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Abstract

This dissertation documents the results of two related efforts. Firstly, a model

of nucleon-nucleon (NN) interactions is developed based on scalar field theory.

Secondly, the relativistic 2-body Bethe-Salpeter equation (BSE) is generalized

to handle inelastic processes in the ladder approximation.

Scalar field theory describes the behavior of scalar particles, particles with spin

0. In the present work scalar field theory is used to describe NN interactions

mediated by pion exchange. The scalar theory is applied to nucleons despite

the fact that nucleons are fermions, spin 1/2 particles best described by four-

component Dirac spinor fields. Nevertheless, the scalar theory is shown to give a

good fit to experiment for the total cross sections for several reactions [1]. The

results are consistent with more elaborate spinor models involving one boson

exchange (OBE). The results indicate that the spin and isospin of nucleons can

to some extent be ignored under certain conditions. Being able to ignore spin

and isospin greatly reduces the complexity of the model.

A limitation of the scalar theory is that it does not distinguish between particle

and anti-particle. Consequently one must decide how to interpret the s-channel

diagrams generated by the theory, diagrams which involve particle creation and

annihilation. The issue is resolved by extending the scalar theory to include

electric charge, and formulating NN interactions in terms of complex scalar

fields, which are able to describe both particles and anti-particles.

A generalized Bethe-Salpeter equation (GBSE) is developed to handle inelastic

processes in the ladder approximation. The GBSE, formulated using the scalar

theory, is new, and introduces a systematic method for analyzing families of

coupled reactions. A formalism is developed centered around the amplitude

matrix M′ defined for a given Lagrangian. M′ gives the amplitudes of a family
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of reactions that arise from the Lagrangian. The formalism demonstrates how

these amplitudes, to 2nd order, segregate into independent groups of coupled

BSE’s. The GBSE formalism is applied to the coupled BSE (CBSE) of Faassen

and Tjon (FT) [2] for the reaction N +N → N + ∆, showing that the CBSE is

missing a coupling channel, and in the expansion, under counts ladder diagrams.

A proof is given of the equivalence of the series of ladder diagrams generated by

M′ and the S-matrix. A section on future work discusses several projects for

further development and application of the GBSE.
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1 Introduction

The objectives of the present work are twofold:

1. By merit of its simplicity, use scalar field theory to develop a model of nucleon-nucleon

interactions.

2. Extend the model by using the Bethe-Salpeter equation (BSE) to sum over all orders

of meson exchanges.

This introduction explains the rationale behind these objectives, and summarizes our chosen

paths of investigation.

1.1 Applicability of Scalar Theory to Nucleon Interactions

The application of scalar theory to nucleon-nucleon (NN) interactions dates back to the work

of Hideki Yukawa [3], who in 1935 proposed an early field theory for the NN interaction

involving a potential based on the exchange of a massive scalar particle, now known as

the pion. Yukawa used spinor fields for the nucleons, but scalar fields also lead to the

Yukawa potential. It can be shown that the more modern quantum field theory, originally

formulated by Feynman [4], Schwinger and Tomanaga in the late 1940s, when applied to

scalar fields, leads to the Yukawa potential ([5] pg. 26). Wanders [6] has shown that the

Bethe-Salpeter equation (BSE) for scalar fields, when taken to the non-relativistic limit,

is equivalent to the Schrödinger equation with a Yukawa potential. In a literature search

one can find articles in which the nucleon is represented by a scalar field. Researchers use

the scalar theory for its simplicity, avoiding the encumbrances of the spinor formulation in

order to to clarify relations that are not dependent on spin [7, 8, 9, 10]. Sauli and Adam use

the complex scalar field [11]. An extensive review of BSE studies involving scalar theory

is found in [12]. Scalar theory is often used as a first attempt to analyze NN interactions,

for the reason that in its simplest form, it ignores both spin and isospin, thus avoids the

analytical complexities involved when treating spin and isospin states and transitions. In
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such applications, scalar theory has also been shown to serve as a useful approximation in

describing the phenomena. This statement is validated by application of the present work

[1].

1.2 Effective Field Theories

Particle field theories, in their most elaborate forms, take into account all available attributes

of the particles. In addition to mass, the theories include particle spin, isospin, and various

charges. The most fundamental charges are the electro-weak or flavor charge and the strong

or color charge. These charges enter into the so-called standard model, which consists of

the electro-weak theory, sometimes called quantum flavor dynamics (QFD), and the strong

theory, called quantum chromo-dynamics (QCD). QFD describes the interaction of quarks

and leptons through the exchange of the photon and the W+/- and Z bosons, while QCD

describes the interaction of quarks through the exchange of gluons. The complexities of

these theories are such that an accurate and detailed description of nucleon interactions

at all energies has not yet been achieved [13]. Consequently, simplified theories, often

called effective field theories, have been developed. These theories are aimed at reducing

the complexity of the model while demonstrating the ability to accurately predict particle

behavior for specified conditions (e.g., over particular energy ranges). Many theories are

semi-empirical in nature, with parameters that can be adjusted to fit experiment.

The simplest dynamical particle field theory considers only two particle attributes, the

inertia or mass m, and a “charge” or coupling strength g that is independent of the mass.

The particle mass enters into the free particle Lagrangian, while the coupling strength enters

into the interaction Lagrangian. With the attribute of spin being absent from the theory,

the particles are treated as spin 0 particles or scalars, and are represented by scalar fields.

The interactions are mediated by a neutral spin 0 particle, also represented by a scalar field.
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1.3 Scalar Model of Nucleon Interactions

The scalar theory may be applied to nucleons. Nucleon interactions involve the strong

nuclear force. The interactions are termed hadronic interactions, and particles involved in

hadronic interactions are called hadrons. In the scalar model, the hadronic interaction is

effected by the exchange of scalar mesons between nucleons. More fundamentally, hadronic

interactions are mediated by gluons, which are exchanged by the quark constituents of the

hadrons. Thus the nucleon-meson model is seen to be an effective field theory that replaces

the underlying quark-gluon interaction with the simpler nucleon-meson interaction.

The nucleon’s hadronic “charge” is represented by a coupling constant that specifies the

strength of the hadronic interaction. The simplest description of the interaction is written

as a product of three fields A(x), B(x) and C(x) and coupling constants gAAC and gABC .

The interaction Lagrangian density

L = −gAACA(x)A(x)C(x)− gABCA(x)B(x)C(x) (1)

states that the intensity of interaction of the three particles is proportional to an energy

density determined by the product of the field strengths at the same point in 4-space, scaled

by the coupling constants. The A field represents nucleons, the B field the ∆ baryon, and

the C field the meson. The lightest meson is the pion, also called the π-meson or simply

the π. The pion is involved in long to short range interactions (low to high energies). At

medium range (medium energies) heavier mesons become involved in the nucleon-nucleon

interactions. Various models work with as many as six mesons, the π, ρ, η, ε, δ, and the ω.

Although the scalar model recognizes only two particle attributes, this model is sufficient

to determine scattering amplitudes, from which decay rates and differential and total cross

sections are derived. The scalar model may be optimized by parameterizing the coupling

constant and adjusting this parameter to improve the fit between theoretical and exper-

imental differential and total cross sections. Parametrization of the coupling constant is

justified by the fact that in high energy particle interactions, coupling constants depend on
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the momentum of the interaction, and are known as running coupling constants.

In the scalar theory of nucleons no distinction is made between the proton and neutron,

nor between particle and anti-particle. As a result, one must decide how to interpret

the s-channel Feynman diagrams, which describe interactions involving the annihilation of

the initial state particles, and creation of the final state particles. We cannot interpret

these diagrams as proton-proton annihilation, since such a process violates conservation of

baryon number, and does not occur in nature. The issue is resolved by simply identifying

one of the initial state particles as an anti-particle, and one of the final state particles as

an anti-particle. Alternatively, one may adopt a model that accommodates anti-particles.

The charged scalar model achieves this, but at the cost of added complexity. To include

anti-particles, one must consider a third particle attribute, the electric charge.

1.4 Complex Scalar and Spinor Fields

The charged scalar model is formulated in terms of the complex scalar field. The complex

field has two components, and thereby has the capacity to distinguish particles from anti-

particles. In the model, the proton acquires an electric charge of +1, and the anti-proton a

charge of −1. With the model’s recognition of electric charge, protons also become distinct

from neutrons, and the description of interactions must treat charge exchange mediated

by charged pseudo-scalar mesons. The handling of charge exchange is dealt with using the

isospin formalism, in which the proton and neutron form an isospin doublet. The description

of interactions takes into account the isospin states of the initial and final state particles,

and handles isospin transitions.

With the additional field components, the incorporation of the charged pseudo-scalar

mesons and the inclusion of the isospin formalism, the step up from the scalar to complex

scalar field is accompanied by a significant increase in the complexity of the model. The

s-channel diagrams are explained in explicit fashion as describing the reaction between a

nucleon and anti-nucleon. In view of one of our goals, namely to predict the cross sections

of nucleon-nucleon interactions, the s-channel diagrams are not required by either the scalar
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or the complex scalar model. The scalar model is, therefore, a reasonable choice for the

given application, and the complexity of the charged scalar model is thereby avoided.

Nucleons are spin 1/2 particles, and the four component Dirac spinor fields, which

by design account for both particles and anti-particles and their spin states, are more

appropriate than scalar fields for describing the nucleons. However, by including the particle

attribute of spin, the model must also include mesons capable of carrying spin and mediating

spin transitions. The set of exchange particles must therefore expand again to include

spin 1 vector mesons. The introduction of four-component spinor fields, the simultaneous

treatment of spin and isospin states, and spin and isospin transitions, entail yet another

significant increase in complexity of the model. In keeping with our stated goal, namely to

assess how well the calculated cross sections of scalar theory fit experiment, we purposely

avoid the complexities of the spinor field theory.

1.5 Current Theories of Nucleon-Nucleon Interactions

Beyond the attributes of mass, hadronic charge, electric charge and spin, current theories

of nucleon-nucleon interactions consider additional degrees of freedom, that is, additional

channels through which interactions can occur. So far we have considered meson degrees of

freedom, in which the nucleons exchange the several types of mesons. The isobar degree of

freedom arises from the formation of πN resonances in NN interactions. The nucleon degree

of freedom proposed by Skyrme [14] arises from the baryonic current and characterization

of baryons as topological solitons, in essence exchange particles. Long range and medium

range nucleon interactions are successfully described by various models which take into

account the hadronic degrees of freedom (meson, isobar and nucleon) [13]. These models are

used to calculate cross sections, phase shifts, analyzing power, polarization and various spin

observables, for comparison to experiment. So far, attempts to describe particle interactions

in terms of the quark degrees of freedom, both as a stand-alone model or a hybrid model

(quark and hadronic degrees of freedom combined) have not been altogether successful. The

scalar theory is capable of embracing the meson, isobar and nucleon degrees of freedom.
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The present work employs the meson and isobar degrees of freedom. The nucleon degree

of freedom is also included in the application of the generalized Bethe-Salpeter equation to

the 3-vertex model in section 4.16, where the nucleon degree of freedom takes the form of

a nucleon kernel.

1.6 Summing Diagrams to all Orders

In Dick-Norbury [1] the one pion exchange (OPE) model is used to determine pion pro-

duction cross sections. The OPE model is based on 2nd order diagrams. Diagrams of 4th

and higher order are neglected. The 2nd order cutoff is convenient, but for nucleon interac-

tions, higher order terms are significant, especially at higher energies. Greater accuracy in

determining amplitudes is attained by including higher order diagrams, but the amount of

calculation increases rapidly with order. The Bethe-Salpeter equation (BSE) offers a way

of including higher order terms. The BSE couples the amplitude to itself, giving a compact

expression for the sum over all orders of diagrams. The sum is performed in the ladder

approximation, which is valid when the ladder diagrams dominate over loop diagrams and

cross diagrams ([15], chap. 12). The BSE describes bound states and elastic scattering

processes. For inelastic processes, a generalization of the BSE is needed. Section 4 details

the development of a generalized BSE (GBSE) for inelastic processes in the ladder approx-

imation. Section 5 Future Work outlines research topics for the continued development of

the GBSE.

The next section launches the in-depth presentation with a summary of the theory of

scalar fields.
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2 Quantized Scalar Fields

The scalar field, also known as the Klein-Gordon field, is discussed in most if not all quantum

field theory textbooks [5, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29]. This section

draws primarily on the texts of Norbury [16], Aitchison [17], Peskin [18] and Maggiore [19],

hereinafter referred to collectively as NAPM, and provides a summary of the theory of

scalar fields. Several interaction Lagrangians are then defined and discussed as candidates

for modeling the nucleon-nucleon interactions mediated by pion exchange. The Lagrangian

L = −gAACAAC − gABCABC given by (1) and formed from two types of interaction

vertices is discussed in detail. This Lagrangian forms the basis for the work documented

in the paper Pion Cross Sections from Scalar Theory [1], in which cross sections calculated

from the scalar theory are fitted to experimentally determined cross sections. The paper

draws on a second paper Differential Cross Section Kinematics for 3-Dimensional Transport

Codes [30].

2.1 Overview of the Theory of Scalar Fields

The following sections provide an overview of the theory of scalar fields, and are followed

by a derivation of 2nd order Feynman diagrams for the reaction N + N → N + ∆. We

present the scalar field of a free particle, and quantize the field by expressing it in terms of

particle creation and destruction operators. The free particle and interaction Lagrangians

and Hamiltonians are defined in terms of these operators. The interaction Hamiltonian

enters into the S-matrix, a perturbative expansion of terms to all orders in the coupling

constant. Using Wick’s theorem, the terms are translated into Feynman diagrams. The

scattering amplitude then follows from the application of Feynman’s rules.
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2.1.1 The Klein-Gordon Equation and Free Particle Fields

The field φ of a free scalar particle of positive mass m is a real field that satisfies the

Klein-Gordon equation (KGE)

(2 +m2)φ = 0 (2)

where

φ = φ(x) (3)

2 = ∂µ∂
µ =

∂2

∂t2
−∇2 (4)

and where x is a point in 4-space. The KGE may be derived from the relativistic energy

relation

p2 −m2 = 0 (5)

p2 = E2 − |p|2 (6)

where p = (E,p) is the 4-momentum of the particle. Substituting the quantum mechanical

operators

E → i
∂

∂t
(7)

p → −i∇ (8)

into (5) and letting both sides operate on φ leads to (2). The KGE is also derivable from

a stationary action principle using the action S and free particle Lagrangian density L

(hereinafter referred to simply as the Lagrangian) given by

S =
1
2

∫
d4xL (9)

L = ∂µφ∂
µφ−m2φ2 (10)

The real field φ is a superposition of planes waves e∓ip·x of the form

φ(x) =
∫

d3p

(2π)3
√

2Ep

(ape−ip·x + a†pe
ip·x) (11)

= φ+(x) + φ−(x) (12)
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where

φ+(x) =
∫

d3p

(2π)3
√

2Ep

ape
−ip·x (13)

φ−(x) =
∫

d3p

(2π)3
√

2Ep

a†pe
ip·x (14)

Ep ≡
√

p2 +m2 (15)

ap = a(p) (16)

a†p = a†(p) (17)

and where the factor
√

2Ep gives the normalization in the NAPM formalism.

2.1.2 Quantization of the Free Fields

In the quantized theory, the coefficients ap and a†p become destruction and creation oper-

ators, respectively, on particle states |p〉 in Fock space. The state |0〉 is the vacuum state,

and is defined by

ap|0〉 ≡ 0 (18)

〈0|a†p ≡ 0 (19)

The state |p〉 signifies the existence of a single particle of momentum p, and is created by

the creation operator acting on the vacuum state

|p〉 =
√

2Epa
†
p|0〉 (20)

〈p| =
√

2Ep〈0|ap (21)

The operators obey the commutation relation

[ap, a
†
p′ ] = (2π)3δ(p− p′) (22)
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Some other useful results are

ap|p′〉 = (2π)3
√

2Epδ
4(p− p′)|0〉 (23)

φ+(x)|p〉 = e−ip·x|0〉 (24)

〈p′|φ−(x)φ+(y)|p〉 = ei(p
′·x−p·y) (25)

〈p′|φ+(x)φ−(y)|p〉 = 〈p′|φ−(x)φ+(y)|p〉+ i∆+(x− y)〈p′|p〉 (26)

The Hamiltonian density can be expressed in terms of the operators

H =
∫

d3p

(2π)3
Ep

(
a†pap +

1
2
[ap, a†p]

)
(27)

The 2nd term makes an infinite contribution, and represents an infinite ground state energy.

In quantum field theory, we are interested in the energy of states “above” the ground state,

so we discard the infinite term. The term is formally removed by the process known as

normal ordering. In a normal ordered product of operators, all annihilation operators are

placed to the right of creation operators. A bracket of colons : : denotes a normal ordered

product. For example, : apa
†
p := a†pap. The normal ordered Hamiltonian is

: H : =
∫

d3p

(2π)3
Epa

†
pap (28)

Wick’s theorem presented below makes use of normal ordering to render a time ordered

product into a collection of normal ordered products from which Feynman diagrams are

readily extracted.

Particles of the scalar field are their own anti-particles. This is demonstrated at the

end of section 3.1. This aspect of scalar fields requires care in interpreting the 2nd order

s-channel diagram of NN interactions (see section 2.4.4).

2.1.3 The Interaction Lagrangian and Hamiltonian

The Lagrangian and Hamiltonian discussed so far describe free particles. To describe inter-

acting particles we include an interaction term

H = H0 +HI (29)
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where H0 is the free particle Hamiltonian and HI is the interaction Hamiltonian. We shall

work with Hamiltonians that are products of three fields, with no derivative coupling (e.g.,

∇φ)

HI = −LI = gABCφA(x1)φB(x1)φC(x1) (30)

where gABC is a coupling constant that represents the strength of the interaction between

the fields. The interaction Lagrangian is discussed in detail in section 2.2. The interaction

Hamiltonian enters into the S-matrix.

2.1.4 The S-Matrix and Scattering Amplitude

The Dyson scattering matrix or S-matrix determines the amplitude of a scattering process,

given the interaction Hamiltonian and the initial and final states of the interacting particles.

The S-matrix is a perturbation expansion containing terms to all orders in the interaction

Hamiltonian. If the coupling constant is small, higher order terms may be neglected and

the amplitude can be approximated by the first few terms in the series. The S-matrix is

given by

S = T exp (−i
∫
d4xHI)

= 1 +
∞∑

n=1

(−i)n

n!

∫
d4x1 . . . d

4xnT [HI(x1) . . .HI(xn)]

= 1 +
∞∑

n=1

Sn (31)

where T is the time ordering operator, which ensures that the Hamiltonians, hence the

fields, are ordered in time with the earliest to the right. We shall focus on S2 and S4, which

produce 2nd and 4th order Feynman diagrams, respectively, given by

S2 =
(−i)2

2!

∫
d4x1d

4x2T [HI(x1)HI(x2)] (32)

S4 =
(−i)4

4!

∫
d4x1 . . . d

4x4T [HI(x1) . . .HI(x4)] (33)

(34)
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For two-body scattering, the scattering amplitude M is written in terms of S from the

relation

S = 1 + (2π)4δ4(p1 + p2 − p3 − p4)iM (35)

where p1 and p2 are the 4-momenta of the initial state particles and p3 and p4 are the

4-momenta of the final state particles. Given initial and final particle states |i〉 and 〈f |

|i〉 = |p1, p2〉 (36)

〈f | = 〈p3, p4| (37)

the scattering amplitude becomes

Sfi = 〈f |S|i〉

= 1 + (2π)4δ4(p1 + p2 − p3 − p4)iMfi (38)

The scattering amplitude is used in [1] to calculate pion production cross sections.

2.1.5 The Feynman Propagator

The Feynman propagator is the vacuum expectation value (VEV) of the time ordered

product of two fields, and is given by

〈0|T {φ(x1)φ(x2)} |0〉 = DF (x1 − x2)

=
∫

d4p

(2π)4
i

p2 −m2 − iε
eip(x1−x2) (39)

In momentum space the propagator is

DF (p) =
i

p2 −m2 − iε
(40)

The Feynman propagator appears in Wick contractions, and is a vital component in the

reduction of time ordered products of fields to Feynman diagrams.
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2.1.6 Wick’s Theorem and External Contractions

The application of Wick’s theorem to terms in the S-matrix streamlines the process of

determining Feynman diagrams. The method is augmented by using Peskin’s external

contractions [18]. Wick’s theorem states that a time ordered product of fields is equal

to the sum of a sequence of normal ordered products consisting of the product plus all

contractions of the product

T {φ(x1) . . . φ(xn)} = : φ(x1) . . . φ(xn) + all possible contractions : (41)

Contractions produce Feynman propagators. Given two fields φ(x1) and φ(x2) and initial

and final vacuum states |0〉 and 〈0|, the contraction of the two fields is indicated by a

horizontal bracket

〈0|φ(x1)φ(x2)|0〉 = DF (x1 − x2) (42)

External state contractions are defined by

φ(x)|p〉 ≡ e−ip·x|0〉 (43)

〈p|φ(x) ≡ 〈0|e+ip·x (44)

The set of all possible contractions produces all possible time orderings. The S-matrix has

a built in factor of 1/n! in the nth order term to cancel the n! duplicate terms produced by

generating all time orderings.

In applying Wick/Peskin contractions to bosonic fields as we do here, we encounter

the vertex AAC in the Hamiltonian. This vertex contains two identical A fields, and we

must apply the following rule for how the fields contract with the initial and final states, to

prevent over-counting of diagrams:

An external state is allowed to contract to a vertex only once. If two identical

fields appear at a vertex, the external state may contract to only one of the two.
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This rule deals with one of several types of symmetry factors that occur when performing

contractions ([18] chap. 4). In section 2.4 we apply the method of Wick/Peskin contractions

to the time ordered products of fields appearing in the S-matrix.

2.2 Candidate Interaction Lagrangians

The Interaction Lagrangian densities (hereinafter referred to simply as Lagrangians) consid-

ered in this work have terms of the form φa(x)φb(x)φc(x), in which the product of the three

fields φa, φb and φc signifies that the fields interact at a point x in space and time, a vertex.

Lagrangians of this form, styled by Gross as “φ3” theory ([15] chap. 12), are commonly

used to describe the interaction of two real scalar particles and one virtual or exchange

scalar particle. The present work shows that the φ3 terms suffice to accurately determine

the total cross sections of various NN interactions, in which, of course, the nucleons are

treated as scalar particles.

We consider the suitability of the Lagrangians below for describing the reactions N +

N → N +N and N +N → N + ∆, where N is a nucleon and ∆ is the ∆ baryon. We let

A(x) = N(x) be the field of the nucleon, B(x) = ∆(x) the field of the ∆ baryon, and C(x)

the field of the exchange pion.

L1 = −gAACA1(x)A2(x)C(x) = −gAAAAC (45)

L4 = −gABCA(x)B(x)C(x) = −gABABC (46)

L2 = −gAACA1(x)A2(x)C(x)− gABCA(x)B(x)C(x)

= −gAAAAC − gABABC = −AAC −ABC (47)

L3 = −gAACA1(x)A2(x)C(x)− gABCA(x)B(x)C(x)− gBBCB1(x)B2(x)C(x)

= −gAAAAC − gABABC − gBBBBC = −AAC −ABC −BBC (48)

where A(x), B(x) and C(x) are the scalar fields of particles A, B and C respectively, C is

the exchange particle (more exactly, the field of the exchange particle) and the g’s are the

coupling constants (interaction strengths) of the three types of vertices AAC, ABC and
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BBC. For shorthand, we drop the subscript C from the coupling constants, and suppress

the dependence on 4-space coordinate x.

The table in figure 1 lists the four candidate Lagrangians (coupling constants omitted)

along with the generic 2nd order diagrams generated by the Lagrangians. By “generic” we

mean that the type of meson exchange, t-channel, u-channel or s-channel, is not specified.

The table also lists the kernels (U) and propagators (G) from which ladder diagrams are

constructed (see section 4 for the discussion of the generalized Bethe-Salpeter equation).

Each 2nd order diagram may be rotated, flipped and twisted to produce all types of ex-

changes. If a diagram has identical particles in the initial (or final) state, there is also an

associated exchange diagram (here the word “exchange” means that identical particles are

“swapped” in either the initial or final state).

2.3 Lagrangians for Nucleon-Nucleon Interactions

The description of NN interactions requires at least two types of fields, one for the nucleon

and one for the exchange particle, the pion. Only one type of nucleon is recognized, and

no distinction is made between proton and neutron. By considering all nucleons the same,

isospin is, in effect, ignored. Most models of nucleon-nucleon interactions take into account

isospin, which differentiates between the two types of nucleons. The decision to ignore

isospin is consistent with our thesis, namely to use as simplified a theory as possible, and

to assess the ability of this theory to accurately describe NN interactions.

Letting the letter A represent the field of the nucleon and C represent the field of the

pion, the interaction Lagrangian

L1 = −gAAAAC (49)

may be used to describe interactions between two nucleons at energies below the pion thresh-

old. Figure 1 (top row) shows the two-vertex diagram that corresponds to the elastic inter-

action between two nucleons A+A→ A+A.

If the energy of interaction is sufficient, the interaction of two nucleons can produce a
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Delta baryon. Designating the Delta baryon field as B, the inelastic reaction A+A→ A+B

shown in figure 1 (third row) describes Delta baryon production. It is clear from the diagram

that two types of vertices are required, AAC and ABC, and the interaction Lagrangian must

take the form

L2 = −gAAAAC − gABABC (50)

This “2-vertex” Lagrangian suffices to describe interactions at energies below the threshold

for double ∆ production. But even at the lower pion π threshold, a “virtual” ∆ particle may

be produced. This virtual ∆ propagates between interaction vertices. Thus the 2-vertex

Lagrangian becomes applicable at this lower threshold, the π threshold.

Above the ∆∆ threshold, the reaction A + A → B + B is possible. The presence of

two ∆ particles suggests a third interaction vertex BBC, requiring the 3-vertex Lagrangian

given by

L3 = −gAAAAC − gABABC − gBBBBC (51)

Above the double π threshold, two virtual ∆ particles may propagate simultaneously. Thus

the 3-vertex Lagrangian becomes applicable at the ππ threshold.

The 2-vertex Lagrangian forms the basis for the application of scalar theory to the

determination of pion production cross sections [1]. In the next section we use the 2-vertex

Lagrangian to determine the 2nd order Feynman diagrams for an inelastic process.

2.4 Second Order Diagrams of NN Interactions

The scalar theory developed in the preceding sections is used to derive the 2nd order Feyn-

man diagrams for the inelastic process N+N → N+∆. We use the interaction Hamiltonian

defined by (50)

HI = −LI = gAAAAC + gABABC (52)

which contains two types of vertices, AAC and ABC. This form has the versatility to

describe the reaction N + N → N + ∆. In the remainder of the discussion, we use the
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substitutions

N → A

∆ → B

X → B

and use C to represent the exchange pion (π). The letters A, B and C represent the fields

of the particles

A ≡ A(x) (53)

B ≡ B(x) (54)

C ≡ C(x) (55)

2.4.1 2nd Order Diagrams for N +N → N + ∆

The initial and final particle states of this reaction are

|i〉 = |A1A2〉 (56)

〈f | = 〈A′B′| (57)

where A1 and A2 label the initial state particles (nucleons) and A′ and B′ label the final

state particles (nucleon and ∆ baryon). Inserting the Hamiltonian (52) into the S2 term of

the S-matrix (32) and expanding the product of Hamiltonians

S2 =
(−i)2

2!

∫
d4x1d

4x2T [HI(x1)HI(x2)]

=
(−i)2

2!

∫
d4x1d

4x2T [A(x1)A(x1)C(x1) +A(x1)B(x1)C(x1)]×

[A(x2)A(x2)C(x2) +A(x2)B(x2)C(x2)]

=
(−i)2

2!

