (ii) the
elevation of a metavariable my is shown by a bullet o located H lines below the

6 We take the liberty to replace subexpressions of d € D by metavariables and interrupt

the horizontal line above the enclosing expression; defined formally in [26].
7 Introduced by Turchin; a preliminary form appeared in [23].

16

(A0) <Q X Y Z> = BOOL (computation)

(BO) <Q x¢ Y Z> (abstraction)
Al) <URA <Q xg Y Z>> = ANSWER 1st MST
0
(B1) <URA <Q xq¢ yq 21> (abstraction)
A2) <SPEC’ <URA <Q x Zz4>>> = Q! ond MST
0 V1 %1
(B2) <SPEC’ <URA <qy xg y{i Z1>>> (abstraction)
A3) <SPEC” <SPEC’ <URA <qy Xg z{>>>> = INV 3rd MST
d2 X0 ¥1 21
(B3) <SPEC” <SPEC' <uray <qy Xo yi Z{>>>> (abstraction)

(A4) <SPEC" <SPEC” <SPEC’ <urag <qg Xo y{ z{>>>>> = INVGEN (4th MST)

Fig. 17. MST-formulas for program inversion.

metavariable. The two-dimensional version of the 3rd MST (A3) is shown below.

<SPEC” > = INV
<SPEC’ q >
<URA_ | —_y z_>
<o X o o>

The Futamura projections [19] are, in all probability, the first example of
program transformation beyond a single metasystem level, but MST is not lim-
ited to this application. Turchin suggested MST to increase the power of theo-
rem proving [74] and it inspired a constructive approach to the foundations of
mathematics [76]. The philosophical background of MST was exposed in [70];
see also [79, 80].

First successful self-application of a partial evaluator was achieved by Jones,
Sestoft and Sgndergaard [39]. The generation of an algorithm representing bi-
nary subtraction from binary addition by self-application was reported in [34].
Examples of MST are multiple self-application [23, 28], the generation of pro-
gram transformers [25, 27], and other related applications in [42, 1, 24, 31, 32].

Acknowledgments. Thanks to Sergei Abramov, Andrei Klimov, Andrei Nemytykh,
Alexander Romanenko (f), Sergei Romanenko, and last but not least, Valentin F.
Turchin for many interesting discussions and hospitality during visits in Russia and
New York. Special thanks are due to Andrei Klimov for transcription and transla-
tion of Russian titles. Thanks to John Hatcliff, Neil D. Jones, Jesper Jgrgensen, Bern
Martens, Kristian Nielsen, and David Sands for stimulating discussions on various top-
ics of this paper. Finally, we are indebted to all members of the Topps group at DIKU
for providing an excellent working environment.

17

References

1.

2.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

S.M. Abramov. Metavychislenija i logicheskoe programmirovanie (Metacomputa-
tion and logic programming). Programmirovanie, 3:31-44, 1991. (In Russian).
S.M. Abramov. Metacomputation and program testing. In 1st International Work-
shop on Automated and Algorithmic Debugging (Linkdping, Sweden), pages 121
135, 1993.

S.M. Abramov. Metavychislenija i ikh prilozhenija (Metacomputation and its ap-
plications). Nauka, Moscow, 1995. (In Russian).

M. Alpuente, M. Falaschi, and G. Vidal. Narrowing-driven partial evaluation of
functional logic programs. Manuscript, Universidad Politecnica de Valencia, Spain,
1995.

L. Beckman, A. Haraldson, 0. Oskarsson, and E. Sandewall. A partial evaluator
and its use as a programming tool. Artificial Intelligence, 7:319-357, 1976.

R. Bird and P.LL. Wadler. Introduction to Functional Programming. Prentice-Hall,
1988.

D. Bjgrner, A.P. Ershov, and N.D. Jones, editors. Partial Fvaluation and Mized
Computation. North-Holland, Amsterdam, 1988.

R. Bol. Loop checking in partial deduction. Journal of Logic Programming,
16(1&2):25-46, 1993.

M.A. Bulyonkov. Polyvariant mixed computation for analyzer programs. Acta
Informatica, 21:473-484, 1984.

C.-L. Chang and R.C.-T. Lee. Symbolic Logic and Mechanical Theorem Proving.
Computer Science and Applied Mathematics. Academic Press, 1973.

