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Abstract – The paper presents the derivation of the non-linear model of the vibrations of the electrically charged cloud of the ice 

crystals. This problem is applicable as the mechanical basis of a theoretical model of the atmospheric optical phenomenon 

commonly known as "the miracle of the Sun". A large crystal rotation angles and a continuous distribution of charges on the 

surface of the crystals are included in deliberations. It is shown that the obtained equation of the non-linear model is the type of 

the equation 4
. The numerical solutions are shown for  some examples of the model parameter sets. They are compared with the 

solutions of the linear model available in the literature. Finally, the obtained theoretical results have been compared with the 

results of the observations of the atmospheric phenomenon called "the miracle of the Sun" available in the literature. 
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1. Introduction 

1.1. The motivation to take the research topic  

The problem of the vibration analysis of the electrically charged cloud of rotating ice crystals is a new matter. This line of the 

research was initiated in the paper [1]. The author of this paper by using a model of the electrically charged cloud of the ice 

crystals, oscillating under the influence of wind forcing, explained dynamically changing optical properties of the medium, and 

consequently atmospheric optical phenomenon commonly known as the "miracle of the Sun". This work was completely in-

novative perspective on this phenomenon, different in relation to previously existing studies [3,4], whereas a more complete 

explanation of many optical observations [1,2]. In this paper we would only like to take care of  the mechanical modeling of this 

phenomenon, completely detached from the optical part of it. 

In the paper [1] the first simplified model of electrostatic interactions between the crystals was proposed. The total electric 

charge of the crystal was divided into three point charges located in the middle and the ends of the plate crystal. It was assumed 

that the crystals rotated at very small angles and the effect of air resistance was skipped. Therefore, as a result of modeling, a 

linear vibration model was obtained, which was next used to analyze the optical phenomenon of "the miracle of the Sun". The 

mechanical model proposed in [1] is presented in Section 3.3 as a comparative model. 

This paper is the continuation of deliberations concerning  the dynamic behaviour of the ice crystals, which were begun in 

work [1], involving the significant extension of the assumptions used then. The continuous distribution of the electric charge on 

the surface of the ice crystals, large crystal rotation angles and the rotational damping by the air resistance will be included in the 

considerations. As a result the non-linear mechanical model will be obtained, which in future may be used for a more accurate 

analysis of the optical phenomenon of "the miracle of the Sun". 

1.2. The applied methods of the modelling of the dynamic behaviour of the discrete media  

It was necessary to formulate the continuous model of the cloud of the ice crystals in order to find a mathematical description of 

the relationship between angles of crystals’ rotations and time and location. The finite difference method was used, due to the 

specificity of the vibration problem. The equation of rotational motion written for a single i-th crystal will be the starting point for 

modeling. After the appropriate formulation of this equation in the discrete form, it will be possible to pass to the continuous 

model by using the finite difference method theorems. This will be shown in section 2.5. 
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1.3. The aim and the scope of the paper 

The aim of this study is to formulate a non-linear continuous model of rotational vibrations of a cloud of the electrically charged 

ice crystals. It will take into account the continuous distribution of electric charge on the surface of the ice crystal, their large 

angular rotations and the influence of the air resistance on the rotating crystals. The work includes the derivation of  

one-dimensional non-linear equation of the rotational oscillations of such a cloud, and the analysis of the limits of applicability 

and accuracy of this model. The study shows that the equation which describes such oscillations has the nature of a wave equa-

tion based on the Duffing's equation. The obtained exemplary numerical solutions have been compared to the simplified model 

included in the paper [1]. The results have also been discussed in the context of the empirical analysis of the observation of the 

optical phenomenon of  "the miracle of the Sun" presented in the work [1]. 

2. The modeling 

2.1. The assumptions 

Let us introduce the following  modeling assumptions (Figure 1): 

 A homogeneous cloud of identical, electrically charged ice crystals is given, 

The crystals have the shape of regular hexagonal plates, i.e. their height is negligibly small in comparison to other dimen-

sions, 

The gravitational force acting on every crystal is balanced by the force of air resistance acting on a crystal falling down un-

iformly, 

The air resistance forces influencing  the crystal rotation are linearly proportional to the linear velocity in the rotational mo-

tion, 

 The electric charge of the crystal is uniformly distributed on its surface, 

We assume that the synchronization occurs between the crystals, i.e. the difference between the rotation of two adjacent 

crystals is negligible.  

 

Figure 1.  The schematic representation of the modeling assumptions. The individual regular hexagonal plate crystals are 

shown in enlargement. 

2.2.  The equation of the rotational motion of an individual crystal 
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iM


  - the total resultant moment acting on the i-th crystal, 

i


- the angular acceleration in the rotational motion, 

 - the density of ice. 

