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Electric Rocket Propulsion

A. Background
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Electric Propulsion - Accelerators
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Electrical Heating

• Current passing through
conductor heats it by
amount proportional to
its resistance

• Wire

• Gas (Plasma)
Discharge
– resistance due

to collisions

RJQ 2=&

Current 
(A=C/s)

Resistance 
(Ohms)

J

Cathode Anode

e- i+J

VE ∇−=
rr V E

r

AE4451 PropulsionElectric Propulsion-4
Copyright © 2003-2004 by Jerry M. Seitzman. All rights reserved.

Forces on a Charged Particle

• To examine how to use electrical energy to 
accelerate a propellant, consider acceleration 
of a particle with mass m and charge q
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Motion of Charged Particle in E&B Fields
• How does charged particle move in electric 

and magnetic fields
• Electric field only

– electron lighter, higher accel.
• Magnetic field only

– particle gyrates
(centripedal accel.)

– radius of gyration
– frequency of gyration

– No work; B and F perpendicular
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Induced Magnetic Fields

• In general, current flow induces a B field
– B field induced by

linear current

– B field induced
by coil

B
r

From Space Propulsion Analysis 
and Design, Humble, Henry and 
Larson, 1995
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Motion of Charged Particle in E&B Fields

• Crossed E and B fields
– E field accelerates

particle upward
– B field causes

acceleration
perpendicular to u

– overall result is drift
velocity normal to E and B
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Plasmas
• Gas composed of equal “amount” of negatively 

and positively charged particles
– electrically neutral
– negative particles usually e-

– positive particles are positive ions
– typically most of gas molecules remain 

neutral
• Momentum equation for plasma
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Induced E Fields – Hall Effect
• Electron acceleration

– lighter e- accelerate more quickly
and accommodate to flow field (most of j)

– collisional coupling (momentum) of electrons 
and heavies (ions and neutrals) is weak 

plasma 
resistivity (Ωm)
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Electric Rocket Propulsion

B. Examples
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Electrothermal Rockets
• Resistojet (1W-10kW)

– walls hotter than gas,
lower Tmax

– can combine with
chemical heating, e.g.,
hydrazine monopropellant

• Arcjet (1 kW- 10 MW)
– high Tarc>Twall

(1-4×104 K)
– must mix with

rest of gas
– very high To,

frozen flow losses in nozzle
Space Propulsion Analysis and Design, 

Humble, Henry and Larson, 1995

Insulation

arc unstable
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Resistojets
• Heating methods

– flow over coils of wire
– flow through hollow tubes
– flow over heated cylinder or plate

• Material limits temperature/performance
– conducting materials < 2700 K

rhenium, refractory metals/alloys (tungsten, 
tantalum, molybdenum), platinum, cermets

– max Isp ~ 300 sec
• Power supply

– AC or DC
– Power TcmRVQ p∆=== && 2
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Arcjets
• Gas heated by electrical discharge (arc)

– electrically conducting gas: plasma
• Joule heating

• Nozzle and electrode erosion
– high temperature, current arc

• Isp for H2 ~1200-1500 sec
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1.8 kW Hydrazine Arcjet

Space Propulsion Analysis and Design, 
Humble, Henry and Larson, 1995

• Telstar IV application
– stationkeeping

• Hot gas from catalytically 
decomposed liquid
N2H4

• Heated valve
prevents N2H4
from freezing

• Isp~570 sec
• τ~230 mN

(~40mg/s)
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Arcjet with Applied Magnetic Field
• High current density in arc

tends to destroy electrodes
• Add soleniod B Field

– adds azimuthal drift
velocity to arc

– improves azimuthal
symmetry of gas 
temperature

– reduces local electrode
heating, reduces erosion

– needed for high powers
(≥100 kW)

• Microwave discharge
– alternate to arc heating Space Propulsion Analysis and Design, 

