
8.7 Interactive Motion Correction and Object Manipulation

335

Interactive Motion Correction and Object Manipulation

Ari Shapiro∗
University of California, Los Angeles

Marcelo Kallmann†

Computer Graphics Lab
University of California, Merced

Petros Faloutsos‡

University of California, Los Angeles

Figure 1: In order to avoid collisions between the umbrella and the two posts the arm motion was planned in sync with a walking sequence.

Abstract

Editing recorded motions to make them suitable for different sets of
environmental constraints is a general and difficult open problem.
In this paper we solve a significant part of this problem by mod-
ifying full-body motions with an interactive randomized motion
planner. Our method is able to synthesize collision-free motions
for specified linkages of multiple animated characters in synchrony
with the characters’ full-body motions. The proposed method runs
at interactive speed for dynamic environments of realistic complex-
ity. We demonstrate the effectiveness of our interactive motion
editing approach with two important applications: (a) motion cor-
rection (to remove collisions) and (b) synthesis of realistic object
manipulation sequences on top of locomotion.

CR Categories: I.3.7 [Computer Graphics]: Three-Dimensional
Graphics and Realism—Animation; I.3.6 [Computer Graphics]:
Methodology and Techniques—Interaction Techniques.

Keywords: character animation, motion capture, motion editing,
virtual humans, object manipulation

1 Introduction

Techniques based on libraries of motion capture produce the most
realistic animations of virtual humans to date. However one of the
main drawbacks of such techniques is their inability to offer, with-
out additional mechanisms, any variations from the exact recorded
motions. The virtual environments where the playback of motion
occurs differ from the environment in which the motion was cap-
tured. Virtual environments often contain obstacles and characters
that were not present in the motion capture studio. The motion cap-
ture data must be modified to accommodate the virtual environment
∗e-mail: ashapiro@cs.ucla.edu
†e-mail:mkallmann@ucmerced.edu
‡e-mail:pfal@cs.ucla.edu

in order to preserve the appearance of realism. For example, a vir-
tual human may need to swing its arm away to avoid a virtual object
or lift its leg higher in order to step over an obstacle that lies on the
ground.

Designing in advance all required motions for a given virtual en-
vironment or scenario involves tedious and time-consuming design
work. Furthermore, it is not practical to rely on pre-designed mo-
tions when object grasping and manipulation are required for arbi-
trarily located objects in arbitrary scenes. A recorded motion cap-
tured of a person catching a ball with two hands at chest-level will
not be effective for catching a different sized ball with one hand at
waist-level. The problem is even more complex when the charac-
ter, the target and the obstacles in the environment move. This is
the problem that we address in this work.

We introduce a new motion editing approach that combines
recorded motions with motion planning in order to produce realistic
animations of characters avoiding and manipulating moving objects
in dynamic environments. The approach has two applications: 1)
Motion correction, where a prerecorded motion played on a virtual
human is automatically corrected to respect obstacles in the virtual
environment, and 2) Object manipulation, where virtual humans are
instructed to grab, drop and touch various objects, either moving or
fixed, while playing back recorded motion and respecting both fixed
and moving obstacles As an example of motion correction, Figure 1
shows a walking character manipulating an umbrella so that it can
walk through the two posts without hitting them. The motion of
the character’s arms was synthesized interactively by our planner
on top of the original locomotion.

Our approach is based on a motion planner that generates collision-
free motions for specified linkages of a character, making them
reach desired targets at specified times. In order to address the time
constraints, the planner considers time as one additional dimension
in the search space. Therefore moving targets, moving obstacles
and synchronization with keyframe animations can all be taken into
account together. Our method proves to be very efficient for pro-
ducing object manipulation sequences as well as for adjusting mo-
tions to avoid collisions with obstacles. We are also able to control
stylistic aspects of the resulting motions by customizing the search
heuristics that our planner employs when exploring the space of
possible configurations. Furthermore, we employ an anatomically
meaningful skeleton parameterization that helps us enforce realistic
limits on the motion of the character’s joints. To demonstrate the ef-
fectiveness of our approach, we present several complex examples
solving highly dynamic tasks.

Contributions. We present: (a) a hybrid motion synthesis solution
that combines recorded motions with motion planning, and (b) how
to control the obtained results by choosing different configuration
sampling strategies for the motion planner.

In general our method can be applied to generic task-oriented mo-
tion editing problems respecting collision-free and spatio-temporal
constraints. It requires about one second of time to compute mo-
tions of average complexity making it suitable for interactive use.