C. Consel and O. Danvy. For a better support of static data flow. In J. Hughes,
editor, Conference on Functional Programming and Computer Architecture, volume
523 of Lecture Notes in Computer Science, pages 495-519. Springer-Verlag, 1991.
C. Consel and O. Danvy. Tutorial notes on partial evaluation. In ACM Symposium
in Principles of Programming Languages, pages 493-501. ACM Press, 1993.

C. Consel and S.C. Khoo. Parameterized partial evaluation. ACM TOPLAS,
15(3):463-493, 1993.

N. Dershowitz and J.-P. Jouannaud. Rewrite systems. In J. van Leeuwen, editor,
Handbook of Theoretical Computer Science. Elsevier, 1992.

J. Dixon. The specializer, a method of automatically writing computer programs.
Technical report, Division of Computer Research and Technology, National Insti-
tute of Health, Bethesda, Maryland, 1971.

A.P. Ershov. On the partial computation principle. Information Processing Let-
ters, 6(2):38-41, April 1977.

A.P. Ershov. On the essence of compilation. In E.J. Neuhold, editor, Formal
Description of Programming Concepts, pages 391-420. North-Holland, 1978.

A. Ferguson and P.L.. Wadler. When will deforestation stop? In 1988 Glasgow
Workshop on Functional Programming, pages 39-56, 1988.

Y. Futamura. Partial evaluation of computing process — an approach to a compiler-
compiler. Systems, Computers, Controls, 2(5):45-50, 1971.

Y. Futamura. Partial computation of programs. In E. Goto, K. Furukawa,
R. Nakajima, 1. Nakata, and A. Yonezawa, editors, RIMS Symposia on Software
Science and Fngineering, volume 147 of Lecture Notes in Computer Science, pages
1-35, Kyoto, Japan, 1983. Springer-Verlag.

Y. Futamura. Program evaluation and generalized partial computation. In Inter-
national Conference on Fifth Generation Computer Systems, pages 1-8, 1988.

18

22

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

J. Gallagher. Tutorial in specialisation of logic programs. In Symposium on Partial
Fvaluation and Semantics-Based Program Manipulation, pages 88-98. ACM Press,
1993.

R. Glick. Towards multiple self-application. In Proceedings of the Symposium on
Partial FEvaluation and Semantics-Based Program Manipulation, pages 309-320,
New Haven, Connecticut, 1991. ACM Press.

R. Glick. Projections for knowledge based systems. In R. Trappl, editor, Cyber-
netics and Systems Research’92. Vol. 1, pages 535-542. World Scientific: Singapore,
1992.

R. Glick. On the generation of specializers. Journal of Functional Programming,
4(4):499-514, 1994.

R. Glick. On the mechanics of metasystem hierarchies in program transformation.
page submitted, 1995.

R. Glick and J. Jgrgensen. Generating transformers for deforestation and super-
compilation. In B. Le Charlier, editor, Static Analysts. Proceedings, volume 864
of Lecture Notes in Computer Science, pages 432-448, Namur, Belgium, 1994.
Springer-Verlag.

R. Glick and J. Jgrgensen. Efficient multi-level generating extensions for program
specialization. In S.D. Swierstra and M. Hermenegildo, editors, Programming Lan-
guages, Implementations, Logics and Programs (PLILP’95), volume 982 of Lecture
Notes in Computer Science, pages 259-278. Springer-Verlag, 1995.

R. Glick and A.V. Klimov. Occam’s razor in metacomputation: the notion of a
perfect process tree. In P. Cousot, M. Falaschi, G. File, and G. Rauzy, editors,
Static Analysis. Proceedings. Lecture Notes in Computer Science, Vol. 724, pages
112-123. Springer-Verlag, 1993.

R. Glick and A.V. Klimov. Metacomputation as a tool for formal linguistic model-
ing. In R. Trappl, editor, Cybernetics and Systems ’94, volume 2, pages 1563-1570,
Singapore, 1994. World Scientific.

R. Glick and A.V. Klimov. Metasystem transition schemes in computer science
and mathematics. World Futures: the Journal of General Evolution, page (to
appear), 1995.

R. Glick and A.V. Klimov. Reduction of language hierarchies. In Proceedings of
the 14th International Congress on Cybernetics, page to appear, Namur, Belgium,
1995. International Association for Cybernetics.

