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Abstract

Automated classification of artifacts produced by mechanical computer-aided design (CAD) is a unique research frontier for 3D

matching and mesh processing. Unlike general graphical models, mechanical CAD artifacts have a physical realization via a variety of

manufacturing processes as well as functional and behavioral attributes. The general problem of how to best correlate low-level shape

data with the higher-order manufacturing and mechanical properties remains an open area of research with many practical applications

(cost estimation, design archival, variational design and process selection).

This paper addresses the problem of manufacturing process discrimination, i.e., determination of the best (or most likely)

manufacturing process from shape feature information. Specifically, we introduce a new curvature-based shape descriptor and show its

applicability to manufacturing process discrimination using a publicly available set of artifacts from the National Design Repository.

Statistics on surface curvatures are used to construct the curvature-based shape descriptor; and a supervised machine learning classifier,

based on support vector machines, is applied to learn a separator for models that are ‘‘prismatic machined’’ and ‘‘cast-then-machined’’.

The authors believe that this work can be the basis for practical new techniques for manufacturing cost estimation, engineering analysis

and design archival.

r 2006 Elsevier Ltd. All rights reserved.
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1. Introduction

This paper examines the manufacturing classification of
mesh-based Computer-Aided Design (CAD) models with
curvature descriptors and support vector machines
(SVMs). Previous research, such as feature recognition
and process planning, focused on extracting manufacturing
information from 3D solid models of CAD objects. Mesh
models have become a useful CAD representation thanks
to the development of rapid prototyping and 3D scanning
acquisition technologies. Mesh models provide a simple,
uniform representation that is easily preserved and
transformable. Working with meshes allows comparisons
of models generated by any CAD system. The issue with
mesh-based representations is that they capture only
e front matter r 2006 Elsevier Ltd. All rights reserved.
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geometry and topology and little, if any, of the manufac-
turing or design semantics that would be useful in
answering engineering queries.
A long-term goal of our work is to develop methodol-

ogies to interact with CAD data in engineering information
management systems and enable long-term preservation of
engineering artifacts. This paper bridges the gap between
low-level shape representation and engineering semantics
by presenting a methodology for discriminating the
manufacturing processes for an individual part solely from
the mesh representation of the artifact. Machining of
discrete parts is a fundamental manufacturing process in
aerospace, automotive and other industries. The machining
process consist of material removal operations (i.e.,
drilling, milling, etc.) on a piece of stock material. Discrete
parts that are exclusively machined are usually high-
precision parts or parts made in small batches (i.e., for
custom jobs). For larger production runs machining is not
cost effective. In these cases, part stock shapes may be
created using a casting process and then the finishing
features are machined. Cast-then-machined parts are
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typically for larger production runs and generally have
much looser tolerance considerations for the non-machined
surfaces of the object. In this case the investment of the
physical plant is larger, as is the manufacturing production
plan (i.e., one needs to machine a mold with which to do
casting), but the per-unit cost tends to be much less when
production is in sufficient quantity. An example is given in
Fig. 1(a) and (b).

This paper introduces an adaptation of shape matching
and machine learning to the discrimination of prismatic
machined and cast-then-machined manufacturing cate-
gories in a database of mechanical CAD objects. To
achieve this, we develop a new shape discriminator based
on the surface curvature of an artifact and show how to use
SVMs to learn the separation between the feature
descriptions of the two manufacturing processes. Lastly,
we provide an empirical validation with dataset of
engineering artifacts and make this dataset available via
the Internet to enable others to reproduce and improve
upon these results.

Organization of this paper: This paper is organized as
follows. Section 2 describes the general scientific challenges
involved in adapting shape matching techniques to
computer-aided design data, specifically data from me-
chanical CAD/CAM systems. Section 3 briefly overviews
related work, both in CAD retrieval and in shape matching
and computer vision. Section 4 presents the technical
approach, detailing the development of the curvature-
based shape descriptor and the use of the SVMs to
discriminate among manufacturing classes. Section 5 gives
an experimental evaluation of the technique, specifically
comparing it with the baseline offered by using several
existing state-of-the-art techniques as well as the k nearest
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neighbors approach. Finally, Section 6 presents discussion,
conclusions and ideas for future work.

2. The challenge of CAD objects

Research on searching, classifying and comparing CAD
models is an active research area, having produced a rich
set of computational techniques. Existing research includes
algorithms that work with photo images, projected profiles,
feature interactions, and shape functions. In most cases,
these techniques or systems were often presented and
evaluated with their own particular datasets—datasets that
contain mostly general shape models and few real CAD
artifacts. This makes it very difficult to assess how effective
these different techniques would be at managing CAD
data. CAD artifacts and their engineering domains
introduce several challenges not adequately addressed by
existing research:
�
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Engineering artifacts each have a physical realization.

CAD models in our dataset are manufacturable physical
parts. Existing shape matching techniques, for the most
part, emphasize the comparison of the gross shape of
coarse artificial objects. The datasets (e.g., trees, air-
planes, and boats) studied in most existing shape
retrieval systems do not represent actual, or even
acquired, models of physical artifacts.

�
 Engineering classifications are not subjective. In existing
shape retrieval literature, datasets are pre-classified
based mostly on human intuition (i.e., boats get
grouped with boats; airplanes with airplanes). In
contrast, engineering classifications are usually not so
subjective. For example, a part is machinable on a 3-axis
art Stock
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machining center or it is not; a part has four
symmetrically spaced holes for fastening with bolts or
it does not. This paper considers prismatic machined
and cast-then-machined manufacturing artifacts, such as
shown in Fig. 1(a) and (b).

�
 Different valid classifications exist for the same objects.

