
November 16, 2009

bbc

XML Forms Architecture (XFA)
Specification
Version 3.1

NOTICE: All information contained herein is the property of Adobe Systems Incorporated.

Any references to company names in the specifications are for demonstration purposes only and are not intended to refer to any actual
organization.

Adobe is a registered trademark of Adobe Systems Incorporated in the United States and/or other countries.

Microsoft, Windows, and ActiveX are either registered trademarks or trademarks of Microsoft Corporation in the United States and/or other
countries. Mac OS is a trademark of Apple Computer, Inc., registered in the United States and other countries. JavaScript is a registered
trademark of Netscape Communications Corporation. Unicode is a registered trademark of Unicode, Inc. SAP is the trademark or registered
trademark of SAP AG in Germany and in several other countries. mySAP.com is a trademark or registered trademark of SAP AG in Germany
and in several other countries. ZPL II and ZPL are registered trademarks of ZIH Corp.

All other trademarks are the property of their respective owners.

This publication and the information herein are furnished AS IS, are furnished for informational use only, are subject to change without
notice, and should not be construed as a commitment byAdobe Systems Incorporated. Adobe Systems Incorporated assumes no
responsibility or liability for any errors or inaccuracies that may appear in the informational content contained in this guide, makes no
warranty of any kind (express, implied, or statutory) with respect to this publication, and expressly disclaims any and all warranties of
merchantability, fitness for particular purposes, and noninfringement of third-party rights.

This limited right of use does not include the right to copy other copyrighted material from Adobe, or the software in any of Adobe’s products
that use the Portable Document Format, in whole or in part, nor does it include the right to use any Adobe patents, except as may be
permitted by an official Adobe Patent Clarification Notice (see [Adobe-Patent-Notice]in the Bibliography).

Adobe Systems Incorporated, 345 Park Avenue, San Jose, California 95110, USA. Notice to U.S. Government End Users. The Software and
Documentation are “Commercial Items,” as that term is defined at 48 C.F.R. §2.101, consisting of “Commercial Computer Software” and
“Commercial Computer Software Documentation,” as such terms are used in 48 C.F.R. §12.212 or 48 C.F.R. §227.7202, as applicable. Consistent
with 48 C.F.R. §12.212 or 48 C.F.R. §§227.7202-1 through 227.7202-4, as applicable, the Commercial Computer Software and Commercial
Computer Software Documentation are being licensed to U.S. Government end users (a) only as Commercial Items and (b) with only those
rights as are granted to all other end users pursuant to the terms and conditions herein. Unpublished-rights reserved under the copyright
laws of the United States. Adobe Systems Incorporated, 345 Park Avenue, San Jose, CA 95110-2704, USA. For U.S. Government End Users,
Adobe agrees to comply with all applicable equal opportunity laws including, if appropriate, the provisions of Executive Order 11246, as
amended, Section 402 of the Vietnam Era Veterans Readjustment Assistance Act of 1974 (38 USC 4212), and Section 503 of the Rehabilitation
Act of 1973, as amended, and the regulations at 41 CFR Parts 60-1 through 60-60, 60-250, and 60-741. The affirmative action clause and
regulations contained in the preceding sentence shall be incorporated by reference.

 iii

Contents

Preface ... ix
Intellectual Property... ix
Document Contents...x
Intended Audience ...x
Perspective Used in Describing Processing Guidelines...x
Associated Schemas... xi
Related Documentation.. xi
What’s New.. xi
Conventions .. xi

Part 1: XFA Processing Guidelines

1 Introduction to XML Forms Architecture (XFA) .. 16
Key Features ...16
Scenarios for Using a Form Described by XFA...16
Family of XFA Grammars ...18
Major Components of an XFA Form: XFA Template and Data ..22
Data Binding: Making the Connection Between XFA Template and Data ..26
Lifecycle of an XFA Form ...27
Static versus Dynamic Forms ...28

2 Template Features for Designing Static Forms... 31
Form Structural Building Blocks..31
Basic Composition..36
Content Types ...39
Formatting Text That Appears as Fixed or Variable Content ...43
Access Restrictions...48
Basic Layout ...49
Appearance Order (Z-Order) ..70
Extending XFA Templates ..71
Connecting the PDF to the XFA Template ..72

3 Object Models in XFA .. 75
XFA Names..75
Document Object Models ...76
Scripting Object Model ..86

4 Exchanging Data Between an External Application and a Basic XFA Form122
Creating, Updating, and Unloading a Basic XFA Data DOM.. 122
Localization and Canonicalization .. 152
Loading a Template to Produce the XFA Template DOM .. 170
Basic Data Binding to Produce the XFA Form DOM ... 171
Form Processing .. 214
Data Output... 214

XFA Specification
Contents iv

5 Representing and Processing Rich Text...215
About Rich Text.. 215
Representation of Rich Text Across XML and XFA DOMs ... 217
Rich Text That Contains External Objects... 221
Displaying and Printing Rich Text ... 222
Using Rich Text... 223

6 Template Features for Designing Forms with Repeating Sections225
Prototypes.. 225
Forms with Repeated Fields or Subforms ... 234

7 Template Features for Designing Dynamic Forms ...248
Basic Composition... 251
Content Types .. 255
Formatting Text in Dynamic Forms .. 258
Repeating Elements using Occurrence Limits .. 258
Basic Layout in Dynamic Forms ... 259
Grammar Excluded from XFAF ... 267

8 Layout for Growable Objects ..269
Text Placement in Growable Containers .. 272
Flowing Layout for Containers .. 274
Interaction Between Growable Objects and Flowed Content.. 277
The Layout DOM ... 279
The Layout Algorithm.. 282
Content Splitting ... 284
Pagination Strategies... 289
Adhesion... 305
Leaders and Trailers.. 308
Tables... 321

9 Dynamic Forms ..326
Static Forms Versus Dynamic Forms .. 326
Data Binding for Dynamic Forms .. 326
Layout for Dynamic Forms... 350

10 Automation Objects ..364
How Script Objects Are Used Within Automation Objects ... 364
Document Variables... 367
Calculations ... 371
Validations ... 373
Events .. 379
Order of Precedence for Automation Objects Activated by the Same Action ... 397
Effect of changing the presence value .. 401

11 Scripting ...403
Purpose of Scripting... 403
Specifying Where to Execute a Script .. 404
Selecting a Script Language.. 405
Setting Up a Scripting Environment... 407
The Relationship Between Scripts and Form Objects .. 407
Exception Handling ... 409
Picture Clauses and Localization ... 409

XFA Specification
Contents v

Unicode Support ... 409

12 Using Barcodes ..411
Barcode type ... 414
Content for Barcode Fields .. 415
Pre-Processing of Barcode Data... 417
Framing... 421
Legends... 423
Adjusting the Size of the Barcode ... 425
Module properties of one-dimensional barcodes... 427
Module and extra properties of two-dimensional barcodes... 430
Which 1D properties apply to which type.. 433
Which 2D properties apply to which type.. 435
Properties of radio-frequency ID Tags ... 437

13 Forms That Initiate Interactions with Servers ...438
Types of Interactions.. 438
Ways to Invoke Interactions .. 438
Processing Rules .. 438
Null Handling .. 439
Standard Submit Processing... 439
Standard Signature Processing .. 441
Submitting Data and Other Form Content via E-mail.. 442
Submitting Data and Other Form Content via HTTP.. 443
Using Web Services .. 449
Interacting with a Database ... 465

14 User Experience ...471
Widgets .. 471
User Experience with Digital Signatures .. 492
Accessibility and Field Navigation .. 493
The User Experience of Validation .. 499

15 Dealing with Data in Different XML Formats ..501
Extended Mapping Rules ... 501
XSLT Transformations .. 538

16 Security and Reliability ...540
Controlling XFA Versions and Updates ... 540
Tracking and Controlling Templates Through Unique Identifiers... 541
Protecting an XFA Server from Attack ... 543
Protecting Users from Being Misled ... 544
Signed Forms and Signed Submissions .. 545
Using the Security Features of Web Services .. 562
Structuring Forms for Portability and Archivability .. 563

Part 2: XFA Grammar Specifications

17 Template Specification ...565
Guide to the Template Specification.. 565
Template Reference ... 571

XFA Specification
Chapter , vi

18 Config Common Specification ..846
Background ... 846
The Configuration Data Object Model .. 847
Config Common Element Reference.. 849

19 Locale Set Specification ..901

20 Connection Set Specification..927
About the Connection Set Grammar ... 927
Connection Set Element Reference.. 929

21 Data Description Specification ...943
About the Data Description Grammar... 943
Data Description Grammar.. 944
Data Description Element Reference ... 951

22 Source Set Specification ...959
The Source Set Data Object Model ... 959
Source Set Element Reference.. 961

23 XDP Specification ..989
About the XDP Grammar.. 989
XDP Element Language Syntax.. 992
XDP Reference.. 996

Part 3: Other XFA-Related References

24 Canonical Format Reference...1003
Date ..1003
Time..1004
Date-Time...1005
Number ...1005
Text ...1006

25 FormCalc Specification..1007
Grammar and Syntax ...1007
FormCalc Support for Locale...1035
Arithmetic Built-in Functions ..1039
Date And Time Built-in Functions ...1049
Financial Built-in Functions ...1063
Logical Built-in Functions ...1073
String Built-in Functions ...1078
URL Built-in Functions ...1101
Miscellaneous Built-in Functions...1105

26 Picture Clause Specification ...1108
About ...1108
Picture-Clause Building Blocks ...1109
Complex Picture-Clause Expressions ...1113
Calendars and Locale ...1118
Asian Date, Time and Number Considerations ..1118
Picture Clause Reference ..1125

XFA Specification
Chapter , vii

27 Rich Text Reference ...1144
Summary of Supported XHTML and CSS Attributes...1144
Supported Container Elements..1146
Hyperlink Support...1146
Supported Paragraph Formatting...1147
Supported Character Formatting..1155
Retaining Consecutive Spaces (xfa-spacerun:yes) ..1166
Embedded Object Specifications ...1168
Version Specification..1168

Part 4: Adobe Implementation

28 Adobe Implementation...1171
Non-conformance...1172
Implementation-specific behavior..1177
Processing instruction for backward compatibility ..1204

29 Adobe Config General Syntax Reference ..1211
Guide to the Adobe Config General Syntax Reference ...1211
Config General Element Reference...1212

30 Adobe Config for Acrobat Syntax Reference...1242
Guide to the Config for Acrobat Syntax Reference...1242
Config for Acrobat Syntax Reference...1243

31 Adobe Config for LiveCycle ES2 Reference..1293
Guide to the Config for Adobe LiveCycle ES2 Syntax Reference ...1293
Config for LiveCycle ES2 Syntax Reference..1294

32 Adobe Variables Set Specification ...1449

Part 5: Appendices, Bibliography, Glossary and Index

A Algorithms for Determining Coordinates Relative to the Page...1452

B Layout Objects ...1453

C AXTE Line Positioning ...1463
Introduction ..1463
Discussion ..1468
Detailed Algorithms ...1472

D History of Changes in This Specification ...1475
New Object Models ..1475
New XFA Features ...1476
Modified XFA Features ..1494
Deprecated XFA Features...1494

E Schemas..1496
About the Schemas ..1496

Bibliography ..1499
General References...1499

XFA Specification
Chapter , viii

Fonts and Character Encoding References ..1505
Barcode References ..1506

Glossary ..1509

Index ...1517

 ix

Preface

This specification is a reference for XML Forms Architecture (XFA). It is intended for use in developing
applications that create XFA templates (which represent forms awaiting fill-in) and applications that
process XFA forms. Such XFA processing applications may be simple stand-alone form-fill in applications,
or they may be a set of client-server applications that work together to fill-in and process a form.

Intellectual Property
The general idea of using templates and processing rules to build interactive forms is in the public domain.
Anyone is free to devise templates using unique structures and apply customized processing rules to
them. However, Adobe Systems Incorporated owns the copyright for the particular template-based
grammar and processing rules constituting the XFA Specification, the written specification for the Adobe
XML Architecture. Thus, these elements of the XFA Specification and Adobe XML Architecture may not be
copied without Adobe's permission.

Adobe will enforce its copyrights. Adobe’s intention is to maintain the integrity of the Adobe XML
Architecture standard. This enables the public to distinguish between the Adobe XML Architecture and
other interchange formats for electronic documents, transactions and information. However, Adobe
desires to promote the use of the Adobe XML Architecture for form-related interactions among diverse
products and applications. Accordingly, Adobe gives anyone copyright permission to use the Adobe XML
Architecture, subject to the conditions stated below, to:

● Prepare files whose content conforms to the Adobe XML Architecture

● Write drivers and applications that produce output represented in the Adobe XML Architecture

● Write software that accepts input in the form of the Adobe XML Architecture specifications and
displays, prints, or otherwise interprets the contents

● Copy Adobe’s copyrighted grammar, as well as the example code to the extent necessary to use the
Adobe XML Architecture for the purposes above

The condition of such intellectual property usage is:

● Anyone who uses the copyrighted grammar, as stated above, must include the appropriate copyright
notice.

This limited right to use the example code in this document does not include the right to use other
intellectual property from Adobe, or the software in any of Adobe’s products that use the Adobe XML
Architecture, in whole or in part, nor does it include the right to use any Adobe patents, except as may be
permitted by an official Adobe Patent Clarification Notice (see [Adobe-Patent-Notice] in the Bibliography).

Adobe, the Adobe logo, Acrobat, Adobe Reader, LiveCycle, LiveCycle Designer ES2, LiveCycle Forms, and
PostScript are either trademarks or registered trademarks of Adobe Systems Incorporated in the United
States and/or other countries. Nothing in this document is intended to grant you any right to use these
trademarks for any purpose.

XFA Specification
Preface Document Contents x

Document Contents
This reference is a complete guide to XFA. It describes the various XML grammars that comprise XFA and it
explains the rules for processing those grammars in conjunction with data supplied from sources outside
the XFA form.

This reference is presented in the following major parts:

● Part 1: XFA Processing Guidelines. This part contains narrative chapters that introduce XFA and provide
rules for processing XFA in conjunction with data received from an outside source. These rules provide
a standard interpretation of XFA expressions and data, which helps to ensure that XFA-related behavior
in XFA processing applications is equivalent. More importantly it helps to ensure that XFA processing
applications that contribute to sequential processing of XFA documents do not have mis-matched
expectations.

● Part 2: XFA Grammar Specifications. This part provides a set of references that describe the elements
and attributes of each of the grammars that comprise XFA. Each chapter describes one of these
grammars.

● Part 3: Other XFA-Related References. Each chapter in this part contains reference material for non-XML
expressions used with XFA. Although the standards described in these chapters are an important part
of XFA processing, they are not considered XFA grammars.

● Part 5: Appendices, Bibliography, Glossary and Index. This part contains appendices that provide
adjunct information referenced by the narrative chapters in Part 1. It also contains a bibliography, a
glossary and an index.

Intended Audience
You should read this specification if you are developing a template designing application or if you are
developing an XFA processing application. This is especially true if either type of application is intended to
work with the Adobe® XFA-compatible products, such as LiveCycle® Designer ES2 and the Acrobat® family
of products.

Non-technical readers may benefit from reading the chapter, “Introduction to XML Forms Architecture
(XFA)” on page 16.

Perspective Used in Describing Processing Guidelines
This document is written from the perspective of an XFA processing application. That is, this document
describes the steps an XFA processing application must perform to properly interpret XFA, especially in the
context of accepting outside data into an XFA form.

The narrative in this document describes the XFA processing rules as through the processing application
were using XML Document Object Models (DOMs) as its internal representation of XFA constructs and of
data. It also assumes all property references are in terms of objects. While such representations are not
required, they are the most common way of implementing code that processes XML data.

Notwithstanding this document’s focus on DOMs and objects, nothing in this specification demands that
the same internal data structures be employed by any particular implementation. Similarly,
notwithstanding the use of terms such as "object" associated with object-oriented languages, nothing in
this specification constrains what programming language(s) may be used by any particular
implementation. However conforming implementations must provide the same external functionality and
must employ the same external data structures.

XFA Specification
Preface Associated Schemas xi

Associated Schemas
Many of the XFA grammars described in this specification are contained in an attachment carried within
this PDF file. See “Schemas” on page 1496 for instructions concerning how to extract and use those
schemas.

Although these schemas can be used to validate the XML syntax of XFA documents, such validation is not
normally part of XFA form processing. Most people filling out a form cannot resolve errors detected during
such validation. It is expected that XFA documents will be generated by software and will be correct by
design. Hence, these schemas are more likely to be used in development.

XML validation differs from XFA form validation, which validates the content entered into the form. XFA
form validation is described in “Validations” on page 373.

XFA also supports the use of XML data documents which are or may be separate from the form itself. A
simple schema language based on annotated sample data is defined for this purpose in “Data Description
Specification” on page 943. This facility is not used for validation as such; data which does not conform to
the data description is simply ignored. However the data description does control the merging of data into
the form and the subsequent generation of a new XML data document. See “Exchanging Data Between an
External Application and a Basic XFA Form” on page 122.

Related Documentation
This document replaces the previous version of this specification. This version and previous versions back
to 2.0 are available at http://adobe.com/go/xfa_specifications.

What’s New
A complete list of enhancements in XFA versions 2.0 through 3.1, labelled by version, is given in the
appendix “History of Changes in This Specification” on page 1475.

Caution: In XFA 3.1 some previously endorsed syntax is still legal, but deprecated. It will be removed in a
future version of the specification. See “Deprecated XFA Features” on page 1494.

Conventions
This document uses notational and graphical conventions as a shorthand for conveying more complex
information.

Notational Conventions
This document uses typefaces and character sequences to indicate the roles and connotations of
expressions.

Typefaces

The following table describes typeface usage in this document:

http://adobe.com/go/xfa_specifications

XFA Specification
Preface Conventions xii

Unicode Character Codes

Character codes are given using the notation described in the preface to The Unicode Standard, Version 3.0.
Those notations are available at http://www.unicode.org/uni2book/Preface.pdf, p. xxvii. Character names
are as given in the Unicode character tables.

Document Object Model Notation

A Document Object Model (DOM) is a representation of tree-structured data inside a computer’s memory.
To facilitate discussion of the DOMs used by XFA, this specification uses a particular notation to describe
their contents, as defined below.

Nodes are expressed in the following form:

[node-type (name)]

where node-type represents the general type of the node and name represents the value of the name
property of the node.

Typeface Identifies …

monospaced XML and XFA expressions:

<abc>apple</abc>

Named XML and XFA objects that appear in a paragraph:

A pageSet element represents an ordered set of display surfaces.

Note: Named XFA objects in a paragraph are frequently not tagged
with the monospaced typeface because their identity as such is
assumed to be understood.

italics Definition of a term:

Fixed data (boilerplate) includes any text, lines, … that remain
unchanged throughout the life of the form.

Document title:

PDF Reference

Hypertext link Hypertext links to other parts of this document:

…, as described in “Conventions” on page xi.

Hypertext links to references in the “Bibliography” on page 1499:

…, as described in the PDF Reference [PDF].

Hypertext links to element descriptions that appear in one of this
document’s references:

For more information see the field syntax description.

Hypertext links to URLs:

Those notations are available at
http://www.unicode.org/uni2book/Preface.pdf.

http://www.unicode.org/uni2book/Preface.pdf
http://www.unicode.org/uni2book/Preface.pdf

XFA Specification
Preface Conventions xiii

If the node has a value property and the value is of interest, it is shown as:

[node-type (name) = "node-value"]

where node-value represents the value of the value property.

If properties other than name and value are of interest, they are expressed in the following form:

[node-type (name) property-name="property-value"…]

where property-name represents the name of any one of the node's properties, and property-value
represents the value of the corresponding property.

Indenting is used to show descent of one node from another, representing containment of the object
represented by the child node within the object represented by the parent node. For example, the
following shows the representation within a DOM of a subform named Cover enclosing a field named
FaxNo. The field has interesting properties value, w, and h.

[subform (Cover)]
[field (FaxNo) = "555-1212" w="1.5in" h="0.17in"]

“Tree Notation” on page 130 illustrates how this notation is used to describe XFA Data DOM.

Optional Terms

Within syntax definitions square brackets surround optional terms. Nesting of square brackets represents
a term (inside the inner brackets) that is allowed only if another term (inside the outer brackets) is present.
For example, consider the following:

HH[:MM[:SS[.FFF]]][z]

This syntax definition states that the HH term is mandatory. The :MM term is optional and does not require
the presence of any other term. The :SS term is optional but may only be included if the :MM term is
included. Similarly the .FFF term is optional but may only be included if the :SS term is included. Finally,
the z term is optional and does not require the presence of any other term.

The meaning of the individual terms varies from context to context and is explained in the text where the
syntax definition appears.

Caution: Square brackets only have this meaning in syntax definitions. When they appear inside a
scripting example or an XFA-SOM expression they represent literal square-bracket characters in
the script or XFA-SOM expression.

Other types of brackets or braces including “(“ and “)”, “{“ and “}”, always represent literally the character
which they depict.

XFA Specification
Preface Conventions xiv

Graphical Conventions

Layout Drawing Conventions

Some drawings in this specification portray
displayable objects, such as blocks of text,
positioned upon a page. Such drawings use certain
conventions which are illustrated at right. Each such
drawing represents a page or a portion of a page
resulting from a layout operation. Objects shown in
40% gray in the drawing would be actually visible on
the page when it was rendered. Objects shown in
black in the drawing give additional information
that would not be visible. In addition to the color
difference, visible text is shown in a serif typeface,
whereas other text is shown in a san-serif typeface.

Object boundaries are shown with dashed or solid
black rectangles. Dashed lines show the boundaries
of predefined physical layout regions on the page.
Solid lines show the boundaries of the nominal
extent for content that is displayed upon the page.
Neither of these boundaries would be visible on the
page. Some objects may optionally have visible
borders. The borders of an object may coincide with
the boundaries of the object’s nominal extent, but
they are not required to. To avoid confusion borders
are not shown unless relevant, and where they are
shown they are in 40% gray and offset from the
object’s boundaries.

Some drawings show an object with a solid outline
and a dot-dashed line just inside, and parallel to, the solid outline. This represents a place where a single
original object has been split into two or more fragments during the layout process. Dot-dashed lines are
also used for arbitrary lines that have a meaning specific to the drawing. Dimension lines and extension
lines are solid.

dimension
line

label for contentArea

boundary of a
contentArea

This is
displayable text.

label for displayable
geometric shape

boundaries of
layout-content

arbitrary line across
a layout-object

Fragment of
displayable text,

Drawing conventions for drawings
illustrating layout

 15

Part 1: XFA Processing Guidelines

This part contains narrative chapters that introduce XFA and provide rules for processing XFA in
conjunction with data received from an outside source. These rules provide a standard interpretation of
XFA expressions and data, which helps to ensure that XFA-related behavior in XFA processing applications
is equivalent. More importantly it helps to ensure that XFA processing applications that contribute to
sequential processing of XFA documents do not have mis-matched expectations.

 16

1 Introduction to XML Forms Architecture (XFA)

The XML Forms Architecture (XFA) provides a template-based grammar and a set of processing rules that
allow businesses to build interactive forms. At its simplest, a template-based grammar defines fields in
which a user provides data.

The open nature of XFA provides a common grammar for describing interactive forms. This common
grammar provides a common basis for form-related interactions between form processing applications
produced by diverse businesses.

Key Features
XFA forms provide a wide range of capabilities.

● Workflow: Data presentation, data capture and data editing, application front-end, printing.

● Dynamic interactions: From interactive, human edited forms with dynamic calculations, validations and
other events to server-generated machine-filled forms.

● Dynamic layout: Forms can automatically rearrange themselves to accommodate the data supplied by
a user or by an external data source, such as a database server.

● Scalability: Single-page static forms, dynamic document assemblies based on data content, large
production runs containing hundreds of thousands of transactions.

XFA is similar to PDF interactive forms introduced in PDF 1.2, which is also known as AcroForm, with the
following differences:

● XFA can be used in XML-based workflows.

● XFA separates data from the XFA template, which allows greater flexibility in the structure of the data
supported and which allows data to be packaged separately from the form.

● XFA can specify dynamically-growing forms.

● XFA can specify Web interactions, such as HTTP and Web Services (WSDL). Such interactions can be
used to submit data to a server or to request a server perform a calculation and return the result.

● XFA works with other XML grammars.

Scenarios for Using a Form Described by XFA
An XFA template describes how a form should appear and behave. It can play a role in several situations:
interacting with a user, printing forms, and processing machine-generated data.

An XFA template may describe a range of form characteristics, such as the following:

● Appearance of the form, including fields, layout and graphics

● Default data to be used for fields

● Types of data expected, including checks on the validity of provided data

● Scripts associated with specific events, such as the user clicking a particular field

XFA Specification
Chapter 1, Introduction to XML Forms Architecture (XFA) Scenarios for Using a Form Described by XFA 17

Interacting with a User
An XFA form interacts with a user in several ways. It presents an electronic version of an electronic form,
which the user fills out. In supply data or selecting buttons, the user may trigger a variety of actions, that
affect the form or that initiate an interaction with another server. The user may also invoke features that
make the form more accessible.

Form Appearance

After opening a template, a user sees an interactive form that represents the layout, graphics, and fields
defined in the XFA template.

The interactive form presents data associated with fields. Initially, the only data in the form are default
values defined in the template. As the user provides data in fields, the default values are replaced with
user-provided values. Date, time, and numeric values are displayed in a manner appropriate for the user’s
locale.

The user interacts with the form, supplying values and selecting options. The user’s input and selections
are reflected in the form.

As the user enters data, parts of the form or fields may automatically grow to accommodate data entered
by the user or a machine-generated source.

Actions the User Can Trigger

XFA templates may be designed to allow a user to initiate various actions, such as the following:

● Calculations. Entering data into a field may cause the values of other fields to be recalculated.

● Data checks. Entering data into a field may initiate a series of validity checks on the entered value.

● Web Services (WSDL) interactions.

● Submission of data to a server.

Accessibility and Field Navigation

XFA templates can specify form characteristics that improve accessibility and guide the user through filling
out a field.

● Visual clues. Fields may display default values that provide hints about the desired input values. In
addition to fields, XFA template may aid the user, by providing radio buttons, check boxes, and choice
lists.

● Accelerator keys. An XFA template may include accelerator keys that allow users to move from field to
field, by typing in a control sequence in combination with a field-specific character.

● Traversal order. An XFA template may be defined with a traversal order, which allows the user to tab
from one field to the next.

● Speech. An XFA template supports speech enunciation, by allowing a form to specify the order in which
text descriptions associated with a field should be spoken.

● Visual aids. XFA template may specify text displayed when the tooltip hovers over a field or a subform.

XFA Specification
Chapter 1, Introduction to XML Forms Architecture (XFA) Family of XFA Grammars 18

Printing Forms
An XFA processing application can be requested to print a blank form or one that is filled out. The data for
the filled-out form can come from a database, from an XML data file generated by an application, or from a
previous interactive session or sessions in which data was manually entered.

During this process, the form may be printed with print view which differs from the view seen by users in
interactive sessions. For example the print view might have the following differences:

● Signature fields appear as underlines for hand-signing rather than as widgets for digital signing.

● Some of the data on the form is printed as barcodes rather than text.

● Summary data is computed and printed on the first page of the form.

In addition there may be different print views for duplex (two-sided) and simplex (one-sided) printers. XFA
can operate with a wide variety of printers including label printers as well as ordinary sheet printers.

Processing Machine-Generated Data
Most people think of an interactive form as something that interacts with a user, but XFA templates may
specify interactions that are entirely machine oriented. For example, an XFA template may describe a
machine-interactive form that consumes data produced by another machine, performs some calculations
and scripts, and then submits the updated data to another machine. The sources of data could be a data
base front-end, a barcode reader, or a client application submitting data.

Family of XFA Grammars
XFA is fully compliant with [XML1.0]. In keeping with the hierarchical nature of XML, XFA divides the
definition of the form into a set of functional areas. Each functional area is represented by an individual
XML grammar. The whole set of XFA grammars can be packaged inside a single XML document known as
an XDP (XML Data Package). This is the form used to move all or part of an XFA form from one application
to another.

The XFA grammars are also reflected in the internal representation of XFA forms, when a form is being
processed. These internal representations are Document Object Models (DOMs) of the sort with which
XML-oriented programmers are familiar.

Representation of an XFA Form
The following table shows the major XFA grammars. There are some specialized grammars that are not
shown here.

XFA grammar Description

datasets Contains all the sets of data used with the form.

data Contains the data held by fields in the form. Each item of this data may
have been defined as a default, entered by a user, obtained from an
external file, database, or network service, or it may result from a
calculation.

dataDescription Defines the schema for the data. XFA can operate without a data
schema but respects it when it is provided.

XFA Specification
Chapter 1, Introduction to XML Forms Architecture (XFA) Family of XFA Grammars 19

Other datasets Other datasets are defined as needed for special purposes. For
example when a partially-filled form is saved a special dataset may be
created to hold information indicating that calculations have been
manually overridden in certain fields.

template Controls the appearance and behavior of the form.

PDF Page background and certification information described by a PDF
object. Although PDF is not an XML format, it is represented as a
stream within an XML object. If such a form is displayed or printed, the
template objects are drawn on top of the PDF content.

Other XFA-related grammars The XFA grammar defines other grammars to define such information
as Web connections and localization information.

Other XML Application-defined information may be included along with the
XFA-defined information. This can be expressed as any valid XML as
long as the outermost element does not use an XFA namespace.

XFA grammar Description

datasets template
Other
XFA-related
packages

PDF

data

XML

XFA

XFA Specification
Chapter 1, Introduction to XML Forms Architecture (XFA) Family of XFA Grammars 20

Instead of XFA containing PDF,
PDF may contain XFA. The PDF
content includes dictionary
entries that signify the
presence of XFA and identify
which version of this
specification it adheres to.

Note: When one of the
Acrobat family of
products opens such a
document, it invokes
the XFA plug-in, which
supports XFA
grammars.

The Relationship between XFA and PDF

There is overlapping functionality between XFA and PDF. However the two grammars serve different
purposes. XFA has a more abstract view of a form than PDF. XFA concentrates on the logic of a form
whereas PDF concentrates on the appearance. However it is possible to combine the two. When the two
are combined the result is a form in which each page of the XFA form overlays a PDF background. This
architecture is sometimes referred to as XFAF (XFA Foreground).

XFAF has the advantage that the PDF can be tweaked to give fine control over the appearance of each
page. However it has the disadvantage that the position of each field and of all the other page content is
fixed on the page. Dynamic subforms cannot be used with XFAF. Within a page each field’s content can
change, or the field can be made invisible, but the field is fixed in size. This type of form corresponds to an
assemblage of traditional pre-printed paper forms.

The alternative which might be called full XFA is to express all of the form, including boilerplate, directly in
XFA. This makes it possible for the XFA processor to adjust the layout and appearance of the form as
needed. For example, a list of dependants can grow to exactly the number of dependants and no more. A
telephone bill can list just those charges that apply, rather than listing all possible charges with amounts of
0.00 for the ones that do not apply. A fully dynamic form of this type can be shorter when printed and can
escape the busy look of pre-printed forms. On the other hand laying out a form of this type takes more
CPU time. Also, XFA lacks some of the visual refinements that are available in PDF. For example in PDF
characters can be individually positioned to support all types of kerning. In XFA individual positioning of
characters is not possible so only the type of kerning performed by the XFA processor is supported.

Although XFA can make use of PDF it is not tied to a particular page description language. XFA processors
can print using PostScript®, PCL, ZPL, or whatever other language the printer requires.

datasets template
Other
XFA-derived
packages

data

XFA

PDF

Content

XML

XFA Specification
Chapter 1, Introduction to XML Forms Architecture (XFA) Family of XFA Grammars 21

Packaging an XFA Form for Application Interchange
When the family of XFA grammars used for an XFA form are moved from one application to another, they
must be packaged as an XML Data Package (XDP). The XDP may be a standalone document or it may in
turn be carried inside a PDF document.

XML Data Package (XDP)

XDP provides a mechanism for packaging form components within a surrounding XML container. XDP is
[XML1.0] compliant and hierarchical in nature. Each of the grammars listed on page 18 is encapsulated
within an element. Such subelements include the XFA template, PDF objects, XFA data and the data
schema, the XFA form DOM, and custom non-XFA XML. These subelements are referred to in this
specification as packets carried by the XDP.

It is possible for an XDP to contain all the packets of a form but it is not required. For example when a form
is sent via e-mail a complete XDP is attached so that the recipient can manipulate the form using an XFA
application. On the other hand when an XFA processing application submits a form’s data to a server it
may well send an XDP containing only the data packet.

PDF Document

An XDP may be included as an object in a PDF document, mirroring the structure illustrated on page 20.
Any of the form packets may be included within the XDP.

The XFA and PDF standards are related. The ISO/DIS 32000 standard [ISO-32000-1] is an ISO-approved
subset of the PDF 1.7 syntax [PDF]. XFA 3.1 is not part of ISO/DIS 32000. Instead it is part of a
vendor-specific extension called Adobe Extensions Level 6.

Adobe recommends marking the Adobe Extensions Level in the PDF using the syntax described in
“Marking the Adobe Extensions Level in PDF” on page 1193.

Shell PDF

When packaging a full XFA form (see “The Relationship between XFA and PDF” on page 20) inside PDF, it is
not necessary to include a pre-rendered depiction of the form as PDF pages. For these types of forms the
XFA markup contains a complete description of the form. Since the application has to process XFA anyway
it must possess all the logic to re-render the whole form. Furthermore, if the PDF page images are present
they enlarge the file unnecessarily.

It is more efficient to package such a form as a shell PDF file. This is a PDF file containing the complete XFA
content, plus any fonts and images needed to render the form, but otherwise only a minimal skeleton of
PDF markup. Packaging this way has two advantages. The size of the file is minimized, thereby reducing
communication overhead. And the rendering overhead is moved from the server to the client, thereby
distributing the rendering load more broadly.

A shell PDF file is signified by placing a /NeedsRendering entry in the root catalog of the PDF markup, with
a value of true. This cues the PDF processor without it having to parse XFA markup. All fonts and images
needed for the rendering are placed in the AcroForm document resources dictionary /AcroForm/DR.

Unfortunately, older PDF processors may not handle XFA content, so when generating a shell PDF it is
recommended to include in the PDF markup a simple one-page PDF image displaying a warning message.
Any PDF processor that handles XFA content should either not display the supplied page image or replace

XFA Specification
Chapter 1, Introduction to XML Forms Architecture (XFA) Major Components of an XFA Form: XFA Template and Data 22

it quickly with the dynamic form content. In addition, Adobe products insert document-level JavaScript to
prompt the user to upgrade if the viewer is any version of Acrobat prior to version 7.0.5.

Note: Adobe LiveCycle ES2 has configuration options which controls whether it generates shell PDF files
or regular PDF files. See “Shell PDF generation and use” on page 1180.

XDP Versus PDF Packaging

Each of the packaging options, standalone XDP and XDP within PDF, has advantages and disadvantages.

Packaging form components within an XML container makes it easy for XML-based applications to
produce or consume XFA forms using standard tools. In addition the XML components are human
readable and can be modified with a simple text editor. Finally, when in XDP form an XFA document may
be validated using the schemas which are attached to this specification. See “Schemas” on page 1496 for
more information.

Packaging an XDP within PDF has the advantage that it is somewhat more compact, because PDF is
compressed. Also the combination of PDF plus its enclosed XDP can be certified (digitally signed) in ways
that a standalone XDP cannot.

Major Components of an XFA Form: XFA Template and Data
This section provides a high-level description of the major components of an XFA form, which are XFA
template and the data provided by a user or by a server.

XFA distinguishes between template and data. The template defines presentation, calculations and
interaction rules. Data is customer's application data plus whatever other data sets may be carried with the
form. Though they are often packaged together, template and data are separate entities.

XFA Template
XFA template is the XFA subelement that describes the appearance and interactive characteristics of an
interactive form. It was designed from the ground up to be an XML-based template language.

XFA follows a declarative model in which elements in an XFA template describe the components of the
form. That is, an XFA template does not need to include any procedures. However scripts may be included
to provide enhanced or custom functionality.

About XFA Template

Most people are consumers of forms, rather than producers or designers of forms. Yet, in order for a
software product to utilize forms, someone first had to expend a degree of thought and work towards the
act of creating a form. This specification is focused on the task of form creation, and it is important to
distinguish between the “form” that the creator designs, and the “form” that a consumer handles — they
both represent the same form, but at two very different stages in the form's life-cycle. XFA clearly
distinguishes between the two stages via the following terminology:

● Form — what a person filling out a form works with, which is given life by a XFA processing applications
such as the Acrobat family of products.

● Template — what the form designer creates, which represents the potential for a form. A template is a
collection of related subforms and processing rules.

XFA Specification
Chapter 1, Introduction to XML Forms Architecture (XFA) Major Components of an XFA Form: XFA Template and Data 23

Consider the following diagram:

A simple XFA form

This is an example of a form. To an end user (form consumer), it represents something to be filled out, by
entering data into the white spaces. This user makes little or no distinction between a blank form and a
filled one, other than the presence of data. In fact, the absence of data in a particular data entry element
can be as meaningful as the presence of data.

In contrast, a form designer views it as a vehicle for capturing, rendering and manipulating data. As such,
the designer is concerned with issues of layout, interaction and processing. A template is a specification of
capture, rendering and manipulation rules that will apply to all form instances created from that template.

When selecting a form to be filled interactively, the user perceives that s/he is selecting a “blank” form. The
user is performing an operation similar to starting a new document in a word processor, by first selecting a
template. The user directs an XFA processing application to use this template to construct a “form”, which
at first appears blank. As the data is entered the association between the template and the entered data is
captured in an entity known as the Form DOM.

Suppose the user chooses to break off filling the form before it is complete. The complete state of the form
is saved by the XFA processing application as a local file containing an XDP. This state includes the
template, the Form DOM, data entered so far and a record of calculations that the user has chosen to
override. When the user restarts the XFA processing application it reloads the complete form state and the
user is able to resume just where he or she left off.

When the user has finished filling out the form he or she clicks on a submit button. The submit button is
defined within the template and its characteristics were determined by the form creator. The submit
button may cause the data to be submitted to a server on the web via HTTP or SOAP, or to a local database.
Whichever of these submission methods is used, usually only the user data is submitted. However the form
creator may direct the application to submit the the whole form or some subset of it.

XFA Specification
Chapter 1, Introduction to XML Forms Architecture (XFA) Major Components of an XFA Form: XFA Template and Data 24

Containers of Fixed and Variable Content

XFA template distinguishes between containers for fixed content and containers for variable content.

The draw element, a container for fixed content

Fixed content (boilerplate) includes any text, lines, rectangles, arcs, or images that remain unchanged
throughout the life of the form, except in regards to its container placement, container size, and container
inclusion/omission. Fixed data is defined by the template designer as the contents of draw elements. “A
simple XFA form”includes callouts that indicate a few of the many draw elements on this form.

An XFA template does not have to include any fixed content. The fixed content can be expressed as PDF
instead, using the XFA Foreground (XFAF) architecture. However if this is done the presence of the fixed
content, which page it is on and where it is upon the page are also fixed. By contrast when the fixed
content is expressed as draw elements (a non-XFAF form) it can be dynamically omitted or moved within
the form as required. For more information see “The Relationship between XFA and PDF” on page 20.

The field element, a container for variable data

Variable data can change during the life of the form and is provided by any of the following: the template
as a default value, the person filling out the form, an external source such as a data base server, a
calculation, and other sources. The template can specify default data for fields. The other sources of data
come into play when an XFA processing application represents the template and associated grammars as
an interactive form.

Variable data is described in field elements. “A simple XFA form”includes callouts that indicate a few of the
many field elements on this form. Note, the submit-button in the lower-left corner is also a field.

Containers of Other Containers

Template containers provide the structure for the form, by collecting other containers into repeatable sets.
Containers of other containers include the following:

● exclusion group: Container of multiple fields. Exclusion groups represent a radio-button grouping.

● subform: Container of other containers. The subforms that appear in a form may be pre-determined (as
in a static form) or may expand to accommodate the data bound to it (as in a dynamic form).

● page area or area: An abstract representation of the physical page or other area in which other
containers are placed. The area does not change in size, but if its capacity is exceeded, a new area is
created.

Laying Out the Containers (and Their Data) to Create the Form’s Appearance

Each subform and area is a little document in and of itself. Subforms are assembled together in order to
create the final document. Subforms also support repeating, optional and conditional data groups. These
allow the construction of a form which responds to structure in the bound data. For example the form can
automatically add more pages to accomodate all of the supplied data records. When the XFA processing
application creates the interactive form, it reconciles the template and the data by adding enough copies
of the appropriate subform to accommodate the data.

Allowing the data to drive the number of subforms used in a form has several advantages. It is less
error-prone than predefining multiple instances of the subform, and the template designer need not
guess at a maximum possible number to handle all anticipated cases. In addition, because XFA Template is
a declarative language, there is no need to write script to create such instances when the content is bound.

XFA Specification
Chapter 1, Introduction to XML Forms Architecture (XFA) Major Components of an XFA Form: XFA Template and Data 25

An important feature of XFA is that a template can stand alone. It doesn't need data to bring it to life. A
template without data is the equivalent of a blank form, ready for filling.

Scripted Components of an XFA Template

It is important to understand that scripting is optional. The template designer can take advantage of
scripting to provide a richer user experience, but all of the features described so far operate without the
use of scripts. Script creation is part of the template designing process.