Due to the continuous charge distribution on the crystals’ surfaces, in the following modeling we consider the moments de-

rived from the interaction between the appropriate surfaces of adjacent crystals. Then we can expand the resultant moment as 

(Figure 2): 
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where: 

   0, r
  is a conductive vector of an infinitely small segment of the surface of the i-th crystal, i  22 ,F


 are the forces of 

the electrostatic interaction between the  infinitely small segments of the surface of adjacent crystals respectively
1d and d  in 

case of  11 ,F


 and 
2d and d  in case of  22 ,F


.  RF


 is the force of air resistance acting on an infinitely small segment of 

the crystal's surface. The coordinates  ,
 

1  and 
2  are local coordinates, running respectively on  the surfaces of the i-th, i+1-th 

and i-1-th crystal and adopting the values from  -½ to ½ for the extreme edges of the crystal and 0 in the midst of each surface 

(Figure 2). E

iM


 is the external forcing vibrations moment. 

 

Figure 2.  The electrostatic forces between the infinitely small segments of the surfaces of the analyzed crystals.  

The resistance force, in accordance to the assumptions, is proportional to the linear velocity of segment d , and forces 

 11 ,F


 and  22 ,F


 are Coulomb forces and therefore:  

 
 

3

1

1

0

11
4

,
OP

OPdqdq
F

r










, 
 

3

2

2

0

22
4

,
OP

OPdqdq
F

r










  



t

RFR






 

(3) 

where: 
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R is the coefficient of air resistance,

 

 iiii ddOP 11111 sincos,cossin  

        

and 

 iiii ddOP 22222 sincos,cossin  

 are vectors of beginnings and ends at the points P1 and O respectively and at P2 and O (Figure 2), which are the points of the 

analyzed segments of crystals’ surfaces 
1d , d  and

2d  .
 

ii   11
and

12  ii   are the differences between the angles of crystals’ rotations respectively for i-th, 

i+1-th and i-1-th crystal. 

dq  is the charge of the analyzed segment of the crystal’s surface, 

r  is the relative dielectric constant of air, 

0  is the dielectric constant of vacuum. 

By substituting these relations into equation (2) and expanding the vector product we obtain: 
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Where in symbols "",""   the upper operator corresponds to 1 ,  the lower one to 2  

The equation (4) may be subject to certain simplifications. Let us note, that due to the uniform charge distribution on the 

surface of each crystal, we have: 
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Due to the assumption of the synchronization of the crystals, which means that the adjacent crystals are rotated by almost the 

same angles, we have:

 

 

1cos,sin1  iiii        (6) 

 Due to these relations, the equation (4) can be simplified after some transformations to the form: 
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2.3. The derivation of the discrete equation of the rotational motion of the crystals 

Although the solution of double integrals (7) exists in the general case, it is very complicated.  In view of the fact that it is also a 

discrete equation of the rotation angle, which subsequently will be subject of conversion into a continuous form, the use of the 

exact solutions of the equation (7) for this purpose is impossible. To solve the given problem we can find the approximate so-

lution of double integrals (7) with a reasonable accuracy. We use the assumption of the synchronization of crystals, i.e. the fact  

that the differences between the rotation angles of adjacent crystals are relatively small. In this case, we may assume that the 

moment induced by the crystals' rotation by identical angles is independent of the moment induced by the symmetric and anti-

symmetric components of the differences of the appropriate angles (Figure 3): 
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Figure 3. The assumption of superposition of the moments caused by crystals' rotation by identical angles and moments 

caused by the symmetric and antisymmetric components of the differences of the appropriate angles, which is described by (9).  

Let us denote the integrals from equation (7) by  11,,,,  iiii adK  :  
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 We assume, that the following superposition of the moments is true: 
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 The correctness and the accuracy of this assumption will be tested in  later discussion. Let us calculate the moment 

 ii adK ,,0
. In this case the simplifications  can be transformed  (9) into: 

11   iii   and 0 i  

 Both integrals (7) give the same solution for 1 and 2 due to the symmetry of the task, so by denoting 
a

d
d ˆ  , we get: 
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In case  ii adK ,,1
 we have: 

',0 1 iii   
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It can be proved that: 
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due to the symmetry of the moments induced by the electrostatic forces from the upper and lower crystal, as it is shown in 

Figure 3. 