The fact that an object may have several valid
classifications is one of the fundamental problems in
the field of pattern recognition. However, in engineering
domains the differences across classifications can be
large, and the feature set for discriminating these
differences are very hard to isolate. An example is given
in Fig. 1(c), which shows four parts classified two
different ways (based on functional properties and
manufacturing properties, respectively).
Of specific importance in this paper, we introduce a
dataset of CAD artifacts classified based on the manufac-
turing process for creating the physical artifact. All
datasets used in this paper are freely available in the
National Design Repository at http://www.designreposi-
tory.org/datasets/. CAD models in the National Design
Repository datasets have been collected from industry. A
sample view of the National Design Repository CAD
models is shown in Fig. 2. A subset of 110 parts was
classified by hand into (1) prismatic machined parts and (2)
parts that are first cast and then have their finishing
features machined. Fig. 3 shows a sample of this dataset,
and Table 1 shows a brief summary of this dataset. http://
www.designrepository.org/datasets/machined.tar.bz2 and
http://www.designrepository.org/datasets/cast.tar.bz2.
Fig. 2. Examples of 3D models from
3. Related work

We briefly review the research work on representing and
comparing 3D models. Additionally, we present a survey of
some benchmark datasets from closely related disciplines
like computer graphics and vision. A complete review of
relevant literature in these areas is not possible due to the
dynamic and evolving nature of this field. For more
detailed surveys, interested readers are referred to several
recent survey articles [1–3].
3.1. Representation of CAD models

Most CAD models are solid models defined parame-
trically. However, approximated shape models represented
by a polygonal mesh are becoming another useful
representation thanks to the development of rapid proto-
typing from approximated models and the acquisition of
shape models through 3D scanning.

Solid model representations of CAD objects are tradi-
tionally exact representations of 3D solids, which are
suitable for creating physical models. In commercial CAD
systems like Pro/Engineer and I-DEAS, models are
dominantly represented by exact parametric or different
kinds of engineering features. Each objects is represented
by a data structure that gives information about the
object’s faces, edges, vertices, and how they are joined
together. For example, under a boundary representation
(B-Rep), two types of information are recorded: (1) a
topology record of the connectivity of faces and edges; (2)
and a set of parametric equations that describes the
the national design repository.

http://www.designrepository.org/datasets/
http://www.designrepository.org/datasets/
http://www.designrepository.org/datasets/machined.tar.bz2
http://www.designrepository.org/datasets/machined.tar.bz2
http://www.designrepository.org/datasets/cast.tar.bz2
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Fig. 3. Examples 3D models from the manufacturing classification dataset.

Table 1

Statistics about the 3D models in the manufacturing classification dataset

#Models Average #faces Average #polygons

Prismatic machined 56 106 3600

Casted-then-machined 54 80 3447

Total 110

Average SAT size (KB) Average STEP size (KB) Average VRML size (KB)

Prismatic machined 146 233 162

Casted-then-machined 277 314 159

C.Y. Ip, W.C. Regli / Computers & Graphics 30 (2006) 903–916906
geometry and the location of vertices, faces, and edges
(e.g., NURBS). Solid models give a complete and compact
representation for design, simulation, and manufacturing
purposes. Yet these models are usually stored in proprie-
tary data formats between different CAD/CAM systems.
Thus, for example, comparing models generated on
I-DEAS against Pro/Engineer involves some lossy data
exchange process, through conversion from STEP to IGES
or approximated shape models.

Shape model representations of 3D objects are approxi-
mated models characterized by a mesh of polygons for
presentation or rendering purposes in computer graphics.
Rather than exact parametric equations, polygons are used
to approximately curved surfaces. Only the geometry of
triangles are stored without any topological information.
In contrast to proprietary solid model formats, open mesh
file formats such as VRML and STL, are widely available.
Although shape models are not suitable for modeling
physical properties or simulations in CAD/CAM systems,
polygonal meshes can serve as the lowest common
denominator in comparing CAD models, by faceting solid
models generated by different modeling systems. Shape
models of objects can also be acquired easily by using laser
scanners or CT to enable comparison of digital and
physical artifacts.

3.2. Comparing solid models

There are two basic types of approaches for matching
and retrieval of solid based 3D CAD data: (1) feature-based
techniques and (2) shape-based techniques. Some of the
past work in this area is reviewed in addition to the work
from computer graphics and computer vision that is related
to this paper.
In practice, indexing of parts and part families had been

done with group technology (GT) coding [4]. GT was
designed to facilitate process planning and cell-based
manufacturing by imposing a classification scheme on
individual machined parts. These techniques were devel-
oped prior to the advent of inexpensive computer
technology, hence they are not rigorously defined and are
intended for human, not machine, interpretation. Some of
the early work on feature identification from solid models
aimed to find patterns in model databases or automate the
GT coding process. The common aspect of all of these
techniques is that they are all post priori: one runs their
algorithm on model, and it produces the category or label
for it.
Feature-based techniques [5–7] dating from late 1970s

[8], extract engineering features (e.g., machining features,
form features, etc.) from a solid model of a mechanical part
for use in database storage, automated GT coding, etc.
Elinson et al. [9] used feature-based reasoning for retrieval
of solid models for use in variant process planning.
Cicirello and Regli [10] examined how to develop graph-
based data structures and create heuristic similarity
measures among artifacts; this work was extended in [11]
to a manufacturing feature-based similarity measurement.
McWherter et al. [12] have integrated these ideas with
database techniques to enable indexing and clustering of



ARTICLE IN PRESS
C.Y. Ip, W.C. Regli / Computers & Graphics 30 (2006) 903–916 907
CAD models based on shape and engineering properties.
Cardone et al. [13] compared machining features of solid
models for manufacturing cost estimation using solid
models.

3.3. Comparing 3D shape models

The shape-based techniques are more recent, owing to
research contributions from computational geometry,
computer vision, and computer graphics. From the
polygon mesh, different transformation invariant attri-
butes can be extracted as the means of similarity among 3D
models. Thompson et al. [14] examined the reverse
engineering of designs by generating surface and machining
feature information off of range data collected from
machined parts. Hilaga et al. [15] present a method for
matching 3D topological models using multi-resolution
reeb graphs. The method of Osada et al. [16] creates an
abstraction of the 3D model as a probability distribution of
samples from a shape function acting on the model.
Novotni and Klein [17] demonstrated the use of 3D
Zernike descriptors. Kazhdan et al. [18] compares 3D
models with spherical harmonics. While these techniques
target general 3D models, Ip et al. [19,20] and Bespalov
et al. [21] are focused on comparing shape models of CAD
with shape distributions and scale-space representations.
Iyer et al. [22–24] presented a CAD oriented search system,
based on shape, voxelization and other approaches. Pal
et al. [25] extracted features from CAD models using
genetic algorithm.