2 Related Work

Motion planning research for animated characters has traditionally
been segmented into two different areas; 1) full-body motion plan-
ning for the purpose of locomotion, and 2) reach and arm planning
for the purpose of object manipulation.

Full-body locomotion planning. Motion synthesis, whose pri-
mary goal is to generate plausible motion that adheres to given
constraints, such as a movement path, has been explored by past
research [Lau and Kuffner 2005; Kwon and Shin 2005; Lai et al.
2005; Kovar et al. 2002; Arikan and Forsyth 2002; Choi et al.
2002]. The goal of our method differs in that rather than generating
locomotion sequences as these other methods do, it targets arm and
leg movements corrections that either adhere to constraints in the
virtual environments or allow object manipulations not included in
the original motion. Our method uses the time dimension in plan-
ning in order to handle dynamic obstacles. Of particular note, [Lau
and Kuffner 2005] uses the time dimension in order to plan for dy-
namic obstacles. In contrast, our method uses the time dimension
in concert with a locomotion clip to handle object manipulation and
arm linkage adjustments, rather than to generate the underlying lo-
comotion clip. Also, our method does not require a preprocessed set
of motion clips that have already been segmented and transformed
into an FSM, and can use any motion clip that propels the animated
character. The inclusion of the time dimension in a motion planner
has also already been proposed in Robotics [Hsu et al. 2002]; how-
ever, we present a planner that uses the time dimension for a specific
set of tasks; to plan the motions of some limbs in synchronization
with external motions affecting the same character.

Given the complementary nature of our work to the research in lo-
comotion synthesis, our method could be enhanced with the inclu-
sion of such methods as a preliminary motion editing stage. The
locomotion generation method would create a motion clip, which
would subsequently be used as input into our system which would
in turn edit and arm and leg movements of the resulting animation.

Of relation to our work, [Pettré et al. 2003] uses a two-stage lo-
comotion planner to first plan the movement of the character, then
correct the upper body for collisions. Our method differs in it can
handle simultaneously moving targets, moving obstacles and mov-
ing characters.

Reach and arm planning Since the first application of motion
planning to computer animation [Koga et al. 1994] which included
grasp planning, several motion planning methods have been pro-
posed specifically addressing human-like characters manipulating
objects.

One approach is to search for a sequence of intermediate suitable
hand locations in the workspace and use Inverse Kinematics (IK) to
derive arm postures reaching each intermediate hand location [Ya-
mane et al. 2004; Liu and Badler 2003; Bandi and Thalmann 2000].
The final valid motion is obtained through interpolation of the pos-
tures. Another approach is to search directly in the configuration

space [Koga et al. 1994; Kuffner and Latombe 2000], yielding sim-
pler algorithms (not requiring IK during the search) that can address
the entire solution space. As the search space grows exponentially
with its dimension, simplifying control layers can be specified for
synthesizing whole-body motions [Kallmann et al. 2003].

Hardware acceleration has been used to generate arm linkage paths
for manipulation purposes [Liu and Badler 2003] for stationary
characters. Our work is similar in that we use a similar analytically-
based IK algorithm [Tolani and Badler 1996], however our method
works with both non-stationary characters as well as moving ob-
jects.

A key feature of our method is efficiency. We choose to perform the
search in the configuration space, relying on a Rapidly-Exploring
Random Tree (RRT) planner [LaValle 1998; LaValle and Kuffner
2000] in its bidirectional version [Kuffner and LaValle 2000] along
with adding the time dimension to the search. This allows our
method to be used interactively by an animator.

The problem of synthesizing human-like arm movements is ad-
dressed by [Yamane et al. 2004] by using examples from motion
capture examples to generate velocity profiles of natural arm mo-
tions. Unlike this method, our method is able to plan motions that
involve moving feet and moving characters. Our method does not
use example motions and thus our arm movements are less likely to
look as natural. However, we are able to generate a solution with
much greater speed, on the order of seconds rather than minutes,
and thus are much better suited for interactive use.

3 Problem Formulation

We represent the character as an articulated figure composed of
hierarchical joints. Let CF be the space of all full configurations
of the character. Let c f = (p,q1, . . . ,qr−1,qr, . . . ,qn) ∈CF be one
full configuration of the character, where p ∈ R3 is the position of
the root joint, and qi ∈ S3, i ∈ {1, . . . ,n}, is the rotational value of
the ith joint, in quaternion representation. The components of c f

are organized in such way that the rear part cp = (qr, . . . ,qn) ∈CP

denotes the degrees of freedom (DOFs) controlled by the planner,
and the fore part cm = (p,q1, . . . ,qr−1) ∈CM contains the remain-
ing DOFs, which are controlled by an external motion. Therefore
CF = CM×CP and c f = (cm,cp).

