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Preface

This report documents the CE-QUAL-W2 temperature and water quality modeling results
for Lake Monroe, IN. This report was prepared in the Environmental Laboratory (EL), US
Army Engineer Waterways Experiment Stations (wES), Vicksburg, MS. The study was
sponsored by the US Army Engineer District, Louisville (CEORL), and was funded under
the Military Interdepartmental Purchase Request No. RMB96-289 dated 20 Mar 1966.

The Principal Investigators of this study were Mr. Thomas M. Cole and Ms. Dorothy H.
Tillman of the Water Quality and Contaminant Modeling Branch (WQCMB), Environmental
Processes and Effkcts Division, EL. This report prepared by Mr. Cole and Ms. Tillman under
the direct supervision of Dr. Mark Dortch, Chief, WQCMB, and under the general
supervision of Dr. Richard Price, Chief, EPED, and Dr. John Harrison, Director, EL.
Technical reviews by Dr. Barry W. Bunch and Ms. Lillian T. Schneider are gratefully
acknowledged. Mr. Fred Herrmann and Mr. Jace Pugh are gratefully acknowledged for
generation of all figures in this report.

At the time of publication of this report, Director of WES was Dr. Robert Whalin.
Commander of WES was Colonel Cababa.

This report should be cited as follows:

Cole, Thomas M. and Dorothy H. Tillman (1997). “Water Quality Modeling
of Lake Monroe Using CE-QUAL-W2,” Miscellaneous Paper EL-99- 1,
US Army Engineer Waterways Experiment Station, Vicksburg, MS.
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1 Introduction

Background

The Louisville District desires the capability to evaluate changes in water quality at their
projects due to changes in environmental conditions or project operations. Water quality
conditions in the lakes affect allowable waste loads thus impacting activities such as future
development and changes in land use practices. If there are changes is environmental
conditions or project operations, there is a concern for existing water quality conditions
including dissolved oxygen and algal/ nutrient dynamics of these reservoirs. The ability to
predict water quality under different conditions will allow the Louisville District to determine
if water quality of the projects will be affected.

The Louisville District requested the assistance of the Water Quality and Contaminant
Modeling Branch in developing a model of Lake Monroe capable of determining the effects
of changes in project operations/loadings on water quality.

Objective

The objective of this study is to provide a calibrated 2D water quality model for Lake Monroe
capable of predicting future water quality conditions resulting from potential changes in
reservoir operations and/or environmental conditions.

Approach

The 2D hydrodynamic and water quality model, CE-QUAL-W2, was used for this study.
CE-QUAL-W2 is a recognized state-of-the-art 2D (longitudinal and vertical)
hydrodynamic/water quality model. The model has been successfully applied by the Corps
of Engineers, federal and state agencies, universities, and consulting fms on over 100
systems during the last two decades. The model consists of a hydrodynamic module that
predicts water surface elevations and horizontalhertical velocities and a water quality
module that contains mathematical descriptions for the kinetic interactions of the water
quality state variables.

Site Description

Lake Monroe is located in south central Indiana approximately 20 miles southeast of
Bloomington (Figure 1). The dam site is 25.9 miles upstream of the confluence of Salt Creek
and East Fork of White River. The drainage area above the damis441 square miles. The
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construction of Lake Monroe was authorized by the Flood Control Act of July 3, 1958 and
was begun in November, 1960 and completed in February, 1965. The Louisville District
operates the project that provides for flood control, augmentation of natural low-flow
conditions on the White River, and fish and wildlife recreation.

(n

20001

Figure 1. Lake Monroe site map

The dam is an impervious core with rock shell 411.5 m long and with a maximum height of

28 m. The spillway type is an uncontrolled open cut through the left abutment 183 m wide
with a design capacity of 2133 m3 sec ‘1. The outlet works consist of a control tower at the

upst.mm en~ with three slide gates 0.9 m wide by 3.7 m hi~ a lower water bypass, a 3.75 m
diameter semi-elliptical concrete conduit, and a conventional type stilling basin.

Table 1 lists the important morphological characteristics of the reservoir at normal pool

elevation for the calibration years. The values are estimates based on the provided bathymetry
and preprocessor outputs. Based on Wetzel’s (1975) classification of trophic status of lakes,

the reservoir is mesoeutrophic with a maximum chlorophyll a concentration of 30.4/g 1-1at

station 35 during 1994.



Table 1
Morphological characteristics of Monroe Reservoir for calibration years

Year Elevation, m volume, Surface area, Average Maximum Average Residence time,
1Oem3 1Oem2 width, m depth, m depth, m days

1992 164.56 366 57 635 16 6.4 408

1994 164.06 292 53 587 15.5 5.5 265

1995 165.64 428 61 676 17 7.0 185

1996 166.36 428 61 676 18 7.0 231
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2 Model Description

CE-QUAL-W2 is a two-dimensional model that predicts vertical and longitudinal variations
in hydrodynamics, temperature, and constituents in a water body through time (Cole and
Buchak, 1995). The model is based upon the Generalized Longitudinal-Vertical
Hydrodynamics and Transport model developed by Buchak and Edinger (1984). The
inclusion of water quality algorithms resulted in CE-QUAL-W2 Version 1. Subsequent
modifications to improve the model’s computational efficiency, numerical accuracy, and
prototype physical description resulted in Version 2.

The version used for this study is a prerelease of Version 3. Version 3 is being developed
to include a more accurate description of the water quality portion of the code. Specifically,
the model can now simulate algal succession from diatoms to greens to cyanobacteria. The
ability to model diatoms required including the silica cycle. Eventually, Version 3 will
include any number of carbon species, algal groups, and zooplankton groups specified by the
user. The new version will also include a sediment diagenesis model that will make long-
term water quality simulations more predictive as the effects of sediment phosphorus burial
will be explicitly accounted for. Changes will also be made to the hydrodynamics that will
allow modeling entire riverbasins including reservoirs and the riverine reaches between them.

CE-QUAL-W2 is based upon a finite-difference solution of the laterally averaged equations
of fluid motion including:

1. free water surface
2. hydrostatic pressure
3. longitudinal momentum
4. continuity
5. equation of state relating density with temperature and also dissolved and suspended

solids

The basic features of CE-QUAL-W2 are:

1. two-dimensional (laterally averaged) simulations of temperatures,
and flow fields

constituents,

2. hydrodynamic computations influenced by variable water density caused by
temperature and dissolved/suspended solids

3. simulation of the interactions of numerous biological/chemical factors
influencing water quality
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4.

5.
6.
7.
8.

9.
10.
11.
12.
13.
14.

multiple inflow loadings and withdrawals from tributaries, point and nonpoint
sources, precipitation, branch inflows, and outflows from a dam.
multiple branches
ice cover computations
variable time steps computed by the model
flow or head boundary conditions, making it applicable for reservoir or estuarine
modeling
simulation of circulation patterns
restart capability
inclusion of evaporation in water balance
heat transfer computations
variety of output options
selective withdrawal

CE-QUAL-W2 conceptualizes the reservoir as a grid consisting of a series of vertical
columns (segments) and horizontal rows (layers), with the number of cells equal to the
number of segments times the number of rows. The basic parameters used to define the grid
are the longitudinal and vertical spacing and cell width that may vary spatially.