3.4. Benchmark datasets

There are many benchmark datasets comprised of
synthetic and realistic data in the domain of computer
vision and computer graphics. The Columbia Object Image
Library (COIL-100) [26] aimed to assist object recognition
from 2D photos. It contains 7200 photos of 100 objects in
different poses. In face recognition research, the Yale face
database provides 5760 images from 10 people each seen
under 576 viewing conditions for testing. A number of
synthetic image sequences are provided to test optical flow
and motion analysis applications. Recently, the Princeton
Shape Benchmark [27] has provided 1,814 3D polygonal
models, collected from the web, for evaluating shape-based
retrieval and analysis algorithms. The models were chosen
from heterogeneous categories ranging from animals,
furniture, and airplanes.

For CAD data, the largest publicly available dataset is
the National Design Repository [28,29]. From this dataset,
several sub-sets have been offered to the community to test
how 3D search techniques can discriminate functional
classes, manufacturing objects, and human-generated
classifications [30]. Objects in these datasets include
mechanical CAD objects, Lego models, and objects
contributed by industry and CAD vendors. Another
CAD dataset is provided by Purdue University [31].
3.5. Relationship of this work to prior art

The approach and results presented in this paper
contribute to advancing the field in several key areas.
First, current research on shape matching techniques
generally focuses on the gross shapes of mesh models.
These types of techniques do not adequately discriminate
among artifacts at a detailed level, such as would be
required to recognize those fabricated by different manu-
facturing processes. This work introduces a new shape
descriptor based on curvature that has a demonstrated
utility in answering practical engineering queries. Second,
the approach in this paper provides a detailed example of
how to integrate supervised machine learning with work in
shape recognition and matching. With supervised machine
learning framework, one can tune a shape metric to
discriminate specific classification schemes according to
examples.
Recently, research from industry and academia examine

the use machine learning techniques to train a 3D shape
recognition system with CAD data. Work in industry [32]
has explored the use of neural networks to identify parts
(fasteners) based on multiple 2D views. Hou et al. [33]
attempted to use shape information to cluster the semantics
of parts with SVMs. In the context of shape model
matching, Elad [34] used linear SVMs to adjust retrieval
results from a 3D shape database according users’ feed-
back.
Lastly, this work makes available a large, pre-classified

set of 3D engineering objects. The properties of these
objects are distinctly different from those in other shape
retrieval datasets available over the Internet. By making
these CAD objects available, the work presented in this
paper is completely reproducible, and the authors hope to
enable others to explore the problems specific to matching
engineering objects.

4. Technical approach

Our technical approach has two major elements. First,
we introduce an adaptation of existing work on surface
curvature estimation to create a curvature-based shape
feature descriptor. Second, using this curvature-based
feature, we demonstrate how to train a SVMs classifier to
discriminate across a set of 3D CAD objects belonging to
one of two classes determined by manufacturing process:
prismatic machined parts or cast-then-machined parts.
This research proposes the use of surface curvature and

support vector machines to classify between prismatic-
machined and cast-then-machined models. Surface curva-
ture is introduced as a relevant feature for distinguishing
the two processes.
Considering the limited accessibility of cutting tools in

2.5D machining processes, material removal machining
operations can only construct a finite set of surfaces. In
contrast, the casting process allows a larger variety of
surfaces. Fig. 1 shows parts manufactured by prismatic-
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machined and cast-then-machined processes and their
respective stocks before the part getting machined.

Without the casting process, prismatic-machined parts
are manufactured from uniform stocks like rectangular and
cylindrical blocks. Cast-then-machined processes cast out
the stock before being machined. The stocks for cast-then-
machined parts are more customized. A larger variety of
surfaces are generated before machining.

The surfaces of the resulting parts hint how the parts
were manufactured. Therefore, a shape descriptor focuses
on local surface differences is required to classify the two
process effectively. The challenges for classifying these two
processes are that both processes share a set of surfaces
generated by machining processes. Fig. 4 shows parts
manufactured by both prismatic machined and cast-then-
machined processes with their machining features (holes)
highlighted.

4.1. Extracting surface curvature features

The curvature of a point on a planar curve is defined as
the reciprocal of the radius of the osculating circle at that
point. Extending this to regular surfaces, normal curvature,
kn, is the curvature of the intersection on the smooth
surface with a plane in direction ðs; tÞ. kn satisfies the
following equation:

kn ¼ s t
� � e f

f g

 !
s

t

� �
¼ s t
� �

II
s

t

� �
.

Principal curvatures are the largest and smallest curvature
at a point in all directions. The principal directions are the
directions in which the principal curvatures occur. If ðs; tÞ
are expressed in the principle directions, then the formula-
tion for kn becomes

kn ¼ s0 t0
� � k1 0

0 k2

 !
s0

t0

� �
¼ k1s0

2
þ k2t0

2
.