XFA supports scripting in JavaScript, but it also defines its own script language, FormCalc [“FormCalc
Specification” on page 1007]. Often, the scripts attached to a form are similar to those attached to a
spread-sheet. FormCalc has been designed as an expression-oriented language, with simple syntax for
dealing with groups of values in aggregate operations.

Both JavaScript and FormCalc expose the same object model. Scripting almost always works with data
values, so these are easily referenced. Indeed, XFA defines a complete Scripting Object Model (“Scripting
Object Model” on page 86).

A key feature of XFA-SOM is that it manages relative references. For example, when defining an invoice
detail line, a template designer might set up fields unitPrice, quantity and amount. The calculation
for amount would simply be unitPrice*quantity. XFA-SOM would resolve the references by finding
the correct instances of unitPrice and quantity in the following situations:

● If the instances of those field names are in other subforms

● When there are multiple instances of those field names in the same subform

Because of the declarative nature of XFA Template, the largest use of scripting is for field calculations. A
field with such a script typically is protected against data entry, and instead gets its value from an
expression involving other fields. A field's calculation automatically fires whenever any field on which it
depends changes (those fields may, in turn, also have calculated values dependent on other fields, and so
on).

Similar to calculation, a field can have a validation script applied that validates the field's value, possibly
against built-in rules, other field values or database look-ups. Validations typically fire before significant
user-initiated events, such as saving the data.

Finally, scripts can be assigned to user actions, for example, such as when the user enters data and when
the user clicks on a field. Scripts can also be activated by events that occur behind the scenes, such as
assembling data to send to a web service.

Data
Typically, XFA variable content is the customer's XML data, matching the customer's schema. Data could
also come from a database, an HTTP POST response, a web service interaction, default data supplied by
the template or other source. Often, form data elements are plain text, but may also include rich text and
graphics.

XFA defines a data value to be an XFA name/value pair, where the value is plain or rich text, or a graphic.
Data values may contain nested data values. An XFA name is a string suitable for identifying an object. A
valid XFA name must be a valid XML name, as defined in [XML], with the additional restriction that it must
not contain a colon (:) character.

XFA also defines a data group: the provider of structure in the data. Data groups may contain data values
and other data groups. As stated above, the data is typically structured according to the customer's

XFA Specification
Chapter 1, Introduction to XML Forms Architecture (XFA) Data Binding: Making the Connection Between XFA Template and Data 26

schema; data values and data groups are represented as abstract structures, inferred from the customer's
data. The abstract structure helps the XFA processing application create an XFA form that reflects the
structure and content of the data. This process (called data binding) is described in the next section.

It is important to note that XFA doesn't have to treat the data as a read-only source of variable content.
Many forms-based workflows involve round-tripping: load the data into the template, edit or augment it,
and save out the modified data. XFA can be instructed to remain true to the data's original structure when
saving. When data values and groups are logically moved to match the structure of the template, the form
designer has an option as to whether saving the data will or will not reflect those moves.

While data is often authored via legacy applications or database queries, it can also be authored through
an interactive form filling applications, such as the Acrobat family of products, version 6 and greater.

Data Binding: Making the Connection Between XFA Template and
Data

When an XFA processing application introduces data to an XFA form, it associates each piece of
information to a container, such as a field or a subform. This process is called data binding.

Generally, XFA data binding attempts to map like-named data values to template fields and data groups to
template subforms. Data and template structures often don't match. XFA processing defines default
binding rules to handle such mismatches. Alternatively, the template designer may choose to provide data
binding rules in the template definition. If those alternative do not provide desired results, the template
designer may change the structure and/or content of the XML data, by specifying XSLT scripts the XFA
processing application uses to pre-process and post-process data. See also “Basic Data Binding to Produce
the XFA Form DOM” on page 171 and “Dealing with Data in Different XML Formats” on page 501.

Data binding alters neither the template nor the data. That is, data binding is internal to the XFA
processing application.

Unbound data values and groups (those that don't have matches in the template structure) are preserved
and won't be lost or moved if the data is saved.

The binding operation can create forms with repeated subforms, in which multiple run-time instances of
the subform are created to accommodate the multiple instances present in the data. A form with such a
capability is called a dynamic form. A form without such a capability (that is, with the capability switched
off) is called a static form. When using the XFAF architecture, in which fixed content is expressed as PDF,
the form must be static.

In addition, XFA data binding is designed to handle like-named data values, as well as like-named data
groups. It is common in forms processing for there to be multiple data values present with the same name.
For example, invoice data generated from a database query could easily have multiple item, description,
unit price and quantity fields in a relatively flat structure. In addition, there may be repeating data groups.
XFA defines default binding rules to ensure that these map intuitively to like-named fields or subforms in
the template. The basic rules for dealing with multiple instances of the same name are:

● The relative order of sibling items that have different names is not important, may be ignored and does
not need to be maintained; and

● The relative order of sibling items that have the same name is important, must be respected and
maintained

For more information, see “Basic Data Binding to Produce the XFA Form DOM” on page 171.

XFA Specification
Chapter 1, Introduction to XML Forms Architecture (XFA) Lifecycle of an XFA Form 27

Lifecycle of an XFA Form
This section describes the common steps in the lifecycle of an interactive form based on XFA.

Creating an XFA Template
There are several ways a form designer can create a template:

● Using a graphical layout tool, such as Adobe LiveCycle® Designer ES2

● Automatically by software, a capability provided by SAP® Smart Forms conversion

● Hand-edit XFA Template files

In a template designing application with a graphic interface, a template designer can start with a blank
canvas and place objects, or the author can start with a schema, for example, XML-Schema [XML-Schema],
data source or data file. When starting with a schema, the designer can select portions or all of the schema
tree and place them on the template canvas, and the design tool will create subform/field structure, with
properly-typed fields, template-defined bindings. layout constraints, and processing rules.

Filling Out an XFA Form

Opening a Form

When a user directs an XFA processing application to open an XFA form, the application goes through the
following general steps:

1. Draw the initial form. The XFA processing application uses the XFA template to determine the initial
form appearance and to obtain default data. If the application supports only form printing or
machine-provided data, this task is omitted.

2. Associate data with specific fields. If data is included in the XFA form, the application creates logical
connections between the data and the fields.

3. Display data in fields. The application displays the data associated with each field. Time, date, or
number data may be formatted. The data may result in the form appearance changing, as fields grow
or subforms are added to accommodate the data.

4. Activate events. The application activates events associated with creation of the form. Such events can
include interacting with a server to obtain data used in the form.

5. Update form. The XFA processing application executes calculations and data validations for any fields
whose values have changed.

The above description is a simplification. Much more goes on behind the scenes, as will be described in
later chapters. In addition, the actions described above may take place in different sequences.

Providing Data to the Form

The user provides data by bringing a field into focus and then entering data. A field can be brought into
focus by using a mouse to select the field or by entering key(board) sequences. The data is processed as
described in Step 5. on page 27.

XFA Specification
Chapter 1, Introduction to XML Forms Architecture (XFA) Static versus Dynamic Forms 28

Saving an In-Progress Version of the Form

XFA processing applications will typically allow users to save an in-progress or committed version of a
form. (See “Committing a Form” on page 28.)The method for requesting the save is application-specific.
Typically the form is serialized in XDP format with the data, the Form DOM, and other state information
included in the XDP. State information commonly includes a list of all the fields in which the user has
overridden calculations.

Committing a Form

After completing a form, the user is ready to submit the form. That is, the user has supplied all information
required by the form and repaired any errors reported by the form. The form is ready to be released for
further processing.

XFA forms may use digital signatures. The user typically clicks a button to sign the form. The digital
signature may include only data, in which case it provides non-repudiable proof that the user did enter
that data. Alternately the signature may be applied to other parts of the document to prove that they have
not been tampered with since the signature was applied.

Typically, the template supplies the form with a submit button. The button has properties which control
the submit operation. In addition the button may specify a validation test and/or a script that must be run
before the data is submitted. Typically, if the validation or script fails, the user is asked to make corrections
and resubmit the form.

Once the data has passed all required validation it is submitted across the network. When the processing
application has successfully submitted the form content, the form is said to be committed. That is, the form
has entered the next stage of processing. For example when a customer of an online store commits the
purchase form, the store then charges the purchase to the customer's credit card and ships the
merchandise.

XFA also supports sending the filled form as an e-mail attachment or via physical conveyance of a printed
copy. These methods do not require a submit button. Typically the filled form can be saved as a file or sent
to a printer via the user interface of the XFA processing application.

Processing Form Data, a Server Application Task
XFA processing applications may establish themselves as servers designed for machine-based XFA form
processing. See “Processing Machine-Generated Data” on page 18. In one scenario, such an application
might accept data submitted by a client. Such submission is described in “Committing a Form” on page 28.
The server application would accept the data and template and create its own interactive form, as
described in “Opening a Form” on page 27; however, it would not display any of the form content.

The server application may perform various tasks, such as performing additional calculations,
incorporating other data into the form, and submitting the data to a database.

Static versus Dynamic Forms
XFA distinguishes between static and dynamic forms.

In a static form the form’s appearance and layout is fixed, apart from the field content. When the template
is bound to data (merged), some fields are filled in. Any fields left unfilled are present in the form but

XFA Specification
Chapter 1, Introduction to XML Forms Architecture (XFA) Static versus Dynamic Forms 29

empty (or optionally given default data). These types of forms are uncomplicated and easy to design, and
suffice for many applications.

A static form may be expressed entirely in XFA, albeit perhaps packaged within a minimal PDF wrapping. A
form expressed this way is referred to in this specification as a traditional static form.

In XFA 2.5 a new and simpler mechanism was introduced for static forms. This mechanism uses PDF to
represent the appearance of the boilerplate and employs XFA grammar only to represent the form logic.
This mechanism is known as XFA Foreground. Throughout this specification XFA Foreground is abbreviated
to XFAF. Such forms are easier to construct because they use a subset of the XFA grammar. At the same
time the use of PDF for the boilerplate makes it possible to refine the appearance of the boilerplate to a
high degree. For example it is possible to accurately reproduce the exact character positioning of an
existing preprinted paper form.

Dynamic forms change in appearance in response to changes in the data. They can do this in several ways.
Forms may be designed to change structure to accommodate changes in the structure of the data
supplied to the form. For example, a page of the form may be omitted if there is no data for it. Alternatively
changes can occur at a lower level. For example, a field may occupy a variable amount of space on the
page, resizing itself to efficiently hold its content. Dynamic forms use paper or screen real estate efficiently
and present a cleaner, more modern look than static forms. On the other hand a dynamic form cannot rely
on a PDF representation of its boilerplate, because the positioning and layout of the boilerplate change as
the fields grow and shrink or as subforms are omitted and included. Hence dynamic forms require that the
boilerplate be included in the template in a form that the XFA processor can render at run-time. This
rendering does not have the exquisite control over appearance that PDF yields. Furthermore it uses more
CPU time than a static XFAF form.

Note: LiveCycle Designer ES2 uses its own terminology for these different types of forms. Furthermore
that terminology has changed over time. The following table summarizes the terminology for
recent versions.

The next few chapters discuss matters that apply to all XFA forms whether they are static or dynamic.

“Template Features for Designing Static Forms” on page 31 discusses the subset of template features used
by XFAF forms. These core features are also fundamental to dynamic forms.

“Object Models in XFA” on page 75 discusses the ways in which the template, data, and other objects are
represented inside an XFA processor and the ways in which they interact.

“Exchanging Data Between an External Application and a Basic XFA Form” on page 122 discusses the way
in which data in an external document is parsed and loaded into a static form and how it is written out.

“Representing and Processing Rich Text” on page 215 describes the syntax used for rich text.

Often forms have repeated sections or repeated components, for example the same logo may appear on
multiple pages of a form. In addition different forms may have sections or components in common.

XFA terminology
Designer terminology prior
to 8.2

Designer terminology
starting with 8.2

“traditional static” “static PDF form” N/A: these are automatically
converted on output to XFAF

“static XFAF” “static PDF form” “PDF form”

“dynamic” “dynamic PDF form” “XFA form”

XFA Specification
Chapter 1, Introduction to XML Forms Architecture (XFA) Static versus Dynamic Forms 30

“Template Features for Designing Forms with Repeating Sections” on page 225 describes template
features which can be used to reuse declarations within a form or across forms.

The next set of chapters discuss matters that apply only to dynamic forms.

“Template Features for Designing Dynamic Forms” on page 248 describes additional template features
needed by dynamic forms.

Forms may be designed with containers that stretch or shrink to accomodate varying amounts of data
within individual fields. Containers of this sort are called growable containers. “Layout for Growable
Objects” on page 269explains how the content of forms with a fixed data structure but with growable
containers is laid out.

Forms may also adjust themselves to data which varies in structure. “Dynamic Forms” on page 326
describes the operation of data-driven forms in which subforms are included or excluded depending upon
the data.

“Layout for Dynamic Forms” on page 350 describes the differences between layout for forms with
growable containers but fixed data structure and layout for forms with variable data structure.

The remaining chapters in Part 1discuss specialized features of XFA. These can be used in both static and
dynamic forms.

“Automation Objects” on page 364 describes the ways in which calculations, validations, and a variety of
events are linked into other objects on the form and how they interact.

“Scripting” on page 403 describes the scripting facilites.

“Forms That Initiate Interactions with Servers” on page 438 describes the ways in which forms can interact
with servers across the network via either HTTP or WSDL/SOAP.

“User Experience” on page 471 describes the assumptions that XFA makes about the functioning of the
user interface and documents the facilities for enhanced accessibility.

XFA forms can deal directly with almost all XML data, but occasionally it is desireable for the form to see a
reorganized view of the data. “Dealing with Data in Different XML Formats” on page 501 describes the
facilites built into XFA for reorganizing data while loading it, and in most cases transforming it back to the
original organization when it is written out.

“Security and Reliability” on page 540 deals with issues of authentication, trust, and non-repudiability as
well as protection against attack.

 31

2 Template Features for Designing Static Forms

This chapter describes the template features used to create static forms. Such forms have a fixed
appearance, maintaining the same layout, regardless of the data entered in them.

Starting with XFA 2.5 a simplified format for static forms was introduced. Using this format the static
appearance of each page is expressed as PDF. Only the logic of the form, the fields which contain user data
and the subforms that relate the fields, are expressed in XFA. This format is called XFA Foreground or XFAF.

This chapter provides a basic description of the forms represented by XFA templates. It is intended for use
by form designers and others who do not need to understand the more detailed processing guidelines of
XFA forms. Accordingly, this chapter uses the terms elements and attributes to describe template entities,
as does the “Template Specification” on page 565. Subsequent chapters in Part 1: XFA Processing
Guidelines use the terms objects and properties to describe such entities. This shift in terminology reflects a
transition to describing processing guidelines relative to XML Document Object Model (DOM)
representations of an XFA form.

Form Structural Building Blocks
This section describes the most significant XFA elements and their relationships. Such elements fall in the
groups: “Container Elements”, “Content Elements”, and “User Interface”. These groups are defined in the
XFA template grammar.

A form is presented to the user as a combination of fixed background text and images (also known as
boilerplate), as well as the variable content present in the fields and typically provided by a user. The end
user, while very aware of a form's interactive content, generally doesn't make a distinction between that
content and the field that houses it. However, the distinction is important to the form designer. Content
elements tend to be concerned with data-related issues, such as data type and limitations. In contrast,
container elements are concerned with presentation and interaction.

The following figure illustrates the relationship between container elements, content elements, and UI
elements.

XFA Specification
Chapter 2, Template Features for Designing Static Forms Form Structural Building Blocks 32

Types of structural building blocks in an XFAF template

Note: This specification allows for captions on many different containers, but the Acrobat
implementation of XFAF only supports the visual presentation of captions on button and barcode
fields. However captions can still be used to supply text for an assist element. Also, this limitation
does not apply to dynamic forms or old-style non-XFAF static forms.

Container Elements
The term container element refers to an element that houses content and the form-related aspects of
dealing with its content, such as the following:

● Variable content or the potential for variable content. Variable content includes text and images.

● Caption for the container.

● Formatting and appearance such as a border around the container, text formatting and localization,
and barcode formatting.

● Access restrictions, such as making the content read-only to the user. See “Access Restrictions” on
page 48.

● Accessibility, such as traversal order between containers and speech order for the text associated with
a container.

● User interaction, as described in “User Interface”.

● Calculations that consider the content of this and other containers.

● Validations used to qualify data associated with the content element.

● Other interactions, such as form or keyboard events and web service interactions.

Container

Content UI

Container Container

Container element is a type of XFA template
element that specifies either of the following: (a)
content elements and the form-related aspects of
navigating to, displaying and processing those
elements; or (b) other container elements and the
form-related aspects of navigating to, displaying
and processing those container elements. See
“Container Elements” on page 32.

Content element is a type of XFA template element that houses datatyped pcdata (text) or
images. Such pcdata or graphic elements may be defined as default data in the content
element. See “Content Elements” on page 35.

UI element is a type of XFA template element that describes how data should be presented to
a form user. See “User Interface” on page 35.

Caption element provides static text that labels a container.

Caption

XFA Specification
Chapter 2, Template Features for Designing Static Forms Form Structural Building Blocks 33

Containers Associated with Variable Content

Field

A field element is the workhorse of a template and represents a data-entry region. A user typically
interacts with field elements by providing data input. Fields provide a pluggable user interface (“User
Interface” on page 35) and support for a broad variety of content data-typing (“Content Types” on
page 39).

The following is an example of a field element that produces a data-entry region capable of accepting
textual input. The field is positioned at an (x,y) coordinate of (0,0) and has a width of 1 inch and a height of
12 points.

Example 2.1 A field accepting data input

<field name="ModelNo" x="0" y="0" w="1in" h="12pt"/>

For more information, please see the syntax description of the field element.

Exclusion Group

An exclusion group is a non-geographical grouping of fields, where one of the fields provides the value for
the exclusion group.

The fields in an exclusion group exhibit mutual exclusivity commonly associated
within radio-buttons or ballot/check-boxes, as shown at right. Only one of the objects
may have a value or be selected by the user. The value of an exclusion group is the
value of the selected or “on” field. (Example 2.2)

The fields contained in exclusion groups should be restricted to those containing checkButton widgets.
The behavior of exclusion groups containing other types of fields is undefined.

Exclusion groups may be defined with or without a default value. The default value for an exclusion group
is the default value provided by one of the fields in the group. An error exists if more than one field within
an exclusion group provides a default value.

XFA Specification
Chapter 2, Template Features for Designing Static Forms Form Structural Building Blocks 34

Example 2.2 Check-button exclusion group with a default value

<exclGroup … >
<field … >

<ui>
<checkButton shape="round" … />

</ui>
<items>

<integer>1</integer>
</items>
<value>

<text>1</text>
</value>

</field>
<field … >
<ui>

<checkButton shape="round" … />
</ui>
<items>

<integer>2</integer>
</items>
</field>

</exclGroup>

For more information, please see the syntax description of the exclGroup element.

Containers That Group Other Container Elements

Template

A template is a non-geographical grouping of subforms. The template represents the form design as a
whole, enclosing all of the elements and intelligence of the form.

The following is an example of a template element that describes a form comprised of two text fields:

Example 2.3 Template element enclosing a simple form

<template xmlns="http://www.xfa.org/schema/xfa-template/3.1/">
<subform name="Device" x="2" y="3">

<field name="ModelNo" x="0" y="0" w="1in" h="12pt"/>
<field name="SerialNo" x="0" y="16pt" w="1in" h="12pt"/>

</subform>
</template>

Subform

Common paper forms often contain sections and subsections that are easily distinguished from one
another. For example, there are three distinct sections for header, detail and summary information in the
diagram “A simple XFA form” on page 23. The form is really a collection of these sections and subsections,
each of which XFA refers to as a subform. Some of the features offered by subform elements include:

● Management of scope of element names in scripting operations, as described in “Scripting Object
Model” on page 86

● Validation of the content of the subform as a whole, as described in “Validations” on page 373

● Hierarchical data binding, as described in “Basic Data Binding to Produce the XFA Form DOM” on
page 171

XFA Specification
Chapter 2, Template Features for Designing Static Forms Form Structural Building Blocks 35

● Access limitations upon the contents of the subform, as described in “Access Restrictions” on page 48.

The subform element provides the level of granularity that a form object library would use. A form object
library is a tool used by form designers to store commonly used groupings of form container objects, for
example, company letterhead.

The following is an example of a subform element that encloses two text fields:

Example 2.4 Subform element enclosing two fields

<subform name="Device">
<field name="ModelNo" x="0" y="0" w="1in" h="12pt"/>
<field name="SerialNo" x="0" y="16pt" w="1in" h="12pt"/>

</subform>

For more information, please see the syntax description of the subform element.

Exclusion Group

See “Exclusion Group” on page 33.

Content Elements
A content element is a type of XFA template element that houses datatyped pcdata (text) or images. Such
pcdata or graphic elements may be defined as default data in the content element.

Most containers have a notion of a value. This value can be used in calculations and may be persisted
when the form's variable content is saved. For field and exclGroup containers, the value is the
container's content, available through the value subelement.

The following diagram illustrates the relationship between elements in a content element.

Structure of a content element, such as a field or exclGroup element

User Interface
The XFA architecture makes a clear distinction between the content of a container and the user interface
(UI) required to render that content and provide interaction. While there often is a relationship between
content and UI (e.g., date content would normally be captured with a date-oriented UI), the separation
allows both the application and the form designer some degree of flexibility in choosing the right UI. This

content type

value

A value element represent references a datatype element and
specifies whether the data may be overridden by the form user or
by some other source.

A content type element defines the type of the data. It may also
include default data, which is used when the form is displayed.
Examples of such datatype elements are date, decimal, and image.
Content types are later described in “Content Types” on page 39.

Content element

default data

XFA Specification
Chapter 2, Template Features for Designing Static Forms Basic Composition 36

separation allows the form designer to exert some control over the user interface, selecting the widget
most appropriate for each instance of a given type of content.

Each container may have a ui subelement for specifying user interface for the container. That element, in
turn, may contain an optional child element, specifying a possible user interface for the container. If the UI
element contains no children or is not present, the application chooses a default user interface for the
container, based on the type of the container's content.

The chapter “User Experience” on page 471 provides more information on the user interface described by
XFA templates.

Basic Composition
This section describes the basic aspects of creating a template. Such issues include measurements and
positioning graphic elements within a parent container. “Basic Layout” on page 49 describes how
container elements are placed on a page.

Measurements
All measurements are comprised of two components:

● The quantity or value of the measurement

● The (optional) unit of the measurement

The following is an example of fields containing different font elements with the equivalent field and font
size expressed in a variety of different measurements.

Example 2.5 Equivalent measurements in field and font size declarations

<field name="f1" y="1in" h="72pt" w="4in">

</field>
<field name="f2" y="2in" h="1in" w="4in">

</field>
<field name="f3" y="3in" h="1" w="4in">

</field>

Values

All measurements have a quantity or value, which is expressed in a particular unit that may either be
explicitly stated or implied. Common uses of measurements include the description of a length or width of
an element, the position of an element, or an offset from a coordinate.

The format of a measurement is a value, consisting of the following parts:

● An optional sign character — one of "+" (the default) or "-"

● A number — a number with optional fractional digits

● An optional unit identifier

The following are examples of measurement and their interpretations:

XFA Specification
Chapter 2, Template Features for Designing Static Forms Basic Composition 37

● 1in — one inch

● -5.5cm — minus five and a half centimeters

● 30pt — thirty points

● 0 — a measurement of zero with the unit omitted

Units

All measurements are expressed in a particular unit which may be specified as a suffix to the value. The
unit is known by a short textual identifier, such as "in" for inches. The default unit is assumed to be inches.
In other words, the following are equivalent:

● 3.5in

● 3.5

The following list is the set of allowable units for absolute measurements and the corresponding identifiers:

● cm — centimeters

● in — inches (This specification considers one inch to be exactly 2.54 centimeters.)

● mm — millimeters

● pt — points (This specification considers a point to be exactly 1/72 of an inch.)

Note that a unit specification is not required or implied when the measurement value is zero. Not all
elements may support all possible types of units, as described in “Restrictions” (below).

Starting with XFA 2.8 a new type of measurement called a relative measurement was introduced. A relative
measurement can use any of the units that are allowable for an absolute measurement, but it can also use
either of the following two unit identifiers:

● em — em width in the current font

● % — percentage of the width of a space (U+0020) in the current font

Note: The great majority of measurements in XFA are absolute measurements. Wherever a relative
measurement may be used this is clearly indicated in the text.

Angles

Certain measurements requires the specification of an angle. Angles are always specified in degrees and
are measured counterclockwise from a line parallel to the X axis.

Restrictions

Most measurements in XFA are absolute measurements, hence do not accept the em or % unit identifier.
Where a measurement allows the use of these unit identifiers it is explicitly identified as a relative
measurement.

Individual elements may place other restrictions on measurements; in these cases the corresponding
specification of the element clearly describe the restrictions — if no restriction is noted, then the element
does not exhibit any restrictions on measurements other than prohibiting the use of em and %.

For instance, the specification for an element may:

● Restrict the use of the sign character, limiting the measurement to either a positive or negative value

XFA Specification
Chapter 2, Template Features for Designing Static Forms Basic Composition 38

● Restrict the value, limiting the measurement to whole numbers

Border Formatting
A UI element may describe formatting characteristics for a border around the widget.

Borders

A border is a rectangle around a widget. Independent control over the appearance of sides and corners of
the rectangle is provided.

The border has its own margins, independent of the widget's margins. It is possible for the widget to
overlap the border. However the widget always draws on top of the border.

A border is comprised of one or more optional:

● Edges — the sides of the box, described by edge elements

● Corners — the intersections of the edges, described by corner elements

The border is rendered starting at the top-left corner and proceeding clockwise, using up edge and corner
elements in the order of rendering. Thus the first edge element represents the top edge, the next
represents the right edge, then the bottom, then the left. Similarly the corner elements are in the order
top-left, top-right, bottom-right and then bottom-left.

If fewer than four edge or corner elements are supplied the last element is reused for the remaining
edges or corners. If no corner element is supplied at all then default properties are used for all corners.
However if no edge element at all is supplied, not even an empty element, then the border is not
rendered. However such a border may still be filled as described below.

Note: Prior to version 2.6 this specification did not specify the behavior when there were fewer than four
edge or corner elements. The behavior specified here matches that exhibited by the Acrobat
family of products.

The border can also include a fill specification, indicating that the area enclosed by the border is to be filled
with some sort of pattern or other shading. As with the edges of the border, the widget always draws on
top of the fill.

Thickness

Borders have outlines that are rendered according to one or more pen-strokes. The edge and corner
elements within a border represent pen-strokes.

Each of these elements possesses an attribute which determines the thickness of the stroke, and as the
thickness increases the stroke appears to become wider and spread further toward the inside of the
border. This growth toward the inside ensures that the graphical representation of the border fits within
the nominal extent of the border.

Fill

The fill element indicates how the region enclosed by the border is to be filled. Types of fill include:

● None

● Solid

XFA Specification
Chapter 2, Template Features for Designing Static Forms Content Types 39

● Hatching and crosshatching

● Stippling of two colors

● Gradient fills:

❚ Linear

❚ Radial

The fill element has a child color element. One can think of this as specifying the background color for
the fill. The fill element also has a child element specifying the type of fill, such as solid, pattern, and
stipple. This child, in turn, has its own child color element. This second color can be thought of as the
foreground color. For example, the following would create a fill of horizontal black lines on a gray
background.

Example 2.6 Fill with horizontal black lines on a gray background

<fill>
<color value="128,128,128"/>
<pattern type="horizontal">

<color value="0,0,0"/>
</pattern>

</fill>

Note: If the fill element is omitted or empty the result is a solid white fill.

Content Types
Within a template default data is represented within value elements, as shown in the following examples.
The content types are identified in bold.

Example 2.7 Placeholder for user-provided data (provided during data binding)

<field y="10mm" x="10mm" w="40mm" h="10mm">
<value>

<text/>
</value>

</field>

Example 2.8 Default data, which may be replaced by user-provided data

<field y="10mm" x="10mm" w="40mm" h="10mm">
<value>

<text>Hello, world.</text>
</value>

</field>

Text
The text content type element enclose text data, as shown in Example 2.8. Text is any sequence of
Unicode characters. Alphabetic text includes any Unicode character classified as a letter in the Basic
Multilingual Plane (BMP), described in [Unicode-3.2]. An alphanumeric character is any Unicode character
classified as either a letter or digit in the BMP.

XFA Specification
Chapter 2, Template Features for Designing Static Forms Content Types 40

Date, Time, and DateTime
The date, time, and dateTime elements enclose text content that complies with the corresponding
canonical patterns specified in “Canonical Format Reference” on page 1003. For example, the canonical
forms for the date content type follow:

YYYY[MM[DD]]
YYYY[-MM[-DD]]

In most cases, people filling out a form will supply date, time and dateTime data in a format specific for the
locale. As described in “Localization and Canonicalization” on page 152, such localized forms are
converted to a canonical format before being represented as data in the form. Similarly, canonical data is
converted into a localized form before being present to the user.

Boolean, Integer, Decimal, and Float
The boolean, decimal, float, and integer content type elements may enclose numbers that comply
with the corresponding canonical number forms, as specified in “Canonical Format Reference” on
page 1003.

In most cases, people filling out a form will supply numeric data in a form specific for the locale and using
local-specific symbols. As described in “Localization and Canonicalization” on page 152, such localized
numeric data is converted to a canonical format before being represented as data in the form. Similarly,
canonical data is converted into a localized form before being present to the user.

Numeric
content type Description

boolean The content of a boolean element must be one of the following:

integer An optional leading sign (either a plus or minus, Unicode character U+002B or U+002D
respectively), followed by a sequence of decimal digits (Unicode characters U+0030 -
U+0039). There is no support for the expression of an exponent. Examples of canonical
integer content are shown below:

12
-3

Digit Meaning

0 (U+0030) Logical value of false

1 (U+0031) Logical value of true

XFA Specification
Chapter 2, Template Features for Designing Static Forms Content Types 41

Absent Content

When no content is present, the content shall be interpreted as representing a null value, irrespective of
properties in an associated data description that specify null characteristics (dd:nullType).

Decimal Point (Radix Separator)

Data associated with decimal and float content types must include a decimal point. To maximize the
potential for data interchange, the decimal point is defined as '.' (Unicode character U+002E). No
thousands/grouping separator, or other formatting characters, are permitted in the data.

Images
The image content type element may enclose an image. XFA fields may accept images as data from a user
or from an external source.

Note: The set of image formats supported by an XFA processor is application dependent. Each Adobe
product supports at least JPEG, PNG, TIFF, GIF, and BMP. For more information see “Image formats”
on page 1180.

decimal A sequence of decimal digits (Unicode characters U+0030 - U+0039) separated by a
single period (Unicode character U+002E) as a decimal indicator. Examples of canonical
decimal content are shown below:

+12.
1.234
.12

-123.1

In decimal content types, the number of leading digits and fractional digits may be
retained.

Note: If a person filling out a form supplies non-conforming data for a decimal content
type, the XFA processing application may chose to automatically convert the
data into the decimal equivalent.

float An optional leading sign (either a plus or minus, Unicode character U+002B or U+002D
respectively), followed by a sequence of decimal digits (Unicode characters U+0030 -
U+0039) separated by a single period (Unicode character U+002E) as a decimal
indicator. Examples of canonical float content are shown below:

1.33E-4
.4E3
3e4

Note: If a person filling out a form supplies non-conforming data as the value of a
decimal content type, the XFA processing application may chose to
automatically convert the data into the float equivalent.

Numeric
content type Description

XFA Specification
Chapter 2, Template Features for Designing Static Forms Content Types 42

Images Provided as Data

The template may provide an image as a default value for the field (Example 2.9) and an image may be
supplied by a user (Example 2.9) or by an external source (Example 2.10), such as a database server.

A field image is either embedded in the image element as PCDATA or is referenced with a URI.

The user interface provides an imageEdit widget that allows images to be supplied as URIs. The imageEdit
properties specify whether the image is embedded in the image element or represented as a reference.

Example 2.9 Field with an editable image value

<field name="ImageField1" w="80.44mm" h="28.84mm">
<ui>

<imageEdit data="embed"/>
</ui>
<value>

<image contentType="image/jpg">/9j/4AAQSkZJRgABAQEASA…
…
wcUUUVzm5//Z</image>

</value>
</field>

Example 2.10 Field with an image value supplied by an external source

<field name="signature"
y="58.42mm" x="149.86mm" w="44.45mm" h="12.7mm" anchorType="topCenter">
<value>

<image aspect="actual"
href="http://internal.example.com/images/signatures/JSmith.jpg">

</value>
<bind match="global"/>

</field>

“Image Data” on page 146 describes processing guidelines for including in the XFA Data DOM image href
references that appear in data.

Scaling the Image to Fit the Container (aspect)

Image elements contain a property (aspect) that specifies how the image should be adjusted to fit within
the dimension of the container. See “Images” on page 51.

External Data
The exData content type may enclose foreign data, which is PCDATA that represents the actual data content
of the specified content type. The actual data is encoded as specified by exData.

When no data content is provided, the data content may be interpreted as representing a null value. This
behavior is dependent upon the context of where the data content is used. For instance, a field may
interpret empty data content as null based upon a dd:nullType property in an associated data
description.

XFA Specification
Chapter 2, Template Features for Designing Static Forms Formatting Text That Appears as Fixed or Variable Content 43

Formatting Text That Appears as Fixed or Variable Content
Text may appear in many places in an XFA form. It may appear as fixed content, such as that in a caption, or
it may appear as variable content, such as that supplied by the user or some other source. This section
explains how such text can be formatted.

Variable content text may be formatted as specified by text patterns known as picture clauses. For example
when displaying a monetary amount to the user a picture clause can insert a currency symbol, thousands
separators and a decimal (radix) indicator, all appropriate to the locale. On input the picture clause strips
away this extraneous information so that internally the form deals with pure numbers in a canonical
format. Fixed content text such as caption text is not subject to any picture clause.

Next fixed or variable content text is formatted based on the containing element’s paragraph-formatting
and font-formatting properties, which may themselves be inherited from an ancestor container. If the text
content is derived from rich text, the formatting contained in the rich text over-rides formatting described
by the containing element.

Finally, the resulting data may be further formatted and displayed as a barcode using various barcode
styles.

Layout Strategies
There are two layout strategies for a layout container, positioned layout and flowing layout. In positioned
layout, each layout object is placed at a fixed position relative to its container. In flowing layout, objects are
placed one after the other in sequence, and the position of each object is determined by all the previous
objects to be placed in the same container.

Most layout containers can use either positioned or flowing layout. However blocks of text always use
flowing layout internally. The words and embedded objects within a block of text flow from left to right
and/or right to left in lines and the lines stack from top to bottom. A pageArea object, which represents a
physical display surface, has the opposite limitation; it can only use positioned layout.

In XFAF forms top-to-bottom layout is used by the outer subform to represent the flow of pages. All other
layout objects use positioned layout, except for the words and embedded objects within blocks of text.

Paragraph and Font Formatting of Fixed and Variable Content
General text formatting characteristics, such as alignment and margins, are specified by the para element
and font characteristics, such as font name and size, are specified by the font element.

Whether text is provided by the template or by an external source (such as a user filling out a form or a
database server), text is organized as a series of records separated by newline indicators. In the case of user
data, the newline indicator is inserted by the data loader as described in “Exchanging Data Between an
External Application and a Basic XFA Form” on page 122. Each record consists of a stream of characters. In
the case of rich text, each record may also include formatting markup and embedded objects.

XFA Specification
Chapter 2, Template Features for Designing Static Forms Formatting Text That Appears as Fixed or Variable Content 44

Alignment and Justification

Text in a container element can be automatically aligned or justified relative to the vertical and/or
horizontal borders of the containing element, as illustrated below. Alignment is specified in the para
element associated with the field, as shown in the following examples.

Text justification

Example 2.11 Horizontal and vertical alignment

<field name="example">
<para hAlign="left" vAlign="top"/>
<value>

<text>This is an example of some textual data content that has a
"left" horizontal alignment and a "top" vertical alignment."</text>

</value>
</field>

Text data that uses a radix separator (usually a floating point number)
may be horizontally aligned around the radix separator, with the
radix being a set distance from the right, as shown at right. A field
element with such alignment is shown in the following example.

Example 2.12 Horizontal alignment relative to the radix
separator

<field name="example" y="1in" h="1in" w="3in">
<para hAlign="radix" radixOffset=".5in"/>
<value>

<text>5.1</text>
</value>

</field>
<field name="example2" y="2in" h="1in" w="3in">

<para hAlign="radix" radixOffset=".5in"/>

This is an example of some
textual data content that has a
'Left' horizontal alignment and a
'Top' vertical alignment.

This is an example of some
textual data content that has a

'Center' horizontal alignment and a
'Top' vertical alignment.

This is an example of some
textual data content that has a

'Right' horizontal alignment and a
'Top' vertical alignment.

This is an example of some
textual data content that has a
'Left' horizontal alignment and a
'Middle' vertical alignment.

This is an example of some
textual data content that has a

'Center' horizontal alignment and a
'Middle' vertical alignment.

This is an example of some
textual data content that has a

'Right' horizontal alignment and a
'Middle' vertical alignment.

This is an example of some
textual data content that has a
'Left' horizontal alignment and a
'Bottom' vertical alignment.

This is an example of some
textual data content that has a

'Center' horizontal alignment and a
'Bottom' vertical alignment.

This is an example of some
textual data content that has a

'Right' horizontal alignment and a
'Bottom' vertical alignment.

5.1

5.12345

XFA Specification
Chapter 2, Template Features for Designing Static Forms Formatting Text That Appears as Fixed or Variable Content 45

<value>
<text>5.12345</text>

</value>
</field>

“Flowing Text Within a Container” on page 56 describes text placement and justification in more detail.

Line Height

To flow text and other flowed objects, the application may have to choose break points for wrapping. The
result is that the flowed content is rendered as a series of one or more lines. The height of each line is
known as the line height. If line height is not specified in a para element, it is typically determined from
the current font element. If multiple fonts are used in a line, the processing application must use the
maximum line height asserted by any of the fonts in the line.

Other Formatting

In addition to alignment, justification and line height, the para element may specify left and right
margins, radix offset, spacing above and below the paragraph, tab stops, tab indenting, and hyphenation.

In addition to line height, the font element may specify baseline shift, strike-through characteristics,
overline, underline, angle, size, typeface, and weight.

Formatting Rich Text for Fixed and Variable Content
Rich text is text data that uses a subset of HTML and CSS markup conventions to signify formatting such as
bold and underline. In addition, rich text may include embedded text objects. Since XFA 2.8 it may also
include hyperlinks to external documents. XFA supports the subset of HTML and CSS markup conventions
described in “Rich Text Reference” on page 1144.

Rich text may appear in data supplied to the XFA form. Rich text may also appear in XFA templates as field
captions, as default text values, or as boilerplate (draw) content.

Rich Text Used for Formatting

Rich text data is formatted as specified by the markup specifications in the rich text. The markup
specifications take precedence over formatting specifications in the containing element, which appear in
the font and para elements.

In general, GUI-based template design applications and XFA processing applications provide formatting
buttons that allow users to apply styling characteristics to text. For example, the UI in such applications
may provide a Bold button the user applies to selected text. In response, the application converts the
entire body of in-focus text into a rich text representation and encapsulates the selected text within a
element, as shown in the example in the following example.

In the following example, the markup instructions specify the font family should be Courier Std and
specify that the words "second" and "fourth" should be bold, as illustrated below. Also notice the
appearance of the attribute allowRichText="1", which tells an XFA processing application that its UI
must support entry of rich text values for the field.

Example 2.13 Rich text provided as a default field value

<field w="4in" h="4in">

XFA Specification
Chapter 2, Template Features for Designing Static Forms Formatting Text That Appears as Fixed or Variable Content 46

<value>
<exData contentType="text/html">

<body xmlns="http://www.w3.org/1999/xhtml">
<p style="font-family:'Courier Std'">The second and

 fourth
words are bold.

</p>
</body>

</exData>
</value>
<ui>

<textEdit allowRichText="1"/>
</ui>

</field>

Produces:

The chapter “Representing and Processing Rich Text” on page 215 provides more detailed information on
rich text.

Rich Text Used to Embed Objects

Embedded objects are objects which are imported into and flow with the surrounding text. Embedded
objects can include variable data that is defined at run time. For example, the content of a field can be
inserted into fixed text as an embedded object. An embedded object may contain non-textual data such
as an image, in which case the embedded object is treated like a single (possibly rather large) character.

This application of rich text is described in “Rich Text That Contains External Objects” on page 221.

Rich Text Used for Hyperlinks

Hyperlinks in XFA point to external documents. Clicking on the link text causes the XFA processor to bring
up whatever program is appropriate to process the URL. For example, if the URL starts with http: then
the XFA processor brings up an HTML browser.

Note: In HTML and XHTML hyperlinks can also point to places within the current document. XFA does not
yet include grammar to support this functionality.

This application of rich text is described in “Rich Text That Contains Hyperlinks” on page 216.

Formatting Variable Content
Variable content text may be formatted using picture clauses. Such formatting is in addition to that
specified for paragraphs and fonts for rich text.

After variable content text is formatted using picture clauses, it may be further formatted as barcode
representations, as described in “Barcode Formatting of Variable Text” on page 47.

The second and fourth words are bold.