An external motion controller affecting the DOFs in CM is de-
fined as a time-varying function mm(t) = (p(t),q1(t), . . . ,qr−1(t)).
Therefore p(t) ∈ R3 describes the translational motion of the root
joint, and qi(t) ∈ S3, 1 ≤ i < r, describes the rotational motion of
the affected joints in their local frame coordinates. We assume that
mm is completely defined over a given time interval I ⊂R, as is the
case for motions defined as keyframe animations. We furthermore
assume that mm(t) is collision-free for all t ∈ I.

In order to take into account moving objects in the environment, all
object motions are required to be parameterized by the same time
parameter t ∈ I of motion mm. We therefore construct a function
w(t), which sets the state of the world to the desired time t.

Let cp
init ∈CP and cp

goal ∈CP be initial and goal configurations spec-
ified to be reached at times tinit and tgoal respectively, [tinit , tgoal]⊂ I.
Our search space includes the time dimension and is defined as
CS = CP × [tinit , tgoal]. Configuration cs = (cp, t) ∈ CS is valid if
the character’s posture (mm(t),cp) ∈CF respects joint limits and is
collision-free when the world’s state is w(t). We denote by CS

f ree
the subspace of all valid configurations in CS.

Consider now cs
init = (cp

init , tinit) and cs
goal = (cp

goal , tgoal) be initial
and goal configurations in CS

f ree. Our problem is then reduced to
finding a path in CS

f ree connecting cs
init to cs

goal .

Our planner solves the problem by searching for a sequence of valid
landmarks cs

i = (qr
i , . . . ,qn

i , ti) ∈CS, 1≤ i≤ k, such that:

1. cs
1 = cs

init , and cs
k = cs

goal ,

2. the time parameter is monotone, i.e., ti < ti+1, 1≤ i < k,

3. for all pairs of adjacent landmarks (cs
i ,cs

i+1), 1 ≤ i < k, the
motion obtained through interpolation between cs

i and cs
i+1

remains in CS
f ree.

Let q j
i , r ≤ j ≤ n, be the jth quaternion of landmark cs

i , 1 ≤ i ≤ k.
Motion mp(t) can then be constructed as:

mp(t) = (qr(t), . . . ,qn(t)),

with q j(t) = slerp(q j
i ,q

j
i+1,

(t−ti)
ti+1−ti),

and ti ≤ t < ti+1.

The composite motion m f (t) = (mm(t),mp(t)), t ∈ [tinit , tgoal], will
be a valid motion satisfying constraints cp

init and cp
goal at times

tinit and tgoal respectively, and therefore solving our problem. We
present in the following section our motion planner, which finds the
sequence of landmarks cs

i required for constructing mp(t).

4 Synchronized Motion Planner

The goal of our planner is to find a sequence of landmarks connect-
ing cs

init to cs
goal in CS

f ree. For solving this problem we propose a
bidirectional RRT planner algorithm that supports landmarks with
monotone time parameters.

4.1 Algorithm

Algorithm 1 summarizes our implementation. Two search trees Tinit
and Tgoal are initialized having cs

init and cs
goal respectively as root

nodes, and are sent to the planner. The trees are iteratively expanded
by adding valid landmarks. When a valid connection between the
two trees can be concluded, a successful path in CS is found. Oth-
erwise when a given amount of time has passed, the algorithm fails.

Algorithm 1 SYNCPLANNER (T1,T2)
1: while elapsed time ≤ maximum allowed time do
2: cs

sample← SAMPLECONFIGURATION().
3: cs

1← closest node to cs
sample in T1.

4: cs
2← closest node to cs

sample in T2.
5: if INTERPOLATIONVALID (cs

1,cs
2) then

6: return MAKEPATH (root(T1),cs
1,cs

2,root(T2)).
7: end if
8: cs

exp← NODEEXPANSION (cs
1,cs

sample,ε).
9: if cs

exp 6= null and INTERPOLATIONVALID (cs
exp,cs

2) then
10: return MAKEPATH (root(T1),cs

exp,cs
2,root(T2)).

11: end if
12: Swap T1 and T2.
13: end while
14: return failure.