The beta version of CE-QUAL-W2 V3 used in this study currently contains 23 water quality
state-variables in addition to temperatures and velocities (Table 2). Many of the constituents
are simulated to include their effects upon other constituents of interest. The constituents are
separated into four levels of complexity permitting flexibility in model application. The f~st
level includes materials that are conservative or do not affect other materials in the frost level.
The second level allows the user to simulate algal/nutrient/DO dynamics. The third level
allows simulation of pH and carbonate species, and the fourth level allows simulation of total
iron which is important during anoxic conditions. Although not recommended, CBOD is

included to accommodate organic loadings that are measured as such.

Table 2
Water Quality Constituent Levels

Level 1 Level 2

Conservative tracer Labile DOM

Inorganic suspended solids Refractory DOM

Coliform bacteria Labile POM

TDS or salinity Refractory POM

Residence time Diatoms

Greens

Cyanobacteria

Orthophosphate

Ammonium
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Table 2
Water Quality Constituent Levels

Level 1 Level 2

Dissolved silica

Particulate biogenic silica

Dissolved oxygen

Organic sediments

Level 3 Level 4

Dissolved inorganic carbon Total iron

Alkalinity CBOD
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3 Input Data

CE-QUAL-W2 requires reservoir bathymetry, initial conditions, inflow quantity and quality,
outflow quantity, and outlet description. The model also requires time series of inflow rates
and water quality, meteorological data, and water surface elevations. Calibration is
dependent on the availability of observed in-pool water quality constituent concentrations at
several locations within the reservoir and accurate descriptions of the loadings. Observed
release water quality data are also used to evaluate predicted release conditions. Various
kinetic rate coefficients are also required input.

Of the water quality constituents listed in Table 2, the constituents of primary interest in this
study were:

1. dissolved oxygen
2. phytoplankton
3. orthosphate
4. ammonium
5. nitrate-nitrite

Of the ones listed, DO, phytoplankton, and phosphorus are the most important since
phytoplankton are phosphorus limited in Lake Monroe. The subsequent growth and decay
of phytoplankton are important mechanisms affecting DO depletion in the reservoir due to
autochthonous carbon decay.

Bathymetry

CE-QUAL-W2 requires the reservoir be discretized into longitudinal segments and vertical
layers that may vary in length and height. An average width must also be defined for each
active cell where an active cell is defined as potentially containing water. Additionally, every
branch has inactive cells at the upstream and downstream segments, top layer, and below the
bottom active cell in each segment. Segment layer heights for Lake Monroe were constant
while segment lengths varied.

Once the segment lengths and layer heights were finalized for each branch, average widths
were determined for each cell from digitized data provided by the Louisville District. The
grid consisted of three branches. The main branch, representing South Fork Salt Creek,
contains 15 longitudinal segments and 24 vertical layers. Branch 2, representing Middle
Fork Salt Creek, contains 4 longitudinal segments. The third branch, representing North Fork
Salt Creek, contains 7 longitudinal segments. Figure 2 shows the discretized grid.
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Figure 2. Lake Monroe computational grid

A comparison of the computed volume-elevation curve and USACE data is shown in
Figure 3. The volume of the reservoir computed from the bathymetry used in the study does
not match the data sent by the Louisville District although the bathymetry developed by the
Louisville District was apparently developed from the same data.

Reservoir volume and thus residence time is highly dependent on the bottom elevation set
for the grid. Initially, a bottom elevation of 149.35 m (490 ft) was used as this was the
bottommost elevation in the volume-elevation data sent by the Louisville District. A bottom
elevation of 147.39 m was used subsequently for several reasons. First, using an elevation
of 149.35 m resulted in underprediction of depths at all stations. Second, there is a volume
associated with an elevation of 149.35 m in the data supplied by the Louisville District
indicating that the reservoir is deeper than 149 m. Third, using the higher bottom elevation
resulted in unrealistically large negative inflows necessary to calibrate the water surface
elevation. Fourth, and most importantly, temperature and water quality calibration was not
possible using the higher elevation. Thus, all evidence indicated that the bottom elevation
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of the reservoir is less than the bottom elevation in the volume-elevation data furnished by
the Louisville District. Subsequent conversations with Louisville District staff indicated that
the bottommost elevation is closer to the elevation used for calibration.

Monroe Lake Volume-Elevation Curve

700
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m

x 400
F

w“ 300
E
=
0 200
>

100

0

1 1 1 I 1 I I 1 1 1 1 1 t

148 150 152 154 156 158 160 162 164 166 168 170 172

Elevation, m

Figure 3. 1994 Lake Monroe volume-elevation curve

In-Pool Data

The model was calibrated using observed in-pool profile data collected and provided by the
Louisville District. Observed data for Lake Monroe were collected monthly in 1994 and
quarterly for the other years modeled. Table 3 lists the location, station number, time of
collection, and observed water quality constituents used for comparisons with computed data
for the in-pool stations at Lake Monroe.
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Table 3
Obsewed water quality data collected at Lake Monroe

Year Stetiorl# Oetescollected PO, NH, N02N0, Chlorophylla Do Tamp Doc TOC

May5 x x x x

Juns17 x x x x

01 July27 x

July28 x x x

1992 September9 x x x x

Juns 17 x x x
35

thdy28 x x x

Juns 17 x x x
03

Jdy 28 x x x

March21 x x

March22 x x x x

April 11 x x x x x

April12 x

May2 x x x x x

May3 x

May23 x x x x x

May24 x

June 6 x x x

June7 x
01

June28 x x x x x

June 30 x
1994

,kliy 18 x x x x

July 19 x

August1 x x x

August2 x

August15 x x x x x

August16 x

September5 x x x x x

Saptember6 x

March21 x x

March22 x x x x
35

April13 x x x x x

April14 x

sheetlof3
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1995

Station# DstasCollactad PO. NH, N02N0, Chlorophylla Do TamP Doc TOC

May2 x x x x x

May3 x

May23 x x x x x

May 24 x

hna 8 x x x

Juns9 x

Juns29 x x x x x

35 July18 x x x x x

July19 x

August2 x x x

August3 x

August15 x x x x x

August16 x

-~ 5 x x x x x

Saptambar6 x

March22 x x x x x

March23 x

April12 x x x x x x

April13 x

Msy3 x x x x x

May4 x

May23 x x x x x x

03 J(IIW6 x

skma 8 x x x x

Juns 28 x x x x x x

Jdy 18 x x x x x x

August1 x

August2 x x x

August15 x x x x x

Saptambsr6 x x x x x x

May10 x x x x x

01 Juns 19 x

Juns20 x x

Shsat20f3
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Table 3 (concluded)

Yaw Station# DamsCollsctsd PO. NH* N02N0, Chlorophylla Do TamP Doc TOC

August2 x x x x x
01

August28 x x x x x

May10 x x x

Juns20 x x x
26

August2 x x x

1884 August29 x x x

May10 x x x

Juns 19 x

02 Juns 20 x x

August2 x x x

August29 x x x

Juns 12 x x x x x

July 16 x x x
01

August14 x x x

Ssptsmbsr18 x x x x x x x

Juns 12 x x x x x

1996
July16 x x x

26
August14 x x x

Sa@ambar18 x x x x x x x

Juns 12 x x x x x

July16 x x x
03

August14 x x x

Sapwnbar 18 x x x x x x x

Boundary Conditions

Meteorology. Hourly data for 1994 were furnished by the Louisville District from
Bloomington, IN. Hourly meteorological data for 1992, 1995, and 1996 were obtained from
the U.S. Air Force Environmental Technical Applications Center in Asheville, NC, for
Bloomington and Indianapolis, IN. Data required by CE-QUAL-W2 for computation of
surface heat exchange are air temperature, dew point temperature, wind speed and direction,
and cloud cover. Plots of meteorological data for all modeled years are shown in figures Al-
A16 in Appendix A.
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Inflows. The Louisville District provided computed inflows based on outflows and change
in water surface elevation every six hours for the years 1984-1996. During the water budget
calibration, adjustments were made to the inflows to more accurately reproduce the observed
water surface elevations. Plots of inflows are shown in figures A 17-A20 in Appendix A.