∫
d4x1d

4x2T [(AAC)1(AAC)2] + T [(AAC)1(ABC)2] +

T [(ABC)1(AAC)2] + T [(ABC)1(ABC)2] (58)

gives four terms, each a product of six fields

(AAC)1(AAC)2
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(ABC)1(ABC)2

(AAC)1(ABC)2

(ABC)1(AAC)2

The notation has been simplified by setting A(x1)B(x1)C(x1) ≡ (ABC)1, similarly for the

other three terms, and hiding the coupling constants. In calculating the expectation value

〈f |S2|i〉 = 〈A′B′|S2|A1A2〉 (59)

we insert the sum of four terms

〈f |T [HI(x1)HI(x2)] |i〉 = 〈A′B′|T [(AAC)1(AAC)2]|A1A2〉+

= 〈A′B′|T [(ABC)1(ABC)2]|A1A2〉+

= 〈A′B′|T [(AAC)1(ABC)2]|A1A2〉+

= 〈A′B′|T [(ABC)1(AAC)2]|A1A2〉 (60)

and for each term, count the number of A fields and states, B fields and states and C fields

(there are no C states). Each of these numbers must be an even number, since contractions

will pair the fields and states. Consequently, the first two terms cannot contribute to the

reaction. Both of these terms have an odd number of Bs. The last two terms have the

correct number of fields and states, so (58) reduces to

〈p3 p4|S2|p1 p2〉 =
(−i)2gAAgAB

2!

∫
d4x1d

4x2 ×

〈p4 p3|T{A1B1C1 A2A2C2 +A1A1C1 A2B2C2}|p1 p2〉

(61)

where the initial state particles have been labeled by their momenta p1, p2, the final state

particles by their momenta p3 and p4, and the field subscripts 1 and 2 indicate at which

vertex the field is taken. Also, the coupling constants gAA and gAB have been restored. We

proceed to evaluate (61) by contracting each term in all possible ways. The two contributing
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terms labeled (a) and (b) are shown at the top of figure 2. The only sets of contractions

that contribute to the reaction are those in which all fields and states are contracted. There

are three contributing sets of contractions produced by each term. For the first term, the

figure shows the three contributing sets of contractions and their corresponding Feynman

diagrams. The B′ state contracts with the B field in only one way, and the two C fields

contract with each other in only one way. The A′ state can contract in two ways, once to

an A field at vertex 1, and once to an A field at vertex 2. When the A′ state contracts to

vertex 2, there are two ways the A1 state can contract, once to vertex 1 and once to vertex

2.

The second term produces an identical group of diagrams. This is made obvious by con-

sidering that the vertex labels 1 and 2 are dummy labels, and may be reassigned (swapped)

in the second term, showing its equivalence to the first term. Together the two terms

produce two of each diagram. The factor of 1/2! in S2 cancels the duplicates.

The diagrams may be read directly from the contracted terms. The contractions indicate

to which vertices the externals states are attached. In the diagrams, time proceeds upward

across the page. The initial state particles enter vertices from below, and the final state

particles exit vertices from above. The second and third diagrams are referred to as the

“direct” and “exchange” diagrams, the difference being in the placement of the initial states

A1 and A2 at the vertices. The third diagram is obtained from the second by exchanging

the two initial states.

Note that the exchange term owes its existence to the presence of two vertices in the

Lagrangian L = −AAC−ABC. In applying the Wick/Peskin contractions, it is immediately

clear that having the two vertices ABC and AAC present gives the initial state particles A1

and A2 two places to which they can contract, which leads to direct and exchange terms.

These contractions of symbols mirror the physical view. Two identical nucleons A1 and

A2 interact by exchanging a meson. There are two possible outcomes for each particle:

1) exchange the pion and become a Delta baryon, or 2) exchange the pion and remain a

28



nucleon. In mathematical symbols, we ”give” the particles these two possibilities by giving

them two types of vertices to which they may connect, two types of interactions in which

they may engage. Similarly in spinor theory, the Lagrangian consists of the sum of an

interaction vertex and it’s hermitian conjugate [31, 32]. Together, the two vertices provide

for the existence of an exchange term.

2.4.2 Evaluation of 〈f |S2|i〉

Each of the three diagrams (contracted terms) in figure 2 contributes to the expectation

value 〈f |S2|i〉. Labeling these contributions by the type of diagram s, t and u, we have

S2 = S2s + S2t + S2u and

〈f |S2|i〉 = 〈f |S2s|i〉+ 〈f |S2t|i〉+ 〈f |S2u|i〉

= 〈f |S2s,a|i〉+ 〈f |S2s,b|i〉+ 〈f |S2t,a|i〉+ 〈f |S2t,b|i〉+ 〈f |S2u,a|i〉+ 〈f |S2u,b|i〉

(62)

In the last line the contributions from terms (a) and (b) are shown separately. Taking the

fully contracted term 〈f |S2s,a|i〉

〈f |S2s,a|i〉 =
(−i)2gAAgAB

2!

∫
d4x1d

4x2〈p3p4|A1B1C1 A2A2C2|p1p2〉 (63)

and substituting the propagator (42) for the internal C-contraction, and (43) and (44) for

right and left external contractions gives

〈f |S2s,a|i〉 =
(−i)2gAAgAB

2!

∫
d4x1d

4x2DF (x1 − x2)eip3x1eip4x1e−ip1x2e−ip2x2 (64)

Making the same substitutions for the fully contracted term 〈f |S2s,b|i〉 gives

〈f |S2s,b|i〉 =
(−i)2gAAgAB

2!

∫
d4x1d

4x2DF (x2 − x1)eip3x2eip4x2e−ip1x1e−ip2x1 (65)

Swapping the dummy vertex indices 1 and 2 in 〈f |S2s,b|i〉 shows that the (b) term is identical

to the (a) term 〈f |S2s,a|i〉. Combining the two terms

〈f |S2s|i〉 = 〈f |S2s,a|i〉+ 〈f |S2s,b|i〉 = 2× 〈f |S2s,a|i〉 (66)
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and substituting (39) for the propagator DF (x1 − x2) leads to

〈f |S2s|i〉 =
2(−i)2gAAgAB

2!

∫
d4x1d

4x2
d4p

(2π)4
i

p2 −m2 − iε
eip(x1−x2) ×

eix1(p3+p4)e−ix2(p1+p2)

=
2(−i)2gAAgAB

2!

∫
d4x1d

4x2
d4p

(2π)4
i

p2 −m2 − iε
eix1(p3+p4+p)e−ix2(p1+p2+p)

(67)

where m is the mass of the exchanged pion. As mentioned previously, there are two of each

diagram, producing a factor of 2 in the numerator. From the s-channel diagram, where the

arrows indicate the “flow” of 4-momentum, it is clear that

p = p1 + p2 = p3 + p4 (68)

where p is the 4-momentum of the exchange particle, p1 and p2 are the 4-momenta of the

initial state particles A1 and A2, respectively and p3 and p4 are the 4-momenta of the final

state particles A′ and B′, respectively. The integrals over x1 and x2 convert the exponentials

into δ functions of the momenta, and integration over p evaluates one of the delta functions

with the result

〈f |S2s|i〉 =
−igAAgAB

(p1 + p2)2 −m2 − iε
(2π)4δ4(p1 + p2 − p3 − p4) (69)

Similarly, the result for the second diagram, with

p = p1 − p3 = p4 − p3 (70)

is

〈f |S2t|i〉 =
−igAAgAB

(p1 − p3)2 −m2 − iε
(2π)4δ4(p1 + p2 − p3 − p4) (71)

and for the third diagram, with

p = p1 − p4 = p3 − p2 (72)
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is

〈f |S2u|i〉 =
−igAAgAB

(p1 − p4)2 −m2 − iε
(2π)4δ4(p1 + p2 − p3 − p4) (73)

Introducing the Mandelstam invariants

s ≡ (p1 + p2)2 = (p3 + p4)2 (74)

t ≡ (p1 − p3)2 = (p4 − p2)2 (75)

u ≡ (p1 − p4)2 = (p3 − p2)2 (76)

and combining the three results leads to

〈f |S2|i〉 = −igAAgAB(2π)4δ4(p1 + p2 − p3 − p4)×[
1

s−m2 − iε
+

1
t−m2 − iε

+
1

u−m2 − iε

]
(77)

Finally, substituting this result into (38) gives the amplitude

M2 = −gAAgAB

[
1

s−m2 − iε
+

1
t−m2 − iε

+
1

u−m2 − iε

]
(78)

The amplitude for the reaction N +N → N +∆ is the sum of s, t and u channel exchanges.

However, the s-channel must be excluded from the amplitude for this reaction for reasons

discussed in section 2.4.4.

2.4.3 Feynman’s Rules

The steps for determining the scattering amplitude of an interaction process from the Feyn-

man diagrams are condensed into a set of rules known as Feynman’s rules. The procedure

of the preceding section may be summarized as follows:

1. Perform Wick/Peskin contractions for a given particle interaction process and inter-

action Hamiltonian to determine the Feynman diagrams.

2. Apply Feynman’s rules to each diagram and sum over all diagrams to determine the

scattering amplitude.
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Let us enumerate these steps in greater detail.

Apply Wick/Peskin contractions:

1. Write down the expression for 〈f |S|i〉 and expand the terms to the desired order (we

used 2nd order above).

2. Find the terms that contribute to the process. This is done simply by counting

the numbers of fields and states for each type of field and state (A, B, etc), and

ascertaining that all the counts are even numbers.

3. For each contributing term, perform Wick/Peskin contractions to find all possible sets

of contractions, making sure that in each set all fields and states are contracted.

4. Read the Feynman diagrams directly from the contracted terms.

5. For each diagram, apply Feynman’s rules to determine the amplitude for that diagram.

6. Sum the amplitudes of all the diagrams.

Apply Feynman’s rules for scalar theory:

1. For a given diagram, label the momenta for all external and internal lines, and assign

arrows to all lines. For external lines the arrows indicate the movement of the initial

and final state particles in time. For initial state particles, the arrows should point

toward the vertices, and for final state particles they should point away from the

vertices. The arrows also indicate the direction of the “flow” of 4-momentum.

2. For each vertex, assign the appropriate coupling factor −igxyz, where x, y, z label the

fields that meet at the vertex.

3. For each internal line write a propagator factor DF (q) = i/(q2 −m2 − iε), where q is

the momentum of the exchange particle represented by the line.
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4. For each external line, write a factor exp(−ipx) for inbound particles, and exp(+ipx)

for outbound particles.

5. For each vertex write a delta function factor (2π)4δ4(
∑
pi) to enforce conservation of

4-momentum at the vertex. For each line attached to the vertex, if the line is inbound

pi carries a + sign, and if the line is outbound pi carries a − sign.

6. Integrate over all internal momenta, using the integral
∫
d4qi/(2π)4 for each momen-

tum qi.

2.4.4 Interpretation of the s-channel in N +N → N + ∆ Scattering

In section 2.4.2 an s-channel diagram is generated for the reaction A+A→ A+B, along with

the t and u-channel diagrams. Letting A represent a nucleon N and B the ∆ baryon, the

s-channel diagram represents the annihilation of two identical nucleons. This interpretation

of the s-channel diagram is not correct, since such a reaction does not occur in nature.

We have been led to this interpretation because scalar theory does not distinguish between

particle and anti-particle. The correct interpretation is obtained by first considering a model

that accommodates both particles and anti-particles, namely the charged scalar model.

The scalar model is compared to the charged scalar model at the end section 3.1, where

fields are expressed in terms of annihilation and creation operators. There, the complex

scalar model describes two types of fields, has two sets of annihilation and creation operators,

and is able to distinguish between particle and anti-particle. In the charged scalar model

the s-channel diagram describes the particle/anti-particle reaction N̄ +N → N̄ + ∆. The

scalar model should be consistent with the charged scalar model, therefore the s-channel

diagram should be interpreted as describing the particle/anti-particle reaction. Then both

models give t and u-channel diagrams for the reaction N + N → N + ∆, and give the

s-channel diagram for the reaction N̄ +N → N̄ +∆. In the comparison of the scalar model

to experiment [1] only the t and u-channel diagrams are used.
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3 Extension to Complex Scalar Fields

In applying scalar theory to nucleons, we purposely ignore spin and isospin, and treat

all nucleons (protons and neutrons) as identical. We then ask the question “To what

extent is scalar theory able to determine cross sections of nucleon-nucleon interactions”?

Since scalar theory does not distinguish between particle and anti-particle, we must either

include electric charge, or decide how to interpret s-channel diagrams, which involve pair

creation and annihilation. Do we say that in a proton-proton interaction, the protons can

annihilate? We cannot, since such a process does not occur in nature. Wishing to keep the

scalar theory as simple as possible by not including charge, we view s-channel diagrams as

having particle/anti-particle pairs in both the initial and final states. In this way, we are

able to achieve some success in fitting calculated cross sections to measured cross sections

[1].

The simplest way to extend the capabilities of the scalar model is to consider the electric

charge of the particles. This enables us to present a theory that recognizes anti-particles

(e.g., protons and anti-protons, neutrons and anti-neutrons). However by including charge,

we can no longer consider the proton and neutron to be identical nucleons. The charged

scalar model must include the isospin formalism.

This section draws on the quantum field theory texts of Maggiore, Ryder, Hatfield,

Gross and Peskin [19, 29, 20, 15, 18] to present a charged scalar model of nucleons. With

the introduction of charge the simple scalar Lagrangian involving products of scalar fields

is replaced with a Lagrangian involving complex scalar fields to describe the protons, anti-

protons, neutrons and anti-neutrons, and scalar fields to describe the exchange particles,

the three pions. We shall develop the theory to the extent possible without engaging in

the isospin formalism, which involves products of isospin vectors and matrices to couple

the fields of the interacting particles. Our intent in modeling nucleon interactions using

the charged scalar field is not to include electric interactions, but simply to include both

particles and anti-particles in order to resolve the issue of interpreting s-channel diagrams
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of meson exchanges.

3.1 Complex Scalar Fields of Free Charged Particles

The fields of charged scalar particles are described by the complex scalar field. The theory

of the complex scalar field is very similar to the theory of the scalar field given in section 2.

However unlike the scalar field, the complex scalar field is able to describe particles having

positive and negative energy states. Particles with negative energy states are interpreted as

anti-particles with positive energy. The complex scalar field ψ is assembled from two real

scalar field components ψ1 and ψ2

ψ =
ψ1 + iψ2√

2

ψ =
ψ1 − iψ2√

2
(79)

Since ψ and ψ are linear combinations of real scalar fields, they automatically satisfy the

Klein Gordon equation. ψ is chosen to be the particle field, and ψ the anti-particle field.

For protons, the complex scalar field describes a particle and anti-particle having equal

and opposite electric charge, whereas for neutrons, the particle and anti-particle both have

zero charge. For both protons and neutrons, particle and anti-particle fields are distin-

guished by having different sets of creation and destruction operators.

The complex field is expressed as a Fourier expansion of plane waves in which the

coefficients ap, a
†
p are the creation and annihilation operators for the particle, and the

coefficients bp, b
†
p are the creation and annihilation operators for the anti-particle. The

particle field ψ(x) is

ψ(x) =
∫

d3p

(2π)3
√

2Ep

(ape−ipx + b†pe
+ipx) (80)

and the anti-particle field ψ(x) is

ψ(x) =
∫

d3p

(2π)3
√

2Ep

(a†pe
+ipx + bpe

−ipx) (81)
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The creation and annihilation operators obey the commutation relations

[ap, a†q] = [bp, b†q] = (2π)3δ3(p− q) (82)

The vacuum state |0〉 of the particle and anti-particle Fock space is defined by

ap|0〉 = bp|0〉 = 0 (83)

and the Fock space is built by the creation operators acting repeatedly on the vacuum state

a†p|0〉 =
1√
2Ep

|p〉

b†q|0〉 =
1√
2Eq

|q〉 (84)

The normal ordered Hamiltonian density is given by

: H : =
∫

d3p

(2π)3
Ep(a†pap + b†pbp) (85)

The U(1) charge is conserved and is given in terms of the creation and annihilation operators,

and in terms of the particle number operator Na and anti-particle number operator Nb by

QU(1) =
∫

d3p

(2π)3
((a†pap − b†pbp)

=
∫

d3p

(2π)3
(Na −Nb)

Na = a†pap

Nb = b†pbp (86)

showing that the total charge of a system of particles is simply the number of field quanta

(particles) created by a†p minus the number of field quanta (anti-particles) created by b†p,

integrated over all momenta. The states ap|0〉 represent particles of momentum p and

charge +1, while the states bp|0〉 represent anti-particles of momentum p and charge −1.

The formulation of the complex scalar field contrasts with that of the scalar field, where

the requirement that the scalar field be real forces ap ≡ bp, so that the scalar particle is its

own anti-particle.
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3.2 Interaction Lagrangian for Nucleons

For the complex scalar formulation of the nucleon-pion interaction, the interaction La-

grangian is written by analogy with Yukawa’s spinor formulation ([15], eq. 9.92)

LI = −igpψpψpγ
5φ0 − ignψnγ

5ψnφ0 − ig+ψnγ
5ψpφ

†
+ − ig+ψpγ

5ψnφ+ (87)

where ψp and ψn are the Dirac spinors for the proton and neutron. In our formulation we

shall use complex scalar fields instead of spinor fields, and omit the γ5 bilinear covariant.

Thus the interaction Lagrangian for two nucleons, a proton and neutron, interacting through

the exchange of neutral and charged pseudo-scalar pions takes the form

LI = −igpψpψpφ0 − ignψnψnφ0 − ig+ψnψpφ
†
+ − ig+ψpψnφ+ (88)

where ψp is the proton field, ψn is the neutron field, and the φi are the pion fields; φ0 for the

π0, φ+ for the π+, and φ− = φ†+ for the π−. LI is Hermitian, and the coupling constants

gp, gn and g+ are real. The coupling constants are related by

gp = −gn =
g+√

2
= g (89)

In this relation, the minus sign of gn and the factor of
√

2 on g+ are determined by requiring

invariance of the spinor-based Lagrangian (87) under isospin rotations ([15] pgs. 265-268).

In terms of g the Lagrangian (88) becomes

LI = −igψpψpφ0 + igψnψnφ0 − i
√

2gψnψpφ
†
+ − i

√
2gψpψnφ+ (90)

Using the isospin formalism, LI can also be written

LI = −igψτψ · φ (91)

where ψ is the two-component nucleon field in isospin space

ψ =
(
ψp

ψn

)
(92)
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τ is the Pauli spin matrix

τ = (τ1, τ2, τ3) (93)

τ1 =
(

0 1
1 0

)
(94)

τ2 =
(

0 −i
i 0

)
(95)

τ2 =
(

1 0
0 −1

)
(96)

and φ is the three-component pion field in isospin space

φ =

 φ1

φ2

φ3

 (97)

φ1 =
1√
2
(φ+ + φ†+)

φ2 =
i√
2
(φ+ − φ†+)

φ3 = φ0 (98)

We shall work with the first Lagrangian (90) to develop 2nd order diagrams, and leave

the isospin formulation for future work involving the ∆ baryon.

3.3 Contractions

Wick contractions and external (Peskin) contractions for complex scalar fields are different

from contractions for scalar fields (see section 2.1.6). Whereas a scalar field φ(x1) at x1

contracts with a like field φ(x2) at x2, a complex scalar field ψ(x1) contracts with an adjoint

field ψ(x2)

〈0|ψ(x1)ψ(x2)|0〉 = DF (x1 − x2) (99)

to produce the Feynman propagator. For external contractions, a scalar field φ can contract

with a particle on the left (final state) or on the right (initial state), but a complex scalar
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field ψ can contract with a particle on the right or an anti-particle on the left, while the

field ψ can contract with a particle on the left and an anti-particle on the right. Thus for

an initial state particle |p〉

ψ(x)|p〉 = e−ip·x|0〉 (100)

and for an initial state anti-particle |q〉

ψ(x)|q〉 = e−iq·x|0〉 (101)

For a final state particle 〈p|

〈p|ψ(x) = 〈0|e+ip·x (102)

and for a final state anti-particle 〈q|

〈q|ψ(x) = 〈0|e+iq·x (103)

In the next section the contractions are applied to terms in the S-matrix to generate Feyn-

man diagrams.

3.4 2nd Order Diagrams

The 2nd order Feynman diagrams for the elastic proton-proton reaction p+ p→ p+ p are

derived from S2, the 2nd order term in the expansion of the S-matrix (32)

S2 =
(−i)2

2!

∫
d4x1d

4x2T [HI(x1)HI(x2)] (104)

Setting the Hamiltonian H = −L with the Lagrangian (90), the product of Hamiltonians

in S2 contains sixteen terms

H(x1)H(x2) = (igψpψpφ0 − igψnψnφ0 + i
√

2gψnψpφ
†
+ + i

√
2gψpψnφ+)1 ×

(igψpψpφ0 − igψnψnφ0 + i
√

2gψnψpφ
†
+ + i

√
2gψpψnφ+)2

= −g2(ψpψpφ0)1(ψpψpφ0)2 − g2(ψnψnφ0)1(ψnψnφ0)2

+14 more terms (105)
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Since the reaction of interest involves two protons p in both the initial and final states,

only proton fields ψp are involved so only the first of the sixteen terms contributes to the

reaction amplitude. Writing the initial state |p1 p2〉 in terms of the momenta p1 and p2 of

initial state particles 1 and 2, and the final state 〈p3 p4| in terms of the momenta p3 and p4

of final state particles 3 and 4, and performing contractions leads to four fully contracted

terms

〈 p3 p4| ψp ψp φ0 ψp ψp φ0 | p1 p2〉 (106)

〈 p3 p4| ψp ψp φ0 ψp ψp φ0 | p1 p2〉 (107)

〈 p3 p4| ψp ψp φ0 ψp ψp φ0 | p1 p2〉 (108)

〈 p3 p4| ψp ψp φ0 ψp ψp φ0 | p1 p2〉 (109)

The first and fourth terms are identical (p1 shares a vertex with p3), and the second and

fourth terms are identical (p1 shares a vertex with p4). The factor 1/2! in S2 cancels the

duplicity, leaving two distinct terms, the first and second, which correspond to the direct

t-channel and exchange u-channel diagrams shown in figure 3.a. The second term in (105)

yields contracted terms and diagrams for the neutron-neutron reaction n+ n→ n+ n that

are identical to those for the proton-proton reaction, replacing proton fields ψp with neutron

fields ψn and line labels p with n.

3.5 The ∆ Baryon in the Complex Scalar Model

The ∆ baryon has spin 3/2 and isospin 3/2, and carries charges of -1, 0, 1 and 2. In

the spinor formalism, the four ∆ particles are represented by the four component Rarita-

Schwinger field ψµ, and the three exchange pions π0, π+ and π− by the iso-vector pion field

π. As in section 3.2, the complex scalar Lagrangian is written by analogy with the spinor
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Lagrangian, replacing the spinor fields with complex scalar fields, and the iso-vector pion

field with a pseudo-scalar field. In doing so, we must specify terms for the interactions of

the two nucleons and the four ∆ particles. Let us consider the simpler case having only two

particles, the proton p and the ∆+, and having the Lagrangian

LI = −igppψ̄pψpφ0 − igp∆∆̄+ψpφ0 − igp∆ψ̄p∆+φ0 (110)

This Lagrangian is Hermitian, and the three interaction terms suffice for a description of

the reaction p + p → p + ∆+. Inserting the Hamiltonian H = LI into S2 produces nine

terms

H(x1)H(x2) = (−igppψpψpφ0 − igp∆∆+
ψpφ0 − igp∆ψp∆

+φ0)1 ×

(−igppψpψpφ0 − igp∆∆+
ψpφ0 − igp∆ψp∆

+φ0)2

= −gppgp∆(∆+
ψpφ0)1(ψpψpφ0)2

−gppgp∆(ψpψpφ0)1(∆
+
ψpφ0)2

+7 more terms (111)

where each term is a product of six fields. For the reaction p + p → p + ∆+, each of the

two terms shown can be fully contracted in two ways

〈 p3 p4| ∆
+
ψp φ0 ψp ψp φ0 | p1 p2〉 (112)

and

〈 p3 p4| ∆
+
ψp φ0 ψp ψp φ0 | p1 p2〉 (113)

producing the t-channel and u-channel diagrams, respectively, shown in figure 3.b, which

may be compared to the diagrams produced by the scalar model and shown in figure 2.

For the reaction p̄ + p → p̄∆+ each of the terms shown in (111) can be contracted in

one way

〈 p3 p4| ∆
+
ψp φ0 ψp ψp φ0 | p1 p2〉 (114)

producing the s-channel diagram shown in figure 3.c.
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Figure 3: 2nd Order Diagrams of the Charged Scalar Model.

A comparison of the diagrams in figures 3 and 2 shows that for the reaction p+p→ p+∆+

the complex scalar and scalar models are consistent. The complex scalar model gives two

diagrams, the t and u channels, since the s channel does not contribute to the reaction. The

scalar model also gives only the t and u channel diagrams when we regard the s-channel

diagram as corresponding to the different reaction p+ p→ p+ ∆+.
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4 Generalized Bethe-Salpeter Equation (GBSE) in Ladder
Approximation

In [1] the 2nd order scalar one pion exchange (OPE) model is used to determine pion

production cross sections. However, for nucleon interactions, 4th and higher order terms are

significant. To improve upon the 2nd order results, this section takes up the Bethe-Salpeter

equation (BSE), which sums over all orders of ladder diagrams. The BSE is formulated using

the scalar model, and generalized to handle inelastic processes in the ladder approximation.

The BSE [15, 26] may be used to determine the amplitude of an elastic scattering process,

given certain assumptions ([15] Chapter 12). The primary assumption is that the “ladder”

diagrams dominate over other types of diagrams, in particular loop and cross diagrams. In

the ladder approximation, the BSE sums over all ladder diagrams to give a compact integral

equation expressing the process amplitude M in terms of itself. The sum is carried out to

all orders in coupling constant g. In the series of ladder diagrams the rungs and spans are

all identical in form. Take, for example, a simple model based on the two-vertex Lagrangian

L = −gAACAAC − gBBCBBC (115)

with coupling constants gAAC and gBBC and scalar fields A, B and C. This Lagrangian

suffices to give a simple yet meaningful description of the elastic scattering of two scalar

particles A and B, which interact through the exchange of scalar particle C. The interaction

is described symbolically by A + B → A + B. A single ladder span sandwiched between

two rungs is represented by a box diagram (figure 5), and is constructed from the two

available types of vertices AAC and BBC, and the two coupling constants. The box is 4th

order, having four vertices. The homogeneity of the ladders enables the infinite series to be

summed and the BSE to take the compact form ([15] eq. 12.40)

M(p, p′;P ) = U(p, p′;P )− i

∫
d4k

(2π)4
U(p, k;P )G(p, k;P )M(k, p′;P ) (116)

where the amplitude M appears both on the left-hand side and under the integral, and

where p = p1 is the 4-momentum of one of the initial state particles, p′ = p3 is the 4-
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momentum of one of the final state particles, P = p1 + p2 = p3 + p4 is the total interaction

4-momentum, and k, the integration variable, is the 4-momentum of one of the propagating

particles in the propagator G.

The BSE (116) is depicted in figure 4 as a graphical equation. The kernel U and

propagator G are given by

U(p, p′;P ) =
g2

(p− p′)2 −m2
C

(117)

U(p, kA;P ) =
g2

(p− kA)2 −m2
C

(118)

G(p, kA;P ) =
1

(k2
A −m2

A)[(P − kA)2 −m2
B]

(119)

where mA,mB and mC are the masses of particles A,B and C, and kA is the 4-momenta of

internal particle A. Integration occurs over kA. Note that the coupling factor g2 is associated

with a rung (the kernel), despite the fact that the rung does not completely define the two

vertices to which it is attached; vertices are defined by the conjunction of rungs and spans.

However, the association succeeds for two reasons: 1) all pairs of vertices have the same

coupling factor gAACgBBC , and 2) there is a one-to-one correspondence between rungs and

pairs of vertices.

The kernel consists of all irreducible diagrams [15], but in practice is often approximated

by a single 2nd order diagram. For our discussion, the kernel is either a single 2nd order

diagram representing one meson exchange, or a sum of 2nd order diagrams, one for each

type of meson considered.

The amplitude may be substituted iteratively into itself to recreate the ladder expansion

M = U − i

∫
d4k

(2π)4
U GU + (−i)2

∫
d4k1

(2π)4
d4k2

(2π)4
U GU GU + . . .

M = U + UGM = U + UGU + UGUGU + . . . (120)

In the last line, the notation is simplified by hiding the integral operators. This equation

corresponds to the ladder expansion shown in figure 4. The second term on the right hand

side corresponds to figure 5, while the last term corresponds to the 6th order diagram
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Figure 4: The BSE in Graphical Form.

shown in figure 6. Application of the BSE is restricted to scattering processes for which

homogeneous ladders may be constructed. For φ3 type Langrangians ([15] chap. 12) such

as (115), in which three fields interact at a space-time point, inelastic processes not only

require a Lagrangian having more than one type of vertex, but will necessarily involve

inhomogeneous ladders with multiple types of rungs and spans. For the inelastic reaction

A+A→ A+B the Lagrangian must include at least two vertices

L = −gABABC − gAAAAC (121)

but most generally will have three vertices

L = −gABABC − gAAAAC − gBBBBC (122)

The following discussion is based on the three-vertex Lagrangian (122). Figure 1 lists the

most general sets of kernels and propagators for four different Lagrangians.
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Figure 5: Box diagram, with two rungs (kernels) and one span (propagator).