Line 2 in algorithm 1 requires a sampling routine in CS for guid-
ing the search for successful landmarks. Our sampling routine is
customized for human-like characters and is explained in detail in
section 4.2.

Lines 3 and 4 require searching for the closest configurations in
each tree. A linear search suffices as the trees are not expected
to grow much. The metric used is a weighted sum of time and
arm posture metrics. Let cs

1 and cs
2 be two configurations in CS,

such that cs
j = (qr

j, . . . ,qn
j , t j), j ∈ {1,2}. Let pi

j be the position (in
global coordinates) of the joint affected by rotation qi

j , r ≤ i ≤ n.
The distance between cs

1 and cs
2 is computed as:

dist(cs
1,cs

2) = wt |t1− t2|+wa max
i
‖pi

1− pi
2‖,

where wt and wa are the desired weights.

Lines 5 and 9 check if the interpolation between two configurations
is valid. It is considered valid if two tests are successful:

1. the configuration in Tinit has to have its time component
smaller than the configuration in Tgoal ,

2. the interpolation has to remain in CS
f ree.

The simplest approach for testing item 2 above is to perform several
discrete collision checks along the interpolation between the two
configurations. In order to promote early detection of collisions,
we use the popular recursive bisection for determining where to
perform the discrete tests, until achieving a desired resolution. Note
that continuous tests not requiring a resolution limit are available
and can be integrated [Schwarzer et al. 2002].

The algorithm tests at lines 5 and 9 if a valid connection between T1
and T2 has been found, and in such cases a path in CS is computed
and returned as a valid solution. The path is computed using routine
MAKEPATH(cs

1,cs
2,cs

3,cs
4) (lines 6 and 10), which connects the tree

branch joining cs
1 with cs

2 to the tree branch joining cs
3 with cs

4, with
the path segment obtained with the interpolation between cs

2 and cs
3.

The node expansion in line 8 uses cs
sample as growing direction and

computes a new configuration cs
exp as follows:

cs
exp = interp(cs

1,cs
sample, t), where

t = ε/d, d = dist(cs
1,cs

sample).

Null is returned in case the expansion is not valid, i.e. if the inter-
polation between cs

1 and cs
exp is not valid or if the time component

in the configurations do not respect the monotone condition. Oth-
erwise cs

exp is linked to cs
1, making the tree grow by one node and

one edge. The factor ε represents the incremental step taken during
the search. Large steps make the trees grow quickly but with more
difficulty in capturing the free configuration space around obsta-
cles. Inversely, too small values generate roadmaps with too many
nodes, slowing down the algorithms.

Path Smoothing. When a solution is found, a final step for smooth-
ing the path is required. We use here the popular approach of apply-
ing several linearization steps. Each linearization consists of select-
ing two random configurations cs

a and cs
b along the solution path in

CS (not necessarily landmarks) and replacing the subpath between
cs

a and cs
b by the straight interpolation between them, if the replace-

ment is still a valid path. Note that the time component in cs
a and

cs
b are as well interpolated and smoothed. The process is repeated

until valid replacements are difficult to find or until a time threshold
is reached. This simple process works well in practice and has both
the effect of smoothing and shortening the path, which are obvious
properties expected in natural motions.

4.2 Configuration Sampling

The sampling routine guides the whole search and is of extreme im-
portance in determining the quality of a solution and how fast it is
found. It is therefore important to define meaningful joint parame-
terizations, joint limits and search heuristics for both reducing the
search space and guiding the search to more realistic postures. We
pay particular attention here to the joints of the arm linkages due to
their importance for object manipulation.

Joint Parameterization. The first step for ensuring anatomically
plausible postures is to impose meaningful joint range limits on the
articulations of the skeleton. For anatomical articulations with a
3 DOF rotation, e.g. the shoulder, we use the natural swing-and-
twist decomposition [Grassia 1998]. The remaining joints are either
parameterized with Euler angles or by a swing rotation.

For instance in the arm linkages the swing-and-twist decomposi-
tion is used to model the shoulder (3 DOFs). The elbow has flexion
and twist rotations defined with two Euler angles (2 DOFs), and
the wrist has a swing rotation (2 DOFs) parameterized exactly as
a swing-and-twist, however considering the twist rotation to be al-
ways 0. The linkages of the legs are similarly parameterized.