Outflows. The Louisville District provided outflows every six hours for the years 1984-

1996. The City of Bloomington Utilities provided daily withdrawal amounts for the Monroe
Water Treatment Plant for all years modeled. Figures A17-A20 in Appendix A shows values
for outflows and withdrawals used in the study.

Inflow Temperatures. Inflow temperature data were limited for the main branch of Lake
Monroe. Therefore, these data were supplemented using a program called the response
temperature calculator (RTC) developed by J. E. Edinger Associates, Inc. The RTC uses
meteorological data and stream depth to calculate water temperatures based on equilibrium
temperature computations as discussed in the User Manual (Cole and Buchak, 1995). These
were then adjusted to match the values at the most upstream lake station. Plots of inflow
temperatures are shown in FigureA21 in Appendix A.

Inflow Constituent Concentrations. Water quality inflow concentrations for other constitu-
ents of the main branch for Lake Monroe were also limited. Inflow concentrations were
available for 1994 but not for the other years modeled. Thus, observed concentrations at the
most upstream station of the reservoir were used as inflow boundary conditions to fill in
where data were needed. These were then adjusted to match the values at the most upstream
lake station. When in-lake or inflow concentrations were not available, 1994 inflow
concentrations were used. For example in 1992 and 1995, phosphorus, ammonium, and
nitrate-nitrite were not measured in the lake or on the tributaries, so their inflow
concentrations were set to 1994 values. Similarly, in 1996 there was only one date where
ammonium and nitrate-nitrite were collected in the lake. For the rest of the simulation, 1994
inflow concentrations were used.

Although inflow concentrations of LDOM, RDOM, LPOM and RPOM were not monitored,
their boundary concentrations were estimated from total organic carbon (TOC). The
portioning of the TOC into LDOM, RDOM, LPOM, and RPOM are presented in the
equations below. The majority of the TOC was assumed to be refractory. To alleviate the
uncertainty of these assumptions, data would have to be collected for the different forms.
Listed below are the equations used in estimating these constituents from TOC.

LDOM = ((TOC - algae) * 0.75) * 0.30 (1)
RDOM = ((TOC - algae) * 0.75) * 0.70 (2)

LPOM = ((TOC - algae)* 0.25) * 0.30 (3)

RPOM = ((TOC - algae)* 0.25) * 0.70 (4)

Inflow algal concentrations were estimated from chlorophyll a data. CE-QUAL-W2 requires

algal concentrations in units of g OM m-3. Measured chlorophyll a concentrations were in
units of micrograms of chlorophyll a per liter @g chl-a 1-1)and were converted to gm OM m-3
using the conversion factor 65 as recommended by the QUAL2E (Brown and Barnwell,
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1987) and CE-QUAL-W2 user manuals (Cole and Buchak, 1995). The conversion equation
is given as:

ug chl a ~ mg * gm * 1031

1
m 3 * ij5 gm ‘M . 0“065 gm OA4

lo3ug 103mg
(5)

gm chl a m3

The chlorophyll a measurements were assumed to be corrected for pheophytin according to

procedures in Standard Methods (1985). Plots of inflow constituent concentrations are given
in figures A22-A29 in Appendix A.

Initial Conditions

The options for setting initial conditions in CE-QUAL-W2 are:

1. same concentration for temperature and constituents throughout reservoir
2. use vertical varying profile of temperature and constituents at the dam to

initialize all segments in grid
3. use vertical profiles of temperature and constituents varying longitudinally

for each segment in the grid.

For all years calibrated, simulation start date and initial conditions for each year were set to
the f~st date observed date when data were collected (see Table 3). In 1994, initial
conditions for DO, ammonium, phosphorus, nitrate-nitrite, algae, LDOM, RDOM, LPOM,
and RPOM were set using option 1 since there was little variation in concentrations
throughout the reservoir. In all other years, initial conditions for all the constituents
discussed above except DO were also set using option 1. Initial conditions for temperature
and DO for all years (except DO in 1994) were set using option 2 to capture the vertical
variation.
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4 Calibration

The concept of calibrationherification of a model has changed in recent years. Previously,
calibration was performed on one year with coefficients adjusted to give the best results.
Verification was then performed on another year with the same coefficients used during
calibration, but with new boundary conditions and seeing how well the model performed.
Now, all simulated years are termed calibration years and the process is performed
simultaneously resulting in the same coefficients for all years modeled that give the best
results.

Successful model application requires calibrating the model to observed in-pool water
quality. If at all possible, two or more complete years should be modeled with widely varying
flows and water surface elevations if corresponding water quality data are available.
Preferably, a wet, dry, and average water year should be selected for calibration years.
Output was evaluated both graphically and statistically in order to determine when the model
was calibrated. Four years were chosen for calibration. The first calibration year, 1994, was
chosen because it had the most water quality data. This year was a slightly below average
water year. Additional years chosen were 1992, 1995, and 1996. These years represented
slightly above average, low, and high flow years, respectively. Choosing different flow years
ensures that the model is reproducing water quality variations due to differing
hydrodynamics, meteorology, and loadings. All calibrations were begun on the f~st date
observed data were collected and ended after the last data collection date.

Graphical comparisons of computed versus observed data were made to evaluate model
performance. To distinguish between observed and computed data in profile plots, the
dashed line represents computed values, and the x’s represent observed values. For all
profiles, computed data were compared to observed by plotting the day before, the day of,
and the day after the sampled date. Comparisons were conducted this way because on some
dates computed values compared favorably with observations at an earlier or later date. This
is commonly due to inaccuracies in the meteorological boundary conditions.

A root mean square error (RMS) was calculated to statistically evaluate model performance
and is indicated on each graph. The RMS was calculated as:

J~~ . ~ (predicted - observed)’

number of observations
(6)

15



The RMS is a measure of variability between predicted and observed concentrations. An
RMS of 0.50 means predicted data are within ~ 0.5 of the observed value 67 percent of the
time.

Also indicated on each plot is the absolute mean error (AME). The AME represents the
absolute average error as compared with observed data and is calculated as:

ME . ~ Ipredicted - .bservedl
(7)

number of observations

The absolute mean error gives an indication of how close on either side of the observed
values the predicted values are. For example, an AME of 0.5 means that the computed
values are, on the average, within * 0.5 of the observed value. For temperature, this value
would approach the accuracy of many temperature probes.

Table 4 shows final values of all coefficients that affect temperature. All parameters were
set to default values except for wind sheltering. Temperature predictions were most sensitive
to changes in the wind sheltering coefilcient. All other coefficients affecting thermal
predictions were set to default values. Table 5 shows final values of all coefficients that
could potentially be adjusted during water quality calibration. An ● indicates coefficients that
were adjusted from their default value.

