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period [1]. If so, the facilitation of 
visual plasticity after binocular 
deprivation [8] may be due to 
the removal of mutual inhibitions 
between the two eyes. Moreover, 
the improvement in performance 
with an amblyopic eye as a result of 
occluding the fellow eye [5] might 
be at least partially accounted for 
by this boosting effect, although 
the combination of training with an 
amblyopic eye and deprivation of the 
fellow eye may be more effective [5,7].
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Could methane 
produced by 
sauropod dinosaurs 
have helped drive 
Mesozoic climate 
warmth?
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Mesozoic sauropods, like many 
modern herbivores, are likely to have 
hosted microbial methanogenic 
symbionts for the fermentative 
digestion of their plant food [1]. 
Today methane from livestock is a 
significant component of the global 
methane budget [2]. Sauropod 
methane emission would probably 
also have been considerable. Here, 
we use a simple quantitative approach 
to estimate the magnitude of such 
methane production and show that 
the production of the ‘greenhouse’ 
gas methane by sauropods could 
have been an important factor in warm 
Mesozoic climates.

Sauropod dinosaurs include the 
largest terrestrial animals known 
and exhibit a distinctive body shape, 
featuring a small head at the end 
of a very long neck. Their diversity 
and geographic range suggest that 
sauropods may have been keystone 
species in many ecosystems during 
the Jurassic and Cretaceous [1]. 
Based in part on data from the 
Late Jurassic Morrison Formation 
(Western USA), Farlow et al. [3] 
estimated population densities for 
sauropods ranging from a few 
large adult animals to a few tens 
of individuals per km2. Specifically, 
they estimate that if dinosaurs had 
an endothermic, mammalian-style 
metabolism, then the total abundance 
of these megaherbivores would 
have been 11–15 animals/km2 with 
a total biomass density of around 
42,000 kg/km2. It is, however, very 
unlikely that large-bodied sauropods 
had metabolisms as high as predicted 
by the assumption of mammalian 
metabolism [1]. If instead a reptilian 
metabolism in assumed, then Farlow 
et al. [3] calculate a predicted 
biomass density of 377,000 kg/km2. 
The palaeoenvironment of the 
Morrison Formation was, at least 
in part, semi-arid — probably not 
optimal megaherbivore habitat. For 
our calculation, we conservatively 
assume sauropod biomass density, 
averaged over the global vegetated 
land area, to be around 200,000  
kg/km2. Other recent estimates of the  
biomass density of herbivorous 
dinosaurs are 80,000–90,000 kg/km2 
[4] and 7–24 times the biomass of 
extant large-bodied herbivorous 
mammals [5], which taking a value 
of 28,000 kg/km2 for mammals 
(Table 7 of [3]) gives a range 
between 186,000–672,000 kg/km2. 
These studies all predict a higher 
herbivore biomass in the Mesozoic 
than seen in modern systems with 
large herbivorous mammals — 
such as African savannah. Three 
potential underlying mechanisms 
are conceivable: first, Mesozoic 
primary production per km2 would 
reflect higher temperatures and CO2 
concentrations [6]. Second, large 
herbivorous dinosaurs would have 
had lower mass-specific metabolic 
rates than endothermic mammals of 
the same size [1]. Third, herbivorous 
dinosaurs featured a very large 
individual body size, and — as 
metabolism scales less than linearly — 
a larger individual body size allows a 
given primary production to support a 
greater herbivore biomass. 

To estimate methane production 
we follow the relationship derived 
by Franz et al. [7] for modern non-
ruminant herbivores, where Methane 
(litres per day) = 0.18 (body mass 
in kg)0.97. The exponent (0.97) is 
not statistically different from one 
[8], indicating that to calculate 
total sauropod methane emissions, 
we need only estimate the total 
biomass density, since methane 
emissions will be insensitive to body 
size distribution of the constituent 
animals. As an illustrative example, 
we consider the sauropod biomass 
density of 200,000 kg/km2 to consist 
of ten 20,000 kg sauropods; this is 
a conservative estimate of the adult 
mass of the medium sized sauropod 
Apatosaurus louise, colloquially 
known as ‘Brontosaurus’. For this, 
the allometric relation gives methane 
emission of 2675 litres per day for one 
animal, equivalent to about 1.9 kg per 
day under the standard temperature 
and pressure conditions assumed 
in [7]. For a density of ten adults per 
km2, assuming, for comparability, 
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Figure 1. Estimated emissions.
Estimated sauropod methane production compared to total modern (both natural and anthro-
pogenic), global pre-industrial and estimated modern methane production from ruminants. Even 
reducing our estimate by half still predicts a major role for sauropod methane in the Mesozoic.
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modern day and year lengths (the 
Mesozoic day was slightly shorter), 
we get 6.9 tonnes/km2 of methane 
per year methane emissions. Scaling 
up, assuming a global vegetated 
area of 75 x 106 km2 (equivalent to 
half the total land area), gives global 
methane production from sauropods 
of 520 Tg (520 million tonnes). This 
is comparable to the total modern-
day methane emission (Figure 1) [2]. 
For comparison, total pre-industrial 
Holocene global methane emission 
was roughly 200 Tg per year, capable 
of sustaining an atmospheric methane
mixing ratio of about 0.7 ppm, and the
modern mixing ratio of about 1.8 ppm 
is supported by roughly 500–600 Tg of
global emission.

Unlike most modern browsers 
which are restricted to low growing 
vegetation, sauropods could access 
high tree foliage. This ability to 
access high as well as low browse 
because of their large body mass 
may partly explain why we infer 
sauropod methane emissions to have 
been much greater than those of 
modern-day ruminants which produce
~50–100 Tg per year. However, the 
dominant reason is the much greater 
global primary productivity available 
for exploitation. First, the land area 
able to support large herbivores was 
larger than currently: the Mesozoic 
climate was warm, moist and without 
permanent polar ice cover. Second, 
primary production is likely to have 
been higher on land per unit area, 
given the elevated atmospheric CO2 
concentration [9].

Take together, our calculations 
suggest that sauropod dinosaurs 
could potentially have played 
a significant role in influencing 
 
 

 

 

climate through their methane 
emissions. Even if our 520 Tg 
estimate is overstated by a factor of 
2, it suggests that global methane 
emission from Mesozoic sauropods 
alone was capable of sustaining an 
atmospheric methane mixing ratio of 
1 to 2 ppm [2,9]. Equally, our estimate 
may be understated by a similar 
factor, (i.e. possibly supporting 4 ppm 
methane). In the warm wet Mesozoic 
world, wetlands, forest fires, and 
leaking gasfields may have added 
around another 4 ppm methane to 
the air [9]. Thus, a Mesozoic methane 
mixing ratio of 6–8 ppm seems very 
plausible. 

The Mesozoic trend to sauropod 
gigantism led to the evolution of 
immense microbial vats unequalled 
in modern land animals. Methane 
was probably important in Mesozoic 
greenhouse warming [9]. Our simple 
proof-of-concept model suggests 
greenhouse warming by sauropod 
megaherbivores could have been 
significant in sustaining warm 
climates. Although dinosaurs are 
unique in the large body sizes they 
achieved, there may have been other 
occasions in the past where animal-
produced methane contributed 
substantially to global environmental 
gas composition: for example, it has 
been speculated that the extinction 
of megafauna coincident with human 
colonisation of the Americas may be 
related to a reduction of atmospheric 
methane levels [10].
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