Joint Limits. The swing parameterization allows the use of spheri-
cal polygons [Korein 1985] for restricting the swing motion. Spher-
ical polygons can be manually edited for defining a precise bound-
ing curve. However we follow a simpler, more efficient, and still
acceptable solution for bounding swing limits based on spherical el-
lipses [Grassia 1998]. In this case, a swing rotation can be checked
for validity simply by replacing the axis-angle parameters into the
ellipse’s equation. The twist and flexion rotations of the remaining
DOFs are correctly limited by minimum and maximum angles.

Collision Detection. In order to achieve complex collision-free
motions, we take into account the full geometries of the characters
and the environment when checking for collisions. The VCollide
package [Gottschalk et al. 1996] is employed for querying if body
parts self-intersect or intersect with the environment.

Search Heuristics. We control the overall quality of the planned
motions by properly adjusting sampling heuristics. Uniformly sam-
pling valid postures has the effect of biasing the search toward the
free spaces. For example, in several cases where the character ma-
nipulates objects, there are obstacles in front of the character and
larger volumes of free space are located at the sides of the charac-
ter. Although these are indeed valid areas, realistic manipulations
are mainly carried out in the smaller free spaces in front of the char-
acter.

A simple correction technique for such cases consists of highly bi-
asing the sampling towards the bent configuration of the elbow.
This has the effect of avoiding solutions with the arm outstretched,
resulting in more natural motions. As we perform a bidirectional
search, it also contributes to decomposing the manipulation in two
distinct phases: bringing the arm closer to the body and then ex-
tending it towards the goal. Our biasing method starts sampling the
elbow flexion DOF with values in the interval between 100% and
90% of flexion, and as the number of iterations grow, the sampling
interval gets larger until reaching the joint limits.

For other less important joints, e.g. the wrist or spine joints if used,
the sampling is also similarly biased to a smaller range than their
validity range, resulting in more pleasant postures as these joints
are usually secondarily used for avoiding obstacles.

The sampling routine can be even interactively customized by
choosing different values for the sampling intervals used for sam-
pling each considered DOF. For example by adjusting the intervals

Figure 2: Two alternative solutions for correcting arm collisions
obtained by choosing different sampling heuristics.

of the shoulder DOFs we are able to control the overall location of
the obtained arm motion. The top row of Figure 2 shows an ex-
ample where the x-component of the shoulder swing was sampled
between 50 and 100 degrees, generating only relatively low arm
postures during the search. In the solution shown in the bottom row
however, we choose to sample higher arm postures. Such exam-
ple illustrates that we are able to control the overall quality of the
motion and avoid repetitive results.

Final Sampling Routine. The final sampling routine can be sum-
marized as follows:

1. Configuration cs
rand = (cp

rand , trand) ∈CS is generated having
the values in cp

rand randomly sampled in the described param-
eterizations based on swings, twists and Euler angles; inside
individually placed range limits and following the appropriate
sampling heuristics. The time component trand is uniformly
sampled in [tinit , tgoal].

2. The state of the world is set with w(trand) and configuration
mm(trand) is applied to the character.

3. Configuration cp
rand is applied to the character.

4. Finally the positions of all objects are updated and tested for
collisions; if no collisions are found cs

rand is returned as a suc-
cessful valid configuration, otherwise the sampling routine re-
turns to step 1.

5 Inverse Kinematics

Inverse Kinematics is an important component of our overall
method. Although the planner does not require the use of IK during
its execution, our IK allows us to easily (and interactively) specify
goal arm and leg postures to be used as input to the planner. In
particular for interactive grasping, the use of IK allows the user to
define goal arm postures for the planner on-line, by simply selecting
goal hand positions in the workspace.

In order to obtain realistic and fast results, we implemented an ana-
lytical IK formulation [Tolani and Badler 1996] that produces joint
values directly in our arm and leg parameterizations with meaning-
ful joint limits based on swings and twists. Note that for each arm
or leg, there are 7 DOFs to be determined for reaching a given hand
position and orientation goal. The problem is under-determined and
the missing DOF is modeled as the swivel angle, which is an extra
parameter specifying the desired rotation of the elbow (or knee)
around the wrist-shoulder (or ankle-hip) axis.

We have furthermore integrated in the IK a simple search strategy
that automatically searches for a swivel angle leading to a valid
(and therefore collision-free) configuration. Equipped with such
automatic posture search, the IK and the planner are able to produce
complex collision-free animations for reaching given hand targets
interactively.