R. Glick and M.H. Sgrensen. Partial deduction and driving are equivalent. In
M. Hermenegildo and J. Penjam, editors, Programming Language Implementation
and Logic Programming. Proceedings, volume 844 of Lecture Notes in Computer
Science, pages 165—-181, Madrid, Spain, 1994. Springer-Verlag.

R. Glick and V.F. Turchin. Application of metasystem transition to function
inversion and transformation. In Proceedings of the ISSAC’90 (Tokyo, Japan),
pages 286—287. ACM Press, 1990.

R. Gurin and S.A. Romanenko. Jazyk programmirovanija Refal Pljus (The Refal
Plus programming language). Intertech, Moscow, 1991.

P.G. Harrison. Function inversion. In D. Bjgrner, A.P. Ershov, and N.D. Jones,
editors, Partial Evaluation and Mized Computation, pages 153-166, Gammel Av-
ernes, Denmark, 1988. North-Holland.

N.D. Jones. The essence of program transformation by partial evaluation and
driving. In N.D. Jones, M. Hagiya, and M. Sato, editors, Logic, Language, and
Computation, volume 792 of Lecture Notes in Computer Science, pages 206-224.
Springer-Verlag, 1994. Festschrift in honor of S.Takasu.

19

38.

39.

40.

41.
42.

43.

44.

45.

46.

47.

48.

49.

50.

51.

52.

53.

54.

N.D. Jones, C.K. Gomard, and P. Sestoft. Partial Evaluation and Automatic Pro-
gram Generation. Prentice-Hall, 1993.

N.D. Jones, P. Sestoft, and H. Sgndergaard. An experiment in partial evaluation:
the generation of a compiler generator. In J.-P. Jouannaud, editor, Rewriting
Techniques and Applications, Dijon, France. Lecture Notes in Computer Science
202, pages 124-140. Springer-Verlag, 1985.

N.D. Jones, P. Sestoft, and H. Sgndergaard. Mix: a self-applicable partial evaluator
for experiments in compiler generation. Lisp and Symbolic Computation, 2(1):9-50,
1989.

S.C. Kleene. Introduction to Metamathematics. Van Nostrand, 1952.

A.V. Klimov and S.A. Romanenko. Metavychislitel” dlja jazyka Refal. Osnovnye
ponjatija i primery. (A metaevaluator for the language Refal. Basic concepts and
examples). Preprint 71, Keldysh Institute of Applied Mathematics, Academy of
Sciences of the USSR, Moscow, 1987.

A.V. Klimov and S.A. Romanenko. Sistema programmirovanija Refal-2 dlja ES.
Opisanie vkhodnogo jazyka (Programming system Refal-2 for ES computers. The
source language description). Technical report, Keldysh Institute of Applied Math-
ematics, Academy of Sciences of the USSR, Moscow, 1987.

A.V. Klimov, S.A. Romanenko, and V.F. Turchin. Teoreticheskie osnovy sintak-
sicheskogo otozhdestvlenija v jazyke Refal (The theory of pattern matching in Re-
fal). Preprint 13, Keldysh Institute of Applied Mathematics, Academy of Sciences
of the USSR, Moscow, 1973.

J. Komorowski. An introduction to partial deduction. In A. Pettorossi, editor,
Meta- Programming in Logic, volume 649 of Lecture Notes in Computer Science,
pages 49-69, 1992.

J. Komorowski. Special issue on partial deduction. Journal of Logic Programming,
16(1&2):1-189, 1993.

M. Leuschel and B. Martens. Global control for partial deduction through charac-
teristic atoms and global trees. 1995. submitted.

J.W. Lloyd and J.C. Shepherdson. Partial evaluation in logic programming. Jour-
nal of Logic Programming, 11(3-4):217-242, 1991.

L.A. Lombardi. Incremental computation. In F. L. Alt and M. Rubinoff, editors,
Advances in Computers, volume 8, pages 247-333. Academic Press, 1967.

L.A. Lombardi and B. Raphael. Lisp as the language for an incremental computer.
In E.C. Berkeley and D.G. Bobrow, editors, The Programming Language Lisp: Its
Operation and Applications, pages 204-219, Cambridge, Massachusetts, 1964. MIT
Press.