XFA Specification
Chapter 2, Template Features for Designing Static Forms Formatting Text That Appears as Fixed or Variable Content 47

Picture-Clause Formatting in General

XFA carries the distinction between data and presentation to the field level. Often, the user wishes to see
individual field values embellished (e.g., with thousand separator, currency symbol). Yet the underlying
data element may not contain those embellishments. An XFA picture clause provides the mapping
between the two representations. The format element, a child of the field element, has a picture
property, which specifies the presentation of the field's data.

While it may make sense to present a value in a verbose format (e.g., “Thursday, June 26 2003"), it could
prove onerous if users have to enter data in this format. It might prove equally awkward to force users to
enter dates in the underlying date element format (e.g., “20030626”). XFA-Template allows a second
picture clause to be associated with the field, as a property of the field's ui element. For example, a
resident of the USA might enter the date as “06/26/2003”, and have it presented as “Thursday, June 26
2003" after tabbing out of the field. The picture clause associated with the ui element is referred to as an
input mask. See “Picture Clause Specification” on page 1108.

Locale-Specific Picture Clauses

A locale is identified by a language code and/or a country code. Usually, both elements of a locale are
important. For example, the names of weekdays and months in the USA and in the UK are formatted
identically, but dates are formatted differently. So, specifying an English language locale would not suffice.
Conversely, specifying only a country as the locale may not suffice either — for example, Canada, has
different currency formats for English and French.

When developing internationalized applications, a locale is the standard term used to identify a particular
set of date, time, number, and currency formatting rules. At a minimum the locale is specific to a particular
language and country, but it may be more specific than that. For example the locale en_UK_EURO
identifies a locale which corresponds to common usages of the English language in the United Kingdom,
but using a Euro (€) symbol to denote currency instead of the pound sterling (£) symbol.

Localized formatting can be specified within the template (using picture clauses) or by allowing a picture
clause to specify various formats for the supported locales. The XFA processing application then chooses
the picture clause for the current locale or specified by the template locale.

Barcode Formatting of Variable Text
Barcodes are not a different data type but a different way of presenting textual or binary data. In XFA, a
barcode is the visual representation of a field. The content of the field supplies the data that is represented
as a barcode. For example,

Example 2.14 Field represented as a barcode

<field h="10.16mm" name="InventoryNumber" w="48mm" >
<ui>

<barcode dataLength="10" textLocation="belowEmbedded"
type="code3Of9" wideNarrowRatio="3.0"/>

</ui>

<value>

<text>1234567890</text>
</value>

</field>

XFA Specification
Chapter 2, Template Features for Designing Static Forms Access Restrictions 48

Assume that the field InventoryNumber contains the default text. When printed the field appears as
follows (actual size):

In the example, the field element’s width (w) and height (h) attributes control the width and height of
the barcode, hence the dimensions and spacing of the individual bars. In addition the field font, specified
by the font element, controls the font used for the human-readable text embedded inside the barcode.
The type attribute of the barcode element determines what type of barcode is printed. The example uses
a 3-of-9 barcode. 3-of-9 barcodes are very common but not tightly specified so there are many parameters
controlling the appearance of the barcode. Other attributes of the barcode element determine how
many characters are in the barcode (dataLength), whether there is human-readable text and where it is
located (textLocation), and the ratio of the width of wide bars to narrow bars (wideNarrowRatio).
There are other applicable parameters which are defaulted in the example.

Barcode readers are used only with printed forms; therefore, although a field may be designated as a
barcode field it need not appear as a barcode in an interactive context. When the field has input focus
some sort of text widget must be presented so that the user can edit the data. When the field does not
have input focus the appearance is application-defined.

For more information about using barcodes in XFA see “Using Barcodes” on page 411.

Access Restrictions
The XFA architecture distinguishes between the declaration of a user interface object and its behavior. In
particular fields and exclusion groups may have access restrictions, such as being read-only to the user.
Since XFA 2.8 such a restriction can also be placed upon a subform, from which it is inherited by the
objects inside the subform - both contained subforms and user interface objects. Inheritance is in the
direction of decreased privilege / increased restrictions. Hence if an outer subform imposes tighter
restrictions than an inner subform then the restrictions of the outer subform propagate to the inner
subform and the inner subform’s content.

1234567890

XFA Specification
Chapter 2, Template Features for Designing Static Forms Basic Layout 49

There are four levels of access restrictions, as shown in the following table. All objects that accept access
restrictions have access properties that take one of the four key values shown in the table.

Basic Layout
This section describes the most common aspects of how widgets are arranged and presented on the
presentation medium. It explains how the objects that appear on a page are positioned relative to the
page and to one another. This section also describes text flow and justification.

Box Model
In order to understand the ways in which relative positions are calculated it is necessary to understand the
box model. Layout employs a box model in which model objects (both containers and displayable entities)
are represented by simple rectangles called nominal extents. Each nominal extent is aligned with the X
and Y axes and represents the amount of physical space on the page that is reserved for a particular
object. Some nominal extents are calculated at run time, for example the extents for blocks of variable text
in fields. Other nominal extents are presupplied.

Fields in XFAF forms have nominal extents supplied explicitly via the w (width) and h (height) attributes.
Each of these attributes is set to a measurement. The field's margins, if any, and its caption, if any, lie inside
the nominal extent.

Fields may have borders. In XFAF forms the borders always lie inside the nominal extent of the field.

Priority
(restrictiveness) Access value Effect

1 nonInteractive The object’s contents can be loaded from the document,
but not updated interactively. Calculations are performed at
load time but content is not subsequently recalculated.
Contents can not be modified by scripts or web service
invocations.

2 protected The user is prevented from making any direct changes to
the content. Indirect changes (for example, via script) may
occur. The user cannot tab into the content, though the XFA
processor may (application defined) allow the selection of
content for clipboard copying. The object and its contents
do not generate any events, that is, they do not provoke any
running of scripts or invocation of web services.

3 readOnly The user is prevented from making any direct changes to
the content. Indirect changes (for example, via script) may
occur. The content does participate in tabbing and permit
the user to view and, if applicable, scroll the content. The
user can select the content for copying to the clipboard. The
object and its contents generate all the normal events
except those associated with the user making direct
changes to the content.

4 open The user can update the content without restriction. This is
the default.

XFA Specification
Chapter 2, Template Features for Designing Static Forms Basic Layout 50

Fields are containers with box models, but the content of the field may have its own box model. For
example a field may contain an image which has its own box model. Hence the box model is recursive; box
models may contain box models.

The relationship between the nominal extent,
borders, margins, captions, and content is
shown at right.The Nominal Content Region is
the rectangular area left over after container's
margins have been applied to its nominal
extent. This is the space normally reserved for
display of and interaction with the container
object's content. Note that the caption may
occupy part of the nominal content region.

The rules governing width and height for each
type of layout object are given below:

Barcode

There are two types of barcodes, one-dimensional and two-dimensional.

For some one-dimensional barcodes the width is fixed by the barcode standard. For others the width
varies with the number of symbols in the data and the presence or absence of check symbol(s). In addition
for some one-dimensional barcodes the width of a symbol is adjustable.

For some one-dimensional barcodes the height is fixed by the standard. For others the height is
adjustable.

For two-dimensional barcodes the width varies with the number of columns and the cell size. The height
varies with the number of symbols in the data, the presence or absence of check symbol(s), and the cell
size.

Note that barcode standards often dictate a margin around the barcode as well. The barcode size as
computed by the layout processor does not include any such mandated margin. It is up the creator of the
template to set the appropriate margin in the container. Hence the form creator can “cheat” as desired.

caption region

content

border
inset

bo
rd

er
in

se
t

bo
rd

er
in

se
t

border
inset

left
margin

bo
tt

om
m

ar
gi

n

to
p

m
ar

gi
n

right
margin

nominal extent

caption
margin

Relationship between nominal extent and
borders, margins, captions, and content

XFA Specification
Chapter 2, Template Features for Designing Static Forms Basic Layout 51

Captions

Captions may have explicit heights or widths supplied by a reserve attribute. The reserve is a height if
the caption is placed at the top or bottom of its container, but a width if the caption is placed at the left or
right of its container. When the reserve attribute is not supplied or has a value of zero, the layout
processor calculates the minimum width or height to hold the text content of the caption. This calculation
is described in “Text” on page 39.

Fields

Fields may have explicit widths supplied by w attributes and/or explicit heights supplied by h attributes.
When either of these attributes is not supplied, the layout processor must calculate it.

The first step is to compute the size of the field content. If the field contains text the width and/or height of
the text content is first calculated as described in “Text” on page 39. If the field contains an image the
height and/or width of the image content is calculated as described in “Images” on page 41.

After this, if there is a caption, the layout processor adjusts the height and/or width to account for the
caption. When the caption is on the left or right, the width is adjusted by adding the caption width plus
the caption left and right margins. When the caption is above or below, the height is adjusted by adding
the caption height plus the caption top and bottom margins.

Images

Depending upon the value of the aspect property an image may keep its original dimensions, it may
grow or shrink in both dimensions while retaining its original aspect ratio, or it may grow or shrink
independently in each dimension to fill the container. In all but the last case it may display outside the
nominal extent. Some image formats do not specify a physical size, only horizontal and vertical pixel
counts; in such cases the application assumes a pixel size to arrive at a natural width and height. The
assumed pixel size is application-dependent and may vary with the graphic file type and/or display or
print device. The following figure shows an example of resizing an image in a container using different
aspect settings.

XFA Specification
Chapter 2, Template Features for Designing Static Forms Basic Layout 52

Image with different aspect settings

Subform

The subform element describes a logical grouping of its child elements. In XFAF forms subforms have no
visible appearance, hence no box model.

Text

The height calculation for each line must take into account the height of each character (which depends
on the type face and size), the positioning of characters above the baseline (superscript) and below the
baseline (subscript), and underlining. The overall height is the sum of the individual line heights, plus the
sum of the leading between lines.

The width calculation for each line must take into account the width of each character, including white
space characters, and for the first line the text indent. The overall width is the largest of the line widths. The
following figure shows these quantities.

aspect="actual" aspect="none"

aspect="height" aspect="width"

aspect="fit"

XFA Specification
Chapter 2, Template Features for Designing Static Forms Basic Layout 53

Layout quantities for a text object

Size, Margins and Borders of Widgets

A widget is used here to refer to a simulated mechanism displayed by the user interface to enable the user
to enter or alter data. For example, a check box displayed on a monitor, which checks or unchecks in
response to a mouse click, is a widget. “Widgets” on page 471 describes the user experience with widgets.

Size

Most widgets do not have explicit size attributes. All widgets can resize themselves to fit the containing
field; if the field containing the widget has a specified size then the widget's extent grows or shrinks to fit
the imposed size. If no size is imposed on the widget it expresses its natural size. The natural size of a
widget and the factors that control it vary with the widget type.

A widget may temporarily grow to occupy a larger area of the screen while the widget has focus (like a
drop-down list). However as soon as focus is lost the widget goes back to its normal size. The table below
lists sizes for widgets when they do not have focus and also when forms including images of a widgets are
printed to hard copy. The size of a widget while it has focus is up to the implementation.

 To be or not to be; that
is the question. Whether 'tis
nobler in the mind to bear
the slings and arrows of
outrageous fortune, or take

left margin

right margin

lin
e

he
ig

ht

le
ad

in
g

lin
e

he
ig

ht

width of longest line

to
p

m
ar

gi
n

bo
tt

om

m
ar

gi
n

Natural size of widgets

Widget Natural width Natural height

button Has no natural size (or a natural size of zero) because it does not display any
content. A field containing a button displays only the field caption and field
borders, but with their appearance changed to indicate clickability.

check box or radio
button

The size property plus left and right
margins. Defaults to 10 points and no
margins.

The size property plus top and bottom
margins. Defaults to 10 points and no
margins.

XFA Specification
Chapter 2, Template Features for Designing Static Forms Basic Layout 54

Margins and Borders

A widget, other than a button, may have its own margins and borders in addition to any margins and
borders asserted by its container. When a text widget declaration has a margin element but the element
asserts no attributes the margin default varies depending upon the presence of a border. Text widgets
include date, time, and date-time widgets, choice lists, numeric edit, password edit and text edit widgets,
and signature widgets. For these widgets when there is no border the default margin is zero on all sides.
When there is a border the default margin is twice the border thickness on all sides, plus an additional
amount on the top margin equal to the descent of the font (for a rich-text field, the default font.) By
contrast, for all other widgets the margin default is always zero on all sides whether there is a border or
not.

Size Requirement for Containers

For images the w and h attributes are mandatory. If either of these is not supplied the XFA processor
should either infer a size from context or default the value to 0. Whichever strategy is taken the goal is to
continue processing even if the result is unattractive.

Clipping

When the content does not fit into the container the excess content may either extend beyond the region
of the container or be clipped. The permissible range of actions varies according to the type of container
and the context (interactive or non-interactive).

When the container is a field and the context is interactive, the content of the field may be clipped.
However some means must be provided to access the entire content. For example, the XFA application
might arrange that when a field gains focus a widget pops up. The widget could be dynamically sized or it
could support scrolling.

When the container is a field and the context is non-interactive (for example printing to paper) the content
must not be clipped. The content may be allowed to extend beyond the field or it may be shrunk to fit the
field.

choice list Same as a text edit. Same as text edit.

date, time, or
date-time picker

May be displayed temporarily by the application during data entry while the
field has focus. When the field loses focus it reverts to the same display rules as a
text edit.

image Same as text edit. Same as text edit.

numeric edit Same as a text edit. Same as text edit.

password edit Same as a text edit, except each character of content is replaced with an asterisk
(“*”) character.

signature Implementation-defined.

text edit The width of the text block plus the
left and right margins. Defaults to no
margins.

The height of the text block plus the
top and bottom margins. Defaults to no
margins.

Natural size of widgets

Widget Natural width Natural height

XFA Specification
Chapter 2, Template Features for Designing Static Forms Basic Layout 55

When the container is a caption the behavior is implementation-defined. It is the responsibility of the form
creator to ensure that the region is big enough to hold the content.

Rotating Containers

Container elements may be rotated about their anchor point. Rotation is in degrees counter-clockwise
with respect to the default position. Angles are supplied as non-negative multiples of 90. In the following
example, the field is rotated counter-clockwise 90 degrees.

Rotating Positioned Content

The following example shows how a container is rotated.

Example 2.15 A field rotated 90 degrees rotates its contents

<field name="soliloquy" anchorType="topLeft" rotate="90"
y="100.00mm" x="40.00mm" w="78.00mm" h="50.00mm">
<value>

<text>To be, or not to be: that is the
question: Whether 'tis nobler in
the mind to suffer The slings and
arrows of outrageous fortune, Or to
take arms against a sea of troubles,
And by opposing end them?</text>

</value>
</field>

The result of rendering the above field element is shown at right.

Rotating Flowed Content

The rotation of containers in a dynamic form affects the flowed placement of containers, as described in
“Effect of Container Rotation on Flowed Layout” on page 279.

Transformations

Presenting the form to the user, or printing it to paper, requires that the many objects inside the template
be assembled by the processing software. During this assembly, many geometric transformations must

T
o

b
e
,

o
r

n
o
t

t
o

b
e
:

t
h
a
t

i
s

t
h
e

q
u
e
s
t
i
o
n
:

W
h
e
t
h
e
r

'
t
i
s

n
o
b
l
e
r

i
n

t
h
e

m
i
n
d

t
o

s
u
f
f
e
r

T
h
e

s
l
i
n
g
s

a
n
d

a
r
r
o
w
s
 o
f

o
u
t
r
a
g
e
o
u
s

f
o
r
t
u
n
e
,

O
r
 t
o

t
a
k
e
 a
r
m
s
 a
g
a
i
n
s
t
 a
 s
e
a
 o
f
 t
r
o
u
b
l
e
s
,

A
n
d

b
y

o
p
p
o
s
i
n
g

e
n
d

t
h
e
m
?

XFA Specification
Chapter 2, Template Features for Designing Static Forms Basic Layout 56

take place. A container object must position or flow its enclosed objects within its nominal content region,
using its own coordinate space. If a container holds other containers as its content, those child containers
in turn position or flow their content within their own coordinate spaces.

It is not the responsibility of this document to mandate the actual implementation of transformations.
However, by describing one possible implementation, transformation calculations become more obvious.
This particular implementation is provided to be illustrative of transformations.

In this implementation, there is a clear separation between what the enclosed object knows and what the
enclosing container knows. Regardless of margins and the internal coordinate origin, the enclosed object
adjusts the coordinates that it makes available to the container so that (0,0) is the top-left corner of the
contained object's nominal extent. We refer to these as common coordinates, which are coordinates the
parent can easily transform into its own coordinate space. See “Algorithms for Determining Coordinates
Relative to the Page” on page 1452.

Flowing Text Within a Container
This section describes the placement of text within a fixed-size container. It does not discuss the
placement of text within a growable container. Placement of text within growable containers is discussed
in“Text Placement in Growable Containers” on page 272.

A container’s data is flowed inside the nominal extent of the container. The flow of text within a line can be
left to right or right to left or a mixture of the two. Lines always flow from top to bottom.

The enclosing container may specify the alignment of text within the object (“Alignment and Justification”
on page 44) and may specify whether the container may grow in width and/or height (“Growable
Containers” on page 270). The enclosing container can also control the initial direction of text flow (left to
right or right to left) and rules for word parsing by specifying a locale. Since XFA 2.8 the enclosing
container can also specify various settings for auto-hyphenation. Automatic hyphenation is used when
wrapping text from one line to the next. Text is typically flowed over one or more lines, breaking at
hyphenation boundaries.

The examples in this section assume the text stream shown below, which also serves to illustrate the
organization of text data. The symbol ↵ stands for the newline indicator, which acts as a line break. The ∇
symbol stands for the Unicode new paragraph indicator (U+2029). Either indicator serves as a record
delineator.

To be, or not to be: that is the question:↵Whether 'tis nobler in the mind to
suffer↵The slings and arrows of outrageous fortune,↵Or to take arms against
a sea of troubles,↵And by opposing end them?∇

When placing text into a fixed-width region each text record is placed upon a new line. Within each record
the layout processor treats the text as a string of text layout units. A text layout unit may be an embedded
non-text object or a word. When necessary a text layout unit may be a fragment of a word broken at a
hyphenation boundary; see “Automatic Hyphenation” on page 65. The boundaries of layout units may be
delimited by the edges of embedded non-text objects or by white space characters. In many languages
text layout units are words, separated by white space. However not all languages use white space to delimit
words. Therefore, the parsing of words is language-dependent. Which languages are supported is
implementation-dependant, but all implementations should support some locale that uses the Unicode
Basic Latin and Latin-1 Supplement character codes (U+0021 through U+007E inclusive). The complete
rules for parsing words are given in Unicode Standard Annex 14 [UAX-14]. Note that these rules were first
adopted in XFA 2.2.

XFA Specification
Chapter 2, Template Features for Designing Static Forms Basic Layout 57

The initial flow direction depends on the locale. However a single paragraph of text can contain text from
different languages that flows in different directions. For example, the language of the locale is Arabic so
the initial flow direction is right to left. However the text contains a phrase in English that flows from left to
right. The flow direction of the English phrase may be explicitly indicated by codes reserved for this
purpose in Unicode, or the text engine can infer it from the use of English letters in the phrase. The whole
complicated set of rules is specified in Unicode Annex 9 [UAX-9]. By applying these rules the text layout
engine divides the paragraph into segments, such that within each segment the flow is all in one direction.

Note: Unicode Annex 9 has been widely embraced and incorporated into many other standards. However
Microsoft has its own way of doing things which is close to, but not quite in accordance with, the
Unicode standard. Do not expect XFA flow direction to exactly match the behavior of
non-conformant software.

If the container has fixed dimensions and the flowed text exceeds the boundaries of the container, the
view of the text must be adjusted as described in “Clipping” on page 54.

Selection and Modification of the Font

XFA containers that can hold plain text have a property called font. This property in turn has numerous
subproperties that can be used to specify the font and to modify its characteristics in various ways. The
following table describes these subproperties.

Font Property Description

baselineShift A positive or negative measurement value that shifts glyphs up from
the baseline (a positive measurement) or down from the baseline (a
negative measurement).The default is 0.

fontHorizontalScale
fontVerticalScale

Percentage by which to scale the glyph size in horizontal and vertical
directions. Both default to 100.

kerningMode Type of kerning to be performed. Currently the only permitted values
are none (the default) and pair.

letterSpacing Amount by which to increase (or if negative decrease) the spacing
between adjacent grapheme clusters. This is a relative measurement,
as described in “Measurements” on page 36. Defaults to 0.

lineThrough
lineThroughPeriod

Type of line-through to be drawn (also known as strike-through). The
number of line(s) is given by lineThrough (maximum 2, defaults to
0). The line(s) skip over the spaces between words if
lineThroughPeriod is word but are continuous if it is all
(defaults to all).

overline
overlinePeriod

Type of overline to be drawn. The number of line(s) is given by
overline (maximum 2, defaults to 0). The line(s) skip over the
spaces between words if overlinePeriod is word but are
continuous if it is all (defaults to all).

Note: Adobe products do not implement overline.

posture Either normal (the default) or italic.

size A measurement specifying the font size, before any horizontal or
vertical scaling. Defaults to 10pt.

XFA Specification
Chapter 2, Template Features for Designing Static Forms Basic Layout 58

There is no guarantee that a form will be able to obtain the combination of typeface, size, posture, and
weight that it asks for. The combination may not be available on the computer where the form is being
used or within the printer by which it is being printed. However when an XFA form is packaged inside a
PDF file the PDF file may carry the required fonts along with the form. When the XFA processor is unable to
supply the requested font it substitutes whatever font is available that it considers the best match.

Text Layout in the Horizontal Direction

Layout units within a text record are placed in document order in the flow direction along the line, along
with any white space between them. The line starts at either the left or right margin, depending upon the
direction of flow, plus - if it is the first line in a paragraph - the first line indent. The line stops when the text
record is exhausted or the next thing is a text layout unit (i.e. not white space) and it cannot be placed on
the line without going beyond the pertinent margin.

The resulting line may contain trailing white space. This is present in the layout and the application may
position to it (for example in response to the End key). However under normal circumstances it is invisible.
Highlighting a selection that includes the trailing white space makes it visible in the highlight color.

Note: Versions of this specification prior to XFA 2.8 erroneously said that trailing white space was
discarded. Such behavior would be impractical, since the user has to be able to enter trailing
whitespace when inserting text into a field.

The container specifies the left and right margins via the attributes marginLeft and marginRight on
the para element. The effect of each is the same regardless of the text flow direction.

The container specifies the first line indent via the textIndent attribute on the para element. The first
line indent is at the left for left-to-right text flow or at the right for right-to-left text flow.

Next the layout units within the line are reordered in accordance with the direction of the segment in
which each is embedded. See Unicode Annex 9 [UAX-9] for details.

The line is now ready to be positioned within the region. The table “Influence of hAlign on alignment of
text” on page 59 further describes horizontal text alignment.

Regardless of the type of alignment being performed, if a single word is too wide to fit into the region the
layout processor must break the word between characters. Furthermore, if a single character or embedded
non-text object by itself is too wide to fit into the region it is allowed to extend beyond the region. In this
case, if the horizontal alignment is center or right, the layout processor may sacrifice horizontal
alignment in order to avoid assigning negative coordinates to the character or embedded object.

typeface The name of the typeface. Defaults to Courier, which is appropriate
for a data-entry field.

underline
underlinePeriod

Type of underline to be drawn. The number of line(s) is given by
underline (maximum 2, defaults to 0). The line(s) skip over the
spaces between words if underlinePeriod is word but are
continuous if it is all (defaults to all).

weight Either bold or normal. The default is bold, which is appropriate for
a data-entry field.

Font Property Description

XFA Specification
Chapter 2, Template Features for Designing Static Forms Basic Layout 59

Influence of hAlign on alignment of text

hAlign Description Illustrated Effect

left

right

center

If hAlign is set to left the line is positioned
so that its left-most text layout unit abuts the
left edge of the region. If hAlign is set to
right the line is positioned so that the
right-most text layout unit abuts the right edge
of the region. If hAlign is set to center the
line is positioned so that the middle of the line
is at the middle of the region. The figure at right
shows an example of justification with the
hAlign attribute set to left.

For these values the effect is the same
regardless of the flow direction.

justifyAll For each line, instead of incorporating the
supplied white space characters, blank regions
are inserted between layout units, one per
breaking whitespace character in the original
text, sized, until the line fills the region from left
to right. The effect is the same regardless of the
flow direction.

In the example at right the template contained
the following declarations:

<field …>
<text>There are 4 spaces
after this word but only 2
after this word.</text>

</field>

To be, or not to be: that is
the question:
Whether 'tis nobler in the
mind to suffer
The slings and arrows of
outrageous fortune,
Or to take arms against a
sea of troubles,
And by opposing end
them?

contentArea

draw

There are 4 spaces after this word but
only 2 after this word.

contentArea

draw

XFA Specification
Chapter 2, Template Features for Designing Static Forms Basic Layout 60

Text Layout in the Vertical Direction

In the vertical direction, the region may not all be usable, because some portion may be reserved for a
caption. Vertical alignment within the usable region is controlled by the vAlign attribute. If vAlign is set
to top the first line of text is positioned at the top of the usable region, with the next line positioned below
it (separated by the leading) and so on. If vAlign is set to bottom the last line of text is positioned at the
bottom of the usable region, with the previous line positioned above it (separated by the leading) and so
on. If vAlign is set to middle the middle of the text lines is positioned to the middle of the usable region.

Within a line the text height and/or baseline may vary from one portion of text to another. Surprisingly,
this is true even for plain text. The line may include tab leaders which can be positioned above or below
the baseline. (See “Tab Leader Pattern” on page 63.) It may also happen that a particular character is not

justify All lines are justified except the last one in the
paragraph. The last line is left aligned if the
initial flow direction of the line is left to right
and right aligned if the initial flow direction is
right to left relative to the containing subform’s
layout attribute.

radix If hAlign is set to radix, then the text is
assumed to contain at least one number per
line. In this case the radixOffset property
specifies the position for the radix character
(“.” or “,” depending upon the locale). Each
line is positioned so that the left edge of the
radix character's layout extent is at the
radixOffset distance from the right edge of
the region. If the line of text does not contain a
radix character the right edge of the line's
layout extent is positioned at the same point, so
that the line is treated as an integer and aligned
with the place where it's radix point would have
been. If a line contains more than one radix
character the first one (in character order) is the
one used for alignment.

Radix alignment can only be used with
place-value numbering systems. The same
algorithm works for all known place-value
numbering systems, because they all flow left
to right from the most significant to the least
significant digit. This is a consequence of the
historical spread of place-value notation from
India to Arabia and thence to Europe. Text flow
direction has no effect because numbers
expressed in the Western style always flow in
the same direction, regardless of the language
in which they are embedded.

Influence of hAlign on alignment of text (Continued)

hAlign Description Illustrated Effect

contentArea

There are 4 spaces after this word
but only two after this word.

XFA Specification
Chapter 2, Template Features for Designing Static Forms Basic Layout 61

available in the specified font. This can force the XFA processor to substitute, for that one character,
another font which may not have the same dimensions.

Since the text height and/or baseline may vary, the XFA processor has to calculate the overall line height.
The overall line height is calculated as the distance between the top of the bounding box for the highest
glyph on the line and the bottom of the bounding box for the lowest glyph on the line. Note, however, that
the top or bottom of a glyph’s bounding box does not necessarily correspond to a visible stroke. Rather it is
the top or bottom of the box that all glyphs in that font occupy, adjusted for scaling and/or shifting of the
baseline.

The container may override the calculated line height using the lineHeight attribute on the para
element. The XFA processor uses the greater of the calculated line height and the specified lineHeight.
The value of lineHeight is a measurement and it defaults to 0.

The container may increase the space between adjacent lines when they belong to different paragraphs.
This is controlled by the spaceAbove and spaceBelow attributes on the para element. The XFA
processor adds the maximum of these measurements to the leading between the lines. Both of these
values default to zero.

Note: Within plain text it makes no difference whether the given space value was supplied with
spaceAbove, spaceBelow, or both. But within rich text the values of spaceAbove and
spaceBelow may differ from one paragraph to the next. In that context it matters which value
is supplied for which by the container.

Tab Stops

Horizontal layout may be modified in the presence of tab characters. Within plain text a tab character
(U+0009) is interpreted as a command to align with the next tab stop. (Depending upon the overall
direction of text flow this could be the next tab stop on the right or the next tab stop on the left.) The
group of text which is aligned by the tab stop starts with the character following the tab character and
continues until end of record or another tab character is encountered.

Tab stops are properties of the enclosing container. They can be specified in two ways.

Default tab stops, which recur at fixed distances, can be declared using the tabDefault attribute on the
para element. The value of the attribute is a measurement giving the distance between tab stops. The
leftmost tab stop occurs that distance from the left margin, the next occurs at twice that distance, and so
on. When this attribute is omitted or empty no default tab stops are set.

Prior to XFA 2.8, default tab stops were always left-aligned. Since XFA 2.8 they have been after-aligned. For
text that flows left-to-right these are equivalent. The exact meanings of left-aligned and after-aligned are
given in the table below.

Additional tab stops may be specified by the tabStops attribute of the para element. Each of these tab
stops is specified with a horizontal location and an optional alignment. The alignment value
determines whether the tab stop aligns to the left, to the right, centered on the tab position, or with the

XFA Specification
Chapter 2, Template Features for Designing Static Forms Basic Layout 62

radix point on the tab position. These alignments are shown in the following table. Note that any
alignment may be used regardless of the overall direction of text flow.

Example 2.16 Tab stop alignment

For example, assume the field content is the following text. Each → represents a tab (Ux0009) character
and each ↵ represents a record terminator.

1→Salt→1 Kg→box→iodized↵
2→Ketchup→1.5 Kg→bottle↵
3→Margarine→.5 Kg→tub→soya↵

Assume the tab stop declaration is as follows.

<field …>
<para tabstops="left 1in decimal 2.5in right 3.5in centre 4.5in"
</para>

</field>

Influence of tab stops on alignment of text

alignment Description

left

after, when flow is
left-to-right

before, when flow is
right-to-left

Left alignment positions the left edge of the aligned text at the tab stop.
This is the default.

right

before, when flow is
left-to-right

after, when flow is
right-to-left

Right alignment positions the right edge of the aligned text at the tab
stop.

center The text is centered upon the tab stop.

decimal The text is treated as a numeric quantity. In this case the radix character in
the aligned text (“.” or “,” depending upon the locale) is aligned to the
tab stop. If the aligned text does not contain a radix character the right
edge of the text's layout extent is positioned at the same point, so that the
line is treated as an integer and aligned with the place where it's radix
point would have been. If a line contains more than one radix character
the first one (in character order) is the one used for alignment.

Radix alignment can only be used with place-value numbering systems.
The same algorithm works for all known place-value numbering systems,
because they all flow left to right from the most significant to the least
significant digit. This is a consequence of the historical spread of
place-value notation from India to Arabia and thence to Europe.Text flow
direction has no effect because numbers expressed in the Western style
always flow in the same direction, regardless of the language in which
they are embedded.

XFA Specification
Chapter 2, Template Features for Designing Static Forms Basic Layout 63

Then the field is presented as follows.

Tab Leader Pattern

Since XFA 2.8 a tab stop may specify, in addition to an alignment and a position, a tab leader pattern. The
tab leader pattern is used to fill the otherwise blank space before or after the text aligned with the tab
stop. For example, the space can be filled with dots.

Example 2.17 Periods used as tab leaders

Assume a field declares the following tab stop.

<field …>
<para tabStops="left leader(dots()) 1cm">

</field>

Assume further that the content of the field is as follows.

1→abcd↵
2→efghij↵

The field content is displayed as follows.

The grammar for the value of tabStops is fairly complicated. Wherever possible it draws upon CSS and
XSL-FO. The general structure is:

 [alignment] [leader] location [[alignment] [leader] location]]…

The formal parameters alignment and location are described above in “Tab Stops” on page 61. The
formal parameter leader is defined as:

leader (leaderPattern [leaderAlignment [leaderPatternWidth]])

The formal parameter leaderPattern is defined as:

dots[()] | rule(ruleStyle [ruleThickness]) | space[()] | use-content(content)

The meaning of this parameter is defined by the following table.

1 Salt 1 Kg box iodized

2 Ketchup 1.5 Kg bottle

3 Margarine .5 Kg tub soya

ruleStyle value Effect

dots() Draw a rule consisting of a series of dots. The
implementation is free to draw the rule graphically or
using text.

rule(…) Draw a rule as specified by the parameters. The rule is
drawn in the current text color.

1....abcd
2....efghij

XFA Specification
Chapter 2, Template Features for Designing Static Forms Basic Layout 64

The formal parameter ruleStyle controls the type of rule to draw in the leader. The values are defined
by the following table. .

In addition to the values defined above, XFA processors should accept the values double, groove, and
ridge, which are defined by XSL-FO. However because these types of rulings are not otherwise supported
in XFA, leaders with these rule styles may be rendered as solid.

The formal parameter ruleThickness specifies the rule thickness. It is a relative measurement as
defined in “Measurements” on page 36.

The formal parameter content represents textual content which is copied repeatedly into the empty
region before the tab stop, as many times as it will fit. This content must be supplied in CSS parameter style
for a function, typically as a quoted string. Content consisting of the space character is equivalent to a
leaderPattern of space().

The formal parameter leaderPatternWidth supplies the pattern repetition width. Some patterns have
their own inherent width, for example a pattern consisting of a string of characters. The XFA processor
computes the effective pattern repetition width as the maximum of leaderPatternWidth and any
inherent width. If the pattern cannot fill this width, each repetition is padded with blank space. The syntax
of leaderPatternWidth is the relative measurement syntax defined in “Measurements” on page 36.

space() Leave the unoccupied region before the tab stop
empty. This is the default behavior when no leader
parameter is supplied in the value of
xfa-tab-stops.

use-content(…) Draw a rule by copying the supplied content into the
unoccupied region, as many times as it fits.

leaderPattern value Effect

dashed The rule appears as a dashed line. This may be drawn
graphically or as text.

dotted The rule appears as a dotted line. This may be drawn
graphically or as text.

none No rule is drawn. This is equivalent to a
leaderPattern of space().

solid The rule appears as a solid line.

ruleStyle value Effect

XFA Specification
Chapter 2, Template Features for Designing Static Forms Basic Layout 65

The formal parameter leaderAlignment controls alignment of the leader pattern. This is used to ensure
that leaders on different lines of the page line up vertically. If supplied, it must have one of the values
defined in the following table. When not supplied it defaults to none.

There may be room for only a partial pattern cycle at the start and/or end of the leader. The XFA processor
does not render these partial cycles, instead leaving the affected region(s) blank. The value of
leaderAlignment may affect whether and where these blank regions appear.

Leader text has the same baseline as the text that precedes and follows it.

Automatic Hyphenation

Hyphenation is the process of breaking up a word into two or more pieces across multiple lines. It is highly
desireable to break the word on an accepted hyphenation boundary. For some languages it may be
possible to find hyphenation boundaries algorithmically. For English, with its chaotic spelling, the
hyphenation boundaries are generally determined using a dictionary (often the same dictionary used for
spell-checking). The XFA processor uses the inferred locale of the text block to determine what language
it is processing. However XFA also provides some algorithmic controls over hyphenation, which apply even
when a dictionary is used.

The following table summarizes the hyphenation controls which are attributes of the hyphenation
element. These control the details of how and when hyphenation is performed. The effect of these
controls is to confine hyphenation to a subset of all words and a subset of possible hyphenation points
within those words. There are other rules in addition to these, but those rules do not have exposed
controls. For example if a word contains one or more digits it is never eligible for hyphenation and there is
no way to control that..

leaderAlignment value Effect

none The leader alignment is left up to the XFA processor.

page For unrotated text the leader is aligned as though it started at the right
edge of the page. If the text is rotated by a multiple of 90 degrees it aligns
with the edge that corresponds. For example if the text is rotated so that
right becomes top, then the leader is aligned as though it starts at the top
of the page.

Caution: Leader alignment is not defined for other text rotation angles.

Property Value Default Description

hyphenate 0 | 1 0 1 enables and 0 disables auto-hyphenation.

wordCharacterCount integer 7 Minimum number of grapheme clusters that must
be present for a word to be auto-hyphenated.

remainCharacterCount integer 3 Minimum number of grapheme clusters that must
remain on the current line when
auto-hyphenating.

pushCharacterCount integer 3 Minimum number of grapheme clusters that must
flow to the next line when auto-hyphenating.

XFA Specification
Chapter 2, Template Features for Designing Static Forms Basic Layout 66

Note: In some languages hyphenating a word may change its spelling. The property
wordCharacterCount applies to the word as it was before hyphenation whereas
remainCharacterCount and pushCharacterCount refer to its length after hyphenation. In all
cases the hyphenation mark is excluded from the count.

Although the names of some of the properties in the above table include the word "character", they must
be processed as counts of grapheme clusters. Some Unicode characters combine with adjacent characters
when they render. For example, a letter and the diacritical mark following it render with the diacritical
mark superimposed upon the letter. The two characters together constitute a single grapheme cluster.

The XFA processor may encounter a situation in which it cannot place the text upon the page while
obeying the controls listed above. In this case it performs emergency hyphenation, discarding controls as
necessary to accomplish hyphenation as best it can. If even emergency hyphenation fails (for example if
the word contains digits and therefore is ineligible for hyphenation) it may fall back further, simply
wrapping at any location in the word.

In all languages known to the XFA Committee hyphenation is indicated by a hyphenation mark affixed to
the end (in the current flow direction) of the line where the leading part of the word is located and/or a
hyphenation mark affixed to the beginning (in the current flow direction) of the next line. However a word
may, if it is long enough, break across more than two lines. In that case multiple hyphenation marks are
required.

The XFA processor may have a choice of hyphenation points within the word. In general the goal of
hyphenation is to place as many grapheme clusters as possible before the hyphenation, thus fitting the
maximum possible text into the current the line. However, not all hyphenation points are of equal quality.
In many languages, a single spelling can represent two or more words and the reader uses context to infer
the correct one. Hyphenating such a word may bias the reader towards an incorrect interpretation. For
example, consider the English word "unionize". This single spelling has two diferent meanings and the
reader must use the context to determine the correct one. The word also has two different hyphenation
points, and selecting one may bias the reader: "union-ize" versus "un-ionize". Therefore both hyphenation
points would be of lesser quality than one that did not lead to such bias.

Hyphenation literature and implementations tend to partition hyphenation points into three quality
classes: preferred, normal, and poor. The XFA processor places a higher priority upon the class of
hyphenation point than upon the number of grapheme clusters before the hyphenation point. Hence if
there is a preferred hyphenation point that fits within the space available it selects that point in preference
to any normal hyphenation point. If there are multiple hyphenation points possible with the same quality
class then it picks the one that fits the most text upon the current line. Hyphenation points classified as
poor are used only for emergency hyphenation.

excludeAllCaps 0 | 1 0 1 enables and 0 disables auto-hyphenation of
words consisting entirely of capital letters.

excludeInitialCap 0 | 1 0 1 enables and 0 disables auto-hyphenation of
words that start with a capital or title case letter
and contain at least one letter in a different case.

Property Value Default Description

XFA Specification
Chapter 2, Template Features for Designing Static Forms Basic Layout 67

Text Overflow
Textual content may fill the current container and then overflow into the next container. The next
container may in turn overflow into another container and so on. In this way text may, for example, fill a
left-hand column, then a right-hand column, then the left-hand column on the next page and so on.

It is not always desireable for text overflow to split paragraphs. Settings on the para property of the
container control whether or not a paragraph is split, as shown in the following table. When more than one
condition is applied the split must satisfy all conditions.

Note: With the adoption of the orphans and widows properties in XFA 2.8, the preserve property was
deprecated. Its definition is faulty because it does not specify whether the paragraph line count is
computed using the width of the current container or the width of the current container for the
orphan and the width of the next container for the widow. This property was never implemented in
Adobe products.

When the split conditions are not met the XFA processor leaves white space at the bottom of the current
container and attempts to place the paragraph at the top of the next container. If an entire container is too
small for a paragraph and the split conditions make it unsplittable then the XFA processor may elect to
break the paragraph whereever it finds appropriate.

Concealing Container Elements
XFA template provides several features that allow parts of a form to be concealed under various
circumstances.

Explicitly Concealing Containers

A container may be hidden from view by setting its presence attribute to hidden , invisible, or
inactive. Each of these settings restrict what phases of processing the container and its contents
participate in. When a container participates fully, it takes part in all of the following steps:

1. Data binding (merge). This inserts pre-supplied data into the form, creating the Form DOM.

2. Automation. The form may perform calculations, validations, and event processing in this phase.

Note: During this phase scripts may alter the presence settings of other objects to reveal or conceal
them.

3. Layout. In this phase the XFA processor places content onto the page or display.

Property Value Default Description

preserve (deprecated) integer | all 0 To qualify for splitting the paragraph must be at
least this many lines long. 0 means any paragraph
is splittable. all means no paragraph is splittable.

widows integer 0 To qualify for splitting the orphan part of the
paragraph must occupy at least this number of
lines when it is laid out in the next container.

orphans integer 0 To qualify for splitting the widow part of the
paragraph must occupy at least this number of
lines in the current container.

XFA Specification
Chapter 2, Template Features for Designing Static Forms Basic Layout 68

4. Rendering. The XFA processor draws the content on the page or display.

5. Interaction. In this phase the user can enter or alter data content, and activate controls such as push
buttons, where permitted. Changes to the form state introduced in this phase may force the XFA
processor to repeat any or all of the automation, layout, and rendering stages.

