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We begin with a brief review of finite Galois theory.

A field extension K ⊂ L is called finite if dimK L is finite. This number is called the

degree of the field extension.

Algebraic extensions

An element α of L is called algebraic over K if the K-algebra morphism K[X]−→L

sending X to α is not injective. The unique monic generator of the kernel is called

the minimal polynomial of α over K and is denoted fαK . Note that it is irreducible

since the kernel is a prime ideal. If the K-algebra map is injective then we call α

transcendental.

We call the extension L/K algebraic if and only if every element of L is algebraic over

K. Note that all finite extensions are automatically algebraic, as K[X] has infinite

dimension over K (and thus doesn’t fit inside a finite dimensional vector space over

K.)

To check whether an extension is algebraic, it suffices to look at a set of generators.

That is, the extension L/K is algebraic if and only if there is a subset S of L such

that L = K(S) and every element of S is algebraic over K.

Also note that the subset of all elements of L that are algebraic over K is a subfield

of L containing K. It is the intersection of L with an algebraic closure of K.

Separable extensions

Now let L/K be an algebraic extension. An element α of L is called separable if its

minimal polynomial is separable, that is, the ideal (fαK , (f
α
K)′) is (1) in K[X].

An algebraic extension L/K is called separable if and only if every element of L is

separable over K. Again, it suffices to check this for a subset of generators. Also, the

subset of all separable elements inside the subset of the algebraic elements in a field

extension L/K is a subfield and it is the intersection of L with a separable closure of

K.

An equivalent way of defining separable is as follows. Suppose that Ω is an alge-

braically closed field containing K. An element α of L is separable over K if and

only if the set of K-algebra maps K(α)−→Ω has precisely [K(α) : K] elements.

Normal extensions

Again we let L/K be an algebraic extension. We call an element α normal in L/K

if the minimal polynomial fαK splits into linear factors in L[X].

Just as before we call the extension L/K normal if and only if every element of L

is normal. It again suffices to check this for a set of generators. The subset of all

normal elements inside the subset of all algebraic elements is again a subfield of any

field extension.
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An equivalent definition is the following. Let Ω be an algebraically closed field con-

taining L. Then α in L is normal if and only if for all K-algebra maps σ : K(α)−→Ω

we have σ(α) ∈ L.

The main theorem of finite Galois theory

Definition. A field extension L/K is called finite Galois if there is a finite subgroup

G of Aut(L) such that K = LG = {x ∈ L : σ(x) = x for all σ ∈ G}.

Theorem. Let L/K be any field extension. Then the following are equivalent:

1. L is finite Galois over K;

2. [L : K] <∞ and #AutK(L) = [L : K];

3. L/K is finite (hence algebraic), separable and normal;

4. L is the splitting field of a separable monic polynomial f from K[X], that is, f

splits into linear factors in L[X] and the roots of f generate L over K;

5. L/K is finite and the maps

{E field : L ⊃ E ⊃ K}
φ−→
←−
ψ

{H : H subgroup of AutK(L)}

where φ(E) = AutE(L) and ψ(H) = LH , are eachothers inverse.

It is an interesting exercise to show that the requirement that L/K be finite may be

omitted from the last statement.

Note that it follows from the theorem that the group G in the definition is equal to

AutK(L).

The topology on the automorphisms

In order to describe the infinite variant of Galois theory, we must consider the topology

on the automorphism groups. It is defined as follows. Let L be a field. For σ ∈ Aut(L)

and F a finite subset of L we define U(σ, F ) to be the set

U(σ, F ) =
{
τ ∈ Aut(L) : τ |F = σ|F

}
.

We call a subset U of Aut(L) open if for every σ in U there is an F such that U(σ, F )

is contained in U .

We see at once that the empty set and Aut(L) are both open. The local nature

of the definition implies at once that any union of opens is again open. For finite

intersections it is enough to notice that U(σ, F1)∩U(σ, F2) is just U(σ, F1 ∪F2). We

conclude that the axioms for a topological space are indeed satisfied.