We start solving the IK with the desired initial swivel angle, which
is usually extracted from the current character posture. Then, the
posture given by the IK solver is checked for validity. If the posture
is not valid, the swivel angle is incremented and decremented by δ
and the two new postures given by the IK solver are again checked
for validity. If a valid posture is found the process successfully
stops. Otherwise, if given minimum and maximum swivel angles
are reached, failure is returned. Faster results are achieved in a
greedy fashion, i.e. when ∆ increases during the iterations. As the
search range is small this simple process is very efficient and the
whole process can be limited to a few number of tests. Note that
both joint limits and collisions are avoided in an unified way.

6 Applications and Results

We have integrated the methods described in this paper in the
DANCE animation system [Shapiro et al. 2005]. Multiple arms and
leg targets can be specified and solved by our planner interactively.
Targets can be dynamic and/or attached to any objects or body parts.
Characters can be instructed to grab, drop and move objects. Sev-
eral tasks can be specified simultaneously and synchronized with
arbitrary keyframe motions applied to the characters.

In the remainder of this section we present several results obtained
with our system. We group them by two key applications that
demonstrate the versatility and the effectiveness of our approach.
For a better presentation of the results we refer the reader to the
accompanying video and our website (removed for anonymity).

6.1 Motion Correction

Our planner introduces an effective way to correct portions of mo-
tions that are found to produce collisions with new objects in the
environment or with new objects attached to the character. Such
situations are common when reusing motions in new environments
or new characters. Our planner is able to search for an alternative
motion for the problematic limb which is both valid and in synchro-
nization with the original motion and any moving objects.

Let m be a given motion affecting the full configuration space CF of
the character. We want to correct a portion of m that was found to
obtain collisions. For solving this kind of problem, we define times
tinit and tgoal such that interval [tinit , tgoal] spans the problematic
period of the motion.

Let m be decomposed in two parts, such that m(t) =
(mm(t),mp(t))∈CM×CP. The problem is then solved by planning
a new path between (mp(tinit), tinit) and (mp(tgoal), tgoal) in CS. If
the planner is successful, the result will be a collision-free motion
that is used to replace mp during interval [tinit , tgoal].

We present several examples in this paper. Figure 4 (a) presents a
valid walking motion that becomes invalid when an umbrella is at-
tached to the right hand of the character. The umbrella collides with
the post in several frames of the sequence. Figure 4(b) presents the
corrected motion after the planner is applied to produce a new syn-
chronized motion for the joints of the right arm. The same walking
motion was also successfully corrected by our planner in a new

environment containing two posts (Figure 1). Other correction ex-
amples are shown in Figure 2 and Figure 4(c,d).

6.2 Interactive Object Manipulation

Object manipulation tasks for moving characters can be complex
and computationally expensive to synthesize. Our planner gener-
ates realistic results of such highly complex tasks by synchronizing
synthesized arm motions with locomotion sequences. For instance
in Figure 4(e) we generate a motion where the character grasps a
dynamic target through a moving ring while under the influence of
an idle motion affecting its body. Figure 4(f) shows an even more
complex motion where the character is asked to solve the same task
but while transitioning from walking to running. Figure 4(g) shows
a character walking and at the same time grabbing the hat of another
walking character.

For this kind of problem we first specify hand targets on the objects
to be grasped. Let h = {p,q}, h ∈ R3× S3, be a hand target de-
scribed as a target position and orientation for the wrist joint of the
character in global coordinates, to be reached at a given time tb.

Let again m(t) = (mm(t),mp(t)) ∈ CM ×CP be a motion as de-
scribed in Section 6.1. We want now to modify motion m such that
at time tb the character wrist joint is located at the given hand target
h, and as the modified motion has to be performed in a cluttered
environment, it has to be collision-free.

We now determine times ta and tc such that ta < tb < tc. Then
the problem is solved in two steps: first a path in CS is planned
between (mp(ta), ta) and (cp

h , tb) and then a second path in CS is
planned between (cp

h , tb) and (mp(tc), tc). Configuration cp
h ∈CP is

determined by employing our IK (Section 5), in order to determine
the best arm configuration that reaches the hand target h.

The sequences in Figure 4(h-j) show several complex manipu-
lation examples. The obtained results show realistic motions
where planned arm manipulation sequences are perfectly synchro-
nized with the walking motion. In this example, 10 planned se-
quences were used for synchronizing 5 different object manipula-
tions: grasping a piece of cheese from inside a box, dropping it on
the table, grasping a hat with the right hand, turning off the lights
with the left hand and then placing the hat on the head.