The presence attribute has no effect upon data binding. (There is a separate bind element which
controls data binding.) The presence attribute controls participation of the container and its content in
the other phases of processing. Many non-container objects (such as borders) also have presence
attributes. The effect for both types of object is shown in the following table.

In static forms the space taken by a field is fixed, however the location of the associated caption may shift if
the field is hidden or inactive.

When an outer container contains inner containers, and the outer container has a presence value that
restricts its behavior, the inner containers inherit the outer container’s restricted behavior regardless of
their presence values.

When a container is hidden or invisible, it is still present in the form and takes part in normal
non-interactive activities. For example a hidden or invisible field may be used to calculate a value and
hold the result of the calculation. Alternatively it may hold data that is loaded from an external file or
database so that the data can be used in other calculations. By contrast when a container is inactive any
calculations, validations, or events it would normally generate are suppressed, and it does not respond to
any events generated by other containers.

Value of
presence Phases

Non-container
behavior Container behavior

visible Binding,
automation,
layout,
rendering,
interaction.

Normal
behavior.

Normal behavior.

invisible Binding,
automation,
layout.

The object
takes up space
but is not
visible.

The container and its content take up space but are
not visible. Scripts held by them may perform
calculations, validations, and event processing. This
processing can cause perceptible effects such as
validation messages. When the form is saved or
submitted the data is included along with the rest of
the data.

hidden Binding,
automation.

The object is
effectively
absent from
the form.

The container, its content, and the data to which they
bind are not visibly present in the form, but they may
still perform calculations, validations, and event
processing. This processing can cause perceptible
effects such as validation messages. When the form is
saved or submitted the data is included along with
the rest of the data.

inactive Binding. From the user’s point of view the container, its
content, and the data to which they bind are absent
from the form. However when the form is saved or
submitted the data is included along with the rest of
the data.

XFA Specification
Chapter 2, Template Features for Designing Static Forms Basic Layout 69

Scripts can alter the presence value of a container on-the-fly. For more information about this see “Effect
of changing the presence value” on page 401.

Concealing Containers Depending on View

A form designer may specify that containers in a form should be revealed or concealed depending on the
view. This feature uses a relevant attribute available on most template container elements and a
corresponding relevant element in the configuration syntax grammar (“Config Common Specification”
on page 846).

Usually the relevant element in the configuration contains a single viewname. A viewname is an
arbitrary string assigned by the template creator. For example, the template creator might use the name
"print" to identify a view of the form to be used when printing a hard copy. Viewnames must not contain
space characters (U+0020) or start with the minus ("-") character (U+002D).

If a template container has no relevant attribute, or the value of the attribute is an empty string, then
the template container is included in all views. This is the default. However using the relevant attribute
any given template container may be explicitly included in or excluded from particular views. The content
of the relevant attribute is a space-separated list of viewnames, each of which may optionally be
prefixed with a "-". If a viewname is preceded by a "-" then the container is excluded from that particular
view; if not it is included in the view.

It is also possible for the relevant element in the configuration to specify a list of viewnames. In this case
the effect is to exclude any container which is excluded from any of the listed views.

When a container is excluded it and its content are removed from the XFA Template DOM so that as far as
the XFA processor is concerned it and its content do not exist. However if the template is subsequently
saved as an XML document the excluded container is retained in that document along with its relevant
attribute and all of its content.

The following steps determine whether a container is included in or excluded from a particular view:

1. If the configuration relevant element is unspecified or empty, all containers are included, regardless
of their relevant attributes.

2. If the container’s relevant attribute is unspecified or empty, it is included regardless of the
configuration relevant element.

3. If the configuration specifies a non-empty relevant element, then every template container element
having a non-empty relevant attribute is evaluated for inclusion, as follows.

❚ If the template element specifies a relevant value that includes a viewname that is not preceded
by "-" and is not specified in the configuration, the element is excluded.

❚ If the template element specifies a relevant value that includes a viewname that is preceded by
"-" and is specified in the configuration, the element is excluded.

❚ Otherwise the element is included.

The following table provides examples of the inclusion or exclusion of container elements based on the
template and config relevant values.

XFA Specification
Chapter 2, Template Features for Designing Static Forms Appearance Order (Z-Order) 70

Exclusion of Hidden Containers in the Data Binding Process

If a container is hidden as a result of settings in the presence attribute, the container included in the XFA
Form DOM and is considered in the data binding process. Calculations may provide values to such hidden
containers; however, the person filling out the form cannot.

If a container is hidden as a result of the relevant attribute, it is excluded from both the XFA Template
DOM and the XFA Form DOM. Hence it plays no part in the data binding process.

Appearance Order (Z-Order)
While the form coordinate space is two-dimensional, it should be recognized that container elements
appear to exist at different depths. Objects at shallower depths (closer to the user) may visibly obscure
parts of objects at deeper depths. This notion of a depth-based order is the Z-order of the form. One can
think of objects that come early in the Z-order as being placed on the presentation media earlier in the
construction of the form. Objects that come later are placed over top of the earlier objects.

Each subform encloses other container objects. The subform imposes an implicit Z-order for those
containers, which is simply the order in which the children occur; the first object exists at a deeper Z-order
depth than the last object. This is convenient for many drawing APIs, where objects drawn later appear on
top of objects drawn earlier.

Within an container's box model, there is also a Z-ordering. Content will always appear on top of the
border when the two overlap.

GUI-based template design applications may provide the ability to move an object in front of or behind
another object. Such movement is accomplished by changing the order in which the objects appear in the
document.

In the following example, TextField2 obscures TextField1. TextField1 could be placed on top of
TextField2 by simply reversing the order in which they appear in the document.

Inclusion/exclusion of container elements based on correlation between "relevant" value
in template container element and config

Template relevant
attribute

Config relevant element

print manager
manager
print summary "" (null)

print included excluded included excluded included

manager excluded included included excluded included

-print excluded excluded excluded excluded included

-manager ‘included excluded excluded excluded included

print -manager included excluded excluded excluded included

-print manager excluded included excluded excluded included

-print -manager excluded excluded excluded excluded included

"" (null) included included included included included

XFA Specification
Chapter 2, Template Features for Designing Static Forms Extending XFA Templates 71

Example 2.18 “TextField2” obscures “TextField1”

<field name="TextField1" y="70.00mm" x="60.00mm" h="15.00mm" w="30.00mm">
<ui>

<textEdit>
</textEdit>

</ui>
</field>
<field name="TextField2" y="70.00mm" x="60.00mm" h="15.00mm" w="30.00mm">

<ui>
<textEdit>
</textEdit>

</ui>
</field>

Note: XFA processors are not expected to do anything to prevent fields and their associated widgets on
the same page from overlapping. It is up to the creator of the form to ensure that the extents
assigned to the fields do not overlap, if that is what is desired.

Extending XFA Templates
The XFA template grammar defines the extras and desc elements, which can be used to add
human-readable or machine-readable data to a template. These elements provide the same properties
with the following exceptions: the extras element may be named and may contain child extras
elements. These elements differ in their intended use; however, they can both be used to extend XFA
templates.

Use of custom namespaces in the template grammar is not permitted because the XFA template grammar
is a standard for interactive forms. That is, an XFA document should cause the same behavior, regardless of
the XFA processing application that processes it.

XFA processor may also copy custom data into the XMP packet of a document to make it quickly accessible
without the burden of parsing the entire template. This was a new feature in XFA 2.5.

Adding Custom Named and/or Nested Data to a Template (extras)
The extras element is used to add comments, metadata, or datatyped values to template subelements.
An extras element is named and may contain multiple child extras elements. The extras element is
intended for use by XFA processing applications to support custom features.

The data contained in extras elements is loaded into the Template and Form DOMs, which makes it
available to scripts. Because the type of the data is indicated in the markup the data is available to scripts
in its native format, not only as a string. (Unless it is enclosed in <text> in which case string is its native
format.)

See also the “Template Specification” description of the extras element.

Adding Metadata or Comments to a Template (desc)
The desc element is used to add comments, metadata, or other datatyped values to its parent element. It
may also be used to house information that supports custom features, as with the extras element.

XFA Specification
Chapter 2, Template Features for Designing Static Forms Connecting the PDF to the XFA Template 72

Element comments represented in a desc element remain with the template throughout its life. In
contrast, XML comments in an XFA template are lost when the template is represented as a Data Object
Model. Such information may be used for debugging or may be used to store custom information.

Example 2.19 Metadata in a template subform

<subform …>
…
<desc>

<text name="contact">Adobe Systems Incorporated</text>
<text name="description">Adobe Designer Sample</text>
<text name="title">Tax Receipt</text>
<text name="version">1.0</text>

</desc>
</subform>

See also the “Template Specification” description of the desc element.

Connecting the PDF to the XFA Template
An XFAF form of necessity includes (or is embedded in) a PDF file. There are several things that must be set
up in the PDF to make it operate with the XFA side of the form.

Flags
The PDF specification [PDF] defines a NeedsRendering flag in the the catalog dictionary (document
catalog) which controls whether PDF viewers attempt to regenerate the page content when the
document is opened. Only dynamic templates contain the information required to regenerate the full
page content including the boilerplate. XFAF templates do not contain this information so for XFAF forms
the flag must be false.

Resources
An XFAF form may be contained in an XDP document. The XDP may be a standalone document which also
contains the associated PDF. However it is more common for the XFAF form to be embedded inside a PDF
file. When the PDF contains the XFAF form, the XFA template and other XFA packets are contained in an
entry in the interactive form dictionary with the key XFA. The interactive form dictionary is referenced
from the AcroForm entry in the document catalog. The presence of these entries tells the PDF processor
that the form is an XFAF form. For more information see the PDF specification [PDF].

Field Names
PDF has long included support for interactive fields. Each interactive field has a partial name, as described
in the PDF specification [PDF]. When the interactive field is global (i. e. not inside another field) its partial
name is also its fully qualified name. In an XFAF form each PDF field is global and its name is an expression
which points to the corresponding field element in the XFA template.

The expressions used to link PDF fields to XFA fields employ a grammar known as the XFA Scripting Object
Model (XFA-SOM). This grammar is used throughout XFA and is described in the chapter “Object Models in
XFA” on page 75. The grammar is non-trivial, but fortunately the whole grammar is not required for this
particular purpose. For this purpose it is enough to know that the expression consists of form followed by
the names of the objects (starting with the outermost subform) that must be entered in turn to reach the

XFA Specification
Chapter 2, Template Features for Designing Static Forms Connecting the PDF to the XFA Template 73

field. The names are separated by dot (’.’) (U+002E) characters. Usually XFAF forms have a subform per
page plus a root subform holding all of the page subforms, so this works out to
form.rootname.pagename.fieldname.

Note: For normal AcroForm fields the partial field name is not allowed to contain the dot character.
This restriction does not apply to fields which are simply pointing to an XFA field.

Example 2.20 PDF field names for a typical XFAF form

<template ...>
<subform name="PurchaseOrder" ...>

<subform name="CustomerID" ...>
<field name="FirstName" ...>
...
</field>
<field name="LastName" ...>
...
</field>

</subform>
</subform>

</template>

In this example the PDF field linked to the first field in the template would be named
form.PurchaseOrder.CustomerID.FirstName. The PDF field linked to the second field would be
named form.PurchaseOrder.CustomerID.LastName.

It is also possible for there to be multiple subforms and/or multiple fields with the same name and the
same enclosing element. These are distinguished using a numeric index, with 0 as the index of the first
same-named element.

Example 2.21 PDF field names for an XFAF form with duplicate names

<template ...>
<subform name="PurchaseOrder" ...>

<subform name="Items" ...>
<!-- The first row in a table -->
<field name="PartNo" ...> ... </field>
<field name="Description" ...> ... </field>
<field name="Quantity" ...> ... </field>
<field name="UnitPrice" ...> ... </field>
<field name="Price" ...> ... </field>
<!-- The second row in the table -->
<field name="PartNo" ...> ... </field>
<field name="Description" ...> ... </field>
<field name="Quantity" ...> ... </field>
<field name="UnitPrice" ...> ... </field>
<field name="Price" ...> ... </field>
<!-- The third row in the table -->
<field name="PartNo" ...> ... </field>
<field name="Description" ...> ... </field>
<field name="Quantity" ...> ... </field>
<field name="UnitPrice" ...> ... </field>
<field name="Price" ...> ... </field>
<!-- More rows in the table -->
...

</subform>

XFA Specification
Chapter 2, Template Features for Designing Static Forms Connecting the PDF to the XFA Template 74

</subform>
</template>

In this example the PDF field linked to the part number field in the first row of the table would be named
form.PurchaseOrder.Items.PartNo[0]. The PDF field linked to the part number field in the second
row would be named form.PurchaseOrder.Items.PartNo[1], and so on.

Field location
Each XFA field corresponds to a PDF interactive field (AcroForm field) as described in “Field Names” on
page 72. The PDF field name locates its corresponding XFA field element on the particular page of the
PDF that contains the PDF field. However the field element’s own x and y attributes determine its
location on the page, regardless of the position of the PDF field on the page.

 75

3 Object Models in XFA

This chapter describes the manner in which data objects are named, stored, manipulated, and referenced
by XFA processing applications.

This chapter contains the following sections:

● “XFA Names” explains the syntax of names that can be assigned to individual template elements. Such
names are important in the subsequent sections in this chapter.

● “Document Object Models” introduces the various Document Object Models (DOMs) used in XFA and
discusses the general rules governing their relationship to XML. Then, it gives an overview of how the
various DOMs interact with each other and with XFA processors.

● “Scripting Object Model” introduces the expression syntax used to refer to objects in the DOMs. This
expression syntax is known as the XFA Scripting Object Model (XFA-SOM).

XFA Names
An XFA name is a valid XML name, as defined in the XML specification version 1.0 [XML], with the addi-
tional restriction that it must not contain a colon (:) character. XFA element names are used in the follow-
ing ways:

● Explicitly identifying an object in an XFA DOM, using the XFA Scripting Object Model syntax (“Scripting
Object Model” on page 86)

● Associating data with template fields, as part of data binding

The XML Specification version 1.0 defines name as follows:

Name is a token beginning with a letter or one of a few punctuation characters, and continuing with
letters, digits, hyphens, underscores, colons, or full stops, together known as name characters. Names
beginning with the string "xml", or with any string which would match (('X'|'x') ('M'|'m')
('L'|'l')), are reserved for standardization in this or future versions of this specification.

Note: The Namespaces in XML Recommendation [XMLNAMES] assigns a meaning to names containing
colon characters. Therefore, authors should not use the colon in XML names except for namespace
purposes, but XML processors must accept the colon as a name character.

An Nmtoken (name token) is any mixture of name characters.

NameChar ::= Letter | Digit | '.' | '-' | '_' | ':' | CombiningChar
| Extender

[This specification precludes the use of ‘:’ in a name.]

Name ::= (Letter | '_' | ':') (NameChar)*

[This specification precludes the use of ‘:’ in a name.]

XFA Specification
Chapter 3, Object Models in XFA Document Object Models 76

Document Object Models

General Information
A Document Object Model (DOM) is a platform- and language-neutral interface that allows programs and
scripts to dynamically access and update the content, structure and style of a document. DOMs are
commonly used with data expressed in XML. Indeed the preceding definition of a DOM is paraphrased
from the W3C XML DOM standard [XMLDOM2].

In this specification many operations are described in terms of their effects upon the DOMs. This permits
the specification to be detailed enough for implementation without imposing any requirement upon the
language used for the implementation. Although the contents of a DOM are sometimes referred to as
objects, this terminology does not mean that implementations must be written in an object-oriented or
even object-based language.

However XFA does include scripting facilities. Both of the scripting languages currently defined for use
with XFA are object-based. Hence, in order to make scripts interoperate across different XFA
implementations a common object models must be presented. Furthermore, almost the entirety of the
various DOMs are exposed to scripts. Hence, although an implementation need not be object-based
internally it must present to scripts an object-based API covering most of its functionality.

The DOMs used in XFA share the following characteristics:

● They are strictly tree-structured.

● A node may have mandatory children. In all DOMs except the Form DOM, mandatory child nodes are
created at the same time as their parent.

● The non-mandatory children of each node in the tree are ordered by age. That is, the DOM is aware of
the order in which the non-mandatory child nodes were added.

There are many DOMs in XFA. The large number arises because XFA exposes almost all processing. For
each step in processing there is a DOM holding the data structures for that stage. Scripts can examine and
modify each DOM. DOMs are responsible for maintaining internal consistency but not external
consistency. For instance, when a script turns on a radio button by assigning to the corresponding field, all
the other buttons coupled to that one are automatically turned off. This is a matter of internal consistency
so it is managed by the Form DOM itself. By contrast the XFA Data DOM does nothing to prevent a script
violating the rules of XML, for instance by giving an element two attributes with the same name. This is a
matter of external consistency so it is the responsibility of the script author, not the DOM.

Hierarchy of DOMs
The XFA DOM encapsulates all the DOMs which are directly manipulated by XFA processors. The root
nodes of most of the other DOMs are children of the root node of the XFA DOM. All but one of the
remaining root nodes are grandchildren of the root node of the XFA DOM.

Note: If an application has more than one form open simultaneously, each open form has its own separate
XFA DOM. There is no way for an expression or script in one form to refer to another form.

XFA processors also make use of non-XFA DOMs to represent parsed XML documents. These XML DOMs
stand between one or more XFA DOMs and the physical XML document. For example when an XFA
processor reads an XML data document, it first builds the XML Data DOM representing the parsed XML
data document, then builds the XFA Data DOM derived from the XML Data DOM.

XFA Specification
Chapter 3, Object Models in XFA Document Object Models 77

This encapsulation is convenient for scripting. Scripts refer to nodes in the XFA DOM using XFA Scripting
Object Model (XFA-SOM) expressions. All of the DOMs contained within the XFA DOM can be referenced
using a uniform syntax. The XML DOMs, because they are not inside the XFA DOM, are not directly
accessible to scripts. However the XFA DOM is tightly coupled to the XML DOMs and exposes some
content of the XML DOMs to scripts. At the same time the XML DOMs preserve information that is omitted
from the XFA DOMs, such as processing instructions. When the XFA processor writes out an XML document
it reinserts the information that is missing from the XFA DOM but preserved in the document’s XML DOM.

An XFA form can also carry with it custom, that is to say non-XFA, packets. Each custom packet is
represented in the XFA DOM by a placeholder node which is the child of the root node. The name of this
node is taken from the XML tag that encloses the custom packet. The placeholder node does not have any
children, nor any useful methods or properties.

The following illustration shows the hierarchy of the principal DOMs in XFA.

Hierarchy of the DOMs

DOMs and XML
Most of the DOMs used in XFA can be loaded from or written out as XML documents. One such document
is an XDP, which like the XFA DOM is a container for subtrees representing other DOMs.

The XML DOM specification [XMLDOM2] defines a standard way in which a DOM loads from XML and is
stored in XML. The various XFA DOMs differ slightly from the norm in their relationship to XML documents.
First, they treat white space differently. Second, they distinguish between properties and children, a
distinction that is not made in [XMLDOM2].

Note that a similar hierarchy is used in XDP documents to represent a collection of DOMs in a single
document. However an XDP may contain subtrees that are not represented by a DOM (for example
application-specific data). At the same time some DOMs (such as the Layout DOM) are never represented
in an XDP. For this reason in an XDP the outermost element tag is xdp rather than xfa.

Data DOM

Data Description DOM

Template DOM

Form DOM

Layout DOM

Config DOM

template

form

layout

config

data

dataDescription

dataSets

xfa

XFA DOM

XFA Specification
Chapter 3, Object Models in XFA Document Object Models 78

Grouping Elements and Whitespace

In XML whitespace is significant by default. However, many schemas allow the free inclusion of whitespace
within grouping elements. A grouping element is one that directly contains only other elements, not literal
content. Freedom to include whitespace allows indentation which makes XML more readable.

Within XFA schemas all grouping elements may include whitespace. When loading an XFA DOM
whitespace inside grouping elements is discarded. When unloading an XFA DOM whitespace may legally
be inserted; whether it is, how much, and where are application-defined.

Properties vs. Children

The W3C XML DOM specification [XMLDOM2] distinguishes elements, attributes, and content. In other
words a DOM constructed in accordance with [XMLDOM2] simply echoes the XML infoset. By contrast XFA
DOMs distinguish between properties and children.

Properties

Properties are nodes that are automatically present in the DOM even if they are missing from the XML. For
example, a subform node in the Template DOM always has beneath it a bind property node, whether or
not the XML from which it was loaded included a bind element. If there is no bind element in the XML
then at load time the bind property node is created with default values.

Some properties are represented by elements, others by attributes. Property attributes are restricted by
the rules of XML to be singly-occurring and placed within their respective start tags. Property elements
can physically occur more than once per parent, but in every case the number of occurrences is restricted
by the DOM. For example, there can only be one bind property node per subform parent node, hence
only one bind element per enclosing subform element. Most properties are restricted to a single
occurrence. In addition, properties represented by elements may themselves have subproperties. For
example the bind property has match, and ref subproperties. However there is no logical distinction
between element and attribute properties at the DOM level.

The order of occurrence of different properties within the same enclosing element is not significant. For
those few properties that are multiply-occurring, the order of occurrence with respect to each other is
significant, but not the order of occurrence with respect to other properties. In the terminology used by
the RELAX schema language [RELAX-NG], properties can interleave.

The following example shows a fragment from the XML representation of an XFA template.

Example 3.1 Fragment of a template in XML

<field name="author" …>
 <margin leftInset="3mm" topInset="2mm"/>
</field>

When the fragment is loaded into the Template DOM the result is as follows:

XFA Specification
Chapter 3, Object Models in XFA Document Object Models 79

Properties in a DOM

Note that this does not show all of the properties of a field. There are many.

The following XML fragment produces exactly the same logical result as the previous example.

Example 3.2 Order of attributes is not significant

<field name="author" …>
 <margin topInset="2mm" leftInset="3mm"/>
</field>

In this fragment the order of the topInset and leftInset properties has been changed but this is not
significant and is not necessarily reflected in the DOM.

Children

Children are nodes that can occur any number of times (including zero). When expressed in XML child
elements can freely interleave with property elements and such interleaving has no significance. However
the order of child nodes with respect to each other is significant. When a DOM is expressed in XML
document order corresponds to a depth-first traversal of the tree. For child nodes document order
corresponds to oldest-to-youngest. By convention oldest-to-youngest is also referred to as left-to-right.

For example, consider the following fragment of XML, again representing part of a template.

Example 3.3 Parent node with children

<subform name="book">
 <field name="title" …> … </field>
 <field name="author" …> … </field>
 <field name="publisher" …> … </field>
 <field name="ISBN" …> … </field>
</subform>

When the fragment is loaded into the Template DOM the result is as follows:

field

name
"author"

margin

leftInset
"3mm"

rightInset
"0"

topInset
"2mm"

bottomInset
"0"

properties of
the field

properties of
the margin

XFA Specification
Chapter 3, Object Models in XFA Document Object Models 80

Children in a DOM

The subform object has five nodes below it, one property node and four child nodes. Each of the child
nodes is a field object. There are exactly as many child nodes as are present in the XML. The document
order of the children is exactly as presented in the XML.

Note that a similar hierarchy is used in XDP documents to represent a collection of DOMs in a single
document. However an XDP may contain subtrees that are not represented by a DOM (for example
application-specific data). At the same time some DOMs (such as the Form and Layout DOMs) are never
represented in an XDP. For this reason in an XDP the outermost element tag is xdp rather than xfa.

The DOMs Used in XFA
This section introduces the individual DOMs and briefly describes each.

The Configuration DOM

This DOM holds option settings that modify the behavior of all the other DOMs. It may also hold private
(custom) options.

Because it affects so many other things the Configuration DOM is the first one loaded by an XFA processor.
If a script modifies a value in the Configuration DOM there is often no immediate effect because the value
applies to processing which has already occurred.

A major part of the content of the Configuration DOM is a set of data transformation options used by the
XFA Data DOM. It is common to include the Configuration DOM in an XDP in order to ensure that
necessary transformations are carried out.

The Connection Set DOM

This DOM holds information concerning web services using WSDL, such as the URL at which the service is
located.

The Connection Set DOM names each transaction it describes. The transaction names are used to
associate the transactions with events that activate the transactions. Hence this DOM is mandatory if the
form uses web services. It is otherwise optional.

This DOM is commonly loaded from and/or written to an XDP.

children
of the
subform

property
of a field

subform

name
“book” field field field field

name
“title”

name
“author”

name
“publisher”

name
“ISBN”

property
of the
subform

XFA Specification
Chapter 3, Object Models in XFA Document Object Models 81

The Connection Set Data DOM

This DOM is a temporary buffer holding data going to or coming from a WSDL service, or data going to an
HTTP server for a POST operation.

When used with WSDL this DOM is loaded from and/or written to XML documents, but those documents
are transient messages exchanged with the web service. This DOM is never loaded from or written out to
an XDP or other persistent document.

The Data Description DOM

This DOM holds a schema for the data (as stored in the XFA Data DOM), and/or documents to be
exchanged with web services.

The data description is mandatory if web services are being used, because it supplies the structure of the
documents to be exchanged with the web service. Otherwise it is optional.

Even when present and describing data, its effects are limited. When loading data, XFA does not check
whether data conforms to the data description. Once loaded, scripts may modify the data in ways that are
not consistent with the data description. The data description only affects the data binding operation. If a
data description is present and the data conforms to it then the XFA processor ensures that data inserted
by the data binding operation (see “Interaction of the DOMs” on page 83) is also in conformance. Without
the data description, the XFA processor would insert data that conformed to the structure of the template.
Thus the data description enhances the independence of data and template.

Starting with XFA 3.1, the data description can also specify that certain data values are keys linking to other
data values. This is primarily used for data which is obtained by querying a relational database. The result is
to add pseudo-properties to objects in the Data DOM and the Form DOM which link back via a key to
another object in the same DOM. For more information see “Labelling relational data” on page 946.

The Form DOM

This DOM holds the result of merging the data with the template. All nodes in the Form DOM are tied to
nodes representing form entities (such as fields or boilerplate) in the Template DOM. Some nodes in the
Form DOM are simultaneously tied to nodes representing data in the XFA Data DOM. Operations that
modify the value of a node in the Form DOM are passed through to the corresponding node in the XFA
Data DOM and vice-versa.

Caution: In the Adobe implementation the Form DOM is sparse. This means that properties and children
are not instantiated until they are used or needed. This has no effect upon the usual form
operations such as the user filling in a field, however it can be visible to scripts. In particular,
when a script retrieves a list of the children and properties of a node in the Form DOM, the list
only includes those nodes which have already been instantiated. For more information see the
description of the nodes property in [LC-Scripting-Reference].

The Form DOM is not necessarily loaded from or written to XML. However some XFA applications may
save a copy of all or part of the Form DOM in order to preserve the context of a session. This allows the
application to preserve:

● data values that are not bound to any field.

● the fact that the user has overridden the calculation of a field, so it should not be calculated upon
reloading.

● modifications made to the Form DOM by scripts, for example changing the border color of a field.

XFA Specification
Chapter 3, Object Models in XFA Document Object Models 82

This specification does not define a syntax for saving the Form DOM in XML. One could save it using the
same schema used for XML representations of the Template DOM, however this would unnecessarily
duplicate a lot of information from the Template DOM.

The Form DOM is the natural territory of scripts because it is where logical entities assume values. For
example, when the user tabs into a field, the resulting field enter event is associated with a field object in
the Form DOM, not the Template DOM. When the script runs, the "$" or this variable points to the field
object in the Form DOM.

The Layout DOM

This internal DOM holds the result of laying out the form, including data, onto a page or pages. Each node
in the Layout DOM represents the placing of an object, or portion of an object, from the Form DOM into a
particular position on a particular page.

The Layout DOM is neither loaded from nor written to XML. It can always be reconstructed from the
template and the Form DOM so there is no need for it to persist.

The Layout DOM connects to the UI in interactive contexts but that connection is not defined in this
specification. except in very general terms. The Layout DOM also connects to the printer driver in
non-interactive contexts.

The Locale Set DOM

A locale is a cultural context (usually language and country). The Locale Set DOM provides resources for
each locale. For example, it provides the currency symbol and the month and day names. These are
grouped by locale so that the form can automatically adjust to the locale in which it is used.

The Source Set DOM

This DOM holds information about the connection between a form and external data sources and/or sinks.
It is only used for connections employing ActiveX® Data Objects (ADO). This interface is record-oriented
and is usually used for connections to data bases within a corporate LAN or WAN.

The Template DOM

This DOM holds the fixed components of the form. It controls the structure and organization of the form. It
supplies all the boilerplate. And it contains all the form’s intelligence, including scripts, defaults,
calculations, and validations.

The Template DOM is commonly loaded from and written to XML. No useful XFA processing can take place
without a template.

The XFA DOM

As described in “Hierarchy of DOMs” on page 76, the XFA DOM is a wrapper for the other DOMs. In
addition it has a few nodes of its own, for example the host object ($host) which holds a number of
convenience methods for scripts.

The XFA DOM is not directly loaded from or written to XML, but some of the DOMs within it are. Within an
XFA application the XFA DOM always exists, even when none of the other DOMs do (for example, at the
start of processing).

XFA Specification
Chapter 3, Object Models in XFA Document Object Models 83

The XFA Data DOM

The XFA Data DOM presents an abstract view of the XML data document. In this abstract view the
document contents are represented by two types of nodes, data group nodes and data value nodes. Data
group nodes represent grouping elements. Data value nodes represent non-grouping elements and
attributes.

There are property nodes in the XFA Data DOM. However usually these do not represent elements or
attributes in the XML data document. Rather they hold properties associated with an element or attribute.
For example, each node has a name property which holds the start tag of the element or the name of the
attribute. Similarly there is namespace property which holds the full namespace of the element or
attribute, regardless of whether it was inherited or declared explicitly. Sometimes a property node does
correspond to a particular attribute but in such cases the attribute is in a reserved namespace and is
treated as out-of-band information. For example, the xsi:nil attribute defined by [XML-Schema] in the
namespace http://www.w3.org/2001/XMLSchema-instance is not represented in the XFA Data
DOM as a data value node. Instead it modifies the isNull property of the data value node corresponding
to the element which holds it.

There are a large number of options available to transform the data on its way in from the XML Data DOM
to the XFA Data DOM. In most cases the reverse transform is applied on the way out. Hence scripts which
operate on the XFA Data DOM can be isolated from details of the XML representation. For example, it is
possible to rename particular elements or attributes on the way in. When the data is subsequently written
out to a new XML document the original element tags appear in the new document.

The XFA Data DOM is not directly loaded from or written to XML. However its content is echoed in the XML
Data DOM which is always loaded from and/or written to XML. Unlike most other DOMs, the XFA Data
DOM may operate in record mode. In this mode only global data plus a window of record data is resident
in memory at any moment.

Note: Throughout this specification when the term Data DOM is used without specifying the XML Data
DOM or the XFA Data DOM, the XFA Data DOM is implied.

The XML Data DOM

The XML Data DOM is a standard XML DOM that is used to hold the content of the XML data document. In
accordance with the W3C XML DOM specification [XMLDOM2] it has different types of nodes for elements,
attributes, and content. It does not distinguish properties from children nor does it ignore whitespace in
grouping elements. XFA processors do not in general operate directly on the XML Data DOM. Instead they
operate on the XFA Data DOM which presents and manipulates the same data in a more abstract way.

The XML Data DOM is always loaded from and/or written to XML. It has no other purpose. Unlike most
other DOMs, the XML Data DOM may operate in record mode. In this mode only global data plus a window
of record data is resident in memory at any moment.

Note: Throughout this specification when the term Data DOM is used without specifying the XML Data
DOM or the XFA Data DOM, the XFA Data DOM is implied, not the XML Data DOM.

Interaction of the DOMs
Much of this specification is detailed description of how the DOMs interact. This section gives an overview
of those interactions.

The following diagram depicts the interactions schematically:

XFA Specification
Chapter 3, Object Models in XFA Document Object Models 84

Interactions Between the DOMs

Config
DOM

XML Data
DOM

XFA Data
DOM

Form
DOM

Layout
DOM

Template
DOM

Connection
 Data
DOM

Connection
Set

DOM

Data
Bind

Layout

Events

Script
Engine

XSLT
Engine

XSLT
Engine

Render

GUI

Web
Services

Config
Document

to all
processes

 Data
Document

Template
Document

Connection
Set

Document

to all
DOMS

to all
DOMS

associations to
connections & events

layout
containers

containers
& content

content
& events

content

data

data

connection
parameters

data

data

options
& URIs

scriptsevents

events

template

data

layout
objects

Load
& Save

data

layout
objects

containers
& content

objects,
methods,

& properties

Process

DOM

XML
Document

data flow

Legend

Data
Description
Document

Data
Description

DOM

data
description

XFA Specification
Chapter 3, Object Models in XFA Document Object Models 85

Templating versus Binding

There are two general ways in which XFA DOMs interact, through templating and through binding.
Templating means using one DOM as a pattern in the construction of another DOM. For example, the
merge process uses the XFA Template DOM as a template for constructing the XFA Form DOM. Binding
means tying elements of two DOMs together. The merge process binds individual data values from the
XFA Data DOM to nodes representing fields in the XFA Form DOM.

Binding results in a tighter connection than templating. Templating is a one-time process. If the XFA
Template DOM is modified after the XFA Form DOM has already been constructed, the template
modification has no effect on the XFA Form DOM. By contrast if a data value in the XFA Data DOM is
modified after it has been bound to the value property of a field in the XFA Form DOM, the change
propagates into the field node automatically. Similarly if the data value is updated the change propagates
automatically the other direction into the field node’s value property.

Either templating or binding can be a one-to-one or one-to-many proposition. When binding is
one-to-many there is one data value node bound to multiple form nodes. In this case a change in any one
of the bound form nodes propagates to the data node and from there to all the other bound form nodes.
This allows for global fields that reappear on different pages of the form, with edits in any instance
propagating to all other instances.

XML Data DOM and XFA Data DOM

The relationship between the XML Data DOM and the XFA Data DOM was alluded to earlier. Data is loaded
from the XML data document into the XML Data DOM. From there the data flows to the XFA Data DOM.
The XFA Data DOM provides a view of the data that has much of the XML-related detail abstracted away.
When changes are made to data in the XFA Data DOM, the changes are passed back to the XML Data DOM
to keep the two views of the data synchronized. When the data is unloaded (saved) it is written from the
XML Data DOM to a new XML data document.

During loading the data may be transformed in accordance with settings in the Configuration DOM. Most
of the transformations affect only the XFA Data DOM, not the XML Data DOM, so that they affect how the
data is viewed internally but not how it is represented in XML when it is unloaded. However some of the
transformations affect the XML Data DOM and therefore alter the representation of the data in XML when
it is unloaded.

The XML Data DOM and the XFA Data DOM may be loaded and unloaded all at once or a record at a time.
When operating in record mode there is a distinction between record data and global data. Record data is
the data within a record. Global data is data that is outside all records. Record data is loaded into and
purged from the two data DOMs in synchronization. By contrast global data is handled differently in the
two data DOMs. Global data is loaded into the XML Data DOM as it is encountered in the XML data
document and purged when that part of the document is past. But, once loaded, global data is retained in
the XFA Data DOM for the life of the DOM.

The processes of loading data into the Data DOMs and saving data out from the Data DOMs are described
in “Creating, Updating, and Unloading a Basic XFA Data DOM” on page 122.

Template DOM, XFA Data DOM, and Form DOM

The Form DOM is the place where the data from the XFA Data DOM is bound to logical structure from the
Template DOM. The result is objects copied from the Template DOM into the Form DOM, with some
objects in the Form DOM bound to data in the XFA Data DOM. Note that objects in the Form DOM do not
have assigned physical locations on the page.

XFA Specification
Chapter 3, Object Models in XFA Scripting Object Model 86

For static forms, similar to a traditional pre-printed paper form, the structure is entirely supplied by the
Template DOM. In this case the Form DOM is a duplicate of the subtree under the root subform in the
Template DOM, except that some objects in the Form DOM are bound to nodes in the Data DOM.

For dynamic forms the form structure varies in response to the data. For example a subform and its fields
can be copied into the Form DOM once for each record of data. In this case the objects in the Form DOM
are still copied from the Template DOM but the number of copies and/or the arrangement of objects is
dictated by the data.

The degree and nature of dynamisms is controlled at the level of individual objects in the Template DOM.
Hence a form can be partly static and partly dynamic. For example, a subform may be included in the Form
DOM conditionally upon the presence of a particular data item, yet the conditional subform may itself
have a fixed appearance and content.

Data binding is controlled by properties of the objects in the Template DOM and by the names and
hierarchy of the objects in both the Template DOM and the XFA Data DOM. The process of binding data to
logical structure is described in “Basic Data Binding to Produce the XFA Form DOM” on page 171.

Template DOM, Form DOM, and Layout DOM

The Layout DOM is the place where objects from the Form DOM, or parts of objects, are placed upon one
or more pages. The result is objects copied from the Template DOM and the Form DOM to the Layout
DOM, with each object in the Layout DOM assigned a place upon a particular page.

The Template DOM supplies objects representing sets of pages, pages, and regions of pages. These are
copied into the highest levels of the Layout DOM hierarchy. Objects from the Form DOM are copied into
the lower levels, in the place they occupy when displayed or printed. An object from the Form DOM can
split across multiple locations (for example, text can flow from one column to the next). Hence a single
object in the Form DOM may be copied multiple times into the Layout DOM, with each copy in the Layout
DOM representing a different fraction of its content.

Objects representing sets of pages, pages, and regions of pages may be allowed to repeat and/or vary in
number. In this way the physical representation of the form can vary with the data.

The layout process can automatically insert headers and footers, leaders and trailers. When these are
inserted they are copied from subform objects in the Template DOM.

In interactive applications the GUI is downstream from the Layout DOM. However the GUI also emits data
(keyed in) and events (such as mouse clicks). This data and these events are passed upstream by the
Layout DOM to the Form DOM. When data is entered it is forwarded to the appropriate field or exclusion
group in the Form DOM and updates the data there. When an GUI event causes a script to be activated the
script’s "$" or this object is set to the corresponding object in the Form DOM. Thus the Layout DOM is
transparent to scripts and user actions.

Layout operations are controlled by properties of the objects being laid out, properties which are copied
from the Form DOM but in turn originate from the Template DOM. The process of laying out the form upon
one or more pages is described in “Layout for Dynamic Forms” on page 350.

Scripting Object Model
This section explains the conventions for referencing the properties and methods in the object models
used by an XFA processing application.

XFA Specification
Chapter 3, Object Models in XFA Scripting Object Model 87

About SOM Expressions
The XFA Scripting Object Model (SOM) is a model for referencing values, properties and methods within a
particular Document Object Model (DOM). A DOM structures objects and properties as a tree hierarchy.
XFA SOM expressions provide easy access to these objects and properties through a straightforward
object reference syntax. This syntax is described in detail later in this specification.

XFA SOM, in combination with a scripting environment, allows individuals to quickly and easily perform a
variety of functions without requiring extensive coding. Through the use of various notations, accessors,
and operating rules, XFA SOM defines ways to reference specific objects, groups of objects, or even objects
whose name is unknown but whose position within the tree is known.

XFA SOM interacts with any XFA-DOM, and may appear in a form template, XML data, configuration
information, or on the command line. It is the responsibility of a scripting environment to expose the
appropriate objects and properties to XFA SOM. As such, referencing unexposed objects or properties is
not possible.

The SOM examples used throughout this document (XFA Specification) reflect the properties and methods
described in LiveCycle Designer ES2 Scripting Reference [LC-Scripting-Reference]. It is recommended that
XFA processing applications adopt the same names and behaviors as those described in that reference, to
ensure a consistent behavior in forms used across a variety of XFA processing applications.

The Receipt Example

An XFA-DOM is structurally represented as a tree hierarchy with a single root object (or node) having a
potentially unlimited number of descendant objects (or nodes). For example, the data for a receipt has the
following form when expressed as an XML document.

Example 3.4 Data document for receipt example

<?xml version="1.0" encoding="UTF-8" ?>
<Receipt>

<Detail>
<Description>Giant Slingshot</Description>
<Units>1</Units>
<Unit_Price>250.00</Unit_Price>
<Total_Price>250.00</Total_Price>

</Detail>
<Detail>

<Description>Road Runner Bait, large bag</Description>
<Units>5</Units>
<Unit_Price>12.00</Unit_Price>
<Total_Price>60.00</Total_Price>

</Detail>
<Sub_Total>310.00</Sub_Total>
<Tax>24.80</Tax>
<Total_Price>334.80</Total_Price>

</Receipt>

The following diagram shows the tree for the receipt data as it is stored in the XFA Data DOM. Although the
distinction is not important here, data group nodes are shown in blue while data value nodes are shown in
green.

XFA Specification
Chapter 3, Object Models in XFA Scripting Object Model 88

Receipt Form Tree

It may be helpful to see the outline of a template that could be used with the receipt data shown above.
This is not the only possible template but it shows the basic features.

Example 3.5 Skeleton template for receipt example

<xdp:xdp xmlns:xdp="http://ns.adobe.com/xdp/">
<template xmlns="http://www.xfa.org/schema/xfa-template/3.1/">

<subform name="Receipt" …>
<pageSet name="ReceiptPageSet" …> … </pageSet>
<subform name="Detail" …>

<field name="Description" …> … </field>
<field name="Units" …> … </field>
<field name="Unit_Price" …> … </field>
<field name="Total_Price" …> … </field>

</subform>
<subform name="Detail" …>

<field name="Description" …> … </field>
<field name="Units" …> … </field>
<field name="Unit_Price" …> … </field>
<field name="Total_Price" …> … </field>

</subform>
<field name="Sub_Total" …> … </field>
<field name="Tax" …> … </field>
<field name="Total_Price" …> … </field>
…

</subform>
</template>

</xdp:xdp>

SOM Conventions
One use for XFA SOM expressions is to specify an explicit binding between a field in the template and a
node in the Data DOM.