For the remaining  ii adK ,,2
 we have: 

",0 1 iii    , "1 ii   ,  
 

"ii  
 
 

After the transformations and the substitutions, which are analogous to the ones performed in the calculation of K0 , we ob-

tain: 



            Artur Wirowski: The Non-linear Modeling of the Rotational Vibrations of the Electrically Charged Cloud of the Ice Crystals          51 

 

 
  






 dd

dd

d

a
adK

i

i

ii 1

2

1

2

1

2

1

2

1 2

3
2

111

2

11

2

"ˆ2ˆ

"ˆ
2

",,ˆ  
  


  (12) 

We can calculate the integrals (10) and (12) in an accurate manner. By denoting respectively: 
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Finally, the discrete equation of the crystals’ rotation takes the form: 

 

     E

i
i

iiii

r

i
i M

t

Ra
adKadK

Q

t
I 








 






12
",,ˆ,,ˆ

4

3

20

0

2

2

2

 
(15) 

 Next we have performed a numerical experiment involving 1000 different sets of test parameters a, d,  randomly 

selected, in order to verify the accuracy of the previously adopted assumption (9), and consequently the accuracy of the equation 

(15). The model parameters have been selected from  the physically possible ranges: 

 
 mmmma 10,5.0

,
 50,5.0ˆd

,
  60,60

,
  2.0,2.01 ,

  2.0,2.02  (16) 

The following parameters have been calculated numerically for each randomly selected combination of input parameters: 
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As a result of the numerical experiment, it has been found that the arithmetic mean of the absolute value of errors calculated 

according to the formula (17), associated with the approximation, (9) is only 0.03‰. The largest error occurs when the para-

meters of and i
”
 are similar. However, due to the assumption of the synchronization of crystals, i

”
 is a small angle, and 

this situation does not occur in practice. Therefore, we can conclude that for given ranges of input data (16), the assumption (9) is 

practically satisfied in an accurate manner. 

2.4.  The approximation of the discrete equation of the motion 

The obtained equation (15) is a very complicated formula of the discrete parameters i and ”i Let us notice that in order to be 

able to transform it to a continuous model using the finite difference method formulas, the coefficients K0i and K2i must depend 

on the parameters i and ”i in the simplest possible way.  

Hence, the series of graphs illustrating the correlation between the coefficients K0i and K2i and the parameters i and ”i 

have been performed. The Figures 4 and 5 have been made for the selected allowable parameters of the model defined by (16): 



52  Open Journal of Mathematical Modeling (2013) 46-57  

 

Figure 4. The dependency of the coefficients K0i from the discrete parameter fi for the selected combinations of the para-

meters a and d̂ . 

We apply the linear approximation of the coefficient K2i, which is the exact approximation in the range of angles. 
  2.0,2.0" .  
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In the case of K0i we get good results in the range of angles   60,60  after using a polynomial approximation of the 3rd 

order. It is worth noting that the polynomial approximating K0i has the form (Figure 4):  
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Figure 5. The dependency of the coefficients K2i from the discrete parameter Df”i for the selected combinations of the pa-

rameters a and d̂ . 

The remaining coefficients of the 3-rd order development are equal nearly to zero due to the specific shape of the graph K0i 
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and they can be ignored, regardless of the combination of the other parameters of the model. We can also note that the ap-

proximation coefficients 
1 and 

3 are positive, regardless of the parameters of the model, and the following inequality is sa-

tisfied: 

   adad ,ˆ,ˆ 13  

 The coefficient 
2 may take both positive and negative values, depending on the parameter d̂ . If the inequality 1ˆ d  is 

satisfied, the coefficient 
2 assumes the negative values, if the strong inequality 1ˆ d  is satisfied, the coefficient 

2  assumes 

the positive values. In the case when 1ˆ d , but 1ˆ d , the sign of the coefficient 2 can be different and it also depends on the 

other parameters of the model. As a result of the polynomial approximation of the coefficients K0i and K2i the following equation 

is obtained: 
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where      
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 The equation (20) has coefficients, which are independent of the discrete parameters i and ”i and it can be used to con-

struct the continuous model of the vibrations of the cloud of the ice crystals. 

2.5. The continuous model of the vibrating cloud 

Next we transform the discrete equation (20) to a continuous form in order to build the continuous model of the vibrating cloud. 

We will use the finite difference method formulas: 

 i    and 
2
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2 2
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 (21)

 

Let us note, that 
2

" 11  
 ii

i


  (Figure 3). By substituting the relations (21) into the equation (20) and after appropriate 

transforming and grouping the components, we get: 
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where 
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The equation (22) describes  the vibrations of the cloud of the electrically charged ice crystals in the continuous form. It takes 

into account the continuous distribution of the electric charge on the surface of the crystals, their rotation by large angles, the 

external forcing and the air resistance. This equation describes the case of the non-linear vibrations and it is known in the lite-

rature as the equation 4
. 

