
A Language-Based Approach to Programmable Networks

Ian Wakeman Alan Jeffrey
Tim Owen

School of Cognitive and Computer Science, University of Sussex, BRIGHTON, UK

November 29, 1999

Abstract

It appears that some degree of programmability is
inevitable within the network, whether it be through
active networks, active services, or programmable
middleware. We argue that programming network
elements with languages designed for use within
a single machine is inappropriate, since the only
defense for the shared resource of the network is
through the use of sandboxes, which are prone to
performance problems and are difficult to imple-
ment correctly. Instead, we believe that new lan-
guages should be designed for programmable net-
works, using type systems that ensure safe pro-
grams, and encourages correct programs.

We have designed and provided the full semantics
for such a language. Building upon this, we have
implemented a compiler, runtime environment and
a simulation environment for our language. In this
paper we describe the major features of the language
that protect the network: abstracted locations; lo-
cated objects; volatile routing; thread and class load-
ing; and enforced resource counting. We show how
these features are used in a number of small case
studies, and in implementing optimised communi-
cation libraries. The ease with which these demon-
strations have been built and debugged shows the
potential for enforcing network programming mod-
els with well-typed languages.

1 Introduction

A key strength of the Internet has been to reduce
the intelligence within the network to that required

to maintain connectivity through the routing tables
in the routers. This has enabled the network to
grow quickly and to scale with a reasonable amount
of comfort. However, new applications are forc-
ing the network architects to reassess the function-
ality within the network. Audio and video have
forced the introduction of some per-flow (or group
of flows) state within the router [1, 2, 3, 4]. Fire-
walls have been extended to allow programming of
the filters, requiring state machines to operate upon
the received packets. Nearly all forms of group com-
munication, whether it be based upon multicast and
explicit message delivery or on more implicit mech-
anisms such as sharing information at a Web proxy,
have used protocol specific code running on nodes
within the network to connect the group members
together in various topologies.

The research community has risen to the chal-
lenge of network programmability by defining a
number of extensions to the network architecture.
Some have chosen to develop middleware which
uses tried and trusted technology such as RPC and
CORBA to offer services on routers within the net-
work [5]. However, we believe that RPC-based
mechanisms suffer from problems of latency in the
communication between application and service el-
ement, and will not be effective for many applica-
tions.

An alternative approach has been to assume that
applications can run their own code on some pub-
lic processing elements within the network. This in-
creases the flexibility of the architecture, since the
code can then react to changes in the environment
on the spot, rather than suffering an RPC round trip
time before reacting. These processing nodes are
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placed at strategic places within the network such as
at administrative boundaries, or at locations where
there is a large mismatch between bandwidth, or
where the certain location specific services can be
used. Work within this area ranges from the Active
Services of McCanne et al [6] through aglets from
IBM [7] to proxylets [8].

Others believe that the entire architecture should
be rethought as a computational environment, in
which everything can be programmed, and the en-
tire network becomes active [9]. The research in this
area is aimed at discovering how viable it is to open
up such elements of the communications architec-
ture as the routing table.

A fundamental question raised by both the active
service and the active network approaches is how to
ensure that the shared resource of the network re-
mains safe and is protected from misbehaving pro-
grams. Programs can abuse the network by gener-
ating packet explosions and can abuse the shared
processor by using all the memory and the proces-
sor cycles. Worse, they may subvert the working of
correct programs so that they too break. If network
programmability is going to be available to the ap-
plication designers, we need to ensure that they do
not break things by accident, let alone by intention.

Traditional systems approaches to protection are
based upon defining what a program should be able
to do, then using runtime checks to ensure that the
program doesn’t exceed these bounds. This leads
to the sandbox model of protection, as used in Java
and enhanced in [10] to provide protection for Ac-
tive Networks.

However, there are major problems with this ap-
proach. First, each runtime check reduces the per-
formance of the system, increasing the overhead of
each use of system resources. Second, it is very dif-
ficult to ensure that the protection mechanisms are
correct, and cannot be subverted in any way.