ReceiptReceipt

Total_PriceTotal_PriceTaxTaxSub_TotalSub_Total

DescriptionDescription

UnitsUnits

Total_PriceTotal_Price

Unit_PriceUnit_Price

DetailDetail

DescriptionDescription

UnitsUnits

Total_PriceTotal_Price

Unit_PriceUnit_Price

DetailDetail

XFA Specification
Chapter 3, Object Models in XFA Scripting Object Model 89

Example 3.6 Field using an XFA SOM expression to explicitly bind to data

<field name="Final_Price" …>
<bind match="dataRef" ref="$data.Receipt.Total_Price"/>

</field>

The expression $data.Receipt.Total_Price refers to a single node by naming the nodes which
must be traversed from the root of the Data DOM down to the desired node. Hence it refers to the
Total_Price node which corresponds to the last Total_Price element in the receipt document. (This
is the node containing the value 334.80.) The result of this data reference is to force the XFA application to
associate the template field named Final_Price with that particular data node, even though the
template and data nodes have different names.

XFA SOM expressions may also be used in scripting to reference nodes in an XFA-DOM. For example, this
FormCalc expression contains an XFA SOM expression (highlighted in bold):

Sum(Detail[*].Total_Price)

This expression takes advantage of "[*]" notation, which is described below under “Selecting All Child
Nodes” on page 100, and scoping, which is described in “Relative References”. For now it is sufficient to
understand that the expression Detail[*].Total_Price resolves as a list of all of the Total_Price
data within Detail data groups. With the data given above this becomes 250.00 60.00. The FormCalc
function sum() simply adds the list of numbers passed to it, yielding in this case 310.00. This expression
would be embedded in the template of an intelligent form that added up the totals and taxes
automatically, rather than relying on the data file to supply them pre-calculated. For the receipt example,
the data file would be as follows.

Example 3.7 Data document for receipt template that performs calculations

<?xml version="1.0" encoding="UTF-8" ?>
<Receipt>

<Detail>
<Description>Giant Slingshot</Description>
<Units>1</Units>
<Unit_Price>250.00</Unit_Price>

</Detail>
<Detail>

<Description>Road Runner Bait, large bag</Description>
<Units>5</Units>
<Unit_Price>12.00</Unit_Price>

</Detail>
</Receipt>

The following template uses XFA SOM expressions to perform the calculations automatically. XFA SOM
expressions embedded in the template are highlighted in bold.

Example 3.8 Receipt template that performs calculations

<xdp:xdp …>
<template …>

<subform name="Receipt" …>
<pageSet name="ReceiptPageSet" …> … </pageSet>
<subform name="Detail" …>

<field name="Description" …> … </field>
<field name="Units" …> … </field>
<field name="Unit_Price" …> … </field>

XFA Specification
Chapter 3, Object Models in XFA Scripting Object Model 90

<field name="Total_Price" …>
<calculate>

<script>Units * Unit_Price</script>
</calculate>
…

</field>
</subform>
<subform name="Detail" …>

<field name="Description" …> … </field>
<field name="Units" …> … </field>
<field name="Unit_Price" …> … </field>
<field name="Total_Price" …>

<calculate>
<script>Units * Unit_Price</script>

</calculate>
…

</field>
</subform>
<field name="Sub_Total" …>

<calculate>
<script>Sum(Detail[*].Total_Price)</script>

</calculate>
…

</field>
<field name="Tax" …>

<calculate>
<script>Sub_Total * .08</script>

</calculate>
…

</field>
<field name="Total_Price" …>

<calculate>
<script>Sub_Total + Tax</script>

</calculate>
…

</field>
…

</subform>
</template>

</xdp:xdp>

 Basic Object References
XFA SOM expressions provide the means to reference objects within a DOM.

 Compound Object Names

Compound object names are a way of navigating down through the hierarchy of objects; each level of the
hierarchy is represented by a name and the names are separated by dot (".") characters. The simplest XFA
SOM expressions begin with the name of the root node (highest object in the hierarchy) which is named
xfa. To reference an object within xfa, add a dot (".") to the right of "xfa" and then append the name
of the node you want. Repeat to whatever depth is required.

XFA Specification
Chapter 3, Object Models in XFA Scripting Object Model 91

The template is placed in the hierarchy under the node xfa.template. For example, in the receipt
template the Tax field is identified in SOM expressions as:

xfa.template.Receipt.Tax

The data that fills the form is placed in the hierarchy under the node xfa.datasets.data. For example,
using the receipt example, the node corresponding to the sub-total is identified in SOM as:

xfa.datasets.data.Receipt.Sub_Total

While the node corresponding to the grand total at the end of the document is identified as:

xfa.datasets.data.Receipt.Total_Price

Note: As usual when data is expressed in XML, case is significant. The following expressions do not match
the sub-total node in the receipt example, because the bold letters are in the wrong case:

xfa.datasets.data.receipt.sub_total
Xfa.datasets.Data.Receipt.Sub_Total
xfa.datasets.data.Receipt.Sub_total

Shortcuts

It would be tedious typing in xfa.datasets.data over and over again. For convenience a set of
predefined shortcuts is available. The complete list is described in the following table:
:

Short and long forms Example 3.9 Short form examples Comments

$data
xfa.datasets.data

$data.Receipt.Tax Data that fills the form (Data DOM)

$template
xfa.template

$template.Receipt.layout Template for the form (Template
DOM)

$connectionSet
xfa.connectionSet

$connectionSet.ShoppingCart.
 soapAction

Schema(s) or interfaces to host(s)
(Connection Set DOM)

$form
xfa.form

$form.Receipt.Tax Joined template and data after a
merge operation (Form DOM)

$layout
xfa.layout

$layout.ready Methods and properties belonging
to the layout process (pseudo-DOM)

$host
xfa.host

$host.setFocus(TaxNode) Methods and properties that do not
belong anywhere else (pseudo-DOM)

$record
varies (see note below)

$record.Tax Current data record (subtree within
the Data DOM)

$dataWindow
xfa.dataWindow

$dataWindow.isRecordGroup(
 ref(xfa.datasets.data))

Object controlling loading and
unloading of data records
(pseudo-DOM)

$event
xfa.event

$event.name Properties of the current event
(pseudo-DOM)

XFA Specification
Chapter 3, Object Models in XFA Scripting Object Model 92

More about $record

The meaning of $record varies depending whether record processing is enabled or not:

● Record processing enabled. If record processing is enabled, only a portion of the data is loaded into
memory at any one time. This portion is a window containing several consecutive records. Each record
is a subtree of the data corresponding to one element and its contents. In this mode of operation
$record points to the node representing the outer element for the current record. In the receipt
example $record would initially be set to point to the node representing the first Detail element.
After some processing $record would advance to the node representing the next Detail element.
The receipt example contains only two records, but large documents may contain thousands or
millions of records.

● Record processing not enabled. In non-record mode $record points to the node representing the
outermost element of the data document, that is the node which is the only child of $data. In the
receipt example $record would be set to $data.Receipt. Hence in non-record mode the entire
document is treated as one big record.

See the “Creating, Updating, and Unloading a Basic XFA Data DOM” on page 122 for more information on
record processing.

Repeated Elements

When multiple nodes with the same name occur as children of the same parent node, a reference to the
shared name is taken to refer to the first matching child, in document order. (In tree diagrams, document
order corresponds to starting at the root node and making a depth-first left-to-right traversal of the tree.)
The receipt example includes two sets of data describing purchased items, each in a Detail element. The
following expression refers only to the node representing the first Detail element in document order
(that is, the one for a giant sling shot):

$data.Receipt.Detail

To access the other Detail nodes, given that they have the same name, it is necessary to use an
array-subscript notation. The syntax [nnn], where nnn represents a number, is used to select one particular
element out of a group of siblings with the same names. The number zero represents the first sibling.
Hence the following two expressions are equivalent:

$data.Receipt.Detail $data.Receipt.Detail[0]

The next Detail node is referenced as

$data.Receipt.Detail[1]

Note: It would not make any difference if there had been other nodes in between, as long as they were
not named Detail. For example, the data document could be changed as follows.

Example 3.10 Receipt data document with additional interleaved data

<?xml version="1.0" encoding="UTF-8" ?>

!
xfa.datasets.

!data.Receipt.Tax Does not require a "." before the
next name in the expression

$xfa
xfa

$xfa.resolveNode("Tax") Not really shorter but provided for
symmetry

Short and long forms Example 3.9 Short form examples Comments

XFA Specification
Chapter 3, Object Models in XFA Scripting Object Model 93

<Receipt>
<Page>1</Page>
<Detail>

<Description>Giant Slingshot</Description>
<Units>1</Units>
<Unit_Price>250.00</Unit_Price>
<Total_Price>250.00</Total_Price>

</Detail>
<Page>2</Page>
<Detail>

<Description>Road Runner Bait, large bag</Description>
<Units>5</Units>
<Unit_Price>12.00</Unit_Price>
<Total_Price>60.00</Total_Price>

</Detail>
<Sub_Total>310.00</Sub_Total>
<Tax>24.80</Tax>
<Total_Price>334.80</Total_Price>

</Receipt>

Even with this change to the data document, no change is required to the SOM expression referencing
either Detail node. This is an important feature of SOM expressions; they are not invalidated by the
insertion or removal of other nodes with different names and hence presumably containing unrelated
information. Readers familiar with the RELAX NG schema language will recognize this as equivalent to
saying that XFA SOM supports interleaved elements.

XFA does not impose any built-in limit to how many sibling nodes can share the same name.

Explicitly Named Objects

In XFA SOM, an explicitly nameable object takes its name from the value of an attribute, rather than relying
on the element tag to supply it with a name. The following example shows an XDP file containing a
connection set which contains the named objects ShoppingCart, Catalogue, Shipping and
TsAndCs.

Example 3.11 XDP containing a connection set

<xdp:xdp …>
<connectionSet xmlns="http://www.xfa.org/schema/xfa-connection-set/2.8/">

<wsdlConnection name="ShoppingCart" … > … </wsdlConnection>
<wsdlConnection name="Catalogue" … > … </wsdlConnection>
<wsdlConnection name="Shipping" … > … </wsdlConnection>
<xmlConnection name="TsAndCs" … > … </xmlConnection>

</connectionSet>
</xdp:xdp>

The above-mentioned objects can be referenced in SOM expressions as follows:

$connectionSet.ShoppingCart
$connectionSet.Cataloge
$connectionSet.Shipping
$connectionSet.TsAndCs

Objects are either nameable or not nameable. For nameable objects, the name specified by the naming
attribute is the only name for the object. If thenaming attribute is omitted the object has no name.

XFA Specification
Chapter 3, Object Models in XFA Scripting Object Model 94

Since XFA 2.8 the traverse object in the Template DOM has been named by its operation attribute.
(Previously this object was unnameable.) For all other nameable objects the naming attribute is the name
attribute.

Note: For consistency the Template and Form DOMs treat each traverse object as though it has a name
property that happens to share the content of the operation property. Setting the value of either
property changes the value returned by both. Attempting to set either property to a value that is
not valid for operation throws an error.

In Adobe products there is a switch that forces the XFA processor to revert to making traverse objects
unnameable. See “The v2.7-scripting flag” on page 1209.

The most common reason for XFA objects being nameable, as for the wsdlConnection elements here, is
to make it easier to pick a particular item out of a list of items. Naming also enhances modularity by
separating the SOM expression that refers to an object from the type of the object. Here, if the
xmlConnection is changed to an xsdConnection (because a schema has been published for it), it can
still be referenced using the name TsAndCs.

Most nameable objects are not required to have unique names. The children of a connectionSet are
exceptions in that they are required to have unique names. Consult the individual syntax reference for the
DOM to determine whether or not names are required to be unique.

Though it is not shown in these examples, the template element can take a name attribute. Despite this
the template element is not nameable, because it is a top-level packet wrapper. The name attribute in this
one case only merely holds a human-readable description of the template. The template object must
always be referenced using xfa.template or $template.

Transparent Nodes

When an explicitly nameable object is left unnamed, it is invisible to the normal SOM syntax. Such
unnamed objects are called transparent.

In the following example, the receipt template is changed to omit the name attribute from the detail
subforms.

Example 3.12 "name" omitted from subforms

<xdp:xdp …>
<template …>

<subform name="Receipt">
<subform>

<field name="Description" …> … </field>
<field name="Units"> … </field>
<field name="Unit_Price" …> … </field>
<field name="Total_Price" …> … </field>

</subform>
<subform>

<field name="Description" …> … </field>
<field name="Units"> … </field>
<field name="Unit_Price" …> … </field>
<field name="Total_Price" …> … </field>

</subform>
<field name="Sub_Total" …> … </field>
<field name="Tax" …> … </field>
<field name="Total_Price" …> … </field>

XFA Specification
Chapter 3, Object Models in XFA Scripting Object Model 95

…
</subform>

</template>
</xdp:xdp>

In the above example, the Description field for the first detail subform is referenced in the Form DOM
as:

$form.Receipt.Description[0]

while the Description field in the second detail subform is referenced as:

$form.Receipt.Description[1]

Similarly in the Template DOM the references would be:

$template.Receipt.Description[0]

and

$template.Receipt.Description[1]

It is as though the nameless subform was removed and its children adopted by the nameless subform's
parent. This has the side-effect of making fields into siblings that would not otherwise be siblings. For the
Total_Price fields all three become siblings for purposes of SOM expressions even though they are
physically at different levels in the tree.

Nameless template and form objects cannot partake in the full set of functions that named objects
partake in. Rather, nameless subforms are usually inserted simply to wrap around another object in order
to lend the subform's richer capabilities to the enclosed object. For example, fields do not have occur
properties but subforms do. As a result, it is normal to wrap a field inside a nameless subform in order to
place the field under the influence of an occur property. Similarly, nameless exclusion groups are mere
wrappers around sets of fields; the actual data values belong to the fields, not to the nameless exclusion
group. In the same way, all nameless template and form objects are second-class objects, of interest to the
form creator but not corresponding to data or to anything visible. The SOM expression resolver makes
them transparent because it is convenient to be able to insert or remove such second-class objects
without being forced to modify scripts.

Area Objects Are Always Transparent

Within the Template and Form DOMs there may be area objects. An area object is an object which groups
together other template objects when the form is being created or modified. It has no consequences at
run time, either for the server or client. For this reason areas are always transparent to SOM expressions
even if the areas have names.

Variables Objects Are Always Transparent

Also within the Template and Form DOMs, subform objects may have a child variables object. A
variables object holds document variable objects, each of which is explicitly nameable. (See
“Document Variables” on page 367.) The variables object itself is transparent, so that each document
variable appears in SOM expressions as though it was directly a child of the root subform. For example, the
following template defines a document variable called CompanyName (shown in bold).

Example 3.13 Document variables are transparent

<xdp:xdp …>
<template …>

<subform name="Receipt">

XFA Specification
Chapter 3, Object Models in XFA Scripting Object Model 96

<variables>
<text name="CompanyName">AnyCo</text>
<float name="TaxRate">0.0725</float>

</variables>
</subform>

</template>
</xdp:xdp>

Within a SOM expression the document variable CompanyName is referred to using the SOM expression:

$template.Receipt.CompanyName

The transparency of the variables object makes document variables easy to refer to within scripts when
using a more advanced type of SOM expression, as explained below in “Relative References” on page 108

Other Transparent Objects

Transparency is limited to nameable objects in the Form and Template DOMs. In other DOMs all objects
are opaque, whether named or not.

Traverse Objects Are Never Transparent

Since XFA 2.8 traverse objects have been nameable. Unlike other objects they are not by a name
attribute but by an operation attribute, as described under “Explicitly Named Objects” on page 93. The
property associated with the operation attribute is constrained to one of seven values. When the
attribute is omitted the associated property defaults to next. But it is actually the property, not the
attribute, that controls the name. Therefore it is impossible for a traverse object to be unnamed. In
consequence it cannot be transparent. In practice this has little consequence because traverse objects
are not containers.

Reference by Class

There is a special syntax which can be used to reference all objects, whether they are transparent or not.
The syntax is "#class", where class is the name of the object class. In most cases for objects which can be
expressed in XML the name of the object class is the same as the tag for the associated element. For
example, the second detail subform object in the template on page 94 can be referenced as

$template.Receipt.#subform[1]

Note: When an index is used with the "#class" syntax, the index refers to all occurrences of true siblings
of that class, whether they are transparent or not.

Explicit naming is available as an option in the Data DOM. However, in the Data DOM, the element tag is
taken as the name by default, but may be overridden by the content of an attribute. Thus, nodes in the
Data DOM always have names, one way or the other. See the “XFA Names” on page 75 for a description of
the explicit naming option and how to invoke it. Consequently the "#" syntax is not usually needed for
nodes in the Data DOM. One case in which it is needed is when the element tag contains characters that
are not allowed in the names of objects by the scripting language. For example, FormCalc does not
support object names containing a minus ("-") character. If such an element is loaded into the Data DOM
without mapping the name to something else (another load option), the resulting dataGroup or
dataValue object cannot be referenced using the usual syntax. In such a case, it is necessary to use
#dataGroup or #dataValue, respectively.

The "#class" syntax can also be used for objects that cannot be explicitly named, although it is
redundant. For example, consider the following configuration information.

XFA Specification
Chapter 3, Object Models in XFA Scripting Object Model 97

Example 3.14 Configuration packet specifying number of copies to print

<xdp:xdp …>
<config …>

<present>
<copies>4</copies>
…

</present>
</config>

</xdp:xdp>

In this example the SOM expression $config.present.copies is equivalent to
$config.present.#copies.

Attributes

Attributes are accessed using the same syntax as elements. Instead of the element tag/object class use the
attribute name.

Example 3.15 Connection set containing an attribute of interest

<xdp:xdp …>
<connectionSet xmlns="http://www.xfa.org/schema/xfa-connection-set/2.8/">

<wsdlConnection name="ShoppingCart" dataDescription="cartDD">
…

</wsdlConnection>
<wsdlConnection name="Catalogue" … >
…
</wsdlConnection>
<wsdlConnection name="Shipping" … > … </wsdlConnection>
<xmlConnection name="TsAndCs" … > … </xmlConnection>

</connectionSet>
</xdp:xdp>

In the example the dataDescription attribute of the wsdlConnection named ShoppingCart can
be referenced using the SOM expression:

$connectionSet.ShoppingCart.dataDescription

XML forbids more than one occurrence of a particular attribute per element, so it is never necessary to use
array-subscripting when referring to attributes.

The Data DOM does not by default load attributes, but there is an option to load attributes. See “Creating,
Updating, and Unloading a Basic XFA Data DOM” on page 122 for more information about loading
attributes into the Data DOM.

Using the same syntax for child references and attributes raises the spectre of name clashes. See “Name
clashes” on page 98 for more information.

Internal Properties and Methods

Scripting objects may have internal properties and methods that do not correspond to any XML element
or attribute. These are known as transient objects. For example, the $event object is created at run time to
hold the properties of whatever event is currently active. It can not be serialized to XML. Properties and
methods of such objects are referenced using the same "." notation used for attributes and classes. For
example, the following template fragment contains a script, activated by a mouse click on the field, that

XFA Specification
Chapter 3, Object Models in XFA Scripting Object Model 98

checks a property of $event to determine whether the shift key was held down while the mouse button
was clicked.

Example 3.16 Script that responds only to shift-clicks

<subform name="Receipt">
<field name="Sub_Total" …>

<event action="click">
<script>if ($event.shift) then … endif</script>

</event>
</field>

</subform>

$host is another object that is purely internal. The following template fragment extends the above script
using a method of $host to set the keyboard focus when the shift-click event occurs.

Example 3.17 Script that sets focus

<subform name="Receipt">
<field name="Sub_Total" …>

<event action="click">
<script>

if ($event.shift) then
$host.setFocus(xfa.resolveNode("$form.Receipt.Tax"))

endif
</script>

</event>
</field>
…

</field>

Some nodes have properties that may or may not correspond to an XML element or attribute. For example,
every subform and field has a locale property. When expressed in XML the corresponding element may
not have a locale declaration because it may inherit the locale of its parent subform. It is expected that
when an XFA application writes out data as XML it will eliminate redundant locale declarations where
possible. Nonetheless, to make scripting easier, every node in the Data DOM presents a locale property.
Hence the locale for the Tax element in the receipt example can be referenced as:

$form.Receipt.Tax.locale

It is beyond the scope of this specification to describe the properties possessed by different nodes in
different DOMs. For that information consult the scripting reference and the individual reference for each
DOM.

 Name clashes

Name clashes can occur between names explicitly assigned via a name attribute and names automatically
generated from element tags, attributes, or internal properties. The ".#" syntax can be used to resolve
such name clashes.

This example contains name clashes between two attribute names and the names explicitly assigned to
child elements.

Example 3.18 Name clashes caused by choice of field names

<subform name="Detail" x="7.76mm" y="6.17mm">

XFA Specification
Chapter 3, Object Models in XFA Scripting Object Model 99

<field name="x" …> … </field>
<field name="y" …> … </field>

</subform>

The expression

$template.Detail.x

returns the content of the field named x. By contrast the expression

$template.Detail.#x

returns the attribute x on Detail, which has a value of 7.76mm.

In the next example, the subform has a name attribute which is set to Detail. However it also contains a
field element which is explicitly named name.

Example 3.19 Name clash caused by the name "name"

<subform name="Detail">
<field name="name">

<value>
<text>Ernest</text>

</value>
</field>

</subform>

The XFA SOM expression

$template.Detail.name

returns the value of the field named name, which is Ernest, because XFA SOM resolves the name clash in
favor of the explicit naming of the field, rather than the automatic naming of the subform's attribute.

To access the name attribute of Detail, use ".#name".For example,

$template.Detail.#name

returns the value of the property name on the Detail subform which is the string Detail.

More usefully, the same trick works with an object pointer. Suppose the script contains a variable
mycontainer which points a container in the Form DOM. The value of the container’s name property
can reliably be determined using the SOM expression

mycontainer.#name

whereas the expression

mycontainer.name

could return a pointer to a node which is a child of mycontainer and itself has a name property of name.

Note that there is no way to disambiguate clashes between attribute names and child element tags or
internal properties. XFA schemas, such as the template schema, are constructed in such a way as to
prevent such clashes. User data cannot be so constrained. Instead, in the Data DOM the situation is
handled by treating attribute values as just another type of content, so that array-subscripting can be used
to select the desired node. For example, assume attributes are being loaded into the Data DOM and the
data is as follows.

XFA Specification
Chapter 3, Object Models in XFA Scripting Object Model 100

Example 3.20 Modified receipt data yielding a name clash

<Receipt Detail="Acme">
<Detail> … </Detail>
<Detail> … </Detail>

</Receipt>

In the Data DOM this is handled by creating three separate nodes which are siblings. The first node (eldest
sibling) represents the Detail attribute with the value Acme. The second node (middle sibling) represents
the first Detail element. The third node (youngest sibling) represents the second Detail element. Hence
either of the expressions

$data.Receipt.Detail
$data.Receipt.Detail[0]

resolves to Acme, whereas the expression

$data.Receipt.Detail[1]

resolves to the node representing the first of the two Detail elements, and the expression

$data.Receipt.Detail[2]

resolves to the node representing the second Detail element. This behavior is unique to the Data DOM. For
more information, see “Exchanging Data Between an External Application and a Basic XFA Form” on
page 122.

Selecting All Child Nodes

The syntax ".*" can be used to select all child nodes, regardless of their names, which match the
subsequent portions of the expression. Example 3.21 is used to illustrate selection of multiple nodes.

Example 3.21 Data used to illustrate selection of multiple nodes

<?xml version="1.0" encoding="UTF-8" ?>
<Receipt>

<Page>1</Page>
<Detail PartNo="GS001">

<Description>Giant Slingshot</Description>
<Units>1</Units>
<Unit_Price>250.00</Unit_Price>
<Total_Price>250.00</Total_Price>

</Detail>
<Page>2</Page>
<Detail PartNo="RRB-LB">

<Description>Road Runner Bait, large bag</Description>
<Units>5</Units>
<Unit_Price>12.00</Unit_Price>
<Total_Price>60.00</Total_Price>

</Detail>
<Sub_Total>310.00</Sub_Total>
<Tax>24.80</Tax>
<Total_Price>334.80</Total_Price>

</Receipt>

When the above data (Example 3.21) is loaded into the Data DOM, the expression

$data.Receipt.*

XFA Specification
Chapter 3, Object Models in XFA Scripting Object Model 101

by default yields seven nodes corresponding to all of the elements which are direct children of the
Receipt element.

With the same data, the expression

$data.Receipt.*.Total_Price

yields two nodes corresponding to the Total_Price elements contained within Detail elements. The
Total_Price element that is a direct child of Receipt is excluded because it there is no node in
between it and Receipt, hence nothing that matches ".*".

Again with the same data, the expression

$data.Receipt.Detail[0].*

by default yields four nodes corresponding the elements enclosed within the first Detail element. The
default behavior is that attributes are not loaded into the Data DOM. However if attributes had been
loaded there would have been an additional node, representing the PartNo attributes on the Detail
element, included in the set. See “Basic Data Binding to Produce the XFA Form DOM” on page 171 for
more information about loading of attributes into the Data DOM.

Selecting All Sibling Nodes

The syntax "[*]" can be used to select all sibling nodes that share a name. For example, given the same
data from Example 3.21, the expression

$data.Receipt.Detail[*]

yields the two Detail nodes which are children of the Receipt node. The set does not include their
sibling Page, Sub_Total, Tax, and Total_Price nodes.

Selecting a Subset of Sibling Nodes

XFA-SOM expressions can include predicates. A predicate is an expression which, when evaluated, yields
either True or False. A predicate is used in a context where more than one node may exist and it is desired
to select only a subset. The XFA processor evaluates the predicate in the context of each candidate node in
turn and adds the node to the subset only when the predicate yields True.

The syntax " .[formcalc_expression] " can be used to select all sibling nodes that match the given
expression. The contained expression must yield a Boolean value.

For XFA processors that support JavaScript, the same set selection can be expressed using the form "
.(javascript_expression)". This format is compliant with section 11.2.4 of the ECMAScript-357
standard [ECMAScript357]. Again the contained expression must yield a Boolean value.

Note: The language of the expression is determined only by the type of brackets, not by the language of
the script hosting the expression. This allows for the use of predicates using either FormCalc or
JavaScript in contexts where there is no hosting script, such as the ref sub-property of a field’s
bind property.

For example, given the same data from Example 3.21, the SOM expression

$data.Receipt.Detail.(Total_Price.rawValue > 200)

yields the the single Detail node which its the Total_Price property set to 250.00. An exactly
equivalent SOM expression can be written using FormCalc syntax:

XFA Specification
Chapter 3, Object Models in XFA Scripting Object Model 102

$data.Receipt.Detail.[Total_Price > 200]

By contrast either

$data.Receipt.Detail.(Total_Price.rawValue < 200)

or

$data.Receipt.Detail.[Total_Price < 200]

yields the single Detail node which has its Total_Price property set to 60.00.

Finally, either

$data.Receipt.Detail.(Total_Price.rawValue < 1000)

or

$data.Receipt.Detail.[Total_Price < 1000]

yields both Detail nodes.

If an error is encountered while evaluating the expression the error condition is processed immediately
without evaluating the expression against any more siblings.

Predicates are often used in the ref subproperty of a field’s bind property. This makes it possible to make
a field bind to data conditionally upon the value of the data. Note, however, that once the binding has
been made the predicate is no longer consulted. Hence this is not suitable for interactive applications,
where the user may change the value, unless a validation script is also provided to force the data to remain
within the predicate range. Of course this is not a problem in non-interactive applications such as report
generation.

For example, the receipt form could be modified to generate a report that differentiates between items
above a certain price (which require a manager’s approval) and items at or below that price (which are
discretionary). The predicate for items below the threshold price includes a < character, which is written
< in accordance with the rules of XML.

Example 3.22 Binding controlled by predicates

<subform name="Receipt">
<subform name="Detail_Approval_Reqd">

<bind ref="$data.Receipt.Detail.[Total_Price > 200]"/>
<field name="Description" …>…</field>
<field name="Units" …>…</field>
<field name="Unit_Price" …>…</field>
<field name="Total_Price" …>…</field>

</subform>
…
<subform name="Detail_Discretionary">

<bind ref="$data.Receipt.Detail.[Total_Price <= 200]"/>
<field name="Description" …>…</field>
<field name="Units" …>…</field>
<field name="Unit_Price" …>…</field>
<field name="Total_Price" …>…</field>

</subform>
…

XFA Specification
Chapter 3, Object Models in XFA Scripting Object Model 103

You cannot use a predicate directly in the body of a script as part of a normal object reference. Instead you
must pass the complete SOM expression as a string to either a resolveNode() or resolveNodes()
method. For example, a script could calculate the sum of items above a certain price as follows.

Example 3.23 Calculation using a predicate

<subform name="Receipt">
<subform name="Detail">

<field name="Total_Price" …>…</field>
</subform>

<subform name="Detail">
<field name="Total_Price" …>…</field>

</subform>
…
<field name="Big_Items_Total_Price" …>

<calculate>
<script>

sum($.resolveNodes("Detail.[Total_Price > 200]"))
</script>

</calculate>
</field>

Caution: Attempting to use a predicate as part of a normal object reference will result in a syntax error. As
a rule of thumb, SOM expressions containing predicates must always be within quotation marks.

A predicate can be used with a naming property. For example the expression
Receipt.#field[name="Total_Price"] is equivalent to Receipt.Total_Price.

Since XFA 2.8 traverse objects, which were previously unnamed, have been named by the value of the
operation property. Scripts written for older versions of XFA may select particular traverse objects using
a predicate expression such as #traverse[operation==’next’]. The predicate expressions are still
valid.

 The Parent Property

Every object except the xfa object has a property called parent that points to the object's parent node.
When parent is used in a SOM expression, it has the effect of forcing the expression resolution to go back
up the tree one level. This is analogous in function to the "/.." or "\.." constructs often used in file
names. However, it should be emphasized the similar syntax ".." has quite a different meaning in XFA
SOM expressions, as described in “Selecting Descendants At Any Level” on page 104. Instead the function
of going up one level is performed by ".parent". For example, given the receipt data, the expression

$data.Receipt.Detail[1].parent.Tax

is equivalent to

$data.Receipt.Tax

This facility works in any DOM but is much more useful when used with unqualified references in the Form
DOM.

The xfa object also has a parent property, but its value is null.

XFA Specification
Chapter 3, Object Models in XFA Scripting Object Model 104

Selecting Descendants At Any Level

The syntax ".." can be used to select the first descendant in document order at any level which matches
the subsequent portions of the expression. The resolution of such expression requires additional
computation, so their use may adversely impact performance.

To understand this syntax consider the original receipt data. For convenience this data is repeated below.

Example 3.24 Receipt data

<?xml version="1.0" encoding="UTF-8" ?>
<Receipt>

<Detail>
<Description>Giant Slingshot</Description>
<Units>1</Units>
<Unit_Price>250.00</Unit_Price>
<Total_Price>250.00</Total_Price>

</Detail>
<Detail>

<Description>Road Runner Bait, large bag</Description>
<Units>5</Units>
<Unit_Price>12.00</Unit_Price>
<Total_Price>60.00</Total_Price>

</Detail>
<Sub_Total>310.00</Sub_Total>
<Tax>24.80</Tax>
<Total_Price>334.80</Total_Price>

</Receipt>

In the above example, both of the following expressions

$data..Total_Price
$data..Total_Price[0]

resolve to $data.Receipt.Detail[0].Total_Price, the first matching node in document order.
The value of this node is 250.00. Note that once this first match is found, the SOM expression resolver does
not look at any other branches of the SOM. In particular, the expression $data..Total_Price[1] does
not match any node, because there is no node corresponding to
$data.Receipt.Detail[0].Total_Price[1].

SOM Expressions That Include Periods and Dashes

An XFA name may include the dash and/or period characters (“XFA Names” on page 75), which have dual
meanings in SOM expressions, especially when such expressions are interpreted by a script interpreter,
such as FormCalc and JavaScript. Whether such special characters can be included in a SOM expression
depends on whether the expression is expected to be a SOM only or may be either a SOM or a script.

Example 3.25 Object names that include periods and dashes

<template>
<subform>

<subform name="Toys">
<field name="My-toy" …/>
<field name="My.childs-toy" …/>

</subform>
</subform>

XFA Specification
Chapter 3, Object Models in XFA Scripting Object Model 105

</template>

SOM only

A SOM-only expression is used as the argument for the resolveNode() function or method or as the
value of the ref property of a bind element.

● Dash. The dash character is interpreted as part of the field name, rather than as an operator. This is true
for both FormCalc and JavaScript.

Example 3.26 Dash character in a SOM-only expression

<script>
$xfa.resolveNode("$form..My-toy") // '-' included with XFA name

</script>

● Period. One or more escape characters must be used to distinguish a period used in a name from a
period used as an object separator.

Example 3.27 Period embedded in a name in a SOM-only expression

<script>
// FormCalc environment
$xfa.resolveNode("form..My\.childs-toy")

</script>

or

<script contentType="application/x-javascript">
// JavaScript environment
xfa.resolveNode("form..My\\.childs-toy").rawValue

</script>

JavaScript strips one of the escape characters before passing the remaining string to the SOM resolver,
but FormCalc does not.

Without the rawValue property in the JavaScript expression, the object My.childs-toy would be
returned rather than the value of the object, as explained in “Using SOM Expressions in JavaScript” on
page 106

Mixed SOM/script context

A mixed SOM/script context exists when the expression can be interpreted as a SOM expression or as a
script expression. Whether the escape sequence ’\’ can be used to prevent the script environment from
handling dashes and periods is application dependent. If it is not supported, the resolveNode()
method/function may be used, as described in “SOM only” on page 105.

Example 3.28 Dot and dash in name are mis-interpreted

<calculate>
<script contentType="application/x-javascript">

// '.' interpreted as object separator and '-' as subtraction
xfa.form.subform.My.childs-toy

</script>
</calculate>

XFA Specification
Chapter 3, Object Models in XFA Scripting Object Model 106

Using SOM Expressions in FormCalc

For each script in a template, the script language is encoded in the script element by the contentType
attribute. If this attribute is not specified the language defaults to application/x-formcalc, which
signifies FormCalc.

SOM expressions are native to FormCalc. Hence, most valid SOM expression can be used anywhere
FormCalc requires you to specify a DOM node. The sole exception is a SOM expression using a predicate.
SOM expressions using predicates must be passed as strings to a resolveNode() or resolveNodes()
method.

The FormCalc scripting language is, in general, oriented to strings rather than objects. It does not store all
variables internally as strings, but it does try to store data in forms that can be converted to and from
strings. In keeping with this, when it encounters a SOM expression for a node it looks for a property of that
node called value. If the property exists, it takes the string value of that property as the resolved value for
the SOM expression. Thus for example, given the data for the receipt example, the FormCalc expression

$data.Receipt.Detail[1].Units

yields not the Units node but rather its value, which is 5. Similarly the expression

sum($data.Receipt.Detail.Total_Price[*])

specifies a list of field nodes, but when the sum() function processes each node in the list it looks up the
value property of the node and adds together these numbers.

Runtime resolution of object names

Sometimes you may want to build the name of an object in a string at run time. You can use the
resolveNode() method of $xfa to translate the string into an object reference. For example,

$xfa.resolveNode(My_String)

There is also a resolveNodes() method that returns a list of zero or more object references. For
example:

sum($xfa.resolveNodes(My_String))

All nodes in all XFA DOMs have resolveNode() and resolveNodes() methods. Furthermore, for the
types of SOM expressions described under “Basic Object References” on page 90, the resolveNode() or
resolveNodes() method of any node can be used. However for the advanced expressions described in
“Relative References” on page 108 you must use the methods of the $xfa object or the "$" object.

Using SOM Expressions in JavaScript

For each script in a template, the script language is encoded in the script element by the contentType
attribute. If this attribute is specified as application/x-javascript it signifies that the language is
JavaScript.

Obtaining the value of an expression

JavaScript, unlike FormCalc, is not aware when the context calls for a string rather than an object. Hence it
never automatically resolves a node reference into a value. To make reference to the data associated with a
field or exclusion group in JavaScript you must explicitly invoke the rawValue property of the node. For
example, to reference the value of the Tax field in the receipt example on page 104, you must use the
SOM expression

$form.Receipt.Detail.Tax.rawValue

XFA Specification
Chapter 3, Object Models in XFA Scripting Object Model 107

Within an XFA processor the same field content may be represented in several different formats. The above
expression using rawValue returns the field content in canonical format. This is the format that is
suitable for calculations. The same data may be presented to the user differently through the lens of a
picture clause and/or localization. For more information about the different representations of the data
see “Localization and Canonicalization” on page 152.

The above example can be modified to return the formatted value, which is the format seen by the user, as
follows:

$form.Receipt.Detail.Tax.formattedValue

In contrast, when FormCalc evaluates the expression $data.Receipt.Detail.Tax it returns the data
in canonical form without having to be told to.

Note: Versions of this specification prior to version 2.5 erroneously stated that the value property was
equivalent to the rawValue property. In fact the value property corresponds to the value
element which is a child of field and in JavaScript a SOM expression using this name evaluates to
a node.

SOM expressions that use special characters

JavaScript is rather restrictive in its handling of object names. In particular, expressions for object names
may not include any of "[", "]", "*", and "..". Consequently many valid SOM expressions cannot be
used directly in JavaScript expressions. For example, the following expressions result in an error when
interpreted by JavaScript:

$data..Total_Price // JavaScript does not support ".."
$data.Receipt.Detail.Total_Price[0] // JavaScript does not support "[" or "]".

To address this limitation, JavaScript scripts must pass such SOM expressions as strings to a
resolveNode() method. resolveNode() returns the object specified in the SOM expression.

Every node in any of the XFA DOMs has a resolveNode() method. Furthermore, for the types of SOM
expressions described under “Basic Object References” on page 90, the resolveNode() method of any
node can be used. However for the advanced expressions described in “Relative References” on page 108
you must use the methods of the $xfa object or the current container (which is accessible as the this
object).

For example, the following line of code is valid:

$data.Receipt.Tax.rawValue = 11.34; // this is valid JavaScript

Whereas the following line of code is not valid because the square brackets are not allowed:

$data.Receipt.Detail[1].Units.rawValue = 3; // this is NOT valid JavaScript

Instead you must pass the SOM expression to resolveNode():

// A valid JavaScript expression
$xfa.resolveNode("$data.Receipt.Detail[1].Units").rawValue = 3;

Sometimes an operation expects or requires a list of objects, rather than a single object. For these cases
the script must use the resolveNodes() method instead of the resolveNode() method. The
resolveNodes() method returns a list of zero or more objects,sorted in document order. For example,
the following expression creates a variable containing a list of zero or more dataValues corresponding
to Units elements of receipt detail records.

// A valid JavaScript expression
var aList = $xfa.resolveNodes("$data.Receipt.Detail[*].Units");

XFA Specification
Chapter 3, Object Models in XFA Scripting Object Model 108

As with the resolveNode() method, there is a resolveNodes() method on every node in any XFA
SOM, but only the methods on $xfa and the current container handle relative SOM expressions.

Using SOM Expressions in Bind References

An XFA SOM expression used as a bind reference is not in a scripting context, so it is not FormCalc or any
other scripting language. It is evaluated as a raw SOM expression. Any valid SOM expression constructed
according to the rules in this section (“Basic Object References” on page 90) can be used, however it must
always resolve to a node or list of nodes of the appropriate type in the Data DOM. When the expression
resolves to a list of data nodes the XFA processor binds the form object to the first unbound data object in
the list. See “Basic Data Binding to Produce the XFA Form DOM” on page 171 for more information about
data binding.

Relative References
Whenever a script is activated it resides somewhere in the Form DOM. It originated in the Template DOM,
from which it was copied, but the copy in the Template DOM is never activated. Scripts do not reside in any
other DOMs. The node containing the script provides a context for the script. Scripts can employ SOM
expressions that reference nodes in the Form DOM relative to the node which contains the script. This
facility is extended with scoping rules which allow the relative reference to succeed even if it does not
exactly match the hierarchy of nodes in the Form DOM.

When data is merged with a template to create the Form DOM, some parts of the Template DOM
(including scripts) may be replicated more than once in the Form DOM. This allows a template to
dynamically adapt to the number and arrangement of records in the data. But this imposes upon scripting
the requirement that a script be able to work unchanged even when it is not in the same position in the
Form DOM that it was originally in the Template DOM. In other words, it must be possible to write scripts
that are relocatable. This can be accomplished using relative references and scoping.

The Current Container

Within the Form DOM there is a concept of a container. A container is an object that holds data or values.
Simple containers include field (interactive element on the form), draw (static) and contentArea (layout
region) elements. All other containers are capable of containing other containers as well as other
non-container objects. For more information about containers see “Container Elements” on page 32.

The following objects can directly contain scripts:

● field

● exclGroup

● subform

● subformSet

In XFA SOM, the default current object for a script is the container that is the most immediate ancestor of
the script element. Most often such containers are field objects. In addition exclGroup, subform,
and subformSet objects can be the current object for scripts. The other containers cannot contain scripts
except inside contained field, exclGroup, subform, or subformSet objects.

When a SOM expression contains a predicate, the predicate is effectively a small script. Within this script
the current container is the node selected by the part of the SOM expression to the left of the predicate.

XFA Specification
Chapter 3, Object Models in XFA Scripting Object Model 109

The current object can be explicitly referenced using the dollar sign, "$". This serves the same purpose as
this in JavaScript or Me in VBScript. In the following example of an XFA SOM expression embedded in a
script, the current object is the Receipt subform, the most immediate ancestor that is a container. This
script performs a subform-level validation when the user tabs out of the Receipt subform. The
validation script uses "$" to make a relative reference to the value of the Tax field, highlighted in bold.

Example 3.29 Script in FormCalc using a reference relative to "$"

<xdp:xdp …>
<template …>

<subform>
<subform name="Receipt"…>

<validate>
<script>$.Tax >= 0</script>

</validate>
<field name="Tax"…> … </field>
…

</subform>
<field …> … </field>
…

</subform>
</template>

</xdp:xdp>

In the example above, the full name of the referenced object is $form.Receipt.Tax (the root subform
is transparent because it is nameless).

For scripts written in JavaScript, the name of the current container is this in native JavaScript expressions
but "$" in SOM expressions.

Caution: Do not be misled by the behavior of the JavaScript implementation in the Acrobat family of
products. These products support the non-conformant use of "$" in native JavaScript
expressions, but other implementations (including those in other Adobe products) do not. For
more information see “Use of "$" in JavaScript expressions” on page 1172.

The following shows the same validation as Example 3.29, modified to use JavaScript.

Example 3.30 Script in JavaScript using "this"

<xdp:xdp …>
<template …>

<subform>
<subform name="Receipt"…>

<validate>
<script contentType="application/x-javascript">

this.Tax.rawValue >= 0 // JavaScript
</script>

</validate>
<field name="Tax"…> … </field>
…

</subform>
<field …> … </field>
…

</subform>
</template>

</xdp:xdp>

XFA Specification
Chapter 3, Object Models in XFA Scripting Object Model 110

In the example the script uses this inside a native JavaScript expression to refer to the current container.
Instead of this it could have named the current container explicitly, but it must name the correct
container! For example, the example could have used the expression:

$form.Receipt.Tax.rawValue >= 0 // JavaScript

Or, the script could have used the resolveNode() method on the current container or on the $xfa
object.

Note: The resolveNode() method always uses "$", not this, regardless of the scripting language. Hence
if this example is changed to use resolveNode() on $xfa it employs the following syntax:

$xfa.resolveNode("$.Tax").rawValue >= 0 // JavaScript

All nodes in all XFA DOMs have resolveNode() and resolveNodes() methods. Furthermore, for the
types of SOM expressions described under “Basic Object References” on page 90, the resolveNode() or
resolveNodes() method of any node can be used. However for relative expressions you must use the
methods of either the $xfa object or of the script’s current container.

 Unqualified References to Children of the Container

It is possible to refer directly to a child of the current container by name. In the following example of an
XFA SOM expression embedded in a script, the current object is the Receipt subform, the most
immediate ancestor that is a container. This script uses a relative reference to the value of the Tax field,
highlighted in bold.

Example 3.31 Script using an unqualified reference to a child of the container

<xdp:xdp …>
<template …>

<subform name="Receipt"…>
<field name="Tax"…> … </field>
…
<validate>

<script>Tax > 0</script>
</validate>
…

</subform>
</template>

</xdp:xdp>

The SOM expression Tax does not start with "xfa" or any of the shortcut strings so it is taken to be the
name of a child of the current object. The full name of the referenced object is $form.Receipt.Tax.

In the example above, the following SOM expressions are equivalent:

Tax
$.Tax
$form.Receipt.Tax
$xfa.resolveNode("Tax")
$xfa.resolveNode("$.Tax")

The equivalents in JavaScript are:

Tax.rawValue // JavaScript native expression
this.Tax.rawValue // JavaScript native expression
$form.Receipt.Tax.rawValue // JavaScript native expression

XFA Specification
Chapter 3, Object Models in XFA Scripting Object Model 111

$xfa.resolveNode("Tax").rawValue // JavaScript SOM expression
$xfa.resolveNode("$.Tax").rawValue // JavaScript SOM expression

 Unqualified References to Siblings of the Container

A SOM expression can also refer directly to siblings of its container node. For example, the calculation
script for the $form.Receipt.Total_Price field can refer to the Tax and Sub_Total fields, using
unqualified names.

Example 3.32 Script using an unqualified reference to a sibling of the container

<xdp:xdp …>
<template …>

<subform name="Receipt" …>
…
<field name="Sub_Total" …> … </field>
<field name="Tax" …> … </field>
<field name="Total" …>

<calculate>
<script>Sub_Total + Tax</script>

</calculate>
</field>

</subform>
</template>

</xdp:xdp>

The equivalent in JavaScript is:

$xfa.resolveNode("Sub_Total").rawValue +
$xfa.resolveNode("Tax").rawValue // JavaScript

The ability to refer to siblings with unqualified SOM expressions makes it possible to write relocatable SOM
expressions. In the following example the same script is used for calculations in both of the Detail
subforms.

Example 3.33 Calculation using a relocatable SOM expression

<xdp:xdp …>
<template …>

<subform name="Receipt" …>
<subform name="Detail" …>

<field name="Description" …> … </field>
<field name="Units" …> … </field>
<field name="Unit_Price" …> … </field>
<field name="Sub_Total" …>

<calculate>
<script>Units * Unit_Price</script>

</calculate>
</field>

</subform>
<subform name="Detail" …>

<field name="Description" …> … </field>
<field name="Units" …> … </field>
<field name="Unit_Price" …> … </field>
<field name="Sub_Total" …>

<calculate>

XFA Specification
Chapter 3, Object Models in XFA Scripting Object Model 112

<script>Units * Unit_Price</script>
</calculate>

</field>
</subform>
…

</subform>
</template>

</xdp:xdp>

This in turn makes it possible to eliminate the redundant subform declaration in the template. The two
subforms can be coalesced into a single subform with an occurrence number of 2. The resulting template
is as follows.

Example 3.34 Relocatable calculation allows consolidation of subforms

<xdp:xdp …>
<template …>

<pageArea> … </pageArea>
<subform name="Receipt" layout="tb" …>

<subform name="Detail" …>
<occur min="2" max="2" />
<field name="Description" …> … </field>
<field name="Units" …> … </field>
<field name="Unit_Price" …> … </field>
<field name="Sub_Total" …>

<calculate>
<script>Units * Unit_Price</script>

</calculate>
</field>

</subform>
…

</subform>
</template>

</xdp:xdp>

When data is merged into the form, the XFA application automatically incorporates two copies of the
Detail subform into the Form DOM. See “Dynamic Forms” on page 326 for more information about
templates for dynamic forms, and “Basic Data Binding to Produce the XFA Form DOM” on page 171 for
more information about how occurrence numbers affect the merge process. The Receipt subform uses a
top-to-bottom flowing layout strategy so that successive instances of the Detail subform are placed into
successive content regions. See “Layout for Growable Objects” on page 269 for more information about
the layout process for dynamic forms.

 Unqualified References to Ancestors of the Container

One more type of unqualified reference is possible. A SOM expression can refer with an unqualified name
to an ancestor of its container or to a sibling of an ancestor. This makes it possible to modify a template by
wrapping portions of it inside a subform without having to change any of the enclosed scripts. For
example, suppose that we are starting with the template from Example 3.33. Later the template is
modified as follows.

XFA Specification
Chapter 3, Object Models in XFA Scripting Object Model 113

Example 3.35 Modified template relies on relocatable calculation

<xdp:xdp …>
<template …>

<subform name="Receipt" …>
<subform name="Detail" …>

<field name="Description" …> … </field>
<field name="Units" …> … </field>
<field name="Unit_Price" …> … </field>
<subform name="New_Subform" …>

<field name="Sub_Total" …>
<calculate>

<script>Units * Unit_Price</script>
</calculate>

</field>
</subform>

</subform>
…

</subform>
</template>

</xdp:xdp>

The same script still works because Units and Unit_Price are both siblings of New_Subform, which is
an ancestor of Sub_Total, which is the container for the script.

Note that this does not work in the other direction. Ancestors can be referred to directly but not
descendants beyond immediate children. Starting again with the template from Example 3.33, if a new
subform is wrapped around Units and Unit_Price, it is necessary to modify the script that calculates
Sub_Total as follows.

Example 3.36 Modification that can not take advantage of relocation

<xdp:xdp …>
<template …>

<subform name="Receipt" …>
<subform name="Detail" …>

<occur min="2" max="2" />
<field name="Description" …> … </field>
<subform name="New_Subform" …>

<field name="Units" …> … </field>
<field name="Unit_Price" …> … </field>

</subform>
<field name="Sub_Total" …>

<calculate>
<script>New_Subform.Units * New_Subform.Unit_Price</script>

</calculate>
</field>

</subform>
…

</subform>
</template>

</xdp:xdp>

XFA Specification
Chapter 3, Object Models in XFA Scripting Object Model 114

Differences Between Qualified and Unqualified References

A SOM expression is qualified if the first character is "$" or "!" or if the first term in the expression is xfa.
It is also qualified when used to identify an object in JavaScript and it starts with this. Otherwise it is
unqualified. Unqualified references search for matching nodes in the following order:

1. Children of the container

2. The container and siblings of the container

3. The parent of the container and siblings of the parent (aunts or uncles) of the container

4. The grandparent of the container and siblings of the grandparent (great-aunts or great-uncles) of the
container

5. The above steps repeat recursively up to the root. The unqualified reference fails in either of two cases.
It fails if the search reaches the root without finding a match. And it fails if it finds a match for the first
term in the expression but fails to find a match for some subsequent term.

 "$." Versus Unqualified SOM Expressions

Sometimes because of name conflicts an unqualified SOM expression matches more nodes than you want,
or a different node than the one you wanted. In these cases an expression starting with "$." may be more
suitable. A SOM expression starting with "$." is syntactically a qualified expression, yet it is relative to the
script container. Thus it escapes scope-matching without giving up relocation. For example, consider the
following template.

Example 3.37 Use of "$" as an alternative to an unqualified SOM expression

<xdp:xdp …>
<template>

<subform name="Receipt">
<subform name="Detail">

<validate>
<script>$.Total_Price >= 0</script>

</validate>
<field name="Total_Price"> … </field>
…

</subform>
<field name="Total_Price"> … </field>
…

</subform>
</template>

</xdp:xdp>

the expression $.Total_Price resolves unambiguously to $form.Receipt.Detail.Total_Price.
Scope-matching does not apply hence the expression does not resolve to the same-named field
$form.Receipt.Total_Price.

"$" can also be used for expressions pointing to nodes that are higher up in the hierarchy than the script's
container. Use "$.parent", "$.parent.parent", and so on to climb levels in the tree. It is possible to
climb all the way to the root. The equivalent syntax for native JavaScript expressions is "this.parent",
"this.parent.parent", and so on.

XFA Specification
Chapter 3, Object Models in XFA Scripting Object Model 115

Inferred Index

The previous sections have used as examples a template that is divided up into individual subforms for
each detail record. Conceptually such a template is arranged in a tree structure. However it is also possible
to create templates that are notionally arranged in a matrix, like a spreadsheet. For example, consider the
following receipt template with room for multiple items.

Example 3.38 Receipt template using spreadsheet-like organization

<xdp:xdp …>
<template …>

<subform name="Receipt" …>
<field name="Description" …> … </field>
<field name="Units" …> … </field>
<field name="Unit_Price" …> … </field>
<field name="Total_Price" …> … </field>
<field name="Description" …> … </field>
<field name="Units" …> … </field>
<field name="Unit_Price" …> … </field>
<field name="Total_Price" …> … </field>
<field name="Description" …> … </field>
<field name="Units" …> … </field>
<field name="Unit_Price" …> … </field>
<field name="Total_Price" …> … </field>
<field name="Description" …> … </field>
<field name="Units" …> … </field>
<field name="Unit_Price" …> … </field>
<field name="Total_Price" …> … </field>
<field name="Description" …> … </field>
<field name="Units" …> … </field>
<field name="Unit_Price" …> … </field>
<field name="Total_Price" …> … </field>

</subform>
</template>

</xdp:xdp>

Instead of grouping the fields by subform, this static template simply repeats each of the Description,
Units, Unit_Price, and Total_Price fields five times. Most likely these are arranged on the page as a
matrix four fields wide and five lines high, in imitation of a traditional pre-printed paper form.

SOM expressions provide a mechanism to deal conveniently with such arrangements. When
scope-matching, if an unqualified reference is made without specifying an index, the index of the
container is also used for the unqualified reference. For example, the above template can be modified by
adding scripts as follows.

Example 3.39 Using relocatable calculations in a spreadsheet-like organization

<xdp:xdp …>
<template …>

<subform name="Receipt" …>
<field name="Description" …> … </field>
<field name="Units" …> … </field>
<field name="Unit_Price" …> … </field>
<field name="Total_Price" …>

<calculate>
<script>Units * Unit_Price</script>

XFA Specification
Chapter 3, Object Models in XFA Scripting Object Model 116

</calculate>
</field>
<field name="Description" …> … </field>
<field name="Units" …> … </field>
<field name="Unit_Price" …> … </field>
<field name="Total_Price" …>

<calculate>
<script>Units * Unit_Price</script>

</calculate>
</field>
…

</subform>
</template>

</xdp:xdp>

When each script is activated, the index used for Units and for Unit_Price are inferred from the
Total_Price that contains the script. Therefore Total_Price[0] is calculated as
Units[0] * Unit_Price[0], Total_Price[1] is calculated as Units[1] * Unit_Prices[1],
and so on. This way the same script can be replicated in different cells without having to edit it for each
cell.

To take advantage of inferred indexing in JavaScript you must use the resolveNodes() method. The
equivalent of the above scripts in JavaScript is:

$xfa.resolveNode("Units").rawValue *

$xfa.resolveNode("Unit_Price").rawValue // JavaScript

It is possible to design a form where the size of the array of referencing fields is not the same as the size of
the array of referenced fields. In such a case matching is still attempted by index number. So, if the
reference falls within the range of referenced fields, a match is found. If it falls outside, it is an error. For
example, if three of the Units fields were deleted from the above example, so that it had five
Total_Price fields but only two Units fields, the calculations for Total_Price[2],
Total_Price[3], and Total_Price[4] would fail. The same calculations fail regardless of which
three of the Units fields were deleted, because SOM expression indexes refer to occurrence count rather
than position on the page. It is generally not a good idea to use this sort of construction unless the fields,
subforms, and/or exclusion groups involved form congruent arrays.

There is one exception to this rule. If a script in a container with multiple same-named siblings makes
reference to a singly-occurring node with no explicit occurrence indication, that single occurrence is
always found. For example, all instances of the Total_Price field here refer to a singly-occurring
Discount field.

Example 3.40 Singly-occuring node is found by an unqualified reference

<xdp:xdp …>
<template …>

<subform name="Receipt" …>
<field name="Discount"…> … </field>
<field name="Description" …> … </field>
<field name="Units" …> … </field>
<field name="Unit_Price" …> … </field>
<field name="Total_Price" …>

<calculate>
<script>(Units * Unit_Price) * (1 - (Discount/100.0))</script>

</calculate>

XFA Specification
Chapter 3, Object Models in XFA Scripting Object Model 117

</field>
<field name="Description" …> … </field>
<field name="Units" …> … </field>
<field name="Unit_Price" …> … </field>
<field name="Total_Price" …>

<calculate>
<script>(Units * Unit_Price) * (1 - (Discount/100.0))</script>

</calculate>
</field>
…

</subform>
</template>

</xdp:xdp>

Inferred Index for Ancestors of the Container

The same logic that is used at the level of the script's container also applies to ancestors or siblings of
ancestors which match an unqualified SOM expression. In each case, the target's index defaults to the
index of the ancestor or ancestor's sibling at the same level of the hierarchy. The result of this rule is that if
a cell in a table contains a SOM expression that references another table, the SOM expression defaults to
referencing the corresponding cell in the other table. For example, a form has been created to calculate
trip times. In one field the user enters his estimated average driving speed in kilometres per hour. The form
also displays two 5 by 5 tables. The first table shows distances between cities in kilometres and the second
shows estimated travel times between the same cities in hours. The content of each cell in the second
table is calculated based upon the corresponding cell in the first table. The template is as follows.

Example 3.41 Template manipulating tables via inferred indexing

<xdp:xdp …>
<template …>

<subform name="Trip">
<field name="Speed" …> … </field>
<subform name="Distance">

<subform name="Distances" …>
<field name="Cell"…> … </field>
<field name="Cell"…> … </field>
…

</subform>
<subform name="Distances" …>

<field name="Cell"…> … </field>
<field name="Cell"…> … </field>
…

</subform>
</subform>
…
<subform name="Time" …>

<subform name="Times" …>
<field name="Cell"…>

<calculate>
<script>Distance.Distances.Cell / Speed</script>

</calculate>
</field>
<field name="Cell"…>

<calculate>

XFA Specification
Chapter 3, Object Models in XFA Scripting Object Model 118

<script>Distance.Distances.Cell / Speed</script>
</calculate>

</field>
…

</subform>
<subform name="Times" …>

<field name="Cell"…>
<calculate>

<script>Distance.Distances.Cell / Speed</script>
</calculate>

</field>
<field name="Cell"…>

<calculate>
<script>Distance.Distances.Cell / Speed</script>

</calculate>
</field>
…

</subform>
…

</subform>
</subform>

</template>
</xdp:xdp>

Each cell in the Timetable looks up the corresponding distance in the Distance table using the SOM
expression Distance.Distances.Cell. Consider the case of the calculate script for the field
$template.Trip.Time.Times[3].Cell[2]. The expression Distance.Distances.Cell is
resolved as follows:

1. The current container is a field named Cell, specifically
$template.Trip.Time.Times[3].Cell[2]. The Cell field does not have a property or child
named Distance.

2. The Cell field's parent is a subform called Times, specifically $template.Trip.Time.Times[3].
The Times subform is not named Distance nor does it have a sibling named Distance.

3. The parent of Times is a subform called Time, specifically $template.Trip.Time. Time has a
sibling called Distance. Hence Distance is resolved to $template.Trip.Distance.

4. $template.Grid.Distance has multiple children called Distances. The SOM expression does
not supply an index. Hence an index must be inferred. Inferring is possible because the corresponding
node on the way up the tree, $template.Trip.Times.Times[3], has an index. Its index is
borrowed and $template.Trip.Distance.Distances[3] is selected.

5. $template.Trip.Distance.Distances[3] has multiple children called Cell. The SOM
expression does not supply an index. Hence, an index must be inferred. Inferring is possible because
the corresponding node on the way up the tree, $template.Trip.Times.Times[3].Cell[2],
has an index. Its index is borrowed and $template.Trip.Distance.Distances[3].Cell[2] is
selected.

6. Because the script language is FormCalc, and a string is required by the context, and
$template.Trip.Distance.Distances[3].Cell[2] has an associated value, the expression is
resolved to $template.Trip.Distance.Distances[3].Cell[2].rawValue.

XFA Specification
Chapter 3, Object Models in XFA Scripting Object Model 119

Note that when it comes to inferring an index it makes no difference whether or not a particular node on
the way up has the same name as the corresponding node on the way down. Hence the tables do not have
to match by name, they only have to be congruent (i.e. have the same dimensions).

The SOM expression Speed is easier to resolve because it does not need an index.

7. By the usual scoping logic Speed is resolved to the field $template.Trip.Speed. Because that field
has no siblings with the same name, no index is required.

8. Because the script language is FormCalc, and a string is required by the context, and
$template.Trip.Speed has an associated value, this expression is further resolved to
$template.Trip.Distance.Distances[3].Cell[2].rawValue.

Finally the calculation can be done.

9. The number in $template.Trip.Distance.Distances[3].Cell[2].rawValue is divided by
the number in $template.Trip.Speed.rawValue and the quotient assigned to
$template.Trip.Time.Times[3].Cell[2].rawValue.

It is possible for the SOM expression to reach down to a lower level than the level of the script's container.
In that case, when the SOM expression does not specify an index and an index is required, [0] is assumed.
The same thing happens when the script's container does not have siblings of the same name. In short,
when an index is needed but none is supplied and there is no way to infer an index,[0] is used.

Index inferral must not be combined with the use of ".parent" in the same SOM expression. The SOM
expression resolver is not required to correctly handle the inferral when the SOM expression contains
".parent".

Index inferral may be used with references by class. For example consider the following template.

Example 3.42 Index inferral used with a reference by class

<xdp:xdp …>
<template …>

<subform name="root">
<subform name="A">

<subform> … </subform>
<subform name="P">

<field name="X">
<calculate>

<script>B.#subform.Y</script>
</calculate>

</field>
</subform>

</subform>
<subform name="B">

<subform> … </subform>
<subform name="Q">

<field name="Y"> … </field>
</subform>

</subform>
</subform>

</template>
</xdp:xdp>

XFA Specification
Chapter 3, Object Models in XFA Scripting Object Model 120

the expression B.#subform.Y resolves to $form.root.B.#subform[1].Y, which is to say the field
named Y within the second child of subform B. The index "[1]" is copied from the corresponding level in
the current object's full name, which is expressed as $form.root.A.#subform[1].X. Note that the
current subform and/or the referenced subform may be named, as shown, but even when they are the
names have no effect on the resolution of the expression.

Relative Index

Sometimes it is necessary for a script associated with one cell in an array to refer to another cell on another
line above or below. A special syntax is provided for this. Within an unqualified reference an index of the
form "[-nnn]" is interpreted as the current container's index minus nnn, while an index of the form
"[+nnn]" is interpreted as the current container's index plus nnn. For example, in the following example
an item number field has been added to each detail record. This example is based upon the
spreadsheet-style template of Example 3.38 so all of the Item_No fields are siblings. The first Item_No
field defaults to 1. Each remaining Item_No field automatically calculates its value as one more than the
previous Item_No field. Furthermore, if the user manually enters a value into the first Item_No field all
subsequent item numbers are automatically updated.

Example 3.43 Relative indexing

<xdp:xdp …>
<template …>

<subform name="Receipt" …>
<field name="Item_No" …>

<value>
<integer>1</integer>

</value>
</field>
<field name="Description" …> … </field>
<field name="Units" …> … </field>
<field name="Unit_Price" …> … </field>
<field name="Total_Price" …> … </field>
<field name="Item_No" …>

<calculate>
<script>Item_No[-1] + 1</script>

</calculate>
</field>
…
<field name="Description" …> … </field>
<field name="Units" …> … </field>
<field name="Unit_Price" …> … </field>
<field name="Total_Price" …> … </field>
…

</subform>
</template>

</xdp:xdp>

Relative indexing can also be used with inferred indexes. Relative indexes are defined as relative to the
unadorned reference. Hence the full meaning of "[-nnn]" is "indexed by nnn less than what it would
have been if [-nnn] had not been specified". Similarly the full meaning of "[+nnn]" is "indexed by nnn
more than it would have been if [+nnn] had not been specified".

Relative indexing cannot be used in fully-qualified SOM expressions because such expressions cannot infer
indexes.

XFA Specification
Chapter 3, Object Models in XFA Scripting Object Model 121

SOM Expressions That Reference Variables Properties
SOM expressions may reference values or named script objects specified in variables properties.
Variables may be used to hold boilerplate or image references or to define script object references.
Because SOM expressions that reference variable properties usually appear in calculation or validation
scripts, their use is described in “Document Variables” on page 367.

 122

4
Exchanging Data Between an External Application
and a Basic XFA Form

This chapter explains the basic steps involved with exchanging data between an external application and
an XFA processing application hosting an XFA form.

This chapter assumes the format of the data provided by the external application is compatible with the
XFA default data loading rules. “Dealing with Data in Different XML Formats” on page 501 explains how to
translate data into a representation that is compatible with the XFA default data loading.

This chapter contains the following sections:

● “Creating, Updating, and Unloading a Basic XFA Data DOM” explains how mapping rules influence
where data in the XML Data DOM is placed in an XFA Data DOM, how the XML Data DOM is updated
when data in the XFA Data DOM changes, and how data in the XML Data DOM is unloaded.

● “Localization and Canonicalization” explains the role locale plays when data is being loaded into or out
of an XFA Data DOM or Form DOM.

● “Basic Data Binding to Produce the XFA Form DOM” explains how containers in the Form DOM are
bound with data in the XFA Data DOM.

Creating, Updating, and Unloading a Basic XFA Data DOM
This section explains how generic well-formed XML documents are processed by XFA processing
applications and how they present an object and processing model for interpreting and manipulating the
structured data contained within the XML document. This section refers to such XML documents as XML
data documents.

Background and Goals

The reader of this specification will learn how XML data documents are handled by XFA processing
applications, how the data is mapped to an object model known as the XFA Data DOM, and how the data
is mapped back out again during the creation of a new XML data document. This information is valuable to
authors of form templates who will be processing existing XML data, and to people or systems producing
data that will be serviced by XFA processing applications.

This section primarily focuses on the processing of XML data documents; however, it was a design goal
that the same object model could also be used to represent data from non-XML sources such as a
database or other data formats such as comma-separated values. For this reason the XFA Data DOM does
not interact directly with XML but instead goes through an XML Data DOM. Custom processors can replace
the XML Data DOM with a DOM appropriate for their non-XML data formats.

It should be noted that the concepts and guidelines presented by this specification are also valuable to
other types of XML processing applications outside the realm of XFA, such as applications concerned with
utilizing XML for data exchange and mapping the data into structured documents types other than forms.
A reduction in implementation costs and a gain in flexibility can be obtained by taking a simplified view of
how XML expresses data. The object model described by this specification represents such a simplified
view.

An important philosophy underlying this specification is to place as few requirements as possible on the
data. One of the strengths of XML is that it provides a comprehensible, and often self-evident

XFA Specification

Creating, Updating, and Unloading a Basic XFA Data DOM 123

Chapter 4, Exchanging Data Between an External Application
and a Basic XFA Form

representation of data. Data expressed in XML can be manipulated via off-the-shelf, and often freely
available, processing tools; in the worst case the data can be manipulated using a common text editor.
Hence, it would be contrary to this inherent property of XML to require that data conform to a specific
grammar or schema before it can be used within an XFA processing application.

XFA Data DOM Basic Concepts

This section introduces basic concepts behind the XFA Data Document Object Model. It introduces the
following concepts:

● How data is represented in an XFA data document object model (DOM), how the tree structure of such
a DOM aids data organization, how data within the Data DOM is identified

● Relationship between the XFA Data DOM and the XML Data DOM, and how this can simplify your
implementation

● Notation used to represent data

About the XFA Data DOM

The interpretation of an XML data document is a mapping operation of the data into an object model
known as the "XFA Data Document Object Model", commonly referred to as the XFA Data DOM. The
behavior of the mapping is governed by rules described by this specification. The software component
responsible for performing the mapping of the XML data document into the XFA Data DOM is referred to
in this specification as the data loader. There is in addition a reverse function that maps from the XFA Data
DOM to a new XML data document. The software component responsible for this reverse mapping is
referred to in this specification as the data unloader.

Data loader creating an XFA Data DOM

The XFA Data DOM provides a set of software interfaces to the data mapped from an XML data document.
In principle, the same model could also be used to represent data from non-XML sources such as a
database or other data formats such as comma-separated values. The XFA Data DOM provides interfaces
that are simpler than a generic XML Document Object Model [XMLDOM2]. There are fewer interfaces in
the XFA Data DOM as compared to the XML DOM, and many of the physical structures of XML are
abstracted away. Notwithstanding the wider applicability of the XFA Data DOM, this specification assumes
that the XML data document is first loaded into an XML Data DOM and from there into the XFA Data DOM.

The XFA Data DOM encloses a tree structure in which each node is either a dataValue object or a
dataGroup object. In most cases nodes correspond to individual XML elements and are peered with
individual nodes in the XML Data DOM. Parent-child relationships correspond to element nesting
relationships, that is, the element corresponding to the parent of any given node contains the element
corresponding to the given node. In addition the children of any node are ordered by age, that is the first
child acquired by the node is the eldest, the next child acquired is the second-eldest and so on. In XFA

XML

DOM

Data

DOM

User’s XML Data

XML

XFA Specification

Creating, Updating, and Unloading a Basic XFA Data DOM 124

Chapter 4, Exchanging Data Between an External Application
and a Basic XFA Form

specifications when a tree is drawn pictorially sibling nodes are shown in order by age, with the oldest at
the left and the youngest at the right. In the case of the XFA Data DOM the result of this ordering is that a
tree walk that goes in depth-first order, and left-to-right at any level, traverses the data in the same order
as it was present in the original XML data document.

The objects in the XFA Data DOM and their properties are exposed via the XFA Data DOM interfaces. Every
object in the XFA Data DOM has the following exposed property:

In addition, each object created by the data loader has an internal pointer to the node in the XML Data
DOM with which it is peered. Furthermore, some objects have additional properties appropriate to their
object types, as described below.

For example, consider the following fragment of XML.

Example 4.1 Data fragment with "tree" element

<abc:tree xmlns:abc="http://www.example.org/orchard/">apple</abc:tree>

When loaded into the XFA Data DOM using default mapping rules, the dataValue node representing this
data has a property called name with a value of tree.

After the XFA Data DOM has been loaded the XFA application may update it. Updates may include adding,
deleting, moving, and changing the properties of nodes. These changes are passed through to the XML
Data DOM by the XFA Data DOM so that the two data DOMs stay synchronized. When the data unloader
runs it creates the new XML data document based upon the contents of the XML Data DOM, as updated by
the application.

Note that the exposed properties may be set by an XFA application to any Unicode string, including the
empty string "". This allows XFA applications to construct arbitrary data structures. However the XML 1.0
Specification [XML] imposes additional restrictions upon element types, namespace prefixes, and URIs.
Hence when the XFA Data DOM is unloaded to an XML data document the result may be malformed XML.
It is up to the application to ensure, if desired, that the restrictions of XML with regard to element types,
namespace prefixes and URIs are respected.

The XFA Data DOM is part of a larger tree that holds all exposed XFA nodes. The single large tree makes it
possible to refer to XFA nodes using a unified format known as a Scripting Object Model (SOM) expression.
The grammar of SOM expressions is described in “Scripting Object Model” on page 86. Briefly, an
expression consists of a sequence of node names separated by periods ("." characters). Starting from
some point in the XFA tree, each name identifies which child of the current node to descend to. The Data
DOM descends from a node named data which is a child of datasets, which is a child of xfa, which is
the root. The XML data document does not supply the xfa, datasets, or data nodes; instead the data
loader creates them automatically and makes the node mapped to the outermost element of the data the
child of data. Consider the following XML data document.

Example 4.2 Complete data document

<?xml version="1.0" encoding="UTF-8"?>
<book>

<ISBN>15536455</ISBN>

Property Description

name A string of any length (including zero-length, that is empty) which is a non-unique
identifier for the object. This corresponds to the local part of either the element type
or the attribute name in the XML data document.

XFA Specification

Creating, Updating, and Unloading a Basic XFA Data DOM 125

Chapter 4, Exchanging Data Between an External Application
and a Basic XFA Form

<title>Introduction to XML</title>
</book>

When loaded into the XFA Data DOM, the node representing the book element would be referenced by
the SOM expression "xfa.datasets.data.book". The ISBN element would be referenced by
"xfa.datasets.data.book.ISBN" and the title element by
"xfa.datasets.data.book.title".

Also, SOM expressions recognize the short-form "!" as equivalent to "xfa.datasets." and "$data"
as equivalent to "xfa.datasets.data". Thus for example the title element above could also be
referenced as either "!data.book.title" or "$data.book.title".

dataValue Nodes

A dataValue node is an object in the XFA Data DOM that corresponds to an element holding character
data (and possibly other elements) in an XML data document. Within the XFA Data DOM leaf nodes are
usually dataValue nodes. A dataValue node can have other dataValue nodes descended from it but
it can not have any dataGroup nodes descended from it.

dataValue nodes have the following properties:

A dataValue node has the standard properties such as name plus the properties listed in the above table.
These properties are exposed to scripts and SOM expressions.

In addition, for illustrative purposes in this chapter, we will think of a dataValue object as having a
fictional property called nullType. This fictional property records the manner in which a null value was

Property Description

contains A string identifying the source of the data. The string is set to metadata if the
value property originated from an XML attribute, but to data if it did not.

contentType A string identifying the type of the data. By default this is set to the empty string
(""). The empty string is interpreted as equivalent to text/plain. Note however
that the treatment of text/plain in XFA is more relaxed than that specified in
[RFC2046] for the MIMEtype text/plain. The difference is that in XFA the data
loader may recognize a line break signified by a newline character (U000A) without
an accompanying carriage-return character (U000D).

isNull A Boolean flag which is true if and only if the value of the data is null. Note that there
is no simple way to detect null values other than by inspecting the isNull
property, because the syntax defined by [XML Schema] allows an element to be
explicitly declared null using the xsi:nil attribute even though the element
contains data. Hence, a data node may contain data yet isNull may be 1. When
this occurs the correct behavior is to treat the value of the data node as null, on the
grounds that explicit markup should override an implicit property. However when
such a data node is unloaded to a new XML data document the value should be
written out along with the xsi:nil attribute so that round-tripping preserves the
original document as far as possible.

value A string of Unicode characters holding the data associated with the node. The string
may be of any length (including zero-length, that is empty). The string must not
include the character code NUL (U0000). Hence, NUL may be used as the string
terminator by XFA applications.

XFA Specification

Creating, Updating, and Unloading a Basic XFA Data DOM 126

Chapter 4, Exchanging Data Between an External Application
and a Basic XFA Form

represented in the XML data document from which it was loaded, and controls how it will be represented
in the new XML data document when it is unloaded. This property takes one of three values. The value xsi
means that a null value is represented by an xsi:nil attribute as defined in [XML Schema]. The value
empty means that an empty value is represented by an empty element. The value exclude means that
an empty value is represented by a missing element or attribute. Note that the first two values (xsi and
empty) are only available for data nodes representing elements. For data nodes representing attributes
the value of this property is always exclude.

In the following fragment of XML, the elements ISBN, title, desc and keyword all represent data
values.

Example 4.3 Fragment showing simple content

<book>
<ISBN>15536455</ISBN>
<title>Introduction to XML</title>

</book>

In the above example, the element ISBN is represented by a dataValue node with a name property of
ISBN, a value property of "15536455", and a contains property of data. The element title is
represented by a dataValue node with a name property of title, a value property of
"Introduction to XML", and a contains property of data.

When loading the value property, the data loader removes XML escaping, so that for example if the XML
data contains the XML entity < this is represented in the value string as "<" rather than by the XML
entity. The XML data document must not contain character data containing either a NUL character (U0000)
or any escape sequence that evaluates to zero, for example "�".

dataValue nodes are permitted to be descended from other dataValue nodes in order to represent
XML mixed content. The following example shows mixed content.

Example 4.4 Fragment showing mixed content

<book>
<ISBN>15536455</ISBN>
<title>Introduction to XML</title>
<desc>Basic primer on <keyword>XML</keyword> technology.</desc>

</book>

The element keyword in the above example is represented in the XFA Data DOM by a dataValue node
which is the child of the dataValue node representing the element desc. Note that the value of a
dataValue node is the concatenation of the values of its child dataValue nodes. For instance, in the
case of the desc data value above, the value is "Basic primer on XML technology."; the XML
portion of the value is contributed by the keyword data value to its parent desc data value. The resulting
data values have the properties:

Name Value Contains

ISBN "15536455" data

title "Introduction to XML" data

desc "Basic primer on XML technology." data

keyword "XML" data

XFA Specification

Creating, Updating, and Unloading a Basic XFA Data DOM 127

Chapter 4, Exchanging Data Between an External Application
and a Basic XFA Form

This process of the parent incorporating the child’s value is recursive to any number of levels. When a
lower-level value changes all of the higher-level values incorporating it automatically change as well.

XML attributes are also by default treated as data values. Those dataValue nodes that result from
mapping of XML attributes are marked as a different flavor of dataValue node. Such nodes resulting
from attributes for the purpose of this specification are said to represent metadata. One benefit of this
approach is the potential to place the values of these nodes back into attributes when unloading the XFA
Data DOM into an XML data document.

Attributes may be prevented from loading by a configuration option as described in "“The attributes
Element” on page 505".

dataValue nodes that are considered to contain metadata are excluded from the value of any ancestor
dataValue node. Consider the following XML data fragment that extends the previous example with the
addition of a language attribute on the desc element.

Example 4.5 Data with an attribute

<book>
<ISBN>15536455</ISBN>
<title>Introduction to XML</title>
<desc language="english"

>Basic primer on <keyword>XML</keyword> technology.</desc>
</book>

In the above example the value property of the desc dataValue node is "Basic primer on XML
technology." regardless of the presence of the language attribute and its corresponding dataValue
node. The content of the data value element keyword contributes to the value of desc, but the content
of the attribute language does not contribute. Hence the dataValue nodes resulting from this example
have the properties listed in the following table. The only difference from the preceding example is the
addition of a new dataValue node representing the attribute:

In many cases it is useful to distinguish between a data value which is empty (zero-length) and a data
value which was never entered. For example, suppose a form has ten fields into which the user may enter
numbers. The form is required to calculate and display the average of the numbers in the fields. However,
the user enters only six numbers, leaving four fields null. If the calculation simply adds all ten fields
together and divides the result by ten, it will treat the four null fields as zeroes and get the wrong answer.
Instead it needs to count and sum just the non-null fields. The easiest way to do this is to use the isNull
property of the dataValue node associated with each field.

Name Value Contains

ISBN "15536455" data

title "Introduction to XML" data

desc "Basic primer on XML technology." data

keyword "XML" data

language "english" metadata

XFA Specification

Creating, Updating, and Unloading a Basic XFA Data DOM 128

Chapter 4, Exchanging Data Between an External Application
and a Basic XFA Form

dataGroup Nodes

A dataGroup node is an object in the XFA Data DOM that corresponds to an element holding other
elements (as opposed to character data) in an XML data document. Within the XFA Data DOM interior
nodes are usually dataGroup nodes. A dataGroup node may have other dataGroup nodes and/or
dataValue nodes descended from it. Note however that while a dataValue node can descend from a
dataGroup node, a dataGroup node can never descend from a dataValue node.

Some XML data documents enclose repeating sets of data, with the same or similar structure but with
different content. This specification refers to these repeating sets of data as records. The outermost
element of a record must map to a dataGroup node.

dataGroup objects have the common properties such as name. These properties are exposed to scripts
and SOM expressions. In addition, for illustrative purposes in this chapter, we will pretend that they have
some fictional properties.

A dataGroup object can be thought of as possessing a fictional property called nullType. This fictional
property controls the manner in which null values are represented in XML representations for data value
nodes descended from this node. dataGroup nodes themselves do not have any value, null or non-null,
so this property has no effect on the dataGroup node itself. This property is present purely so it can be
inherited by the nullType properties of those dataValue nodes which are children of the dataGroup
node.

One can also think of a dataGroup object as possessing a fictional property called isRecord. In reality
scripts determine whether a dataGroup is or is not a record by calling the isRecordGroup(NODE)
method of the $dataWindow object. The isRecord fictional property represents the value that would be
returned by this method if passed this dataGroup.

In the following fragment of XML the element book represents a data group containing data values ISBN,
title, desc, and keyword.

Example 4.6 Data fragment showing an element that maps to a dataGroup

<book>
<ISBN>15536455</ISBN>
<title>Introduction to XML</title>
<desc>Basic primer on <keyword>XML</keyword> technology.</desc>

</book>

In the above example the element book is represented in the XFA Data DOM by a dataGroup node with a
name property of book. The dataGroup node may be a record or not depending on the context within the
XML data document and depending on the configuration option described in “The record Element” on
page 524. If the above text was the entire XML data document and default mapping rules were used, it
would be a record.

As described in “dataValue Nodes” on page 125 the ISBN, title and desc elements are represented by
dataValue nodes in the Data DOM. Those nodes are all children of the dataGroup node representing
the book element. The keyword element is also represented by a dataValue node but it is a child of the
dataValue representing the desc element, hence a grandchild of the dataGroup node.

Relationship Between the XFA Data DOM and the XML Data DOM

After the XFA Data DOM has been loaded the XFA application may update it. Updates may include adding,
deleting, moving, and changing the properties of nodes. These changes are passed through to the XML

XFA Specification

Creating, Updating, and Unloading a Basic XFA Data DOM 129

Chapter 4, Exchanging Data Between an External Application
and a Basic XFA Form

Data DOM by the XFA Data DOM so that the two data DOMs stay synchronized. When the data unloader
runs it creates the new XML data document based upon the contents of the XML Data DOM, as updated by
the application.

Note that the exposed properties may be set by an XFA application to any Unicode string, including the
empty string "". This allows XFA applications to construct arbitrary data structures. However the XML 1.0
Specification [XML] imposes additional restrictions upon element types, namespace prefixes, and URIs.
Hence when the XFA Data DOM is unloaded to an XML data document the result may be malformed XML.
It is up to the application to ensure, if desired, that the restrictions of XML with regard to element types,
namespace prefixes and URIs are respected.

Some data loader options cause the data loader to load only a subset of data from the XML Data DOM into
the XFA Data DOM. The result is that the ignored data is still in the XML Data DOM but is not accessible
through the XFA Data DOM. Consequently the XFA application is unable to alter the ignored data. When
the data unloader writes out a new XML data document, since the ignored data has been kept untouched
in the XML Data DOM, it is written out in the new document without significant1 changes. This applies to
data which is always excluded from the document range as described in “Document Range” on page 131.
It applies to data which is excluded using the extended mapping rules described in “The excludeNS
Element” on page 506, “The startNode Element” on page 532, and “The range Element” on page 523.
Finally, it applies to all extended mapping rules invoked by the ignore keyword, as described in “The
attributes Element” on page 505, “The ifEmpty Element” on page 514, and “The presence Element” on
page 521.