This construction of a topology is quite general. Let L and M be any two sets. We

can put a topology on the set of maps from L to M by noting that it is equal to∏
x∈LM . By putting the discrete topology on M we get a product topology on the set
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of maps. This is the topology we have just described. Another way of characterising

it is that it is the weakest topology in which all the projection maps are continuous.

We have one projection map for every x in L and it sends a σ : L−→M to σ(x).

This construction turns the group Aut(L) into a topological space. In fact, it even

becomes a topological group. This means that the group operations are continuous.

This follows at once from the fact that U(σ, ρF )◦U(ρ, F ) ⊂ U(σρ, F ) and U(σ, F )−1 =

U(σ−1, σF ).

Note also that the topological space Aut(L) is a Hausdorff space. Suppose σ and τ

are two distinct elements in Aut(L). Then there is some x in L such that σ(x) 6= τ(x).

It is now at once clear that σ ∈ U(σ, {x}) and τ ∈ U(τ, {x}) and that U(σ, {x}) ∩
U(τ, {x}) is empty.

If S is any subset of Aut(L) then its closure is seen to be equal to

S =
{
σ ∈ Aut(L) : for each F ⊂ L finite there is a τ ∈ S such that τ |F = σ|S

}
.

For example, suppose K is a subfield of L. Then AutK(L) is a closed subgroup.

Suppose σ ∈ AutK(L). Let x be any element of K. From the characterisation of the

closure we see that there is a τ in AutK(L) such that σ(x) = τ(x) = x. We conclude

that σ is the identity on K, so that σ ∈ AutK(L).

The main theorem of infinite Galois theory

Definition. A field extension L/K is called Galois if there is a compact subgroup G

of Aut(L) such that K = LG.

Theorem. Let L/K be any field extension. Then the following are equivalent:

1. L/K is Galois;

2. L is the union of all its subfields E that are finite Galois over K;

3. L/K is algebraic, separable and normal;

4. L is the splitting field of a set F of monic separable polynomials from K[X];

5. L/K is algebraic and the maps

{E field : L ⊃ E ⊃ K}
φ−→
←−
ψ

{H : H closed subgroup of AutK(L)}

where φ(E) = AutE(L) and ψ(H) = LH , are eachothers inverse.

As before the theorem implies that the subgroup G from the definition is AutK(L).

Proof of the main theorem. We first show that points 2, 3 and 4 are equivalent, then

we tackle the equivalence with the other two.

4 ⇒ 2. Let f ∈ F . Then L contains a splitting field of f . Call it Ef . This field is

finite Galois by the main theorem in the finite case. Now note that L is the union
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over all finite subsets F ⊂ F of the composite field of the Ef with f ∈ F . These

fields are all finite Galois.

2⇒ 3. This follows at once from the finite case.

3⇒ 4. We can take F = {fαK : α ∈ L}.

1 ⇒ 3. Let α ∈ L. Then the map G−→L that sends σ ∈ G to σ(α) is continuous

if we give L the discrete topology. Since G is compact, its image under this map is

also compact, and therefore it is finite. This image is just the orbit Gα. Now we put

f =
∏

β∈Gα(X − β). The coefficients of this polynomial are left invariant by any σ in

G, so they are in fact in K. We conclude that α is algebraic over K. Moreover, since

all roots of f are distinct and in L, we see that α is also separable and normal. This

is what we wanted to show. Note that in fact f = fαK , since for every σ ∈ G we have

0 = σ(fαK(α)) = fαK(σ(α)), so every β in Gα must be a root of fαK .

5⇒ 1. From 5 we see that K = LAutK(L), so all we have to show is that AutK(L) is

compact. We have already seen that it is closed. Note that we have AutK(L) ⊂ LL

by sending σ to (σ(α))α∈L. In fact, it lands inside a much smaller subgroup, since

for every α in L the image σ(α) is a root of fαK . So we have an inclusion AutK(L) ⊂∏
α∈L{ roots of fαK }. The latter is compact by Tychonoff’s theorem and therefore

the former, being a closed subset of a compact set is also compact.