Figure 6: A 2-box diagram, with three rungs (kernels) and two spans (propagators).

The BSE (116) must now be generalized to handle ladders consisting of several types of

rungs and spans. This will be done for two cases: 1) a single type of rung, called a C-rung,
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and 2) multiple types of rungs. A C-rung involves the exchange of a C particle. Since

the conjunction of rungs and spans determines coupling at the vertices, and since there are

multiple types of rungs and spans, the coupling at each rung is no longer the simple factor

g2, but is determined by coupling matrices. These matrices are defined in the following

subsections.

4.1 Restriction to C-rungs

If the contribution to the amplitude M from ladders constructed using C-rungs dominate

over other ladders, we may restrict our considerations to C-rungs. The ladders will consist

of four types of spans (the other 5 propagators are omitted, since they involve A or B

exchange), constructed from vertices ABC, AAC and BBC, and coupling constants gAB,

gAA, and gBB.

4.2 A GBSE in the Ladder Approximation

The BSE (116) applies to the elastic reaction A+B → A+B, and in the expansion generates

homogeneous ladders constructed from the one type of propagator G = GA
B given by (119).

Now consider the inelastic process A+A→ A+B. The first term of the expansion of the

BSE is the 2nd order kernel U , with initial state A+A = A+A and final state A+B = A+B.

The next term in the expansion is the 4th order UGU , again with initial state AA and final

state AB. But what shall we use for the intermediate virtual two-particle state represented

by the propagator G? There are four possibilities, represented by the four propagators GA
A,

GA
B, GB

A and GB
B given by (124) below. Thus, in our attempt to generalize the BSE to

additionally describe inelastic processes such as A+A→ A+B, we are suddenly faced with

inhomogeneous ladders consisting of four different types of propagators. The lowest order

ladders that contain these propagators are 4th order and are depicted in figure 7. These

ladders correspond to terms of the form UGU , which are formed in the first iteration of the

expansion

M′ = U + UGU + UGUGM′ (123)
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If we set the propagator G equal to the sum of the four possible propagators

G = GA
A +GA

B +GB
A +GB

B =
4∑

i=1

Gi

G1 = GA
A =

GA
A

(k2
A1
−m2

A)(k2
A2
−m2

A)
=

GA
A

DA
A

G2 = GA
B =

GA
B

(k2
A −m2

A)(k2
B −m2

B)
=

GA
B

DA
B

G3 = GB
A =

GB
A

(k2
B −m2

B)(k2
A −m2

A)
=

GB
A

DB
A

G4 = GB
B =

GB
B

(k2
B1
−m2

B)(k2
B2
−m2

B)
=

GB
B

DB
B

(124)

we are able to produce the complete set of four 4th order UGU ladders in the first iteration.

In the second iteration

M′ = U + UGU + UGUGU + UGUGUGM′ (125)

6th order terms UGUGU ∝ G2 are proportional to the square of G, which produces all

possible products of two propagators GiGj . Clearly, for terms of order 2n, Gn will produce

all possible products of n propagators Gi1Gi2 × ...Gin . Thus, the sum of the Gi given

by (124) enables us to construct ladders containing all possible sequences of propagators.

However, we no longer have a fixed coupling factor gAAC gBBC for each pair of vertices (that

is, for each rung). Instead, in general the types of vertices change from rung to rung, and

we are led to introduce coupling matrices in the kernel U and propagators Gi, such that

the products of these matrices generate, rung by rung, the required coupling factors. The

introduction of matrices further requires that the amplitude itself be a matrix. We shall

label the amplitude matrix M′.

We are now ready to propose a form of the GBSE that involves matrices U , G and

M′, but an important question remains. Is the series of ladders produced by the proposed

GBSE equivalent to the series of ladders generated by the Dyson S-matrix? We defer the

proof of the equivalence until later (section 4.17), first gaining some familiarity with the
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proposed GBSE and the amplitude matrix M′. The proof given in section 4.17 is for the

case of ladders constructed with C-rungs.

With the restriction to C-rungs, a form of the generalized BSE (GBSE) that accommo-

dates multiple types of propagators is

Mik
jl = ũi

j M′ vk
l (126)

M′ = U +
∫

k
UGM′ (127)∫

k
= −i

∫
d4k

(2π)4
(128)

where Mik
jl is the amplitude of the process i+ j → k+ l, and M′ is a matrix that contains

the amplitudes of a family of reactions related by a common set of kernels and propagators.

The matrix M′ is introduced to help articulate the mechanism by which vertex coupling

factors are generated. As the GBSE formalism is developed in the following sections, M′

becomes the centerpiece in a discussion of a different kind of coupling, the coupling between

the amplitudes of different reactions.

If the family of reactions consists of a single elastic reaction, then the matrix M′ reduces

to a single element. In this case there will be only one type of propagator, and the GBSE

given by (127) reduces to the BSE given by (116).

Returning to the discussion at hand, in (127) the vectors ũi
j and vk

l specify the initial

and final states, respectively, for initial state particles i, j and final state particles k, l, where

each of the particle labels i, j, k and l can specify either particle A or B. The row vector ũi
j

and column vector vk
l are defined below by (134) and (138), noting that ũi

j = Transpose ui
j .

The kernel U

U =
1

q2 −m2
C

(129)

can no longer carry the coupling factor, since the coupling will vary from vertex to vertex

depending on the sequence of propagators appearing in the ladders. Furthermore, for each

ladder, the coupling factors of the first and last pairs of vertices are determined in part
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by the initial and final states. To determine the coupling factors we introduce coupling

matrices Gi
j into the propagator G, which is now the sum of four different propagators given

by (124) and corresponding to the four types of box diagrams shown in figure 7.

Figure 7: Four types of box diagrams and associated propagators.

The notation Di
j used for the denominators in (124) provides for more concise expressions

below. In the ladders, the coupling matrices Gi
j form products, operating on one another

to determine the coupling factors of internal vertices, and operating on the initial and final

state vectors ũ and v to determine the coupling factors of the vertices connected to the

external lines. The coupling matrices are dyadics formed by the tensor product of two

vectors

Gi
j = vi

j ⊗ ũi
j (130)

The tilde˜ indicates the transpose. For the four types of propagators, the vectors ui
j are
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defined in terms of the coupling constants, each vector presenting four coupling possibilities

uA
A = (g2

AA, gAAgAB, gABgAA, g
2
AB) (131)

uA
B = (gAAgAB, gAAgBB, g

2
AB, gABgBB) (132)

uB
A = (gAAgAB, g

2
AB, gAAgBB, gABgBB) (133)

uB
B = (g2

AB, gABgBB, gBBgAB, g
2
BB) (134)

The vectors vi
j act as column selectors

vA
A = (1, 0, 0, 0) (135)

vA
B = (0, 1, 0, 0) (136)

vB
A = (0, 0, 1, 0) (137)

vB
B = (0, 0, 0, 1) (138)

Carrying out the tensor products, the coupling matrices are

GA
A = vA

A ⊗ ũA
A =


g2
AA gAAgAB gABgAA g2

AB

0 0 0 0
0 0 0 0
0 0 0 0

 (139)

GA
B = vA

B ⊗ ũA
B =


0 0 0 0

gAAgAB gAAgBB g2
AB gABgBB

0 0 0 0
0 0 0 0

 (140)

GB
A = vB

A ⊗ ũB
A =


0 0 0 0
0 0 0 0

gABgAA g2
AB gBBgAA gABgBB

0 0 0 0

 (141)

GB
B = vB

B ⊗ ũB
B =


0 0 0 0
0 0 0 0
0 0 0 0
g2
AB gABgBB gBBgAB g2

BB

 (142)
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In the ladders, products of propagators are formed. Adjacent propagators define a pair

of vertices. In the products, the coupling matrices of adjacent propagators act on each

other, the v of a propagator acting on the ũ of the preceding propagator to select the

correct coupling factor for the pair of vertices. This operation is illustrated below for the

inelastic process A+A→ A+B.

The GBSE (127) is expanded by substituting M′ into itself iteratively to obtain the

series of all possible terms of the form GnUn+1. The second order term

G2U3 = U3(GA
A +GA

B +GB
A +GB

B)(GA
A +GA

B +GB
A +GB

B) (143)

contains sixteen propagator products Gi
jG

k
l , each of which describes a two-span, three-rung

ladder. As an example of the operation of the coupling matrices Gi
j , take the term containing

propagators GA
BG

B
B. Bracketing the term with the initial and final state vectors

ũA
AG

A
BG

B
BvA

B = ũA
A

GA
B

DA
B

GB
B

DB
B

vA
B (144)

and evaluating the coupling factor gives

ũA
AGA

BGB
BvA

B = gAA g3
AB g2

BB (145)

which can be read directly from the corresponding diagram in figure 8.

4.3 Multiple Types of Rungs

The preceding section dealt with ladders restricted to a single type of rung, the C-rung. If

such a restriction cannot be made (for example, if box diagrams formed with other types

of rungs make comparable contributions to the amplitude), all types of rungs must be

considered. For the Lagrangian (122) three types of rungs are possible (figure 9). For the

inelastic reaction A + A → A + B there will also be five types of spans, the four listed in

(124) and the fifth:

GC
C =

GC
C

(k2
C1
−m2

C)(k2
C2
−m2

C)
=
GC

C

DC
C

(146)
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Figure 8: A 2-box ladder with coupling labeled at the vertices.

The combined propagator becomes

G = GA
A +GA

B +GB
A +GB

B +GC
C (147)

(148)

The coupling matrices are now defined in a slightly different manner than was used in the

preceding section. It is easy to show that the new method reduces to the former for the

case of one type of rung (the C-rung). As before, the Gi
j matrices are defined in terms of

the vectors ui
j and vi

j , but now the vectors have five dimensions and the ui
j are identical to

the vi
j

uA
A = vA

A = (1, 0, 0, 0, 0) (149)

uA
B = vA

B = (0, 1, 0, 0, 0) (150)

uB
A = vB

A = (0, 0, 1, 0, 0) (151)

uB
B = vB

B = (0, 0, 0, 1, 0) (152)

uC
C = vC

C = (0, 0, 0, 0, 1) (153)
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The ui
j define the internal lines of the propagators, but no longer carry the associated

coupling factors. Instead, the coupling factors are placed in a new set of matrices Uk, and

the Uk become fastened to the kernels

Uk =
Uk

q2k −m2
k

(154)

where k = A,B,C labels the type of kernel, and qk and mk are the momentum and mass

of the exchange particle. In section 4.5, UC is constructed for a one kernel system.

Figure 9: Multiple rungs and spans.

4.4 Form of the GBSE for Multiple Exchange Particles

This section proposes a form of the GBSE for a model that involves more than one type

of exchange particle. A proof of the equivalence of the ladder series of this GBSE and the

S-matrix is given in section 4.18.
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Consider a Lagrangian of the form

L =
NU∑
i=1

Li

Li = −gAAiAACi − gABiABCi − gBBiBBCi ≡ −AACi −ABCi −BBCi (155)

which describes interactions between two types of particles A and B, involving NU different

types of exchange particles Ci. In general, some of the coupling constants gXY i may be zero,

signifying that the corresponding interaction vertex is not included (see section 4.10 for an

example involving six different exchange mesons). Since each type of exchange particle

represents an independent reaction channel, the reaction amplitudes are additive and the

kernel U is the sum of NU kernels

U =
4∑

i=1

Ui

Ui =
Ui

(q2i −m2
i )

(156)

one for each exchange particle. Each Ui contains its own unique coupling matrix Ui where

qi and mi are the momentum and mass of the exchange particle Ci. For the set of two

particles A and B there are four possible initial reaction states and therefore four types of

propagators. The propagator G is the sum of the four propagators previously defined by

(124) for the case of a single kernel

G =
4∑

i=1

Gi =
4∑

i=1

Gi

Di
(157)

Given U and G above, the GBSE retains the form

Mrs = ũr M′ vs

M′ = U +
∫

k
UGM′ (158)

A proof of the equivalence of the ladder series generated by (158) and the S-matrix is given

in section 4.18. In (158), ũr and vs are 4-dimensional vectors that specify the initial state

r and final state s, respectively. The coupling matrices Ui and Gj are constructed so as to
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reproduce only the vertices found in the Lagrangian. As mentioned previously, M′ can also

be formulated to include terms for exchange diagrams. Exchange diagrams are discussed in

section 4.12.

4.5 Building the Coupling Matrices

In the expansion of the GBSE, the coupling matrices form products during ladder formation

to produce coupling factors for the vertices. The Lagrangian defines the set of allowed

vertices. The vertices determine the types of ladders that can be formed. The coupling

matrices must be constructed so that only those sequences of kernels and propagators (rungs

and spans) that form allowed vertices produce non-zero coupling factors for the vertices.

For our example we use the 2-vertex Lagrangian

L = −gAACAAC − gABCABC (159)

which has vertices AAC and ABC and defines the set of three kernels and nine propagators

shown in figure 1. We restrict our example to a single kernel, the C-kernel. In the expansion

of the GBSE, 4th order diagrams (also called box diagrams or 2-rung ladders) are produced.

Four such ladders are shown in the figure 10. The top two ladders consist of allowed

vertices, but the bottom two ladders contain a BBC vertex, which does not appear in

the Lagrangian. The product of the coupling matrices must exclude the latter ladders by

generating a coupling factor of zero for the prohibited vertices.

The coupling matrices are derived for the given Lagrangian. The method is easily

generalized for arbitrary Lagrangian.

Two vertices are formed in the product of two propagators and one kernel, producing a

product of coupling matrices Gi and Uk

GiUkGj ∝ GiUkGj (160)

Propagator coupling matrices Gi are formed from tensor products of the vectors u and ṽ

Gi = ui ⊗ ṽj (161)
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Figure 10: Exclusion of Ladders with disallowed vertices.

Substituting (161) into (160) gives

GiUkGj = ui ⊗ ṽiUkuj ⊗ ṽj

= ui(Uk)ijṽj (162)

which defines the matrix element

(Uk)ij ≡ ṽiUkuj (163)

We can use (163) to generate the matrices Uk. Our procedure involves the following steps:

1) From the Lagrangian, list the allowed vertices, kernels and propagators. For the cho-

sen Lagrangian, there are two vertices, AAC and ABC, three kernels and nine propagators

(see figure 1).

2) Apply desired restrictions. In our case, we choose to use only one kernel, the C-kernel

UC , which contains coupling matrix UC . As a result, only four of the propagators may be
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used, GA
A, GB

A , GA
B and GB

B. The other five propagators, when combined with the C-type

kernel, produce unwanted vertices of the form CCX. The four propagators contain the four

coupling matrices GA
A , GB

A , GA
B and GB

B .

3) The number of propagators NG = 4 determines the dimensions of the vectors and

coupling matrices. Vectors uj
i and vj

i have dimension NG, and coupling matrices UC and

Gj
i have dimensions NG ×NG.

4) Define the vectors uj
i and vj

i . These vectors act on UC as row and column selectors,

so their definitions are arbitrary. We choose the following:

uA
A = vA

A = (1, 0, 0, 0) (164)

uA
B = vA

B = (0, 1, 0, 0) (165)

uB
A = vB

A = (0, 0, 1, 0) (166)

uB
B = vB

B = (0, 0, 0, 1) (167)

5. The coupling matrices Gj
i are tensor products of the vectors

GA
A = vA

A ⊗ ũA
A =


1 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

 (168)

GA
B = vA

B ⊗ ũA
B =


0 0 0 0
0 1 0 0
0 0 0 0
0 0 0 0

 (169)

GB
A = vB

A ⊗ ũB
A =


0 0 0 0
0 0 0 0
0 0 1 0
0 0 0 0

 (170)

GB
B = vB

B ⊗ ũB
B =


0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 1

 (171)
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6. Use (163) to calculate the elements of coupling matrix UC . First, we simplify the

notation by setting

gAAC = g1 (172)

gABC = g2 (173)

GA
A = G1 (174)

GB
A = G2 (175)

GA
B = G3 (176)

GB
B = G4 (177)

We calculate several matrix elements explicitly (refer to figure 10). The product G1UCG1

produces two AAC vertices, each with coupling constant g1. Therefore

(UC)11 = g2
1 (178)

The product G1UCG2 produces vertices AAC and ABC, with coupling constants g1 and g2,

respectively. Therefore

(UC)23 = g1g2 (179)

The product G3UCG3 produces the prohibited vertex BBC. Therefore

(UC)33 = 0 (180)

Repeating this process for all sixteen elements, the complete matrix is

UC =


g2
1 g1g2 g1g2 g2

2

g1g2 0 g2
2 0

g1g2 g2
2 0 0

g2
2 0 0 0

 (181)

4.6 Generation of Fourth-Order Diagrams

In the ladder approximation ([15] chap. 12), the GBSE sums over all orders of ladder

diagrams. The 2nd order diagrams, each with a single internal line, represent the exchange
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of a single virtual particle. Next in line are the 4th order diagrams, also called box diagrams,

which have 4 internal lines, representing the exchange of 4 virtual particles, 2 of which are

often considered to be on-shell or nearly so ([15]). For the Lagrangian

L = −gAACA1(x)A2(x)C(x)− gABCA(x)B(x)C(x)− gBBCB1(x)B2(x)C(x)

= −gAAAAC − gABABC − gBBBBC (182)

the GBSE, in its most general form, will have the 3 kernels and 9 propagators shown in

figure 1, where all three types of particles A, B and C appear in the kernels as exchange

particles. In practice, usually only one of the particles, C, is treated as an exchange particle.

This eliminates two kernels. Further, for the inelastic reaction A+A→ A+B only four of

the nine propagators generate allowed vertices: GA
A, GB

A , GA
B and GB

B. This situation was

discussed in the preceding subsections.

In the expansion of the GBSE, ladders of all orders are formed from products of the basic

building blocks, the kernels and propagators. To be exact, the GBSE must generate all types

of ladder diagrams, each with the correct multiplicity of diagrams, produced by the Dyson

S-matrix. The next section describes program FindFeynmanDiagrams, which generates all

diagrams of the S-matrix up to 4th order for a specified reaction. FindFeynmanDiagrams

validates the GBSE to 4th order.

4.7 Program FindFeynmanDiagrams

To verify the GBSE to 4th order, we generate all 4th order diagrams from the S4 term of

the scattering matrix, and determine the multiplicities of each type of diagram. This is

done using program FindFeynmanDiagrams for the reaction N +N → N +∆, which in our

general notation is A+A→ A+B. FindFeynmanDiagrams generates the types of diagrams

shown in figure 11. See section 4.8 for a listing of FindFeynmanDiagrams. The diagrams

are equivalent to those of Gross [15] figure 12.1. Descriptive names have been assigned

and the shapes chosen to emphasize identifying features. These are discussed below. The

box diagrams are further subdivided by propagator type. These are shown in figure 7.
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The multiplicities of the 4th order diagrams are generated by FindFeynmanDiagrams and

Figure 11: Geometrical Types of 4th Order Diagrams.

written to file “results.txt”. This file is listed at the end of section 4.8.

4.8 The FindFeynmanDiagrams Algorithm

FindFeynmanDiagrams uses Wick/Peskin contraction (see section 2.1.6) to determine all

diagrams arising from S4, the 4th order term in the scattering matrix

S4 =
(−i)4

4!

∫
d4x1d

4x2d
4x3d

4x4T{H1H2H3H4} (183)

Hi = −Li = gABCA(xi)B(xi)C(xi) + g(AAC)A1(xi)A2(xi)C(xi) +

+g(BBC)B1(xi)B2(xi)C(xi) (184)

where the subscripts 1 through 4 on the interaction Hamiltonians identify the vertices x1

through x4 at which the Hamiltonians are respectively evaluated. T is the time ordering
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operator which operates on the products of fields appearing in the terms. The products of

fields are produced by the products of Hamiltonians. FindFeynmanDiagrams expands the

product of four Hamiltonians to produce 81 terms

H1 H2 H3 H4 = H(x1) H(x2) H(x3) H(x4)

= (−igABC)4A(x1)B(x1)C(x1) A(x2)B(x2)C(x2)×

A(x3)B(x3)C(x3)A(x4)B(x4)C(x4) + 80 more terms (185)

in which each term is the product of 12 fields. Of the 81 terms, only 36 of the terms

contribute to the amplitude of the process A+A→ A+B. The 36 terms (listed below) are

found by pairing internal fields with external state particles (field A with external particle

A, etc), then counting the remaining fields. If there are an even number of A fields, B

fields and C fields, the term contributes to the process. This method ensures that all

external particles contract with a field, and that the remaining fields contract in pairs to

form propagators. The list below uses a compact notation (taking one term as an example)

gABC g3
AACA(x1)B(x1)C(x1) A1(x2)A2(x2)C(x2)×

A1(x3)A2(x3)C(x3) A1(x4)A2(x4)C(x4)

= (ABC)1(AAC)2(AAC)3(AAC)4 (186)

This notation hides the coupling constants as well as the dependence of the fields on

the 4-space coordinates xi, but retains the coordinate subscripts to distinguish the ver-

tices. The notation also drops the field subscripts, with the understanding that AAC =
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A1(x) A2(x) C(x). The 36 contributing terms are

(ABC)1(ABC)2(ABC)3(AAC)4 + (ABC)1(ABC)2(AAC)3(ABC)4 +

(ABC)1(AAC)2(ABC)3(ABC)4 + (AAC)1(ABC)2(ABC)3(ABC)4 +

(ABC)1(AAC)2(AAC)3(AAC)4 + (AAC)1(ABC)2(AAC)3(AAC)4 +

(AAC)1(AAC)2(ABC)3(AAC)4 + (AAC)1(AAC)2(AAC)3(ABC)4 +

(ABC)1(ABC)2(ABC)3(BBC)4 + (ABC)1(ABC)2(BBC)3(ABC)4 +

(ABC)1(BBC)2(ABC)3(ABC)4 + (BBC)1(ABC)2(ABC)3(ABC)4 +

(AAC)1(ABC)2(BBC)3(AAC)4 + (ABC)1(AAC)2(AAC)3(BBC)4 +

(ABC)1(AAC)2(BBC)3(AAC)4 + (ABC)1(BBC)2(AAC)3(AAC)4 +

(AAC)1(ABC)2(AAC)3(BBC)4 + (AAC)1(AAC)2(ABC)3(BBC)4 +

(AAC)1(AAC)2(BBC)3(ABC)4 + (AAC)1(BBC)2(ABC)3(AAC)4 +

(AAC)1(BBC)2(AAC)3(ABC)4 + (BBC)1(ABC)2(AAC)3(AAC)4 +

(BBC)1(AAC)2(ABC)3(AAC)4 + (BBC)1(AAC)2(AAC)3(ABC)4 +

(ABC)1(AAC)2(BBC)3(BBC)4 + (ABC)1(BBC)2(AAC)3(BBC)4 +

(ABC)1(BBC)2(BBC)3(AAC)4 + (AAC)1(ABC)2(BBC)3(BBC)4 +

(AAC)1(BBC)2(ABC)3(BBC)4 + (AAC)1(BBC)2(BBC)3(ABC)4 +

(BBC)1(ABC)2(AAC)3(BBC)4 + (BBC)1(ABC)2(BBC)3(AAC)4 +

(BBC)1(AAC)2(ABC)3(BBC)4 + (BBC)1(AAC)2(BBC)3(ABC)4 +

(BBC)1(BBC)2(ABC)3(AAC)4 + (BBC)1(BBC)2(AAC)3(ABC)4 (187)
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Table 1: Features of 4th Order Diagrams.

Feature Description
Pair An Ibyx with either two initial or two final state lines
Ibyx Two external lines share a vertex
Loop Two vertices that share two internal lines
Bi-loop Two vertices that share three internal lines
Seat In a box diagram, final state vertices sit adjacent or catecorner

For each of the 36 terms, FindFeynmanDiagrams determines all diagrams resulting from

the term by finding all ways that contractions can be made. To create a diagram, external

contractions are made first. These determine which external lines attach to which vertices.

Internal contractions are then made until no fields remain un-contracted. The internal con-

tractions determine the internal lines between vertices. The resulting diagram is classified

and counted by type, and printed to a file in symbolic form. The procedure of Wick/Peskin

contraction takes care of normal ordering automatically.

A diagram is classified by finding the identifying features in the diagram. The identifying

features are pairs, ibyxs, loops, bi-loops and seats. The features are defined in the table 1,

and shown in figure 11. An ibyx is a vertex having two external lines. The lines can be

either initial or final state particles. A pair is an ibyx in which the two external lines

are both initial state particles, or both final state particles. In the figure, X and Y are

both initial state particles, so the ibyx is also a pair. A loop is a pair of vertices that

share two internal lines (vertices c,d in the figure). A bi-loop is a pair of vertices that

share three internal lines (vertices a,b in the figure). The seat distinguishes box and cross

diagrams. If the two final state particles (A’ and B’ in the figure) are separated by one

internal line, they have adjacent seats, and the diagram is a box. If the two final state

particles are separated by two internal lines, they have catecorner seats, and the diagram

is a cross. FindFeynmanDiagrams uses the features to classify the diagram as one of the

types shown in figure 11. Gross [15] figure 12.1 also shows the types of 4th order diagrams.
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Figure 11 matches the diagrams to those of Gross (Gross labels the diagrams A through

G). Gross omits the split diagrams. Gross shapes the diagrams to emphasize the box shape

and deviations from the box shape. In figure 11 the diagrams are shaped to emphasize the

identifying features. Of particular interest for the GBSE discussion are the four types of box

diagrams which involve C exchange, and their multiplicities. These diagrams correspond

to the four types of propagators (see figure 7).

FindFeynmanDiagrams prints a summary of the results of generating all possible dia-

grams. The file is listed in section 6.1. The summary gives the total number of diagrams,

the number of diagrams for each type of diagram (figure 11), and the number of diagrams

for each of five types of boxes. FindFeynmanDiagrams verifies that the numbers sum to the

total, and that the numbers of box diagrams are integrally divisible by 4!.

4.8.1 Multiplicity of the “AA” Box Diagrams

To further verify the veracity of FindFeynmanDiagrams, we count “by hand” the number

of box diagrams in which the propagator is GA
A. FindFeynmanDiagrams gives

number of AA boxes = 48/24 = 2

The hand count is depicted in figure 12. Before proceeding with the count, we note that for

box diagrams, only one external particle can connect to each or the four vertices. Further-

more, the two final state particles must share an internal C line, and the two initial state

particles must share an internal C line. The GA
A box diagram has one ABC vertex and

three AAC vertices. Of the 36 contributing terms (see preceding section), four terms have

the correct set of vertices. In the diagram, the vertices are labeled a, b, c and d. For the

selected term (dotted rectangle), in steps (2) through (5) the vertices are labeled 1 through

4. Once all contractions have been made, the diagram vertices {a,b,c,d} will map to the

term vertices {1,2,3,4}. For the following five calculation steps (1) through (5), refer to the

figure.

1. For each of the four terms, the external final state particle B′ contracts in one way
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only to the ABC vertex. This gives a factor of 4 in the total number of diagrams.

2. In the first term, with B′ contracted to vertex 1, A′ can contract three ways, once to

each of the AAC vertices. Having established the vertices of the final state particles,

the B′ at vertex 1, and the A′ at vertex 2, the two internal C lines become fixed. This

gives a factor of 3.

3. Initial state particle A1 can contract two ways, once to each of the two remaining

vertices. This gives a factor of 2. Accumulating factors gives 4× 3× 2 = 24 = 4!, the

number of time orderings. This factor gets canceled by the S4 factor of 1/4!.

4. The remaining initial state particle A2 can contract in one way only, to the one

remaining vertex.

5. An internal A contraction can be formed in two ways, from the ABC vertex to either

of the two vertices occupied by the initial state particles. This internal line generates

the direct and exchange box diagrams. This gives a factor of 2.

Having completed the contractions, the diagram vertices {a,b,c,d} map to the term ver-

tices {1,2,3,4}, respectively. Multiplying the factors produced in steps i) through v) gives

4×3×2×2 = 48 diagrams, the same number of diagrams determined by FindFeynmanDia-

grams. The multiplicity of 2 for AA box diagrams counts the direct and exchange diagrams,

both of which appear since there are two identical initial state particles A1 and A2.

