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Requirement volatility is an issue in software engineering in general, and in Web-based clinical applications in particular, which
often originates from an incomplete knowledge of the domain of interest. With advances in the health science, many features and
functionalities need to be added to, or removed from, existing software applications in the biomedical domain. At the same time,
the increasing complexity of biomedical systems makes them more difficult to understand, and consequently it is more difficult to
define their requirements, which contributes considerably to their volatility. In this paper, we present a novel agent-based approach
for analyzing and managing volatile and dynamic requirements in an ontology-driven laboratory information management system
(LIMS) designed for Web-based case reporting in medical mycology. The proposed framework is empowered with ontologies and
formalized using category theory to provide a deep and common understanding of the functional and nonfunctional requirement
hierarchies and their interrelations, and to trace the effects of a change on the conceptual framework.
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1. Introduction

The life sciences constitute a challenging domain in knowl-
edge representation. Biological data are highly dynamic, and
bioinformatics applications are large and there are complex
interrelationships between their elements with various levels
of interpretation for each concept. In an ideal situation, the
requirements for a software system should be completely
and unambiguously determined before design, coding, and
testing take place. The complexity of bioinformatics applica-
tions and their constant evolution lead to frequent changes
in their requirements: often new requirements are added
and existing requirements are modified or deleted, causing
parts of the software system to be redesigned, deleted, or
added. Such changes lead to volatility in the requirements of
bioinformatics applications.

In this paper, we deal with an important problem of
requirements volatility in the context of an ontology-driven
clinical laboratory information management system (LIMS)
[1, 2]. A LIMS is a software application for managing infor-
mation about laboratory samples, users, instruments, stan-
dards, and other laboratory functions and products. It forms

an essential part of electronic laboratory reporting (ELR)
and electronic communicable disease reporting (CDR). ELR
is a key factor in public health surveillance, improving
real-time decision making based on messages reporting
cases of notifiable conditions from multiple laboratories [3].
Combining these reports with clinical experiments and case
studies makes up a CDR system [4]. This framework, along
with the active participation of physicians specializing in
fungal infectious diseases, infection control professionals,
and lab technicians, aimed at generating automated online
reporting from clinical laboratories to improve the quality
of lab administration, health surveillance, and disease noti-
fication. It provides security, portability, and accessibility
over the Web, as well as efficiency and data integrity
in clinical, pharmaceutical, industrial, and environmental
laboratoryprocesses.

Research Problem. Requirements volatility is “a measure
of how much program requirements change once coding
begins” [5]. Bioinformatics applications with frequently
changing requirements have a high degree of volatility,
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while projects with relatively stable requirements have a
low one [6]. Higher requirement volatility will result in
higher development and maintenance costs, the risk of
schedule slippage, and an overall decrease in the quality of
the services provided. Therefore, requirement volatility is
considered one of the major obstacles to using a LIMS. In this
paper, we propose an innovative approach for the automatic
tracing of volatile requirement changes based on their formal
representation in an ontological framework using a solid
mathematical foundation, namely, category theory [7].

Approach. Investigating the factors that drive requirement
change is an important prerequisite for understanding the
nature of requirement volatility. This increased understand-
ing will minimize that volatility and improve the process
of requirement change management. One of the most
important volatility factors is the diversity of requirement
definitions in the application domain, which may lead to
confusing and frustrating communication problems between
application users and software engineers [8]. Ontologies [9]
are widely used as a vehicle for knowledge management
sharing common vocabularies, describing the semantics of
programming interfaces, providing a structure to organize
knowledge, reducing the development effort for generic
tools and systems, improving data and tool integration,
reusing organizational knowledge, and capturing behavioral
knowledge. Ontologies can describe software architectures
and requirements, which are difficult to model with object-
oriented languages [10]. Conceptualization of the require-
ments using an ontology formalized with category theory
minimizes requirement volatility by providing a deep and
common understanding of the requirements [11], which is
essential in order for bioinformatics application developers
to manage the changes successfully. This paper proposes
a generic categorical model of LIMS requirements with
an emphasis on nonfunctional requirements, their depen-
dencies and interdependencies using category theory as an
advanced mathematical formalism. The resulting categorical
model represents the functional requirements (FRs) and
nonfunctional requirements (NFRs) based on an investiga-
tion of their dependencies and interdependencies, which is
considered critical to success in tracing requirement changes.
Requirement traceability, defined as “the ability to describe
and follow the life of a requirement in both [forward and
backward directions] ” [12], is an essential part in per-
forming requirement maintenance and change management
processes. Moreover, the extent to which change traceability
is exploited is viewed as an indicator of system quality and
process maturity, and is mandated by existing standards
[13]. These changes have to be monitored for consistency
with the existing categorical framework in the LIMS context.
After capturing the LIMS requirements in an ontological
framework—to provide a common shared understanding of
the requirements—empowered with category theory, a novel
agent-based framework for the representation, legitimation,
and reproduction (RLR) of changes [14] is proposed for
implementing volatile requirement identification, and inte-
grated change management and consistency monitoring in a
LIMS (Figure 1).