Table 4
Temmwature Calibration Values

■

coefficient Variable Value

Horizontal eddy viscosity Ax , ~2 s-l

Horizontal eddy dfiusivity DX , ~2 s-l

Bottom frictional resistance CHEZY T() Mle s-l

Solar radiation fraction absorbed at the water surface BETA 0.45

Solar radiation extintilon - water EXH20 0.25 m-’

Solar radiation extinction - detritus EXOM 0.2 m-’

Solar radiation extinction - algae EXA 0.2 m-l

Wind-sheltering coefficient Wsc 0.6
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Table 5
Water Quality Coefficient Calibration Values

State Variable Coefficient description II Variable 1 Value

growth rate AG 1.5 day-’

mortality rate I
AM

I
0.08 day-’

excretion rate

dark respiration rate

settling rate

phosphorus half-saturation for algal growth

nitrogen half-saturation for algal growth AHSN 0.014

silica half-saturation for algal growth AHSSI 0.003

light saturation ASAT
I

100 Win-2

lower temperature for minimum algal rates
i

AT1
1

5 “c

lower temperature for maximum algal rates AT2 18 “C
Diatoms

upper temperature for maximum algal rates
I

AT3
I

20 “c

upper temperature for minimum algal rates AT4 24 ‘C

lower temperature rate multiplier for minimum algal rates I
AK1

I
0.1

lower temperature rate multiplier for maximum algal rates AK2 0.99

upper temperature rate multiplier for maximum algal rates 1
AK3

I
0.99

upper tempemture rate multiplier for minimum algal rates AK4 0.01

phosphorus to biomass ratio ! ALGP
I

0.005

nitrogen to biomass ratio ALGN 0.08
A

carbon to biomass ration ALGC I 0.45

silioon to biomass ratio ALGSI 0.18
b.

algae to chlorophyll a ratio I
ACHLA 65

growth rate AG
I

1.5 day-’

mortality rate AM 0.1 day-’

excretion rate 4 AE
I

0.04 day-’

dark respiration rate AR 0.04 day-’
Greens

phosphorus half-saturation for algal growth I
AHSP

I
0.003 g m-3

nitrogen half-saturation for algal growth AHSN 0.014 g m+

silica half-saturation for algal growth AHSSI
1

0.0 g m-3

settling rate I
AS 0.05 day-’

sheet 1 Of 4
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Table 5 (continued)
Water Quality Coefficient Calibration Values

State Variable Coefficient description II Variable Value

light saturation ASAT 1 100 Win-2

lower temperature for minimum algal rates u AT1 5 “c

lower temperature for maximum algal rates i
AT2 30 ‘c

upper temperature for maximum algal rates
II

AT3 35 ‘c

upper temperature for minimum algal rates

lower temperature rate multiplier for minimum algal rates AK1 0.1

lower temperature rate multiplier for maximum algal rates AK2 0.99
Greens

upper temperature rate multiplier for maximum algal rates ~
AK3 0.99

upper temperature rate multiplier for minimum algal rates AK4 0.01

phosphorus to biomass ratio I
ALGP

I
0.005

nitrogen to biomass ratio ALGN 0.08

carbon to biomass ration I
ALGC 0.45

silicon to biomass ratio ALGSI 0.18

algae to chlorophyll a ratio n ACHLA I 65

growth rate AG 1.5 day-’

mortality rate I
AM

I
0.08 day-’

excretion rate AE 0.04 day-’

dark respiration rate 1
Al?

1
0.04 day-’

phosphorus half-saturation for algal growth AHSP 0.003 g ms

nitrogen half-saturation for algal growth I
AHSN 1

0.0 g m=

Cyanobacteria silica half-saturation for algal growth AHSSI 0.0 g m+

settling rate
I

AS I 0.1 day-’

light saturation ASAT 100 Win-2

lower temperature for minimum algal rates I
AT1 !

5 “c

lower temperature for maximum algal rates AT2 18 “C

!
upper temperature for maximum algal rates I

AT3 20 “c

upper temperature for minimum algal rates AT4 1
24 “C

lower temperature rate multiplier for minimum algal rates AK1
I

0.1
A

lower temperature rate multiplier for maximum algal rates AK2

sheet 2 of 4
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Table 5 (continued)
Water Quality Coefficient Calibration Values

Mate Variable Coefficient description I Variable Value

upper temperature rate multiplier for maximum algal rates AK3
I

0.99

upper temperature rate multiplier for minimum algal rates AK4

phosphorus to biomass ratio ALGP 0.005
Cyanobacteria

nitrogen to biomass ratio ALGN 0.08

carbon to biomass ration )
ALGC 0.45

silicon to biomass ratio ALGSI 0.18

algae to chlorophyll a ratio ACHLA 65
[

Phosphorus
sediment release rate of phosphorous i

P04R 0.001

fraction of phosphorus in organic matter J ORGP 0.005

ammonium decay rate, day-l NH4DK
I

0.04

sediment release rate of ammonium (fraction of SOD) [
NH4R

j
0.02

lower temperature for ammonium decay, NH4T1 5.0 “c

Ammonium
upper temperature for ammonia decay i

NH4T2 30.0 “c

lower temperature rate multiplier for ammonium decay

upper temperature rate multiplier for ammonium decay I NH4K2 n 0.99

nitrate decay rate, day-’ N03DK 0.01

lower temperature for nitrate decay N03T1
I

5.0 “c

Nitrate upper temperature for nitrate decay N03T2 30”C

lower temperature rate multiplier for nitrate decay i
N03K1 0.1

upper temperature rate multiplier for nitrate decay N03K2 ii 0.99

sediment release rate DSIR

Silica particulate biogenic silica settling rate Psls

particulate biogenic silica decay rate PSIDK I 0.3 day-’

labile DOM decay rate LDOMDK 0.12 day-’

refractory DOM decay rate RDOMDK
I

0.001 day-’

labile to refractory DOM decay rate LRDDK 0.001 day-’

Carbon
labile POM decay rate LPOMDK

I
0.08 &y-’

refractory POM decay rate RPOMDK 0.001 day-’

~ labile to refractory POM decay rate i LRPDK n 0.001 day-’

Sheet 3 of 4
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Table 5 (Concluded)
Water Quality Coefficient Calibration Values

State Variable Coefficient description ~ Variable I Value

POM settling rate POMS 0.5 m day-’

fraction of algae to POM APOM
I

0.8

fraction of carbon in organic matter ORGC 0.45
Carbon

lower temperature for carbon decay, ! OMT1
I

5.0 ‘c

upper temperature for carbon decay OMT2 30.0 ‘c

lower temperature rate multiplier for catt)on decay OMK1
I

0.1

upper temperature rate multiplier for carbon decay 0MK2 0.99

sediment decay rate SDK
I

0.1 day-’

zero-order sediment oxygen demand SOD “1 g m-2day-’

lower temperature for sediment decay SODT1
I

5.0 ‘c
Sediment

upper temperature for sediment decay SODT2 30.0 ‘c

lower temperature rate multiplier for sediment decay SODKI I 0.1

upper temperature rate multiplier for sediment decay n SODK2 0.99

oxygen limit for anaerobic processes I 02LIM
I

0.05 g m-3

stoichiometric ratio for vitrification 02NH4 4.57

Oxygen stoichiometric ratio for organic matter decay 020M
I

1.4

stoichiometric ratio for algal respiration 02AR 1.1

stoichiometric ratio for algal growth 02AG
I

1.4

Sheet 4 of 4

Water Surface Elevations. The water surface elevations were characterized by an increase
of approximately two meters during spring, a rapid decrease in mid-may, and only a slight
decrease throughout the summer. Predicted elevations were almost an overlay of the ob-
served values (Figure 4).
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Figure 4.1994 computed versus obsewed water surface elevations

Temperature. When interpreting predictions from CE-QUAL-W2, three points should be
considered. First, temperature predictions are averaged over the length, height and width
of a cell. Observed data represent observations at a specific point within the reservoirs.
Secondly, meteorological data were applied over the entire reservoir from one station located
approximately 48 km from the project. Finally, computed temperatures are subject to large
daily variations depending upon how rapidly inflows, outflows, and meteorological inputs
are changing. The RMS can change more than one degree Celsius over a 24 hour period.