Concerning time ordering, note that the final state particle B′ can contract in 4 ways

(once for each of four terms). For each term, the B′ occupies one vertex, so the final state

particle A′ can contract 3 ways, once for each of the three remaining vertices. For each

contraction of A′, the initial state particle A1 contracts 2 ways, one for each of the remaining

two vertices. The combined factor of 4 × 3 × 2 = 24 gives the number of arrangements of

the external state particles (excluding exchanges). These 24 arrangements are identical,

recalling that vertex labels are dummy labels. The labels may be reassigned to show the

equivalence of any two arrangements. The 24 arrangements correspond to the 4! = 24
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duplicates produced by time ordering. The factor of 24 is canceled by the factor 1/4!

appearing in S4, leaving 48/24 = 2 unique AA box diagrams.

Multiplicity derives in part from duplicate terms. For example the two terms

(ABC)1(AAC)2(AAC)3(AAC)4

and

(AAC)1(ABC)2(AAC)3(AAC)4

are in fact identical. This is seen by recognizing that the indices 1 through 4 are dummy

labels and may be reassigned. Swapping indices 1 and 2 in the second term shows that it is

equivalent to the first term. As discussed above, these multiplicities arise precisely because

of the multiplicities resulting from time ordering. The operator T generates 4! orderings for

each of the 36 terms, a multiplicity that is canceled by the factor 1/4! in S4.

4.9 Matrix Solutions of the GBSE

Numerical solutions of the BSE determine the complex-valued function M(p, p′, P ) at n

points over a desired range of momentum p in the integral equation ([15] eq. 12.40)

M(p, p′;P ) = U(p, p′;P ) +
∫

k
U(p, k;P )G(p, k;P )M(k, p′;P ) (188)

where p = p1 is the 4-momentum of one of the initial state particles, p′ = p3 is the 4-

momentum of one of the final state particles, P = p1 + p2 = p3 + p4 is the total interaction

4-momentum, and k, the integration variable, is the 4-momentum of one of the propagating

particles in the propagator G.

For the GBSE, the numerical solution involves determining the complex-valued elements

of the matrix M′(p, p′;P ) over a range of momentum p in the integral equation

M′(p, p′;P ) = U(p, p′;P ) +
∫

k
U(p, k;P )G(p, k;P )M′(k, p′;P ) (189)

where M′ consists of a set NG ×NG coupled functions. NG is the number of propagators,

which is equal to the number of initial states. The numerical task is considerably lightened
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by the fact that many of the functions are equivalent under “exchange” equivalence and/or

“time reversal” equivalence (these forms of equivalence are defined in section 4.11). The

family of functions corresponds to a family of interaction processes that are related by shared

sets of kernels and propagators. Once a solution has been found for M′, the amplitude of

an individual process is obtained by specifying the initial and final state vectors xr and ys

Mrs = ũrM′vs (190)

The characteristics of M′ are explored in the following sections, where we use a simpler

notation. Hiding the integral sign in (189) gives

M′ = U + UGM′ = U + UGU + UGUGU + . . . (191)

In expansions of (191), integrations are understood in all terms containing products of M′,

G and U , with one integration for each G in a given term.

4.10 The Coupled BSE of Faassen and Tjon [2]

The Coupled BSE of Faassen and Tjon is introduced at this point to motivate the ensuing

discussion of the detailed form of M′. Faassen and Tjon (FT) [2, 33, 34] use coupled Bethe-

Salpeter equations (CBSE) to describe the inelastic process N + N → N + ∆. In this

section we discuss the CBSE and show how it can be derived from the GBSE by applying

the restrictions imposed by FT on their model.

FT treats the nucleon and ∆ baryon fields as spinors, as reflected in their Lagrangian.

We, however, treat all particles as scalars, consequently our Lagrangian differs from theirs,

as do our kernels and propagators. Despite the differences, both treatments can be described

by the same set of graphical and symbolic equations, in which the symbols represent the

kernels and propagators. Fundamentally, in both treatments, these equations embody the

same particle lines and interaction vertices that make up the ladder diagrams.

The CBSE takes the form of three coupled BSE equations, the first forN+N production,

the second for N+∆ production and the third for ∆+∆ production. The CBSE is depicted
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in figure 13 in the form of graphical equations, which correspond to the symbolic equations

M′
11 = V1 +M′

11H1V1 +M′
13H3V3 +M′

14H4V4

M′
13 = V3 +M′

12H2V4 +M′
11H1V3

M′
14 = V4 +M′

11H1V4 (192)

The Vi and Hj introduced here are forms of the kernels and propagators which contain the

coupling constants rather than the coupling matrices

V1 =
g2
AA

p2
C −m2

C

V2 = V3 =
gAAgAB

p2
C −m2

C

V4 =
g2
AB

p2
C −m2

C

H1 =
1

(p2
A −m2

A)(q2A −m2
A)

H2 =
1

(p2
A −m2

A)(q2B −m2
B)

H3 =
1

(p2
B −m2

B)(q2A −m2
A)

H4 =
1

(p2
B −m2

B)(q2B −m2
B)

(193)

V2 and V3 are equivalent, but both are specified so that there is a one-to-one association

between the Vi and Ui. There is also a one-to-one association between the Hi and Gi.

Equation (192) places M′ to the left of H and V to be consistent with figure 13, which

retains the order of kernels and propagators used by FT. See the end of this section and

end of section 4.14 for further discussion of the left-to-right order of M′, H and V .

In the CBSE, N +N may be produced through the exchange of any of the six mesons

π, ρ, η, ε, δ and ω, while the ∆ is produced only through the exchange of the two mesons

π and ρ. Thus in (192), V1 is a sum of six kernels while V2, V3 and V4 are each a sum of
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two kernels

V1 = V1π + V1ρ + V1η + V1ε + V1δ + V1ω

V2 = V2π + V2ρ

V3 = V3π + V3ρ

V4 = V4π + V4ρ (194)

FT excludes the ∆∆ = BB vertex from their Lagrangian. We apply these features of the

CBSE in the next section to formulate a GBSE that is equivalent to the CBSE.

Figure 13: The Coupled BSE (adapted from Faassen and Tjon [2]).

In adapting figure 13 from FT, we keep the left to right order of the rungs M (fat rung)

and V (thin rung) despite the fact that we have used the reverse order in previous sections
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of our GBSE discussion. Here, M′ precedes H precedes V , whereas in previous sections U

precedes G precedes M′. We further note that the order used in previous sections is the

same as used in the textbook of Gross [15] and many other BSE articles, both older and

newer than FT, to cite two [7, 35]. Nevertheless, the order used in the figure is consistent

with the order of the symbols Vi, Hj and M′ in the CBSE equations above. The text and

papers cited are also self-consistent, keeping the same order of rungs in both the graphical

and symbolic forms of the BSE, although this consistency does not matter. Interestingly,

FT is not self-consistent, but in their formulation it also does not matter. In the GBSE

formulation, one might expect that order does matter. The Gi are diagonal, and Uj = Ũj

is symmetric, but M′ = time reversed M̃′ is not symmetric, so in fact order does matter.

However, changing the left-to-right order of M′, Hj and Vi from ViHjM′ to M′HjVi simply

produces another equally valid set of coupled equations involving the time-reversed elements

of M′, e.g., M′
21 is replaced by M′

12. The order is discussed further in section 4.14.

4.10.1 2nd Order Content of the CBSE

The 2nd order content of the CBSE is analyzed using the GBSE formalism. The 2nd order

diagrams embedded in the CBSE are identified and used to populate M′ to second order.

In the process, the coupling matrices Ui and Gj are evaluated. The goal is to express the

CBSE in matrix form, and incorporate the same restrictions imposed by FT (mentioned in

the previous section).

Since the set of propagators Gi is the same as that in section 4.5, the coupling matrices

Gi are the same (repeated here for convenience)

GA
A = vA

A ⊗ ũA
A =


1 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

 (195)

GA
B = vA

B ⊗ ũA
B =


0 0 0 0
0 1 0 0
0 0 0 0
0 0 0 0

 (196)
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GB
A = vB

A ⊗ ũB
A =


0 0 0 0
0 0 0 0
0 0 1 0
0 0 0 0

 (197)

GB
B = vB

B ⊗ ũB
B =


0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 1

 (198)

Using the method of section 4.5, the Uk matrices are found by listing all possible GUG

propagator-kernel-propagator combinations for each kernel, and using these to calculate

the elements (Uk)ij . The GUGs define 2nd order diagrams (2ODs). Having derived Uπ

and Uη, Uρ is then obtained from Uπ simply by replacing π coupling constants gxxπ with ρ

coupling constants gxxρ, and Uε, Uδ and Uω are similarly obtained from Uη.

The GUG combinations used in the CBSE are found by inspection of the rungs and

spans in figure 13. For each rung U appearing in the graphical equations, the two lines

entering the rung from the left define the first G, and the two lines exiting the rung from

the right define the second G. In this manner, six GUGs can be read directly from the

figure. However, the second graphical equation shown in the figure is coupled to itself

“upside-down”. The upside-down image amounts to a fourth equation, which contains two

more GUGs, bringing the total to eight.

The eight GUGs are shown in figure 14 along with eight GUGs that do not appear in

the CBSE. One contains ABC and AAC vertices, and seven contain a BBC vertex. GUGs

found in the CBSE correspond to non-zero elements in M′ and U . GUGs not found in the

CBSE correspond to zeros in M′ and U . Each GUG specifies a 2nd order diagram and a

product of two coupling constants. The computed Uk are

Uπ =


g2
AA 0 gAAgAB g2

AB

gAAgAB 0 g2
AB 0

gAAgAB g2
AB 0 0

g2
AB 0 0 0

 (199)
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Figure 14: GUG Combinations involving AAC, ABC and BBC Vertices.

Uη =


g2
AA 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

 (200)

In Uπ, the subscript C = π is implied in all the coupling constants (e.g., gAA = gAAC =

gNNπ) and in Uη the subscript η is implied. The null value of U12 is a first indication that

the CBSE lacks a coupling channel. A fuller explanation is given in section 4.14. In the

next section, we show how the Uk can be read directly from M′ approximated to second

order.
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4.11 2nd Order M′

As mentioned in the preceding sections, M′ embodies a coupled set of NG ×NG equations

(NG is the number of propagators Gi), each equation giving the amplitude of one of NG×NG

interaction processes. The family of interaction processes are related by sharing the sets of

kernels Ui and propagators Gj . The set of equations are coupled, and their solutions are

obtained simultaneously. The solution of M′ is precisely the simultaneous solution of the

set of equations. Each element M′
ij gives the amplitude of the process defined by initial

and final state vectors xi and yj . Although M′ contains NG ×NG elements, M′ contains

groups of equivalent elements, so that the number of unique equations, thus the number of

unique processes, is significantly smaller. These characteristics of M′ are explored below.

The first term in (127), namely U , defines M′ to second order. From (127) and (163),

we see that the element Uij and the element M′
ij to second order, are both given by

Uij = 2nd orderM′
ij = ũiUvj (201)

Figure 16 shows M′ to 2nd order for the 3-vertex interaction Hamiltonian HI = AAC +

ABC +BBC, and for a model in which the only exchange particle is the C particle. Each

element Mij is the amplitude of a particular process. For example, given an initial state

vector u1 = ũA
A and final state vector v1 = vA

A (see equation (167) for the definitions of ũA
A)

and vA
A, we find that the amplitude, to 2nd order, for the process A+A→ A+A is

M(A+A→ A+A) = ũ1M′v1 = M′
11 (202)

In the formalism of the GBSE developed thus far, exchange diagrams are not included.

When it is known in advance that either the initial or final state is composed of two identical

particles, the GBSE must sum twice the number of terms, the direct terms and the exchange

terms. The latter are obtained from the former by exchanging the identical particles. In

the formulation, this amounts to exchange the momenta p1 and p2 for identical initial state

particles, and p′1 and p′2 for identical final state particles. Exchange amplitudes are discussed

in section 4.12.
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Inspection of figure 16 reveals that many of the interaction amplitudes are “equivalent”

for one of two reasons:

• The associated processes are identical under interchange of the initial (or final) state

particles (for example, the reaction A + B → A + B is equivalent to the process

A+B → B +A).

• The processes are equivalent under time reversal (A + A → B + B is equivalent to

B +B → A+A).

Thus there are seven unique amplitudes

M′
11

M′
12 = τM′

21 = εM′
13 = ετM′

31

M′
14 = τM′

41

M′
24 = τM′

42 = εM′
34 = ετM′

43

M′
22 = ετM′

33

M′
32 = ετM′

23

M′
44 (203)

and the problem of solving for M′ amounts to solving seven simultaneous equations. The

operators ε and τ signify exchange and time-reversal, respectively, and care must be taken

in applying the “equivalence” in numerical solutions. Equation (203) is a shorthand for

more explicit statements. The explicit statement for exchange equivalence is

M′
12(p1, p2, p3, p4) = εM′

13 = M′
13(p2, p1, p3, p4) (204)

where the momenta of the initial state particles are exchanged. The explicit statement for

equivalence under time reversal is

M′
12(p1, p2, p3, p4) = τM′

21 = M′
21(p3, p4, p1, p2) (205)
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where initial and final state momenta are exchanged. Both operators act in

M′
12(p1, p2, p3, p4) = ετM′

31 = M′
31(p4, p3, p1, p2) (206)

If we choose to exclude the BBC vertex and work in the 2-vertex model, the 2nd order

M′ takes the form shown in Figure 17. The absence of the BBC vertex eliminates seven

of the original sixteen processes, leaving only four unique processes

M′
11

M′
12 = τM′

21 = εM′
13 = ετM′

31

M′
14 = τM′

41

M′
32 = ετM′

23 (207)

and the problem of solving for M′ is reduced to one of solving four simultaneous equations.

By removing the BBC vertex we have in effect removed the seven GUGs that contain

a BBC vertex (see figure 14). If now we keep only those GUGs that appear in the CBSE,

the 2nd order M′ takes the form shown in figure 15, having one less GUG than figure 17. It

is readily seen that the CBSE cannot produce all ladder diagrams that are possible in the

two vertex model. The missing GUG in the CBSE M′ precludes the generation of ladders

containing those GUGs.

The differences between the 2-vertexM′ and the CBSEM′ are shown by expanding each

into a ladder series. The expansions are accomplished with the help of program CalcGBSE

(a complete listing is given in section 6.2). Denoting the two versions of the matrix element

M′
13 for the 2-vertex model and M′(CBSE)

13 for the CBSE, and expanding to 8th order we

obtain two series of ladder diagrams for the reaction A+A→ A+B. To verify M′(CBSE)
13 ,

a third sequence is obtained by substituting the three CBSE equations (192) iteratively into
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themselves. This series is equivalent to M′(CBSE)
13 . The two series, to 8th order are

M′
13 = V3 + iV1H1V3 + iV2H2V4 + V1H1V1H1V3 − V3H3V3H1V3 − 2V1H1V2H2V3

−V3H3V2H2V4 − V4H4V4H1V3 − iV1H1V1H1V1H1V3 − iV2H2V2H1V2H2V4

−3iV1H1V2H2V2H1V3 − 2iV2H1V3H3V3H1V3 − iV2H2V4H3V4H2V4

−4iV1H1V3H3V4H2V4 − 2iV1H1V4H4V4H1V3 − iV4H4V4H1V2H2V4

(208)

and

M′(CBSE)
13 = V3 + iV1H1V3 + iV2H2V4 + V1H1V1H1V3 − V3H3V3H1V3 − V1H1V2H2V3

−V3H3V2H2V4 − V4H4V4H1V3 − iV1H1V1H1V1H1V3 − 0

−iV1H1V2H2V2H1V3 − 2iV2H1V3H3V3H1V3 − iV2H2V4H3V4H2V4

−3iV1H1V3H3V4H2V4 − 2iV1H1V4H4V4H1V3 − iV4H4V4H1V2H2V4

(209)

The underlines mark the terms that are different between the two series. The CBSE is

correct to 4th order, but is lacking one of six 6th order terms, and four of fifteen 8th order

terms.

Despite lacking one GUG, M′(CBSE)
13 still contains four unique amplitudes

M′
11

M′
13 = τM31 = ετM12

M′
14 = τM41

M′
23 = ετM32 (210)

implying that the solution of M′ amounts to solving four simultaneous equations. But the

CBSE consists of only three equations. How did the fourth equation enter into M′(CBSE)?

The answer is that the 2nd equation of the CBSE, that is the 2nd equation in (192) and
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in figure 13, is actually two equations combined. The second equation of (192) shows that

M′
13 is coupled to M′

12. By this coupling, FT have in effect combined two equations in

one. In figure 1 of FT (and in our figure 13), the second graphical equation shows that

FT clearly treats M′
12 as equivalent to M′

13, but in our formalism M′
12 is obtained from

M′
13 by exchange equivalence, in which the momenta p1 and p2 trade places. The implied

fourth equation is therefore

M′
12 = εM′

13 = V2 +M′
13H3V4 +M′

11H1V2 (211)

Section 4.14 further clarifies the structure of the CBSE. The next four sections continue to

develop the GBSE formalism.

4.11.1 Evolution of the 2-vertex M′ in Iteration

The evolution of M′ in iteration illustrates how, with each iteration, the four unique ele-

ments in M′ progressively emerge. Mathematica program CalcGBSE (listed in section 6.2)

carries out the first ten iterations. In the first iteration of M′ given by M′ = U + UGM′,

M′ contains nine coupled equations, in which nine amplitudes are coupled among them-

selves (the other seven amplitudes are absent from these equations). The nine equations

can be read directly from the output of CalcGBSE

M′
11 = V1 + V1H1M′

11 + V2H2M′
21 + V3H3M′

31 + V4H4M′
41

M′
12 = V2 + V1H1M′

12 + V2H3M′
32

M′
13 = V3 + V1H1M′

13 + V2H2M′
23

M′
14 = V4 + V1H1M′

14

M′
21 = V2 + V2H1M′

11 + V4H3M′
31

M′
23 = V4 + V3H1M′

13

M′
31 = V3 + V3H1M′

11 + V4H2M′
21

M′
32 = V4 + V3H1M′

12

M′
41 = V4 + V4H1M′

11 (212)
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Figure 18 shows the graphical form of these equations.

The nine matrix elements in (212) give the amplitudes, respectively of the nine reactions

A+A → A+A

A+A → A+B

A+A → B +A

A+A → B +B

A+B → A+A

A+B → B +A

B +A → A+A

B +A → A+B

B +B → A+A (213)

For simplicity, we let the Vi represent only pion exchange. The extension to the full array of

mesons π, ρ, η, ε, δ, ω is a simple matter of summation over their kernels, keeping in mind that

in our model the latter four mesons η, ε, δ, ω only participate in the reaction A+A→ A+A

(we choose to exclude them from reactions involving a B particle, following FT). Only the

first terms of the nine elements in (214) below indicate the equality of elements in (207)

M′
11 = g2

AA

M′
12 = M′

21 = M′
13 = M′

31 = gAAgAB

M′
14 = M′

41 = g2
AB

M′
32 = M′

23 = g2
AB (214)

Thus in the first iteration the elements are equivalent to 2nd order in coupling constants (or

vertices). In the second iteration, the equality expands to include terms up to 4th order,

and in the third iteration, the equality expands still further to include terms up to 6th

order. A printout of selected 3rd iteration terms is included in section 6.2, following the
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Figure 18: Graphical form of the nine equations (212).
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code listing. The 10th iteration shows the equality of elements up to 20th order (listing not

included in 6.2).

The preceding discussion of the nine equations implies that the solution of the 2-vertex

M′ involves solving the nine equations, a procedure that appears to be equivalent to solving

a matrix containing nine elements

M′ =


a b b c
b 0 d 0
b d 0 0
c 0 0 0

 (215)

where a, b, c and d are the four independent quantities to be determined. Similar state-

ments can be made about the 3-vertex M′ (the AAC + ABC + BBC system). In this

system, the solution of M′ entails solving sixteen equations involving seven independent

amplitudes, a procedure that is equivalent to solving a matrix of sixteen elements involving

seven independent quantities a, b, c, d, e, f and g

M′ =


a b b c
b e d f
b d e f
c f f g

 (216)

For the 3-vertex system, the statements are correct, but for the 2-vertex system, they

statements are not correct, and the solution of the nine equations is not the complete

solution of M′. Before discussing the complete solution of M′ in section 4.15, we shall first

discuss separable systems in the nine equations.

4.11.2 Separable Systems in M′

The solution of M′ given by (212) involves nine equations that are separable into four

independent groups of coupled equations. These can be reduced to a form in which only

two of the original nine amplitudes are coupled. The other seven amplitudes can either be

solved for individually, or expressed in terms of other amplitudes.

M′
13 and M′

23 form a semi-coupled system that is independent of the other seven
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elements

M′
13 = V3 + V1H1M′

13 + V2H2M′
23 (217)

M′
23 = V4 + V3H1M′

13 (218)

M′
23 is not a direct function of itself and may be eliminated by substituting it into M′

13

to give

M′
13 = V3 + V2H2V4 + V1H1M′

13 + V2H2V3H1M′
13 (219)

a single, uncoupled BSE for M′
13 containing a double integral. This equation can be solved

for M′
13, which can be substituted back into (218) to give M′

23.

M′
12 and M′

32 also form an independent semi-coupled system

M′
12 = V2 + V1H1M′

12 + V2H3M′
32 (220)

M′
32 = V4 + V3H1M′

12 (221)

Substituting M′
32 into M′

12 gives

M′
12 = V2 + V2H3V4 + V1H1M′

12 + V2H3V3H1M′
12 (222)

a single, uncoupled BSE for M′
12 containing a double integral. This equation can be solved

for M′
12, which can be substituted back into (221) to give M′

32.

M′
14 is a standalone system that does not couple to any other element in M′

M′
14 = V4 + V1H1M′

14 (223)

This equation can be solved for M′
14.

The remaining four elements M′
11, M′

21, M′
31 and M′

41 form a semi-coupled system

M′
11 = V1 + V1H1M′

11 + V2H2M′
21 + V3H3M′

31 + V4H4M′
41 (224)

M′
21 = V2 + V2H1M′

11 + V4H3M′
31 (225)

M′
31 = V3 + V3H1M′

11 + V4H2M′
21 (226)

M′
41 = V4 + V4H1M′

11 (227)
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In this system M′
31 and M′

41 are not direct functions of themselves, so may be elimi-

nated by substituting them into M′
11 and M′

21. The result is two fully coupled equations

containing M′
11 and M′

21

M′
11 = V1 + V3H3V3 + V4H4V4 + V1H1M′

11 + V2H2M′
21 + V3H3V3H1M′

11 +

V3H3V4H2M′
21 + V4H4V4H1M′

11 (228)

M′
21 = V2 + V4H3V3 + V2H1M′

11 + V4H3V3H1M′
11 + V4H3V4H2M′

21 (229)

The equations of the reduced system are

M′
11 = V1 + V3H3V3 + V4H4V4 + V1H1M′

11 + V2H2M′
21 + V3H3V3H1M′

11 +

V3H3V4H2M′
21 + V4H4V4H1M′

11

M′
21 = V2 + V4H3V3 + V2H1M′

11 + V4H3V3H1M′
11 + V4H3V4H2M′

21

M′
12 = V2 + V2H3V4 + V1H1M′

12 + V2H3V3H1M′
12

M′
13 = V3 + V2H2V4 + V1H1M′

13 + V2H2V3H1M′
13

M′
14 = V4 + V1H1M′

14

M′
23 = V4 + V3H1M′

13

M′
32 = V4 + V3H1M′

12

M′
31 = V3 + V3H1M′

11 + V4H2M′
21

M′
41 = V4 + V4H1M′

11 (230)

Figure 19 depicts the equations in graphical form. There are still nine equations, but only

the first five require numerical solution, yielding five amplitudes. The first two equations are

coupled while the next three are independent. The remaining four amplitudes are expressed

in terms of the first four.

If only one of the amplitudes, the amplitude of the reaction A+A→ A+B, is sought,

the simplest approach is to solve one equation, either (222) or (219), both of which involve
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Figure 19: The Reduced Equations of M′.
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a single amplitude coupled to itself. Of course, the exchange amplitude must be included to

obtain the total amplitude of the reaction. Exchange amplitudes are discussed in the next

section.

4.12 Total Amplitudes of Dual-channel Processes

To obtain the total amplitude of a process in which either the initial or final states (or both)

have identical particles, exchange amplitudes must be included. The direct amplitudes of

these “dual-channel” processes appear in the first column and first row of M′, and are seven

in number: M′
11, M′

12, M′
13, M′

14, M′
21, M′

31 andM′
41. The remaining two amplitudes

M′
23 and M′

32 do not represent dual-channel processes, and are total amplitudes.

M′ as formulated contains only the direct amplitudes of the dual-channel processes. The

exchange amplitudes are obtained from the direct amplitudes by exchanging the identical

particles. In figure 20 the 2nd and 4th order direct and exchange diagrams are labeled with

the 4-momenta of the internal and external lines

p = p1

P − p = p2

p′ = p3

P − p′ = p4

P = p1 + p2 = p3 + p4 (231)

where p1 and p2 are the momenta of the initial state particles, p3 and p4 are the momenta

of the final state particles, and P is the total momentum of the interaction. The functional

forms of these diagrams are expressed in terms of direct and exchange kernels V and V and
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the propagator H

V =
1

(p− k)2 −m2
C

V =
1

(P − p− k)2 −m2
C

H =
1

(k2 −m2
k)[(P − k)2 −m2

q ]

where mk and mq are the masses of the upper and lower lines in the propagator. The

coupling constants not shown. All direct M′
ij and exchange M′

ij amplitudes are built

from products of these basic components. The total amplitudes M̂′
ij of the dual-channel

processes are simply the sums of the direct and exchange amplitudes

M̂′
ij = M′

ij +M′
ij (232)

The exchange amplitudes of the seven dual-channel processes are

M′
11 = V 1 + V 1H1M′

11 + V 2H2M′
21 + V 3H3M′

31 + V 4H4M′
41

M′
12 = V 2 + V 1H1M′

12 + V 2H3M′
32

M′
13 = V 3 + V 1H1M′

13 + V 2H2M′
23

M′
14 = V 4 + V 1H1M′

14

M′
21 = V 2 + V 2H1M′

11 + V 4H3M′
31

M′
31 = V 3 + V 3H1M′

11 + V 4H2M′
21

M′
41 = V 4 + V 4H1M′

11 (233)

These correspond to the direct amplitudes given in (212). Note that the direct amplitudes

(212) are functions of themselves in products with the direct kernels, while the exchange

amplitudes are functions of the direct amplitudes in products with the exchange kernels.

We could have defined the amplitudes the other way around, with the exchange amplitudes

as functions of themselves in products with the direct kernels, and the direct amplitudes as

functions of the exchange amplitudes in products with the exchange kernels. In this second
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form of the direct amplitudes, the two “flips” (exchanges) cancel to give back the direct

amplitudes as functions of themselves.

Figure 20: 2nd and 4th Order Direct and Exchange Diagrams.

4.13 Uniqueness of Amplitudes M′
21, M

′
21, M′

31 and M′
31

In figure 18, which corresponds to equation (212), by turning the graphical equations upside

down, it would appear that the exchange amplitude M′
21 is equivalent to the direct am-

plitude M′
31, and that the exchange amplitude M′

31 is equivalent to the direct amplitude

M′
21. This is true under exchange equivalence (see section 4.11) for amplitudes that appear

on the left-hand side of the equal sign, since these amplitudes are functions of p, p′ and P
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or equivalently p1, p2, p3 and p4, and by exchange equivalence

M′
21 = εM′

31

M′
31 = εM′

21 (234)

But for amplitudes appearing on the right hand side of the equal sign, the amplitudes appear

under the integral
∫
d4k, and are functions of p, k and P . Under exchange, a kernel V (p−k)

becomes V (P −p−k), and vice versa. Since amplitudes are functions of kernels, amplitudes

change form as well. If this were not the case, adding the direct and exchange amplitudes

M′
11 and M′

11 to obtain the total amplitude of the process A+ A→ A+ A would result

in double counting of box diagrams. The uniqueness of the four amplitudes can be shown

by expanding the direct amplitude M′
11 and exchange amplitude M′

11 to 4th order

M′
11 = V1 + V1H1M′

11 + V2H2V2 + V3H3V3 + . . .

= V1 + i

∫
d4k

(2π)4
(V1H1M′

11 + V2H2V2 + V3H3V3 + . . .)