This formulation shows k1 and k2 are the eigenvalues of
second fundamental tensor II, where ðs0; t0Þ are eigenvec-
Fig. 4. Machining is a finishing operation on many cast parts, hence artifac

machined holes on both objects are highlighted in gray.
tors. Meaning that principal curvatures and directions can
be found by eigenvalue decomposition on the tensor II.
Different representative curvature values can be com-

puted from principal curvatures.
(1)
ts m
Maximum curvature k1;

(2)
 Minimum curvature k2;

(3)
 Mean curvature H ¼ ðk1 þ k2Þ=2; and,

(4)
 Gaussian curvature K ¼ k1k2.
4.1.1. Curvature estimation

Estimating curvature from mesh has been a great interest
for both computer graphics and vision. Curvature in-
formation has been used in a variety of applications: mesh
smoothing, repairing surfaces, crest detection, re-meshing,
and non-photorealistic rendering. Exact curvature infor-
mation can be computed from parametric surfaces. While
mesh representation provides a piecewise approximation of
surfaces, curvatures are also approximated. Some of the
recent work includes: Taubin [35] and Page et al. [36]
estimating the curvature tensor through a weighted average
of normal curvatures of neighboring vertices. Meyer et al.
[37] introduced discrete differential geometry operators.
Goldfeather and Interrante [38] presented a cubic method
for estimating principal directions. Lavoué et al. [39]
segment meshes of CAD models by analyzing curvature
tensor. This research employs Rusinkiewcz’s method [40]
for a fast single pass estimation of curvature from a smooth
mesh.
Rusinkiewcz’s algorithm works particularly well on

smooth mesh models, such as those produced by faceting
solid models. It estimates curvatures per vertex from its
immediate neighbors. To enable curvature estimation on
coarse and noisy mesh models, such as those obtained by
3D laser scanning, curvature estimation algorithms need to
consider a larger geodesic neighborhood. One example is
presented in [36].
Following [40], per vertex curvature is computed by

weighting the curvature of triangle faces adjacent to the
vertex. Assuming each triangle on a mesh surface is a
anufactured by different processes may share similar features. Here,
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smooth curved surface, curvature can be computed by
solving II with constraints setup by the normals. II can be
expressed as the derivatives of the surface normal:

II ¼ Dun Dvn
� �

¼

qn

qu
u

qn

qv
u

qn

qu
v

qn

qv
v

0
BB@

1
CCA.

For each triangular face, three edges and normals can be
used as constraints for estimating II. The process is then:
(1)
 compute per triangle face curvature by solving for the
tensor II according to the constraints of difference
between three normals;
(2)
 transform the coordinates with respect to the local
coordinate frame of the vertex;
(3)
 weight the contribution of each adjacent face according
the Voronoi area of the triangle; and,
(4)
 find the eigenvalues and eigenvectors of the tensor to
determine the principal directions and curvatures.
Example. To visualize the surface differences between
prismatic-machined and cast-then-machined parts, curva-
ture values are computed for all vertices on the samples
models. Fig. 5 shows sample models that are colored
according to different curvature values: minimum, max-
imum, mean, and Gaussian. Regions with zero curvature
are colored in white, non-zero curvature regions are
colored according to curvature values.
Fig. 5. 3D models color coded
4.1.2. Assessing curvature feature relevance

The following observations can be made:
�

bas
The cast-then-machined process produces artifacts with
a higher portion of curved (shaded k1) surfaces.

�
 The minimum curvature, k2, and Gaussian curvature, K,

of machining features, holes, slots, pockets, and surfaces
are zero (shown in white), resulting in almost zero
curvature for all prismatic machined parts.

�
 Cast-then-machined parts possess a higher variation of

curvature values (shown using more colors).

�
 The difference of minimum and maximum curvatures

(colors) for prismatic-machined parts is smaller than for
cast-then-machined parts.

Different curvature values signify different types of
surfaces on the CAD models. While both manufacturing
processes produce similar surfaces through machining
operations, the cast-then-machined process is expected to
leave a larger variety of surfaces. Therefore, some
distinctive curvature values should only be found on cast-
then-machined parts but not prismatic-machined parts.
These unique features separate the two manufacturing
processes.
4.1.3. Defining a curvature-based shape descriptor

Statistics on per vertex curvature are used to construct
the shape descriptors for classification. Curvature values
naturally vary from �1 to 1. To avoid extreme values
ed on curvature values.
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and numerical problems, curvature values, c, are mapped
from to ½�1; 1�, which is similar to [41].

c0 ¼
c

kck
1�

1

1þ kck

� �
.

Equal width bins divide the range ½�1; 1� to record the
frequencies of different curvature c0 values. Frequencies of
curvature values are normalized, and curvature bins are
aligned to produce meaningful comparisons. For example,
frequencies of planar surfaces ½c ¼ 0� always align to the
same bin.

Example. Fig. 6 shows a sample of CAD models and the
corresponding descriptors. As expected, cast-then-ma-
chined parts show a larger variation in terms of any
curvature statistic. One might note that the center bar,
c0 ¼ 0, often dominates the statistics in the histogram. This
κ1
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Fig. 6. Curvature shaded models and
zero bar shows the proportion of (intrinsically, for k2, K)
planar surfaces. The significance of this feature will be
automatically determined by the machine learning classifier
through the training process.

4.1.4. On the invariance of curvature statistics

Curvature statistics are a rotationally invariant feature
set because the curvature values are local measures on the
surface of models. Frequencies of the curvature measure
are normalized to enable comparisons of models with
differing numbers of vertices and different mesh resolu-
tions. However, the curvature statistics varies with the scale
of model. Since the type of surfaces are aligned in our
formulation, the same model in different scales could result
in different curvature statistics. Scale invariance is desirable
in general context of shape matching, but it is not
considered in the context of this work. For example,
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consider manufacturing two simple rings of different sizes.
The smaller one consists of a hole of diameter 1 cm;
whereas the larger hole diameter is 50 cm. It is likely that
the smaller one is constructed by drilling, but the large one
is done by a casting process. Nevertheless, if scale
invariance is desirable, it can be achieved by simply
rescaling the model to a fixed volume, such as the unit
cube.

4.2. Classifying objects with curvature descriptors

Classification of prismatic-machined and cast-then-
machined processes can be learned by different classifiers.
SVMs with a non-linear kernel function are the choice of
classifier in this research. In addition to the use of SVMs,
the commonly used nearest neighbor classifier is also
applied for a comparison evaluation.