Observed and computed temperature profiles for the three stations are shown in Figures 5-7.
Computed temperatures were in good agreement with observed for all dates at station 1.
Notice the difference in the statistics from May 2 to May 3. The computed profile on May
2 exhibits the same observed behavior but is cooler. One day later on May 3, the model
predictions have improved as evidenced by the lower RMS. Clearly, interpretation of model
output must be tempered with the realization that temperature and other water quality

predictions can exhibit a fairly large change from one day to the next.

Observed and computed temperature profiles for station 35 are shown in Figure 6. Similar
to results at station 1, computed and observed data were in close agreement for all dates
except May 23. The computed profile on this date is not as stratified as the observed profile.
As with station 1, the statistics can change considerably from one day to the next as
evidenced on April 12 and 13 where the AME and RMS have decreased by nearly 1 ‘C.
The greatest differences between observed and computed temperature profiles occur at
station 3. This is most likely due to inaccuracies in the inflow temperatures since this station
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is located closest to the upstream boundary. Most of the discrepancies are due to

underprediction of temperatures in the lower layers.
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Dissolved Oxygen. Observed and computed DO profiles for the three stations are shown in
Figures 8-10. For station 1, the model captures the onset of hypoxia from April to May and
the subsequent development of the anoxic hypolimnion from June to September.

The greatest discrepancies occur in the metalimnion at station 1 during mid-summer where
the model tends to overpredict the chemocline depth. Sensitivity analyses showed that the
depth of the chemocline with respect to DO is affected by the placement of inflows which
are in turn dependent on inflow temperatures. If the inflow temperatures are a few degrees
colder than actual inflow temperatures, then the inflows will be placed deeper than the actual
inflows and more oxygen from the upstream boundary will be delivered to a greater depth.
It is believed that more accurate inflow temperatures will result in more accurate thermal and
DO predictions.

The effect of when computed and observed data are compared is illustrated during the two
day period from June 28-30. The AME has decreased nearly 0.5 ‘C while the RMS has
decreased about 0.8 ‘C.

At station 35, the model is capturing the temporal and spatial trends in DO. As mentioned
for station 1, the date at which observed data are compared affects the perception of results.
From June 28 to June 29, the AME has decreased from 0.75 to 0.46 and the RMS has
decreased from 1.25 to 0.8.
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For most dates at station 3, computed and observed profiles are in close agreement and show
similar stratification trends. Note the change in statistics over the three day period from May
22-24.

Overall, DO predictions are in good agreement with observed DO. The model is accurately
reproducing the spatial and temporal trends of DO within Lake Monroe for 1994.
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Figure 8.1994 computed versus observed DO at station 1
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Phosphorus. Figures 11-13 show the results for phosphorus. Soluble reactive phosphorus

(SRP) measurements were used to represent orthophosphate available for algal uptake in the
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study. For all profiles at all stations and inflowing concentrations, observed orthophosphate
was at the detection limit (0.005 gm m-~. Discussions with Louisville District personnel
indicated that there may have been problems with the analytical procedures to determine
orthophosphate concentrations determined by the soluble reactive phosphorus given in
Standard Methods. However, algal dynamics were reasonably captured using the detection
limit values. This is an indication that the observed orthophosphate concentrations may have
been at or below the detection limit. This is not an uncommon situation in the photic zone
where algae are rapidly growing.

Table 7 lists the observed phosphorus data available at the three stations located on the
North, Middle, and South Forks of Salt Creek (stations 13001, 14001, and 15001,
respectively). As can be seen, the observed phosphorus data for determining phosphorus
loadings was extremely limited. Orthophosphorus and dissolved inorganic phosphorus were
available for only one date in 1994 and dissolved inorganic phosphorus was available for
only one date in 1995. Data were insufficient for developing any sort of relationship for
phosphorus available for algal uptake and any other phosphorus form(s).

Although good reproduction of algal biomass was obtained using the detection limit data for
SRP for 1994, there is some reason to question the data. The most important reason is the
lack of increase in hypolimnetic SRP during anoxic conditions when phosphate should be
released fi-om the sediments. Due to lack of da~ there is little additional evidence to support
this contention except for data on a single date collected on July 19 for dissolved inorganic
phosphorus where the concentration increased horn 3 g m-3in the surface waters to 119 g m-3
at the bottom.

In the model during anoxic conditions, phosphorus is being released from the sediments.
This is consistent with most reservoirs that have an anoxic hypolimnion. The increase in
hypolimnetic phosphorus in the model is a result of allowing zero-order phosphorus release
during anoxic conditions. The model could be made to more closely reproduce the observed
data by setting the phosphorus release rate to zero. However, without additional evidence
that phosphorus is not being released from the sediments during anoxic conditions,
phosphorus should be released from the sediments. More sampling needs to be done on Lake
Monroe to determine what is occurring with phosphorus sediment recycling during anoxic
conditions.
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Table 7
Upstream boundary phosphorus samples

Station Phosphorus spsc ies Number of Samples

1992 1994 1995 1996

Unfiltered water 4 1 1 2

dissolved 4 1 2 2

13001
ortho o 1 0 0

dissolved inorganic o 1 1 0

total inorganic o 1 1 0

Unfiltered water 3 1 1 2

dissolved 4 1 2 2

14001 ortho o 1 0 0

dissolved inorganic o 1 1 0

total inorganic o 1 1 0

Unfiltered water 3 1 1 2

dissolved 4 1 2 2

15001 ortho o 1 0 0

dissolved inorganic o 1 1 0

total inorganic o 1 1 0
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Ammonium. Results for ammonium are given in figures 14-16 for the three stations. The
buildup of hypolirnnetic ammonium as it is being released from the sediments during anoxic
conditions is accurately represented by the model.
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NXrate-nitrite. Results for nitrate-nitrite are given in figures 17-19. The model is capturing
the trends of decreasing nitrate throughout the water column during the stratification season.
The model is also capturing the additional decrease in hypolimnetic concentrations in May
and June. Although the model underpredicts hypolimnetic concentrations in July through
September, this is believed due to detection limits for the observed data.

The increase in hypolimnetic nitrate-nitrite concentrations from April to May at station 1 is
illustrative of the care that must be taken when evaluating model performance. There is no
mechanism in the model that can account for increased nitrate-nitrate concentrations other
than through ammonia vitrification or inflow loadings. A near doubling of concentration
over the period from April 11 to May 2 is unlikely due to ammonia nitriiication. If the data
are to be believed, then the only other mechanism in the model and in the prototype that
could account for this increase is an increase in loadings. The sparsity of upstream data
means that the model could not be expected to account for the increase in hypolimnetic
nitrate-nitrite concentrations.
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Algae. Figures 20-22show computed mdobsemed dgdprofiles fortietiee stations.
Algae in the figures represents the sum of diatoms, greens, and cyanobacteria. For most dates
there is close agreement between computed and observed profiles indicating that the
algalhmtrient dynamics are being correctly simulated. The model was able to reproduce the
large increase in algal biomass from May 24 to June 7. Given the problems associated with
determining algal biomass from chlorophyll a measurements, the model is doing a good job
of simulating algal dynamics.
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Water Surface Elevations. Compared to 1994, water surface elevations showed more
variation throughout the summer. An increase of less than one meter occurred in spring
followed by another increase at the beginning of August. Predicted elevations are almost an
overlay of the observed values (Figure 23).
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Figure 23.1992 computed versus observed water surface elevations

Figures 24-26 show the computed and observed temperature profiles at the

Spatial and temporal trends at all stations were captured by the model.
]bserved profiles at station 1 for all dates are generally in agreement, except

Temperature.
three stations.
Computed and
for June 17. On this date, the temperatures in the epilimnion are colder compared to
observed. However, model predictions are in much closer agreement than either June 16 or
June 18. Computed results at station 35 had only two dates for comparison but both were
in close agreement with observed. Computed results at station 3, which again had only two
dates available for comparison, were also in close agreement.
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Figure 26.1992 computed versus observed DO at station 1

Dissolved Oxygen. Computed and observed DO profiles are shown in Figures 27-29 for the
three stations. Although the model is capturing the increased DO demand in warmer months,
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the chemocline at all stations is deeper than the observed for most dates. As in 1994, this is
attributed to inaccuracies in upstream inflow temperatures.
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Algae. Figures 30-32 present computed and observed algal profiles. For most dates, algal
concentrations are overpredicted by approximately 1 gm m‘3 at most. OverPrediction of
algae is attributed to not having actual inflow nutrient and algal data for this year. Inflow
data from 1994 were used instead. Inaccuracies in algal predictions also affected DO
predictions due to excessive oxygen production in the photic zone.
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Water Surface Elevations. Water surface elevations showed a much larger increase (=4 m)
which extended later into the year than in either 1994 or 1992. Another slight increase
occurred at the end of August. Predicted water surface elevations almost an overlay of the
observed values (Figure 33).
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Figure 33. 1995 computed versus observed water surface elevation



Temperature. Figures 34-36 show the computed and observed temperature profiles at the
three stations. As in 1994 and 1992, the spatial and temporal trends are being captured by
the model. During 1995, most of the temperature profiles at all stations are slightly
underpredicted. The additional plots for June 20 are due to additional profiles taken on this
date.
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Figure 36.1995 computed versus observed temperature at station 3

Dissolved Oxygen. Computed and observed DO profiles are shown in Figures 37-39 for the
three stations. The model is capturing the trend in oxygen demand as summer progresses to
fall. Computed and observed profiles at all stations were generally in close agreement except
on June 20 where the chemocline depth at stations 1 and 35 is overpredicted.
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Algae. Figures 40-42 show computed and observed algal profiles for the three stations.
Inflow algal and nutrient data were unavailable and 1994 data were used. Comparison of
observed and computed profiles again show overprediction of algae concentrations for most
dates except August 2 where the model is capturing the increase in algal biomass with depth.
The overprediction is attributed to inaccuracies in nutrient and algal loadings.
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Water Surface Elevations. Water surface elevations increased the greatest (=5 m) for this
year compared to any of the other calibration years. The increased elevations continued on
later into the year and the return to 164 m did not occur until August. Predicted elevations
were an almost exact overlay of the observed (Figure 46).
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Figure 43. 1996 computed versus observed water surface elevations

Temperature. Figures 44-46 show the computed and observed temperature profiles for the
three stations. The model is reproducing the observed thermal stratification at all stations.
An additional plot at station 1 on August 14 is due to an additional profile taken on this date.
It is interesting to note that the method of sampling can affect perceived results for model
predictions. The frostplot of August 14 has an AME of 0.61 and an RMS of 0.72 whereas
comparison with the other profile resulted in worse statistics. The greatest differences
between computed and observed temperatures occurred at stations 35 and 3 on July 16. The
discrepancies are the result of using option 2 to set initial conditions for the reservoir. This
option set initial conditions for each segment in the grid based on the vertical profile at
station 1. By the next observed date, computed profiles at these stations were in good
agreement.
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Dissolved Oxygen. Computed and observed DO profiles are shown in Figures 47-49 for the
three stations. Computed and observed profiles for all stations were generally in close
agreement. Note the change in chemocline depth on September 18 at Station 1. This is due
to seiching in the model which can have a dramatic effect on the chemocline depth. This



to seiching in the model which can have a dramatic effect on the chemocline depth. This
again illustrates the importance of comparing model output one day before, the day of, and
one day after the observed date in order to determine how well the model is reproducing
conditions in the prototype.
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Algae. Figures 50-52 show computed and observed algal profiles for the three stations.
Mow nutrient data were available for only one day during this simulation, thus 1994 data
were used for the rest of the simulation. The overprediction of algae is attributed to
inaccurate estimates of nutrient and algal loadings.
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Calibration Summary

Accurate simulation of temperature and algalhmtrient dynamics was necessary to correctly
simulate DO. Normally, there is only one dominant forcing function affecting temperature
predictions. However, thermal calibration for Lake Monroe was especially difficult because
of the nearly equal sensitivity of thermal predictions to bathymetry, inflow temperature, wind
sheltering, and outflow specification. A summary of the important calibration variables
follows.

Water Surface Elevations. For the four calibration years, computed water surface
elevations were an almost exact overlay of observed elevations. Differences in flow years
and reservoir operations were reflected in the patterns of water surface elevation changes for
each of the calibration years. The 1994 spring increase in elevation peaked in mid-May and
then decreased about 2 m by the end of May. The maximum change in elevation was
approximately 2 m in the spring and the water surface fluctuated little for the remainder of
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the year. During 1992, Lake Monroe experienced less fluctuation in water surface elevation
than in 1994. The maximum change was less than 1 m. In early August, the elevation
increased by about 0.5 m. During the spring of 1995, the reservoir elevation increased more
than 3 m and did not stop decreasing in the summer until the middle of July. In 1996, water
surface elevations exhibited their greatest fluctuation of more than 5 m and the decrease in
water surface elevation did not stop until the middle of August.

The model accurately captured the differences between the years. In order to capture the
decline in water surface elevations during middle to late summer, negative inflows were
required, which indicates that there may still be slight errors in the bathymetry or that
groundwater seepage or seepage through the dam might be occurring. However, the negative
flows were slight and should not impact the results.

Temperature. Computed temperatures for the four calibration years closely followed the
trends in the observed data over the summer stratification period and also the differences in
thermal structure during the same time period for different years. For example, in early May
during 1994 and 1992 the epilirnnion extended to a depth of about 8 Q but in 1995 the
epilimnetic depth was only 3 m. The greatest discrepancies between computed and observed
temperatures occurred mainly in the epilirnnion and hypolimnion where the model tended
to underpredict the observed temperatures by no more than 1 ‘C. Much of the epilimnetic
variation is attributed to uncertainty in the meteorological data.

Dwlved Oxygen. The model is reproducing the trends in DO stratification throughout the
summer depletion period. The greatest discrepancies between model predictions and
observed data occur in the metalimnion where the model tended to overpredict the
chemocline depth by about 2 m for station 1 (Figures 27 and 37). Since the model is
accurately reproducing the thermocline depth during this time, the inaccuracies must be due
to a source of oxygen in the metalimnion. The source can be either through inflow placement
of higher oxygenated waters into the metalimnion, or DO production from algal
photosynthesis. Sensitivity analyses showed that increasing inflow temperatures positively
affkcted DO predictions by moving more oxygenated water higher into the metalimnion. For
calibration years other than 1994, the model was also overpredicting algal concentrations in
the metalimnion, which may also be affecting the chemocline location.

Judgement of how well the model is reproducing DO should be tempered with the realization
that model predictions (and observed data) can change significantly over short time periods.
Figure 28 illustrates how much DO can change over a 24 hour period. From June 16 to June
17, the AME changed from 2 to 3 mg 1-1and from July 27 to July 28, the AME doubled from
0.7 to 1.5 mg 1-1.

Phosphorus. Phosphorus concentrations were only available for 1994. Observed
phosphorus concentrations showed no trends to reproduce as all observed concentrations
were at or below the detection limit (Figures 11-13). The model could have been forced to
reproduce the observed phosphorus data by eliminating phosphorus release from the
sediments during anoxic conditions, but without clear evidence, there was no justification
to override the current paradigm of sediment phosphorus release during anoxia.
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Ammonium. The model accurately reproduced the increase in hypolimnetic ammonium
throughout the summer during 1994 (Figures 14-16).

Nitrate-Nitrite. The model is capturing the trend of decreasing nitrate-nitrite concentrations
throughout the water column during the summer growing season (Figures 17-19). The model
underpredicts the hypolimnetic concentration in mid to late summer, but this is due to the
reporting of detection limits in the hypolimnion.

Algae. For 1994, the model is capturing the trends in algal biomass concentrations during
the growing season (Figures 20-22). For the other calibration years, the model is
overpredicting algal biomass. This is attributed to using 1994 boundary concentrations for
inflow nutrient and algal biomass. Since computed algal concentrations vary significantly
for these years, the model is sensitive to changes in hydrodynamics, loadings, and
meteorology. For example, using inflow phosphorus concentrations set to detection limits,
the model predicts algal concentrations two times greater in 1992 and 1996 than in 1994.
The model is also sensitive to changes over short time periods as evidenced in 1992 where
algal biomass at the surface doubled over a two day period from June 16 to June 18 (Figures
30-32). Given the uncertainties in determining algal biomass fi-omchlorophyll a, the model
is doing a good job of reproducing the trends in algal biomass over time.
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5 Scenarios

Scenarios were conducted to determine effects on water quality, especially algal biomass and
DO concentrations. Six scenario runs were made based on the following
requested by the Louisville District:

conditions

1.
2.

3.
4.
5.
6.

low flow, high air temperatures, low inflow nutrient concentrations
low flow, high air temperature, high inflow nutrient concentrations
high flow, low air temperatures, low inflow nutrient concentrations
high flow, low air temperatures, high inflow nutrient concentrations
average flow, average air temperatures, low inflow nutrient concentrations
average flow, average air temperatures, high inflow nutrient concentrations

The base run for which all scenario runs were compared was the 1994 calibration results.
During scenario runs, 1994 input files and initial conditions were used except for the various
changes in flow, air temperature, and inflow nutrient concentrations. For example, the f~st
set of scenario runs used 1992 inflows and outflows, 1973 meteorology, and
reducing/increasing 1994 nutrient concentrations by 50%. All other boundary or initial
conditions remained at the 1994 setting.

To determine a low, average, and high flow and air temperature year, meteorologic and
hydrological conditions were ranked by mean annual values for each year the data were
available. Air temperatures were available from 1948 to 1996 and calculated inflow data
were available from 1984 to 1996. A frequency analysis was performed on these data to
determine the 10%, 50%, and 90% probability of occurrence. The 10%, 50%, and 90%
probability of occurrence occurred in 1976, 1992, and 1973, respectively, for air temperature
and 1992, 1994, and 1996, respectively for flow.

Scenario boundary concentrations representing lowhigh nutrient loadings were estimated
by decreasing or increasing the inflow nutrient concentrations by 50%. Initially, linear
regression was conducted to develop equations for nutrient loads using available inflow
nutrient data for each tributary along with calculated inflows of Lake Monroe. However,
resulting r2 values for the equations were not acceptable, in part due to the limited inflow
concentration data and from not having gaged flow data for each major tributary (North,
South, and Middle Salt Creek). The calculated inflows represented the sum of the flows for
all tributaries discharging into Lake Monroe. Using these flows with measured
concentrations on each tributary established a weak relationship since the independent and
dependent variables were not truly represented.
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Low Flow, High Air Temperature, Low/High Inflow Nutrient Concentrations

Scenario 1used 1992 inflows (low flow year), 1973 meteorology (high air temperatures), and
a 50% reduction in 1994 nutrient inflow concentrations. Scenario 2 used the same hydrology
and meteorology with a 50!Z0increase in inflow nutrient concentrations. Results for these
scenarios are shown in Figures 53-59 for station 1.

The results show little difference between scenarios 1 and 2. However, there are differences
when compared to the 1994 base line. A combination of low inflows and warmer air
temperatures resulted in warmer water temperatures during late summer (Figure 53). As a
resul~ reaction rates that drive DO/algal/nutrient dynamics caused changes in nutrient, DO,
and algal concentrations (Figures 54-56, 57, and 58, respectively). Differences in nutrient
concentrations were most evident in the hypolimnion where concentrations were reduced.
Algal concentrations were also reduced and DO concentrations at the beginning of the
simulation were reduced but increased toward the end.

Although 1994 inflow nutrient concentrations were increased and decreased, there was a
minimal effect on inlake concentrations. Because inflow concentrations were so low,
decreasing and increasing the values had little effect on water quality. Scenario 2 was rerun
with inflow phosphorus concentrations increased from 0.007 to 0.03 to determine the effect
on algal concentrations since phosphorus was the limiting nutrient. Results are shown in
Figure 74 for algae at station 1. Although phosphorus inflow concentrations were increased
by nearly an order of magnitude, in lake concentrations at station 1are only slightly increased
(Figure 74). As will be shown, increases in mass loadings drive algal production. Increased
phosphorus concentrations translated into relatively small increases in mass loadings as a
result of the low inflows.
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High Flow, Low Air Temperature, Low/High Inflow Nutrient Concentrations

Scenario 3 used 1996 flows (high flow year), 1976 meteorology (low air temperatures), and
a 50% decrease in inflow nutrient concentrations. Scenario 4 used the same hydrology and
meteorology with a 50% increase in inflow nutrient concentrations. Results for these
scenarios are shown in Figures 60-65 for station 1.

The results show little difference between scenario 3 and 4 except for nitrate-nitrite. When
both are compared to 1994 calibration results, there are some differences. Using
meteorological data from 1976 and flows from 1996 resulted in less thermal stratification
(Figure 60) for both scenario runs when compared to the base run. This was attributed to a
decrease in residence time due to the higher inflows. Similar to scenario 1 and 2 results,
phosphorus and ammonium concentrations were reduced in the hypolimnion (Figures 61-62).
Nitrate-nitrite results show more differences between the two scenario runs than the previous
scenario runs discussed (Figure 63). Scenario 3 nitrate-nitrite concentrations are lower than
scenario 4 concentrations. However, neither are much greater than the base run results. The
reason for this is probably due to the higher flows being used in both scenario runs. Algal
concentrations (Figure 65) for the most part were less stratified than the base results, and DO
concentrations (Figure 64) showed the most differences in May and June when the mixed
layer was deeper.