An alternative approach is to use compile time
checks upon what the program is doing. This uses
the type system to represent predicates about pro-
gram functionality and if a program is well-typed,
then it proves the program to obey the policies im-
plemented in the type system. This approach has
been used to allow users to run programs within the
kernel as in Spin [11], and in protecting access to
router functionality in the Switchware project [12].

By implementing protection policies in the type sys-
tem, programs are checked for correctness at com-
pile time, and so many runtime checks can be re-
moved. It is still a difficult task to prove that the type
system correctly implements the protection policies,
but at least this problem is now punted to the lan-
guage designers, who have the mathematical tools
to prove the semantics of the language.

In this paper we describe our design of the Safe-
tyNet programming language and environment.
SafetyNet is a well-typed language for use in Active
Networks and Active Service architectures. The type
system is designed to ensure correct programs can-
not destroy network integrity. In doing so, we have
converted the problem of protocol design into the
problem of designing distributed applications. The
work has grown out of our previous work in design-
ing generalisable proxies for mobile clients [13, 14],
in which we adapt the implementation of the perfor-
mance by substituting different behaviours for dif-
ferent resource constraints, using the techniques of
Open Implementation [15]. The language most sim-
ilar to our approach is the PLAN language within
the Switchware project [16]. However, the PLAN
language is functional in approach, whereas we use
a class-based object-oriented approach. We believe
that more programmers will be comfortable with an
OO language.

The presentation of this paper focuses upon
the system aspects of the language, explaining
how the architectural requirements have influ-
enced the design of the language. The seman-
tics of the language can be viewed online at�������������
	���
�
�����������
�����������
�������������� ��
��
� , whilst a
paper descibing the core features of the semantics
has been submitted for publication [17].

The rest of the paper is as follows: In section 2
we describe the language and how it protects the
network. We then describe how the language can
be used to code a simple remote procedure call.
We conclude with descriptions of work currently in
progress and future work.

2 SafetyNet Design

The design goals of the SafetyNet language are:
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� To provide a network programming language
based on Internet ‘best effort’ communication.
� To provide scaleable high-level communication

based on ‘remote spawn’ from which other
communication can be built.
� To make use of types as safety properties, to en-

sure that the safety and security policies of the
network are maintained.
� To rapidly prototype tools such as compilers

and simulators in order to drive the develop-
ment of the language by examples.

In this section, we discuss how these goals have led
to the development of the prototype SafetyNet lan-
guage.

2.1 Best-effort distributed programming
In the Internet, an application transmits a packet,
which is sent to the next router on the way to the
destination. At this router, the arrival of the packet
causes code to run, which calls other code depen-
dent upon the fields in the header of the packet. This
code may access and modify local state stored in the
router and then copy or create one or more packets
to be sent out from the router. These packets are then
routed on output links depending upon the desti-
nation for each packet, and so on until the packets
reach their destination, or are destroyed within the
network for whatever reason.

In our programming model, we have attempted
to replicate this basic structure of packet transmis-
sion. In the Internet, the arrival of a packet ini-
tiates some thread of control which uses the data
within the packet to decide upon the disposition of
the packet. In our model, a packet becomes a thread
of control, carrying the code to be run and the names
or values of any data referenced within that code.
When a thread arrives at a Safetynet-aware router
or end system, the thread code is instantiated within
the runtime and runs within a defined scheduling
class. The thread of control may call other code to
be run on its behalf. The other code is encapsulated
within classes, which are either present in the router,
or are dynamically loaded from elsewhere. Threads
can spawn other threads, either locally or on the next
hop to some destination.

In this model, the atomic unit of communication
is to remotely spawn a thread at the next hop to a
destination ��
�� � :
���������
	�������
�����������	
�

������� ����� �����
�

Note that there is no return value from this spawn-
ing. There is no direct acknowledgement signal from
the next hop indicating that the spawn was success-
ful or not. In this way, we model the best effort de-
livery of IP.

Also note that there are no guarantees that two
such spawns will spawn a thread at the same loca-
tion. The routing architecture of the Internet offers
no guarantee that routes will remain constant. We
reflect this dynamic routing in forcing the program-
mer to request a route to a destination, rather than
allowing them to define which hop to route to next.
We believe that IP routing is robust and well-tested,
and that SafetyNet code should not have the ability
to subvert the underlying routing mechanisms.