4.2.1. Primer on support vector machines

Support vector machines are a supervised machine
learning technique proposed by Vapnik [42,43]. They find
the maximum margin classifier from example data in
different classes. Given examples x1...l , SVMs find a linear
classifier that satisfies yiðw � xi þ bÞ � 1X0, with a margin
of width 2=kwk2. Minimizing kwk2 in the Lagrangian
formulation of the classifier maximizes the width of the
margin and forms the following quadratic programming
problem:

LP ¼
1

2
�
Xl

i¼1

kwk2 � aiyiðxi � wþ bÞ þ
Xl

i¼1

ai,

which is equivalent to maximizing the dual of LP

LD ¼
Xl

i¼1

ai �
1

2

Xl

i;j

aiajyiyjxi � xj .

To generalize SVMs for non-linear cases, training examples
can be projected into a higher dimensional space by some
function FðxÞ for linear separation. Observe that LD only
depends on dot products in between xi and xj, which can be
substituted by a kernel function Kðxi;xjÞ that computes
FðxiÞ � FðxjÞ, rather than directly computing in the high
dimensional space. Assuming Kðxi;xjÞ can be computed in
constant time, this property allows SVMs to find a non-
linear classifier without increasing the complexity. Com-
mon kernel functions are high degree polynomials, radial
basis functions, and sigmoid functions.

4.2.2. Discriminating between manufacturing processes

All mechanical parts in our study share some subset of
curvature feature statistics (i.e., those resulting from
material removal operations in machining); however, the
casting procedure generates surfaces that result in a part
being easily removable from the cast or mold. As described
in Section 4.1.3, cast parts have tell-tale curvature values
that signify the use of a cast-then-machined process, where
machining features are used to ‘‘finish’’ the part. It is
intuitive that applying a classifier that can be tuned to
weight these attributes differently should perform better,
and SVMs possess this attribute. Weights for the projected
features are learned through an explicit training process on
the SVMs. Distance-based classifiers, such as nearest
neighbor and unsupervised machine learning by clustering
the models, often consider equal weighting of attributes
during distance computation.
SVMs are used to adapt the available features to the

characteristic of this classification problem. The training
process treats the curvature-based shape descriptor as an
input vector on which the SVMs learn which regions of the
vector (i.e., what ranges of curvature values) are most
characteristic of the distinction between prismatic-ma-
chined and cast-then-machined CAD models. The overall
approach can be summarized as
(1)
 Pre-processing phase: compute the per-vertex curvature
and construct the curvature-based shape descriptors for
the training models.
(2)
 Training phase:
(a) Nearest neighbors: no training is required.
(b) SVMs: train a classifier using SVMs with the

classifications and corresponding example curva-
ture-based shape descriptors.
(3)
 Query phase: compute the per-vertex curvature and
construct the shape descriptor for a query model.
(4)
 Classification phase: classify the query model based on
the similarity of its shape descriptor to those in the
database:
(a) Nearest neighbors: return the classification of the

nearest example model(s).
(b) SVMs: feed the query model shape descriptors into

the trained SVMs classifier.
4.2.3. Classification by nearest neighbors

The common nearest neighbor approach is presented as
a baseline for comparing the utility of classifying curvature
statistics descriptors. Nearest neighbor classifier returns the
classification of the query model’s closest example mod-
el(s). Minkowski L2, Euclidean, distance is used to
determine the distance in between curvature shape descrip-
tors. L2 distance between models t and q is computed as

L2ðt; qÞ ¼
X
kti � qik

2
� �1=2

.

The closest example model(s) of the query model deter-
mines the returned classification. The nearest neighbor
classifier is included in the evaluation as an alternative to
SVMs and provides a performance baseline for the
different classifiers.

4.2.4. Classification with SVMs

The separation in between prismatic-machined and cast-
then-machined processes can be learned by feeding example
curvature shape descriptors and their corresponding
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categories to SVMs. The SVMs framework allows descrip-
tors to be non-linearly projected into a high dimensional
feature space for the algorithm to find a linear separating
margin. However, this may result in a non-linear separating
margin in the low-dimensional input space.

As described in Section 4.2.1, the learning algorithm
takes advantage of LD only depending on dot products of
xi � xj, rather than direct projection of examples to a high-
dimensional feature space, x! FðxiÞ. Hence, it replaces
the dot product computation with a kernel function,
Kðxi; xjÞ ¼ FðxiÞ � FðxjÞ, and that computes the dot pro-
ducts of the projected examples in constant time. This
approach allows the SVMs to find non-linear classifications
without increasing computational complexity.

Kernel functions need to satisfy the Mercer condition:

Kðxi; xjÞ40.

This ensures that the matrix is positive semidefinite in the
quadratic programming formulation. Therefore, a solution
is guaranteed to exist.

We evaluated several different common kernel functions
for SVMs learning:
�
 High degree polynomial: ðgðxi � xjÞ þ rÞd ; g40,

�
 Radial basis (Gaussian) function: e�gjjxi�xj jj; g40,

�
 Sigmoid function: tanhðgðxi � xjÞ þ rÞ; g40,
Table 2

Classification accuracies of shape descriptors

Shape matching techniques Accuracy (%)

Shape distributions [16] 57

Scalespace [21] 54

Reeb graph [15] 55

Zernike moments [17] 52
where g, r and d are free parameters of the kernel functions.
For the radial basis function kernel, Ns (i.e., the number

of support vectors) Gaussian functions are centered at the
selected support vectors. The weights and thresholds for
each Gaussian are determined during the SVMs training.
In contrast, the Sigmoid function models a specific kind of
two layer neural network. The first layer consists of Ns sets
of weights, each set consisting of D (i.e., the data
dimension) weights. The second layer consists of Ns

weights. Evaluation takes a weighted sum of Sigmoid
functions.

The free parameters of the kernel functions and the
penalty parameter C need to be determined by a model
selection process. Our approach follows the advice of Lin
[44] on performing an exhaustive grid search and cross
validation for optimal parameters. Parameters are esti-
mated by trying a growing sequence and cross validation
divides training data into n folds. A classifier is trained on
n� 1 folds for classifying the remaining fold. Accuracies
are averaged across different classifications to predict
testing performance. Parameters with the highest cross
validation performance are selected for training the final
classifier.