RLR framework assists and guides the software developer
through the change management process in general, and in
representing and tracing the changes, particularly through
the use of category theory.

The rest of the paper is organized as follows. Our
discussion will be illustrated through examples from the
LIMS system case study introduced in Section 2. Our
approach for recruiting category theory for formalizing the
conceptual framework of the requirements is presented in
Section 3. The RLR framework for managing changes is
described in Section 4. In Sections 5 and 6, we demonstrate
the applicability of our categorical method for representing
and tracking requirement changes and formalizing the
interaction of agents in the RLR framework through an
application scenario. We describe the evaluation phase in the
proposed multiagent framework and review related work in
Sections 7 and 8, respectively. The paper concludes with the
list of contributions and an outline of research directions in
Section 9.

2. The MYCO-LIMS Requirements Overview

The mycology laboratory information management system
(MYCO-LIMS) is software for managing information about
laboratory samples, users, instruments, standards, and other
laboratory functions and products, and provides security,
portability, and accessibility over the Web, efficiency, and
data integrity in clinical, pharmaceutical, and industrial lab-
oratoryprocesses. The MYCO-LIMS is an ontology-driven
object-oriented application for a typical fungal genomics
lab performing sequencing and gene expression experiments
in the domain of medical mycology. Based on Gruber’s
definition [9], an ontology is a “specification of conceptual-
ization”, and provides an underlying discipline for knowledge
sharing by defining concepts, properties, and axioms. The
term “conceptualization” includes conceptual frameworks
for analyzing shared domain knowledge which are necessary
for knowledge representation in the domain of interest.
In our context, the conceptual framework for requirement
management outlines possible courses of action and patterns
for describing a system’s specifications and requirements. In
complex biomedical systems development, a bioinformatics
requirement change typically causes a ripple effect and forces
the categorical requirements model to be altered as well.

MYCO-LIMS is used in the FungalWeb [14] integrated
system to respond to queries regarding the clinical, pharma-
ceutical, industrial, and environmental processes related to
pathogenic fungal enzymes and their related products. It is
estimated that laboratory data account for 60–80% of the
data generated during the entire clinical trial process [15].

The FungalWeb semantic Web infrastructure [16]
(Figure 2) consists of the FungalWeb ontology, skin disease
ontology (SKDON), a text mining framework, and intelli-
gent agents. In addition, several external applications such as
the MYCO-LIMS, the MYCO-LIS, and mutation miner [17]
have been designed for knowledge exchange.

Microarrays are produced in different proportions, dep-
ending on the specific requirements of the gene expression
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Figure 2: The FungalWeb infrastructure.

study being initiated. A typical microarray may include
thousands of distinct cDNA probes [18]. Preparation of
an array begins with the clone set deliverance in the form
of plates or tissue samples (with associated data) from a
vendor or other source [18]. The MYCO-LIMS will be
able to maintain the taxonomy for each plate or sample
in the system; such that a user can easily see the life cycle
of the entity. The LIMS is based on MGED-specified [19]
microarray data exchange standards, such as MIAME [20] or
MAGE-ML [21].

Software systems in general and MYCO-LIMS in par-
ticular are characterized both by their functional behavior
(what the system does) and by their nonfunctional behavior
(how the system behaves with respect to some observable
attributes like reliability, reusability, maintainability, etc.).
Both aspects are relevant to software development and are
captured correspondingly as functional requirements (FRs)
and nonfunctional requirements (NFRs).

2.1. LIMS Functional Requirements (FRs). MYCO-LIMS is
a Web-based system capable of providing services such as
managing microarray gene expression data and laboratory
supplies, managing patients, physicians, laboratories supplies
or vendors’ information, managing and tracking samples
information, and managing orders. Figure 3 summarizes
some of the main actors and services of the MYCO-LIMS
application in a standard use case diagram.