M′
11 = V 1 + V 1H1M′

11 + V 2H2V2 + V 3H3V3 + . . .

= V 1 + i

∫
d4k

(2π)4
(V 1H1M′

11 + V 2H2V2 + V 3H3V3 + . . .) (235)

and comparing the functional form of the last two terms (underlined) of both equations

above. Figure 21 depicts the four box diagrams corresponding to the last two terms of both

equations, showing the momenta of all lines. Two are direct and two are exchange box

diagrams. Writing the functional form of the box diagrams in terms of the momenta, and

as functions of k

(V2H2V2)(k) =
gAAgAB

(p− k)2 −m2
C

1
(k2 −m2

A)[(P − k)2 −m2
B]

gAAgAB

(k − p′)2 −m2
C

(V 2H2V2)(k) =
gAAgAB

(P − p− k)2 −m2
C

1
(k2 −m2

A)[(P − k)2 −m2
B]

gAAgAB

(k − p′)2 −m2
C

(V3H3V3)(k) =
gAAgAB

(p− k)2 −m2
C

1
(k2 −m2

B)[(P − k)2 −m2
A]

gAAgAB

(k − p′)2 −m2
C

(V 3H3V3)(k) =
gAAgAB

(P − p− k)2 −m2
C

1
(k2 −m2

B)[(P − k)2 −m2
A]

gAAgAB

(k − p′)2 −m2
C

(236)
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shows that all of the box diagrams are functionally unique. The differences appear in the

leftmost kernels where either (p − k) or (P − p − k) appears, and in the placement of the

masses mA and mB in the propagators. In forming the total amplitude of M′
11, there is

no double counting of diagrams.

Figure 21: Direct and Exchange Box Diagrams.

4.14 Absence of M′
12 Coupling in the CBSE

Since the amplitudes M′
21 and M′

31 are equivalent to the amplitudes M′
12 and M′

13 (by

exchange and time reversal), they offer an alternate approach to determine the amplitude

of the reaction A + A → A + B. However, M′
21 and M′

31 are coupled to M′
11, which is

also coupled to M′
41, so the reaction amplitude is found by simultaneous solution. Figure
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22 shows the four semi-coupled equations at the top

M′
11 = V1 + V1H1M′

11 + V2H2M′
21 + V3H3M′

31 + V4H4M′
41

M′
21 = V2 + V2H1M′

11 + V4H3M′
31

M′
31 = V3 + V3H1M′

11 + V4H2M′
21

M′
41 = V4 + V4H1M′

11 (237)

and the time reversed versions at the bottom

M′
11 = V1 +M′

11H1V1 +M′
12H2V2 +M′

13H3V3 +M′
14H4V4

M′
12 = V2 +M′

11H1V2 +M′
13H3V4

M′
13 = V3 +M′

11H1V3 +M′
12H2V4

M′
14 = V4 +M′

11H1V4 (238)

If M′
12 is omitted from the time reversed equations (including the underlined term above

and the component in the green dashed box in figure 22), the equations become the CBSE

(compare figure 13 and equation (192)). Note that in time reversal, the amplitudes M′
ij

on both the left and right hand sides are replaced by their time-reversed counterparts, that

is, M′
21 →M′

12, M′
31 →M′

13 and M′
41 →M′

14. Going from (237) to (238) the order

of V , H and M′
ij has been reversed to correspond to the order in the figure.

The time reversed equations can also be obtained by defining the GBSE in the alternate

form

M′ = U +M′GU (239)

in which the order of U , G and M′ is the reverse of the order in (191).

From figure 22 it is clear that the CBSE lacks M′
12 coupling in M′

11, and is therefore

a subset of the solution for the amplitude of the reaction A+A→ A+B offered by (237).
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Figure 22: The CBSE as a subset of the time-reversed four coupled equations.
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4.15 The Complete Solution of M′

At the end of section 4.11.2, an approach was discussed to obtain the amplitude of the

reaction A + A → A + B from element M′
12. Another approach is to solve (229), which

determines element M′
21. This equation is coupled to (228), so to obtain the desired

amplitude the two equations must be solved simultaneously. A comparison of the two

approaches reveals that the latter contains the propagator H4 (BB propagation), while the

former does not. This demonstrates that the two solutions are not equivalent, since one

solution generates ladders containingH4, while the other does not. But the amplitudesM′
12

andM′
21 must be equivalent since both describe the same reaction under time reversal. The

deficiency in the solutions given by sets of coupled equations such as (212) is that these sets

of equations are drawn from the 2nd order M′, which is a subset of M′. In the 2nd order

M′, seven of the elements are zero. However, as program CalcGBSE demonstrates, already

by the first iteration, these seven elements begin to acquire 4th order content, and feed it

back to the other nine elements, so that by the 2nd iteration, 6th order terms containing

H4 appear in the elements M′
12 and M′

21. Clearly, the complete solution of M′ involves

solving for all sixteen elements of M′ simultaneously, seven of which are unique since the
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equivalence relations (203) still apply. The solution may be written as sixteen equations

M′
11 = V1 + V1H1M′

11 + V2H2M′
21 + V3H3M′

31 + V4H4M′
41

M′
12 = V2 + V1H1M′

12 + V2H2M′
22 + V3H3M′

32 + V4H4M′
42

M′
13 = V3 + V1H1M′

13 + V2H2M′
23 + V3H3M′

33 + V4H4M′
43

M′
14 = V4 + V1H1M′

14 + V2H2M′
24 + V3H3M′

34 + V4H4M′
44

M′
21 = V2 + V2H1M′

11 + V4H3M′
31

M′
22 = V2H1M′

12 + V4H3M′
13

M′
23 = V4 + V3H1M′

13 + V4H3M′
33

M′
24 = V2H1M′

14 + V4H3M′
34

M′
31 = V3 + V3H1M′

11 + V4H2M′
21

M′
32 = V4 + V3H1M′

12 + V4H2M′
22

M′
33 = V3H1M′

13 + V4H2M′
23

M′
34 = V2H1M′

14 + V4H2M′
24

M′
41 = V4 + V4H1M′

11

M′
42 = V4H1M′

12

M′
43 = V3H1M′

13

M′
44 = V4H1M′

14 (240)

which can be reduced in the same manner as for the nine equations of section 4.11.2. The

sixteen equations were found using program fullMprime.nb, which is listed in section 6.3.

The solutions drawn from the 2nd order M′ and forming subsets of the sixteen coupled

equations are approximate solutions, accurate to 4th order.

4.16 The 3-Vertex Scalar Model

At energies above the ∆1600 threshold, the BBC vertex appears and the double pion

propagator GC
C becomes active, opening a new channel through which interactions can
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proceed. The 3-vertex Hamiltonian

HI = AAC +ABC +BBC

describes the interactions. Faassen and Tjon [2] disregard the ∆∆ vertex due to uncer-

tainties about its form. Nevertheless, this vertex begins to contribute at 2nd order for

interaction energies above the ∆1600 threshold. In The Review of Particle Physics ([36],

pages 998-1018) Baryon Particle Listings, the decay process ∆ → ∆ + π is indicated for all

of the ∆ baryons except the lightest, the ∆1232 baryon. This decay is described by the

BBC vertex.

By continuing to restrict the model to C-kernels (pion exchange), the number of prop-

agators remains at 4 (GA
A, GB

A , GA
B and GB

B) and M′ remains a 4 × 4 matrix. However,

with the inclusion of the BBC vertex, all sixteen elements of the 2nd order M′ become

populated. M′ generates sixteen equations involving the sixteen amplitudes M′
ij , which

consist of seven unique amplitudes given by (203)

M11

M12 = M21 = M13 = M31

M14 = M41

M24 = M42 = M34 = M43

M22 = M33

M32 = M23

M44 (241)

By including the two kernels UA and UB, five more propagators GC
A, GA

C , GC
B, GB

C and GC
C

come into play, bringing the number of propagators to nine. In this model M′ becomes a

9× 9 matrix, but only 24 of the elements in the 2nd order M′ are non-zero. The remaining

elements become non-zero only by including the vertices AAB = NN∆, BBA = ∆∆N ,

ACC = Nππ and BCC = ∆ππ, but these vertices are ruled out since they do not conserve
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baryon number.

With the three vertices and three kernels, the 2nd order M′ depicted in figure 23 gen-

erates 24 equations involving 24 amplitudes M′
ij consisting of 11 unique amplitudes, seven

given by (241), and four more that accompany the introduction of the BBC vertex and A

and B kernels

M65 = M56

M71 = M17

M74 = M47

M87 = M78

The complete 3-vertex M′ generates 81 equations involving 81 amplitudes, 27 of which are

unique, about five times as many elements as the 2-vertex M′, but only about four times

as many unique elements. In figure 23, the elements of the 2-vertex M′ are highlighted

yellow. The elements added by the inclusion of the BBC vertex are highlighted green. The

elements added by the inclusion of the A and B kernels are highlighted blue. Note how the

restriction to C-kernels reduces M′ to a 4× 4 matrix.

In the scalar model of nucleon interactions, the A and B kernels represent nucleon and

∆ baryon exchange particles, which lend nucleon and ∆ baryon degrees of freedom to the

model (see section 1.5 for a brief discussion of degrees of freedom). For the moment, we lump

these two degrees of freedom together and call them baryon degrees of freedom. For the

inelastic reaction A+A→ A+B (N +N → N +∆), the baryon degrees of freedom begin to

contribute at 6th order, as demonstrated by program 3VertexMprime. The program is listed

in section 6.4, along with its output file. Since the meson and isobar degrees of freedom

begin to contribute at 2nd order, the baryon degrees of freedom are clearly dominated by

the former. We should emphasize that this observation is made from the standpoint of the

scalar model.
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4.17 Equivalence of M′ and S in the 2-vertex Model

In the GBSE, M′ sums ladder diagrams of all orders 2n, n = 1, 2, . . ., beginning with

the 2nd order one-rung ladders. The S-matrix, on the other hand, sums diagrams of all

types, not just ladders, to all orders. To show the equivalence of M′ and S, we must first

extract the ladder diagrams from S, then show that M′ and S produce equivalent series’

of ladder diagrams. Before proceeding with the proof, we first establish a simple criterion

for equivalence, and devise a notation with which to compare the two series.

4.17.1 Coupling Content of M′

At the end of section 4.9 we introduced a simplified notation for M′ by hiding the integra-

tions in (189) to obtain (191)

M′ = U + UGM′ = U + UGU + UGUGU + . . . =
∞∑

n=1

UnGn−1 (242)

In the 2-vertex model, restricting our considerations to C-rungs, U is defined by

U =
U

q2C −m2
C

(243)

where the coupling matrix U is given by

U =


g2
AA gAAgAB gAAgAB g2

AB

gAAgAB 0 g2
AB 0

gAAgAB g2
AB 0 0

g2
AB 0 0 0

 (244)

Also, G is given by

G = G1 +G2 +G3 +G4

=


1/D1 0 0 0

0 1/D2 0 0
0 0 1/D3 0
0 0 0 1/D4

 (245)
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with propagator denominators

D1 = (k2 −m2
A)[(P − k)2 −m2

A]

D2 = (k2 −m2
A)[(P − k)2 −m2

B]

D3 = (k2 −m2
B)[(P − k)2 −m2

A]

D4 = (k2 −m2
B)[(P − k)2 −m2

B] (246)

If we hide the denominator in U so that U = U , and hide the denominators in G so that

G = I is the unit 4 × 4 matrix, we obtain an even more economical shorthand notation,

with which (242) becomes

M′ = U + U2 + U3 + . . . =
∞∑

n=1

Un (247)

Equation (247) states that the ladder content of M′ is defined by the coupling content of

U . As we shall see, with coupling in hand, the ladders can be recreated, along with the

hidden integrations and denominators. The denominators, although vital components of

M′, are nevertheless redundant with regard to definition of the ladder content. We shall

use coupling content as the measure of ladder content for comparing M′ and S.

In wielding the shorthand notation of (247) one must not blindly compute products

of coupling factors, which in and of themselves do not specify the order in which vertices

appear in the ladders. The shorthand Un explicitly determines products of coupling factors,

but implicitly determines the concatenation of one-rung, C-exchange, t-channel diagrams

into n-rung ladder diagrams whose spans form two-particle propagators. Each of the one-

rung ladders is completely specified by an element of U , a two-vertex coupling factor. With

this understanding, coupling content in the form of Un equates to ladder content.

4.17.2 Ladder and Coupling Content of S

To demonstrate the equivalence of M′ and S, the vertex coupling factors of the ladder

diagrams must be extracted from S and compared to the coupling content of M′ given

by (247). Since M′ in (247) generates “direct” ladder diagrams, it is sufficient to extract
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only the direct ladders from S. If the series of direct ladders generated by M′ and S are

equivalent, the series of exchange ladders will also be equivalent since the exchange diagrams

mirror the direct diagrams.

We begin by determining the vertex coupling content of S2, the 2nd order term of S.

The coupling content of S2 takes the form of a 4× 4 matrix of which the sixteen elements

define the coupling for sixteen different reactions. S2 generates the first ladders in the series,

the one rung ladders. The one rung ladders are 2nd order, C-exchange, t-channel diagrams.

Having determined the coupling of the one-rung ladders, we proceed to the two-rung ladders

generated by S4. These ladders are 4th order diagrams, also known as box diagrams. The

two-rung ladders are shown to be formed by the conjunction of two one-rung ladders, where

the final state of the first matches the initial state of the second, so that when joined an H

propagator is formed. The coupling content of S4 is shown to be equivalent to the matrix

product of the coupling content of two S2 matrices. Having extended the analysis from

2nd to 4th order, the way becomes immediately clear for extension to all orders of ladder

diagrams, and the equivalence of M′ and S is quickly shown.

The 2-vertex model is based on the Hamiltonian

H = gAAAAC + gAB ABC = AAC +ABC (248)

using a shorthand on right hand side that hides the coupling constants. Equation (248)

defines two vertices AAC and ABC. Each vertex is labeled by the fields that interact at

the vertex. The S-matrix term S2 contains a time-ordered product of two Hamiltonians

S2 = (−i)2
∫
d4x1d

4x2
T

2!
{H(x1)H(x2)}

= (−i)2
∫
d4x1d

4x2
T

2!
{(AAC +ABC)1(AAC +ABC)2} (249)

Simplifying the notation in a manner similar to that introduced for M′ in section 4.9, we

hide the integral

(−i)2
∫
d4x1d

4x2 (250)
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and write

S2 =
T

2!
{H(x1)H(x2)} =

T

2!
{H2} (251)

S2 is a matrix, each element of which defines a set of 2nd order diagrams. This was shown

in section 2.4.2 for the reaction A+A→ A+B, where, using the reduced notation of (251),

the matrix element

〈AB|S2|AA〉 = 〈AB|T
2!
{(AAC +ABC)1(AAC +ABC)2}|AA〉 (252)

yielded three fully contracted terms corresponding to the three diagrams shown in figure

2, the s, t and u channel diagrams. S2 is seen to be a 4 × 4 matrix whose elements give

diagrams of all types for the sixteen reactions of the 2-vertex model.

Let us now define Q as the subset of S that includes only the ladder diagrams

Q = S, ladders only

Q2 = S2, one-rung ladders only

Q2n = S2n, n-rung ladders only

Q = Q2 +Q4 + . . . =
∞∑

n=1

Qn (253)

Further, define box bracket vectors
[
f
∣∣ and

∣∣ i ] and coupling matrix F such that the

element

Fif =
[
f
∣∣S2

∣∣ i ] (254)

equals the 2-vertex coupling factor of a one-rung ladder, specifically the 2nd order, C-

exchange, t-channel diagram with initial state i and final state f . Both i and f range over

the values {1, 2, 3, 4}. The four initial state vectors are∣∣ 1 ] =
∣∣AA ]∣∣ 2 ] =
∣∣AB ]∣∣ 3 ] =
∣∣BA ]∣∣ 4 ] =
∣∣BB ] (255)
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As an example using the box brackets, we calculate the element Fif for the reaction A+A→

A+ B. The initial and final state vectors are
∣∣ 1 ] =

∣∣AA ] and
[
2
∣∣ =

[
AB

∣∣, respectively.

Then

F12 =
[
2
∣∣ T
2!
S2

∣∣ 1 ] =
[
AB

∣∣ T
2!
S2

∣∣AA ]
=

[
AB

∣∣ T
2!
{H2}

∣∣AA ]
=

[
AB

∣∣ T
2!
{(AAC +ABC)1(AAC +ABC)2}

∣∣AA ]
F12 =

[
AB

∣∣ T
2!
{(AAC)1(ABC)2 + (ABC)1(AAC)2}

∣∣AA ] (256)

where we have dropped the terms (ABC)1(ABC)2 and (AAC)1(AAC)2 since these do

not fully contract with the given initial and final states and therefore do not contribute.

Applying the usual Wick/Peskin contractions gives six fully contracted terms, two each for

the s, t and u-channel diagrams. But the box brackets are defined to extract the coupling

factor for only the t-channel diagrams, so we drop the s and u channel diagrams, leaving

the two identical t-channel diagrams. The duplicity is removed by the factor of 1/2!, leaving

the coupling factor for a single t-channel diagram

F12 = gAAgAB (257)

Using the method of the preceding example, the other fifteen elements of F are found,

with the result

F = U =


g2
AA gAAgAB gAAgAB g2

AB

gAAgAB 0 g2
AB 0

gAAgAB g2
AB 0 0

g2
AB 0 0 0

 (258)

The F matrix is precisely the U coupling matrix of the GBSE, which should come as no

surprise, having seen in previous sections that U can be read directly from the 2nd order

M′ (see figure 17), the latter being equivalent to Q2 in ladder content. Analogous to (247),

we may write Q2 simply as

Q2 = F (259)
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which states that the one-rung ladder content of Q2 is defined by the coupling content of

F . For example the coupling factor

[
AB

∣∣Q2

∣∣AA ] =
[
AB

∣∣F ∣∣AA ] = gAAgAB (260)

defines the two-vertex, C-exchange, t-channel diagram with initial state particles A1 and

A2 and final state particles A3 and B4. Being a t-channel diagram, particles A1 and A3

share a vertex, and particles A2 and B4 share the other vertex.

Having determined the coupling content of Q2 we proceed to Q4

S4 =
T

4!
{H1H2H3H4} =

1
24
× {

(1st) H1H2H3H4 +

(2nd) H1H2H4H3 +

H1H3H2H4 +H1H4H2H3 +

H1H3H4H2 +H1H4H3H2 +

(7th) H2H1H3H4 +

(8th) H2H1H4H3 +

H3H1H2H4 +H4H1H2H3 +

H3H1H4H2 +H4H1H3H2 +

H2H3H1H4 +H2H4H1H3 +

H3H2H1H4 +H4H2H1H3 +

H3H4H1H2 +H4H3H1H2 +

H2H3H4H1 +H2H4H3H1 +

H3H2H4H1 +H4H2H3H1 +

H3H4H2H1 +H4H3H2H1} (261)

T operates on {H1H2H3H4} to produce the 24 different time ordered products shown above,

where the right-to-left order of indices indicates order in time. However, since the integrals
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in the S-matrix ∫ +∞

−∞
d4x1

∫ +∞

−∞
d4x2

∫ +∞

−∞
d4x3

∫ +∞

−∞
d4x4 (262)

range over time −∞ < t < ∞, the diagrams produced by any one of the time ordered

products are equivalent to those of any other product, the only difference being in the

assignment of dummy labels 1, 2, 3 and 4 to the vertices in the diagrams. Collectively, the

24 time ordered products produce 24 identical sets of diagrams. The factor of 1/24 in S4

cancels the multiplicity, leaving one set of diagrams. Now consider the expansion of time

ordered products

T

2!
{H2}T

2!
{H2} =

1
4
× {

H1H2H3H4 +

H1H2H4H3 +

H2H1H3H4 +

H2H1H4H3 } (263)

The four time ordered products are identical to the 1st, 2nd, 7th and 8th time ordered

products appearing in the preceding equation. The four time ordered products produce

four equivalent sets of diagrams. The factor of 1/4 cancels the multiplicity, leaving one set

of diagrams. We may therefore write

T

4!
{H4} =

T

2!
{H2}T

2!
{H2} (264)

The left hand side produces 24 equivalent sets of diagrams, divided by 24. The right hand

side produces four equivalent sets of diagrams, divided by 4. Both sides produce the same

set of diagrams, so we may write

[
f
∣∣S4

∣∣ i ] =
[
f
∣∣ T
2!
{H2}T

2!
{H2}

∣∣ i ] (265)

To evaluate (265) we employ the ortho-normality and completeness relations

[
f
∣∣ i ] = δif (266)
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and

I =
4∑

k=1

∣∣ k ] [ k ∣∣ (267)

where I is the unit 4× 4 matrix. Inserting I into (265)

[
f
∣∣S4

∣∣ i ] =
[
f
∣∣ T
2!
{H2} (I)

T

2!
{H2}

∣∣ i ]
=

[
f
∣∣ T
2!
{H2}

( 4∑
k=1

∣∣ k ] [ k ∣∣) T

2!
{H2}

∣∣ i ]
=

4∑
k=1

T

2!
{
[
f
∣∣H2

∣∣ k ]}T
2!
{
[
k
∣∣H2

∣∣ i ]} (268)

and comparing to the second line of (256) we see that

T

2!
{
[
f
∣∣H2

∣∣ k ]} = Fkf

T

2!
{
[
k
∣∣H2

∣∣ i ]} = Fik (269)

so that
[
f
∣∣S4

∣∣ i ] becomes

[
f
∣∣S4

∣∣ i ] =
4∑

k=1

Fkf Fik = (Q4)if (270)

which is the definition of the matrix product

Q4 = FF = F2 (271)

As previously defined, Q4 consists of the ladder diagrams of S4. Equation (271) states that

the ladder content of Q4 is defined by the coupling content of F2. In (270) the coupling

factor Fkf represents a one-rung ladder with initial state k, while the coupling factor Fik

represents a one-rung ladder with final state k. The product of the two factors represents

a two-rung ladder formed by the conjunction of the one-rung ladders. The joining of the

one-rung ladders is possible because the final state of one matches the initial state of the

other. The joint forms the propagator Hk defined by state k.

The result (271) is easily generalized to

Q2n = Fn (272)
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since the same arguments used to show (264) may be used to show

T

(2n)!
{H2n} =

( T

(2)!
{H2}

)n
(273)

Consequently

Q = Q2 +Q4 + . . . =
∞∑

n=1

Q2n = F + F2 + . . . =
∞∑

n=1

Fn (274)

Since by (258) F = U , the equivalence of M′ and S is established by (247) and (253)

S, ladders only = Q =
∞∑

n=1

Un = M′ (275)

The coupling content of M′ is equivalent to that of Q, therefore the ladder content of M′

is equivalent to that of S.

4.18 Equivalence of M′ and S for Multiple Exchange Particles

In section 4.4 a form of the GBSE was given for case of NU exchange particles Ci. In this

section we prove the equivalence of the ladder series generated by the “multi-C” GBSE to

that of the S-matrix. The proof follows the procedure of section 4.17 which dealt with the

case of one type of exchange particle. We let coupling content represent the ladder content

for both M′ and S, then show that the two are equivalent in coupling content.

The multi-C GBSE is given by (158)

Mrs = ũr M′ vs

M′ = U +
∫

k
UGM′ (276)

where the kernel U is the sum of NU kernels (156)

U =
NU∑
i=1

Ui

Ui =
Ui

q2i −m2
i

(277)
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For the 3-vertex Hamiltonian, the coupling matrices Ui are fully populated

Ui =


g2
AAi gAAigABi gAAigABi g2

ABi

gAAigABi gAAigBBi g2
ABi gBBigABi

gAAigABi g2
ABi gAAigBBi gBBigABi

g2
ABi gBBigABi gBBigABi g2

BBi

 (278)

The subscript i labels the coupling constants for vertices involving exchange particle Ci.

The propagator G is given by (279)

G = G1 +G2 +G3 +G4

=


1/D1 0 0 0

0 1/D2 0 0
0 0 1/D3 0
0 0 0 1/D4

 (279)

in which the denominators Dj are given by (246). Letting the coupling matrices Ui define

the ladders (as done in section 4.17 for the case of a single kernel), we hide the integral

operator in (276) and the denominators in the Ui and Gi, so that Ui = Ui and G = I, the

unit 4× 4 matrix. Then (276) becomes

M′ = U + UGM′ = U + UM′ = U + U2 + U3 + . . .

=
∞∑

k=1

Uk =
∞∑

k=1

(
NU∑
i=1

Ui

)k

=
∞∑

k=1

M′
2k

M′
2k =

(
NU∑
i=1

Ui

)k

(280)

Equation (280) states that the ladder content of M′ is defined by the coupling matrices Ui.

The 2nd order coupling content is given by

M′
2 =

NU∑
i=1

Ui (281)

the 4th order content by

M′
4 =

(
NU∑
i=1

Ui

)2

(282)

and so forth.
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We now determine the coupling content of S for ladders comprised of C-rungs, first

evaluating S2 and S4, and generalizing to S2k. From (155), the Hamiltonian is

H =
NU∑
i=1

Hi

Hi = gAAiAACi + gABiABCi + gBBiBBCi ≡ AACi +ABCi +BBCi

(283)

Recycling the simplified notation of (251), the 2nd order term S2 is

S2 =
T

2!
{H2} =

T

2!
{

(
NU∑
i=1

Hi

)2

} =
T

2!
{

(
NU∑
i=1

Hi

)NU∑
j=1

Hj

}
=

T

2!
{

NU∑
i, j

HiHj} (284)

For the Hamiltonian given by (283) the above product HiHj produces terms containing the

fields Ci and Cj . Take, for example, the term AACiABCj

AACiABCj (285)

Contracting the C fields produces a non-zero result only if i = j, when the two C fields

represent the same type of meson. Consequently, (284) reduces to

S2 =
T

2!
{

NU∑
i, j

δijHiHj} =
T

2!
{

NU∑
i=1

H2
i } =

NU∑
i=1

S2i

S2i =
T

2!
{H2

i } (286)

Each term S2i involves a single type of exchange particle Ci, and is therefore identical in

form to the 2-vertex S2 in (251). The box bracket notation used to transform (251) into

(259) may be applied to (286) to show that

Q2i = Ui (287)

where Q2i represents the 2nd order, Ci-rung ladder content of S2. Gathering the NU terms

and comparing to (281) shows that

Q2 =
NU∑
i=1

Ui = M′
2 (288)
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The coupling content of S2 is equivalent to that of M′
2, therefore the 2nd order ladder

content is equivalent.

We proceed to evaluate the C-rung coupling content of S4. Again using the simplified

notation of (251), the 4nd order term S4 is

S4 =
T

4!
{H4} =

T

4!
{

(
NU∑
i=1

Hi

)4

} =
T

4!
{

(
NU∑
i=1

Hi

)2
NU∑

j=1

Hj

2

} (289)

From (284) and (286) we have that(
NU∑
i=1

Hi

)2

=
NU∑
i=1

H2
i (290)

which upon substitution into (289) gives

S4 =
T

4!
{

NU∑
i=1

NU∑
j=1

H2
iH2

j} =
NU∑
i=1

NU∑
j=1

T

4!
{H2

iH2
j} (291)

Following the same line of reasoning that led to (264), the set of 24 time ordered products

divided by 24 on the left-hand side of

T

4!
{H2

iH2
j} =

T

2!
{H2

i }
T

2!
{H2

j} (292)

are equivalent to the 4 time ordered products divided by 4 on the right hand side. Now we

apply the initial state
∣∣ r ] and final state

[
s
∣∣ box bracket vectors to extract the coupling

content of Q4, which defines the ladder content of S4. Inserting the completeness relation

(267) gives

[
s
∣∣Q4

∣∣ r ] =
[
s
∣∣ NU∑

i=1

NU∑
j=1

[
T

2!
{H2

i }

(
4∑

k=1

∣∣ k ] [ k ∣∣) T

2!
{H2

j}

] ∣∣ r ]
=

NU∑
i=1

NU∑
j=1

4∑
k=1

[
s
∣∣T
2!
{H2

i }
∣∣ k ][ k ∣∣T

2!
{H2

j}
∣∣ r ]

=
NU∑
i=1

NU∑
j=1

4∑
k=1

(Ui)sk(Uj)kr =
NU∑
i=1

NU∑
j=1

[
s
∣∣UiUj

∣∣ r ] (293)
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from which it is readily seen that

Q4 =
NU∑
i=1

NU∑
j=1

UiUj =

(
NU∑
i=1

Ui

)2

= M′
4 (294)

By (282), the 4th order C-rung ladder content of M′ is equivalent to that of S.