3. The exemplary analysis of the problem of the non-linear vibrations of the cloud of 
the ice crystals 

3.1. The assumptions 

The equation (22) has analytical solutions only for some specific boundary conditions, as the example of 4
 equation [5] [6]. 

Finding, at least approximate, numerical solutions and their visualization is a difficult task, due to the nature of the possible 

solutions, which can be chaotic, harmonic and unlimited in some areas too. Therefore we make a simplification for an easier 

visualization of the solutions of this equation. Let us note, that if we are interested in the solutions for the large angles  for which 

the following condition is satisfied: 

 "   (23) 
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this strong inequality is true: 

    adKadK ,ˆ,ˆ 20    (24) 

Then we can reduce the equation (22) to an ordinary differential equation, which is called Duffing’s equation: 
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By omitting the member 
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
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from the equation (22), this equation has  lost its wavy character, because it is only a 

function of time. In physical terms, it  means no propagation of the vibration of the crystals in the direction of the x-axis. 

However the solutions of the equation (25) allow us for the visualization of the potential types of the vibrations, which are the 

base for the wavy motion of the cloud of the ice crystals, more generally described by the equation (22). The equation (25) has the 

exact solutions as a Jacobi function [7]. They may be of either harmonic or chaotic type, which  depends on the parameters of the 

equation and the initial-boundary conditions. 

If the parameter 0 , the equation (25) as an example of Duffing’s equation, leads to the solutions known as „hard-spring” 

model. In this case, the force of the interaction between the crystals  grows faster than linearly for the large angles of the rotation 

of the crystals (Figure 4 - solid line). This occurs, when the crystals are close enough, i.e. 1ˆ d . The „hard-spring” solutions 

could be chaotic for a relatively large amplitude of the external forcing vibrations moment. There may be also periods when the 

vibrations are harmonic or quasi-harmonic. The vibrations are always limited, therefore in any case the angle of the rotation of 

the crystals cannot be greater than 90°. 

If the parameter 0 , the equation (25) leads to the solutions known as „soft-spring” model. In this case the force of the 

interaction between the crystals grows slower than linearly for the large angles of the rotation of the crystals (Figure 4 - dashed 

lines). This occurs when the crystals are appropriately distant from one another, i.e. 1ˆ d . The „soft-spring” solutions are 

harmonic for a relatively small amplitude of the external forcing vibrations moment. If the external moment is sufficiently large, 

the vibrations grow in the theoretically unlimited way. It means that the rotation of the crystals can be greater than 180°. This 

situation leads to the disorder of the synchronization between the crystals. 

3.2. The sample solution of the problem of the vibration cloud of the ice crystals 

Below we show the selected examples of the solutions of the equation (25). We assume a sinusoidal external forcing vibrations 

moment described by the following formula: 

    ttM E sin  (26) 

and the initial conditions corresponding to the slight initial deflection: 

   100 , 
 

0
0


tdt

td
 (27) 

Furthermore, in  all cases the same values of physical and material constants have been assumed: 

r=916.7 kg/m3, 
m

F12

0 108542.8  , 00054.1r  

We have adopted the following parameters of the model: 

 a) b) c) d) 

d [mm] 0.4 0.4 15 15 

a [mm] 0.5 0.5 5 5 

h[mm] 0.01 0.01 0.1 0.1 

R[kg/s] 3·104 3·104 3.17·104 3.17·104 

Q[C] 9.29·10-10 9.29·10-10 2.94·10-7 2.94·10-7 

 [Nm] 3.40·10-5 1.50·10-5 5.00·10-9 5.00·10-5 

 [Hz] 5.00·10
-2 

5.00·10
-2 

5.00·10
-2 

5.00·10
-2 

Table1. The adopted sets of the model parameters. 

The cases a) and b) lead to the "hard-spring" model, and the cases c) and d) – to the "soft-spring" model. The cases a) and b) 

and  c) and d) respectively differ from one another only in the amplitude of the external forcing vibrations moment. 

For the above set of parameters, the following coefficients of the equation (25) have been obtained: 
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 a) b) c) d) 

2
[Nms2] 

1.00·10-4 1.00·10-4 1.00·10-4 1.00·10-4 

2 [Nms] 1.50·10-7 1.50·10-7 5.00·10-7 5.00·10-7 

2 [Nm] 1.40·10-6 1.40·10-6 1.46·10-6 1.46·10-6 

 [Nm] 6.53·10-10 6.53·10-10 -2.03·10-10 -2.03·10-10 

 [Nm] 3.40·10-5 1.50·10-5 5.00·10-9 5.00·10-5 

Table 2. The coefficients of the equation (25) for  different sets of the model parameters. 