We have also implemented a system to interactively instruct a char-
acter to reach for arbitrarily located objects, in synchronization with
an on-line locomotion planner. We therefore compute the final mo-
tion in two steps: first a path is planned such that the character
arrives close enough to the object to grasp with the hand. A motion
captured sequence is then deformed to fit the computed path, and
before the locomotion is finished, we compose a synchronized arm
motion with the locomotion.

7 Discussion

One important characteristic of our method is the random nature
of the planner. It ensures that the obtained motions are always dif-
ferent, greatly improving the realism in interactive applications of
autonomous characters. At the same time, we are also able to con-
trol the overall aspect of the obtained results by choosing different
body motions to synchronize with and search heuristics (Figure 2).

The performance of the planner greatly depends on the complexity
of the environment. For instance in the complex scenario of Fig-
ure 4(h-j), the collision detection is handling 30K triangles and the

planner took about 2 seconds to both compute and smooth each of
the planned motions. In the simpler environments the performance
is about two times faster.

Limitations and Extensions. Although our results are realistic,
further processing could still be employed. For instance, dynamic
filters could be applied for ensuring the balance of the charac-
ter. However, this would penalize the overall performance of the
method. We chose not to employ a more time-consuming method,
such as those described by [Yamane et al. 2004] in the interests
of speed. Our method currently serves as an interactive application
whereby an animator can quickly edit and change the motion within
seconds to his or her tastes.

Although the examples presented here show the planner is mainly
applied to arms and legs, it can also be applied to any set of open
linkages. It can be as well employed sequentially, for example for
synchronizing the motions of several limbs: first, the motion of one
limb is planned in synchronization with the given external motions,
resulting in a new composite motion. Then, a second limb motion
can be synchronized with the previously obtained motion. The pro-
cess can be repeated until all limbs are planned and synchronized.
The result achieved is a decoupled priority-based (due to the chosen
order) planning process. Note that limbs may belong to different
characters, as in the example shown in Figure 3.

The examples here could also use longer linkages on the same char-
acter, such as those that include the arm and torso to accommodate
bending and twisting of the waist and trunk. The risk of using larger
IK linkages is the deteriorating effect on the resulting realism that
such a solution would provide. Since many IK solutions do not take
into account physics or changes to the COM or momentum of the
body, the longer the IK chain used, the less realistic the final mo-
tion will be. This could be overcome by either using an additional
dynamic filtering as a postprocessing step, or employing an IK that
accommodates changes to the rest of the body, such as shown by
[Grochow et al. 2004].

Figure 3: The motion of the character on the left side was planned
after the motion of the character on the right side, achieving syn-
chronized simultaneous graspings.

8 Conclusion

We have presented a new approach for motion editing based
on planning motions in synchronization with pre-designed (or
recorded) motion sequences and moving objects. In general, our
method is able to solve arbitrary spatio-temporal constraints among
obstacles and takes into account dynamic environments.

By relying on a hybrid approach, we are able to address the diffi-
cult constraints imposed by object manipulations, achieve realistic
results and still leave space for designers to customize and person-
alize the underlying motion sequences.

9 Acknowledgements

The work in this paper was partially supported by NSF under con-
tract CCF-0429983. We would also like to thank Intel Corp., Mi-
crosoft Corp., Alias Wavefront and ATI Corp. for their generous
support through equipment and software grants.

References

ARIKAN, O., AND FORSYTH, D. A. 2002. Interactive motion gen-
eration from examples. In SIGGRAPH ’02: Proceedings of the
29th annual conference on Computer graphics and interactive
techniques, ACM Press, New York, NY, USA, 483–490.

BANDI, S., AND THALMANN, D. 2000. Path finding for human
motion in virtual environments. Computational Geometry: The-
ory and Applications 15, 1-3, 103–127.

CHOI, M. G., LEE, J., AND SHIN, S. Y. 2002. Planning biped lo-
comotion using motion capture data and probabilistic roadmaps.
ACM Transactions on Graphics 22, 2, 182–203.

GOTTSCHALK, S., LIN, M. C., AND MANOCHA, D. 1996. Obb-
tree: A hierarchical structure for rapid interference detection.
Computer Graphics SIGGRAPH’96 30, Annual Conference Se-
ries, 171–180.

GRASSIA, S. 1998. Practical parameterization of rotations using
the exponential map. Journal of Graphics Tools 3, 3, 29–48.

GROCHOW, K., MARTIN, S., HERTZMANN, A., AND POPOVI,
Z., 2004. Style-based inverse kinematics.