2, 3 ⇒ 5. First we prove that ψφ = Id, that is for every intermediate field E we

have E = LAutE(L). It is clear that E ⊂ LAutE(L). Now let α ∈ L, α /∈ E. Since

L/K is Galois, α is algebraic over K, separable and normal in L/K. It is easy to see

that α is therefore also algebraic over E, separable and normal in L/E. We conclude

that there is a β ∈ L such that α 6= β and fαE(β) = 0. Therefore there is a field

isomorphism σE(α)−→E(β) which is the identity on E and sends α to β. Let L be

an algebraic closure of L. Note that it is an algebraic closure of both E(α) and E(β).

From field theory we know that σ can be extended to an isomorphism L−→L. Since

any element of L must be sent by σ to another root of its minimal polynomial over

K and since all these roots are in L as L is normal, we see that σ maps L to L. So

we get σ in AutE(L) with σ(α) 6= α, therefore α /∈ LAutE(L).

What remains to be proved is that φ ◦ ψ is the identity on the set {H : H ⊂
Gclosed subgroup}. So let H be a closed subgroup of AutK(L). We must show that

AutLH (L) is contained in H (the other inclusion is trivial) or equivalently, in the

closure of H. Let σ ∈ AutLH (L). Our aim is to prove that

σ ∈ H =
{
τ ∈ AutK(L) : ∀F ⊂ L finite ∃ρ ∈ H : τ |F = ρ|F

}
holds. Let F be a finite subset of L. We must exhibit a ρ in H such that σ|F is equal

to ρ|F . Let E be a finite subfield of L that is Galois and contains F . This can be done

by (2). Now consider HE =
{
ρ|E : ρ ∈ H

}
. This is a subgroup of Gal(E/K). We

observe that EHE = E ∩LH is the set of those elements in E fixed by H. Since σ|LH

is the identity, we have σ ∈ AutEHE (E), which is just HE by finite Galois theory.
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Some elementary results on Galois groups

We now include a couple of simple facts from topological algebra and derive from

them several consequences in the context of Galois theory.

Theorem. Let G be a topological group and H a subgroup. Then

1. if H is open it is also closed;

2. if H is closed and of finite index, it is open;

3. if G is compact then H is open if and only if it is closed and of finite index.

Proof. Let τ ∈ G. Then the map G−→G sending σ to τσ is a homeomorphism. It

is continuous since it is the composition of the inclusion G−→G × G sending σ to

(τ, σ) and the multiplication map. Its inverse is the same map with τ−1 in the place

of τ , which is therefore also continuous.

Now if H is open then so is τH for every τ ∈ G. Pick a system of representatives

R of G/H. Note that we have G =
∐

τ∈R τH and therefore G−H =
∐

τ∈R,τ /∈H τH.

The latter is clearly open, so H is closed. This proves (1). It also proves (2) as the

same argument works with open and closed reversed, when R is finite (i.e. H is of

finite index.) For (3) observe that if H is open we have an open cover G =
∐

τ∈R τH,

so it should have a finite subcover, which is to say that R is finite.

Theorem. Let L/K be a field extension which is Galois with group G. Let E be an

intermediate field and H the corresponding closed subgroup. Then the following are

equivalent

1. E/K is a finite extension;

2. H is open;

3. H is of finite index in G.

If these conditions are satisfied we have [E : K] = (G : H).

Proof. Since G is compact, (2) and (3) are equivalent by the previous theorem.

Suppose E/K is finite. By the primitive element theorem there now is an α ∈ E that

generates E. Recall that we have fαK =
∏

β∈Gα(X − β). Comparing degrees we see

that [K(α) : K] = #Gα. The number of elements in an orbit is equal to the index of

the stabilizer, which is H since K(α) = E, so we have [E : K] = (G : Gα) = (G : H).

So (1) implies all other claims in the theorem.

It remains to show that (3) implies (1). So suppose that H has finite index in G. We

know that E is the union of its finite subfields. Let E ′ be such a subfield and H ′ the

subgroup corresponding to it. Since H ′ contains H, the index (G : H ′) is bounded

by (G : H). Moreover, since E ′ satisfies (1) we have [E ′ : K] = (G : H ′). This means

that the field degree [E ′ : K] is bounded above by (G : H). So we can pick E ′ finite

such that [E ′ : K] is maximal. Let β be any element of E. Now E ′(β) is a finite

extension of K containing E. This means [E ′(β) : K] ≥ [E ′ : K], but the maximality
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of E ′ gives that [E ′(β) : K] ≤ [E ′ : K]. We conclude that β is in E ′, so that E = E ′

is a finite extension of K.