5. Empirical evaluation

This section presents a set of empirical studies that show
both the current state-of-the-art as well as the positive
improvement of the Curvature and SVMs approach over
existing techniques and the nearest neighbor classification
approach. Different approaches were applied to learn and
classify a dataset of over 100 hand classified prismatic-
machined or cast-then-machined CAD models. Experi-
ments were conducted using a set of the mechanical part
data sampled from the National Design Repository. All
models can be retrieved at http://www.designrepository.
org/datasets/.

5.1. Results: process classification with existing techniques

Current research on shape matching techniques focuses
on extracting features to match the gross shape of mesh
models. For example, shape distributions sample distances
in between surfaces; Zernike descriptors record the
transformation of models from a sphere; reeb graph
technique segments and matches shapes by their topology;
and finally scalespace decomposition separates models by
shape features.
An empirical assessment of existing techniques was done

using the manufacturing process dataset introduced earlier
in this paper. The results clearly show that existing
techniques are not capable of adequately distinguishing
artifacts manufactured by different processes. Table 2
shows the nearest neighbor classification accuracy for some
mesh-based shape matching techniques. In these experi-
ments, the classification of closest example model is
assigned to the query model.

Why is processes classification a problem? Characteristics
of the manufacturing processes show why current shape
matching features fail to separate artifacts produced by the
processes. Prismatic machining manufactures artifacts by
material removal operations on regular shaped stock, such
as rectangular blocks or cylinders. Cast-then-machined
manufacturing first cast out stocks with the gross shape of
the resulting parts and then lets machining operations
construct the details.
The engineering rationale in this classification is that

parts that are exclusively machined are usually high-
precision parts or parts made in small batches (i.e., for
custom jobs). Cast-then-machined parts are typically from
larger production runs and generally have much looser
tolerance considerations for the non-machined surfaces of
the object. In the latter case the investment of the physical
plant is larger, as is the manufacturing production plan
(i.e., one needs to machine a mold with which to do
casting).
Machining is a high precision and time-consuming

process. It requires a process plan to route tools for

http://www.designrepository.org/datasets/
http://www.designrepository.org/datasets/
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Table 3

Nearest neighbor and curvature statistics classification accuracy

k1 (%) k2 (%) H (%) K (%)

Maximum 69 55 59 58

Average 54.59 48.62 51.63 52.1

Standard deviation 6.66 3.89 5.19 4.62
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material removal operations. The application of the casting
procedure loosely constructs the shape of parts and reduces
the need for machining; hence it decreases the complexity
of process plans, manufacturing time and costs.

A similar setup of manufacturing equipment is able to
produce a variety of artifacts in different shapes. Further,
artifacts’ shapes can be drastically different when the same
set of volume removal operations is applied to different
shapes of stock. The resulting shapes of the artifacts are no
longer strongly tied with their respective manufacturing
processes.

5.2. Curvature-based process classification

The curvature-based descriptor along with the nearest
neighbor and SVMs classifiers were applied to learn and
classify the sprismatic-machined or cast-then-machined
CAD models dataset.

5.2.1. Experimental set up

The experiment was repeatedly performed on randomly
selected training models to confirm the robustness of
classification.

The classified manufacturing model dataset was split
into random halves for training and testing. Each experi-
ment was repeatedly performed for 40 times to confirm the
robustness of the approach. The objective was to verify
that the system could stably learn the classification by
randomly selecting sets of training examples and then
accurately classify the non-training parts. High fidelity
mesh representations of the CAD models were prepared by
faceting the ACIS SAT solid models using Geomagic
Studio. On average 150,000 triangles were used to
approximate the surfaces per solid model to ensure that
the curvature computation is accurate.

Curvatures for every vertex on each training example
were estimated to construct the curvature shape descriptor.
The implementation of the curvature estimation algorithm
is provided by trimesh2. Curvature histograms used in
this evaluation consists of 100 bins. SVMs implementation
was provided by libsvm. All experiments were performed
on the Linux platform using a single 1.5GHz AMD
Opteron processor with 1GB of memory.

The curvature estimation and SVMs learning procedure
took 5min to build a classifier from half of the labeled
dataset. Constructing curvature shape descriptors and the
subsequent classification of all the query models using the
SVMs classifier took 5 s. Estimating per vertex principle
curvatures and constructing curvature histograms took
approximately 2 s per model with 100,000 triangles. The
SVMs training process took 0.2–0.5min, depending on the
example model set. Most of the training time was spent on
model selection for optimal parameters using grid searches
and cross validations.

In the SVMs classification experiments, due to the
limited size of the test dataset, about 80% of the training
examples were selected as support vectors to define the
separating margin during the training phase in each run of
the experiment. Although there is still no theoretical
relationship on how the number of support vectors would
affect the classification performance, a large number of
support vectors may indicate possible overfitting. To
alleviate this problem, the experiment was repeatedly
performed to validate the performance statistics. Average
and maximum accuracies are provided to illustrate the
performance. Higher maximum and average accuracies
show a better classification rate. Lower standard deviation
shows the classifier being more stable.
5.2.2. Results: curvature and nearest neighbor classification

The nearest neighbor classifier determines the classifica-
tion of the query model by its nearest example neighbor,
using the proposed curvature shape descriptor and
Euclidean distance. Table 3 shows a summary of the
results.
5.2.3. Results: curvature and SVMs-based classification

The SVMs classification of curvature shape descriptors
was evaluated along with different non-linear kernel
functions (radial basis function, polynomial, and sigmoid
functions). k1, k2, mean curvature, H, and Gaussian
curvature, K, histograms were computed for this evalua-
tion. Table 4 shows a summary of the results.
Using minimum curvature, k2, features along with radial

basis function SVMs produced the highest classification
rate of 87% with an average of 77.1% and the lowest
standard deviation of 4.75%. These statistics show this
combination produced a more accurate classification with a
higher stability. This is a 20–30% increase over the existing
3D shape matching algorithms (Table 2, accuracy
53–57%). k2 performed the best in this classification
because most curved surfaces were generated by volume
removal operations, such as holes, slots, and pockets, and
these machining features have zero minimum curvature.
Therefore, k2 facilitated classification by minimizing the
variety of curvature statistics for prismatic-machined parts.
The results of the experiments show that the radial basis

function performed slightly better than the polynomial or
sigmoid kernel functions. The classification accuracies
ð475%Þ of minimum curvature were always higher than
other curvature statistics despite which different kernel
function was used. Maximum and mean curvature
performed similarly with an average of 70% accuracy.
Gaussian curvature performed the worst (average 60%) in
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Table 4