The name property of a node in the XFA Data DOM may be altered by the application or by the data loader,
but doing so does not affect the name property of the peered node in the XML Data DOM. Consequently
the node in the XFA Data DOM is accessible to scripts under its new name, but when the peered node is
written out from the XML Data DOM to a new XML data document it retains its original name. This applies
to nodes renamed via the data-loading options described in “The nameAttr Element” on page 518 and
“The rename Element” on page 530. On the other hand when the application creates a new node in the
XFA Data DOM, there is no existing peer in the XML Data DOM, so one is created and given the same name
property.

The remaining data loader options cause the data loader to alter the content of the XML Data DOM along
with the XFA Data DOM. When the data is unloaded the alteration is reflected in the new XML data
document. This applies to extended mapping rules described in “XSLT Preprocessing” on page 538, “The
whitespace Element” on page 533 and “XSLT Postprocessing” on page 538. It also applies to the rules
invoked via the remove, dissolve or dissolveStructure keywords as described in“The presence
Element” on page 521, and “The ifEmpty Element” on page 514.

Other updates by the XFA application carry through to the XML Data DOM. When updating any property
other than name, and when deleting, inserting, or moving a node in response to a request from the XFA
application, the XFA Data DOM propagates the update to the XML Data DOM.

Moving a node can cause a name conflict if, for example, a data value containing an attribute (contains
set to metadata) is moved to a location where there is already a peer representing an attribute with the
same name. A similar situation can arise from a request to create a new node. Carrying out such a request
would result in a structure that violates the linkage rules of the XML Data DOM. The XML Data DOM refuses
to carry out such a request and the XFA Data DOM in response returns an error code to the XFA application
and leaves the XFA Data DOM in a state consistent with the XML Data DOM.

1. The XML standard [XML1.0] defines some contexts in which certain content is not significant, for example
whitespace preceding the closing ">" of a tag. In addition there are contexts where the presence of whitespace
is significant but not the amount of whitespace or the particular whitespace characters used, such as between
adjacent attributes. Finally, the order of attributes on an element is not significant. When writing out data XFA
processors are not required to preserve insignificant characteristics of the input data.

XFA Specification

Creating, Updating, and Unloading a Basic XFA Data DOM 130

Chapter 4, Exchanging Data Between an External Application
and a Basic XFA Form

Tree Notation

This specification illustrates the contents of an XFA Data DOM, using the DOM notation described
“Document Object Model Notation” on page xii. This section provides examples that apply this convention
to the XFA Data DOM.

Data groups are expressed in the following form:

[dataGroup (name)]

where name represents the name property of the data group.

Data values are expressed in the following form:

[dataValue (name) = "value"]

where name represents the name property of the data value, and value represents the value property.

The contains property of a data value has a value of data unless some other value is explicitly shown.
That is, it will only be expressed in this notation when it has a value of metadata, as described by the
following two examples:

[dataValue (ISBN) = "15536455"]

In the above example the data value ISBN has a value property of "15536455" and, although it isn't
explicitly stated by the notation, it also has a contains property of data.

[dataValue (status) = "stocked" contains="metadata"]

In the above example, the data value status has a value property of "stocked" and a contains
property of metadata.

Similarly, within this specification the contentType property of a data value has a value of the empty
string ("") when not explicitly shown. Likewise the isRecord property of a data group has a value of
false when not explicitly shown.

Indenting is used to show parent-child relationships between nodes. In the following example a data
group named book is the parent of a data value named ISBN:

[dataGroup (book)]
[dataValue (ISBN) = "15536455"]

Within a group of sibling nodes, the age relationship is shown by the vertical ordering. The eldest child is
at the top, the youngest at the bottom. In the following example ISBN is the eldest child of book, title is
the middle child, and author is the youngest. Between the children of author, firstname is the older
and lastname the younger.

[dataGroup (book)]
[dataValue (ISBN) = "15536455"]
[dataValue (title) = "Introduction to XML"]
[dataGroup (author)]

[dataValue (firstname) = "Charles"]
[dataValue (lastname) = "Porter"]

In some complex XML data documents the elements that correspond to data groups or data values may
be annotated with an XML namespace [XMLNAMES]. In these cases, the namespace and, if present, the
namespace prefix are shown in the notation used here even though they are not present in the XFA Data
DOM itself. The notation is as follows:

XFA Specification

Creating, Updating, and Unloading a Basic XFA Data DOM 131

Chapter 4, Exchanging Data Between an External Application
and a Basic XFA Form

[dataGroup (prefix:book) xmlns="uri"]
[dataValue (prefix:ISBN) = "15536455" xmlns="uri"]

In order to not clutter each example with namespace information, only examples that depend upon
namespace information will include this form of the notation. The prefix refers to a namespace prefix as
described by [XMLNAMES]. The uri refers to the corresponding Uniform Resource Identifier as described by
RFC2396: Uniform Resource Identifiers (URI): Generic Syntax [URI].

The isNull property and the fictional nullType property are not illustrated in the above examples. To
avoid clutter they are only shown if the value of isNull is true. The value 1 is used to represent true.

Similarly the fictional isRecord property is only illustrated where it is of interest and true. Again the value
1 is used to represent true.

It is worth repeating that the above notation is provided only as means within this specification to depict
the structure and content within an XFA Data DOM.

Default Data Mapping Rules

There is a set of rules that govern, by default, how an XML data document is mapped to an XFA Data DOM
and vice-versa. These rules have the effect of directing the data loader to usefully interpret the XML
document content by mapping the physical structures of an XML data document into data values and
data groups. In addition they direct the data unloader to map the data values and data groups into a new
XML data document.

The default mapping rules may be overridden by options in the configuration document (i.e. the config
section of the XDP). Those options and their effects are described in “Extended Mapping Rules” on
page 501.

Document Range

The term document range refers to the portion of the XML data document that is processed by the data
loader, such as the whole XML data document or a fragment. Assuming the XML data document starts as a
file containing serialized XML, the first step in processing is to load the entire content of the XML data
document into an XML Data DOM. The portion of the XML data document corresponding to the
document range is then loaded into and accessible from the XFA Data DOM, and any portions of the data
that are outside of the document range are not accessible via the XFA Data DOM. When the data unloader
creates a new XML data document it stitches together the data within the XFA Data DOM and the data
excluded from the XFA Data DOM (but still in the XML Data DOM) to create a new serialized XML file.

The document range can be influenced via the use of a number of extended mapping rules, however there
is a by default document range which is described in more detail in the following subsections.

The document range is the portion of content corresponding to the intersecting result of applying the
rules described by the following sections, in order. In other words, the mechanisms described by this
section (and in the corresponding sections within the "“Extended Mapping Rules” on page 501") each
excludes more content from the document range. The order that the data loader applies the rules is as
follows:

1. “XML Logical Structures”: Constrain the document range to a limited set of XML logical structures.

2. “Start Element”: Additionally constrain the document range to the document content within a
specified element.

XFA Specification

Creating, Updating, and Unloading a Basic XFA Data DOM 132

Chapter 4, Exchanging Data Between an External Application
and a Basic XFA Form

3. “Namespaces”: Additionally constrain the document range to a set of content belonging to a set of
XML namespaces.

4. “Record Elements”: Partition the document range into records enclosed within specified elements.

XML Logical Structures

An XML data document is comprised of a number of physical and logical structures (see the XML
specification [XML] for more information on logical and physical structures).

The document range is constrained to a range of document content not greater than the content that
corresponds to the following logical structures:

● elements with character data

● elements with element content

● elements with mixed content

● empty elements

● attributes

This means that XML processing instructions, for example, are not included in the document range.

Start Element

The notion of a start element represents the element where the XFA data handling processing begins, and
consequently the end of the element determines where processing ends; the start element is a way to
specify that a particular element within the XML data document actually represents the root of the
document.

By default the start element corresponds to the root element (also known as the document element) of
the XML data document (see section 2.1 "Well-Formed XML Documents" of the XML specification [XML] for
more information about the root element). Therefore, the data loader by default maps the content of the
document beginning with the root element inclusively.

The document range is constrained to a range of document content not greater than that specified by the
start element.

Consider the following XML data document, which holds data pertaining to a single order from a book
store.

Example 4.7 Book order example data

<?xml version="1.0" contentType="UTF-8"?>
<order>

<number>1</number>
<shipto>

<reference><customer>c001</customer></reference>
</shipto>
<contact>Tim Bell</contact>
<date><day>14</day><month>11</month><year>1998</year></date>
<item>

<book>
<ISBN>15536455</ISBN>
<title>Introduction to XML</title>
<author>

<firstname>Charles</firstname>

XFA Specification

Creating, Updating, and Unloading a Basic XFA Data DOM 133

Chapter 4, Exchanging Data Between an External Application
and a Basic XFA Form

<lastname>Porter</lastname>
</author>
<quantity>1</quantity>
<unitprice>25.00</unitprice>
<discount>.40</discount>

</book>
</item>
<item>

<book>
<ISBN>15536456</ISBN>
<title>XML Power</title>
<author>

<firstname>John</firstname>
<lastname>Smith</lastname>

</author>
<quantity>2</quantity>
<unitprice>30.00</unitprice>
<discount>.40</discount>

</book>
</item>
<notes>You owe $85.00, please pay up!</notes>

</order>

By default, the start element corresponds to the root element, which in the above example is the order
element. The data loader by default maps the entire document, which results in the following mapping:

[dataGroup (order) isRecord="true"]
[dataValue (number) = "1"]
[dataGroup (shipTo)]

[dataGroup (reference)]
[dataValue (customer) = "c001"]

[dataValue (contact) = "Tim Bell"]
[dataGroup (date)]

[dataValue (day) = "14"]
[dataValue (month) = "11"]
[dataValue (year) = "1998"]

[dataGroup (item)]
[dataGroup (book)]

[dataValue (ISBN) = "15536455"]
[dataValue (title) = "Introduction to XML"]
[dataGroup (author)]

[dataValue (firstname) = "Charles"]
[dataValue (lastname) = "Porter"]

[dataValue (quantity) = "1"]
[dataValue (unitprice) = "25.00"]
[dataValue (discount) = ".40"]

[dataGroup (item)]
[dataGroup (book)]

[dataValue (ISBN) = "15536456"]
[dataValue (title) = "XML Power"]
[dataGroup (author)]

[dataValue (firstname) = "John"]
[dataValue (lastname) = "Smith"]

[dataValue (quantity) = "2"]
[dataValue (unitprice) = "30.00"]
[dataValue (discount) = ".40"]

XFA Specification

Creating, Updating, and Unloading a Basic XFA Data DOM 134

Chapter 4, Exchanging Data Between an External Application
and a Basic XFA Form

[dataValue (notes) = "You owe $85.00, please pay up!"]

In the above example the document range is the range of document content enclosed by the order data
group element.

Namespaces

It is common for XML data documents to be comprised of content belonging to more than one
namespace. The formal specification of XML namespaces is provided by the "Namespaces for XML"
[XMLNAMES] specification.

Namespace inheritance is described fully in the [XMLNAMES] specification. Briefly, each element or
attribute that does not explicitly declare a namespace inherits the namespace declared by its enclosing
element. A namespace is declared using a namespace prefix. The namespace prefix must be associated
with a URI either in the element using the namespace prefix or in an enclosing element. The same rules
apply to the XFA Data DOM except for namespaces that are reserved for XFA directives, as described
below.

The following example illustrates an XML document containing information about a purchase from a
bookstore. The information is partitioned into two namespaces. The default namespace represents the
order information needed by the bookstore for inventory and shipping purposes. The other namespace
represents accounting information pertaining to the e-commerce transaction.

Example 4.8 Data document using multiple namespaces

<?xml version="1.0" encoding="UTF-8"?>
<invoice xmlns:trn="http://www.example.com/transaction/">

<item>
<book>

<ISBN>15536455</ISBN>
<title xml:lang="en">Introduction to XML</title>
<quantity>1</quantity>
<unitprice currency="us">25.00</unitprice>
<discount>.40</discount>
<trn:identifier>27342712</trn:identifier>

</book>
</item>

</invoice>

The use of namespaces within an XML data document assists in the determination of data values and data
groups, and can also exclude document content from data loader processing. The by default handling of
namespaces is described in this section, and additional control over namespace processing is described in
the section “The excludeNS Element” on page 506.

The document range always excludes any document content as follows:

● content belonging to the namespace "http://www.xfa.com/schema/xfa-package/"

● content belonging to the namespace "http://www.xfa.org/schema/xfa-package/"

● content belonging to the namespace
"http://www.w3.org/2001/XMLSchema-instance", including nil attributes

● attributes with a namespace prefix of xml, such as "xml:space" and "xml:lang"

● attributes belonging to the namespace "http://www.xfa.org/schema/xfa-data/1.0/"

● namespace declaration attributes, including the default namespace attribute named xmlns and
specific namespace attributes with the xmlns namespace prefix

XFA Specification

Creating, Updating, and Unloading a Basic XFA Data DOM 135

Chapter 4, Exchanging Data Between an External Application
and a Basic XFA Form

The data loader may have additional namespaces that it considers to be excluded from the document
range: this behavior is implementation-defined.

Note that some attributes, although excluded from processing as ordinary metadata, are nonetheless
processed separately. Each data value node has an isNull property determining whether it holds a null
value, which can be thought of as out-of-band processing of nil attributes in the
"http://www.w3.org/2001/XMLSchema-instance" namespace. Furthermore, attributes
belonging to the "http://www.xfa.org/schema/xfa-data/1.0/" namespace may affect
processing by the data loader at load time but, in accordance with the rule above, are not included as
metadata in the XFA Data DOM.

Consider again the preceding example, Example 4.8. There is an invoice element that belongs to the
default namespace and also includes an identifier element that belongs to the namespace
"http://www.example.com/transaction/". The invoice element has an attribute which makes
the "trn" prefix a synonym for the "http://www.example.com/transaction/" namespace. This
declaration uses an attribute named "xmlns:trn", which according to the rule above is excluded from
the document range. Although the declaration has its intended effect (associating subsequent data with
the appropriate namespace) it is itself excluded from the document range. Similarly the xml:lang
attribute of the title element is excluded by another of the rules above. To illustrate this, the following is
the same example with the document range represented in bold type.

Example 4.9 Same data document showing document range in bold

<?xml version="1.0" encoding="UTF-8"?>
<invoice xmlns:trn="http://www.example.com/transaction/">

<item>
<book>

<ISBN>15536455</ISBN>
<title xml:lang="en">Introduction to XML</title>
<quantity>1</quantity>
<unitprice currency="us">25.00</unitprice>
<discount>.40</discount>
<trn:identifier>27342712</trn:identifier>

</book>
</item>

</invoice>

The first element is also excluded from the document range, not on the basis of namespace but because it
is an XML processing instruction, as described above in “XML Logical Structures” on page 132.

The result of mapping this XML data document using the default mapping is as follows:

[dataGroup (invoice) isRecord="true"]
[dataGroup (item)]

[dataGroup (book)]
[dataValue (ISBN) = "15536455"]
[dataValue (title) = "Introduction to XML"]
[dataValue (quantity) = "1"]
[dataValue (unitprice) = "25.00"]

[dataValue (currency) = "us" content="metadata"]
[dataValue (discount) = ".40"]
[dataValue (trn:identifier) = "27342712"

xlmns="http://www.example.com/transaction/"]

The above example demonstrates the automatic exclusion of attributes having the xmlns prefix and of
attributes having the xml namespace prefix.

XFA Specification

Creating, Updating, and Unloading a Basic XFA Data DOM 136

Chapter 4, Exchanging Data Between an External Application
and a Basic XFA Form

Record Elements

Some XML data documents enclose repeating groups of data, each with different content. This
specification refers to these repeating groups of data as records. Typically a record holds the data from a
single form instance.

By default, the data loader considers the document range to enclose one record of data represented by
the first (outermost) data group within the document range.

Consider once again the book order shown in Example 4.7. The result of mapping this XML data document
with default mapping rules is as follows:

[dataGroup (order) isRecord="true"]
[dataValue (number) = "1"]
[dataGroup (shipTo)]

[dataGroup (reference)]
[dataValue (customer) = "c001"]

[dataValue (contact) = "Tim Bell"]
[dataGroup (date)]

[dataValue (day) = "14"]
[dataValue (month) = "11"]
[dataValue (year) = "1998"]

[dataGroup (item)]
[dataGroup (book)]

[dataValue (ISBN) = "15536455"]
[dataValue (title) = "Introduction to XML"]
[dataGroup (author)]

[dataValue (firstname) = "Charles"]
[dataValue (lastname) = "Porter"]

[dataValue (quantity) = "1"]
[dataValue (unitprice) = "25.00"]
[dataValue (discount) = ".40"]

[dataGroup (item)]
[dataGroup (book)]

[dataValue (ISBN) = "15536456"]
[dataValue (title) = "XML Power"]
[dataGroup (author)]

[dataValue (firstname) = "John"]
[dataValue (lastname) = "Smith"]

[dataValue (quantity) = "2"]
[dataValue (unitprice) = "30.00"]
[dataValue (discount) = ".40"]

[dataValue (notes) = "You owe $85.00, please pay up!"]

In the above example the document range is the range of document content enclosed by the order data
group element, and by default, is partitioned into a single record.

Data Value Elements

Consider once again the following XML data fragment, which repeats Example 4.3.

Example 4.10 Fragment showing simple content

<book>
<ISBN>15536455</ISBN>
<title>Introduction to XML</title>

XFA Specification

Creating, Updating, and Unloading a Basic XFA Data DOM 137

Chapter 4, Exchanging Data Between an External Application
and a Basic XFA Form

</book>

In the above example the elements ISBN and title enclose character data. All such elements within the
document range map to dataValue nodes with a name property corresponding to the local part of the
element type (the name given in the element's start and end tags), and a rawValue property
corresponding to the element content. The result of the mapping is as follows:

[dataGroup (book)]
[dataValue (ISBN) = "15536455"]
[dataValue (title) = "Introduction to XML"]

The rules for mapping content of the XML data document into dataValue nodes are defined in the
following sections.

Data Values Containing Character Data

For elements within the document range enclosing purely character data, the data loader maps each
element into a dataValue node as specified:

● the name property of the dataValue node is set to the local part of the element type (tag name) of
the element

● the value property of the dataValue node is set to the character data of the element

● the contains property of the dataValue node is set to data

● the isNull property of the dataValue node is set to 0

This behavior is illustrated by the previous example.

Data Values Containing Mixed Content

For elements within the document range enclosing mixed content, the data loader maps each element
into dataValue nodes as specified:

● the name property of the dataValue node is set to the local part of the element type (tag name) of
the element

● the value property of the dataValue node is set to the ordered concatenation of all of its child
dataValue node's value properties, excluding children that contain metadata (see “Attributes” on
page 142 for more information about the contains property)

● the isNull property of the dataValue node is set to 0

In addition, each enclosed unit of character data within the element maps to a dataValue node with a
name property of an empty string, a value property corresponding to the unit of character data, a
contains property of data, and an isNull property of 0. dataValue nodes created according to this
rule are the children of the dataValue node mapped from the enclosing element. The child dataValue
nodes are ordered in document order.

Consider the following example where the element desc has mixed content, repeating Example 4.4.

Example 4.11 Data value with mixed content

<book>
<ISBN>15536455</ISBN>
<title>Introduction to XML</title>
<desc>Basic primer on <keyword>XML</keyword> technology.</desc>

</book>

The result of mapping this XML data document is as follows:

XFA Specification

Creating, Updating, and Unloading a Basic XFA Data DOM 138

Chapter 4, Exchanging Data Between an External Application
and a Basic XFA Form

[dataGroup (book)]
[dataValue (ISBN) = "15536455"]
[dataValue (title) = "Introduction to XML"]
[dataValue (desc) = "Basic primer on XML technology."]

[dataValue () = "Basic primer on "]
[dataValue (keyword) = "XML"]
[dataValue () = " technology."]

In the above example the element desc maps to a dataValue node where

● "Basic primer on " is an enclosed unit of character data so it maps to a dataValue node named
""

● "XML" is the content of an enclosed element with the element tag keyword so it maps to a
dataValue node named "keyword"

● " technology." is another enclosed unit of character data so it maps to another dataValue node
named ""

● each of these three dataValue nodes is a child of the desc dataValue node

● the children of desc are in the same order that they occur in the XML data document

● the value of desc is formed by concatenating "Basic primer on ", "XML", and " technology"
in that order

Data Values Containing Empty Elements

For each empty element within the document range, the data loader by default maps the element into a
null dataValue node as specified:

● the name property of the dataValue node is set to the local part of the element type (tag name) of
the element

● the value property of the dataValue node is set to an empty string

● the contains property of the dataValue node is set to data

● the isNull property of the dataValue node is set to 1

● the nullType property of the dataValue node is set to empty

This specification provides an extended mapping rule described in section “The presence Element” on
page 521 for overriding this by default behavior by explicitly forcing an empty element to be mapped to a
data group. In addition, a data description may be used to specify a different type of null data handling for
the element as described in “dd:nullType Attribute” on page 957.

Consider the following example where the element desc is empty.

Example 4.12 Data containing an empty element

<book>
<ISBN>15536455</ISBN>
<title>Introduction to XML</title>
<desc></desc>

</book>

As defined by the [XML] specification, the empty element can be expressed in a more compact format as
follows.

XFA Specification

Creating, Updating, and Unloading a Basic XFA Data DOM 139

Chapter 4, Exchanging Data Between an External Application
and a Basic XFA Form

Example 4.13 Data containing an empty-element tag

<book>
<ISBN>15536455</ISBN>
<title>Introduction to XML</title>
<desc/>

</book>

Whichever way the empty element is expressed, the result of the mapping is as follows:

[dataGroup (book)]
[dataValue (ISBN) = "15536455"]
[dataValue (title) = "Introduction to XML"]
[dataValue (desc) = "" isNull="1" nullType="empty"]

Data Values Representing Null Data

It is desirable to represent null values in XFA data documents in an unambiguous way so that data can
make round trips without introducing artifacts. The XML 1.0 specification [XML1.0]does not provide such a
mechanism. Instead a mechanism was defined in [XML Schema]. XFA adopts the xsi:nil attribute
defined in XML Schema but extends it for greater flexibility. In XML Schema when the value of xsi:nil is
true the element must be empty. In XFA the element may be non-empty even when the value of
xsi:nil is true. XML Schema does not define any circumstance in which the value of xsi:nil may be
false. XFA defines a value of false for xsi:nil to mean that the associated dataValue node is
non-null, even if the element is empty. Thus in XFA any element, empty or not, may have an attribute
xsi:nil which explicitly states whether or not it is null. Note that xsi: here and throughout this
document stands for any namespace prefix which maps to the namespace
http://www.w3.org/2000/10/XMLSchema-instance.

The default treatment of null values can be modified by a data description. A data description is a
separate XML document that carries information about the schema of the data, as described in “Data
Description Specification” on page 943. The data description may supply a non-default value for the
nullType property of a particular element. The following table shows how loading is affected by
nullType for various combinations of nullType value and context.

Example 4.14 How loading is affected by nullType

Input XML nullType
value in the
XFA Data DOM isNull

<title>A Book</title> empty
exclude
xsi

"A Book" 0

<title />
<title></title>

empty "" 1

<title />
<title></title>

exclude
xsi

"" 0

<title xsi:nil="false">A Book</title> empty
exclude
xsi

"A Book" 0

<title xsi:nil="false" />
<title xsi:nil="false"></title>

empty
exclude
xsi

"" 0

XFA Specification

Creating, Updating, and Unloading a Basic XFA Data DOM 140

Chapter 4, Exchanging Data Between an External Application
and a Basic XFA Form

Note that the correct behavior is only defined for xsi:nil attributes with a value of true or false. The
data document must not contain xsi:nil attributes with other values.

By default the XFA processor loads metadata (attribute values) into the Data DOM. However there is an
option to exclude them as described in “The attributes Element” on page 505. Attributes may be declared
mandatory using the dd:reqAttrs notation in the data description. Declaring an attribute mandatory
does not affect how it is treated on input; mandatory or not, the metadata node is present in the DOM only
if there was a corresponding attribute in the XML document. However mandatory attributes are treated
differently when saving from the Data DOM to an XML document, as described in “Unloading Null Data”
on page 150.

Although XFA is tolerant of null values, external constraints may bar them in particular contexts. For
example, within rich text (which is expressed as a fragment of XHTML) empty elements are legal but not
null values. XHTML, as defined in [XHTML], does not comprehend null values.

It is important to understand that null values are in almost all ways treated the same as non-null values. For
example, suppose that as a result of data binding a field in the Form DOM is bound to a node representing
a null value in the Data DOM. This binding has the same effect as a binding to a non-null value. If a value is
assigned to the field, that value propagates to the bound node in the Data DOM, and as a result the node
in the Data DOM is no longer marked as null. Or if a value is assigned to the node in the Data DOM, that
value propagates to the bound field in the Form DOM.

Null Data in Mixed Content

A data value may enclose a data value which in turn contains null data. For example, consider the
following data.

Example 4.15 Null data in a data value enclosed by another data value

<book xmlns:xsi="http://www.w3.org/2000/10/XMLSchema-instance">
<ISBN>15536455</ISBN>
<title>Introduction to XML</title>
<desc>Primer on <keyword xsi:nil="true"></keyword>XML technology.</desc>

</book>

<title xsi:nil="true">A Book</title> empty
exclude
xsi

""a 1

<title xsi:nil="true" />
<title xsi:nil="true"></title>

empty
exclude
xsi

"" 1

The data description indicates that the element is required
but the element is not present in the XML data document.

empty "" 1

a.INote that prior to version 2.5 of this specification this table did not distinguish which value
was being shown, the value in the XFA Data DOM or the value in the XML Data DOM. In this
case the XFA Data DOM contains a null value, however the original value ("A Book") is pre-
served in the XML Data DOM. In effect the value is excluded from the document range. As with
other excluded material, it is written to the output XML data document when the data is un-
loaded.

Input XML nullType
value in the
XFA Data DOM isNull

XFA Specification

Creating, Updating, and Unloading a Basic XFA Data DOM 141

Chapter 4, Exchanging Data Between an External Application
and a Basic XFA Form

The result of mapping this XML data document is as follows:

[dataGroup (book)]
[dataValue (ISBN) = "15536455"]
[dataValue (title) = "Introduction to XML"]
[dataValue (desc) = "Primer on XML technology. "]

[dataValue () = "Primer on "]
[dataValue (keyword) = "" isNull="1" nullType="empty"]
[dataValue () = "XML technology."]

Data Values Containing Element Content

A dataValue node cannot be the ancestor of a data group, and therefore once an element is mapped to
a dataValue node, the descendent elements must also be mapped to dataValue nodes. For each
element enclosing element content within the document range, where the enclosing element is mapped
to a dataValue node, the data loader by default maps the element into a dataValue node as specified:

● the name property of the data group is set to the local part of the element type (tag name) of the
element

● the value property of the dataValue node is set to the ordered concatenation of all of its child
dataValue node's value properties, excluding children that contain metadata (see “Attributes” on
page 142 for more information about the contains property)

● the isNull property of the dataValue node is set to 0 (even if all of its children have isNull set to
1)

Consider the following example with the element stamp.

Example 4.16 A dataValue contains an element that would otherwise map to a dataGroup

<book>
<ISBN>15536455</ISBN>
<title>Introduction to XML</title>
<stamp

>Ordered on <date><yr>2000</yr><mo>06</mo><day>23</day></date></stamp>
</book>

In the above example the element date encloses purely element content and would be mapped to a data
group based upon the rules for data groups (described in the next section); however, the enclosing
element stamp maps to a dataValue node and therefore the data loader maps the element date to a
dataValue node so that the stamp dataValue node does not become the ancestor to a data group.

The result of mapping this XML data document is as follows:

[dataGroup (book)]
[dataValue (ISBN) = "15536455"]
[dataValue (title) = "Introduction to XML"]
[dataValue (stamp) = "Ordered on 20000623"]

[dataValue () = "Ordered on "]
[dataValue (date) = "20000623"]

[dataValue (yr) = "2000"]
[dataValue (MO) = "06"]
[dataValue (day) = "23"]

XFA Specification

Creating, Updating, and Unloading a Basic XFA Data DOM 142

Chapter 4, Exchanging Data Between an External Application
and a Basic XFA Form

Data Group Elements

An element that encloses only other elements and whitespace, and is not itself enclosed by a data value
element, is treated as a data group. For each such element the data loader by default maps the element
into a dataGroup node as follows:

● the name property of the dataGroup node is set to the local part of the element type (tag name) of
the element

Consider the following XML data document.

Example 4.17 Data containing an element that maps to a dataGroup

<book>
<ISBN>15536455</ISBN>
<title>Introduction to XML</title>
<author>

<firstname>Charles</firstname>
<lastname>Porter</lastname>

</author>
</book>

The result of the mapping is as follows:

[dataGroup (book)]
[dataValue (ISBN) = "15536455"]
[dataValue (title) = "Introduction to XML"]
[dataGroup (author)]

[dataValue (firstname) = "Charles"]
[dataValue (lastname) = "Porter"]

As specified above, an element is not a candidate for mapping to a dataGroup node if it is enclosed
within an element mapped to a dataValue node; this because dataValue nodes can not be ancestors to
dataGroup nodes. An example illustrating this case is presented in “Data Values Containing Element
Content” on page 141.

Attributes

The data loader by default loads attributes into the XFA Data DOM. This applies to attributes of elements
associated with both data values and data groups. Each attribute is represented by a dataValue node
with a contains property of metadata.

The data loader processes attributes of an element prior to processing any content of the element. The
effect is that any dataValue nodes resulting from attributes appear as children of the parent node before
(left of) any children resulting from processing content of the element. This is in keeping with the general
structure of the XFA Data DOM as described in “About the XFA Data DOM” on page 123, whereby a
top-down left-to-right traversal reproduces document order.

The set of dataValue nodes resulting from processing attributes are ordered in an
implementation-defined order. The XML specification [XML] states that by definition the order of
attributes is not meaningful. Hence there is no justification for imposing any attribute ordering restriction
upon the data unloader. On the other hand applications using the XFA Data DOM, if they are truly
compliant to the XML specification, do not rely on any particular ordering of attributes apart from the
previously stated condition that attribute nodes precede content nodes.

XFA Specification

Creating, Updating, and Unloading a Basic XFA Data DOM 143

Chapter 4, Exchanging Data Between an External Application
and a Basic XFA Form

Consider the following XML data document.

Example 4.18 Fragment with attributes

<book status="stocked">
<ISBN>15536455</ISBN>
<title language="en"

alternate="XML in Six Lessons">Introduction to XML</title>
</book>

In the above example the XML element book maps to a data group and has a status attribute with a
value of stocked. The XML element title maps to a data value and has two attributes, a language
attribute with a value of en and an alternate attribute with a value of "XML in Six Lessons". By
default the mapping is as follows.

[dataGroup (book)]
[dataValue (status) = "stocked" contains="metadata"]
[dataValue (ISBN) = "15536455"]
[dataValue (title) = "Introduction to XML"]

[dataValue (language) = "en" contains="metadata"]
[dataValue (alternate) = "XML in Six Lessons" contains="metadata"]

Note that in the above mapping the dataValue node called title has two dataValue children, yet its
value does not include the values of either of those children. This is because mapped attributes are
labelled as metadata, and only dataValue nodes that contain data are included in the value of a parent
dataValue node. This is described in “Data Values Containing Mixed Content” on page 137.

The order of attributes on an element is defined by the XML standard [XML1.0] as not carrying any
significance. Hence, when writing the data out to a new XML data document the XFA processor may
change the order of attributes on the title element as follows.

Example 4.19 Attributes may be written out in a different order

<book status="stocked">
<ISBN>15536455</ISBN>
<title alternate="XML in Six Lessons"

language="en">Introduction to XML</title>
</book>

Note: Adobe’s implementation preserves the order of attributes whenever possible.

The same rules apply to attributes of elements containing mixed content. Consider the following XML data
document:

Example 4.20 Data containing attributes on mixed content

<book>
<desc class="textbook">Basic primer on <keyword

class="technical">XML</keyword> technology.</desc>
</book>

The result of the mapping is as follows:

[dataGroup (book)]
 [dataValue (desc) = "Basic primer on XML technology."
 [dataValue (class) = "textbook" contains="metadata"]
 [dataValue () = "Basic primer on"]
 [dataValue (keyword) = "XML"]

XFA Specification

Creating, Updating, and Unloading a Basic XFA Data DOM 144

Chapter 4, Exchanging Data Between an External Application
and a Basic XFA Form

 [dataValue (class) = "technical" contains="metadata"]
 [dataValue () = " technology."]

Attributes of empty data value elements are processed via the same rules as other elements. Consider the
following XML data document.

Example 4.21 Data containing an empty element with an attribute

<item>
 <book>
 <ISBN>15536455</ISBN>
 <title>Introduction to XML</title>
 <unitprice currency="USD">25.00</unitprice>
 <desc language="en-US"/>
 </book>
</item>

In the above example the empty desc element maps to a dataValue node and has a language
attribute.

Assume the XFA Configuration DOM has an attribute element containing preserve. Given that empty
elements map to dataValue nodes, as described in section “Data Values Containing Empty Elements” on
page 138, the result of the mapping is as follows:

[dataGroup (item)]
 [dataGroup (book)]
 [dataValue (ISBN) = "15536455"]
 [dataValue (title) = "Introduction to XML"
 [dataValue (unitprice) = "25.00"]
 [dataValue (currency) = "USD" contains="metadata"]
 [dataValue (desc) = ""]
 [dataValue (language) = "en-US" contains="metadata"]

Null Values with Attributes

Note: The information in this section was incorrect prior to version 2.5 of this specification.

A data value which has attributes is by definition not null. For example, consider the following XML data
document.

Example 4.22 Data containing a null valued element with an attribute

<item xmlns:xsi="http://www.w3.org/2000/10/XMLSchema-instance">
<book>

<desc language="en-US" xsi:nil="1"/>
</book>

</item>

Assume there is a data description which assigns the property dd:nullType="xsi" to the desc field.
The xsi:nil markup would normally cause the empty desc element to be loaded as a null value, as
described in “Data Values Representing Null Data” on page 139. However the value node possesses a child
node (the metadata node) so it cannot be null. The result of the mapping is:

[dataGroup (item)]
[dataGroup (book)]

[dataValue (desc) = "" isNull="0"]
[dataValue (language) = "en-US" contains="metadata"]

XFA Specification

Creating, Updating, and Unloading a Basic XFA Data DOM 145

Chapter 4, Exchanging Data Between an External Application
and a Basic XFA Form

White Space Handling

XML data documents often include additional white space within elements strictly as a legibility aid; this
white space is considered insignificant. Establishing comprehensive white space handling rules
contributes to predictable processing of XML data documents.

An XFA application must produce the same result from processing two documents that differ only by
insignificant white space.

The following Unicode characters are considered white space, as defined by [XML]:

● space U+0020

● tab U+0009

● carriage return U+000D

● line feed U+000A

Note that the [XML] specification allows for white space to be contained within the definition of an
element known to enclose only element content, and that such white space is considered insignificant.

Distinguishing between significant and insignificant white space within an XML data document depends
upon rules described in the following sections, and is dependent upon whether the white space is
contained within a data group or a data value.

White Space in Data Groups

If an element within an XML data document has been determined to represent a data group, then all white
space within the data group is ignored by the data loader and is not present in the XFA Data DOM.

This rule respects the common cases where authors of XML data documents include white space as a
legibility aid within elements known to enclose only other child elements.

Consider the following example to illustrate the insignificance of white space within data groups. In the
following fragment of XML the book element is known to represent a data group of data values ISBN and
title.

Example 4.23 White space inside an element that maps to a dataGroup object

<book>
<ISBN>15536455</ISBN>
<title>Introduction to XML</title>

</book>

Note the additional newlines before and after the data values and the spaces inserted to indent the data
values from the data group to improve legibility. The additional newlines and other white space within the
book data group element are considered insignificant.

The data loader produces the same result from the above example as it would from the following.

Example 4.24 Equivalent data without the whitespace

<book><ISBN>15536455</ISBN><title>Introduction to XML</title></book>

XFA Specification

Creating, Updating, and Unloading a Basic XFA Data DOM 146

Chapter 4, Exchanging Data Between an External Application
and a Basic XFA Form

White Space in Data Values

If an element within an XML data document has been determined to represent a data value, then by
default all white space within the data value is considered significant. Significant white space is processed
as content by the data loader and is present in the XFA Data DOM.

Consider the following example to illustrate the significance of white space within data values. In the
following fragment of XML, the book element is known to represent a data group of data values ISBN and
title.

Example 4.25 White space inside elements that map to dataValue objects

<book>
<ISBN> 15536455 </ISBN>
<title>

Introduction to XML
</title>

</book>

Note the additional newlines before and after the data values and the spaces inserted to indent the data
values from the data group to improve legibility. As described in “White Space in Data Groups” on
page 145, the additional newlines and other white space within book data group element is considered
insignificant.

However, the data value element ISBN contains additional leading and trailing space around the text
"15536455"; this white space is considered significant. In addition, the data value element title
contains leading and trailing newlines and white space; this white space is also considered significant.

The data loader produces the same result from the above example as from the following.

Example 4.26 Equivalent data formatted differently

<book><ISBN> 15536455 </ISBN><title>
Introduction to XML

</title></book>

Rich Text

Some content may represent rich text, which is text with markup representing formatting information such
as underlining. A subset of HTML and CSS markup is supported in XFA, as described in “Rich Text
Reference” on page 1144.

The markup within rich text data is not represented by nodes in the XFA Data DOM. Rather, it is stripped of
markup and represented in the XFA Data DOM as plain text, as described in the chapter “Representing and
Processing Rich Text” on page 215.

Image Data

XML data documents may include image data, either in-line or by reference. To be recognized as enclosing
image data an element must have a contentType attribute in the XFA data namespace
(http://www.xfa.org/schema/xfa-data/1.0/). The value of this attribute must be a MIME-type
identifying an image type. During loading the XFA processor copies this value into the contentType
property of the corresponding dataValue node in the XFA Data DOM. However, after inspecting the
image data, the XFA processor may decide that the image is in a different format and update the value of

XFA Specification

Creating, Updating, and Unloading a Basic XFA Data DOM 147

Chapter 4, Exchanging Data Between an External Application
and a Basic XFA Form

the property in the XFA Data DOM. Any such inspection, if and when it is done, is done on a best-effort
basis.

In addition, if the image is included in-line, there may be a transferEncoding attribute, also in the XFA
data namespace. The value of this attribute indicates the manner in which the image data is encoded.
There are two supported values for xfa:transferEncoding.

An xfa:transferEncoding value of base64 means the data is encoded using the base 64 method
described in [RFC2045]. This encoding method packs only six data bits into each character, but the
resulting character are all legal element content. This is the default encoding method assumed when there
is no xfa:transferEncoding attribute. For example, the following fragment of a data file contains
image data.

Example 4.27 Data representing an image using base 64 encoding

<logo xmlns:xfa="http://www.xfa.org/schema/xfa-data/1.0/"
xfa:contentType="image/bmp">

Qk1uAQAAAAAAAD4AAAAoAAAAJgAAACYAAAABAAEAAAAAADABAADYDgAA2A4AAAIAAAAAAAAAAAAA
AP///wD//////AAAAP/////8AAAA//////wAAAD//////AAAAP/////8AAAA//////wAAAD8AAAA
/AAAAP38AH78AAAA/fAAHvwAAAD9wAAG/AAAAP2AAAb8AAAA/QAAAvwAAAD9AAAC/AAAAPwAAAD8
AAAA/AAAAPwAAAD8AAAA/AAAAPwAAAD8AAAA/AAAAPwAAAD8AAAA/AAAAPwAAAD8AAAA/AAAAPwA
AAD8AAAA/AAAAPwAAAD8AAAA/AAAAPwAAAD9AAAC/AAAAP0AAAL8AAAA/YAABvwAAAD9wAAG/AAA
AP3gAA78AAAA/fAAHvwAAAD9/AB+/AAAAPwAAAD8AAAA//////wAAAD//////AAAAP/////8AAAA
//////wAAAD//////AAAAP/////8AAAA
</logo>

In the above example the image is a raster scan of a black circle within a square black frame, encoded as a
BMP. The content of the BMP file was then coded as base 64. Finally the base 64 encoded data was
formatted by inserting line breaks and white space. This is acceptable because base 64 decoders are
required to ignore line breaks and white space.

An xfa:transferEncoding value of cdata means the image data encoded according to the rules for
XML, with each byte of data represented by a character or a single-character XML entity. For example, an
image might be encoded as follows (only part of the data is shown).

Example 4.28 Data representing an image using cdata encoding

<logo xmlns:xfa="http://www.xfa.org/schema/xfa-data/1.0/"
xfa:contentType="image/bmp" xfa:transferEncoding="cdata"
>ÀaR+m8J!1~p'…</logo>

In this case, the image data can not include line break or white space characters except as a literal part of
the image data. The data shown does not correspond to any particular image. The ellipsis (...) represents
additional data which, for even a very small image, would not fit on the page.