The result (294) is easily generalized to

Q2n =

(
NU∑
i=1

Ui

)n

= M′
2n (295)

by recognizing that the conversion of time ordered products may be extended to order 2n

T

(2n)!
{H2

i1H2
i2 . . .H2

in} =
T

2!
{H2

i1}
T

2!
{H2

i2} . . .
T

2!
{H2

in} (296)

By summing (295) over all n and comparing to (280)

Q =
∞∑

n=1

Q2n =
∞∑

n=1

(
NU∑
i=1

Ui

)n

= M′ (297)

we establish the equivalence of M′ and S with respect to C-rung ladder content.

4.19 2nd Order M′ and the S-Matrix

The nature of 2nd order M′ as a collection of independent groups of coupled systems speaks

to the nature of the S-matrix itself, being related to M′ by (38)

Sfi = 〈f |S|i〉

= 1 + (2π)4δ4(p1 + p2 − p3 − p4)iMfi

A given interaction Lagrangian defines a set of vertices and lines (propagating particles),

which in turn define a family of interaction processes. To 2nd order, the family of processes

is separable into groups of coupled processes, so that solutions (amplitudes) of the S-matrix

segregate into groups of coupled solutions. As shown in the preceding sections, some so-

lutions are standalone, for example M′
14, while other solutions participate in “cross-over”

between groups: the coupled system consisting of M′
12 and M′

32, and the coupled system
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consisting of M′
11, M′

21, M′
31 and M′

41 both give independent determinations of the

amplitude of the process A+A→ A+B. A defining characteristic of the amplitudes within

a “coupling” group is that they share a common final state. Invariance of amplitudes under

time reversal tells us that the amplitudes can also be grouped by a common initial state.

The two forms of the GBSE given by (127)

M′ = U + UGM′

and by (239)

M′ = U +M′GU

yield these two groupings of amplitudes.

4.20 Building the GBSE for Arbitrary Models

The GBSE is defined by its kernel U and propagator G, which contain the coupling matrices

Ui and Gj

U =
∑

i

Ui

q2C −m2
C

(298)

G =
∑

j

Gj

Dj
(299)

For an arbitrary particle interaction model, U and G are readily determined once the

Lagrangian of the model is known. The Lagrangian defines a set of vertices. The vertices

define the set of 2nd order diagrams (one rung ladders), which in turn define the 2nd order

M′ and the U coupling matrix. The set of initial states and final states that span the dual

state space can be read from the one rung ladders. Restriction to particular types of kernels

(rungs) can be imposed on M′ and U , eliminating rungs from particular elements of these

matrices. Multiple exchange particles for particle reactions translate into sums of rungs for

particular elements of the two matrices. The propagator G is found from U2, which forms

all possible combinations of one-rung ladders into two-rung ladders. The denominators of
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the Gi are read directly from the spans of the two-rung ladders. G is a diagonal matrix

whose elements are the reciprocals of the denominators

(G)kk = 1/Dk (300)

This concludes the GBSE discussion. The next section discusses several follow-on re-

search efforts for the continued development of the GBSE.
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5 Future Work

The generalized Bethe-Salpeter equation (GBSE) developed in the present work is new,

and introduces a systematic method for analyzing families of coupled reactions. The GBSE

is formulated using scalar theory, and is applied primarily to a 3-particle, 2-vertex model.

Formulations of the GBSE using complex scalar and spinor models immediately suggest

themselves. Several other projects suggest themselves, ranging from validation of the scalar

2-vertex GBSE by numerical solution and comparison to experiment, to spinor field formu-

lations based on many-particle, many-vertex Lagrangians. Four projects which further the

development and application of the GBSE are briefly outlined below.

5.1 Numerical Solutions

Having formulated the GBSE to some detail using scalar theory, an important next step is

validation. This can be achieved by carrying out numerical solutions of the scalar GBSE

for particular reactions and comparing the results to experiment. One such application is

the N∆π system treated in the present work. Numerical techniques solve the BSE for the

single function M). These techniques may be adapted to solve the GBSE for the matrix

of functions M′. Of course, one need not solve for the complete M′, but can seek an

approximate solution for a particular reaction by solving a reduced set of coupled equations

(see section 4.11.2). Since the introduction of the BSE by Bethe and Salpeter in 1951 [37],

much effort has been devoted to developing techniques for numerical solution of the BSE

[38, 39, 40, 41]. These techniques may be applied whole-cloth to the solution of the GBSE.

In solving for the complete M′, the techniques must be incorporated into a sparse matrix

solution.

5.2 The 3-Vertex Model

The 3-vertex model, based on the Lagrangian L = AAC+ABC+BBC, was discussed briefly

in section 4.16. For the N∆π system, the BBC vertex is the ∆∆π vertex. Faassen and Tjon
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[2] omit this vertex, but inclusion of this vertex brings the isobar degree of freedom into full

expression (see section 1.5). The scalar model, with its simple description of vertices, has

the capacity to describe the ∆∆π interaction. In the 3-vertex model, M′ is a 9× 9 matrix,

the solution of which involves 81 elements, 27 unique (many of the elements are equivalent

under momentum exchange or time reversal, or both). For even more complex systems,

one can expect the number of unique elements to increase, while M′ becomes increasingly

sparse.

5.3 The Complex Scalar Model

The GBSE may be formulated using complex scalar fields. Going from scalar to complex

fields, the number of particles increases at least by a factor 2, while the number of reactions

increases at least by a factor of 4, and the number of elements in M′ increases at least by

a factor of 16. As an example, the N∆π system has 2 particles in the scalar model, the

nucleon and the ∆ baryon (not including the exchange pion), but has 12 particles in the

complex scalar model: the proton, neutron, four ∆i particles, and six corresponding anti-

particles. The most general Lagrangian includes 21 interactions vertices, one for each pair

of interacting particles pp, pn, p∆0, ... nn, n∆0... . There are 12 × 12 = 144 two-particle

initial states, and the same number of final states. Thus M′ is a 144×144 matrix. However

many of the elements represent reactions that violate conservation of charge or baryon

number, hence are zero. Since reactions involve charge transitions, numerical solutions will

necessarily involve the isospin formalism. While the scalar model has only the neutral pion

π0, the complex scalar model also includes the charged pions π− and π+. The presence of

additional exchange particles does not increase the size of M′ in the 2-vertex model, but

does increase the number of kernels.

5.4 The Spinor Model

The GBSE may be formulated using Dirac spinor fields. A review of BSE spinor studies

is found in [42]. The number of particles will be the same as with the complex scalar
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model, but reactions will additionally involve angular momentum transitions mediated by

the exchange of vector mesons. The presence of vector mesons (in addition to the pseudo-

scalar mesons found in the scalar and complex scalar theories) increases the number of

kernels. Numerical solutions will involve the spin formalism. The GBSE is constructed in

the same manner as is done for the scalar model (see section 4.20).
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6 Appendix - Code Listings

This appendix lists C and Mathematica programs and output files used in the development
of the GBSE.

6.1 Program FindFeynmanDiagrams

The .cpp source code file for program FindFeynmanDiagrams is listed below along with three
output files results.txt, terms.txt and diagrams.txt. The FindFeynmanDiagrams procedure
is described in section 4.8.

// Find Feynman Diagrams Keep Duplicates.cpp
// Generate the all 4th order Feynman diagrams for AAC+ABC+BBC Lagrangian.
// Author: Frank Dick, WPI, December 2006
// The method utilizes Wick contraction with external contractions (Peskin).

#include "stdafx.h"
// ABC’ lagrangian = ABC + AAC + BBC, field types are A=1, B=2, C=3
int la[3][3]={{1,2,3},{1,1,3},{2,2,3}};

#define NOTUSED -1
#define ADJACENT 1
#define AFIELD 1
#define BFIELD 2
#define CFIELD 3

#define NUMCOUPLE 3 // the number of fields coupled at a point
#define ORDER 4 // order of the diagrams
#define NUMTERMS 81 // equals NUMCOUPLE ^ ORDER

// initial and final states, ist = AA, fst = AB

// reaction AA to AA
/*
int ist[2] = {1,1};
int fst[2] = {1,1};
int numA = 4; // number of external A’s
int numB = 0; // number of external B’s
int numC = 0; // number of external C’s
*/

// reaction AA to AB
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int ist[2] = {1,1};
int fst[2] = {1,2};
int numA = 3; // number of external A’s
int numB = 1; // number of external B’s
int numC = 0; // number of external C’s

// reaction AB to AB
/*
int ist[2] = {1,2};
int fst[2] = {1,2};
int numA = 2; // number of external A’s
int numB = 2; // number of external B’s
int numC = 0; // number of external C’s
*/

// reaction AB to BA
/*
int ist[2] = {1,2};
int fst[2] = {2,1};
int numA = 2; // number of external A’s
int numB = 2; // number of external B’s
int numC = 0; // number of external C’s
*/

// reaction AB to BB
/*
int ist[2] = {1,2};
int fst[2] = {2,2};
int numA = 1; // number of external A’s
int numB = 3; // number of external B’s
int numC = 0; // number of external C’s
*/

// reaction AA to BB
/*
int ist[2] = {1,1};
int fst[2] = {2,2};
int numA = 2; // number of external A’s
int numB = 2; // number of external B’s
int numC = 0; // number of external C’s
*/
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// reaction BB to BB
/*
int ist[2] = {2,2};
int fst[2] = {2,2};
int numA = 0; // number of external A’s
int numB = 4; // number of external B’s
int numC = 0; // number of external C’s
*/

int anum, // number of A fields in a term
bnum, // number of B fields in a term
cnum; // number of C fields in a term

int numcontracts;
int numdiagrams = 0;
int extconxdone = 0;

int goodcount; // a count of the terms that match the external states

// 81 4th order terms, each with 12 fields plus the four external states
int term[NUMTERMS][16]; // unique terms
int numuniqueterms = 0;
int term0[NUMTERMS][17]; // raw terms, before duplicates are removed
int numterms = NUMTERMS;
// int termvert0[81][4]; // each term has 4 vertices
int termvert[NUMTERMS][4];

// field keeps track of contractions
int field[16]; // -1 (not connected) or num (connected to field num 0 thru 15)

// node indicates the vertex (1,2,3 or 4) at which a field resides
int node[12] = {1,1,1,2,2,2,3,3,3,4,4,4};

// counts of the various types of diagrams
int boxes = 0,

beetles = 0,
sbeetles = 0,
bowties = 0,
crosses = 0,
triangles = 0,
striangles = 0,
split_loops = 0,
biloops = 0,
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sbiloops = 0,
others0 = 0,
others1 = 0,
others2 = 0,
others3 = 0;

int boxprop[6], // counts of five types of propagators
crossprop[6];

#define AAPROP 1
#define ABPROP 2
#define BAPROP 3
#define BBPROP 4
#define CCPROP 5

int ibyxs0, ibyxs1, ibyxs2;

FILE* fh;
FILE* fh_terms;

void createterms(void);
int sameterm(int x, int y);
int goodterm(int tnum);
void countfields(int t);
void contractext(int t, int f );
void contractintA(int t, int f );
void contractintB(int t, int f );
void contractintC(int t, int f );
void store( int t);
void findups(void);
int samediag(int x, int y);
void classify(int t);
void printresults(void);
void printdiagram(int t);

struct diagram {
int field[16], // the contractions

t, // corresponding term
type; // a number 1,2,3... labeling each type of diagram

} tab[20000];

int _tmain(int argc, _TCHAR* argv[])
{
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int t,j;

fh_terms = fopen("terms_keep_dups.txt", "w+");
fh = fopen( "diagrams.txt", "w+" );

// create the 4th order terms
createterms();

// search for terms that contribute to the inelastic process <AA| ~ |AB>
// for each good term, recursively form contractions, then classify the
// resulting diagram
goodcount = 0;

for ( t = 0; t < NUMTERMS; t++ )
{

if (goodterm( t ))
{

for (j=0; j<16; j++)
field[j] = NOTUSED; // clear the contraction record

// numcontracts = 0;
contractext(t, 12 ); // start with first external A state
fprintf(fh,"\n");

}
}

// findups();
printresults();
fclose(fh_terms);
fclose( fh );
return 0;

}

void createterms(void)
{

int i,j,k,l,n,x,y;

// create the terms
for (i=0; i<3; i++)

for (j=0; j<3; j++)
for (k=0; k<3; k++)

for (l=0; l<3; l++)
{
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n = l+3*(k+3*(j+3*i));
termvert[n][0]=i;
termvert[n][1]=j;
termvert[n][2]=k;
termvert[n][3]=l;

term[n][0]= la[i][0];
term[n][1]= la[i][1];
term[n][2]= la[i][2];

term[n][3]= la[j][0];
term[n][4]= la[j][1];
term[n][5]= la[j][2];

term[n][6]= la[k][0];
term[n][7]= la[k][1];
term[n][8]= la[k][2];

term[n][9]= la[l][0];
term[n][10]= la[l][1];
term[n][11]= la[l][2];

// initial state
term[n][12]= ist[0];
term[n][13]= ist[1];

// final state
term[n][14]= fst[0];
term[n][15]= fst[1];

// print the term
for(x=0; x<4; x++)
{

for(y=0; y<3; y++)
fprintf(fh_terms, "%c", (char) term[n][3*x+y]+64);

fprintf(fh_terms, " ");
}
fprintf(fh_terms, "\n");

}

fprintf(fh_terms, "\n\n\n");

} // end creatterms
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int sameterm(int x, int y)
{

int i;
int nx0=0,

nx1=0,
nx2=0,
ny0=0,
ny1=0,
ny2=0;

for (i=0; i<4; i++) // count the vertex types for both terms
{

if( termvert[x][i] == 0 )
++nx0;

else if( termvert[x][i] == 1 )
++nx1;

else
++nx2;

if( termvert[y][i] == 0 )
++ny0;

else if( termvert[y][i] == 1 )
++ny1;

else
++ny2;

}
if (nx0 == ny0 && nx1 == ny1 && nx2 == ny2 )

return(1);
else

return(0);
}

int goodterm( int t )
{

int f, x, y;

anum = 0;
bnum = 0;
cnum = 0;

// count the number of A, B and C fields in the term (excluding
// external states)
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for (f=0; f<12; f++)
{

if (term[t][f] == AFIELD) // its an A
++anum;

else if (term[t][f] == BFIELD) // its a B
++bnum;

else if (term[t][f] == CFIELD) // its a C
++cnum;

}

// the term must match the external states
if ( anum >= numA && (anum - numA) % 2 == 0 &&

bnum >= numB && (bnum - numB) % 2 == 0 &&
cnum >= numC && (cnum - numC) % 2 == 0 )

{
++goodcount;
// print the term
fprintf(fh_terms, " &=& ");
for(x=0; x<4; x++)
{

fprintf(fh_terms, "(");
for(y=0; y<3; y++)

fprintf(fh_terms, "%c", (char) term[t][3*x+y]+64);
fprintf(fh_terms, ")_%i ", x+1);

}
fprintf(fh_terms, "+ \\nonumber \\\\\n");

return(1); // its a match
}
else

return(0); // does not match external state
}

void countfields(int t)
{

int j;

// count the number of A’s, B’s and C’s not yet contracted
anum = 0;
bnum = 0;
cnum = 0;

for (j=0; j<12; j++)
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{
if( field[j] == NOTUSED )

if (term[t][j] == AFIELD)
++anum;

else if (term[t][j] == BFIELD)
++bnum;

else if (term[t][j] == CFIELD)
++cnum;

}
}

void contractext( int t, int f )
{

int i,
visited[5] = {0}; // tracks whether nodes 1 thru 4 have been visited

for( i=0; i<12; i++)
{

if (i != f && term[t][i] == term[t][f] && field[i] == NOTUSED
&& !visited[node[i]])

// if (i != f && term[t][i] == term[t][f] && field[i] == NOTUSED )
{

visited[node[i]] = 1;
// form the contraction
field[i] = f;
field[f] = i;
// ++numcontracts;

if ( f == 15 )
{

++extconxdone;

// count the remaining uncontracted fields in the term
countfields(t);

// do internal contractions
contractintA(t,0); // do internal contractions, A fields first

}
else

contractext(t, f+1); // do another external contraction

// back out and form a different external contraction
field[i] = NOTUSED;
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field[f] = NOTUSED;
// --numcontracts;

}
}

}

void contractintA(int t, int f )
{

int i,j,
visited[5] = {0}; // tracks whether nodes 1 thru 4 have been visited

if(!anum)
contractintB(t,0);

else
for( i=f; i<12; i++)
{

if (term[t][i] == AFIELD && field[i] == NOTUSED )
{

for(j=i+1; j<12; j++)
{

if (field[j] == NOTUSED &&
term[t][i] == term[t][j] && node[i] != node[j]

&& !visited[node[j]])
{

// form the contraction
visited[node[j]]=1;
field[i] = j;
field[j] = i;
anum -= 2;
if (anum > 0)

contractintA(t, i+1);
else

contractintB(t, 0);

// back out and prepare to do another
anum += 2;
field[i] = NOTUSED;
field[j] = NOTUSED;

}
} // for j

}
} // for i

}
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void contractintB(int t, int f )
{

int i,j,
visited[5] = {0}; // tracks whether nodes 1 thru 4 have been visited

if(!bnum)
contractintC(t,0);

else
for( i=f; i<12; i++)
{

if (term[t][i] == BFIELD && field[i] == NOTUSED )
{

for(j=i+1; j<12; j++)
{

if (field[j] == NOTUSED &&
term[t][i] == term[t][j] && node[i] != node[j]

&& !visited[node[j]])
{

// form the contraction
visited[node[j]]=1;
field[i] = j;
field[j] = i;

bnum -= 2;
if (bnum > 0)

contractintB(t, i+1);
else

contractintC(t, 0);

// back out and prepare to do another
bnum += 2;
field[i] = NOTUSED;
field[j] = NOTUSED;

}
} // for j

}
} // for i

}

void contractintC(int t, int f )
{

int i,j,
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visited[5] = {0}; // tracks whether nodes 1 thru 4 have been visited

for( i=f; i<12; i++)
{

if (term[t][i] == CFIELD && field[i] == NOTUSED)
{

for(j=i+1; j<12; j++)
{

if (field[j] == NOTUSED &&
term[t][i] == term[t][j] && node[i] != node[j]

&& !visited[node[j]])
{ // form the contraction

visited[node[j]]=1;
field[i] = j;
field[j] = i;

cnum -= 2;
if (cnum > 0)

contractintC(t, i+1);
else
{ // all contracted, we have a Feynman diagram

++numdiagrams;
store(t);
classify(t);

}

// back out and prepare to do another
cnum += 2;
field[i] = NOTUSED;
field[j] = NOTUSED;

}
} // for j

}
} // for i

}
void store(int t)
{

int i;

tab[numdiagrams].t = t;
for(i=0; i<16; i++)

tab[numdiagrams-1].field[i] = field[i];
}
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void findups(void)
{

int i, j,
k = 1; // start with type 1

for(i=0; i<numdiagrams; i++)
{

if (! tab[i].type )
{

tab[i].type = k;
for (j=i+1; j<numdiagrams; j++)

if ( ! tab[i].type && samediag(i, j) )
tab[j].type = k;

++k;
}

}
}
int samediag(int x, int y)
{

int i;

if (tab[x].t != tab[y].t) // do diagrams have same term?
return(0);

// do diagrams have the same set of contractions?
for( i=0; i<16; i++)

if( tab[x].field[i] != tab[y].field[i] )
return(0);

return(1);
}

void classify(int t)
{

// Determine the type of diagram (box, beetle, bowtie, triangle, cross,
// split, other). Upon entry field[t] defines a set of contractions for
// term[t][], while node[] indicates the nodes (vertices) to which fields
// (and states) are attached.
int i,j, n, m;
int pairs = 0, // counts nodes that have a pair of final states

ibyxs = 0, // counts nodes that have a pair of external states
loops = 0, // counts nodes that share two contractions
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seats = 0, // are final states are adjacent or cate-corner?
conxs, // number of connections between two nodes
biloop= 0; // 0 or 1, number of biloops

int n1, n2, n3, n4;
int ibeg, jbeg;
int kernel = 0,

prop1 = 0,
prop2 = 0;

// nodes to which the external states are attached
n1 = node[field[12]];
n2 = node[field[13]];
n3 = node[field[14]];
n4 = node[field[15]];

// printdiagram(t);

// count ibyxs, pairs of external states (an ibyx is either an in-out or
// a pair)
for(i=12; i<16; i++)

for(j=i+1; j<16; j++)
{

if( node[ field[i]] == node[field[j]])
++ibyxs;

}

// count pairs (each pair indicates presence of an s-channel)
if(n3 == n4) // do final states share a vertex?

++pairs;
if(n1 == n2) // do initial states share a vertex?

++pairs;

// count loops and bi-loops
for(n=1; n<=4; n++) // for each node n

for(m=n+1; m<=4; m++) // for each node m > n
{

conxs = 0;
ibeg = 3*(n-1);
jbeg = 3*(m-1);
for(i = ibeg; i < ibeg+3; i++) // for each state in node n

for(j = jbeg; j < jbeg+3; j++) // for each state in node m
{
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if (field[i] == j) // we have a connection (contraction)
++conxs;

}
if (conxs == 3)

biloop = 1;
else if (conxs == 2)

++loops;
}

// determine type of seats (are final states adjacent or cate-corner?)
// if their nodes are connected by a contraction, they are adjacent.
if (!ibyxs) // then the diagram has one external state per node, thus is
{ // either a box or a cross

ibeg = 3*(n3-1);
jbeg = 3*(n4-1);

for(i = ibeg; i < ibeg+3; i++)
for(j = jbeg; j < jbeg+3; j++)

if (field[i] == j && field[j] == i)
{

seats = ADJACENT; // its a box
if (term[t][field[i]] == CFIELD ) // is AA,AB,BA or BB

kernel = CFIELD;
}

// determine propagator type for boxes
if ( ibyxs == 0 && loops == 0 && seats == ADJACENT ) // its a box

{
if ( kernel == CFIELD ) // propagator is AA,AB,BA or BB
{

for(i = ibeg; i < ibeg+3; i++)
if ( field[i]<12 && term[t][field[i]] != CFIELD )

prop1 = term[t][field[i]];

for(j = jbeg; j < jbeg+3; j++)
if ( field[j]<12 && term[t][field[j]] != CFIELD )

prop2 = term[t][field[j]];

if ( prop1 == AFIELD )
{

if ( prop2 == AFIELD )
{

boxprop[AAPROP] += 1;
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//printdiagram(t);
}
else

boxprop[ABPROP] += 1;
}
else // prop1 is a BFIELD
{

if ( prop2 == AFIELD )
{

boxprop[BAPROP] += 1;
//printdiagram(t);

}
else

boxprop[BBPROP] += 1;
}

}
else // propagator is CC

boxprop[CCPROP] += 1;
}

else // its a cross
{
}

}

// attributes have been determined, now classify
if (ibyxs == 0)
{

++ibyxs0;
if (loops == 0)
{

if (seats == ADJACENT)
{

++boxes;
// further classify boxes by propagator (AA, AB, BA, BB, CC)
// n = boxproptype(t);
// boxprop[n] += 1;

}
else
{

++crosses;
// further classify crosses by propagator
// n = crossproptype(t);
// crossprop[n] += 1;
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}
}
else if (loops == 2)
{

++split_loops;
// printdiagram(t);

}
else
{

++others0;
// printdiagram(t);

}
}
else if (ibyxs == 1)
{

++ibyxs1;
if (loops == 0)
{

// if( pairs )
// ++striangles;
// else

++triangles;
}
else if (loops == 1)
{

// if (pairs)
// ++sbeetles;
// else

++beetles;
// printdiagram(t);

}
else
{

++others1;
// printdiagram(t);

}
}
else if(ibyxs == 2)
{

++ibyxs2;
if (loops == 1)
{

++bowties;
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// printdiagram(t);
}
else if (loops == 2)
{

++others2;
// printdiagram(t);

}
else // must be a biloop
{

if (pairs)
{

++sbiloops;
printdiagram(t);

}
else
{

++biloops;
// printdiagram(t);

}

}
}
else

printf("invalid number of ibyxs\n");
}

void printresults(void)
{

int i, sum, num;
FILE* fh;
char* propstr[6] = {"","AA", "AB", "BA", "BB", "CC"};

fh = fopen("results_keep_dups.txt", "w+");

sum = boxes + beetles + sbeetles + bowties + crosses + triangles +
striangles + split_loops + biloops + sbiloops + others0 + others1
+ others2;

num = boxes/24 + beetles/12 + sbeetles/12 + bowties/24 + crosses/24
+ triangles/12 + striangles/12 + split_loops/24 + biloops/12
+ sbiloops/12;
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fprintf(fh, "ext contractions done = %i\n", extconxdone);
fprintf(fh, "goodcount = %i\n", goodcount);
fprintf(fh, "numdiagrams = %i\n", numdiagrams);
fprintf(fh, "boxes = %i\n", boxes);
for(i=1; i<6; i++)

fprintf(fh, "%s box props = %i\n", propstr[i], boxprop[i]);
fprintf(fh, "beetles = %i\n", beetles);

// fprintf(fh, "sbeetles = %i\n", sbeetles);
fprintf(fh, "bowties = %i\n", bowties);
fprintf(fh, "crosses = %i\n", crosses);
fprintf(fh, "triangles = %i\n", triangles);

// fprintf(fh, "striangles = %i\n", striangles);
fprintf(fh, "split_loops = %i\n", split_loops);
fprintf(fh, "biloops = %i\n", biloops);
fprintf(fh, "sbiloops = %i\n", sbiloops);
fprintf(fh, "others0 = %i\n", others0);
fprintf(fh, "others1 = %i\n", others1);
fprintf(fh, "others2 = %i\n", others2);
fprintf(fh, "sum others = %i\n", others0 + others1 + others2);
fprintf(fh, "sum all = %i\n\n", sum);

fprintf(fh, "ibyxs0 = %i\n", ibyxs0);
fprintf(fh, "ibyxs1 = %i\n", ibyxs1);
fprintf(fh, "ibyxs2 = %i\n", ibyxs2);
fprintf(fh, "sum ibyxs = %i\n", ibyxs0 + ibyxs1 + ibyxs2);

// fprintf(fh, "numdiagrams mod 24 = %i\n", numdiagrams%24);
fprintf(fh, "boxes mod 24 = %i\n", boxes%24);
for(i=1; i<6; i++)

fprintf(fh, "%s box props mod 24 = %i\n", propstr[i], boxprop[i]%24);
fprintf(fh, "beetles mod 12 = %i\n", beetles%12);

// fprintf(fh, "sbeetles mod 12 = %i\n", sbeetles%12);
fprintf(fh, "bowties mod 24 = %i\n", bowties%24);
fprintf(fh, "crosses mod 24 = %i\n", crosses%24);
fprintf(fh, "triangles mod 12 = %i\n", triangles%12);

// fprintf(fh, "striangles mod 12 = %i\n", striangles%12);
fprintf(fh, "split_loops mod 24 = %i\n", split_loops%24);
fprintf(fh, "biloops mod 12 = %i\n\n", biloops%12);
fprintf(fh, "sbiloops mod 12 = %i\n\n", sbiloops%12);

// fprintf(fh, "numdiagrams/24 = %i\n", numdiagrams/24);
fprintf(fh, "boxes/24 = %i\n", boxes/24);
for(i=1; i<6; i++)
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fprintf(fh, "%s box props/24 = %i\n", propstr[i], boxprop[i]/24);
fprintf(fh, "beetles/12 = %i\n", beetles/12);

// fprintf(fh, "sbeetles/12 = %i\n", sbeetles/12);
fprintf(fh, "bowties/24 = %i\n", bowties/24);
fprintf(fh, "crosses/24 = %i\n", crosses/24);
fprintf(fh, "triangles/12 = %i\n", triangles/12);

// fprintf(fh, "striangles/12 = %i\n", striangles/12);
fprintf(fh, "split_loops/24 = %i\n", split_loops/24);
fprintf(fh, "biloops/12 = %i\n", biloops/12);
fprintf(fh, "sbiloops/12 = %i\n", sbiloops/12);
fprintf(fh, "num (no dups) = %i\n", num);

fclose(fh);
}

void printdiagram(int t)
{

int i,j, k=0;

// print the term
for(i=0; i<4; i++)
{

for(j=0; j<3; j++)
fprintf(fh, "%c", (char) term[t][field[3*i+j]]+64);

fprintf(fh, " ");
}

// external connections
fprintf(fh, "%c->%c%i ", term[t][12]+64, term[t][field[12]]+64,

node[field[12]] );
fprintf(fh, "%c->%c%i ", term[t][13]+64, term[t][field[13]]+64,

node[field[13]] );
fprintf(fh, "%c’->%c%i ", term[t][14]+64, term[t][field[14]]+64,

node[field[14]] );
fprintf(fh, "%c’->%c%i ", term[t][15]+64, term[t][field[15]]+64,

node[field[15]] );

// internal connections
for(i=0; i<12; i++)
{

if ( field[i]<12 && field[i]>i )
fprintf(fh, "%c%i->%c%i ", term[t][i]+64, node[i],
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term[t][field[i]]+64, node[field[i]]);
}
fprintf(fh, "\n");

}

6.1.1 results.txt

The results below are self-explanatory. Counts of the various types of diagrams are given.
Of particular importance are the counts of the five types of box diagrams, and verification
that these counts are divisible by 4!, leaving 2 (direct and exchange) of each of the four
types of box diagrams AA, AB, BA and BB.

ext contractions done = 1236
goodcount = 36
numdiagrams = 3204
boxes = 384
AA box props = 48
AB box props = 48
BA box props = 48
BB box props = 48
CC box props = 192
beetles = 1344
bowties = 216
crosses = 192
triangles = 672
split_loops = 288
biloops = 72
sbiloops = 36
others0 = 0
others1 = 0
others2 = 0
sum others = 0
sum all = 3204

ibyxs0 = 864
ibyxs1 = 2016
ibyxs2 = 324
sum ibyxs = 3204
boxes mod 24 = 0
AA box props mod 24 = 0
AB box props mod 24 = 0
BA box props mod 24 = 0
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BB box props mod 24 = 0
CC box props mod 24 = 0
beetles mod 12 = 0
bowties mod 24 = 0
crosses mod 24 = 0
triangles mod 12 = 0
split_loops mod 24 = 0
biloops mod 12 = 0

sbiloops mod 12 = 0

boxes/24 = 16
AA box props/24 = 2
AB box props/24 = 2
BA box props/24 = 2
BB box props/24 = 2
CC box props/24 = 8
beetles/12 = 112
bowties/24 = 9
crosses/24 = 8
triangles/12 = 56
split_loops/24 = 12
biloops/12 = 6
sbiloops/12 = 3
num (no dups) = 222

6.1.2 terms.txt

In S-matrix component S4, the product of four Hamiltonians

H4 = (AAC +ABC +BBC)4 (301)

produces 81 terms. These are listed below. Each term is a product of twelve fields, three
fields from each of four vertices.