B. Martens and J. Gallagher. Ensuring global termination of partial deduction
while allowing flexible polyvariance. In L. Stirling, editor, International Conference
on Logic Programming, pages 597-613. MIT Press, 1995.

K. Nielsen and M.H. Sgrensen. Call-by-name CPS-translation as a binding-time
improvement. In A. Mycroft, editor, Static Analysis, volume 983 of Lecture Notes
in Computer Science, pages 296-3131. Springer-Verlag, 1995.

R.M. Nirenberg. A practical turing machine representation. SIGACT News,
17(3):35-44, 19%6.

M. Proietti and A. Pettorossi. Unfolding — definition — folding, in this order for
avoiding unnecessary variables in logic programs. In Programming Language Im-
plementation and Logic Programming, volume 528 of Lecture Notes in Computer
Science, pages 347-358. Springer-Verlag, 1991.

20

55.

56.

57.

58.

59.

60.

61.

62.

63.

64.

65.

66.

67.

68.

69.

A.Y. Romanenko. The generation of inverse functions in Refal. In D. Bjgrner,
A.P. Ershov, and N.D. Jones, editors, Partial Evaluation and Mixed Computation,
pages 427-444, Gammel Avernas, Denmark, 1988. North-Holland.

A.Y. Romanenko. Inversion and metacomputation. In Proceedings of the Sym-
posium on Partial Evaluation and Semantics-Based Program Manipulation. (Yale
University, Connecticut), pages 12-22. ACM Press, 1991.

S.A. Romanenko. Progonka dlja programm na Refale-4 (Driving for Refal-4 pro-
grams). Preprint 211, Keldysh Institute of Applied Mathematics, Academy of
Sciences of the USSR, Moscow, 1987.

S.A. Romanenko. Arity raiser and its use in program specialization. In N.D.
Jones, editor, FSOP’90, volume 432 of Lecture Notes in Computer Science, pages
341-360. Springer-Verlag, 1990.

D. Sands. Proving the correctness of recursion-based automatic program trans-
formation. In P. Mosses, M. Nielsen, and M.I. Schwartzbach, editors, Theory and
Practice of Software Development, volume 915 of Lecture Notes in Computer Sci-
ence, pages 681-695. Springer-Verlag, 1995.

D. Sands. Total correctness by local improvement in program transformation. In
22nd Symposium on Principles of Programming Languages, pages 221-232. ACM
Press, 1995.

D. Smith. Partial evaluation of pattern matching in constraint logic programming.
In Symposium on Partial Fvaluation and Semantics-Based Program Manipulation,
pages 62-71. ACM Press, 1991.

M.H. Sgrensen. Turchin’s supercompiler revisited. Master’s thesis, Department of
Computer Science, University of Copenhagen, 1994. DIKU-rapport 94/17.

M.H. Sgrensen and R. Glick. An algorithm of generalization in positive super-
compilation. In J.W. Lloyd, editor, International Logic Programming Symposium.
MIT Press, 1995. to appear.

M.H. Sgrensen, R. Glick, and N.D. Jones. Towards unifying deforestation,
supercompilation, partial evaluation, and generalized partial computation. In
D. Sannella, editor, Programming Languages and Systems, volume 788 of Lecture
Notes in Computer Science, pages 485-500. Springer-Verlag, 1994.

M.H. Sgrensen, R. Glick, and N.D. Jones. A positive supercompiler. Submitted
to Journal of Functional Programming, 1995.

A. Takano. Generalized partial computation using disunification to solve con-
straints. In M. Rusinowitch and J.L.. Remy, editors, Conditional Term Rewriting
Systems. Proceedings, volume 656 of Lecture Notes in Computer Science, pages
424-428. Springer-Verlag, 1993.

V.F. Turchin. Metajazyk dlja formal’nogo opisanija algoritmicheskikh jazykov (A
metalanguage for the formal description of algorithmic languages). In Cifrovaja
Vychislitel’'naja Tekhnika ¢ Programmirovanie, pages 116-124. Sovetskoe Radio,
Moscow, 1966. (In Russian).

V.F. Turchin. Ehkvivalentnye preobrazovanija rekursivnykh funkcij na Refale
(Equivalent transformations of recursive functions defined in Refal). In Teorija
Jazykov 1 Metody Programmirovanija (Proceedings of the Symposium on the The-
ory of Languages and Programming Methods). (Kiev-Alushta, USSR), pages 31-42,
1972. (In Russian).