Theorem. Let G1 and G2 be two topological groups with G1 compact and G2

Hausdorff and let f : G1−→G2 be a continuous group homomorphism. Then f

induces an isomorphism of compact Hausdorff topological groups

G1/ ker f
∼−→ f [G1]

−→−
→

⊃

G1 −→
f

G2

Proof. The map f : G1−→ f [G1] is continuous and surjective. Since f(g1) =

f(g2) holds if and only if g1g
−1
2 is in the kernel we get a continuous bijection f̄ :

G1/ ker f −→ f [G1]. It remains to be proved that f̄ is close.d Now if C is a closed

subset of G1/ ker f , then it compact (since G1/ ker f is) and therefore, its image is

also compact. Being inside a Hausdorff space it follows that f̄ [C] is closed. So f̄ is a

homeomorphism and therefore G1/ ker f is also Hausdorff and f [G1] is also compact.

This finishes the proof.

Theorem. Let L/K be a Galois extension and E an intermediate field, corresponding

to the closed subgroup H of the Galois group G = AutK(L). Then

1. L/E is a Galois extension with group H.

2. For all σ in G we have AutσEL = σHσ−1.

3. E/K is Galois if and only if H is a normal subgroup. In this case the map from

G/H to Gal(E/K) sending σH to σ|E is an isomorphism of topological groups.

Proof.

(1) We only have to show L/E is Galois, since H is the only candidate for the Galois

group. If L is algebraic, separable and normal over K then it is clearly also algebraic,

separable and normal over E.

(2) Let σ and τ be in G and x be in L. The we have τσ(x) = σ(x) if and only if

σ−1τσ(x) = x. This means that τ is in AutσE(L) if and only if σ−1τσ is in AutE(L).

The result follows.

(3) Since E is a subextension of L, it is clearly algebraic and separable over K. So

it is Galois if and only if it is normal, i.e. if σE is E for all σ in the Galois group.

By the previous part this happens precisely when σHσ−1 is H for all σ, i.e., when H

is a normal subgroup. Now consider the restriction map from G to Gal(E/K). It is

easily seen to be onto and continuous. The kernel is H. Therefore, by the previous

topological theorem, we get the desired result.

Theorem. LetK, L and F be subfields of some big field, such that L/K is Galois and

F contains K. Then LF/F is also Galois and the restriction map from Gal(LF/F )

to Gal(L/(L ∩ F )) is an isomorphism of topological groups.
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Proof. We know that L is a splitting field for a collection of separable monic poly-

nomials in K[X]. Now LF is the splitting field of the same set of polynomials,

considered over F . We conclude that LF/F is Galois. The restriction map from

Gal(LF/F ) to Gal(L/K) is a continuous group homomorphism. It is injective, since

any automorphism that is the identity on F and L is the identity on LF . It need not

be surjective, however if we only consider the image of the restriction map, it will be

an isomorphism of topological groups. Let H be that image. Note that H is closed,

being a compact set inside a Hausdorff space. We see that H = Gal(L/E) for some

intermediate field E. Since H = Gal(LF/F )|L we see that

E = LH = L ∩ (LF )Gal(LF/F ) = L ∩ F.

Relation with profinite groups

We now briefly go into another description of the Galois group and its topology.

Let L/K be a Galois extension. We have seen that the intermediate fields which

are finite Galois correspond to the open normal subgroups of Gal(L/K). Note that

Gal(L/K) maps onto Gal(E/K) for all such intermediate fields E. Moreover, these

maps are compatible. We therefore get a map from Gal(L/K) to the projective limit

lim
←E

Gal(E/K). The later is a profinite group. Since all the projection maps are onto,

the image of Gal(L/K) is dense. It is also compact (since Gal(L/E) is) and therefore

closed, as profinite groups are Hausdorff. This means that the map is in fact onto.