ABC ABC ABC ABC
ABC ABC ABC AAC
ABC ABC ABC BBC
ABC ABC AAC ABC
ABC ABC AAC AAC
ABC ABC AAC BBC
ABC ABC BBC ABC
ABC ABC BBC AAC
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ABC ABC BBC BBC
ABC AAC ABC ABC
ABC AAC ABC AAC
ABC AAC ABC BBC
ABC AAC AAC ABC
ABC AAC AAC AAC
ABC AAC AAC BBC
ABC AAC BBC ABC
ABC AAC BBC AAC
ABC AAC BBC BBC
ABC BBC ABC ABC
ABC BBC ABC AAC
ABC BBC ABC BBC
ABC BBC AAC ABC
ABC BBC AAC AAC
ABC BBC AAC BBC
ABC BBC BBC ABC
ABC BBC BBC AAC
ABC BBC BBC BBC
AAC ABC ABC ABC
AAC ABC ABC AAC
AAC ABC ABC BBC
AAC ABC AAC ABC
AAC ABC AAC AAC
AAC ABC AAC BBC
AAC ABC BBC ABC
AAC ABC BBC AAC
AAC ABC BBC BBC
AAC AAC ABC ABC
AAC AAC ABC AAC
AAC AAC ABC BBC
AAC AAC AAC ABC
AAC AAC AAC AAC
AAC AAC AAC BBC
AAC AAC BBC ABC
AAC AAC BBC AAC
AAC AAC BBC BBC
AAC BBC ABC ABC
AAC BBC ABC AAC
AAC BBC ABC BBC
AAC BBC AAC ABC
AAC BBC AAC AAC
AAC BBC AAC BBC
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AAC BBC BBC ABC
AAC BBC BBC AAC
AAC BBC BBC BBC
BBC ABC ABC ABC
BBC ABC ABC AAC
BBC ABC ABC BBC
BBC ABC AAC ABC
BBC ABC AAC AAC
BBC ABC AAC BBC
BBC ABC BBC ABC
BBC ABC BBC AAC
BBC ABC BBC BBC
BBC AAC ABC ABC
BBC AAC ABC AAC
BBC AAC ABC BBC
BBC AAC AAC ABC
BBC AAC AAC AAC
BBC AAC AAC BBC
BBC AAC BBC ABC
BBC AAC BBC AAC
BBC AAC BBC BBC
BBC BBC ABC ABC
BBC BBC ABC AAC
BBC BBC ABC BBC
BBC BBC AAC ABC
BBC BBC AAC AAC
BBC BBC AAC BBC
BBC BBC BBC ABC
BBC BBC BBC AAC
BBC BBC BBC BBC

6.1.3 diagrams.txt

The listing below gives the specifications for all 48 AA box diagrams generated by program
FindFeynmanDiagrams for the reaction A+A→ A+B. Many of the diagrams are dupli-
cates. The diagrams are 4th order, and are derived from the S-matrix component S4, which
contains the factor 1/4!. This factor cancels the multiplicity, leaving two unique diagrams,
the direct and exchange AA box diagrams. The first diagram specification is

ABC AAC AAC AAC A->A2 A->A3 A’->A4 B’->B1 A1->A2 C1->C4 C2->C3 A3->A4

The specifier “ABC AAC AAC AAC” on the left identifies the term which produced
the diagram (see list of terms in the preceding section). The next specifier indicates that
the first initial state particle A enters vertex 2. The following three specifiers similarly
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indicate that the second initial state particle A enters vertex 3, and the final state particles
A’ and B’ exit from vertices 4 and 1, respectively. The last four specifiers indicate virtual
A-particles and C-particles propagating on internal lines between pairs of vertices. The
two internal C-particles are the two C-rungs of the box diagram, while the two internal
A-particles together from the GA

A propagator.

ABC AAC AAC AAC A->A2 A->A3 A’->A4 B’->B1 A1->A2 C1->C4 C2->C3 A3->A4
ABC AAC AAC AAC A->A2 A->A3 A’->A4 B’->B1 A1->A3 C1->C4 A2->A4 C2->C3
ABC AAC AAC AAC A->A2 A->A4 A’->A3 B’->B1 A1->A2 C1->C3 C2->C4 A3->A4
ABC AAC AAC AAC A->A2 A->A4 A’->A3 B’->B1 A1->A4 C1->C3 A2->A3 C2->C4
ABC AAC AAC AAC A->A3 A->A2 A’->A4 B’->B1 A1->A2 C1->C4 C2->C3 A3->A4
ABC AAC AAC AAC A->A3 A->A2 A’->A4 B’->B1 A1->A3 C1->C4 A2->A4 C2->C3
ABC AAC AAC AAC A->A3 A->A4 A’->A2 B’->B1 A1->A3 C1->C2 A2->A4 C3->C4
ABC AAC AAC AAC A->A3 A->A4 A’->A2 B’->B1 A1->A4 C1->C2 A2->A3 C3->C4
ABC AAC AAC AAC A->A4 A->A2 A’->A3 B’->B1 A1->A2 C1->C3 C2->C4 A3->A4
ABC AAC AAC AAC A->A4 A->A2 A’->A3 B’->B1 A1->A4 C1->C3 A2->A3 C2->C4
ABC AAC AAC AAC A->A4 A->A3 A’->A2 B’->B1 A1->A3 C1->C2 A2->A4 C3->C4
ABC AAC AAC AAC A->A4 A->A3 A’->A2 B’->B1 A1->A4 C1->C2 A2->A3 C3->C4
AAC ABC AAC AAC A->A1 A->A3 A’->A4 B’->B2 A1->A2 C1->C3 C2->C4 A3->A4
AAC ABC AAC AAC A->A1 A->A3 A’->A4 B’->B2 A1->A4 C1->C3 A2->A3 C2->C4
AAC ABC AAC AAC A->A1 A->A4 A’->A3 B’->B2 A1->A2 C1->C4 C2->C3 A3->A4
AAC ABC AAC AAC A->A1 A->A4 A’->A3 B’->B2 A1->A3 C1->C4 A2->A4 C2->C3
AAC ABC AAC AAC A->A3 A->A1 A’->A4 B’->B2 A1->A2 C1->C3 C2->C4 A3->A4
AAC ABC AAC AAC A->A3 A->A1 A’->A4 B’->B2 A1->A4 C1->C3 A2->A3 C2->C4
AAC ABC AAC AAC A->A3 A->A4 A’->A1 B’->B2 A1->A3 C1->C2 A2->A4 C3->C4
AAC ABC AAC AAC A->A3 A->A4 A’->A1 B’->B2 A1->A4 C1->C2 A2->A3 C3->C4
AAC ABC AAC AAC A->A4 A->A1 A’->A3 B’->B2 A1->A2 C1->C4 C2->C3 A3->A4
AAC ABC AAC AAC A->A4 A->A1 A’->A3 B’->B2 A1->A3 C1->C4 A2->A4 C2->C3
AAC ABC AAC AAC A->A4 A->A3 A’->A1 B’->B2 A1->A3 C1->C2 A2->A4 C3->C4
AAC ABC AAC AAC A->A4 A->A3 A’->A1 B’->B2 A1->A4 C1->C2 A2->A3 C3->C4
AAC AAC ABC AAC A->A1 A->A2 A’->A4 B’->B3 A1->A3 C1->C2 A2->A4 C3->C4
AAC AAC ABC AAC A->A1 A->A2 A’->A4 B’->B3 A1->A4 C1->C2 A2->A3 C3->C4
AAC AAC ABC AAC A->A1 A->A4 A’->A2 B’->B3 A1->A2 C1->C4 C2->C3 A3->A4
AAC AAC ABC AAC A->A1 A->A4 A’->A2 B’->B3 A1->A3 C1->C4 A2->A4 C2->C3
AAC AAC ABC AAC A->A2 A->A1 A’->A4 B’->B3 A1->A3 C1->C2 A2->A4 C3->C4
AAC AAC ABC AAC A->A2 A->A1 A’->A4 B’->B3 A1->A4 C1->C2 A2->A3 C3->C4
AAC AAC ABC AAC A->A2 A->A4 A’->A1 B’->B3 A1->A2 C1->C3 C2->C4 A3->A4
AAC AAC ABC AAC A->A2 A->A4 A’->A1 B’->B3 A1->A4 C1->C3 A2->A3 C2->C4
AAC AAC ABC AAC A->A4 A->A1 A’->A2 B’->B3 A1->A2 C1->C4 C2->C3 A3->A4
AAC AAC ABC AAC A->A4 A->A1 A’->A2 B’->B3 A1->A3 C1->C4 A2->A4 C2->C3
AAC AAC ABC AAC A->A4 A->A2 A’->A1 B’->B3 A1->A2 C1->C3 C2->C4 A3->A4
AAC AAC ABC AAC A->A4 A->A2 A’->A1 B’->B3 A1->A4 C1->C3 A2->A3 C2->C4

143



AAC AAC AAC ABC A->A1 A->A2 A’->A3 B’->B4 A1->A3 C1->C2 A2->A4 C3->C4
AAC AAC AAC ABC A->A1 A->A2 A’->A3 B’->B4 A1->A4 C1->C2 A2->A3 C3->C4
AAC AAC AAC ABC A->A1 A->A3 A’->A2 B’->B4 A1->A2 C1->C3 C2->C4 A3->A4
AAC AAC AAC ABC A->A1 A->A3 A’->A2 B’->B4 A1->A4 C1->C3 A2->A3 C2->C4
AAC AAC AAC ABC A->A2 A->A1 A’->A3 B’->B4 A1->A3 C1->C2 A2->A4 C3->C4
AAC AAC AAC ABC A->A2 A->A1 A’->A3 B’->B4 A1->A4 C1->C2 A2->A3 C3->C4
AAC AAC AAC ABC A->A2 A->A3 A’->A1 B’->B4 A1->A2 C1->C4 C2->C3 A3->A4
AAC AAC AAC ABC A->A2 A->A3 A’->A1 B’->B4 A1->A3 C1->C4 A2->A4 C2->C3
AAC AAC AAC ABC A->A3 A->A1 A’->A2 B’->B4 A1->A2 C1->C3 C2->C4 A3->A4
AAC AAC AAC ABC A->A3 A->A1 A’->A2 B’->B4 A1->A4 C1->C3 A2->A3 C2->C4
AAC AAC AAC ABC A->A3 A->A2 A’->A1 B’->B4 A1->A2 C1->C4 C2->C3 A3->A4
AAC AAC AAC ABC A->A3 A->A2 A’->A1 B’->B4 A1->A3 C1->C4 A2->A4 C2->C3
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6.2 Program CalcGBSE

The Mathematica file CalcGBSE.nb is listed below, along with output file CalcGBSEre-
sults.txt.

In[1]:=
(* Calculate box diagrams for CBSE, GBSEnoBB and GBSEft *)
(* Frank Dick, WPI Physics, 2007 *)
Clear["Global‘*"];
SetDirectory["C:\WORK2\dissertation"];
strm=OpenWrite["CalcGBSEresults.txt"];

(* Initial and final state vectors *)
xAA = {1,0,0,0};
xAB = {0,1,0,0};
xBA = {0,0,1,0};
xBB = {0,0,0,1};
z={0,0,0,0};

(* Propagator coupling matrices *)
GAA = {xAA,z,z,z};
GAB = {z,xAB,z,z};
GBA = {z,z,xBA,z};
GBB = {z,z,z,xBB};
G={z,z,z,z};

(* propagator = coupling matrix / denominator *)
(* use abbreviated notation to match the formulas in the dissertation *)
G1 = GAA/d1;
G2 = GAB/d2;
G3 = GBA/d3;
G4 = GBB/d4;

(* propagator G has denominators Daa, Dab, Dba,and Dbb on the diagonal *)
(* G = G1 + G2 + G3 + G4 *)
G = {{1/d1,0,0,0},{0,1/d2,0,0},{0,0,1/d3,0},{0,0,0,1/d4}};

(* coupling constants are aa, ab=ba, bb *)

(* 2nd order M prime matrices are Mc for CBSE, and M for GBSEnoBB *)

(* zero the matrices, then populate *)
Mc = {z,z,z,z};
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M = {z,z,z,z};
Mmc = {z,z,z,z};
Mm = {z,z,z,z};

(* 2nd order Mprime for CBSE *)
Mc[[1,1]]=aa*aa;
Mc[[1,3]]=aa*ab;
Mc[[1,4]]=ab*ab;
Mc[[2,1]]=aa*ab;
Mc[[2,3]]=ab*ab;
Mc[[3,1]]=aa*ab;
Mc[[3,2]]=ab*ab;
Mc[[4,1]]=ab*ab;

(* 2nd order Mprime for H = AAC + ABC *)
M[[1,1]]=aa*aa;
M[[1,2]]=aa*ab;
M[[1,3]]=aa*ab;
M[[1,4]]=ab*ab;
M[[2,1]]=aa*ab;
M[[2,3]]=ab*ab;
M[[3,1]]=aa*ab;
M[[3,2]]=ab*ab;
M[[4,1]]=ab*ab;

(* The kernel coupling matrices are equal to the 2nd order M prime matrices.
Here couplers U contain only coupling

constants. In practice, kernels U also have denominators. *)
Uc = Mc;
Ug = M;

(* compute box diagrams by expanding to 4th order *)

(* Use final state BA *)
Print["Cbse4=",Expand[I xAA.Uc.G.Uc.xBA]]
Print["Gbse4=",Expand[I xAA.Ug.G.Ug.xBA]]

(* 6th order, 3 rung ladders *)
Print["Cbse6=",Expand[-xAA.Uc.G.Uc.G.Uc.xBA]]
Print["Gbse6=",Expand[-xAA.Ug.G.Ug.G.Ug.xBA]]

(* 8th order, 4 rung ladders *)
Print["Cbse8=",Expand[-I xAA.Uc.G.Uc.G.Uc.G.Uc.xBA]]
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Print["Gbse8=",Expand[-I xAA.Ug.G.Ug.G.Ug.G.Ug.xBA]]

(* Expand the CBSE to 6th order *)
(* u = kernel, f1 = G1, m1 = M11, m2 = M13, m3 = M14 *)
(* m1 *)
u + I(m1)*f1*u + I(m2)*f3*u + I(m3)*f4*u
(* m2 *)
u + I(n2)*f2*u + I(m1)*f1*u
(* n2 = m2 flipped, since Faassen-Tjon put M12 into M13 *)
u + I(m2)*f3*u + I(m1)*f1*u
(* m3 *)
u + I(m1)*f1*u

(* Substitute m1, m2, n2, m3 into m2 through third iteration *)
Write[strm,

Expand[u +
I(u + I(u + I(n2)*f2*u + I(m1)*f1*u)*f3*u +

I(u + I(m1)*f1*u + I(m2)*f3*u + I(m3)*f4*u)*f1*u)*f2*u +
I(u + I(u + I(m1)*f1*u + I(m2)*f3*u + I(m3)*f4*u)*f1*u +

I(u + I(m2)*f3*u + I(m1)*f1*u)*f3*u + I(u + I(m1)*f1*u)*f4*u)*
f1*u

]];

(* Find the form of the coupled equations *)
Mmc[[1,1]]=m11;
Mmc[[1,3]]=m13;
Mmc[[1,4]]=m14;
Mmc[[2,1]]=m21;
Mmc[[2,3]]=m23;
Mmc[[3,1]]=m31;
Mmc[[3,2]]=m32;
Mmc[[4,1]]=m41;

Mm[[1,1]]=m11;
Mm[[1,2]]=m12;
Mm[[1,3]]=m13;
Mm[[1,4]]=m14;
Mm[[2,1]]=m21;
Mm[[2,3]]=m23;
Mm[[3,1]]=m31;
Mm[[3,2]]=m32;
Mm[[4,1]]=m41;
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(* The elements of Nmc and Nm1 give the coupled equations. *)

(* 1st iteration *)
Nm1=Ug+ I Ug.G.Mm;
Nm1transpose=Ug+ I Mm.G.Ug;
Nmc=Uc+ I Uc.G.Mmc;
Write[strm,"\n** 1st **"];
Write[strm,"Nm1 = ",Expand[Nm1]];
(*Print["Nm1transpose = ",Expand[Nm1transpose]];*)
Write[strm,"Nmc = ",Expand[Nmc]];

(* 2nd iteration *)
Nm11=Ug+ I Ug.G.Nm1;
Nmc1=Uc+ I Uc.G.Nmc;
Write[strm,"** 2nd **"];
Write[strm,"Nm11 = ",Expand[Nm11], "\n"];
Write[strm,"Nmc1 = ",Expand[Nmc1], "\n"];

(* 3rd iteration *)
Nm12=Ug+ I Ug.G.Nm11;
Nmc2=Uc+ I Uc.G.Nmc1;
Write[strm,"** 3rd **"];
(*

Print["Nm12 = ",Expand[Nm12], "\n"];
Print["Nmc2 = ",Expand[Nmc2], "\n"];
*)

Write[strm,"Nm(3,1) = ",Expand[Nm12[[3,1]]]];
Write[strm,"Nmc(3,1) = ",Expand[Nmc2[[3,1]]]];

(* 4th iteration *)
Nm13=Ug+ I Ug.G.Nm12;
Nmc3=Uc+ I Uc.G.Nmc2;
Write[strm,"** 4th **"];
(*

Print["Nm13 = ",Expand[Nm13], "\n"];
Print["Nmc3 = ",Expand[Nmc3], "\n"];
*)

Write[strm,"Nm(3,1) = ",Expand[Nm13[[3,1]]]];
Write[strm,"Nmc(3,1) = ",Expand[Nmc3[[3,1]]]];

(* **** Uncomment at your own peril! Produces many pages of symbols

(* 5th iteration *)
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Nm14=Ug+ I Ug.G.Nm13;
Print["** 5th **"];
Print["Nm14 = ",Expand[Nm14], "\n"];
(*Print["Nmc4 = ",Expand[Nmc4], "\n"];*)
Print[" "];

(* 6th iteration *)
Nm15=Ug+ I Ug.G.Nm14;
Print["** 6th **"];
Print["Nm15 = ",Expand[Nm15], "\n"];
(*Print["Nmc5 = ",Expand[Nmc5], "\n"];*)
Print[" "];

(* 7th iteration *)
Nm16=Ug+ I Ug.G.Nm15;
Print["** 7th **"];
Print["Nm16 = ",Expand[Nm16], "\n"];
(*Print["Nmc6 = ",Expand[Nmc6], "\n"];*)
Print[" "];

(* 8th iteration *)
Nm17=Ug+ I Ug.G.Nm16;
Print["** 8th **"];
Print["Nm17 = ",Expand[Nm17], "\n"];
(*Print["Nmc7 = ",Expand[Nmc7], "\n"];*)
Print[" "];

(* 9th iteration *)
Nm18=Ug+ I Ug.G.Nm17;
Print["** 9th **"];
Print["Nm18 = ",Expand[Nm18], "\n"];
(*Print["Nmc8 = ",Expand[Nmc8], "\n"];*)
Print[" "];

(* 10th iteration *)
Nm19=Ug+ I Ug.G.Nm18;
Print["** 10th **"];
Print["Nm19 = ",Expand[Nm19], "\n"];
(*Print["Nmc9 = ",Expand[Nmc9], "\n"];*)
Print[" "];

**** See comment above. *)
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Close[strm];
(**)

6.2.1 CalcGBSEresults.txt

The first result in the listing below, written in terms of u and the fi, is the iterative expansion
of the CBSE equations to 6th order. The fi represent the propagators, and serve to define
the ladders. Referencing the V , H notation introduced in section 4.10, propagator f1 is
H1, f2 is H2, f3 is H3 and f4 is H4. The u’s are C-kernels, and since the fi define the
ladders, the kernels are relieved of that task, therefore do not contain coupling constants
and are all the same. I is the square root of −1, m1 is M′

11, n2 is M′
21, m2 is M′

31, and
m3 is M′

41.

The next results, Nm1 and Nmc, are the 2-vertex model M′ and the CBSE M′ to 2nd
order, given by the first iteration of the expansion. These are followed by the 4th order
Nm11 and Nmc1 given by the 2nd iteration. For 6th and 8th order, to conserve space only
the M′

31 elements Nm(3, 1) and Nmc(3, 1) are printed. In all of the Nm and Nmc terms
above, the di are the denominators of the propagators Hi, the mij are elements of M′, and
aa and ab are the coupling constants gAA and gAB, respectively.

u + I*f1*u^2 + I*f2*u^2 - f1^2*u^3 - f1*f2*u^3 - f1*f3*u^3 - f2*f3*u^3 -
f1*f4*u^3 - I*f1^3*m1*u^3 - I*f1^2*f2*m1*u^3 - I*f1^2*f3*m1*u^3 -
I*f1*f2*f3*m1*u^3 - I*f1^2*f4*m1*u^3 - I*f1^2*f3*m2*u^3 -
I*f1*f2*f3*m2*u^3 - I*f1*f3^2*m2*u^3 - I*f1^2*f4*m3*u^3 -
I*f1*f2*f4*m3*u^3 - I*f2^2*f3*n2*u^3
"\n** 1st **"
"Nm1 = "{{aa^2 + (I*aa^2*m11)/d1 + (I*aa*ab*m21)/d2 + (I*aa*ab*m31)/d3 +

(I*ab^2*m41)/d4, aa*ab + (I*aa^2*m12)/d1 + (I*aa*ab*m32)/d3,
aa*ab + (I*aa^2*m13)/d1 + (I*aa*ab*m23)/d2, ab^2 + (I*aa^2*m14)/d1},
{aa*ab + (I*aa*ab*m11)/d1 + (I*ab^2*m31)/d3,
(I*aa*ab*m12)/d1 + (I*ab^2*m32)/d3, ab^2 + (I*aa*ab*m13)/d1,
(I*aa*ab*m14)/d1}, {aa*ab + (I*aa*ab*m11)/d1 + (I*ab^2*m21)/d2,
ab^2 + (I*aa*ab*m12)/d1, (I*aa*ab*m13)/d1 + (I*ab^2*m23)/d2,
(I*aa*ab*m14)/d1}, {ab^2 + (I*ab^2*m11)/d1, (I*ab^2*m12)/d1,
(I*ab^2*m13)/d1, (I*ab^2*m14)/d1}}

"Nmc = "{{aa^2 + (I*aa^2*m11)/d1 + (I*aa*ab*m31)/d3 + (I*ab^2*m41)/d4,
(I*aa*ab*m32)/d3, aa*ab + (I*aa^2*m13)/d1, ab^2 + (I*aa^2*m14)/d1},
{aa*ab + (I*aa*ab*m11)/d1 + (I*ab^2*m31)/d3, (I*ab^2*m32)/d3,
ab^2 + (I*aa*ab*m13)/d1, (I*aa*ab*m14)/d1},
{aa*ab + (I*aa*ab*m11)/d1 + (I*ab^2*m21)/d2, ab^2,
(I*aa*ab*m13)/d1 + (I*ab^2*m23)/d2, (I*aa*ab*m14)/d1},
{ab^2 + (I*ab^2*m11)/d1, 0, (I*ab^2*m13)/d1, (I*ab^2*m14)/d1}}
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"** 2nd **"
"Nm11 = "{{aa^2 + (I*aa^4)/d1 + (I*aa^2*ab^2)/d2 + (I*aa^2*ab^2)/d3 +

(I*ab^4)/d4 - (aa^4*m11)/d1^2 - (aa^2*ab^2*m11)/(d1*d2) -
(aa^2*ab^2*m11)/(d1*d3) - (ab^4*m11)/(d1*d4) - (aa^3*ab*m21)/(d1*d2) -
(aa*ab^3*m21)/(d2*d3) - (aa^3*ab*m31)/(d1*d3) - (aa*ab^3*m31)/(d2*d3) -
(aa^2*ab^2*m41)/(d1*d4), aa*ab + (I*aa^3*ab)/d1 + (I*aa*ab^3)/d3 -
(aa^4*m12)/d1^2 - (aa^2*ab^2*m12)/(d1*d2) - (aa^2*ab^2*m12)/(d1*d3) -
(ab^4*m12)/(d1*d4) - (aa^3*ab*m32)/(d1*d3) - (aa*ab^3*m32)/(d2*d3),
aa*ab + (I*aa^3*ab)/d1 + (I*aa*ab^3)/d2 - (aa^4*m13)/d1^2 -
(aa^2*ab^2*m13)/(d1*d2) - (aa^2*ab^2*m13)/(d1*d3) - (ab^4*m13)/(d1*d4) -
(aa^3*ab*m23)/(d1*d2) - (aa*ab^3*m23)/(d2*d3),
ab^2 + (I*aa^2*ab^2)/d1 - (aa^4*m14)/d1^2 - (aa^2*ab^2*m14)/(d1*d2) -
(aa^2*ab^2*m14)/(d1*d3) - (ab^4*m14)/(d1*d4)},

{aa*ab + (I*aa^3*ab)/d1 + (I*aa*ab^3)/d3 - (aa^3*ab*m11)/d1^2 -
(aa*ab^3*m11)/(d1*d3) - (aa^2*ab^2*m21)/(d1*d2) - (ab^4*m21)/(d2*d3) -
(aa^2*ab^2*m31)/(d1*d3) - (aa*ab^3*m41)/(d1*d4),
(I*aa^2*ab^2)/d1 + (I*ab^4)/d3 - (aa^3*ab*m12)/d1^2 -
(aa*ab^3*m12)/(d1*d3) - (aa^2*ab^2*m32)/(d1*d3),
ab^2 + (I*aa^2*ab^2)/d1 - (aa^3*ab*m13)/d1^2 - (aa*ab^3*m13)/(d1*d3) -
(aa^2*ab^2*m23)/(d1*d2) - (ab^4*m23)/(d2*d3),
(I*aa*ab^3)/d1 - (aa^3*ab*m14)/d1^2 - (aa*ab^3*m14)/(d1*d3)},
{aa*ab + (I*aa^3*ab)/d1 + (I*aa*ab^3)/d2 - (aa^3*ab*m11)/d1^2 -