The primitive we have supplied to the program-
mer is remote spawning on the next hop to a loca-
tion. This is a very low-level primitive, but from
it we can build unicast communication, multicast
communication, RPC, and many other communica-
tion styles.

There are two phases to implementing remote
spawning: at compile time, we wrap the code up
into a method call; and at run time, we serialize the
data required for the method call, and then call the
method, which may in turn require some class load-
ing. For example:
� ��	���������	�� ���"!
���������
	�������
�����������	
�

����� ���#����$���	�%&����'(�)�*	�%�� �����
�

can be closure converted at compile-time to:

� � �����#+�$��,�
��	���	)� � $���	�%����#
�-��/.0�1�#����	)2(�

����� ���#����$���	�%&����'3�)�*	�%�� �����
�

�
� ��	���������	�� ���"!
��������� ��	�
���-�	��#������	
�4+�$�� � 
�-��5.0�)2)!

�

Remote spawning is thus just syntax sugar for an
unreliable remote procedure call, but without any
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return values. At run-time, we execute this by se-
rializing the data � and then calling ����� ������� on the
serialized data. If this is the first time the code is
executed, this will cause the ����� class to be loaded,
but the class can be cached for subsequent efficient
execution, as occurs in the ANTS system.

2.2 Type Parameterisation
In constructing protocols, the actual data carried by
the protocol packets is often opaque to the protocol.
However, when the data pops out from the proto-
col, applications need to understand the exact struc-
ture of the data. Rather than use casting to ensure
that the language respects the opacity of the data, we
have used generic class parameters, and F-bounded
polymorphism, similar to the implementations of GJ
[18] and Pizza [19]. For example, the �	� ��
������ class
below has a single static method which can forward
any type of data to a remote location. The partic-
ular type of data is chosen by the programmer and
parameterises the call made.

� � �����
����
�����
�� .*2 �
��	���	)� � $���	�%����
����
�����
���� � � ��� � ��� ��� ��	�� .
������	5� � � � ��	)� �����
� � ��� ��� ��	
2 �
���5.���������	)2 �

��� ��� ����	�%&����'
� � � ��� �
���������
	�������
���� ������	��

����
�����
�� � ����
�����
���� ��� ��� ��	��
.0������	�� �&2)!

�
�

�
�

The same class can now be used to forward video
packets, audio packets, and any other traffic. If we
have a ��� ��
 � packet class defined, then we call
����
�����
�� � ����
�� ��
���� ���*�������

.0������	�� $�!��)�������#"�� ��� � 	)2 !

to forward a single video packet. Note that unlike
C++ templates, this class does not need to be in-
stantiated separately for each packet type; instead
each instantiation can share code and static data. By
removing the need for casting, we have reduced a
number of the run-time type errors which Java pro-
grams are prone to.

2.3 Located Objects
Most objects in a distributed program are only ref-
erenced locally, and are never referred to by re-
mote sites. But some objects act as ‘well-known re-
sources’, which can be referred to anywhere on the
network. Such resources correspond to sockets, ser-
vices, object registries, object databases, and so on.
In SafetyNet, such resources are located objects. We
have implemented a � � ������
�� class using the visitor
design pattern, with the following class definitions:
����	)��$��%�)����� � ����
)� � � ��&���' � �($�� � � � ����� � � � ��	����

� � � �����
)�������-�
 � ���".*� �&�*	 �*)�������-�
 � � 2 �
$���	�%���� � ��� ����	 . � � � ��	�� ��� � � � 	���
�� )������*-�
 � ����2)!