Humble, Henry and Larson, 1995
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Electromagnetic Propulsion Systems 
• Use applied or induced magnetic fields to 

produce acceleration of propellant
– high currents/

powers required
to produce 
significant 
induced fields

– high power available
only (normally) in
pulsed operation

Space Propulsion Analysis and Design, 
Humble, Henry and Larson, 1995
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Pulsed Plasma Thruster

• Propellant produced by vaporizing solid 
material with discharge

• B field induced by discharge also acts to 
accelerate vaporized propellant

• Advantage of simplicity
• Acceleration

force
~ j2

(discharge current)

Space Propulsion Analysis and Design, 
Humble, Henry and Larson, 1995
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Magnetoplasmadynamic (MPD) Thrusters
• Resemble arcjets
• Lower flow densities to 

attain higher exhaust 
velocity

• Diffuse discharge,
low erosion

• Self field requires high J
• Applied B field

– allows higher V
at lower discharge 
currents

– increase accel.
– larger Hall effect

Self-Field MPD Thruster

Applied-Field MPD Thruster
Space Propulsion Analysis and Design, 

Humble, Henry and Larson, 1995
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MPD Thrusters (con’t)

• Most efforts focused on applications with 
exhaust velocities (Isp) greater than arc jets

• Typically require higher powers than currently 
available on in-space vehicles

• Exhaust speed
– limited by erosion

and oscillations at high j

mjue &2∝
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Hall Thruster

• Hall effect most noticeable at 
low particle densities

• Stationary Plasma Thruster 
(SPT)
– developed in Russia
– 10’s kW
– axial current flow

across radial B
generates azimuthal 
electron flow

– induced (axial) Hall E
accelerates ions

– also called “gridless” 
(neutral) ion thruster

– 1500-2000 s Isp with >50% 
efficiency using Xe and no 
oscillations like MPD Space Propulsion Analysis and Design, 

Humble, Henry and Larson, 1995
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Electrostatic Thrusters
• Ion engine example
• Near vacuum required
• Ion source

– usually electron
bombardment
plasma

– also ion contact: 
propellant flowing
through hot porous
tungsten 

– field emission: charged
spray droplets/particles

• Electrons added to
neutralize exhaust
– thermionic emitters

Space Propulsion Analysis and Design, 
Humble, Henry and Larson, 1995
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Electrostatic Thruster Performance
• Maximum exhaust velocity (Isp) 

theoretically limited by voltage
difference across accelerator

• High thrust requires high mass 
flowrates and therefore current
(and number, n) densities

• Ion current limited
by space-charge
– field from lots of ions

overcomes applied
E field
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Electrostatic Thruster Thrust

• Maximum thrust

• High τ requires high ∆V and aspect ratio
– space charge⇒D/L ~1
– use many small ion beams to

get more thrust
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Electrostatic Thruster Thrust
• For fixed specific impulse 

– best propellant for high thrust
• heavy molecules (particles)
• xenon (Xe) good choice (MW=131.3)
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Electrostatic Thruster Power

• Electrical energy converted to kinetic 
energy with some efficiency 

• Must also account for energy used to 
create ions – ionization losses
– given by ionization potential for atom 

times current
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Electron Bombardment Xe+ Engine Example

• Operating conditions
– ∆V=700 V, L=2.5 mm, 2200 holes (grids) 

each with D=2.0 mm
– MW(Xe)=131.3, εI(Xe)=12.08 eV

• Determine
– τ, 
– ue, Isp
– m
– power required including ionization loss

.
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Solution
( ) 2212

max 1018.6 VLD ∆×= −τ
( ) gridN /1094.17005.2/21018.6 62212 −− ×=×=

( ) mNgridNgridstotal 3.4/1094.12200 6
,max =×= −τ

smsmMWVue 3.131700800,13800,13 =∆=
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Cq 1910602.1 −×=
for singly ionized molec.

WW 18.19.67 +=
WP 1.69= maximum effic. =67.9/69.1

= 98.3%