SVMs and curvature statistics classification accuracy

k1 (%) k2 (%) H (%) K (%)

(a) Polynomial Kernel function

Maximum 81 87 79 74

Average 69.7 75.5 70.95 65.2

Standard deviation 6.57 4.81 5.39 6.12

(b) Radial basis Kernel function

Maximum 85 87 87 76

Average 67.85 77.1 71.15 59.2

Standard deviation 8.13 4.75 7.9 6.7

(c) Sigmoid Kernel function

Maximum 87 85 81 72

Average 69.7 75 67.5 59.35

Standard deviation 7.41 5.87 7.24 7.28

Bold numbers highlight the highest accuracies and lowest standard durations.
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the experiments. This shows that the Gaussian curvature
statistics did not properly separate the CAD models
according to the prismatic-machined and cast-then-ma-
chined manufacturing classifications.

5.3. Discussion

The nearest neighbor classification did not perform
satisfactorily with curvature shape descriptors. Only
50–60% of models were classified correctly for each run
of the experiment. In contrast, the radial basis function
SVMs and minimum curvature performed 20–30% better.
This result demonstrates that the SVMs classifiers found
significantly better separation among the curvature shape
descriptors with respect to the targeted classifications. This
experiment also shows the choice of classifiers could
considerably affect the performance in CAD classification.
This does not mean that SVMs are always superior to
nearest neighbor classifier. It is important to search for a
combination of features and classifiers that produces the
best accuracy.

Even though this test was done with only two classes of
models, the technique can be generalized to multiple
classifications. Nearest neighbor classifier naturally handles
multiple classes and the SVMs classifier has been extended
to handle multiple classes [45,46]. The issue in general-
ization is that the community of users needs to develop the
additional feature extractors to discriminate the other
example classifications of interest. Further, it may be the
case that some kinds of classifications and discriminations
are simply not feasible from low-level shape information
(i.e., objects with very different functions may have similar
gross shapes).

6. Conclusions

This paper described a new approach to automate the
classification of 3D mesh-based representations of mechan-
ical CAD models according to manufacturing processes.
The contribution of this research is the introduction of a
new shape descriptor based on surface curvature and use of
the SVMs to learn the manufacturing categorization of
CAD models. This approach relates automatic mesh model
classification to a practical application and can support
relevant engineering interrogations such as cost estimation
and variational design. In addition, the paper introduced a
dataset for use in comparing the performance of 3D search
techniques in the domain of 3D mechanical CAD models
and a detailed empirical assessment of the manufacturing
process classification technique. A contribution of this
research is the establishment of additional datasets for
evaluating model retrieval techniques on CAD/CAM
artifacts.
In developing the classifier for prismatic-machined and

cast-then-machined manufacturing processes, we have
shown that the combination of a curvature-based descrip-
tor and non-linear SVMs demonstrates a considerable
improvement over recent shape descriptors and nearest
neighbor classification. However, it is also evident that new
engineering-relevant features and classifiers are needed for
the challenging domain of CAD model databases. The
need specifically exists for a greater variety of low-level
feature descriptors, especially ones that can capture non-
local shape configurations (i.e., slots, pockets, or other
features that are not adjacent to each other on the surface
of the artifact). With additional shape analysis features and
different classification schemes available, a future goal is to
apply supervised machine learning to automatically select
relevant features, resulting in adaptive matching systems.
It is the belief of the authors that manufacturing and

engineering-relevant classifications are an open challenge
problem for the 3D retrieval community. Results [30] have
shown that most current shape retrieval techniques per-
form unacceptably when asked to classify objects as cast or
prismatically machined parts. Readers may feel that this
distinction is too subtle, but in actuality this distinction is
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readily identifiable in the micro-geometry of the objects
themselves. Further, this a binary classification—the
simplest possible. Considerable research needs to be
performed before classifiers will be able to distinguish
among objects across a wider variety of manufacturing
processes as well as answer more complex engineering
queries.

Acknowledgments

This work was supported by the Library of Congress’
National Digital Information Infrastructure and Preserva-
tion Program (NDIIPP) through the National Science
Foundation (NSF) DIGARCH Program Grant IIS-
0456001. Additional support includes NSF CAREER
Award CISE/IIS-9733545 and Office of Naval Research
(ONR) Grant N00014-01-1-0618.

Any opinions, findings, conclusions or recommendations
expressed in this material are those of the author(s) and do
not necessarily reflect the views of the National Science
Foundation or the other supporting government and
corporate organizations.

References

[1] Iyer N, Jayanti S, Lou K, Kalyanaraman Y, Ramani K. Three

dimensional shape searching: state-of-the-art review and future

trends. Computer Aided Design 2005;37(5):509–30.

[2] Cardone A, Gupta SK, Karnik M. A survey of shape similarity

assessment algorithms for product design and manufacturing

applications. Journal of Computing and Information Science in

Engineering 2003;3:109–18.

[3] Veltkamp RC, Tangelder JW. A survey of content based 3d shape

retrieval methods. In: Shape modeling and applications; 2004.

[4] Snead CS. Group technology: foundations for competitive manu-

facturing. New York: Van Nostrand Reinhold; 1989.

[5] Han J-H, Regli WC, Pratt MJ. Algorithms for feature recognition

from solid models: a status report. IEEE Transactions on Robotics

and Automation 2000;16(6):782–96.

[6] Shah J, Anderson D, Kim YS, Joshi S. A discourse on geometric

feature recognition from cad models. ASME Transactions, the

Journal of Computer and Information Science in Engineering

2001;1(1):41–51.