MYCO-LIMS is capable of receiving multiple orders
or cancelation requests at the same time. It requires its
users to have a certain level of privileges to access any of
the functionalities, except when searching for a product.
The privileges are granted automatically upon successful
authentication. In this paper, we limit the scope of the
discussion to one functional requirement, “manage order”,
and further decompose it into two more specific sub-NFRs,
“view orders,” and “place order”. In each decomposition,
the offspring FRs contribute toward satisfying the goal of
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the parent. Figure 4 presents the functional model and
shows that an FR is realized through the various phases of
development by many functional models (e.g., in the object-
oriented field, a use case model is used in the requirements
engineering phase, a design model is used in the software
design phase, etc.). Each model is an aggregation of one
or more artifacts (e.g., a use case and sequences of events
representing scenarios for the use case model, classes and
methods for the design model). For instance, view order
use case is refined to a sequence of events < enter order
number, visualize order > illustrating an instance of view
order service; each event is refined as a method (viewOrder-
Session.view and viewCatalogue.view correspondingly) in
the design phase. Modeling FRs and their refinements in a
hierarchical way gives us the option of decoupling the task of
tracing FRs change from a specific development practice or
paradigm. Figure 4 visualizes the FR hierarchical model for
the chosen case study through the hierarchy graph that forms
a primary taxonomy for analyzing ontological relationships
between requirements.

2.2. LIMS Nonfunctional Requirements (NFRs). The use case
diagram shown in Figure 3 specifies the FRs of MYCO-
LIMS services. At the same time, compliance with the
NFRs, such as performance, scalability, accuracy, robustness,
accessibility, resilience, and usability, is one of the most
important issues in the software engineering field today.
NFRs impose restrictions by specifying external constraints
on the software design and implementation process [22] and
therefore need to be considered as an integral part of the
process of conceptual modeling of the requirements. The
goal of this section is to build a systematic, quantitative, and
formal approach to NFR modeling, impact detection, and
volatility evaluation/decision-making from the early stages of
the software development process.

We decompose a high-level NFR into more specific
sub-NFRs. In each decomposition, the offspring NFRs can
contribute partially or fully toward satisficing the parent.
Let us consider the requirements of “managing orders with
good security” and “maintain the users’ transactions with
good performance”. The security requirement constitutes
quite a broad topic. To effectively deal with it, the NFR may
need to be broken down into smaller components, so that
an effective solution can be found. We can decompose the
security NFR into the sub-NFRs integrity, confidentiality,
and availability. In the security example, each sub-NFR has
to be satisfied for the security NFR to be satisfied. The
sub-NFRs are refined (operationalized) into solutions that
will satisfice the NFR. These solutions provide operations,
processes, data representations, structuring, constraints, and
agents in the target system to meet the goals stated in the
NFRs. In the confidentiality example, a solution can consist
of either implementing authorization or the use of additional
ID. Figure 5 visualizes the NFR partial hierarchy resulting
from the decomposition and operationalization relations for
the NFRs chosen in the LIMS.

NFRs pose further challenges when it comes to deter-
mining their relationships with FRs. The tendency for
NFRs to have a wide-ranging impact on a software system
services and the strong interdependencies and tradeoffs
that exist between them and the FRs leave typical existing
software modeling methods incapable of integrating them
into software engineering. In Section 2.3, we propose a
new generic ontological framework for conceptualizing the
NFR and FR requirements, their decompositions, and the
corresponding associations.

2.3. Integrating FRs and NFRs into a Generic Ontologi-
cal Framework. Hardly any requirement is manifested in
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isolation, and normally the provision of one requirement
may affect the level of provision of another. Understanding
FR/NFR relations is essential to influencing the consistency
and change management of the requirements. Once a soft-
ware system has been deployed, it is typically straightforward
to observe whether a certain FR has been met or not, as
the ranges of success or failure in its context can be rigidly
defined. However, the same is not true for NFRs as these
can refer to quantitative statements that can be linked to
other elements of the system. In fact, NFRs are not stand-
alone goals as NFRs and their derived design solutions

(operationalizations) can be associated to FRs throughout
the software development process.

While tracing requirements is a major activity for change
management of the system requirements, it has, by and large,
been neglected for NFRs in practice. This area needs a special
attention because NFRs are subjective in nature and have a
broad impact on the system as a whole. In this section, we
illustrate our approach toward finding an effective method
for conceptualizing NFRs based on their hierarchy and their
interrelations with FRs in the MYCO-LIMS invoicing system
case study.
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For example, associating response time NFR to view
order use case would indicate that the software must
execute the functionality within an acceptable duration (see
association A1, Figure 6). Another example is associating
security NFR to the “manage order” FR, which would
indicate that the interaction between user and the software
system in the “manage order” service must be secured (see
association A2, Figure 6), which also precisely implies that
user interface for other interactions is not required to be
secured.

If an association exists between a parent NFR and
a functionality (e.g., association A2 between security and
manage order, or association A1 between performance and
manage order) (see Figure 6), there will be an association
between operationalizations derived from NFRs and meth-
ods derived from the functionality (e.g., authorize derived
from security, and placeOrderSession.makeOrder derived
from manage order) (see Figure 7).