�

����	������ �+' � �,$�� � � � ����� � � � ��	������)�*� �*	���

� � � �����
)�������-�
 � ���".*2 �
��'���	�
�� � 	�$���	�%����
$)� � �*	�-���
��"..)�������-�
 � ��2)!
��'���	�
�� � 	�$���	�%����
$)� � �*	�)���$���	 �". � � � ��	)� ���)2)!
$���	�%����/$)� � �*	�0�
�
���
 .�2 � �
�

To advertise a heap-allocated object outside of the
location in which it resides, a located object is cre-
ated, by a � � ������
�� object parameterised on the cor-
rect type and initialised with a reference to the ob-
ject. For instance, if we have an 1 �����	2�
���3�
�� object,
we use the following code:
� ��	 ����
�$���
 �*-�	�	��54���
�$���
(�4�����/-�	�	��54���
�$���
 . 2)!
� ��	 ����
�$���
�6���$���
 	 � � � � ��	������ - 	�	��54���
�$�� 
��
�4����� � � � ��	���� .�����
�$���
�2)!

The �

���3�
��57���3�
���� can now escape into the network.
To use the server through this located reference, the
programmer must create a � � ������
�� ��� � � � � � object
which is passed into the located ������
���� method. For
the programmers’ convenience we have dressed this
up with syntax sugar resembling a switch statement
eg.

�����
���)�*	 � % .�����
8$���
�6��8$���
�	)2 �
� �����
-���
��".�����
�$���
 �9-�	�	��54���
�$���
)2 �

��� -����4����
�$���
 �����
�

� �����
)���$���	��". � � � � � � � ��	)� ���&2 �
��������� 	�������
���� � � � ���� 
�� � -�
�� ��$�� � � ��� ��	#����� � � � ��	)� ���
�

�
�

�����
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The switch statement is compiled into the creation
of a � � ������
�� ��� � � � � ��� 1 �����	2�
��53�
���� object, which is
then passed into the ������
���� method of the located
object. If the call is at the location of the server,
then the 3 � � � � 1 
���
 method of the � � ������
�� ��� � � � � �
object is called, otherwise the 3 � � � ����
 � � ��
 method
is called. This visitor pattern ensures that objects
are never referenced outside of the location of their
heap. Note that the � � ������
�� ��� � � � � � has a non-
abstract visitError method which is empty. Pro-
grammers can override this method to provide error
handling, rather than dying silently.

2.4 Types in Networked Programs

We now turn to the question of what types may
be captured and sent in spawn expressions. In
most object-oriented languages, objects are heap al-
located, so copying an object to a new location either
requires heap references to be valid across locations
or a deep clone to be made. Both of these alterna-
tives are costly, the former since it requires all ob-
jects to be externally registered, and the latter since
it requires an object cache of all serialized objects.

Our solution has been to split objects into ones
which are heap allocated, and ones which are
stack allocated. For example, all of the primi-
tive datatypes such as � ��� and � � ������
 are treated
as stack-allocated objects, whereas more complex
structures such as hash tables are heap-allocated.
We can then require all serializable data to be stack-
allocated, and to only contain stack-allocated fields.
Again this is checked at compile time through the
use of the type system. Classes are either stack al-
located, indicated by the keyword 3���� , or heap allo-
cated, indicated by the keyword ��
�� . In addition, if
a 3���� class is intended to be sent between locations,
then it must be decorated with the ��
�� � ��� �
	 ������

keyword.

For example we can declare:

����
)� � � ��&�� ' � �,$�� � � � ����������$�� � ��� .
��� ����-�' � ��� ! � ����-�' � �
2#�

�)� � � � ��� ����-�' � �#��� !
�)� � � �/!�� ����-�' � �#� ! !
�

����	)��$���
���� � � ����� -�����%�	���' � �

� � � ������
���!�� � � ������� 	���$�� .*2 �
$���	�%���� � ����	�� �����".�
���!)2
� '���� � ����� !
$���	�%����#��-�	 .�
���!����*	�� $&2)!
$���	�%���� '���	 .�
���!)2���� 	���$ !
�

then the following is legal:
� ��	 � � � ��$�� � ���#� ����� � ��$�� � ��� .�� ��� ��� ��� 2�!
��������� ��	�
���-�	��#������	
�

����� ���#����$���	�%&����'(�)�*	�% �"�����
�

but the following is not:
� ��	4%/�*-�����%�+���' � ���0��	�
�����'�� � � � ��	)�*�����
�4�����/-�����%�+���' � ���0��	�
�����'�� � � � ��	)�*����� .*2)!
��������� ��	�
���-�	��#������	
�

����� ���#����$���	�%&����'(�)�*	�%4% �����
�

We also do not allow any assignment to stack-
allocated objects, so we ban cases such as:
� ��	���������	�� ���"!
��������� ��	�
���-�	��#������	
�4� �0�
�����)! �

Note from above that the � � ������
�� class is a serializ-
able val class, so it can be transmitted over the net-
work.