HSU, D., KINDEL, R., LATOMBE, J., AND ROCK, S. 2002. Ran-
domized kinodynamic motion planning with moving obstacles.
International Journal of Robotics Research 21, 3, 233–255.

KALLMANN, M., AUBEL, A., ABACI, T., AND THALMANN, D.
2003. Planning collision-free reaching motions for interactive
object manipulation and grasping. Computer graphics Forum
(Proceedings of Eurographics’03) 22, 3 (September), 313–322.

KOGA, Y., KONDO, K., KUFFNER, J. J., AND LATOMBE, J.-C.
1994. Planning motions with intentions. In Proceedings of SIG-
GRAPH’94, ACM Press, 395–408.

KOREIN, J. U. 1985. A Geometric Investigation of Reach. The
MIT Press.

KOVAR, L., GLEICHER, M., AND PIGHIN, F. 2002. Motion
graphs. In SIGGRAPH ’02: Proceedings of the 29th annual con-
ference on Computer graphics and interactive techniques, ACM
Press, New York, NY, USA, 473–482.

KUFFNER, J. J., AND LATOMBE, J.-C. 2000. Interactive ma-
nipulation planning for animated characters. In Proceedings of
Pacific Graphics’00. poster paper.

KUFFNER, J. J., AND LAVALLE, S. M. 2000. Rrt-connect: An ef-
ficient approach to single-query path planning. In Proceedings of
IEEE Int’l Conference on Robotics and Automation (ICRA’00).

KWON, T., AND SHIN, S. Y. 2005. Motion modeling for on-line
locomotion synthesis. In SCA ’05: Proceedings of the 2005 ACM
SIGGRAPH/Eurographics symposium on Computer animation,
ACM Press, New York, NY, USA, 29–38.

LAI, Y.-C., CHENNEY, S., AND FAN, S. 2005. Group
motion graphs. In Proceedings of the 2005 ACM SIG-
GRAPH/Eurographics Symposium on Computer Animation.

LAU, M., AND KUFFNER, J. 2005. Behavior planning for
character animation. In Proceedings of the 2005 ACM SIG-
GRAPH/Eurographics Symposium on Computer Animation.

LAVALLE, S., AND KUFFNER, J., 2000. Rapidly-exploring ran-
dom trees: Progress and prospects. In Workshop on the Algo-
rithmic Foundations of Robotics.

LAVALLE, S. 1998. Rapidly-exploring random trees: A new tool
for path planning. Tech. Rep. 98-11, Iowa State University, Com-
puter Science Department, October.

LIU, Y., AND BADLER, N. I. 2003. Real-time reach planning for
animated characters using hardware acceleration. In Proceedings
of Computer Animation and Social Agents (CASA’03), 86–93.

PETTRÉ, J., LAUMOND, J.-P., AND SIMEÓN, T. 2003. A 2-stages
locomotion planner for digital actors. In Proceedings of the 2003
ACM SIGGRAPH/Eurographics Symposium on Computer Ani-
mation, 258–264.

SCHWARZER, F., SAHA, M., AND LATOMBE, J.-C. 2002. Exact
collision checking of robot paths. In Proceedings of the Work-
shop on Algorithmic Foundations of Robotics (WAFR’02).

SHAPIRO, A., FALOUTSOS, P., AND NG-THOW-HING, V. 2005.
Dynamic animation and control environment. In GI ’05: Pro-
ceedings of the 2005 conference on Graphics interface, Cana-
dian Human-Computer Communications Society, School of
Computer Science, University of Waterloo, Waterloo, Ontario,
Canada, 61–70.

TOLANI, D., AND BADLER, N. 1996. Real-time inverse kinemat-
ics of the human arm. Presence 5, 4, 393–401.

YAMANE, K., KUFFNER, J. J., AND HODGINS, J. K. 2004.
Synthesizing animations of human manipulation tasks. ACM
Transactions on Graphics (Proceedings of SIGGRAPH’04) 23,
3, 532–539.

(a) (b)

(c) (d)

(e)

(f)

(g)

(h)

(i) (j)

Figure 4: Sequences (a) and (c) have collisions and are corrected by our planner, which produced (b) and (d). Sequences (e) and (f) show
examples of a moving cube being grasped from inside a moving ring. The character in sequence (g) steals the hat of another character while
both are walking. Sequence (h) shows several object manipulations planned around obstacles and in synchronization with a long walking
motion. Details of grabbing and dropping the cheese are shown in sequences (i) and (j).