[7] Ji Q, Marefat MM. Machine interpretation of cad data for

manufacturing applications. Computing Surveys 1997;29(3):264–311.

[8] Kyprianou LK. Shape classification in computer aided design. PhD

thesis, Christ College, Cambridge, UK, University of Cambridge;

July 1980.

[9] Elinson A, Nau DS, Regli WC. Feature-based similarity assessment

of solid models. In: Hoffman C, Bronsvoort W, editors. Fourth

symposium on solid modeling and applications, New York, NY,

USA. Atlanta, GA: ACM Press; 1997. p. 297–310.

[10] Cicirello V, Regli WC. Resolving non-uniqueness in design feature

histories. In: Anderson D, Bronsvoort W, editors. Fifth symposium

on solid modeling and applications, New York, NY. Ann Arbor, MI,

USA: ACM Press; 1999.

[11] Cicirello V, Regli WC. An approach to a feature-based comparison of

solid models of machined parts. Analysis, and Manufacturing

(AIEDAM) 2002;16(5):385–99.

[12] McWherter D, Peabody M, Shokoufandeh A, Regli W. Solid model

databases: techniques and empirical results, ASME/ACM Transac-

tions. The Journal of Computer and Information Science in

Engineering 2001;1(4):300–10.
[13] Cardone A, Gupta SK, Karnik M. Identifying similar parts for

assisting cost estimation of prismatic machined parts. In: ASME

DETC design for manufacturing conference; 2004.

[14] Thompson WB, Owen J, de St. Germain H, Stark Jr S,

Henderson T. Feature-based reverse engineering of mechanical

parts. IEEE Transactions on Robotics and Automation 1999;

12(1):57–66.

[15] Hilaga M, Shinagawa Y, Kohmura T, Kunii TL. Topology matching

for fully automatic similarity estimation of 3d shapes. In: SIG-

GRAPH. New York, NY, USA: ACM Press; 2001. p. 203–12.

[16] Osada R, Funkhouser T, Chazelle B, Dobkin D. Shape distributions.

ACM Transactions on Graphics 2002;21(4):807–32.

[17] Novotni M, Klein R. Shape retrieval using 3d zernike descriptors.

Computer Aided Design 2004;36(11):1047–62.

[18] Kazhdan M, Funkhouser T, Rusinkiewicz S. Rotation invariant

spherical harmonic representation of 3d shape descriptors. In:

Eurographics/ACM SIGGRAPH symposium on Geometry proces-

sing; 2003. p. 156–64.

[19] Ip CY, Lapadat D, Sieger L, Regli WC. Using shape distributions to

compare solid models. In: Seventh ACM symposium on solid

modeling and applications; 2002.

[20] Ip CY, Sieger L, Regli WC, Shokoufandeh A. Automated learning of

model classifications. In: Eighth ACM symposium on solid modeling

and applications; 2003. p. 322–7.

[21] Bespalov D, Shokoufandeh A, Regli WC, Sun W. Scale-space

representation and classification of 3d models, ASME Transactions.

Journal of Computing and Information Science in Engineering

2003;3:315–24.

[22] Iyer N, Jayanti S, Lou K, Kalyanaraman Y, Ramani K. Shape-based

searching for product lifecycle applications. Computer Aided Design

2005;37(13):1435–46.

[23] Iyer N, Kalyanaraman Y, Lou K, Jayanti S, Ramani K. A

reconfigurable, intelligent 3d engineering shape search system part

I: shape representation. In: ASME DETC 2003 computers and

information in engineering conference; 2003.

[24] Iyer N, Kalyanaraman Y, Lou K, Jayanti S, Ramani K. A

reconfigurable, intelligent 3d engineering shape search system

part II: database indexing, retrieval and clustering. In: ASME

DETC 2003 computers and information in engineering conference;

2003.

[25] Pal P, Tigga A, Kumar A. Feature extraction from large cad

databases using genetic algorithm. Computer Aided Design

2005;37(5):545–58.

[26] Nene SA, Nayar SK, Murase H. Columbia object image library (coil-

100). Technical Report, Columbia University; February 1996.

[27] Shilane P, Min P, Kazhdan M, Funkhouser T. The princeton

shape benchmark. In: Shape modeling and applications; 2004. p.

167–80.

[28] Regli WC, Gaines DM. An overview of the NIST repository for

design, process planning, and assembly. Computer Aided Design

1997;29(12):895–905.

[29] Regli WC, Cicirello V. Managing digital libraries for computer-aided

design. Computer Aided Design 2000;32(2):119–32 special issue on

CAD after 2000. Mohsen Rezayat, Guest, editor.

[30] Bespalov D, Ip CY, Regli WC, Shaffer J. Benchmarking search

techniques for cad. In: 2005 ACM symposium on solid and physical

modeling; 2005.

[31] Iyer N, Jayanti S, Ramani K. An engineering shape benchmark for

3D models. In: Proceedings of ASME IDETC/CIE; 2005.

[32] Smith SDG, Escobedo R, Anderson M, Caudell TP. A deployed

engineering design retrieval system using neural networks. IEEE

Transactions on Neural Networks 1997;8(4):847–51.

[33] Hou S, Lou K, Ramani K. Svm-based semantic clustering and

retrieval of a 3d model database. Computer Aided Design and

Application 2005;2:155–64.

[34] Elad M, Tal A, Ar S. Content based retrieval of vrml objects—an

iterative and interactive approach. In: Eurographics Multimedia

Workshop; 2001.



ARTICLE IN PRESS
C.Y. Ip, W.C. Regli / Computers & Graphics 30 (2006) 903–916916
[35] Taubin G. Estimating the tensor of curvature of a surface from a

polyhedral approximation. In: ICCV95; 1995. p. 902–7.

[36] Page DL, Sun Y, Koschan AF, Paik J, Abidi MA. Normal vector

voting: crease detection and curvature estimation on large, noisy

meshes. Graphical Models 2002;64:199–229.
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