It is also clearly injective, since L is the union of all these subfields. This means

the map is an isomorphism of groups. Using the topological theorem from before we

see that it is in fact an isomorphism of topological groups. Often, one defines the

topology on the Galois group via this isomorphism. We mention without proof the

following.

Theorem. Let G be a topological group. Then the following are equivalent

1. G is the Galois group of some field extension.

2. G is profinite;

3. G is compact, Hausdorff and totally disconnected;

Up until this point we have always considered Galois groups for an extension L/K.

There is an L that is in some sense the largest, that is, we find all Galois groups

as quotients of the Galois group of that large extension. Let K be a field. Fix an

algebraic closure K of K. Let Ks be the separable closure of K in K. Note that

it is also a normal extension, since the conjugates of a separable element are also

separable. Note that any algebraic extension L of K can be embedded in K. If it is

separable, it will in fact land inside Ks. So if L/K is Galois, then its Galois group

is a quotient of Gal(Ks/K). We write GK for Gal(Ks/K) and call it the absolute

Galois group of K. it will in fact sit inside Ks.

If F is an extension of the field K, then the restriction map from GF to GK is a

continuous group homomorphism. Using the theorems from before we see that its

kernel is Gal(KsF/Fs) and its image is Gal(Ks/(Ks ∩ F )).

7



It now looks as though the association of GK to K defines a contravariant functor

from fields to profinite groups. However, this is not true. The problem is that the

construction of GK depends on a choice of an algebraic closure. Different choices

give different GK ’s and although these are isomorphic, there are, in general, many of

such isomorphism. The problem lies in the fact that GK may have non-trivial inner

automorphisms.

To fix this, we can ‘divide out’ all such inner automorphisms. If we let Pfg’ be the

category whose objects are the profinite groups and whose morphisms are the equiv-

alence classes of homomorphisms under the following relation: two homomorphisms

f and g from G to H are equivalent if and only if there is a ρ in H such that for all σ

in G we have g(σ) = ρf(σ)ρ−1. From the discussion above we now see that K 7→ GK

is a functor from Fld to Pfg’.

Another way to fix the non-functoriality is by passing to the largest abelian quotient.

Since abelian groups have no inner automorphism, the association

K 7→ Gab
K = GK/[GK , GK ] = Gal(Kab/K)

is a contravariant functor from Fld to Pfab.

Inside Kab there is a subfield K(µ), where µ = (K×s )tor consists of the roots of unity.

Since the Galois group Gal(K(µ)/K) is abelian, it has no inner automorphisms and

we again get a contravariant functor from Fld to Pfab, sending K to Gal(K(µ), K).

Traces and finite étale algebras

In the remainder of this text we will explain a different version of Galois theory, which

was developed by Grothendieck. It is applicable in much greater generality than the

‘traditional’ Galois theory we’ve been studying up until now.

Let A be a commutative ring and P a finitely generated projective A-module. We

want to define a A-linear homomorphism Tr : EndA(P )−→A, the so-called trace

map.

Fix and A-module M . Let P ∗ be the dual of P , that is, P ∗ = HomA(P,A). We

consider the map
fP : P ∗ ⊗AM −→ HomA(P,M)

f ⊗ x 7→ [y 7→ f(y)x] .

We claim that the map fP is an isomorphism for every finitely generated projective

module P and every M . First note that this is clear if P = A. Also if fP and fQ are

isomorphisms, so is fP⊕Q. So the claim holds for every An and now it easily follows

that it holds for all finitely generated projective P .

To obtain the trace map we apply the above with M = P and put

Tr : EndA(P )
f−1

P−→ P ∗ ⊗A P −→ A

f ⊗ x 7→ f(x).
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Again, let A be a commutative ring and now let B be an A-algebra, that is, a ring

homomorphism A−→B such that the image of A lies in the center of B. We also

demand that B is finitely generated and projective as an A-module. In this context

we define the trace of B over A to be the map

TrB/A : B −→ EndA(B) −→
Tr

A

b 7→ [x 7→ bx] .

Note that HomA(B,A) is a left-B-module, the B-action is defined by putting bf(x) =

f(bx) for all b, x in B and A-linear f : B−→A. We can now make a B-linear map

B
#−→ HomA(B,A)

1 7→ TrB/A
b 7→ [x 7→ Tr(bx)] .

