
A Roadmap to Metacomputation by

Supercompilation�

Robert Gl�uck � Morten Heine S�rensen

DIKU� Department of Computer Science� University of Copenhagen
Universitetsparken �� DK����� Copenhagen �� Denmark

E�mail� fglueck�rambog�diku�dk

Abstract� This paper gives a gentle introduction to Turchin�s super�
compilation and its applications in metacomputation with an emphasis
on recent developments� First� a complete supercompiler� including pos�
itive driving and generalization� is de	ned for a functional language and
illustrated with examples� Then a taxonomy of related transformers is
given and compared to the supercompiler� Finally� we put supercompila�
tion into the larger perspective of metacomputation and consider three
metacomputation tasks� specialization� composition� and inversion�

Keywords� Program transformation� supercompilation� driving� gener�
alization� metacomputation� metasystem transition�

� Introduction

Over the years a number of automatic program transformers have been de�
vised and implemented� The most popular is partial evaluation which performs
program specialization� The possibility� in principle� of partial evaluation is con�
tained in Kleene�s s�m�n Theorem ��	
� The idea to use partial evaluation as
a programming tool can be traced back to work beginning in the late 	��
�s by
Lombardi and Raphael ��
� ��
� Dixon �	�
� and Chang and Lee �	

� Important
contributions were made in the seventies by Futamura �	�� �

� by Sandewall�s
group ��
� by Ershov �	�� 	�
� and later by Jones� group ���� �

� In the eighties
program specialization became a research �eld of its own� e�g� ��� ��� ��� 	�
�

Supercompilation ���
� conceived by Turchin in the early seventies in Russia
for the programming language Refal� achieves the e�ects of partial evaluation
as well as more dramatic optimizations� Turchin formulated the transforma�
tions necessary for supercompilation� including the central rule of driving and
the outside�in strategy� in 	��� ���� ��
 and the main results concerning self�
application� metasystem transition� in 	���� The book ���
 de�ned all three Fu�
tamura projections in terms of metasystem transition� In the English language�
the work on supercompilation was �rst described in ��	� ��� ��� ��
 and then
developed further in ���� ��� ��� �	
� Despite these remarkable contributions�
supercompilation has not found recognition outside a small circle of experts�

� Partially supported by the DART project funded by the Danish Natural Sciences
Research Council� The 	rst author was also supported by an Erwin�Schr
odinger�
Fellowship of the Austrian Science Foundation �FWF� under grant J�
�� � J�����



This paper gives a gentle introduction to the principles of supercompilation in
terms of a positive supercompiler ���� ��� ��� ��� ��
 comprising two components�
driving �Sect� �� and generalization �Sect� ��� The supercompiler is compared to
related program transformers �Sect� ��� and put it into the larger perspective of
metacomputation �Sect� ��� We give references to the literature throughout the
text� which can hopefully be used as a starting point for further reading� The
bibliography contains a comprehensive list of Russian and English titles on the
topic�

��� Object Language

We are concerned with a �rst�order functional language� the intended operational
semantics is normal�order graph reduction to weak head normal form in the sense
of Bird and Wadler ��
�
The syntax of our language appears in Fig� 	 �where m � 
� n � 
�� We

assume denumerable� disjoint sets of symbols for variables v � V� constructors
c � C� and functions f � F and g � G� symbols all have �xed arity� A given
program makes use of a �nite number of di�erent symbols�
A program q � Q is a sequence of function de�nitions d � D where the right

side of each de�nition is a term t � T constructed from variables� constructors�
function calls� and conditionals� We require that no two patterns pi and pj in a
g�function de�nition contain the same constructor c� that no variable occur more
than once in a pattern� and that all variables on the right side of a de�nition be
present in its left side� Figure � shows the function a for appending two lists��

Q � q ��� d� � � � dm �program�

D � d ��� f v� � � � vn
�
� t �f�function de	nition� no patterns�

j g p� v� � � � vn
�
� t�

��� �g�function de	nition with patterns�
g pm v� � � � vn

�
� tm

T � t ��� v �variable�

j c t� � � � tn �constructor�

j f t� � � � tn �f�function call�

j g t� t� � � � tn �g�function call�

j if t��t� then t� else t� �conditional with equality test�

P � p ��� c v� � � � vn ��at pattern�

Fig� �� Syntax of programs� de	nitions� terms� and patterns�

Remark� Our language contained case�expressions in ���� ��
� g�functions in ���
�
The connection of positive supercompilation and deforestation stands out clear�
est for case�expressions� However� g�functions ��named case�expressions�� �	�

lead to a simpler presentation of generalization�

� We use the usual notation � � and �x � xs� for the list constructors nil and cons x xs�

�



a � � ys
�
� ys

a �x � xs� ys
�
� x � a xs ys

Fig� �� Example program append�

� Driving

Driving takes a term and a program and constructs a possibly in�nite process
tree� representing all possible computations with the term� in a certain sense�
Figure � shows part of the in�nite process tree for the term a �a xs ys� xs �note
the repeated variable xs��

GF ED�A BCa �a xs ys� xs

xx

xs�� �

�� xs��x� 	xs�


GF ED�A BCa ys � �

��

ys���

�� ys��y�	ys�


GF ED�A BCa �x� � a xs� ys� �x� � xs��

���� ���� ��� � GF ED�A BCy� � a ys� � �

�� ��

GF ED�A BCx� � a �a xs� ys� �x� � xs��

�� ���� ���� ��y� GF ED�A BCa ys� � �

�� ��

�� ���� ��x�
GF ED�A BCa �a xs� ys� �x� � xs��

�� ��

Fig� �� Example process tree for a �a xs ys� xs�

Each node contains a term t and its children contain the terms that arise
by one normal�order reduction step from t� Whenever the reduction step has
di�erent possible outcomes there are several children so as to account for all
possibilities� For instance� the topmost branching in Fig� � corresponds to the
cases xs � � 
 and xs � �x� � xs���
In Sect� ��	 we de�ne normal�order reduction� and in Sect� ��� we introduce

process trees and de�ne driving�

��� Normal�Order Reduction

A value is a term built exclusively from constructors and variables� An observable
is either a variable or a term with a known outermost constructor� Any term
which is not an observable can be decomposed into the form e�r
 where the
redex r is the outermost reducible subterm and the evaluation context e is the
surrounding part of the term�
More precisely� de�ne values� observables� redexes� and evaluation contexts by

the syntactic classes B�O�R and E � respectively� as in Fig� �� De�ne e�t
 to be
the result of substituting t for the �hole� � in e�

Lemma� �the unique decomposition property�� For any t � T either there
exists a unique pair �e� r� � E �R such that t � e�r
 or t � O�

�



B � b ��� v j c b� � � � bn �value�

O � o ��� v j c t� � � � tn �observable�

R � r ��� f t� � � � tn �redex�

j g o t� � � � tn

j if b��b� then t� else t�

E � e ��� � �evaluation context�

j g e t� � � � tn

j if d�t� then t� else t�

j if b�d then t� else t�

d ��� e j c b� � � � bi�� d ti�� � � � tn

Fig� �� Values� observables� redexes� evaluation contexts�

Figure � shows example decompositions� In �	� the outermost call to the f�
function f can be unfolded� the evaluation context is empty� In ��� the call to f
has to be unfolded� the call to the g�function g cannot be unfolded because the
term f t does not have a known outermost constructor� In ��� the call to f has
to be unfolded� both sides of an equality test must be values�

t e r

��� f �g t� � f �g t�

��� g �f t� g � f t

��� if x�c �f t� then t� else t�� if x�c � then t� else t�� f t

Fig� �� Examples of decomposition into redex and evaluation context�

The rules for normal�order reduction are given by the map N from terms to
ordered sequences ht�� � � � � tni of terms in Fig� �� The rules of N are mutually
exclusive and together exhaustive by the unique decomposition property�

t N �� t ��

��� x h i

��� c t� � � � tn ht�� � � � � tni

��� e�f t� � � � tn� he�sfvi �� tigni���i if f v� � � � vn
�
� s

��� e�g �c t� � � � ti� ti�� � � � tn� he�sfvi �� tigni���i if g �c v� � � � vi� vi�� � � � vn
�
� s

��� e�g x t� � � � tn� h�e�s�fvi �� tigni����fx��p�g� � � � � �e�smfvi �� tigni����fx��pmgi
if fg pj v� � � � vn

�
� sjgmj��

��� e�if b�b� then t else t��

����
���

he�t�i if b� b� are ground� b � b�

he�t��i if b� b� are ground� b �� b�

h�e�t��db� b�e� e�t��i if b� b� are not both ground

Fig� �� Normal�order reduction step�

�



Notation� the expression tfvi �� tigni�� denotes the result of simultaneously
replacing all occurrences of vi by the corresponding term ti where 	 � i � n�
The expression db� b�e denotes an idempotent most general uni�er fvi �� tigni��
of b and b� if it exists� and fail otherwise� where we stipulate t fail � t� A value is
ground if it contains no variables� To avoid name capture� the variables occurring
in left hand sides in clauses ������� must be fresh�
Note the substitutions in clauses ��� and ���� The assumed outcome of the

test is propagated to the terms resulting from the step� We call this uni�cation�
based information propagation �c�f� Sect� ���

��� Process Trees

A process tree is a tree where each node is labeled with a term t and all edges
leaving a node are ordered� Every node may have an additional mark�

De�nition�� Let T be a process tree and
	
 ��
� ��t an unmarked leaf node in T �

Then UNFOLD�T�
	
 ��
� ��t � is the process tree� obtained by marking 	
 ��
� ��t and adding

n unmarked children labeled t�� � � � � tn� where N �� t 

� ht�� � � � � tni�

Driving is the action of constructing process trees using two essential principles�
normal�order strategy and uni�cation�based information propagation�

Algorithm � �driving��

�� INPUT t� � T � q � Q
�� LET T� be the process tree with unmarked node labeled t�� SET i � ��
�� WHILE there exists an unmarked leaf node N in Ti�

�a� Ti�� � UNFOLD�Ti�N�

�b� SET i � i� �

�� OUTPUT Ti

� A Positive Supercompiler

In the previous section we used driving to construct a potentially in�nite process
tree� The purpose of generalization is to ensure that one constructs instead a
�nite partial process tree from which a new term and program can be recovered�
The idea is that if a leaf node M has an ancestor L and it �seems likely�

that continued driving will generate an in�nite sequence L� � � � �M� � � � then M

should not be driven any further� instead we should perform generalization�
In Subsect� ��	 we de�ne a criterion� a so�called whistle� that formalizes the
decision when to stop� In Subsect� ��� we introduce some notions that are used in
Subsect� ��� to de�ne generalization� This culminates in a de�nition of a positive
supercompiler�

� UNFOLD and subsequent operations appear in graphical form in Appendix A�

�



��� When to Stop�

We stop driving at a leaf node with label t if one of its ancestors has label s
and s � t� where � is the homeomorphic embedding relation known from term
algebra �	�
� Variants of this relation are used in termination proofs for term
rewrite systems �	�
 and for ensuring local termination of partial deduction ��
�
After it was taken up in ���
� it has inspired more recent work ��� ��� ��
�
The rationale behind this relation is that in any in�nite sequence t�� t�� � � �

that arises during driving of a program� there de�nitely exists some i � j with
ti � tj� so driving cannot proceed in�nitely� Moreover� if ti � tj then all the
subterms of ti are present in tj embedded in extra subterms� This suggests that
tj might arise from ti by some in�nitely continuing system� so driving will be
stopped for a good reason�
The homeomorphic embedding � is the smallest relation on T satisfying the

rules in Fig� �� where h � X �C�F�G�fifthenelseg� x� y � X � and s� si� t � T �

Variable Diving Coupling

x� y
s� ti for some i

s� h �t�� � � � � tn�

s� � t�� � � � � sn � tn

h �s�� � � � � sn�� h �t�� � � � � tn�

Fig� �� Homeomorphic embedding�

Diving detects a subterm embedded in a larger term� and coupling matches the
subterms of two terms� Some examples and non�examples appear in Fig� �� It is
not hard to give an algorithmWHISTLE�M�N � deciding whether M � N �

b � a�b� a�c�b�� �� c�b�

c�b� � c�a�b�� a�c�b�� �� c�a�b��

d�b� b� � d�a�b�� a�b�� a�c�b�� �� a�a�a�b���

Fig� 	� Examples and non�examples of embedding�

��� Most Speci�c Generalization

We de�ne the generalization of two terms t�� t� as the most speci�c generalization
�msg� bt�� t�c� A well�known result in term algebra states that any two t� s � T
have an msg which is unique up to renaming� Examples are shown in Fig� ��

s t tg �� ��

b � a�b� x fx �� bg fx �� a�b�g
c�b� � c�a�b�� c�x� fx �� bg fx �� a�b�g
c�y� � c�a�y�� c�x� fx �� yg fx �� a�y�g

d�b� b� � d�a�b�� a�b�� d�x�x� fx �� a�b�g fx �� a�b�g

Fig� 
� Examples of most speci	c generalization�

�



De�nition	 �instance
 generalization
 msg
 distinct�� Given t�� t� � T �

	� An instance of t� is a term of the form t�� where � is a substitution�
�� A generalization of t�� t� is a triple �tg � ��� ��� where tg�� � t� and tg�� � t��
�� A generalization �tg � ��� ��� of t� and t� is most speci�c �msg� if for every
generalization �t�g� �

�

�
� ��

�
� of t� and t� it holds that tg is an instance of t�g�

�� Two terms t� and t� are disjoint if their msg is of form �x� ��� ����

Algorithm � �msg�� An msg bs� tc of s� t � T is computed by exhaustively
applying the rewrite rules in Fig� 	
 to the initial triple �x� fx �� sg� fx �� tg��

�
�

tg

fx �� h�s�� � � � � sn�g � ��

fx �� h�t�� � � � � tn�g � ��

�
A �

�
�

tgfx �� h�y�� � � � � yn�g

fy� �� s�� � � � � yn �� sng � ��

fy� �� t�� � � � � yn �� tng � ��

�
A

�
�

tg

fx �� s� y �� sg � ��

fx �� t� y �� tg � ��

�
A �

�
�

tgfx �� yg
fy �� sg � ��

fy �� tg � ��

�
A

Fig� ��� Computing most speci	c generalizations�

��� Partial Process Trees

A partial process tree di�ers from a process tree in that it may contain an extra
kind of nodes� generalization�nodes� with label of form let x��t� � � �xn�tn in t�

and n�	 children labeled t�� � � � � tn� t� respectively� where x�� � � � � xn do not occur
in t�� � � � � tn� This kind of node has the distinct feature that the n � 	�st edge
may go to an ancestor of the node instead of going to a child� such an edge is
called a return edge� We regard a partial process tree as an acyclic graph by
ignoring return edges� so ancestor� leaf� etc� apply only to non�return edges� The
labels on generalization nodes are unrelated to all other labels wrt� � �
The following de�nition is inspired by ��	
�

De�nition�� Let T be a partial process tree with node
	
 ��
� ��t with ancestor ��������s �

	� If t is an instance of s� i�e� t � sfx���t�� � � � � xn��tng� then FOLD�T� ��������s � 	
 ��
� ��t �
is the tree obtained as follows� Replace

	
 ��
� ��t by �� ���� � let x��t� � � �xn�tn in s which

is marked� has return edge to ��������s � and n unmarked children ������� t� � � � � � ������� tn �

�� If bs� tc � �tg � fx���t�� � � � � xn��tng� ��� then GENERALIZE�T�
��������s � 	
 ��
� ��t � is the

partial process tree obtained as follows� Delete all descendants of ��������s � and
replace ��������s by �� ���� � let x��t� � � �xn�tn in tg with a mark and n � 	 unmarked

children ������� t� � � � � � ������� tn � ������� tg � Return edges from ��������s or its descendants are erased�
�� If t � h t� � � � tn then SPLIT�T�

��������s � 	
 ��
� ��t � is the partial process tree obtained as
follows� Let tg � h x�� � � � � xn where x�� � � � � xn are new variables� replace

	
 ��
� ��t
by �� ���� � let x��t� � � �xn�tn in tg which has a mark and n�	 unmarked children

������� t� � � � � �
������� tn �

������� tg �

�



Algorithm 
 �positive supercompilation��

�� INPUT t� � T � q � Q
�� LET T� be the partial process tree with unmarked node labeled t�� SET i �� ��
�� WHILE there exists an unmarked leaf node N in Ti�

�a� IF there exists no ancestor M such that WHISTLE�M�N�
THEN Ti�� �� UNFOLD�Ti�N�
ELSE
i� LET M be an ancestor such that WHISTLE�M�N�
ii� IF node N is an instance of M THEN Ti�� �� FOLD�Ti�M�N�

ELSE IF N and M are disjoint THEN Ti�� �� SPLIT�Ti�M�N�
ELSE Ti�� �� GENERALIZE�Ti�M�N�

�b� SET i �� i� �

�� OUTPUT Ti

The following is a consequence of Kruskal�s Tree Theorem� see �	�
�

Theorem�� Algorithm � always terminates�

As for correctness� it is easily proved that each step of the transformation
rules preserves normal�order graph reduction semantics� extending rigorously
the proof to account for folding is more involved� A general technique due to
Sands ��

 can be used to prove this for �positive� supercompilation� see ���
�

��	 Discussion of the algorithm

A number of choices are left open or settled in an arbitrary way in our algorithm�
First� our algorithm followsTurchin�s generalization principle ���
 which states

that a generalization between two terms has a meaning only in the context of
the computation process in which they take part� Indeed� our algorithm searches
only the ancestors of a leaf node� However� to avoid the generation of duplicate
de�nitions one might imagine searching across di�erent branches� see e�g� ���
�
Second� our algorithm does not specify a particular strategy for selecting

unmarked leaf nodes� One may chose a breath��rst or depth��rst strategy�
Third� in case driving stops the algorithmmay employ di�erent strategies for

selecting ancestors for generalization� For instance� one may choose the closest
ancestor� or the ancestor that gives the most speci�c generalization�
Fourth� when we perform a GENERALIZE�T�M�N � step we replace node

M � Instead one could replace N � since this avoids destroying the whole subtree
with rootM � other branches fromM can be retained with no loss of information�
Fifth� the operator b�� �c and the stop criterion can be varied� e�g� ���
� The

operation SPLIT�T� s� t� may be re�ned to split t in another way� e�g� if s � h x

and t � l �k �h y�� then split such that tg � l �k z� �Turchin�s algorithm ���

maintains a stack structure of common contexts to determine split points��
Finally� one can imagine various optimizations of which we will discuss only

one� namely transient reductions� A term of form e�g x t� � � � tn
 is non�transient�
all other terms are transient� The optimization consists in adding the disjunction
�or the label of N is transient� to the condition in ��a� of Algorithm �� So only

�



terms that involve a choice at run�time are compared to ancestors for whistling
in the partial process tree� The rationale is that any loop in the program must
pass through a choice point unless there is an unconditional loop in the program�
However� this means that the partial process tree in principle can be in�nite�a
risk considered worth taking in the area of partial evaluation ���
� The partial
process tree for a �a xs ys� xs using transient reductions appears in Fig� 		�

GF ED�A BClet zs�xs in a �a xs ys� zs

ww ���� ���� ��xs GF ED�A BCa �a xs ys� zs

vv

xs�� �

��xs��x� 	xs�


GF ED�A BCa ys zs

��

ys�� �

��ys��y�	ys�


GF ED�A BCa �x� � a xs� ys� zs

���� ���� ��zs GF ED�A BCy� � a ys� zs

�� ��

GF ED�A BCx� � a �a xs� ys� zs

�� ���� ���� ��y� GF ED�A BClet ys�ys� in a ys zs

��

hh

�� ���� ��x�
GF ED�A BClet xs�xs� in a �a xs ys� zs

��

gg

GF ED�A BCys�
�� ���� ��xs�

Fig� ��� Example partial process tree with transient reductions�

From this tree one can generate the term a� xs ys xs and a new program
�Fig� 	��� This is noteworthy because the initial term requires passing the list
xs twice� whereas the new term passes xs only once�

a � � � ys zs
�
� a �� ys zs

a � �x � xs� ys zs
�
� x � a � xs ys zs

a �� � � zs
�
� zs

a �� �y � ys� zs
�
� y � a �� ys zs

Fig� ��� More e�cient double append program�

��� Comparative Remarks

From its very inception� supercompilation has been tied to a speci�c program�
ming language� called Refal ���
� a language inspired by Markov algorithms� A
Refal program is a sequence of rewrite rules� used to transform data in the form
of associative and possibly nested symbol strings and o�ers certain advantages
for programming� e�g� ���� ��
� Running interpreters were available by the end of
the 	��
�s� di�erent versions of the language were implemented ���� ��� ��� ��
�

�



The equivalence transformations necessary for supercompilation of Refal� in�
cluding the central rule of driving and the outside�in strategy� were formulated
in 	��� ���� ��
�

Driving and generalization for our language are simpli�ed considerably due
to simpler data structures� untyped variables� and �at patterns �essentially ele�
mentary contractions ���
�� Due to Refal�s data structure most general uni�ers
do not always exist� a generalized matching algorithm is needed ���� ��� ��
�

We should note that supercompilation� as de�ned by Turchin� is a normal�
order transformation that is applied to programs with call�by�value semantics�
and that transformed programs are again interpreted call�by�value� As a result�
supercompilation may make programs terminate more often� The positive super�
compiler de�ned here transforms programs with normal�order graph reduction
semantics into programs with the same semantics and the same termination
properties�

Process trees correspond to Turchin�s graph of states ���
� sometimes called
Refal graphs� A version of driving was used in the seventies in a system for
interpretive inversion� called URA� c�f� ���
 �see Sect� ����� Several supercompil�
ers have been developed for Refal ���� ��� ��� ��� ��� ��
� the �rst �non�Refal�
supercompiler was ���
� Driving has been used for neighborhood analysis ���
 to
determine sets of data that pass� up to a certain point� through a computa�
tion process in identical ways� the use of neighborhoods has been suggested for
generalization ���
 and program testing ��� �
�

� Related Program Transformers

In this section we compare positive supercompilation brie�y to partial evaluation�
deforestation� partial deduction� perfect supercompilation� and generalized partial

computation� First we introduce a number of axes along which transformers can
be compared� and then enter the coordinates of the above transformers�

	�� Some Dimensions in Automatic Program Transformation

Information propagation� Every program transformer maintains a certain
level of information propagation� we consider constant propagation� uni�cation�
based information propagation� and constraint�based information propagation�

The three levels di�er in how much information is recorded about pattern
matching and tests� corresponding to the transformation rules in Fig� 	��

T �� if u�v then t else s �� � information propagation

�a� if u�v then T �� t �� else T �� s �� constant propagation

�b� if u�v then T �� tfu��vg �� else T �� s �� uni	cation�based

�c� if u�v then T �� t ��fu � vg else T �� s ��fu �� vg constraint�based

Fig� ��� Information propagation�

	




In constant propagation the outcome of tests are ignored� In uni�cation�
based propagation substitutions into the transformed terms are used to represent
the outcome of tests� In constraint�based propagation the transformer explicitly
maintains sets of constraints recording previous tests �restrictions ���� ��
�� De�
pending on the programming language other abstract properties may be propa�
gated� e�g� ��	� 	�� ��� ��
�

Evaluation strategy� One can view a program transformer as an extension
of an interpreter� e�g� ���� ��� ��� ��
� This implies that the transformer has
an evaluation strategy that it inherits from the underlying interpreter� More
concretely� the transformer processes nedsted function calls in some order� We
consider transformers that use inside�out �or call�by�value or applicative order�
and outside�in �or call�by�name or normal�order��

Control restructuring� Control restructuring is concerned with the relation�
ship between program points in the subject and the residual program ��� ��
�

Monovariant� any program point in the subject program gives rise to zero or
one program point in the residual program�

Polyvariant� any program point in the subject program can give rise to one or
more program points in the residual program�

Monogenetic� any program point in the residual program is produced from a
single program point of the subject program�

Polygenetic� any program point in the residual program may be produced from
one or more program points of the subject program�

	�� A Taxonomy of Transformers

Deforestation� due to Wadler ���
� performs program composition by eliminating
intermediate data structures� Deforestation performs� as a special case� program
specialization ���
� Deforestation is very similar to positive supercompilation ex�
cept that it uses constant propagation rather than uni�cation�based information
propagation� and it does not incorporate generalization� instead it is guaranteed
to terminate for a certain class of programs�

Partial evaluation performs program specialization and� as presented in ���
�
uses only constant propagation ���� ��� ��
� This limitation applies to all vari�
ants of partial evaluation� o ine and online approaches with and without par�
tially static structures� The usual evaluation strategy for partial evaluators is
applicative�order� see ���
�

Partial deduction� as in ���� ��� ��
� and positive supercompilation have es�
sential aspects in common ���
� the way in which goals are uni�ed and how the
resulting substitutions are applied to the goals in the next transformation step
�construction of a partial SLDNF tree�� is much like in the clauses of driving�
Since in logic programs predicates cannot occur inside predicates� there is no

direct correspondence to the rules for nested function calls which achieve defor�
estation� However� local variables in logic programs often represent intermediate
data structures that could be removed by more sophisticated techniques� Partial

		



deduction in logic programming is not capable of removing them� this requires
an extension of the techniques� see e�g� ���
�

Turchin�s supercompiler ���
 and our positive supercompiler are identical with
respect to the propagation of positive information� except for certain trivial dif�
ferences� The main di�erence between the two is that the former also maintains
negative information� i�e� the information that a test failed� and this is main�
tained in the form of constraints �see perfect driving ���
��

Generalized partial computation �GPC�� due to Futamura ��	
� has a similar
e�ect and power as supercompilation� but has arbitrary tests in conditionals
rather than just equality tests� The underlying logic for the tests can be any
logic system� for example predicate logic� and may be undecidable for certain
logic formulas� In this view� positive supercompilation can be seen as propagating
structural predicates that can always be resolved�
These observations are summarized in Fig� 	�� For a more detailed discus�

sion on information propagation see ���� ��� ��� ��
� and for more on evaluation
strategies see �		� ��
� These papers also give examples of optimizations that
require the transformer to use a speci�c evaluation strategy or level of infor�
mation propagation� For instance� to pass the so�called KMP�test ���
� at least
uni�cation�based propagation is required� to eliminate intermediate data struc�
tures in general� normal�order strategy is required�

transformer information evaluation control restruct� KMP data

propagation strategy variant genetic test struct�

Partial evaluation constant in�out poly mono � �

Deforestation constant out�in poly poly � �

Partial deduction uni	cation unspeci	ed poly mono � �

Positive SCP uni	cation out�in poly poly � �

Perfect SCP constraint out�in poly poly � �

GPC constraint out�in poly poly � �

Fig� ��� A taxonomy of transformers�

� Larger Perspectives of Supercompilation

Supercompilation achieves program specialization� but is not limited to this ap�
plication� it is a much wider framework for equivalence transformation of pro�
grams� Program inversion is one of the more advanced applications of supercom�
pilation which we will outline in this section�
We refer to any process of simulating� analyzing or transforming programs by

means of programs asmetacomputation� the term stresses the fact that this activ�
ity is one level higher than ordinary computation ��programs as data objects���
Program specialization� composition� and inversion are di�erent metacomputa�
tion tasks� programs that carry out these tasks� are metaprograms� The step
from a program to the application of a metaprogram to the encoded form of

	�



the program is a metasystem transition� repeated use of metasystem transition
leads to a multi�level metasystem hierarchy� We adopt a language�independent
formalization ���
 based on ���� ��� �
� ��
�
Metasystem transition is a key ingredient of Turchin�s approach ��	
� the

construction of hierarchies of metasystems �e�g� supercompilers� was taken as
the basis for program analysis and transformation� The book ���
 de�ned all
three Futamura projections in terms of metasystem transition�
Sect� ��	 introduces a formalism for metacomputation� in Sect� ��� discusses

supercompilation and program inversion� and Sect� ��� presents metasystem tran�
sition�

��� Metacomputation Revisited

Computation�We assume a �xed set D in which programs written in di�erent
languages� as well as their input and output data� are members� To express
the application of programs to data we de�ne an application language A by the
grammar

A ��� D j �A A��

where the symbols �� � 	� D denote the application of a program to its inputs�
Capitalized names in typewriter font denote arbitrary elements of D� They are
free variables of the meta�notation in which the paper is written� For instance�
the intended meaning of the A�expression �P X Y� is the application of program
P � D to the input X� Y � D�
We are not interested in a speci�c programming language for writing pro�

grams� For simplicity� let all source�� target� and metalanguages be identical�
We write a 
 D to denote the computation of an expression a � A to D � D�

For instance� �P X Y� 
 OUT is the computation of program P � D with inputs
X� Y � D and output OUT � D� Two A�expressions a� b � A are computationally
equal if they can be reduced to identical D�expressions�

a � b i� �X � D � �a
 X i� b
 X�

Abstraction� To represent sets of A�expressions� we de�ne a metacomputation

language B by the grammar

B ��� D j M j �B B��

where M is a set of metavariables� A metavariable m � M is a placeholder
that stands for an unspeci�ed data element D � D� We use lowercase names in
typewriter font to write elements of M � A B�expression b is an abstraction
that represents the set of all A�expressions obtained by replacing metavariables
m �M by elements of D� We write a � b to denote that a � A is an element of
the set represented by b � B� We refer to a B�expression also as a con�guration�

Encoding� Expressions in the metacomputation language need to be repre�
sented as data in order to manipulate them by means of programs �ordinary

	�



computation cannot reduce B�expressions because metavariables are not in A��
A metacoding ���
 is an injective mapping B � D to encode B�expressions in
D� We are not interested in a speci�c way of metacoding and assume some
metacoding � � B � D� Repeated metacoding is well�de�ned because D 
 B�

Metacomputation� It follows from our notation that �MC b�
 D denotes
metacomputation on an expression b � B using a metaprogram MC � D� The
application of MC to the metacoded B�expression is an A�expression that can
be reduced by ordinary computation� We should stress that this characteriza�
tion of metacomputation says nothing about its concrete nature� except that it
involves a metaprogram MC that operates on a metacoded con�guration b� Dif�
ferent metaprograms may perform di�erent operations on b� such as program
specialization� program composition� or program inversion�

De�nition� �program inverter�� A program INV � D is a program inverter

if for every program P � D injective in its �rst argument�� every input X� Y � D

and metavariable x �M � there exists a program P�� � D such that

�INV �P x Y�� 
 P�� and �P�� �P X Y��
 X

In general when P is not injective� P�� must return a list of results��

��� Interpretive Inversion by Supercompilation

Supercompilation is capable of interpretive inversion ���� ��� 	
 �we show later
how metasystem transition can be used to generate an inverse program P����
The formulation of interpretive inversion is as follows� Let EQ be a program that
tests the equality of two data elements� Given Y� Z �nd an X such that

�EQ �P X Y� Z�
 �True�

where �True� is some distinct element of D� Supercompilation� more speci�cally
driving� can be used to obtain a program ANSWER with answers for x internalized�

�DRIVE �EQ �P x Y� Z��
 ANSWER

Example �� Let numbers be represented by lists of length n� Then program ap�
pend a �Fig� �� implements the addition of two numbers� Using driving �Sect� ��
we can compute z � y by interpretive inversion of addition� The result of inter�
pretive inversion for z � 	 and y � 
� i�e� driving eq �a xs � 
� �	
� appears in
Fig� 	�� The answer� x � 	� can be extracted mechanically from the program�

� P is injective in its 	rst argument if for all X��X��Y � D� �P X� Y� � �P X� Y�

implies that X� and X� are the same element of D�
� There are two types of inversions� either we are interested in an existential solution
�one of the possible results�� or in a universal solution �all possible results��

	�



g� � �
�
� False g� � �

�
� True

g� �x �xs�
�
� g� xs g� �x �xs�

�
� False

Fig� ��� Result of driving eq �a xs � �� ����

Example 	� Using supercompilation instead of driving one may produce a �nite
program even when the list of possible answers is in�nite� This may be used
for theorem proving ���� ��
� An example is shown in Fig� 	� where the super�
compiler �Sect� �� is applied to eq �a xs � 
� xs which represents the proposition
�n��n � 
 � n� which can be proven only by using induction� The residual
program constructed returns True for all lists� This proves the theorem�

g� � �
�
� True

g� �x �xs�
�
� g� xs

Fig� ��� Result of supercompiling eq �a xs � �� xs�

One of the �rst results for interpretive inversion by driving were obtained in
	��� by performing subtraction by interpretive inversion of binary addition ���
�
In 	��� S�A� Romanenko and later S�M� Abramov implemented an algorithm�
Universal Resolving Algorithm �URA�� in which driving was combined with a
mechanical extraction of answers� see ���
� For program inversion see also ����
��� ��� �	
� The generation of an algorithm representing binary subtraction from
binary addition by self�application was reported in ���
�
In logic programming� one de�nes a predicate by a program �P x y� and

solves the inversion problem for Z � �True�� Theorem proving and program
transformation are indistinguishable in the approach outlined above� they are
two applications of the same equivalence transformation� The de�nition of a
predicate may be perceived as non�procedural� but their semantics is still de�
�ned in terms of computation� The application of supercompilation to problem
solving and theorem proving has been discussed in ���� ��
� the connection to
logic programming in �	� ��� ��
�

��� Metasystem Transition

Having introduced the basic concepts of metacomputation� we now consider the
use of multi�level metasystem hierarchies together with a supercompiler� During
the construction of multi�level hierarchies� we will frequently need to replace
metacoded subexpressions by metavariables� The correct treatment of metacode
is so essential in self�application ���
� that we make elevated metavariables ���
 an
integral part of the MST�language� We de�ne a metasystem transition language

C by the grammar

C ��� D j MIN j �C C��

where MIN is a set of elevated metavariables mH� H � IN � An elevated metavari�

able mH ranges over data metacoded H�times� We will denote by DH the set of

	�



metacode D
H
of all D � D� A metavariable without elevation has � as its eleva�

tion index� A C�expression c represents the set of all A�expressions obtained by
substituting elevated metavariables mH by elements of D

H�

Metasystem Transition� The construction of each next level in a metasystem
hierarchy� referred to as a metasystem transition �MST� ���
� is done in three
steps ��	
�

�A� given an initial A�expression a�
�B� de�ne a C�expression c such that a � c�
�C� apply a metaprogram MC to the metacode c�

The expression obtained in the last step is again an A�expression and the same
procedure can be repeated� Expressions obtained by MST are called MST�

formulas� This de�nition says nothing about the goal of the MST� except that
it is an abstraction of an A�expression a to a con�guration c� followed by the
application of a metaprogram MC to c�

Generating Inverse Programs� The interpretive inversion of a program can
always be performed using driving� but the performance can be poor whilst often
more e!cient inverse programs are known to exist� Figure 	� show how MST can
be used to synthesize inverse programs by specialization of the universal resolving
algorithm URA� see ���� 	
� For notational convenience let �Q x y z� be de�ned
by �EQ �P x y� z�� A specializer SPEC is used for the sake of generality� but it
should be clear that a supercompiler SCP can be used instead�

� �st MSTDe�ne a C�expression �B
� by replacing X by x� in theA�expression
�A
�� and apply URA to the metacoded C�expression �A	� to perform inter�
pretive inversion� the 	st MST� Interpretive inversion of Q is achieved�

� �nd MST De�ne a C�expression �B	� by replacing Y� Z by y�� z� in the
A�expression �A	��� and apply SPEC� to the metacoded C�expression �A��
to specialize URA and remove its interpretive overhead� the �nd MST� The
result is an inverted program Q�� that returns ANSWER given Y� Z�

� �rd MST De�ne a C�expression �B�� by replacing Q by q� in the A�
expression �A��� and apply SPEC�� to the metacoded C�expression �A��� the
�rd MST� The result is an inverter INV that converts a program Q into Q���

� 	th MST De�ne a C�expression �B�� by replacing URA by ura� in the A�
expression �A��� and apply SPEC��� to the metacoded C�expression �A��� the
�th MST� The result is an inverter generator INVGEN�

A hierarchy of metasystems can be visualized using a 	�dimensional notation��
�i� an expression is moved down one line down for each metacoding� �ii� the
elevation of a metavariable mH is shown by a bullet � located H lines below the


 We take the liberty to replace subexpressions of d � D by metavariables and interrupt
the horizontal line above the enclosing expression� de	ned formally in �����

� Introduced by Turchin� a preliminary form appeared in �����

	�



�A�� �Q X Y Z� � BOOL �computation�

�B�� �Q x� Y Z� �abstraction�
� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �

�A�� �URA �Q x� Y Z�� � ANSWER ��st MST�

�B�� �URA �Q x� y� z��� �abstraction�
� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �

�A�� �SPEC� �URA �Q x� y� z���� � Q�� ��nd MST�

�B�� �SPEC� �URA �q� x� y� z���� �abstraction�
� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �

�A�� �SPEC�� �SPEC� �URA �q� x� y� z����� � INV ��rd MST�

�B�� �SPEC�� �SPEC� �ura� �q� x� y� z����� �abstraction�
� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �

�A�� �SPEC��� �SPEC�� �SPEC� �ura� �q� x� y� z������ � INVGEN ��th MST�

Fig� ��� MST�formulas for program inversion�

metavariable� The two�dimensional version of the �rd MST �A�� is shown below�

�SPEC�� � 
 INV

�SPEC� q �

�URA j y z �

� � x � � �

The Futamura projections �	�
 are� in all probability� the �rst example of
program transformation beyond a single metasystem level� but MST is not lim�
ited to this application� Turchin suggested MST to increase the power of theo�
rem proving ���
 and it inspired a constructive approach to the foundations of
mathematics ���
� The philosophical background of MST was exposed in ��

�
see also ���� �

�
First successful self�application of a partial evaluator was achieved by Jones�

Sestoft and S�ndergaard ���
� The generation of an algorithm representing bi�
nary subtraction from binary addition by self�application was reported in ���
�
Examples of MST are multiple self�application ���� ��
� the generation of pro�
gram transformers ���� ��
� and other related applications in ���� 	� ��� �	� ��
�

Acknowledgments� Thanks to Sergei Abramov� Andrei Klimov� Andrei Nemytykh�
Alexander Romanenko �y�� Sergei Romanenko� and last but not least� Valentin F�
Turchin for many interesting discussions and hospitality during visits in Russia and
New York� Special thanks are due to Andrei Klimov for transcription and transla�
tion of Russian titles� Thanks to John Hatcli�� Neil D� Jones� Jesper J�rgensen� Bern
Martens� Kristian Nielsen� and David Sands for stimulating discussions on various top�
ics of this paper� Finally� we are indebted to all members of the Topps group at DIKU
for providing an excellent working environment�

	�



References

�� S�M� Abramov� Metavychislenija i logicheskoe programmirovanie �Metacomputa�
tion and logic programming�� Programmirovanie� �������� ����� �In Russian��

�� S�M� Abramov� Metacomputation and program testing� In �st InternationalWork�
shop on Automated and Algorithmic Debugging �Link�oping� Sweden�� pages ����
���� �����

�� S�M� Abramov� Metavychislenija i ikh prilozhenija �Metacomputation and its ap�
plications�� Nauka� Moscow� ����� �In Russian��

�� M� Alpuente� M� Falaschi� and G� Vidal� Narrowing�driven partial evaluation of
functional logic programs� Manuscript� Universidad Politecnica de Valencia� Spain�
�����

�� L� Beckman� A� Haraldson� 
O� Oskarsson� and E� Sandewall� A partial evaluator
and its use as a programming tool� Arti�cial Intelligence� 
�������
� ��
��

�� R� Bird and P�L Wadler� Introduction to Functional Programming� Prentice�Hall�
�����


� D� Bj�rner� A�P� Ershov� and N�D� Jones� editors� Partial Evaluation and Mixed
Computation� North�Holland� Amsterdam� �����

�� R� Bol� Loop checking in partial deduction� Journal of Logic Programming�
�������������� �����

�� M�A� Bulyonkov� Polyvariant mixed computation for analyzer programs� Acta
Informatica� ����
������ �����

��� C��L� Chang and R�C��T� Lee� Symbolic Logic and Mechanical Theorem Proving�
Computer Science and Applied Mathematics� Academic Press� ��
��

��� C� Consel and O� Danvy� For a better support of static data �ow� In J� Hughes�
editor� Conference on Functional Programming and Computer Architecture� volume
��� of Lecture Notes in Computer Science� pages �������� Springer�Verlag� �����

��� C� Consel and O� Danvy� Tutorial notes on partial evaluation� In ACM Symposium
in Principles of Programming Languages� pages �������� ACM Press� �����

��� C� Consel and S�C� Khoo� Parameterized partial evaluation� ACM TOPLAS�
�������������� �����

��� N� Dershowitz and J��P� Jouannaud� Rewrite systems� In J� van Leeuwen� editor�
Handbook of Theoretical Computer Science� Elsevier� �����

��� J� Dixon� The specializer� a method of automatically writing computer programs�
Technical report� Division of Computer Research and Technology� National Insti�
tute of Health� Bethesda� Maryland� ��
��

��� A�P� Ershov� On the partial computation principle� Information Processing Let�
ters� ����������� April ��

�

�
� A�P� Ershov� On the essence of compilation� In E�J� Neuhold� editor� Formal
Description of Programming Concepts� pages �������� North�Holland� ��
��

��� A� Ferguson and P�L� Wadler� When will deforestation stop� In ���� Glasgow
Workshop on Functional Programming� pages ������ �����

��� Y� Futamura� Partial evaluation of computing process � an approach to a compiler�
compiler� Systems� Computers� Controls� ����������� ��
��

��� Y� Futamura� Partial computation of programs� In E� Goto� K� Furukawa�
R� Nakajima� I� Nakata� and A� Yonezawa� editors� RIMS Symposia on Software
Science and Engineering� volume ��
 of Lecture Notes in Computer Science� pages
����� Kyoto� Japan� ����� Springer�Verlag�

��� Y� Futamura� Program evaluation and generalized partial computation� In Inter�
national Conference on Fifth Generation Computer Systems� pages ���� �����

	�



��� J� Gallagher� Tutorial in specialisation of logic programs� In Symposium on Partial
Evaluation and Semantics�Based Program Manipulation� pages ������ ACM Press�
�����

��� R� Gl
uck� Towards multiple self�application� In Proceedings of the Symposium on
Partial Evaluation and Semantics�Based Program Manipulation� pages ��������
New Haven� Connecticut� ����� ACM Press�

��� R� Gl
uck� Projections for knowledge based systems� In R� Trappl� editor� Cyber�
netics and Systems Research	�
� Vol� �� pages �������� World Scienti	c� Singapore�
�����

��� R� Gl
uck� On the generation of specializers� Journal of Functional Programming�
������������� �����

��� R� Gl
uck� On the mechanics of metasystem hierarchies in program transformation�
page submitted� �����

�
� R� Gl
uck and J� J�rgensen� Generating transformers for deforestation and super�
compilation� In B� Le Charlier� editor� Static Analysis� Proceedings� volume ���
of Lecture Notes in Computer Science� pages �������� Namur� Belgium� �����
Springer�Verlag�

��� R� Gl
uck and J� J�rgensen� E�cient multi�level generating extensions for program
specialization� In S�D� Swierstra and M� Hermenegildo� editors� Programming Lan�
guages� Implementations� Logics and Programs �PLILP	���� volume ��� of Lecture
Notes in Computer Science� pages �����
�� Springer�Verlag� �����

��� R� Gl
uck and A�V� Klimov� Occam�s razor in metacomputation� the notion of a
perfect process tree� In P� Cousot� M� Falaschi� G� Fil e� and G� Rauzy� editors�
Static Analysis� Proceedings� Lecture Notes in Computer Science� Vol� 

�� pages
�������� Springer�Verlag� �����

��� R� Gl
uck and A�V� Klimov� Metacomputation as a tool for formal linguistic model�
ing� In R� Trappl� editor� Cybernetics and Systems 	��� volume �� pages �������
��
Singapore� ����� World Scienti	c�

��� R� Gl
uck and A�V� Klimov� Metasystem transition schemes in computer science
and mathematics� World Futures� the Journal of General Evolution� page �to
appear�� �����

��� R� Gl
uck and A�V� Klimov� Reduction of language hierarchies� In Proceedings of
the ��th International Congress on Cybernetics� page to appear� Namur� Belgium�
����� International Association for Cybernetics�

��� R� Gl
uck and M�H� S�rensen� Partial deduction and driving are equivalent� In
M� Hermenegildo and J� Penjam� editors� Programming Language Implementation
and Logic Programming� Proceedings� volume ��� of Lecture Notes in Computer
Science� pages �������� Madrid� Spain� ����� Springer�Verlag�

��� R� Gl
uck and V�F� Turchin� Application of metasystem transition to function
inversion and transformation� In Proceedings of the ISSAC	�� �Tokyo� Japan��
pages ������
� ACM Press� �����

��� R� Gurin and S�A� Romanenko� Jazyk programmirovanija Refal Pljus �The Refal
Plus programming language�� Intertech� Moscow� �����

��� P�G� Harrison� Function inversion� In D� Bj�rner� A�P� Ershov� and N�D� Jones�
editors� Partial Evaluation and Mixed Computation� pages �������� Gammel Av�
ern!s� Denmark� ����� North�Holland�

�
� N�D� Jones� The essence of program transformation by partial evaluation and
driving� In N�D� Jones� M� Hagiya� and M� Sato� editors� Logic� Language� and
Computation� volume 
�� of Lecture Notes in Computer Science� pages ��������
Springer�Verlag� ����� Festschrift in honor of S�Takasu�

	�



��� N�D� Jones� C�K� Gomard� and P� Sestoft� Partial Evaluation and Automatic Pro�
gram Generation� Prentice�Hall� �����

��� N�D� Jones� P� Sestoft� and H� S�ndergaard� An experiment in partial evaluation�
the generation of a compiler generator� In J��P� Jouannaud� editor� Rewriting
Techniques and Applications� Dijon� France� Lecture Notes in Computer Science

�
� pages �������� Springer�Verlag� �����

��� N�D� Jones� P� Sestoft� and H� S�ndergaard� Mix� a self�applicable partial evaluator
for experiments in compiler generation� Lisp and Symbolic Computation� ����������
�����

��� S�C� Kleene� Introduction to Metamathematics� Van Nostrand� �����

��� A�V� Klimov and S�A� Romanenko� Metavychislitel� dlja jazyka Refal� Osnovnye
ponjatija i primery� �A metaevaluator for the language Refal� Basic concepts and
examples�� Preprint 
�� Keldysh Institute of Applied Mathematics� Academy of
Sciences of the USSR� Moscow� ���
�

��� A�V� Klimov and S�A� Romanenko� Sistema programmirovanija Refal�� dlja ES�
Opisanie vkhodnogo jazyka �Programming system Refal�� for ES computers� The
source language description�� Technical report� Keldysh Institute of Applied Math�
ematics� Academy of Sciences of the USSR� Moscow� ���
�

��� A�V� Klimov� S�A� Romanenko� and V�F� Turchin� Teoreticheskie osnovy sintak�
sicheskogo otozhdestvlenija v jazyke Refal �The theory of pattern matching in Re�
fal�� Preprint ��� Keldysh Institute of Applied Mathematics� Academy of Sciences
of the USSR� Moscow� ��
��

��� J� Komorowski� An introduction to partial deduction� In A� Pettorossi� editor�
Meta�Programming in Logic� volume ��� of Lecture Notes in Computer Science�
pages ������ �����

��� J� Komorowski� Special issue on partial deduction� Journal of Logic Programming�
�������������� �����

�
� M� Leuschel and B� Martens� Global control for partial deduction through charac�
teristic atoms and global trees� ����� submitted�

��� J�W� Lloyd and J�C� Shepherdson� Partial evaluation in logic programming� Jour�
nal of Logic Programming� ����������
����� �����

��� L�A� Lombardi� Incremental computation� In F� L� Alt and M� Rubino�� editors�
Advances in Computers� volume �� pages ��
����� Academic Press� ���
�

��� L�A� Lombardi and B� Raphael� Lisp as the language for an incremental computer�
In E�C� Berkeley and D�G� Bobrow� editors� The Programming Language Lisp� Its
Operation and Applications� pages �������� Cambridge� Massachusetts� ����� MIT
Press�

��� B� Martens and J� Gallagher� Ensuring global termination of partial deduction
while allowing �exible polyvariance� In L� Stirling� editor� International Conference
on Logic Programming� pages ��
����� MIT Press� �����

��� K� Nielsen and M�H� S�rensen� Call�by�name CPS�translation as a binding�time
improvement� In A� Mycroft� editor� Static Analysis� volume ��� of Lecture Notes
in Computer Science� pages ��������� Springer�Verlag� �����

��� R�M� Nirenberg� A practical turing machine representation� SIGACT News�
�
���������� �����

��� M� Proietti and A� Pettorossi� Unfolding � de	nition � folding� in this order for
avoiding unnecessary variables in logic programs� In Programming Language Im�
plementation and Logic Programming� volume ��� of Lecture Notes in Computer
Science� pages ��
����� Springer�Verlag� �����

�




��� A�Y� Romanenko� The generation of inverse functions in Refal� In D� Bj�rner�
A�P� Ershov� and N�D� Jones� editors� Partial Evaluation and Mixed Computation�
pages ��
����� Gammel Avern!s� Denmark� ����� North�Holland�

��� A�Y� Romanenko� Inversion and metacomputation� In Proceedings of the Sym�
posium on Partial Evaluation and Semantics�Based Program Manipulation� �Yale
University� Connecticut�� pages ������ ACM Press� �����

�
� S�A� Romanenko� Progonka dlja programm na Refale�� �Driving for Refal�� pro�
grams�� Preprint ���� Keldysh Institute of Applied Mathematics� Academy of
Sciences of the USSR� Moscow� ���
�

��� S�A� Romanenko� Arity raiser and its use in program specialization� In N�D�
Jones� editor� ESOP	��� volume ��� of Lecture Notes in Computer Science� pages
�������� Springer�Verlag� �����

��� D� Sands� Proving the correctness of recursion�based automatic program trans�
formation� In P� Mosses� M� Nielsen� and M�I� Schwartzbach� editors� Theory and
Practice of Software Development� volume ��� of Lecture Notes in Computer Sci�
ence� pages �������� Springer�Verlag� �����

��� D� Sands� Total correctness by local improvement in program transformation� In


nd Symposium on Principles of Programming Languages� pages �������� ACM
Press� �����

��� D� Smith� Partial evaluation of pattern matching in constraint logic programming�
In Symposium on Partial Evaluation and Semantics�Based Program Manipulation�
pages ���
�� ACM Press� �����

��� M�H� S�rensen� Turchin�s supercompiler revisited� Master�s thesis� Department of
Computer Science� University of Copenhagen� ����� DIKU�rapport ��"�
�

��� M�H� S�rensen and R� Gl
uck� An algorithm of generalization in positive super�
compilation� In J�W� Lloyd� editor� International Logic Programming Symposium�
MIT Press� ����� to appear�

��� M�H� S�rensen� R� Gl
uck� and N�D� Jones� Towards unifying deforestation�
supercompilation� partial evaluation� and generalized partial computation� In
D� Sannella� editor� Programming Languages and Systems� volume 
�� of Lecture
Notes in Computer Science� pages �������� Springer�Verlag� �����

��� M�H� S�rensen� R� Gl
uck� and N�D� Jones� A positive supercompiler� Submitted
to Journal of Functional Programming� �����

��� A� Takano� Generalized partial computation using disuni	cation to solve con�
straints� In M� Rusinowitch and J�L� Remy� editors� Conditional Term Rewriting
Systems� Proceedings� volume ��� of Lecture Notes in Computer Science� pages
�������� Springer�Verlag� �����

�
� V�F� Turchin� Metajazyk dlja formal�nogo opisanija algoritmicheskikh jazykov �A
metalanguage for the formal description of algorithmic languages�� In Cifrovaja
Vychislitel	naja Tekhnika i Programmirovanie� pages �������� Sovetskoe Radio�
Moscow� ����� �In Russian��

��� V�F� Turchin� Ehkvivalentnye preobrazovanija rekursivnykh funkcij na Refale
�Equivalent transformations of recursive functions de	ned in Refal�� In Teorija
Jazykov i Metody Programmirovanija �Proceedings of the Symposium on the The�
ory of Languages and Programming Methods�� �Kiev�Alushta� USSR�� pages ������
��
�� �In Russian��

��� V�F� Turchin� Ehkvivalentnye preobrazovanija programm na Refale �Equivalent
transformations of Refal programs�� In Avtomatizirovannaja Sistjema upravljenija
stroitel	stvom� Trudy TxNIPIASS �� pages ������ ��
�� �In Russian��

�	




�� V�F� Turchin� The Phenomenon of Science� Columbia University Press� New York�
��

�


�� V�F� Turchin� A supercompiler system based on the language Refal� SIGPLAN
Notices� ������������ ��
��


�� V�F� Turchin� The language Refal� the theory of compilation and metasystem
analysis� Courant Computer Science Report ��� Courant Institute of Mathematical
Sciences� New York University� �����


�� V�F� Turchin� Semantic de	nitions in Refal and the automatic production of com�
pilers� In N�D� Jones� editor� Workshop on Semantics�Directed Compiler Gener�
ation� �Arhus� Denmark� Lecture Notes in Computer Science ��� pages �����
��
Springer�Verlag� January �����


�� V�F� Turchin� The use of metasystem transition in theorem proving and program
optimization� In J�W� de Bakker and J� van Leeuwen� editors� Automata� Lan�
guages and Programming� volume �� of Lecture Notes in Computer Science� pages
������
� Noordwijkerhout� Netherlands� ����� Springer�Verlag�


�� V�F� Turchin� The concept of a supercompiler� Transactions on Programming
Languages and Systems� ������������� �����


�� V�F� Turchin� A constructive interpretation of the full set theory� The Journal of
Symbolic Logic� �������
������ ���
�



� V�F� Turchin� The algorithm of generalization� In D� Bj�rner� A�P� Ershov� and
N�D� Jones� editors� Partial Evaluation and Mixed Computation� pages ��������
North�Holland� �����


�� V�F� Turchin� Refal��� Programming Guide and Reference Manual� New England
Publishing Co�� Holyoke� Massachusetts� �����


�� V�F� Turchin� The cybernetic ontology of action� Kybernetes� ������������ �����
��� V�F� Turchin� On cybernetic epistemology� Systems Research� ����������� �����
��� V�F� Turchin� Program transformation with metasystem transitions� Journal of

Functional Programming� ������������� �����
��� V�F� Turchin� On generalization of lists and strings in supercompilation� Technical

report� City College of the City University of New York� �����
��� V�F� Turchin� And� V� Klimov� Ark� V� Klimov� V�F� Khoroshevsky� A�G�

Krasovsky� S�A� Romanenko� I�B� Shchenkov� and E�V� Travkina� Bazisnyj Refal
i ego realizacija na vychislitelnykh mashinakh �Basic Refal and its implementation
on computers�� GOSSTROJ SSSR� CNIPIASS� Moscow� ��

�

��� V�F� Turchin and A�P� Nemytykh� Metavariables� their implementation and use
in program transformation� Technical Report CSc� TR ������� City College of the
City University of New York� �����

��� V�F� Turchin and A�P� Nemytykh� A self�applicable supercompiler� Technical
Report CSc� TR ������� City College of the City University of New York� �����

��� V�F� Turchin� R� Nirenberg� and D� Turchin� Experiments with a supercompiler�
In Conference Record of the ACM Symposium on Lisp and Functional Program�
ming� pages �
���� ACM Press� �����

�
� P�L� Wadler� Deforestation� Transforming programs to eliminate intermediate
trees� Theoretical Computer Science� 
���������� ����� Preliminary version in
ESOP��� LNCS vol� ����

��



A Operations on Partial Process Trees

T � UNFOLD�T� t � �

����
�� ���

��

s

����
�

		
t

����
�� ���

��

s

����
�




t

����
��

���
��

�

t� � � � tn

if N �� t �� � ht�� � � � � tni

SPLIT�T� t � �

����
�� ���

��
�

s

����
��



�� ���� ��let x��t� � � � xn�tn in h x� � � � xm

tthhhh
hhhh

hh

��VVV
VVVV

VVV 



t� � � � tn
�� ���� ��h x� � � � xn

if t � h t� � � � tn

FOLD�T� s � t � � GENERALIZE�T� s � t � �

����
�� ���

��
�

s

����
��

���� ���� ��let x��t� � � � xn�tn in s

uukkkk
kkk

k

��SSS
SSS

SS

ss

t� � � � tn

����
�� ��UUU

UUU
U

GF ED�A BClet x��t� � � � xn�tn in tg

uukkk
kkk

kk

��SS
SSS

SSS
��

t� � � � tn tg

if s � tfx���t�� � � � � xn��tng if bs� tc � �tg� fx���t�� � � � � xn��tng� ��

This article was processed using the LaTEX macro package with LLNCS style

��


