

Electric Rocket Propulsion

A. Background

Electric Propulsion-1

Copyright © 2003-2004 by Jerry M. Seitzman. All rights reserved.

AE4451 Propulsion

Electric Propulsion - Accelerators

	Electrothermal	Electromagnetic	Electrostatic
A I	Pressure, $ abla p$	Lorentz, $ec{F}_{_{m}}$	Electrostatic, $\vec{F}_{_{e}}$
Accel. Force	Electrically heat propellant and use nozzle expansion	Magnetic and elec. fields accelerate charged particles	Static electric field alone accelerates charged particles
I _{sp} (s)	300-1,500	1,000-10,000	2,000-100,000+
Thrust Weight	<10 ⁻³	<10-4	<10 ⁻⁴ –10 ⁻⁶

Electric Propulsion-2

Motion of Charged Particle in E&B Fields

- How does charged particle move in electric and magnetic fields
- Electric field only
- $\frac{d\vec{u}}{dt} = \frac{q}{m}\vec{E} \longrightarrow \vec{E}$
- electron lighter, higher accel.
- Magnetic field only
 - particle gyrates (centripedal accel.)
- $\frac{d\vec{u}}{dt} = \frac{q}{m} (\vec{u} \times \vec{B})$ $m |\vec{u} \times \vec{B}|$

- radius of gyration $r_g = \frac{m[a + kB]}{qB^2}$ - frequency of gyration $\omega_e = \frac{q}{q}$
- No work; B and F perpendicular

Electric Propulsion-5

Motion of Charged Particle in E&B Fields

- · Crossed E and B fields
 - E field accelerates particle upward
 - B field causes acceleration perpendicular to u
 - overall result is drift
 velocity normal to E and B

$$\vec{u}_d = \frac{\vec{E} \times \vec{B}}{B^2}$$

heavy

Electric Propulsion-7

Copyright © 2003-2004 by Jerry M. Seitzman. All rights reserved

AE4451 Propulsion

Plasmas

- Gas composed of equal "amount" of negatively and positively charged particles
 - electrically neutral
 - negative particles usually e-
 - positive particles are positive ions
 - typically most of gas molecules remain neutral
- Momentum equation for plasma

$$\rho \left(\frac{\partial \vec{u}}{\partial t} + \vec{u} \cdot \nabla \vec{u} \right) = -\nabla p + \vec{j} \times \vec{B}$$
Current Density
(A/m²)

Electric Propulsion-8

Induced E Fields - Hall Effect

- Electron acceleration
 - lighter e⁻ accelerate more quickly and accommodate to flow field (most of j)
 - collisional coupling (momentum) of electrons and heavies (ions and neutrals) is weak

$$\Rightarrow \vec{E} = \eta \vec{j} - \vec{u} \times \vec{B} + \vec{j} \times \frac{\vec{B}}{n_e e} - \frac{\nabla p_e}{n_e e}$$
plasma
resistivity (\Omegam m)
Induced
E field due
Hall Effect
to plasma
accelerates heavy
collision freq.
electrons with heavies
motion
particles in charge
neutral plasma

(2)

Copyright © 2003-2004 by Jerry M. Seitzman. All rights reserved.

AE4451 Propulsion

Electric Rocket Propulsion

B. Examples

Electric Propulsion-10

Congright © 2022-2004 by James M. Seitzman, All rights researed.

Resistojets

- · Heating methods
 - flow over coils of wire
 - flow through hollow tubes
 - flow over heated cylinder or plate
- Material limits temperature/performance
 - conducting materials < 2700 K rhenium, refractory metals/alloys (tungsten, tantalum, molybdenum), platinum, cermets
 - max $I_{sp} \sim 300$ sec
- · Power supply
 - AC or DC
 - Power = $\dot{Q} = V^2/R = \dot{m}c_{p}\Delta T$

Electric Propulsion-12
Copyright © 2003-2004 by Jerry M. Seitzman. All rights reserved.

_Georgia | College of Tech | Engineering

Arcjets

- · Gas heated by electrical discharge (arc)
 - electrically conducting gas: plasma
- Joule heating from (2) $\dot{Q} = \vec{j} \cdot \vec{E} = \dot{m}c_{p}\Delta T \qquad \ddot{E} = \eta \, \vec{j} \vec{u} \times \vec{B} + \vec{j} \times \frac{\vec{B}}{n_{e}e} \frac{\nabla p_{e}}{n_{e}e}$ $= \eta \, j^{2} \vec{j} \cdot (\vec{u} \times \vec{B}) \vec{j} \cdot \nabla p_{e}/n_{e}e$ $= \eta \, j^{2} + \vec{u} \cdot (\vec{j} \times \vec{B}) \vec{j} \cdot \nabla p_{e}/n_{e}e$ Resistive Work from Heating EM force work from pressure grad.
- Nozzle and electrode erosion
 high temperature, current arc
- I_{sp} for H₂ ~1200-1500 sec

Electric Propulsion-13

Copyright © 2003-2004 by Jerry M. Seitzman. All rights reserved.

MPD Thrusters (con't)

- Most efforts focused on applications with exhaust velocities (Isp) greater than arc jets
- Typically require higher powers than currently available on in-space vehicles
- Exhaust speed $u_e \propto j^2/\dot{m}$
 - limited by erosion
 and oscillations at high j

Electric Propulsion-19
Copyright © 2003-2004 by Jerry M. Seitzman. All rights reserved

Electrostatic Thruster Thrust

 $\tau = \dot{m}u_a = jA(m/q)u_a$ A=cross-sectional area flow

$$\tau = mu_e = jA(m/q)u_e \qquad A = cross-sectional area$$
• Maximum thrust
$$\tau_{\max} = j_{\max}A\frac{m}{q}u_e = \frac{4\varepsilon_o}{9}\sqrt{\frac{2q}{m}}\frac{\Delta V^{3/2}}{L^2}A\frac{m}{q}\sqrt{\frac{2q}{m}}\Delta V$$

$$\tau_{\max} = (8\varepsilon_o/9)A\Delta V^2/L^2$$
for circular cross-section
$$\tau_{\max} = (2\pi/9)\varepsilon_o(D/L)^2\Delta V^2$$

for circular cross-section $\tau_{\text{max}} = (2\pi/9)\varepsilon_o (D/L)^2 \Delta V^2$ of diameter, D

$$= (2\pi/9)\varepsilon_o(D/L)^2 \Delta V^2$$

= 6.18×10⁻¹²(D/L)²\Delta V² in Newtons

- High τ requires high ΔV and aspect ratio
 - space charge \Rightarrow *D/L* ~1

- use many small ion beams to get more thrust

AE4451 Propulsion

Electrostatic Thruster Thrust

· For fixed specific impulse

$$\tau_{\text{max}} = \frac{4}{9\varepsilon_0} \sqrt{\frac{2q}{m}} \frac{\Delta V^{3/2}}{L_{accel}^2} A \frac{m}{q} I_{sp}$$

$$\frac{\tau_{\rm max}}{A} \propto \sqrt{m/q}$$

- best propellant for high thrust
 - · heavy molecules (particles)
 - xenon (Xe) good choice (MW=131.3)

Electrostatic Thruster Power

$$Power = I \Delta V = jA\Delta V$$

 Electrical energy converted to kinetic energy with some efficiency

 $\eta_{conv} I \Delta V = \frac{1}{2} \dot{m} u_e^2$

- Must also account for energy used to create ions – ionization losses
 - given by ionization potential for atom times current

$$P_{ionloss} = \varepsilon_I I = \varepsilon_I \frac{\dot{m}}{m} q$$

Electric Propulsion-25
Copyright © 2003-2004 by Jerry M. Seitzman. All rights reserved

AE4451 Propulsion

Electron Bombardment Xe⁺ Engine Example

- · Operating conditions
 - $-\Delta V$ =700 V, L=2.5 mm, 2200 holes (grids) each with D=2.0 mm
 - -MW(Xe)=131.3, $\varepsilon_{l}(Xe)=12.08$ eV
- Determine
 - $-\tau$,
 - u_e, Isp
 - $-\dot{m}$
 - power required including ionization loss

Electric Propulsion-26
Copyright © 2003-2004 by Jerry M. Seltzman. All rights reserved

_Georgia | College of Tech | Engineering

Solution

- $\tau_{\text{max}} = 6.18 \times 10^{-12} (D/L)^2 \Delta V^2$ = $6.18 \times 10^{-12} (2/2.5)^2 700^2 = 1.94 \times 10^{-6} N/grid$
- $\tau_{\text{max,total}} = 2200 grids (1.94 \times 10^{-6} N/grid) = \frac{4.3 mN}{1.94 \times 10^{-6} N/grid}$
- $u_e = 13,800\sqrt{\Delta V/MW} \ m/s = 13,800\sqrt{700/131.3} \ m/s$ $u_e = \frac{31,860 \ m/s}{31,860 \ m/s} \implies I_{sp} = \frac{3248 \ s}{31,860 \ m/s}$
- $\dot{m} = \tau/u_e = \frac{1.34 \times 10^{-4} \, g/s}{1.34 \times 10^{-4} \, g/s}$
- $P = P_{exhaust} + P_{ion loss} = \dot{m}/2u_e^2 + \varepsilon_I q \dot{m}/m$ $m = 1.67 \times 10^{-27} MW \ kg$ = 67.9W + 1.18W $q = 1.602 \times 10^{-25} \ kg$ $q = 1.602 \times 10^{-19} \ C$

 $P = \frac{69.1W}{\text{maximum effic.}} = \frac{67.9/69.1}{98.3\%} = \frac{q - 1.002 \times 10^{-6} \text{ C}}{\text{for singly ionized molec.}}$

Electric Propulsion-27
Copyright © 2003-2004 by Jerry M. Seitzman. All rights reserved.