Figure 7 illustrates the refinement of the interactions.
The complete change management model would require the
refinement of performance and scalability into operational-
izations and methods, and the identification of the associated
interaction points to which they are mapped.

A change in FRs or NFRs can be authorized if and only
if that change is consistent with the existing requirements
model. Our future work includes the development of more
consistency rules based on a formal presentation of the FR
and NFR hierarchies and their relations, and these rules will
be checked automatically before a change is authorized.

The conceptualization of FR and NFR hierarchies and
their interconnections form the bases for analyzing onto-
logical relationships between requirements in the service
ontology (see Figure 2). The NFR/FR ontological framework
introduced in this section can be visualized through a
categorical hierarchical graph, which makes it possible to
keep track of the required behavior of the system using
dynamic views of software behaviors from requirements
elicitation to implementation.

The following subsection proposes a generic categorical
model of requirements with an emphasis on NFRs and
their interdependencies and refinements through using

category theory as an advanced mathematical formalism,
and this model will be independent of any programming
paradigm.

3. Generic Categorical Representation of
Requirements and Their Traceability

An ontology is a categorization of things in the real world.
It can be viewed in terms of an interconnected hierarchy of
theories as a subcategory of a category of theories expressed
in a formal logic [23]. Categorical notations consist of
diagrams with arrows. A category consists of a collection of
objects and a collection of arrows (called morphisms). Each
arrow f : X → Y represents a function. Representation of a
category can be formalized using the notion of the diagram.
We have chosen category theory as the main formalism in
our framework because it has proved itself to be an efficient
vehicle to examine the process of structural change in living
and evolving systems [24].

In fact, we can use category theory to represent ontolo-
gies as a modular hierarchy of domain knowledge. Categories
capture and compose the interactions between objects,
identify the patterns of interacting objects in ontologies,
and either extract invariants in their action or decompose
a complex object in basic components. Categories are also
able to identify patterns that recur again and again in a
changing system. Other reasons for using category theory
in our framework, as stated by Adamek et al. [25], arethe-
abundance, precise language, and convenience of symbolism
for visualization. Although category theory is a relatively
new domain of mathematics, introduced and formulated in
1945 [7], categories are frequently found in this field (sets,
vector spaces, groups, and topological spaces all naturally
give rise to categories). The use of categories can enable
the recognition of certain regularities in distinguishing a
variety of objects, their interactions can be captured and
composed, equivalent interactions can be differentiated,
patterns of interacting objects can be identified and some
invariants in their action are extracted, and a complex
object can be decomposed into its basic components
[26].
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In order to explicitly reason about the impact of NFRs
and their refinements on the project throughout the soft-
ware development process, we explicitly represent NFRs,
FRs, and their dependencies and refinements using the
language of category theory. Figure 8 captures the generic
view on the requirements modeling process where require-
ments group, hierarchical model, artifacts, and solution
space are categories representing the project requirements,
the analysis models, the refined representations of the
project requirements, and the requirements implementation,
respectively. The arrows are morphisms which capture
the refinement processes, namely, decomposition, opera-
tionalization, and implementation defined as shown in
Figure 8.

Figure 8 shows that a requirement is realized through
the various phases of refinement by hierarchical models,
where each model is an aggregation of one or more
artifacts. The implementation arrow refines the artifacts
into solutions in the target system that will satisfy the
requirements. These solutions provide operations, processes,
data representations, structuring, constraints, and agents
in the target system to meet the requirements represented
in the requirements group. High-level FRs are refined in
the requirements analysis phase into more specific sub-
FRs (use cases and their relations (FR hierarchy model),
e.g.), which are then operationalized as use case scenarios
describing instances of interactions between the actors and
the software, and modeled as events (artifacts), which are
implemented as methods (solution space). High-level NFRs
are refined into an NFR hierarchy where the offspring
NFRs can contribute fully or partially toward satisficing
the parent. The sub-NFRs are operationalized into solu-

tions (artifacts) in the target systems, which will satisfice
the NFR. These procedures provide operations, processes,
data representations, structuring, constraints, and agents
in the target system to meet the needs stated in the
NFRs, and are implemented as methods in the solution
space.