V.F. Turchin. Ehkvivalentnye preobrazovanija programm na Refale (Equivalent
transformations of Refal programs). In Avtomatizirovannaja Sistjema upravljenija
stroitel’stvom. Trudy TxNIPIASS 6, pages 36-68, 1974. (In Russian).

21

70.

71.

72.

73.

74.

75.

76.

77.

78.
79.
80.
81.
82.

83.

84.

85.

86.

87.

V.F. Turchin. The Phenomenon of Science. Columbia University Press, New York,
1977.

V.F. Turchin. A supercompiler system based on the language Refal. SIGPLAN
Notices, 14(2):46-54, 1979.

V.F. Turchin. The language Refal, the theory of compilation and metasystem
analysis. Courant Computer Science Report 20, Courant Institute of Mathematical
Sciences, New York University, 1980.

V.F. Turchin. Semantic definitions in Refal and the automatic production of com-
pilers. In N.D. Jones, editor, Workshop on Semantics-Directed Compiler Gener-
ation, Arhus, Denmark. Lecture Notes in Computer Science 94, pages 441-474.
Springer-Verlag, January 1980.

V.F. Turchin. The use of metasystem transition in theorem proving and program
optimization. In J.W. de Bakker and J. van Leeuwen, editors, Automata, Lan-
guages and Programming, volume 85 of Lecture Notes in Computer Science, pages
645-657, Noordwijkerhout, Netherlands, 1980. Springer-Verlag.

V.F. Turchin. The concept of a supercompiler. Transactions on Programming
Languages and Systems, 8(3):292-325, 1986.

V.F. Turchin. A constructive interpretation of the full set theory. The Journal of
Symbolic Logic, 52(1):172-201, 1987.

V.F. Turchin. The algorithm of generalization. In D. Bjgrner, A.P. Ershov, and
N.D. Jones, editors, Partial Fvaluation and Mized Computation, pages 531-549.
North-Holland, 1988.

V.F. Turchin. Refal-5, Programming Guide and Reference Manual. New England
Publishing Co., Holyoke, Massachusetts, 1989.

V.F. Turchin. The cybernetic ontology of action. Kybernetes, 22(2):10-30, 1993.
V.F. Turchin. On cybernetic epistemology. Systems Research, 10(1):3-28, 1993.
V.F. Turchin. Program transformation with metasystem transitions. Journal of
Functional Programming, 3(3):283-313, 1993.

V.F. Turchin. On generalization of lists and strings in supercompilation. Technical
report, City College of the City University of New York, 1995.

V.F. Turchin, And. V. Klimov, Ark.V. Klimov, V.F. Khoroshevsky, A.G.
Krasovsky, S.A. Romanenko, I.B. Shchenkov, and E.V. Travkina. Bazisnyj Refal
i ego realizacija na vychislitelnykh mashinakh (Basic Refal and its implementation
on computers). GOSSTROJ SSSR, CNIPIASS, Moscow, 1977.

V.F. Turchin and A.P. Nemytykh. Metavariables: their implementation and use
in program transformation. Technical Report CSc. TR 95-012, City College of the
City University of New York, 1995.

V.F. Turchin and A.P. Nemytykh. A self-applicable supercompiler. Technical
Report CSc. TR 95-010, City College of the City University of New York, 1995.
V.F. Turchin, R. Nirenberg, and D. Turchin. Experiments with a supercompiler.
In Conference Record of the ACM Symposium on Lisp and Functional Program-
ming, pages 47-55. ACM Press, 1982.

P.L.. Wadler. Deforestation: Transforming programs to eliminate intermediate
trees. Theoretical Computer Science, 73:231-248, 1990. Preliminary version in

ESOP’88 LNCS vol. 300.

22

A Operations on Partial Process Trees

T =

UNFOLD(T,(t)) =

SPLIT(T,(t)) =

Clet z1=ti ... Tn=tp,INh o1 ...2m

Clet :L‘lztl e .’L‘n:tn in 6)

@/

if s =t{z1:=t1,...

TE

, Tni=tn}

GENERALIZET,(3),(t)) =

Qet :L‘lztl e :L‘n:tn in ta\

if |s,t] = (tg, {z1:=t1, ..., 20:=tr},0)

This article was processed using the INTpX macro package with LLNCS style

23