Scenario 4 was also rerun increasing inflow phosphorus concentrations from 0.007 to 0.03
to see what effects that would have on algae since phosphorus was the limiting nutrient.
Results are shown in Figure 66 for algae at station 1. The increased phosphorus loadings
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Average Flows, Average Air Temperature, Low/High Inflow Nutrient
Concentrations

Scenario 5 used 1994 flows (average flow year), 1992 meteorology (average air temperature),
and a 50% reduction in inflow nutrient concentrations. Scenario 6 used the same hydrology
and meteorology with a 50% increase in inflow nutrient concentrations. Results for both
scenario runs are shown in Figures 67-72 for station 1.

Like scenarios 3 and 4, the figures show that there are very little differences between
scenarios 5 and 6 except for nitrate-nitrite. As previously discussed, when both are compared
to 1994 calibration results there are some minor differences. Since the inflows and outflows
for the base run and these scenarios are the same, water temperature differences are the result
of using 1992 meteorological data. As seen in Figure 67, epilimnetic water temperatures are
cooler until August when they become closer to the base run results. In August the hypolim-
netic temperatures become warmer than the base run for both scenarios. This behavior can
be attributed to the different meteorological data being used. Phosphorus and ammonium
concentrations (Figures 68 and 69) were only slightly different from the base run.

Like scenarios 3 and 4, nitrate-nitrite results show more differences than what occurs
between scenario 1 and 2 runs. Scenario 5 nitrate-nitrite concentrations are noticeably lower
than scenario 6 concentrations until August when they become very similar (Figure 70).
However, neither scenarios’ concentrations are ever much greater than the base run results.
When DO concentrations show differences, their concentrations are usually higher than the
base run for both scenarios (Figure 71). Algal concentrations for both scenario runs (Figure
72) were greater in the epilimnion beginning in June than the base run results with scenario
6 algal concentrations being slightly greater than scenario 5.

Scenario 6 was rerun with inflow phosphorus concentrations increased from 0.007 to 0.03
to see what effects that would have on algae since phosphorus was the limiting nutrient.
Results are shown in Figure 73 for algae at station 1. By increasing phosphorus inflow
concentrations by almost an order of magnitude, inlake algal concentrations at station 1 are
increased almost threefold in the epilimnion. Like the second run of scenario 4, increased
mass loadings result in increased algal populations.
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6 Summarv and Conclusions

CE-QUAL-W2 was calibrated for four years on Lake Monroe. The initial calibration year
chosen was 1994 since this year had the most complete collection of water quality data The
other calibration years were 1992 (low flow year), 1995 (slight above average flow year), and
1996 (high flow year).

Calibration results for all years except 1994 were affected by having limited inflow and
inlake profile data. Most years had temperature, DO, and algal profiles, but limited or no
nutrient and TOC inflow or profile data. When no data were available, 1994 values were
used. Given the limitations in the boundary condition data used to drive the model, the
results are quite acceptable.

Six scenario runs were conducted to determine the effects of low/high inflows, air
temperatures, and nutrient loadlngs on water quality, especially algal biomass production and
DO concentrations. The 1994 calibration results were used as the base run for scenario
comparisons.

Dissolved oxygen generally showed an increase in the different scenarios. As far as changes
to algal biomass, scenarios 1 and 2 demonstrated that the low flows controlled mass loadings
to the system resulting in little change in algal populations compared to the base run results
when phosphorus concentrations were increased. Scenarios 3 and 4 demonstrated that with
increased mass loadings of phosphorus, algal concentrations could increase more than
twofold. Scenarios 5 and 6 were similar to 3 and 4 resulting in increased algal production
due to increased phosphorus loadings. The increased algal production resulted in increased
DO near the thermocline as algal populations produced more oxygen than was consumed by
respiration processes. High flow years also had a positive impact on DO due to reduced
residence times and thermal stratification.

According to these scenarios, increasing nutrient loadings to the system results in better DO
conditions in the reservoir. However, care must be taken when making conclusions about
the long-term health of the system with regards to DO. Scenarios with increased nutrient
loadings should be run for a minimum of 10 years before making conclusions. Increased
loadings might result in a short-term DO increase, but should result in a long-term decrease
in DO.

If the model is to be used to forecast water quality conditions under different loadlng
conditions, additional phosphorus data, both boundary and in-pool, should be collected in
order to more accurately characterize sediment-water column recycling dynamics and
phosphorus loadings to the system. Unfortunately, there is no accepted method for accurately
measuring bioavailable phosphorus. However, SRP is the closest available measurement that
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can be used to represent bioavailable phosphorus and is the recommended measurement.
Because there is some question involving the accuracy of the existing SRP da@ other
phosphorus forms should also be measured to ensure consistency among the measured
phosphorus forms.
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Appendix A

This appendix contains plots of all inflow/outflow, inflow temperatures, and meteorology
used for the four calibration years.
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Monroe Lake
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Monroe Lake
1994 Wind Speed
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Monroe Lake
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Figure Al O. 1995 wind speed

Monroe Lake
1995 Wind Direction

mean wind direction= 3.33 radians

JAN FEB MAR APR MAY JUN JUL AUG SEP OCT NOV DEC

Figure Al 1. 1995 wind direction

A6



Monroe Lake
1995 Cloud Cover
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Monroe Lake
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Monroe Lake
1996 Cloud Cover
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Monroe Lake
1994 Inflows and Outflows
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Monroe Lake
1996 Inflows and Outflows

700

600

500

~ 400
0
<
~
~ 300

200

100

mean inflow = 24.22 cms
mean outflow = 22.19 cms

sum of inflow = 621,056 acre-ft
sum of oufflow = 569,005 acre-ft

....

Es&J

Figure A20. 1996 inflows and outflows

Lake Monroe

30 -

20 -

10 - ‘% :> \ 1...
-. -+ .:, z,....V. ..S.._

0’ I 1 1 1 1

0 100 200 300 400

Juliin Day

Figure A21. 1992, 1994, 1995, and 1996 inflow temperatures



Lake Monroe

Phosphorus Inflow Concentration

0.010-

0.009 -

n

● 1e92
A 1994

1995
0.008 - * 1%36

0.007 -
“F

F 0.006 -
c-
0
“~ 0.005 AA aAA@9A aa4h8- I
Em
2 0.004
e

0.003 -

0.002 -

0.001

0.000
, 1 1 I

50 150 250 350 450

Julian Day

Figure A22. 1992, 1994, 1995, and 1996 inflow phosphorus
concentrations

Lake Monroe

Ammonium Inflow Concentration

w

2.0 -

1.8 -

n

● 1ee2
A 1994
m

1.6 -
1ea5

+ 1!)96

1.4 -
“F

E’ 1.2 -

5
~ 1.0 -
E
a
f+ 0.8 -

s

0.6 -

0.4 - ●

.$

0.2 - *

AA *m ~ A% A A-A a4100 m

0.0
1 I t I

50 150 250 350 450

Juliin Day

Figure A23. 1992, 1994, 1995, and 1996 inflow ammonium
concentrations

A12



Lake Monroe
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Figure A24. 1992, 1994,1995, and 1996 inflow nitrate-nitrite
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concentrations
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Figure A29. 1992, 1994, 1995, and 1996 inflow algal concentrations
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