The requirement refinements are then expressed formally
in terms of the composition operator ◦, assigning to each
pair of arrows f and g, with cod f = dom g, a composite
arrow g ◦ f : dom f → cod g (cod f is a notation for a
codomain, and dom f is the notation used to indicate the
domain of a function f ). In this case, each requirement
object belonging to the requirements group category will
be refined to its implementation belonging to the solution
space. The resulting solution forces preservation of the
requirements and their relations, which are modeled with the
trace arrows. The consistency between the solution and the
original requirements can be guaranteed by the composition
of categorical arrows representing morphisms. As a result,
each change to a requirement or its refinement belonging to
the domain of f will be traced to its refinement belonging
to the codomain of g by means of the composition of the
corresponding trace arrows.

3.1. Categorical Representation of FRs, NFRs Hierarchies, and
Their Interdependencies. The category FR, NFR hierarchies,
and relations (Figure 9) consist of objects representing FRs
and NFRs, their decomposition into sub-FR and sub-
NFR (which are also FR and NFR correspondingly), and
their impact associations; above concepts are treated jointly
and in an integrated fashion. We identify four critical
areas for impact detection in which NFRs require change
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management support: (i) impact of changes to FRs on NFRs
(intermodel integration), (ii) impact of changes to NFRs on
FRs (intermodel integration), (iii) impact of changes to NFRs
on sub-NFRs and parent NFRs (intramodel integration), and
(iv) impact of changes to NFRs on other interacting NFRs
(intramodel integration).

3.2. Categorical Representation of the Solution Space. The
solution space category contains state space SS (all potential
states including initial states), state transition ST (next state
function), class C categorical objects, and methods arrows.
The trace implementation morphism traces the effect of the
changes to artifact objects on the solution space objects.
In Figure 10, for instance, we illustrate the refinement of
an event from the artifact category to a state transition
object ST. Moreover, each state transition ST is defined
on the state space SS (arrow ST SS) linked by a function
ST C: ST → C to a class C. The state transitions are
implemented by methods captured with the function ST M:
ST → AP M, and belonging to a class C (see function M C).
The above functions support the tracing mechanism and
are captured formally in Figure 10. The changes are then
represented formally in terms of the composition operator ◦;
for instance, E ST ◦ ST SS ◦ ST C will trace a change in dom
E ST (which is A Event) to the codomain of ST C (which is
class C).

As we presented in [27], category theory has great
potential as a mathematical vehicle to represent, track,
and analyze changes in ontologies. For example, it can be
used in the taxonomical representation of requirements to
help in the study of the ontological relationship between
the various nodes within the hierarchy. After describing
the ontological concepts within the categories represent-
ing a modular hierarchy of domain knowledge, we have
employed category theory to analyze ontological changes and
agent interaction in different stages of the RLR framework
[14].

A Event
E ST State

transition
ST

A Imp
ST M

ST SS

Method
M

State
space

SS

M C ST CClass
C

Figure 10: Tracing the changes to the state spaces, classes, and
methods.

4. The RLR Framework

The RLR multiagent framework [14] (RLR stands for: repre-
sentation, legitimation, reproduction) (Figure 11) aimed at
capturing, tracking, representing, and managing the changes
in a formal and consistent way, enabling the system to
generate reproducible results using change capture agents,
reasoning agents, learning agents, and negation agents.
Change capture agents are responsible for discovering,
capturing, and tracking changes in ontology, by processing
the change logs. The change logs accumulate important data
about various types of changes. In RLR, a learner agent
uses these historical records of changes that occur over and
over in a change process to derive a pattern to estimate
the rate and direction of future changes for a system by
generating rules or models. The reasoner (which verifies
the results of a change) and negotiation agents can change
the rules generated and send modifications to the learning
agent. Negotiation takes place when agents with conflicting
interests want to cooperate. In RLR, the negotiation agent
acts as a mediator allowing the ontology engineer and other
autonomous agents to negotiate the best possible realization
of a specific change, while maximizing the benefits and
minimizing the loss caused by such a change. A human
expert may then browse the results, propose actions, and
decide whether to confirm, delete, or modify the proposals,
in accordance with the intention of the application. In RLR,
negotiation is defined based on the conceptual model of
argumentation [28], where an argument is described as
a piece of information allowing an agent to support and
justify its negotiation stance or affect another agent’s position
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through a communication language and a formal protocol
[28]. The negotiation protocol can formally provide the
necessary rules [29] (i.e., rules for admissions, withdrawals,
terminations) for negotiation dialog among participants.
In our approach, we have partially adapted the architec-
ture of the argumentative negotiating agent described at
[30].