We call a commutative A-algebra B finite étale over A if it is finitely generated and

projecive as an A-module and the map # defined above is an isomorphism.

For example, if f ∈ A[x] is a monic polynomial and B = A[x]/f then B is finite étale

over A if and only if the discriminant ∆(f) is in A×.

Let K be a number field and OK its ring of integers. Then B = OK is a finitely

generated projective A = Z-module. However, we have an exact sequence

0−→OK
#−→HomZ(OK ,Z)−→OK/DK/Q−→ 0,

where DK/Q is the different ideal of the number field K. The quotient OK/DK/Q is

a finite group whose order is |∆K/Q|, so # is never onto if K is not Q. We can fix

this by considering the rings A = Z[∆−1
K/Q] and B = OK [∆−1

K/Q]. In that case B is a

finite étale algebra over A.

The main theorem

We call a commutative ring A connected if the only idempotent elements are 0 and

1.

Theorem. Let A be a commutative ring that is connected. Then there is a profinite

group π such that the category FEtA of finite étale A-algebras and π-sets of finite

sets with continuous π-action are anti-equivalent.

Theorem. Let K be a field, then the category FEtK is anti-equivalent to GK-sets,

where GK is the absolute Galois group of K.

We shall sketch a proof of this last theorem, leaving most routine verifications to the

reader. An important ingredient is the following fact, which we shall prove later on.

Fact. If B is a commutative K-algebra then B is finite étale over K if and only

if there is a non-negative integer t and there are finite separable field extensions

L1, . . . , Lt of K such that B is isomorphic to L1 × · · · × Lt as a K-algebra.
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Note that a finite separable extension of K can be embedded as a subfield of Ks

and then corresponds to an open subgroup H of GK . This process is not canonical;

different embeddings give conjugated subfields. So we see that a finite separable

extension of K is specified up to isomorphism by giving a conjugacy class of open

subgroups H of GK .

From the above we see that giving a finite étale algebra over K is the same as giving

a finite set of conjugacy classes of open subgroups of GK .

Now we look at the other side. Let X be a finite set with continuous GK action. We

can write X as a disjoint union of orbits. On each of the orbits, GK acts transitively.

Therefore such an orbit is as a GK-set isomorphic to G/H, where H is the stabilizer

of one of the elements of the orbit. This is in fact an open subgroup. If we choose

a different element from the same orbit, the stabilizer we get is a conjugate of the

original one. Thus we see that a transitive GK-set is classified up to isomorphism by

a conjugacy class of open subgroups.

We are now morally convinced that the objects on the same side are indeed repre-

sented by the same data, so it’s time to write out the functors for the equivalence.

To a finite étale algebra B over K we can associate the set HomK(B,Ks). It is clearly

finite, recall that B is isomorphic to a product of finite separable extensions of K and

each of these can only be embedded in a finite number of ways. It also has a natural

action of GK . Thus we have a functor from finite étale algebras to GK-sets.

To go in the other way we associate to a finite set X with GK action the set

GK
Map(X,KS) of GK equivariant maps from X to Ks. Pointwise operations turn

this set into a K-algebra, which one checks to be finite étale.

The remainder of the proof consists of straightforward verifications, reducing to finite

separable extensions on the one side and transitive GK-sets on the other. The reader

should think of it as a nice exercise to complete the proof.

What remains is to sketch a proof of our fact concerning the structure of finite étale

algebras over K. Let B be such an algebra. Since it has finite dimension over K, it

is an Artinian ring. So we can write B ∼= B1×· · ·×Bt as a product of local Artinian

rings that are K-algebras.

So we may assume that B is local and that mn
B = 0 for some positive integer n. Note

that by comparing K-dimensions the map

B
#−→ HomA(B,A)

b 7→ [x 7→ Tr(bx)]

is an isomorphism if and only if it is injective. But clearly, any nilpotent element goes

to zero, so if B is finite étale, then in fact mB must be the zero ideal, that is, B is a

field. Moreover, it will be finite étale if and only if the trace map doesn’t vanish and

by general field theory one knows this happens only if B is in fact a finite separable

extension.
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