By using stack-allocation for serializable data, we
can efficiently serialize and transmit data, and we
make explicit the object cloning and caching that is
implicit in Java RMI and other object serialization ar-
chitectures. In addition, garbage collection is made
much simpler and more efficient, since most data is
now explicitly stack allocated, rather than heap allo-
cated as in Java.

If we are going to allow classes to be serializable,
then this means we have to decorate our generic
classes to say which class parameters are going to
be serialized:

� � ��������-�	���-�	�4�	�
�����$ � � � ����������	����
�
��'���	�
�� � 	 $���	�%���� �������1.�����	�� 2)!

�

� � �����
����
�����
�����
#�
��	���	)� � $���	�%����
����
�����
�� �
����
)� � � ��&���' � � � � ����� "�� ��� ��	

� .
������	5� � � � ��	)� �����
���5� ��-�	���-�	�4�	�
�����$ � "�� ��� ��	��3��	�������	��
�/�*"�� ��� ��	
2#�
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���5.���	�������	)2(�
��� � ������� . �&2)!
� � � ��� �
��������� ��	 
���-�	��#������	��

����
�����
�����
 � ����
���� 
��
� "�� ��� ��	�� .0������	�������� �&2 !

�
�

�
�

The � ��������� 2�����
���� class is used for communication
within one location, and so does not need its data
to be serializable. The �	� ��
�������
�� class, on the other
hand, sends packets out over the network, so they
need to be serializable.

2.5 A Simple RPC Mechanism
Class loading is dynamic as in Java. The seman-
tics of class loading is to only load a class when it
is actually used so that the transmission of records
across multiple locations does not require a class to
be loaded. For instance, in the RPC code in Figure
1, the � ��� ��� ��� � class is loaded at the source and is
then not loaded until the call reaches its destination.

The data which is sent between locations is:
� Header information identifying the packet as

SafetyNet active code.
� A small code section requesting a call to��� ��� ��
�����
���� on the way out and ��� � ����
���� � ���

ont he way back.
� Data payload consisting of the destination, the

argument on the way out, and the result on
the way back, the located heap reference to the
Latch to return the value on, and the field val-
ues of the object.

Once the ��� � class is loaded at all of the interme-
diate nodes along a route, the bandwidth overhead
of using the active router rather than a conven-
tional router is small: an identifying header, plus the
method name to call, for a large gain in flexibility.

Other things of note in this example is the use of
the � ��� ��� class to implement a set and blocking get
on some data. This is declared native and uses inter-
nal mechanisms within the runtime to do the appro-
priate synchronization. We also extend the base RPC

class from the ����� � � ��� � class, so that any RPC class
can be called in the same fashion as ��������������� �����
	 .
The destination is passed as a parameter when the
RPC object is instantiated.

2.6 Linear types

Throughout the SafetyNet project, we are making
use of types to guarantee safety features. Tradition-
ally, this has meant, for example, using types to en-
sure that all memory access is safe. We hope to gen-
eralize this to show more subtle run-time behaviours
such as resource usage, web-of-trust, and security.
In this section, we shall show an example of using
types to bound resource usage.

Bounding resource usage is a general problem.
Within the Internet, the IP packet uses a TimeToLive
field in the packet header to ensure that packet do
not circulate for ever. Each time the packet passes
through a router, the field is decremented, until it
reaches zero, when the packet is thrown away. How-
ever, this does not give protection against program-
mers who maliciously or inadvertently create ex-
ponential packet forwarding loops such as in Fig-
ure 2.6.