Within the RLR argumentative architecture, the negotia-
tion agent and the reasoning agent provide arguments for the
acceptance or rejection of a change proposal. The “argument
generator” (Figure 11) determines appropriate responses
based on the negotiation rules. Different arguments attack
one another to impose their rules and defeat their peers
by sending counter arguments. The inferred arguments can
increase the possibility of higher-quality agreement [30, 31].
The negotiation protocols in the RLR architecture contain
the negotiation protocol’s rules, which dictate a protocol. As
an application is used and evolves over time, the change logs
accumulate invaluable data and information about various
types of changes. A learner agent can use these historical
records of changes that occur over and over in a change
process to derive a pattern out of the rules generated. The
reasoner and the negotiation agents can change the rules—
if necessary—and send modifications to the learning agent.
The learning agent starts with limited, uncertain knowledge
of the domain and tries to improve itself, relying on adaptive
learning based on the semantics provided by the ontological
backbone.

5. Employing Category Theory in
the RLR Framework

We have used categories in various stages of the RLR
multiagent framework for representing and tracking changes
in NFRs and FRs.

5.1. Category Theory for Representing and Tracking Changes.
The categorical representation enables the progressive analy-
sis of ontologies and can be used to represent the evolution-
ary structure of an ontology, to provide facilities for tracking
each change and to analyze the impact of these changes by
the following.

(a) Comparing different states of a class. We have used
“functor”, which is a morphism in the category of
all small categories (where classes are defined as
categories) to describe the set of state space (set of
all possible states for a given state variable set) for
a class as a cross product of attribute domains and
the operations of a class as transitions between states
for ontological elements indexed by time. Using the
functor, the transition from Ot to Ot′ , where the time
changes from t to t′, can be represented and analyzed.
For more information see [27].

(b) Measuring coupling. Coupling indicates the com-
plexity of evolving structure [27]. When coupling
is high, it indicates existence of a large number
of dependencies in an ontological structure which

must be checked to analyze and control the chain of
changes. Following [32], to analyze the coupling we
consider three types of arrows, namely, precondition,
postcondition, and message-send arrows in category
theory to analyze various conditional changes [27].

(c) Using Pushout and Pullback. When a change is
either integration or mergence, one can use two
categorical constructors: pushout and pullback [33].
The pushoutfor two morphisms f : A → B and
g : A → C is an object D, and two morphisms
i1 : B → D and i2 : C → D, such that the square
commutes (Figure 12(a)). D is initial object in the
full subcategory of all such candidates D′ (i.e., for
all objects D′ with morphisms j′1 and j′2, there is a
unique morphism from D to D′).

The pullback (also known as “cartesian square”) for two
morphisms f : A → C and g : B → C is an object D, and
two morphisms i1 : D → A and i2 : D → B, such that the
square commutes. Here D is the terminal object in the full
subcategory of all such candidates D′ [34] (Figure 12(b)).
Hitzler et al. [35] and Zimmermann et al. [36] also used
pushout for ontology alignment.

5.2. Category Theory for Representing Agent Interactions and
Conflict Resolution. Intelligent agents perform actions in
a context by using rules. Changing the rules is a main
adaptation principle [37] for learning in RLR framework.
The adaptive agents in the RLR have been defined following
Resconi’s method [37]. The rules consist of a set of semantic
unity symbolized by S1, IN, P1, and OUT, representing
the input statement, the domain of the rule, the rule, and
the range of the rule (denoting the value of an agent’s
action), respectively. When we are working in a dynamic
environment, it is likely that these rules change into other
rules. Therefore, a single change in the primary structure
triggers other changes in rules and contexts. A communica-
tion channel [37] between those rules and between different
adaptive agents is needed to manage all the necessary
interactions.

In the RLR we have used category theory formalism,
along with general systems logical theory (GSLT) [38],
to formalize agents’ communications. For instance, the
communication between different semantic unities [14] can
be represented as in Figure 13.

In addition, category theory can be used for modeling
agent interactions [39], yielding a practical image of adaptive
learning agents, their semantic unities, and adaptation
channels [37].

We have also followed the approach presented in [40]
for representing the product and coproduct of objects, to
categorically represent the integration and merging of NFR
objects, which are defined as ontological elements. The
negotiation agent in RLR can negotiate to determine the
best of several methods of integration. For example, an
integration can be implemented as the product A × B (all
possible pairs <elements from A, elements from B>), or the
coproduct of the objects A + B (all elements from A and
all elements from B) for both categorical objects and arrows



10 International Journal of Telemedicine and Applications

Argumentation framework

Change capture agents

Change
log

Change request

Application
user

Ontology
engineer

Original
ontology

Learner agents

EP: evaluated proposal

Proposals

Reasoning agents
...

EP1

EPn

Reasoning agents

Rules

Negotiation
protocol

Change model I

Negotiation
agents

Change model II

Output
response

Arguments

Response

Argument
generator

Response

Figure 11: The RLR framework for change management and conflict resolution.