The following charts shows the deflection of the crystals as a function of time. They show the diversity of the potential so-

lutions of the equation (25) (Figure 6): 

 

 

Figure 6. The sample diagrams of the deflection of the crystals versus time corresponding to the different parameters of the 

model: a) the "hard-spring" model – the chaotic vibrations, b) the „hard-spring” model – the quasi-harmonic vibrations c) the 

„soft-spring” model – the damped harmonic vibrations, d) the „soft-spring” model – the theoretically unlimited vibrations (the 

full turn of the crystal) 
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After analyzing the above diagrams, we can conclude that: 

- the solution of the equation (25) and consequently the equation (22) can be very diversified, depending on the model pa-

rameters and the initial-boundary conditions: they can be either harmonic, quasi-harmonic or chaotic, 

- the period of vibrations depends on the amplitude, 

- in  case of the "hard-spring" model the vibrations with smaller amplitude are more regular than the vibrations with the 

greater amplitude, 

- in  case of the "soft spring" model the rotation of the crystals can be greater than 180°, so it leads to the disorder of the 

synchronization between the crystals. 

3.3. The simplified model 

The previously existing model of the rotational vibrations of the electrically charged cloud of the ice crystals was presented in [1]. 

It  assumed that: 

- A homogeneus cloud of electrically charged identical ice crystals is given; 

- Crystal rotation is the result of their electrostatic interactions; 

- The difference between the rotation of two adjacent crystals is negligible; 

- The gravitational force,  operating on  each crystal, is balanced by the force of air resistance acting on the uniformly falling 

crystal; 

- We ignore the influence of air resistance on the rotating crystals; 

- For simplification the electric charge of a crystal is reduced to 3 charges located at the ends and in the middle of the ice 

crystal; 

- We assume that the crystals have the form of thin plates with negligible thickness; 

- The difference between the rotation of two adjacent crystals is negligible; 

- The crystals rotate only by small angels relative to the horizontal position; 

By transforming the equation of the rotational motion of a single crystal the discrete equation, analogous to the formula (15) 

from this work, was obtained in [1] in a relatively simple way:  
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Next, by using the finite difference method we transform the formula (29) to a continuous model of the cloud:  
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where:

 

2

2
2

345

256

lhd

kQ


  ,

22

9

lkQ

d
 , hlI 4

256

35
   

We assume, analogously to assumption in Section 3.2, the sinusoidal external forcing vibrations moment and the ini-

tial-boundary conditions in the form: 

   0,
0


t
tx ,  

0
,

0






tt

tx ,   0,
0


x
tx ,   0, 

Lx
tx       (30)  

We obtain the solution: 
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     (31) 
This solution is purely harmonic, regardless of the assumed parameters of the model. 

4. The Conlusions and the Summary 

As a result of the modelling, the continuous non-linear equations of the vibrations of a cloud of ice crystals (22) has been ob-

tained. When we compare the numerical solution obtained from the equation reduced to Duffing's equation (25) and other so-

lutions of this equation, which are known from the literature [7], with the solution of the simplified model (31) and the optical 

observations of the phenomenon known as "miracle of the Sun" described in [1], we can see that: 

1. The solutions of non-linear model may be harmonic, quasi-harmonic, chaotic or unlimited as opposed to only  harmonic 

nature of the simplified model solutions. The analysis of the observations of the phenomenon included in [1] indicated  a gen-

erally irregular nature of the oscillations with some periods of very good harmonization. The description of the non-linear model 

and especially "hard-spring" solutions corresponds to this experiment  to a big extent. 

2. The period of the vibration in a non-linear model depends on the amplitude of the forcing strength and  is related to the 
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amplitude of the vibration. In paper [1], the observed vibrations of type A and B, which differ in amplitude, were described. The 

greater amplitude of the vibrations were always characterized with a greater period of the vibrations. This coincidence could not 

be explained by the linear model. 

3. In paper [1], it was also observed that the vibration of type A of a smaller amplitude, was characterized with a higher 

regularity, than the one of type B of a greater amplitude. When we compare it to the Figure 6ab ("hard-spring" model), we can 

notice that the vibrations become more chaotic with an increase in amplitude,. 

In conclusion, we can say that the mechanical model of the non-linear vibration of the electrically charged cloud of the ice 

crystals, received in this study, allows us for a much better explanation of many of the observed characteristics of the optical 

phenomenon called " the miracle of the Sun" than the model proposed in [1]. 

 In subsequent studies the author plans to expand the proposed model by taking into account the pencil crystals of a large 

height. This model would allow us to  describe two-dimensional problems. 
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