We have generalised the TimeToLive field to be
a general resource usage counter, which we have
termed a BeanCount. The BeanCount type is derived
from a theory of types known as linear types[20, 21],
in which the values can only be used once. The
BeanCount can be viewed as a protected integer.
Each thread has an associated BeanCount value de-
rived from the spawning. If each spawn operation
ensures that the combined values of the BeanCount
for the old and new threads is strictly less than the
old thread value, then we can be sure that a thread
cannot spawn threads indefinitely. We use syntactic
sugar to hide the spawn count from most applica-
tions. However, we have provided a native � 
����5�����
object, into which threads can dump beans or gather
beans. This allows programs to implement useful
functionality such as multicast.

2.7 Protyping in Java

Our prototype compiler and runtime environment
has been built in Java, and the compiler compiles
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����	)��$���
���� � � ����������	 � % � � � ����������	���� .*2 �
$���	�%���� �0� .�����	�� 2)!
$���	�%������ .*2 � ����	��"!
�

����	������ �+' � �3����
)� � � ��&�� ' � �%$�� � � � �����
��-�� � 	)� ���
� � � �����%6�
�'�-�$�����	�� � � ����� )�����- � 	�� .*2 �
��'���	�
�� � 	($���	�%���� ����� � !5. 6�
�'�-�$�����	)2
�9)�����- � 	 !
�

����
)� � � ��&�� ' � �,$�� � � � �����#
�� � �
����
)� � � ��&���' � � � � �����
6�
�'�-�$�����	��
����
)� � � ��&���' � � � � �����
)�����- � 	

� . � �*��-�� � 	)� ��� � 6�
�'�-�$�����	�� )�����- � 	����
������	5� � � � ��	)� ���
23����	�������� ��-�� � 	)� ��� � 6�
�'�-�$�����	�� )�����- � 	�� .*2 �

�)� � � �/� �9��-�� � 	)� ��� � 6�
�'�-�$�����	�� )�����- � 	��#� � !
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Figure 2: Exponential looping code

into Java. This has allowed us to develop a work-
ing system quickly as we have evolved the language.
However, we must emphasise that this is a proto-
type, since compiling into Java removes many of
the expected performance benefits, and many of our
safety features can be circumvented by producing
Java classes that use the runtime API. Accordingly,
we have not yet devoted much effort to tuning the
network performance of the implementation, since
this effort would be thrown away as we move to the
SafetyNet Virtual Machine.

Since we are using Java as the base implementa-
tion, we can only approximately evaluate how the
threads and records in SafetyNet map onto packets.
We currently map each thread onto an anonymous
class subclassed from an abstract Runnable Safe-
tyNet thread we have named Snakes. The Snakes
maintain information about the thread, such as its
current BeanCount and the program identifier. The
anonymous class mechanisms in Java already use
closures, so we piggyback on this to create the class
for the given thread by putting the thread code in the
run method of the class. This can then be serialized
into a byte array and sent as a packet. The current
implementation uses a runtime check to ensure that
the byte array is small enough for a single 1500 byte
UDP packet. If the byte array is too big, it relies on
the underlying IP fragmentation to send the packet.
Since we do not guarantee the execution of threads,
this is currently good enough.

An unfortunate side effect of Java serialization
is that we unpack every packet into its component
classes, even though parts of the data are not neces-
sarily used, as in the RPC example. When we move
to the SafetyNet Virtual Machine, we will be imple-
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menting lazy class loading, which only loads classes
on demand.

We make use of dynamic class loader technology
to build our own class loader using SafetyNet as the
class directory. This has been remarkably easy to do,
due to the excellent design of the class loading mech-
anisms in Java [22].

The use of stack allocated records does not neces-
sarily imply that the implementation should allocate
the records on the stack. In our current implementa-
tion in Java, the records map to Serializable classes,
which are obviously heap allocated. In future imple-
mentations, we may make use of region-based anal-
ysis [23].

Our language is designed to be independent of the
routing structure underneath. Deployment of Safe-
tyNet nodes could use an “Active Network” bit to
reroute the packet into the common computational
engine of some switch, so using the existing routing
infra-structure, or the network could be formed as
an overlay network, such as the MBone or the pu-
tative ABone. In the current prototype implementa-
tion, routing is static and controllable, allowing test-
ing. We are exploring using dynamic routing for fu-
ture releases.