A B

DC

g

f

i2

i1

j1

j2

m

D′

(a)

A

B

D

C

f

g

i2

i1j1

j2

m

D′

(b)

Figure 12: Two categorical constructors: (a) pushout, (b) pullback.

(denoting ontological elements). Assume that we define the
following arguments for integrating ontological structures
within a dialectical database [31] in the RLR framework:

a1: A× B, a2: A + B, a3: A, a4: B. (1)

Categorically speaking “a1 defeats a2” can be represented by
an arrow from a1 (domain) to a2 (codomain) (Figure 14).
By following categorical representation, an argumentation
network will be generated, which can be used to formally
describe negotiations and speed up inferences [31].

6. Application Scenarios

As shown in Section 5, category theory can be used in RLR
to integrate time factor and represent and track changes
in ontological structure in time through using the notion
of state capturing an instance of system’s FRs, NFRs, and
associations at certain period of time. For example, a
change in the authorize method would affect the method
“placeOrderSession.makeOrder” in state St1 of the system,
which will be traced to changes in state St2 (Figure 15).
Explicitly capturing of the evolution of the requirements
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Figure 14: Categorical representation of the argumentation net-
work.

in time can aid MYCO-LIMS developers and maintainers
to deal with requirements change management in highly
dynamic clinical applications.

Generally speaking, changes to each NFR would lead
to changes in the conceptual framework. As mentioned in
Section 3, we are monitoring the effect of FR or NFR changes
through their refinement relations, that is (1) identifying the
“slice” of the conceptual framework that will be affected by
the change, (2) applying the consistency rules to make sure
the change does not introduce any inconsistencies in the
“slice,” and (3) implementing the change, if authorized.

The RLR change management framework is modeled as
an intelligent control loop, which has one state for each of the
above stages (1), (2), and (3), the events modeling the change
of state. Considering the requirements to be organized in a
lattice-like ontological framework, in order to represent the
various states of our conceptualization, we use a categorical
discrete state model, which describes the states and events in
the ontological structure using a diagrammatical notion. The
discrete state model is specified by a state space (all potential
states), a set of initial states, and a next-state function. Based
on our application, we designed our class diagrams following
the method described in [27, 32] (Figure 16), which can be
used to create patterns for learning agents. The Opi arrows
in this figure represent the operations for the class, wherein
the operation or event Op1 causes an object in state St1 to
undergo a transition to state St2. The operation Op1 has no
effect on the object if it is in any other state, since no arrow
labeled Op1 originates from any other state. The object ∅ in

the diagram is the null state. The create arrow represents the
creation of the object by assigning an identifier and setting
its state to the initial defined state, and the destroy arrow
represents its destruction [32].

Based on [32], a projection arrow for any attribute is
drawn from the state space to the attribute domain and
labeled with the name of the attribute (i.e., πi represents the
value of the ith attribute). A selection arrow for each state x
(labeled as σx) is drawn from the state space to that state (i.e.,
σi gives the ith state).

Using category theory we represent the most common
operations during requirement change management such
as adding/deleting a class of requirements, combining two
classes of requirements into one, adding a generaliza-
tion/association relationship, adding/deleting a property or
relationship. For more information see [27].

7. Evaluation of the Approach along with
Change Verification

The legitimation phase in RLR verifies the legitimacy and
consistency of a change in the domain of interest. This phase
assesses the impact of a potential change before the change is
actually made. Experts and logical reasoners study a change
based on its consistency with the whole design, in varying
degrees of granularity. Then, final approval is needed from
the end users. Logical legitimation is obtained by a reasoning
agent, which is a software agent that controls and verifies
the logical validity of a system, revealing inconsistencies,
misclassifications, hidden dependencies, and redundancies.
It automatically notifies users or other agents when new
information about the system becomes available. We use
RACER [41] as a description logic reasoner agent, along
with other semiformal reasoners in RLR. When the agent is
faced with a change, it ought to revise its conceptualization
based on the new input by reasoning about the consistency
of the change using both prior and new knowledge. We also
use a semiautomated reasoning system for basic category
theory reasoning [42] based on a first-order sequent calculus
[43], which captures the basic categorical constructors,
functors, and natural transformations, and provides services
to check consistency, semantic coherency, and inferencing
[43]. Placing a new class of requirements in a system may
sometimes lead to redundancy in the requirement taxonomy.
One of the major issues in requirement analysis is finding
and identifying logically equivalent classes and relationships
which may differ in name but perform the same function.
Employing category theory enables us to deal with this
problem of logical equality in the evolving requirement
hierarchy using isomorphic reasoning [44].