(aa*ab^3*m11)/(d1*d2) - (aa^2*ab^2*m21)/(d1*d2) -
(aa^2*ab^2*m31)/(d1*d3) - (ab^4*m31)/(d2*d3) - (aa*ab^3*m41)/(d1*d4),
ab^2 + (I*aa^2*ab^2)/d1 - (aa^3*ab*m12)/d1^2 - (aa*ab^3*m12)/(d1*d2) -
(aa^2*ab^2*m32)/(d1*d3) - (ab^4*m32)/(d2*d3),
(I*aa^2*ab^2)/d1 + (I*ab^4)/d2 - (aa^3*ab*m13)/d1^2 -
(aa*ab^3*m13)/(d1*d2) - (aa^2*ab^2*m23)/(d1*d2),
(I*aa*ab^3)/d1 - (aa^3*ab*m14)/d1^2 - (aa*ab^3*m14)/(d1*d2)},
{ab^2 + (I*aa^2*ab^2)/d1 - (aa^2*ab^2*m11)/d1^2 - (aa*ab^3*m21)/(d1*d2) -

(aa*ab^3*m31)/(d1*d3) - (ab^4*m41)/(d1*d4),
(I*aa*ab^3)/d1 - (aa^2*ab^2*m12)/d1^2 - (aa*ab^3*m32)/(d1*d3),
(I*aa*ab^3)/d1 - (aa^2*ab^2*m13)/d1^2 - (aa*ab^3*m23)/(d1*d2),
(I*ab^4)/d1 - (aa^2*ab^2*m14)/d1^2}}"\n"

"Nmc1 = "{{aa^2 + (I*aa^4)/d1 + (I*aa^2*ab^2)/d3 + (I*ab^4)/d4 -
(aa^4*m11)/d1^2 - (aa^2*ab^2*m11)/(d1*d3) - (ab^4*m11)/(d1*d4) -
(aa*ab^3*m21)/(d2*d3) - (aa^3*ab*m31)/(d1*d3) - (aa^2*ab^2*m41)/(d1*d4),
(I*aa*ab^3)/d3 - (aa^3*ab*m32)/(d1*d3), aa*ab + (I*aa^3*ab)/d1 -
(aa^4*m13)/d1^2 - (aa^2*ab^2*m13)/(d1*d3) - (ab^4*m13)/(d1*d4) -
(aa*ab^3*m23)/(d2*d3), ab^2 + (I*aa^2*ab^2)/d1 - (aa^4*m14)/d1^2 -
(aa^2*ab^2*m14)/(d1*d3) - (ab^4*m14)/(d1*d4)},

{aa*ab + (I*aa^3*ab)/d1 + (I*aa*ab^3)/d3 - (aa^3*ab*m11)/d1^2 -
(aa*ab^3*m11)/(d1*d3) - (ab^4*m21)/(d2*d3) - (aa^2*ab^2*m31)/(d1*d3) -
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(aa*ab^3*m41)/(d1*d4), (I*ab^4)/d3 - (aa^2*ab^2*m32)/(d1*d3),
ab^2 + (I*aa^2*ab^2)/d1 - (aa^3*ab*m13)/d1^2 - (aa*ab^3*m13)/(d1*d3) -
(ab^4*m23)/(d2*d3), (I*aa*ab^3)/d1 - (aa^3*ab*m14)/d1^2 -
(aa*ab^3*m14)/(d1*d3)}, {aa*ab + (I*aa^3*ab)/d1 + (I*aa*ab^3)/d2 -
(aa^3*ab*m11)/d1^2 - (aa*ab^3*m11)/(d1*d2) - (aa^2*ab^2*m31)/(d1*d3) -
(ab^4*m31)/(d2*d3) - (aa*ab^3*m41)/(d1*d4),
ab^2 - (aa^2*ab^2*m32)/(d1*d3) - (ab^4*m32)/(d2*d3),
(I*aa^2*ab^2)/d1 + (I*ab^4)/d2 - (aa^3*ab*m13)/d1^2 -
(aa*ab^3*m13)/(d1*d2), (I*aa*ab^3)/d1 - (aa^3*ab*m14)/d1^2 -
(aa*ab^3*m14)/(d1*d2)}, {ab^2 + (I*aa^2*ab^2)/d1 - (aa^2*ab^2*m11)/d1^2 -
(aa*ab^3*m31)/(d1*d3) - (ab^4*m41)/(d1*d4), -((aa*ab^3*m32)/(d1*d3)),
(I*aa*ab^3)/d1 - (aa^2*ab^2*m13)/d1^2,
(I*ab^4)/d1 - (aa^2*ab^2*m14)/d1^2}}"\n"

"** 3rd **"
"Nm(3,1) = "aa*ab - (aa^5*ab)/d1^2 + (I*aa^3*ab)/d1 + (I*aa*ab^3)/d2 -
(2*aa^3*ab^3)/(d1*d2) - (aa^3*ab^3)/(d1*d3) - (aa*ab^5)/(d2*d3) -
(aa*ab^5)/(d1*d4) - (I*aa^5*ab*m11)/d1^3 - ((2*I)*aa^3*ab^3*m11)/(d1^2*d2) -
(I*aa^3*ab^3*m11)/(d1^2*d3) - (I*aa*ab^5*m11)/(d1*d2*d3) -
(I*aa*ab^5*m11)/(d1^2*d4) - (I*aa^2*ab^4*m21)/(d1*d2^2) -
(I*aa^4*ab^2*m21)/(d1^2*d2) - (I*ab^6*m21)/(d2^2*d3) -
(I*aa^2*ab^4*m21)/(d1*d2*d3) - (I*aa^4*ab^2*m31)/(d1^2*d3) -
((2*I)*aa^2*ab^4*m31)/(d1*d2*d3) - (I*aa^3*ab^3*m41)/(d1^2*d4) -
(I*aa*ab^5*m41)/(d1*d2*d4)
"Nmc(3,1) = "aa*ab - (aa^5*ab)/d1^2 + (I*aa^3*ab)/d1 + (I*aa*ab^3)/d2 -
(aa^3*ab^3)/(d1*d2) - (aa^3*ab^3)/(d1*d3) - (aa*ab^5)/(d2*d3) -
(aa*ab^5)/(d1*d4) - (I*aa^5*ab*m11)/d1^3 - (I*aa^3*ab^3*m11)/(d1^2*d2) -
(I*aa^3*ab^3*m11)/(d1^2*d3) - (I*aa*ab^5*m11)/(d1*d2*d3) -
(I*aa*ab^5*m11)/(d1^2*d4) - (I*ab^6*m21)/(d2^2*d3) -
(I*aa^2*ab^4*m21)/(d1*d2*d3) - (I*aa^4*ab^2*m31)/(d1^2*d3) -
(I*aa^2*ab^4*m31)/(d1*d2*d3) - (I*aa^3*ab^3*m41)/(d1^2*d4) -
(I*aa*ab^5*m41)/(d1*d2*d4)
"** 4th **"
"Nm(3,1) = "aa*ab - (I*aa^7*ab)/d1^3 - (aa^5*ab)/d1^2 + (I*aa^3*ab)/d1 -
(I*aa^3*ab^5)/(d1*d2^2) + (I*aa*ab^3)/d2 - ((3*I)*aa^5*ab^3)/(d1^2*d2) -
(2*aa^3*ab^3)/(d1*d2) - ((2*I)*aa^5*ab^3)/(d1^2*d3) - (aa^3*ab^3)/(d1*d3) -
(I*aa*ab^7)/(d2^2*d3) - (aa*ab^5)/(d2*d3) - ((4*I)*aa^3*ab^5)/(d1*d2*d3) -
((2*I)*aa^3*ab^5)/(d1^2*d4) - (aa*ab^5)/(d1*d4) - (I*aa*ab^7)/(d1*d2*d4) +
(aa^7*ab*m11)/d1^4 + (aa^3*ab^5*m11)/(d1^2*d2^2) +
(3*aa^5*ab^3*m11)/(d1^3*d2) + (2*aa^5*ab^3*m11)/(d1^3*d3) +
(aa*ab^7*m11)/(d1*d2^2*d3) + (4*aa^3*ab^5*m11)/(d1^2*d2*d3) +
(2*aa^3*ab^5*m11)/(d1^3*d4) + (aa*ab^7*m11)/(d1^2*d2*d4) +
(2*aa^4*ab^4*m21)/(d1^2*d2^2) + (aa^6*ab^2*m21)/(d1^3*d2) +
(3*aa^2*ab^6*m21)/(d1*d2^2*d3) + (2*aa^4*ab^4*m21)/(d1^2*d2*d3) +
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(aa^2*ab^6*m21)/(d1^2*d2*d4) + (aa^4*ab^4*m31)/(d1^2*d3^2) +
(ab^8*m31)/(d2^2*d3^2) + (2*aa^2*ab^6*m31)/(d1*d2*d3^2) +
(aa^6*ab^2*m31)/(d1^3*d3) + (aa^2*ab^6*m31)/(d1*d2^2*d3) +
(3*aa^4*ab^4*m31)/(d1^2*d2*d3) + (aa^2*ab^6*m31)/(d1^2*d3*d4) +
(aa*ab^7*m41)/(d1^2*d4^2) + (aa^5*ab^3*m41)/(d1^3*d4) +
(2*aa^3*ab^5*m41)/(d1^2*d2*d4) + (aa^3*ab^5*m41)/(d1^2*d3*d4) +
(aa*ab^7*m41)/(d1*d2*d3*d4)

"Nmc(3,1) = "aa*ab - (I*aa^7*ab)/d1^3 - (aa^5*ab)/d1^2 + (I*aa^3*ab)/d1 +
(I*aa*ab^3)/d2 - (I*aa^5*ab^3)/(d1^2*d2) - (aa^3*ab^3)/(d1*d2) -
((2*I)*aa^5*ab^3)/(d1^2*d3) - (aa^3*ab^3)/(d1*d3) - (I*aa*ab^7)/(d2^2*d3) -
(aa*ab^5)/(d2*d3) - ((3*I)*aa^3*ab^5)/(d1*d2*d3) -
((2*I)*aa^3*ab^5)/(d1^2*d4) - (aa*ab^5)/(d1*d4) - (I*aa*ab^7)/(d1*d2*d4) +
(aa^7*ab*m11)/d1^4 + (aa^5*ab^3*m11)/(d1^3*d2) +
(2*aa^5*ab^3*m11)/(d1^3*d3) + (aa*ab^7*m11)/(d1*d2^2*d3) +
(3*aa^3*ab^5*m11)/(d1^2*d2*d3) + (2*aa^3*ab^5*m11)/(d1^3*d4) +
(aa*ab^7*m11)/(d1^2*d2*d4) + (aa^2*ab^6*m21)/(d1*d2^2*d3) +
(aa^4*ab^4*m21)/(d1^2*d2*d3) + (aa^4*ab^4*m31)/(d1^2*d3^2) +
(ab^8*m31)/(d2^2*d3^2) + (2*aa^2*ab^6*m31)/(d1*d2*d3^2) +
(aa^6*ab^2*m31)/(d1^3*d3) + (aa^4*ab^4*m31)/(d1^2*d2*d3) +
(aa^2*ab^6*m31)/(d1^2*d3*d4) + (aa*ab^7*m41)/(d1^2*d4^2) +
(aa^5*ab^3*m41)/(d1^3*d4) + (aa^3*ab^5*m41)/(d1^2*d2*d4) +
(aa^3*ab^5*m41)/(d1^2*d3*d4) + (aa*ab^7*m41)/(d1*d2*d3*d4)
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6.3 Program FullMprime

The Mathematica file FullMprime.nb is listed below, along with output file FullMprimeRe-
sults.txt. The complete solution of M′ may be expressed as sixteen coupled equations.
These equations are given by the 1st iteration of the GBSE.

In[1]:=
(* Generate the sixteen 2nd Order Coupled equations for the 2-

vertex model *)
(* Frank Dick, WPI Physics, 2007 *)
Clear["Global‘*"];

(* zero the matrices, then populate *)
z={0,0,0,0};
G={z,z,z,z};
M={z,z,z,z};
U={z,z,z,z};

(* propagator G has denominators Daa, Dab, Dba,and Dbb on the diagonal *)
G = {{1/d1,0,0,0},{0,1/d2,0,0},{0,0,1/d3,0},{0,0,0,1/d4}};

(* coupling constants are aa, ab=ba, bb *)

(* The U coupling matrix. *)
U[[1,1]]=aa*aa;
U[[1,2]]=aa*ab;
U[[1,3]]=aa*ab;
U[[1,4]]=ab*ab;
U[[2,1]]=aa*ab;
U[[2,3]]=ab*ab;
U[[3,1]]=aa*ab;
U[[3,2]]=ab*ab;
U[[4,1]]=ab*ab;

(* Assign element variable names to Mprime *)
M[[1,1]]=m11;
M[[1,2]]=m12;
M[[1,3]]=m13;
M[[1,4]]=m14;
M[[2,1]]=m21;
M[[2,2]]=m22;
M[[2,3]]=m23;
M[[2,4]]=m24;
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M[[3,1]]=m31;
M[[3,2]]=m32;
M[[3,3]]=m33;
M[[3,4]]=m34;
M[[4,1]]=m41;
M[[4,2]]=m42;
M[[4,3]]=m43;
M[[4,4]]=m44;

(* The elements of M1 give the coupled equations. *)

(* 1st iteration *)
M1=U+ U.G.M;
Print["\n** 1st **"];
Print["M1 = ",Expand[M1]];

(**)

6.3.1 FullMprimeResults.txt

In the listing below, M1 is the matrix M′ to 2nd order. The mij are the elements of M′,
the di are the denominators of the propagators, and aa and ab are the coupling constants
gAA and gAB, respectively.

"\n** 1st **"
"M1 = "{{aa^2 + (aa^2*m11)/d1 + (aa*ab*m21)/d2 + (aa*ab*m31)/d3 +

(ab^2*m41)/d4, aa*ab + (aa^2*m12)/d1 + (aa*ab*m22)/d2 + (aa*ab*m32)/d3 +
(ab^2*m42)/d4, aa*ab + (aa^2*m13)/d1 + (aa*ab*m23)/d2 + (aa*ab*m33)/d3 +
(ab^2*m43)/d4, ab^2 + (aa^2*m14)/d1 + (aa*ab*m24)/d2 + (aa*ab*m34)/d3 +
(ab^2*m44)/d4}, {aa*ab + (aa*ab*m11)/d1 + (ab^2*m31)/d3,
(aa*ab*m12)/d1 + (ab^2*m32)/d3, ab^2 + (aa*ab*m13)/d1 + (ab^2*m33)/d3,
(aa*ab*m14)/d1 + (ab^2*m34)/d3}, {aa*ab + (aa*ab*m11)/d1 + (ab^2*m21)/d2,
ab^2 + (aa*ab*m12)/d1 + (ab^2*m22)/d2, (aa*ab*m13)/d1 + (ab^2*m23)/d2,
(aa*ab*m14)/d1 + (ab^2*m24)/d2}, {ab^2 + (ab^2*m11)/d1, (ab^2*m12)/d1,
(ab^2*m13)/d1, (ab^2*m14)/d1}}
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6.4 Program 3VertexMprime

3VertexMprime determines at what order the A and B kernels begin to contribute to the
reaction A+A→ A+B. In the listing below, G is the propagator, U is the kernel coupling
matrix (denominators not shown), and M is M′. The value of M′

12 is written to the
output file 3VertexMprimeResults.txt for the 1st, 2nd and 3rd iterations of the expansion.
The presence of the A and B kernels is indicated by the coupling constant cd (which is
actually coupling constant ab, but re-labeled to flag the A and B kernels).

(* Iterate the 3-vertex Mprime *)
(* Frank Dick, WPI Physics, 2007 *)
Clear["Global‘*"]
SetDirectory["C:\WORK2\dissertation"];
strm=OpenWrite["3VertexMprimeResults.txt"];

(* zero the matrices, then populate *)
z={0,0,0,0,0,0,0,0,0};
G={z,z,z,z,z,z,z,z,z};
M={z,z,z,z,z,z,z,z,z};
U={z,z,z,z,z,z,z,z,z};

(* propagator G has denominators on the diagonal *)
G = {{1/d1,0,0,0,0,0,0,0,0},{0,1/d2,0,0,0,0,0,0,0},{0,0,1/d3,0,0,0,0,0,0},{0,

0,0,1/d4,0,0,0,0,0},{0,0,0,0,1/d5,0,0,0,0},{0,0,0,0,0,1/d6,0,0,0},{0,
0,0,0,0,0,1/d7,0,0},{0,0,0,0,0,0,0,1/d8,0},{0,0,0,0,0,0,0,0,1/d9}};

(* coupling constants are aa, ab=ba, bb, cd=ab, cd marks A,B kernels *)

(* The U coupling matrix. *)
U[[1,1]]=aa*aa;
U[[1,2]]=aa*ab;
U[[1,3]]=aa*ab;
U[[1,4]]=ab*ab;
U[[1,7]]=cd*cd;

U[[2,1]]=aa*ab;
U[[2,2]]=aa*bb;
U[[2,3]]=ab*ab;
U[[2,4]]=ab*bb;

U[[3,1]]=aa*ab;
U[[3,2]]=ab*ab;
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U[[3,3]]=aa*bb;
U[[3,4]]=ab*bb;

U[[4,1]]=ab*ab;
U[[4,2]]=ab*bb;
U[[4,3]]=ab*bb;
U[[4,4]]=bb*bb;
U[[4,7]]=cd*cd;

U[[5,6]]=cd*cd;
U[[6,5]]=cd*cd;

U[[7,1]]=cd*cd;
U[[7,4]]=cd*cd;

U[[8,9]]=cd*cd;
U[[9,8]]=cd*cd;

(* Assign element variable names to Mprime *)
M[[1,1]]=m11;M[[1,2]]=m12;M[[1,3]]=m13;M[[1,4]]=m14;M[[1,5]]=m15;M[[1,6]]=m16;
M[[1,7]]=m17;M[[1,8]]=m18;M[[1,9]]=m19;

M[[2,1]]=m21;M[[2,2]]=m22;M[[2,3]]=m23;M[[2,4]]=m24;M[[2,5]]=m25;M[[2,6]]=m26;
M[[2,7]]=m27;M[[2,8]]=m28;M[[2,9]]=m29;

M[[3,1]]=m31;M[[3,2]]=m32;M[[3,3]]=m33;M[[3,4]]=m34;M[[3,5]]=m35;M[[3,6]]=m36;
M[[3,7]]=m37;M[[3,8]]=m38;M[[3,9]]=m39;

M[[4,1]]=m41;M[[4,2]]=m42;M[[4,3]]=m43;M[[4,4]]=m44;M[[4,5]]=m45;M[[4,6]]=m46;
M[[4,7]]=m47;M[[4,8]]=m48;M[[4,9]]=m49;

M[[5,1]]=m51;M[[5,2]]=m52;M[[5,3]]=m53;M[[5,4]]=m54;M[[5,5]]=m55;M[[5,6]]=m56;
M[[5,7]]=m57;M[[5,8]]=m58;M[[5,9]]=m59;

M[[6,1]]=m61;M[[6,2]]=m62;M[[6,3]]=m63;M[[6,4]]=m64;M[[6,5]]=m65;M[[6,6]]=m66;
M[[6,7]]=m67;M[[6,8]]=m68;M[[6,9]]=m69;

M[[7,1]]=m71;M[[7,2]]=m72;M[[7,3]]=m73;M[[7,4]]=m74;M[[7,5]]=m75;M[[7,6]]=m76;
M[[7,7]]=m77;M[[7,8]]=m78;M[[7,9]]=m79;

M[[8,1]]=m81;M[[8,2]]=m82;M[[8,3]]=m83;M[[8,4]]=m84;M[[8,5]]=m85;M[[8,6]]=m86;
M[[8,7]]=m87;M[[8,8]]=m88;M[[8,9]]=m89;
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M[[9,1]]=m91;M[[9,2]]=m92;M[[9,3]]=m93;M[[9,4]]=m94;M[[9,5]]=m95;M[[9,6]]=m96;
M[[9,7]]=m97;M[[9,8]]=m98;M[[9,9]]=m99;

(* 1st iteration *)
M1=U+ U.G.M;
Write[strm,"\n** 1st **"];
Write[strm,"M1[1,2] = ",Expand[ M1[[1,2]] ]];

M2=U+ U.G.M1;
Write[strm,"\n** 2st **"];
Write[strm,"M2[1,2] = ",Expand[ M2[[1,2]] ]];

M3=U+ U.G.M2;
Write[strm,"\n** 3st **"];
Write[strm,"M3[1,2] = ",Expand[ M3[[1,2]] ]];

(*
M4=U+ U.G.M3;
Write[strm,"\n** 4st **"];
Write[strm,"M4[1,2] = ",Expand[ M4[[1,2]] ]];
*)

Close[strm];
(**)

6.4.1 3VertexMprimeResults.txt

In the listing below, the coupling constant cd appears on the 7th line of M3[1,2] along with
propagator denominator d7, indicating that the A and B kernels and the GCC propagator
begin to contribute to the reaction A + A → A + B at 6th order in coupling constants
(3-rung ladders).

"\n** 1st **"
"M1[1,2] = "aa*ab + (aa^2*m12)/d1 + (aa*ab*m22)/d2 + (aa*ab*m32)/d3 +
(ab^2*m42)/d4 + (cd^2*m72)/d7
"\n** 2st **"
"M2[1,2] = "aa*ab + (aa^3*ab)/d1 + (aa^2*ab*bb)/d2 + (aa*ab^3)/d3 +
(ab^3*bb)/d4 + (aa^4*m12)/d1^2 + (aa^2*ab^2*m12)/(d1*d2) +
(aa^2*ab^2*m12)/(d1*d3) + (ab^4*m12)/(d1*d4) + (cd^4*m12)/(d1*d7) +
(aa^2*ab*bb*m22)/d2^2 + (aa^3*ab*m22)/(d1*d2) + (aa*ab^3*m22)/(d2*d3) +
(ab^3*bb*m22)/(d2*d4) + (aa^2*ab*bb*m32)/d3^2 + (aa^3*ab*m32)/(d1*d3) +
(aa*ab^3*m32)/(d2*d3) + (ab^3*bb*m32)/(d3*d4) + (ab^2*bb^2*m42)/d4^2 +
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(aa^2*ab^2*m42)/(d1*d4) + (aa*ab^2*bb*m42)/(d2*d4) +
(aa*ab^2*bb*m42)/(d3*d4) + (cd^4*m42)/(d4*d7) + (aa^2*cd^2*m72)/(d1*d7) +
(ab^2*cd^2*m72)/(d4*d7)

"\n** 3st **"
"M3[1,2] = "aa*ab + (aa^5*ab)/d1^2 + (aa^3*ab)/d1 + (aa^3*ab*bb^2)/d2^2 +
(aa^2*ab*bb)/d2 + (aa^3*ab^3)/(d1*d2) + (aa^4*ab*bb)/(d1*d2) +
(aa^2*ab^3*bb)/d3^2 + (aa*ab^3)/d3 + (2*aa^3*ab^3)/(d1*d3) +
(aa*ab^5)/(d2*d3) + (aa^2*ab^3*bb)/(d2*d3) + (ab^3*bb^3)/d4^2 +
(ab^3*bb)/d4 + (aa*ab^5)/(d1*d4) + (aa^2*ab^3*bb)/(d1*d4) +
(2*aa*ab^3*bb^2)/(d2*d4) + (ab^5*bb)/(d3*d4) + (aa*ab^3*bb^2)/(d3*d4) +
(aa*ab*cd^4)/(d1*d7) + (ab*bb*cd^4)/(d4*d7) + (aa^6*m12)/d1^3 +
(aa^3*ab^2*bb*m12)/(d1*d2^2) + (2*aa^4*ab^2*m12)/(d1^2*d2) +
(aa^3*ab^2*bb*m12)/(d1*d3^2) + (2*aa^4*ab^2*m12)/(d1^2*d3) +
(2*aa^2*ab^4*m12)/(d1*d2*d3) + (ab^4*bb^2*m12)/(d1*d4^2) +
(2*aa^2*ab^4*m12)/(d1^2*d4) + (2*aa*ab^4*bb*m12)/(d1*d2*d4) +
(2*aa*ab^4*bb*m12)/(d1*d3*d4) + (2*aa^2*cd^4*m12)/(d1^2*d7) +
(2*ab^2*cd^4*m12)/(d1*d4*d7) + (aa^3*ab*bb^2*m22)/d2^3 +
(aa^3*ab^3*m22)/(d1*d2^2) + (aa^4*ab*bb*m22)/(d1*d2^2) +
(aa^5*ab*m22)/(d1^2*d2) + (aa^2*ab^3*bb*m22)/(d2*d3^2) +
(aa*ab^5*m22)/(d2^2*d3) + (aa^2*ab^3*bb*m22)/(d2^2*d3) +
(2*aa^3*ab^3*m22)/(d1*d2*d3) + (ab^3*bb^3*m22)/(d2*d4^2) +
(2*aa*ab^3*bb^2*m22)/(d2^2*d4) + (aa*ab^5*m22)/(d1*d2*d4) +
(aa^2*ab^3*bb*m22)/(d1*d2*d4) + (ab^5*bb*m22)/(d2*d3*d4) +
(aa*ab^3*bb^2*m22)/(d2*d3*d4) + (aa*ab*cd^4*m22)/(d1*d2*d7) +
(ab*bb*cd^4*m22)/(d2*d4*d7) + (aa^3*ab*bb^2*m32)/d3^3 +
(aa^3*ab^3*m32)/(d1*d3^2) + (aa^4*ab*bb*m32)/(d1*d3^2) +
(aa*ab^5*m32)/(d2*d3^2) + (aa^2*ab^3*bb*m32)/(d2*d3^2) +
(aa^5*ab*m32)/(d1^2*d3) + (aa^2*ab^3*bb*m32)/(d2^2*d3) +
(2*aa^3*ab^3*m32)/(d1*d2*d3) + (ab^3*bb^3*m32)/(d3*d4^2) +
(2*aa*ab^3*bb^2*m32)/(d3^2*d4) + (aa*ab^5*m32)/(d1*d3*d4) +
(aa^2*ab^3*bb*m32)/(d1*d3*d4) + (ab^5*bb*m32)/(d2*d3*d4) +
(aa*ab^3*bb^2*m32)/(d2*d3*d4) + (aa*ab*cd^4*m32)/(d1*d3*d7) +
(ab*bb*cd^4*m32)/(d3*d4*d7) + (ab^2*bb^4*m42)/d4^3 + (ab^6*m42)/(d1*d4^2) +
(aa^2*ab^2*bb^2*m42)/(d1*d4^2) + (ab^4*bb^2*m42)/(d2*d4^2) +
(aa*ab^2*bb^3*m42)/(d2*d4^2) + (ab^4*bb^2*m42)/(d3*d4^2) +
(aa*ab^2*bb^3*m42)/(d3*d4^2) + (aa^4*ab^2*m42)/(d1^2*d4) +
(aa^2*ab^2*bb^2*m42)/(d2^2*d4) + (aa^2*ab^4*m42)/(d1*d2*d4) +
(aa^3*ab^2*bb*m42)/(d1*d2*d4) + (aa^2*ab^2*bb^2*m42)/(d3^2*d4) +
(aa^2*ab^4*m42)/(d1*d3*d4) + (aa^3*ab^2*bb*m42)/(d1*d3*d4) +
(2*aa*ab^4*bb*m42)/(d2*d3*d4) + (ab^2*cd^4*m42)/(d4^2*d7) +
(bb^2*cd^4*m42)/(d4^2*d7) + (aa^2*cd^4*m42)/(d1*d4*d7) +
(ab^2*cd^4*m42)/(d1*d4*d7) + (cd^6*m72)/(d1*d7^2) + (cd^6*m72)/(d4*d7^2) +
(aa^4*cd^2*m72)/(d1^2*d7) + (aa^2*ab^2*cd^2*m72)/(d1*d2*d7) +
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(aa^2*ab^2*cd^2*m72)/(d1*d3*d7) + (ab^2*bb^2*cd^2*m72)/(d4^2*d7) +
(aa^2*ab^2*cd^2*m72)/(d1*d4*d7) + (ab^4*cd^2*m72)/(d1*d4*d7) +
(aa*ab^2*bb*cd^2*m72)/(d2*d4*d7) + (aa*ab^2*bb*cd^2*m72)/(d3*d4*d7)
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