There are a number of support classes, such as
timers and debugging channels. To allow configura-
tion of topologies according to the current load and
available bandwidth in the network, there is a mea-
surement class which allows querying of the avail-
able bandwidth and other measurement statistics on
the next hop to some host.

We have been able to use the known semantics of
the language to allow some simple optimisation of
communication patterns. We have built a number of
RPC classes, based on the code shown in Figure 1.

The semantics of this code can be reduced to show
that the function Function.apply will only ever be re-
quired on the destination, and that the Argument and
Result are only passively carried across the inter-
vening network without evaluation. This allows us
to optimise the implementation of RPC so that the
Argument and Result are transmitted directly across
the network, rather than evaluate the thread code
at each node. This approach to optimisation is an
ad hoc use of partial evaluation based on the lan-
guage semantics, which we hope to formalise and
automate in future work.

3 Current Status

The language has now passed through three ma-
jor revisions since the initial prototype compiler,
changing the syntax and semantics of located ob-
jects, and of stack versus heap allocation. The
compiler is now relatively stable and is in use
for student projects and in teaching distributed
systems. The current release can be found at
%�	�	�� � ��� ����� ��� ��'�� � ��-���� � � �&� - � � � 
������ � 	�� � ��������	8!�����	 � .

We believe that a key area of application for active
services and networks will be in matching group
communication to application requirements. We
can match delivery mechanisms to the expected
message and receiver populations, using variations
on flooding for dense populations, whilst using
low maintenance shared trees for long lived sparse
groups. When information needs to be synchronised
in some way across a group, the latency of the syn-
chronisation can be much reduced if the synchroni-
sation happens at the centre of the group rather than
going to each node at the edge. For asynchronous
communication, the program can act as the informa-
tion repository, eg a migrating web server could fol-
low time zones with a limited cache.

For synchronous delivery of messages to a group,
we have generalised multicast. Since we have a
polymorphic language, we have defined a base mul-
ticast class and an associated group identifier class,
from which all implementations of multicast inherit.
A student within our group is building a suite of
multicast protocols withina common framework for
particular applciation requirements, such as total or-
dered delivery, reliable multicast etc. Other students
have developed applications such as an network in-
trusion detection system, a distributed virtual en-
vironment integrating the Java3D VRML browser
with SafetyNet for distributing events, and a dis-
tributed wargame, based on the same principles as
distributed simulation.

4 Future Work

For most applications, the packet forwarding code
will simply receive a packet, update some state and
send a packet onwards. We would like to be able
to distinguish between fast path code, from con-
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trol code, and place the fast path code in a special
scheduling category. However, we need to be sure
that the fast path code will terminate, and doesn’t
perform expensive operations such as heap alloca-
tion. To do this we will be using an extension
to the type system based on Categories of Computa-
tion[24, 25, 26, 27]. We will define a sub-language
of SafetyNet which doesn’t have recursion (so guar-
anteeing termination), heap allocation or other ex-
pensive operators. Code which is typed as Packet-
forwarding will be checked to ensure that it only uses
the restricted sub-language and classes which are al-
ready type-checked as packet-forwarding.

Much of the work here has been inspired by the π-
calculus [28], and builds on the work in which chan-
nels have been generalised to locations in [29, 30, 31].
These calculi have not only modelled communica-
tion networks; they have also been used to model
security processes [32, 33, 34]. We will be using
the nonces created in nominal calculi to model the
chains of trust formed from principals to their code,
and in the use of secure certificates. Other language
work includes the use of partial evaluation to gen-
erate optimisations on the communication patterns
within the code, and in using region based memory
allocation.

Further work is planned to design and implement
our own virtual machine and related code and data
representation, so we can be sure that the safety fea-
tures of the language are reflected in the machine,
and we can obtain valid performance measures un-
encumbered by the use of the JVM as our runtime.
The current prototype implementation is completely
unsuited for performance evaluation, since we by
necessity are using some very heavyweight features
of the JVM such as serialization.
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