8. Related Work

Several efforts have been reported [45–48] during the last
decade in the pursuit of inclusive frameworks for managing
dynamic taxonomies, ontologies, and control vocabularies.
Since existing knowledge representation languages, including
well-established description logic, cannot guarantee the
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computability of highly expressive time-dependent models,
the current efforts have been entirely focused on time-
independent ontological models. However, the real onto-
logical structures exist in time and space. From another
perspective, those who choose other knowledge represen-
tation formalisms, such as state machine [49], can cope
with time-based models, but these formalisms fail to address
ontological concepts and rules because they are much too
abstract and have no internal structure or clear semantics.
In our proposed framework, category theory, with its rich
set of constructors, can be considered as a complementary
knowledge representation language for capturing and repre-
senting the full semantics of evolving abstract requirements
conceptualized within ontological structures. Rosen [50] was
among the first to propose the use of category theory in
biology, in the context of a “relational biology”.

Category theory also has been used by MacFarlane [24]
as an efficient vehicle to examine the process of structural
change in living/evolving systems. Whitmire [32], Wiels and
Easterbrook [51], and Mens [52] have examined category
theory for change management in software engineering
domain. Hitzler et al. [35] and Zimmermann et al. [36]
also have proposed using this formalism in knowledge
representation area.

9. Discussion, Challenges, and Future Work

Any attempt to successfully systematize and automate elec-
tronic communication in biomedicine—with its continu-
ously changing nomenclature and requirements—needs to
pay special attention to managing requirement volatility
in various stages of the biomedical application life cycle.
Due to the wide variety of requirements controlled by
the LIMS across diverse industries, LIMS software needs
to be inherently more flexible [15]. One of the issues in
requirement evolution and change management is a lack
of formal change models with clear and comprehensible
semantics. In order to represent, track, and manage require-
ment changes throughout a LIMS software project, we have
proposed an agent-based framework to handle evolving
requirements, which are categorized in an ontological struc-
ture. An ontology provides a means for formally capturing
the FR and NFR hierarchies and their interrelations, and for
exhaustive tracing of the effects of a change on the conceptual
framework. In addition, we have proposed using category
theory—which is an intuitive and powerful formalism,
independent of any choice of ontology language—to capture
the full semantics of evolving hierarchies in various phases
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of RLR. It also provides a language to precisely describe
many similar phenomena that occur in different mathe-
matical fields with an appropriate degree of generality. For
example, category theory makes it possible to make a precise
distinction between categories via the notion of natural
isomorphism. It also provides a unified language to describe
topological spaces via the notion of concrete isomorphism
[25]. In addition, categorists have developed a symbolism
for visualizing complicated facts by means of diagrams. Our
proposed method for employing category theory to manage
the evolving FR and NFR hierarchical structure can signifi-
cantly help formalize agile requirement modeling in highly
dynamic clinical applications. Moreover, this method can be
easily adapted to different project situations and needs. The
ontology-grounded categorical framework introduced here
can be used to reduce requirement volatility by facilitating
the definition of consistency rules for requirement change
and supporting the automatic evaluation of consistency
rule compliance with software requirements. The knowledge
captured about requirement volatility and formalized using
category theory is a suitable means to trace the effect of
any requirement change on the specifications of the whole
system.

In the process of employing category theory as the core
formalism for our proposed framework, we had to deal with
several challenges. Some of the major ones included the
reasoning issues and managing conceptualization changes.
Although we are able to provide some sort of basic reasoning
and inferencing for categories, we still need to improve
the reasoning capability to cover more advanced reasoning
services. Also, the representation of changes in conceptual-
ization due to the nature of NFRs, which needs to deal with
abstract concepts and notions, is challenging. In order to
overcome this issue, we are working on grammatical change
algorithms in linguistics and language evolution. For future
work, we plan to concentrate on the evolution of requirement
calculation rules, which are based on the available require-
ment traceability information. Finally, a third field of study
will address dashboard visualization and customization for
various FungalWeb requirement management tools.
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[31] M. Capobianco, C. I. Chesñevar, and G. R. Simari, “Argu-
mentation and the dynamics of warranted beliefs in changing
environments,” Autonomous Agents and Multi-Agent Systems,
vol. 11, no. 2, pp. 127–151, 2005.

[32] S. A. Whitmire, Object Oriented Design Measurement, John
Wiley & Sons, New York, NY, USA, 1997.

[33] J. L. Fiadeiro, Categories for Software Engineering, Springer,
Berlin, Germany, 1st edition, 2004.

[34] S. Easterbrook, “Category theory for beginners,” in Proceedings
of the 3rd IEEE International High-Assurance Systems Engineer-
ing Symposium (HASE ’98), Honolulu, Hawaii, USA, October
1998.
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