Caution: XML 1.0 restricts characters to the following production:

Char ::= #x9 | #xA | #xD | [#x20-#xD7FF] | [#xE000-#xFFFD] | [#x10000-#x10FFFF]

This restriction applies even to characters expressed as numeric entities, according to "Well-formedness
constraint: Legal Character" in [XML1.0]. Hence an image encoded this way must not include bytes with
the values #x0 through #x8, #xB, #xC, #xE, or #xF.

XML 1.1 [XML1.1] removes this restriction, but XML 1.1 is not widely used and XFA processors are not
required to support it. (The Acrobat family of products does not.) In addition, XFA expressly forbids the use
of character code zero (#x0), as described on page 126.

XFA Specification

Creating, Updating, and Unloading a Basic XFA Data DOM 148

Chapter 4, Exchanging Data Between an External Application
and a Basic XFA Form

If the image is included by reference, there must be an href attribute. Note that the href attribute, unlike
the transferEncoding attribute, must be in the default namespace. It must not have a namespace
prefix. The assumption is that the external reference is already there in the data for some other purpose.
The value of the href must be a URI.

Example 4.29 Image referenced using a URI

<body xmlns:xfa="http://www.xfa.org/schema/xfa-data/1.0/">
<p>

</p>

</body>

In the above example the XML data document happens to be an HTML page. The href attribute is
intended for use by a browser, which understands the img tag. However, XFA does not understand this
tag. Adding the xfa:contentType attribute informs the XFA processor that the reference is to an image.
The form of the URI #Logo.bmp indicates it is a relative URI, that is, it points to another element in the
same XML data document.

Within the XFA Data DOM the element representing the image is represented by a dataValue node. The
dataValue node is normal except that its contentType property is set to an image MIME type. The
value property of the dataValue node is the text, if any, that appears inside the element in the XML
data document. For example, for an image included by value and encoded in base 64, as in the first
example above, the value is the base 64 encoded string. For an image included by reference the element
must be empty and is treated according to the rules for empty-element processing as described in “Data
Values Containing Empty Elements” on page 138.

The contentType property is initially set to the MIME type supplied by the contentType attribute.
However the XFA application may at any time update the contentType property to some other image
type. This could happen, for example, if it examines the image data and discovers that it corresponds to
some other image type. The XFA application is not required to perform this analysis.

For an image included by reference the href attribute is treated as a normal attribute. That is, it is loaded
by default but may be excluded along with other attributes. If loading of attributes is enabled, it is
represented in the XFA Data DOM in the same way as any other attribute, by a dataValue node with its
contains property set to metadata.

To preserve security of local data, when an XFA processor encounters an image referenced by URI, the XFA
processor verifies that the referenced location is inside the current package, i.e. inside the XDP or PDF that
supplied the template. If it is not inside the current package, the reference is blocked.

Updating the XML Data DOM for Changes Made to the XFA Data DOM

The XFA application may make edits to the XFA Data DOM during processing. These edits may include
insertions and deletions of nodes, moving nodes, and updating the content of nodes. The XFA Data DOM
is responsible for ensuring that all such edits are propagated to the XML Data DOM to ensure the XFA Data
DOM and the XML Data DOM stay synchronized. The XFA Data DOM detects and refuse to carry out edits
that would lead to the production of invalid XML during data unloading. For example, if the XFA
application attempts to create a data value with the same name as a sibling and both siblings have their
contains properties set to metadata, the XFA Data DOM refuses to create the new data value on the
grounds that attributes of the same element must have unique names.

XFA Specification

Creating, Updating, and Unloading a Basic XFA Data DOM 149

Chapter 4, Exchanging Data Between an External Application
and a Basic XFA Form

Updating the XFA Data DOM for Changes Made to the XML Data DOM
(Append Loading)

The XFA Data DOM provides a facility for loading data from an XML data document into an XFA Data DOM
that already contains nodes. This specification refers to such a load as an append-load. Append-loads are
not used in normal processing but may be employed by scripts.

When carrying out an append-load the data loader follows the same rules described elsewhere in this
specification, except that:

● The start element for the load is determined at invocation time, without regard to startNode option
of the XFA Configuration DOM.

● The new data is appended as a subtree, the root of which is the child of an existing node. The node to
which the new subtree is appended must be determined at invocation time.

The XFA Data DOM is responsible for propagating nullType properties into the XFA Form DOM. When the
the XFA Data DOM is asked to provide node information, it consults the node’s data description to
determine whether it provides null type information. If the node provides such information, the XFA Data
DOM provides it as the new data value node’s nullType property. Otherwise the nullType property is
inherited from the node’s parent. The highest-level data group cannot inherit, so if its nullType is not
specified, it defaults to the value empty.

Unload Processing

The data unloader provides a facility for creating or updating an XML data document that represents the
XML Data DOM.

When invoked, the data unloader produces an XML data document which reflects the contents of the XML
Data DOM, as of the moment at which the data unloader was invoked.

When unloading the XML Data DOM, the XML data document produced by the data unloader is such that
insofar as possible the data can make a round-trip back to the XFA Data DOM. Round-tripping means that
when the new document is subsequently loaded into an empty XFA Data DOM using all the same data
loader configuration options, the resulting XFA Data DOM is indistinguishable from the original XFA Data
DOM at the moment the data unloader was invoked. When the default data mapping rules described in
this chapter are used round-tripping is always supported. Round-tripping is also supported for most, but
not all, extended data mapping rules.

The data unloader encodes characters using XML character references when necessary to conform to XML.
In lieu of character references it may use the special strings defined by the XML Specification [XML] which
includes "<" for "<" (less-than sign), ">" for ">" (greater-than sign), and "&" for "&"
(ampersand). Inside attribute values it may also use """ for """ (quotation mark) and "'"
for "'" (apostrophe) as defined by the XML specification [XML].

The data unloader may insert XML-style comment(s) into the output document. It should insert a
comment near the beginning identifying itself and its version number.

Unloading Node Type Information

In order to support round-tripping the data unloader when necessary inserts attributes in particular
elements to cause them to be loaded as the correct type of node, as described in “The xfa:dataNode
Attribute” on page 535.

XFA Specification

Creating, Updating, and Unloading a Basic XFA Data DOM 150

Chapter 4, Exchanging Data Between an External Application
and a Basic XFA Form

The need for this attribute can arise because of deletions during processing. Consider the following
excerpt from an XML data document.

Example 4.30 Data read in before deletions

<author>
<firstname>Charles</firstname>
<lastname>Porter</lastname>

</author>

When loaded into the XFA Data DOM using default mapping rules the result is:

[dataGroup (author)]
[dataValue (firstname) = "Charles"]
[dataValue (lastname) = "Porter"]

Suppose that during processing the firstname and lastname dataValue nodes are deleted. The result
is that the XFA Data DOM contains:

[dataGroup (author)]

By default empty elements are loaded as data values. To prevent this, the data unloader writes out the
author element with an attribute that marks it as a dataGroup.

Example 4.31 Data written out with data group forced

<author xmlns:xfa="http://www.xfa.org/schema/xfa-data/1.0/"
xfa:dataNode="dataGroup"/>

Similarly if the configuration options are such that an empty element would be loaded as a dataGroup,
but the element is being written to represent the content of a dataValue, the data unloader writes out
the element with an xfa:dataNode attribute having a value of dataValue. For example, suppose
default mapping rules are in force and the XML Data DOM (after some processing) contains:

[dataValue (foo) = "xyz"]
[dataValue (bar) = "xyz"]

The node foo corresponds to an element containing nothing but another element, but such elements are
normally loaded as data groups. Yet foo is a data value. When the new XML data document is created the
data unloader adds an attribute to mark foo as a data value.

Example 4.32 Data written out with data value forced

<foo xmlns:xfa="http://www.xfa.org/schema/xfa-data/1.0/"
xfa:dataNode="dataValue"><bar>xyz</bar></foo>

Unloading Null Data

While unloading data the XFA processor may encounter data values that are null. This is signified by the
isNull property having a value of 1. When the XFA processor encounters a null data value, it consults the
nullType property of the same node to find out how to represent the null data in XML. The behavior of
the XFA processor with respect to null data while unloading is summarized by the following tables. Each
of the tables assumes that the name property of the data value node is set to title.

XFA Specification

Creating, Updating, and Unloading a Basic XFA Data DOM 151

Chapter 4, Exchanging Data Between an External Application
and a Basic XFA Form

When nullType is empty the following table applies:

When nullType is exclude the following table applies:

When nullType is xsi the following table applies:

Metadata in the Data DOM is represented by attributes in the output XML document. The XFA processor
writes out an attribute for each metadata node in the Data DOM. However, attributes may be marked as
mandatory in the data description (using the dd:reqAttrs markup) yet there may not be any
corresponding metadata node in the Data DOM. When this happens the XFA processor writes out an
attribute with the required namespace and name but with its value set to the empty string.

Logical Equivalence

The rules stated above ensure that every implementation produces logically equivalent output given the
same inputs. Logical equivalence includes exact character-for-character reproduction of the content of
elements that map (or would map, if they were within the document range) to data values, including
attribute values. However it does not include white space within the character data of elements that map
(or would map) to data groups. Hence, the data unloader may insert white space characters and newlines
within elements representing data groups. This is useful for improving readability. When the output XML
data document is loaded into a new XML Data DOM the new XML Data DOM does not necessarily have the

nullType isNull value contains Output XML

empty 0 "A Book" data <title>A Book</title>

empty 0 "" data <title xsi:nil="false" />

empty 1 "A Book" data Cannot occur. If a script sets isNull to 1, the
value property is automatically set to the null
string, and if a script sets value to something
other than the null string, isNull is
automatically set to 0.

empty 1 "" data <title />

nullType isNull value contains Output XML

exclude 0 "A Book" data <title>A Book</title>

exclude 0 "" data <title />

exclude 1 "A Book" data No output for this data node or its children. The
node is marked transient and is excluded from the
output document.exclude 1 "" data

nullType isNull value contains Output XML

xsi 0 "A Book" data <title>A Book</title>

xsi 0 "" data <title />

xsi 1 "A Book" data <title xsi:nil="true">A Book</title>

xsi 1 "" data <title xsi:nil="true" />

XFA Specification

Localization and Canonicalization 152

Chapter 4, Exchanging Data Between an External Application
and a Basic XFA Form

same content as the original XML Data DOM, however the XFA Data DOM that derives from it has the same
content as the original XFA Data DOM.

Localization and Canonicalization
This section explains how XFA processing applications support locales (languages or nation-languages)
when loading data into the XFA Data DOM or editing data in the Form DOM and when unloading,
displaying, and printing such data.

Before beginning this section, it is important to understand that all data in the XFA Data DOM and the
Form DOM is represented in a standardized, locale-agnostic format, called canonical format. Canonical
format plays a role in the following conversions:

● Input parsing. Data to be loaded into the XFA Data DOM or provided by a user may be formatted in a
style unique to the locale (a locale-dependent format) or in canonical format. Before data is loaded into
the XFA Data DOM, the XFA processing application converts the data into canonical format, a process
called canonicalization.

● Output formatting. After data is in the XFA Data DOM, there is eventually a need to display, save or print
the canonical data in a locale-specific format. The process of converting the canonical data into a
locale-specific form is called localization.

Requirements for Localization

Satisfying Locale-Dependent User Expectations

Users in different locales have varying expectations about the formats in which they expect to provide
dates, times, numbers, and currencies. Such differences reflect ordering of information (for example,
MM/DD/YY as opposed to DD/MM/YY), the names used for units (for example, January as opposed to
janvier), and the characters/ideographs used to represent information (for example, 1998 as opposed to

).

Internationalized applications take into consideration varying user expectations regarding dates, times,
numbers, and currencies. Such applications present and accept information in a locale-specific format that
uses familiar characters or ideographs.

Specifying the Locale to Use During Localization and Canonicalization

An XFA template can specify the locale to be used for particular portions of the form. When supplied this
overrides the ambient locale and the locale specified in the Configuration DOM. The locale can be
specified using the locale property of a draw, field, or subform object. It can also be specified within
a picture clause.

Note: The XFA grammar does not support the convention xml:lang. If xml:lang appears in an XFA
template, the template fails to load. If it appears in data supplied to the XFA processing application,
it is ignored.

Locales are identified by a language code and/or a country code. Usually, both elements of a locale are
important. For example, the names of weekdays and months in English Canada and in the United
Kingdom are formatted identically, but dates are formatted differently. So, specifying an English language
locale would not suffice. Conversely, specifying only a country as the locale may not suffice either — for
example, Canada has different date formats for English and French.

XFA Specification

Localization and Canonicalization 153

Chapter 4, Exchanging Data Between an External Application
and a Basic XFA Form

Locale may be specified at multiple levels in an XFA template, as shown in the following example. The
sequence following this example explains how the prevailing locale for a field is determined; and the table
on page page 153 provides examples of data localized by these locales and picture clauses.

Example 4.33 Template specifying locales

<template>
<subform name="SubformA" locale="en_CA"> <!--English as spoken in Canada-->

<field name="FieldA" locale="fr_CA" …> <!--French as spoken in Canada-->
<bind>

<!--Specifies German as spoken in Switzerland-->
<picture>date(de_CH){D. MMMM YYYY}</picture>

</bind>
<ui>

<!--Inherits French as spoken in Canada-->
<picture>DD MMMM YYYY</picture>

</ui>
</field>
<field name="FieldB" h="0.5" w="4">

<ui>
<!--Inherits English as spoken in Canada-->
<picture>MMMM DD, YYYY</picture>

</ui>
</field>

</subform>
</template>

An XFA processing application determines the locale to localize/canonicalize a specific field (called the
prevailing locale) by examining the following sources, in order:

1. Explicit declaration in the picture clause, for example date(fr){DD MMMM, YYYY}.

2. Template field or subform declarations, using the locale property.

3. Default locale specified in the Configuration DOM.

4. Ambient locale. Ambient locale is the system locale declared by the application or in effect at the time
the XFA processing application is started. In the event the application is operating on a system or
within an environment where a locale is not present, the ambient locale defaults to English United
States (en_US).

Resolving Locale Properties

An XFA form can carry with it a localeSet packet. This packet specifies properties of one or more locales.
If locale properties are specified, they override properties supplied by whatever locale database is in use.

Canonicalization of dates, all of which parse to 20041030

Input data (in locale-format)
Field
name Picture Clause Locale

30. Oktober 2004 FieldA D. MMMM YYYY de_CH

30 octobre 2004 FieldA D MMMM YYYY fr_CA

October 30, 2004 FieldB MMMM D, YYYY en_CA

XFA Specification

Localization and Canonicalization 154

Chapter 4, Exchanging Data Between an External Application
and a Basic XFA Form

This makes it possible to correct database errors. It also makes it possible to preserve the state of a
changing locale at the time the data was provided, so that for example a document originally giving a
transaction amount as 100 (100 Francs) does not suddenly change to €100 (100 Euros) just because the
Euro cutover date was subsequently reached and the locale database updated.

Example 4.34 Locale set overrides the Franc symbol

<localeSet …>
<locale name="fr_FR" desc="France en avant de l'Euro">

<currencySymbols>
<currencySymbol name="symbol">₣</currencySymbol>

</currencySymbols>
</locale>

</localeSet>

The Configuration DOM can also declare a URI pointing to an external document containing a locale set.
Some XFA processors ignore this setting for security reasons. When it is honoured (for example by
LiveCycle), the order of precedence is:

1. the form’s localeSet packet,

2. the locale set pointed to by xfa.config.agent.common.localeSet,

3. the XFA processor’s default locale set.

XFA processors that ignore the external locale set, such as the Acrobat family of products, exhibit the
following order of precedence:

1. the form’s localeSet packet,

2. the XFA processor’s default locale set.

XFA processors also implement an inheritance mechanism for locale properties. When a property is not
supplied for a particular locale the processor adopts the property specified by its parent locale. For
example if the locale fr_BE (French Belgium) has some properties unspecified the processor copies those
properties from the locale fr (French). If a property is also unspecified in fr then the processor copies it
from the root locale, which is always fully specified and is equivalent to en_US.

About Locale Names

Locale identifiers have a long history which predates XFA. A number of standards, some contradictory,
have been promulgated for locale identifiers. Current practice at the time of publication of the XFA 2.6
specification is best described by [UTS35].

Official locale names are concatenations of language codes defined by [ISO-639-1], country codes defined
by [ISO-3166-1], separators, and other strings. It is also acceptable and normal to define custom locales to
deal with special requirements. It is the responsibility of the form author to pick a custom locale name that
meets the syntactic requirements for locale names in XFA and does not conflict with official locale names.

XFA locale names are required to conform to a subset of [UTS35]. In the subset supported by XFA a
fully-specified locale name is structured into language, script, territory, and variant portions. Adjacent
portions are separated by a single underscore (_) or dash (-) character. All but the language portion are
optional. The syntax of a fully-specified locale name is as follows:

LL[_SSSS[_TT[_V…]]]

XFA Specification

Localization and Canonicalization 155

Chapter 4, Exchanging Data Between an External Application
and a Basic XFA Form

where

LL signifies a two-letter language code,

SSSS signifies a four-letter script code,

TT signifies a two-letter territory code, and

V… signifies a variant code which may be one or more characters.

All characters in a locale name must be printable ASCII. It is recommended that the language, script,
territory, and variant codes be alphanumeric. Locale names are case-insensitive but it is recommended to
follow the case conventions described in [UTS35].

The following table presents examples of locale identifier strings. Such designators can change, reflecting
the dynamic geopolitical world.

Example 4.35 Sample locale identifiers

Note: The full locale identifier strings (language_country) should be used for currency numeric values
because currencies differ from country-to-country. For example, the currency representations for
the en_GB (English for the United Kingdom) and en_CA (English for Canada) locales are quite
different, even though some of their date representations are identical.

It is also permitted (and very common) to supply a Unix-style locale name to an XFA processor by omitting
the script as follows:

locale identifier string Description

ar_SA Arabic specific for Saudi Arabia.

az_Cyrl_AZ Azerbaijani for Azerbaijan using the Cyrillic script.

en English.

en_CA English specific for Canada.

en_GB English specific for the United Kingdom.

en_GB_EURO English specific for the United Kingdom, using the Euro as the default
currency.

en_Latn_US_Posix English using the Latin alphabet for the United States of America and
employing ASCII characters with no thousands separator.

fr French.

fr_CA French specific for Canada.

ko_KR Korean specific for the Republic of Korea. The default ideograph script for this
designator is Hangul.

ko_KR_Hani Korean specific for the Republic of Korea. The ideograph script for this
designator is Hanja.

th_TH_TH Traditional Thai with Thai digits.

zh_CN Chinese specific for China.

zh_HK Chinese specific for Hong Kong.

XFA Specification

Localization and Canonicalization 156

Chapter 4, Exchanging Data Between an External Application
and a Basic XFA Form

LL_TT[_V…]

When the script is omitted the XFA processor infers the fully-specified name using its knowledge of the
language and/or territory.

Example 4.36 Unix-style and corresponding fully-specified locale names

About the Canonical Format Used in the Data and Form DOMs

Inside the Data and Form DOMs, data is always stored in a canonical format, in which date, time, date-time,
and numbers are represented in a standard (canonical) format (“Canonical Format Reference” on
page 1003). For example, the canonical formats for dates are as follows:

YYYY[MM[DD]]
YYYY[-MM[-DD]]

In the above examples, letters represent the numeric values described below, square brackets delineate
optional parts, and dashes (-) represent literals.

About Picture Clauses

A picture clause is a sequence of symbols (characters) that specify the rules for formatting and parsing
textual data, such as dates, times, currency, and numbers. Each symbol is a place-holder that typically
represents one or more characters that occur in the data. Some picture clause symbols are locale-sensitive
and some are not. Hence, by specifying the appropriate operators the form creator fully controls
localization on a field-by-field, and even character-by-character, basis.

When canonicalizing input data, a particular picture is used only if it matches the pattern of the input data.
When the picture clause contains multiple alternate picture clauses, the data is compared to each pattern
in sequence, until one is found that matches. If none of them match, with one exception the data is treated
as already in canonical format and copied verbatim into the DOM. This conservative approach prevents
data in an unexpected format from being garbled, including data which unexpectedly arrives already in
canonical format. Conservatism is desirable here because canonicalization often involves throwing away
characters.

The exception to the above rule occurs when the UI for a field is declared as numeric. In this case a
non-numeric string is evaluated as zero.

Unix-Style Locale Territory Inferred Script Fully-Specified Locale

en_GB Great Britain Latin en_Latn_GB

en_US United States of
America

Latin en_Latn_US

ru_RU Russia Cyrillic ru_Cyri_RU

Symbol Meaning

YYYY Zero-padded 4-digit year.

MM Zero-padded 2 digit (01-12) month of the year.

DD Zero-padded 2 digit (01-31) day of the month.

XFA Specification

Localization and Canonicalization 157

Chapter 4, Exchanging Data Between an External Application
and a Basic XFA Form

Note: This exception was added to the specification in XFA 2.6. However all versions of the Acrobat family
of products display this behavior.

Scripts written in JavaScript and external applications may emit the string NaN to represent the [IEEE754]
floating-point symbol meaning "not a number". In accordance with the above rule XFA processors evaluate
this string, like any other non-numeric string, as zero. This is deliberate. The design of XFA stresses easy
interchange of data with other programs. This rule ensures that XFA processors never emit NaN or other
non-numeric symbols as the content of numeric fields.

When localizing data for display to the user or for printing, the data may not be suitable for formatting via
the picture clause. Prior to XFA 2.6 no behavior was defined for this eventuality. Since XFA 2.6 the XFA
processor falls back on the default picture clause of the appropriate type for the locale. For example if the
UI for the field is defined as numeric, the XFA processor falls back on the default numeric picture clause for
the locale. It is recommended that some out-of-band method be used to visually flag the field content as
not having been formatted in the expected manner. For example, a mark could be drawn beside the field.

Limitations in Picture Clauses

While this solves some problems, it does not address every need. For example, the interchange date and
time format is based on the Gregorian calendar. It would be possible to do conversions to and from other
calendars, but locale support on most platforms does not go this far. Hence in this version of XFA only the
Gregorian calendar is supported. Another limitation is that times may be entered through the UI without
any accompanying date or time zone. Such a time is inherently ambiguous. When a user enters a time
without time zone information, the application supplies the time zone from the prevailing locale.

A more fundamental limitation applies to currencies, namely that there is no way to automate conversions
between currencies. Currency exchange rates are constantly fluctuating and in any case the appropriate
rate varies depending on circumstances (a retail banking customer can't get the same conversion rate as a
financial institution can). Hence currency conversions should not and can not be done automatically.
Therefore locale can be used for simple currency formatting and parsing but it entirely is up to the creator
of the form and designer of the web service or data file to arrange for monetary amounts to be computed
in the appropriate currency.

Defining Locales

An XFA form may carry with it a set of locale definitions. These are carried in the localeSet packet. See
“The localeSet Element” on page 166 for more information about the localeSet packet.

It is not necessary to include a definition for en_US (United States of America English) because it is the
default for XML and consequently is available and thoroughly tested on all platforms. On the other hand
including a locale definition this way makes the definition accessible to scripts for reading via SOM
expressions. Built-in locale definitions are not accessible this way, although of course the locales they
define can still be used.

Caution: Scripts within the form must not alter locale definitions. The result of any such attempt by a
script is undefined.

Run-time locale definition

Starting with XFA 2.5, additional grammar was provided for a form to allow an external document to
override the definition of locale(s) at runtime. This allows the form to automatically incorporate updates
which do not require changes to the form logic, for example if the national unit of currency is renamed.

XFA Specification

Localization and Canonicalization 158

Chapter 4, Exchanging Data Between an External Application
and a Basic XFA Form

For each XFA agent there is a property in the Config DOM which may supply a URI pointing to a locale
database. For more information about the syntax see localeSet in the “Config Common Specification”.
If this property is non-empty the URI points to an XDP document containing a localeSet packet. When
the XFA processor needs to obtain the definition of a locale, it searches locale databases in the following
order:

1. The locale database packaged with the form itself in the localeSet packet. This always takes
precedence so that a form creator who wants the form to always use the same locale definition can be
certain it will.

2. The external locale database, if any, pointed to by the Config DOM.

3. The built-in default locale database.

The database in the form or external document may be a partial specification, that is it may omit elements
or attributes. When this happens the locale definition inherits the unspecified properties from
corresponding but progressively more generic locale(s). The following list shows the progression of
inheritance.

1. Matching language_country_modifier.

2. Matching language_country.

3. Matching language.

4. Generic root locale whose values are essentially US English.

This facility is intended for use on servers in automatic workflows, not in forms distributed widely for
interactive use, and is restricted accordingly. XFA forms may be packaged inside XDP or PDF files. However
when an XFA form is packaged inside a PDF file the form must not refer to an external locale database.
Instead locale definitions that are used by the form must be fully resolved and the resolved locale
database must be included in the PDF file. This preserves the portability and permanence of the PDF file
and closes a security hole. Without this an attacker could use a network redirection attack (such as DNS
spoofing) to substitute a modified locale dictionary, changing the currency symbol so that the amount
indicated would be different from the amount approved. For additional information see “Structuring
Forms for Portability and Archivability” on page 563.

Note: The Acrobat family of products by design ignores the locale property in the common portion of
the Acrobat section of the Config DOM. It makes no sense for the server to override the client’s
locale.

It is not practical to include all locales ever defined because the definitions take about 3 kilobytes apiece
and there are a great many of them. It is more efficient to include only those that might be used.

The following example shows an external locale database that defines only those properties which it
needs to override. For German-language locales it replaces month and day names with uppercase and
lowercase Roman numerals. For English-US locales it changes the default format for dates.

Example 4.37 Locale database

<?xml version="1.0" encoding="UTF-8"?>
<xdp:xdp xmlns:xdp="http://ns.adobe.com/xdp/">

<localeSet xmlns="http://www.xfa.org/schema/xfa-locale-set/2.7/">
<locale name="de" desc="German">

<calendarSymbols name="gregorian">
<monthNames abbr="1">

XFA Specification

Localization and Canonicalization 159

Chapter 4, Exchanging Data Between an External Application
and a Basic XFA Form

<month>I</month>
<month>II</month>

...
<month>XII</month>

</monthNames>
<dayNames abbr="1">

<day>i</day>
...

<day>vii</day>
</dayNames>

</calendarSymbols>
</locale>
<locale name="en_US" desc="English (US)">

<datePatterns>
<datePattern name="med">D MMM YYYY</datePattern>
<datePattern name="short">DD/MM/YY</datePattern>

</datePatterns>
</locale>

</localeSet>
</xdp:xdp>

Assume that the above document is available at the URI
http://example.com/myproject/locale.xdp. The configuration document enables the use of
this locale database for an agent named payroll as follows.

Example 4.38 Configuration packet for payroll agent

<config xlmns="http://www.xfa.org/schema/xci/3.1/">
<agent name="payroll">

<common>
<localeSet>http://example.com/myproject/mylocale.xdp</localeSet>

...
</common>
...

</agent>
</config>

Selecting Between Alternate Picture Clauses

Template designers can create picture clauses that support multiple locales. Such picture clauses contain a
series of alternate picture clauses, each of which specifies a locale. (“Picture Clause Specification” on
page 1108) This technique is useful only for canonicalizing data (during data loading or input parsing).
That is, when canonical data is localized using a set of alternate picture clauses, only the first picture clause
is used.

Dataflow Paths for Localizing and Canonicalizing Data

The XFA Data DOM and Form DOM maintain their contents in canonical format. Data supplied to an XFA
processing application may appear in localized or canonical format. The XFA processing application
ensures such data is in canonical format before adding it to the Data DOM or the Form DOM. Later, data in
the XFA Data or Form DOMs may be localized before being presented in a human-readable form.

The diagram below illustrates the situations in which data is localized and canonicalized. It also shows the
picture clause elements influence conversions for each type of situation and explains in general what

XFA Specification

Localization and Canonicalization 160

Chapter 4, Exchanging Data Between an External Application
and a Basic XFA Form

triggers such conversions. The table on page 161 further describes the different picture clause-containing
elements that influence localization and canonicalization.

“The localeSet Element” on page 166 describes the default picture clauses used when a picture clause
element is not defined for a field.

Dataflow paths for localizing and canonicalizing data

DisplayUser activates
 an event that has
 a print action

User activates
 an event that has
 a submit action

 Data DOM
(all data in canonical form)

Template DOM

 Form
 DOM
(all data
in canonical
form)

XML
DOM

XML
data doc

Web service

HTTP server

Printer

ui/picture

User selects field,
or field comes
into focus

User enters data

format/picture

bind/picture

connect/picture

format/picture

bind/picture

XFA app
reads in data

XFA app writes out data,
possibly in response to the user
directing the app to save the data

Web
service
interactions

Web
service
interactions

XFA app displays form

A container property that provides a picture clause

XFA Specification

Localization and Canonicalization 161

Chapter 4, Exchanging Data Between an External Application
and a Basic XFA Form

Picture clauses and their role in output formatting (localization) and input parsing
(canonicalization)

Picture clause
parent element

(Alternate name)
Output
formatting

Input
parsing Role of picture clause

ui

(edit pattern)

✔ ✔ User modification of a data value. For output formatting
(localization), the picture clause specifies the format used
when the container comes into focus (is selected). For input
parsing (canonicalization), the picture clause specifies the
format expected from the user.

<field name="field1" … >
<ui>

<picture> … </picture>
</ui>

</field>

format

(output pattern)

✔ Display or print of data. In the case of display, this form
prevails only if the field is not currently in focus (selected).

<field name="field1" … >
<format>

<picture> … </picture>
</format>

</field>

connect ✔ ✔ Web Services interactions.

<field name="field1" … >
<connect>

<picture> … </picture>
</format>

</field>

XFA Specification

Localization and Canonicalization 162

Chapter 4, Exchanging Data Between an External Application
and a Basic XFA Form

Rules for Localizing Data

The following rules determine which data can be canonicalized and/or localized. Data not covered by
those rules is copied unmodified into and out of the XFA Data DOM. The diagram “Dataflow paths for
localizing and canonicalizing data” on page 160 illustrates how different picture clauses are used for
different localization/canonicalization paths.

This section describes the following rules:

● Rule 1, Non-Localizable Data

● Rule 2, Input Parsing a Data Value Using a Picture Clause

● Rule 2A, Input Parsing a Without a Picture Clause Uses Default Picture Clauses for Current Locale

● Rule 3, Output Formatting

● Rule 4, Output Formatting When Output Picture Clause Omitted

● Rule 4A, Output Formatting a Null Value

● Rule 5, FormCalc Scripts May Localize/Canonicalize Data in the XFA Data DOM

validate ✔ Specifies a test applied to data in the Form DOM, where the
test verifies the data complies with the given picture clause.
Generally, the validation picture clause reflects canonical
format and is locale-agnostic because all data in the Form
DOM is represented in canonical format.

The validation test must succeed before the XFA processing
application updates the Data DOM with the value from the
Form DOM.

<field name="field1" … >
<validate>

<picture> … </picture>
</validate>

</field>

The validate picture clause is used for testing, not for
conversion.

bind ✔ ✔ XML data file or submitting data to a server.

<field name="field1" … >
<bind>

<picture> … </picture>
</bind>

</field>

Picture clauses and their role in output formatting (localization) and input parsing
(canonicalization)

Picture clause
parent element

(Alternate name)
Output
formatting

Input
parsing Role of picture clause

XFA Specification

Localization and Canonicalization 163

Chapter 4, Exchanging Data Between an External Application
and a Basic XFA Form

➤ Rule 1, Non-Localizable Data

Non-textual data (such as values defined with the arc, image, or rectangle elements) is not localizable.
For example, the image defined in the following fragment cannot be localized.

Example 4.39 Image is not localizable

<field …>
<value …>


</value>

</field>

➤ Rule 2, Input Parsing a Data Value Using a Picture Clause

Text entered into a field with an bind, ui, or connect picture clause is canonicalized per the picture
clause, provided it is appropriate for the picture clause. If any of the following conditions are true, the text
is assumed to have been entered in canonical format:

● Supplied data can not be canonicalized using the picture clause

● Picture clause omitted

● Picture clause is defective

For example, assume a field has an input picture clause and a textEdit widget, as follows.

Example 4.40 Field using an input picture clause

<field name="field1" … >
<ui>

<picture>z,zz9.99</picture>
<textEdit … />

</ui>
</field>

Regardless of the widget type, canonicalization on input is controlled solely by the picture clause. Assume
that the locale is fr_FR and the input text is "1 234,56". This matches the picture clause, so the data is
canonicalized into "1234.56" and goes into the XFA Data DOM this way. On the other hand, had the
input text been "deux", it would not have matched the picture clause, so it would have been copied
literally into the DOM as "deux". A special case of this occurs if the input text is "1234.56", that is, if it is
already canonical. Because this can not be parsed by the picture clause (which expects the text to be
localized as "1 234,56"), the already-canonical data is copied directly into the DOM.

Note: The above example supplies a numeric picture clause to a text field. It then relies upon the XFA
processor to recognize that the picture clause is specifying the format of a number, not of text. This
is not good practice, because some simple picture clauses can legitimately be either textual or
numeric. When using a numeric picture clause with a text field it is safer to specify the type of the
picture clause explicitly. In this case the safer picture clause would be "num{z,zz9.99}".

The following field accepts a date.

Example 4.41 Date field using an input picture clause

<field name="field1" … >
<ui>

<picture>D-MMMM-YYYY</picture>
<dateTimeEdit … />

XFA Specification

Localization and Canonicalization 164

Chapter 4, Exchanging Data Between an External Application
and a Basic XFA Form

</ui>
</field>

If our French user enters, for example, "12-janvier-2004", the data is canonicalized to
"2004-01-12" or the equivalent "20040112".

A picture clause may contain multiple pictures. In the following example two different date formats are
recognized and canonicalized automatically.

Example 4.42 Field using multiple input picture clauses

<field name="field1" … >
<ui>

<picture>D-MMMM-YYYY|D-M-YYYY</picture>
<dateTimeEdit … />

</ui>
</field>

If the user enters either "12-janvier-2004" or "12-01-2004" the result is the same. The input text
matches the first or second picture, respectively, and either way is canonicalized to "2004-01-12".

➤ Rule 2A, Input Parsing a Without a Picture Clause Uses Default Picture Clauses for Current Locale

If the field omits a picture clause but describes data that is traditionally localized, the data is input parsed
using default picture clauses for the locale. For example, if the user provides a date value for the field in the
following example and the current locale is fr_FR, the data is input parsed against the default date
picture clause for French speakers in France. The locale-dependent picture clauses are specified in the
locale set grammar, “Locale Set Specification” on page 901. For example, if the default date picture clause
for France is D-MMMM-YYYY and the user enters either "12-janvier-2004", the data is canonicalized to
"2004-01-12".

This rule applies to date, time, date-time, float, double, and decimal fields, which is the set of fields that are
traditionally localized. However if the data entered into a field of this type is already in canonical format
then it is accepted that way. This exception is made because the data may not be localized. For example, it
may be pasted from another application that emits canonical formats.

Example 4.43 Field using a default picture clause

<field name="field1" … >
<ui>

<dateTimeEdit … />
</ui>

</field>

➤ Rule 3, Output Formatting

Text in a field with an output picture clause is formatted for display per the picture clause when the field is
redrawn (including when the user tabs out of the field). This does not affect the content in the DOM.

For example, assume a field has a format picture clause as follows.

Example 4.44 Field using an output picture clause

<field name="field1" …>
<format>

<picture>$9,999.99</picture>

XFA Specification

Localization and Canonicalization 165

Chapter 4, Exchanging Data Between an External Application
and a Basic XFA Form

</format>
</field>

Assume further that the locale is fr_FR and the content of the field in the DOM is "1234.56". When the
user tabs out of the field, the field is re-displayed as "€1 234,56".

The following field contains a date.

Example 4.45 Date field using an output picture clause

<field name="field1" … >
<format>

<picture>D-MMMM-YYYY</picture>
</format>

</field>

If the content of the field "2004-01-12", the data is displayed or printed as "12-janvier-2004".

If the picture clause contains more than one picture, the first picture is used and the others ignored.

➤ Rule 4, Output Formatting When Output Picture Clause Omitted

The following table describes how an XFA processing application localizes data whose container omits the
picture clause for a particular type of output.

➤ Rule 4A, Output Formatting a Null Value

In the following example, a field is defined with a null float value.

Type of picture clause How unpictured data is formatted

connect Canonical format.

bind Canonical format.

ui and format

(edit and output patterns)

Formatted as follows:

Content
element name Formatted with …

date Default date picture clause for the locale (usually
the medium date), as described in “The localeSet
Element” on page 166

time Default time picture clause for the locale (usually
the medium time), as described in “The localeSet
Element” on page 166

datetime Default date picture clause and default time
picture, separated with a “T”.

decimal and
float

Default decimal radix (decimal point) for the locale,
as described in “The localeSet Element” on
page 166. Separators are not inserted.

XFA Specification

Localization and Canonicalization 166

Chapter 4, Exchanging Data Between an External Application
and a Basic XFA Form

Example 4.46 Field with a null default value

<field name="field1" … >
<value>

<float/>
</value>
<ui>

<numericEdit/>
</ui>

</field>

If the float element had contained a value, it would have been the default value for the field. When empty
as in this case, there is no default value; however, the type declaration still applies. Thus, the field qualifies
for automatic localization. The user interface must also be declared as a numericEdit to enable
automatic localization.

➤ Rule 5, FormCalc Scripts May Localize/Canonicalize Data in the XFA Data DOM

Scripts written in FormCalc can call functions to localize or canonicalize specific data in the XFA Data DOM,
as discussed in “FormCalc Specification” on page 1007. JavaScript does not have corresponding methods.

The localeSet Element

For each locale definition in the localeSet element, the string of substitute characters is contained in
the dateTimeSymbols element.

The following example illustrates the overall structure of an XDP containing a localeSet packet.

Example 4.47 A typical localeSet packet

<?xml version="1.0" encoding="UTF-8"?>
<xdp xmlns="http://ns.adobe.com/xdp/">

<localeSet xmlns="http://www.xfa.org/schema/xfa-locale-set/2.7/">
<!-- Start of a locale definition. -->
<locale name="fr_FR" desc="French (France)">

<typeFace name="Times Roman"/>
<calendarSymbols name="gregorian">

<monthNames>
<month>janvier</month>
<month>février</month>
<month>mars</month>
<month>avril</month>
<month>mai</month>
<month>juin</month>
<month>juillet</month>
<month>aoøt</month>
<month>septembre</month>
<month>octobre</month>
<month>novembre</month>
<month>décembre</month>

</monthNames>
<monthNames abbr="1">

<month>janv.</month>
<month>févr.</month>
<month>mars</month>

XFA Specification

Localization and Canonicalization 167

Chapter 4, Exchanging Data Between an External Application
and a Basic XFA Form

<month>avr.</month>
<month>mai</month>
<month>juin</month>
<month>juil.</month>
<month>aoøt</month>
<month>sept.</month>
<month>oct.</month>
<month>nov.</month>
<month>déc.</month>

</monthNames>
<dayNames>

<day>dimanche</day>
<day>lundi</day>
<day>mardi</day>
<day>mercredi</day>
<day>jeudi</day>
<day>vendredi</day>
<day>samedi</day>

</dayNames>
<dayNames abbr="1">

<day>dim.</day>
<day>lun.</day>
<day>mar.</day>
<day>mer.</day>
<day>jeu.</day>
<day>ven.</day>
<day>sam.</day>

</dayNames>
<meridiemNames>

<meridiem>AM</meridiem>
<meridiem>PM</meridiem>

</meridiemNames>
<eraNames>

<era>av. J.-C.</era>
<era>ap. J.-C.</era>

</eraNames>
</calendarSymbols>
<datePatterns>

<datePattern name="full">EEEE D MMMM YYYY</datePattern>
<datePattern name="long">D MMMM YYYY</datePattern>
<datePattern name="med">D MMM YYYY</datePattern>
<datePattern name="short">DD/MM/YY</datePattern>

</datePatterns>
<timePatterns>

<timePattern name="full">HH' h 'MM Z</timePattern>
<timePattern name="long">HH:MM:SS Z</timePattern>
<timePattern name="med">HH:MM:SS</timePattern>
<timePattern name="short">HH:MM</timePattern>

</timePatterns>
<dateTimeSymbols>GaMjkHmsSEDFwWxhKzZ</dateTimeSymbols>
<numberPatterns>

<numberPattern name="numeric">z,zz9.zzz</numberPattern>
<numberPattern name="currency">z,zz9.99 $</numberPattern>
<numberPattern name="percent">z,zz9%</numberPattern>

</numberPatterns>

XFA Specification

Localization and Canonicalization 168

Chapter 4, Exchanging Data Between an External Application
and a Basic XFA Form

<numberSymbols>
<numberSymbol name="decimal">,</numberSymbol>
<numberSymbol name="grouping"> </numberSymbol>
<numberSymbol name="percent">%</numberSymbol>
<numberSymbol name="minus">-</numberSymbol>
<numberSymbol name="zero">0</numberSymbol>

</numberSymbols>
<currencySymbols>

<currencySymbol name="symbol">€</currencySymbol>
<currencySymbol name="isoname">EUR</currencySymbol>
<currencySymbol name="decimal">,</currencySymbol>

</currencySymbols>
</locale>
<!-- Start of a locale definition. -->
<locale name="en_GB" desc="English (United Kingdom)">

…
</locale>
…

</localeSet>
</xdp>

The numeric grouping character for fr_FR is a non-breaking space, encoded here using an XML character
reference “ ”. Other non-ASCII characters (the Euro symbol and accented letters) are similarly
encoded in order to facilitate cutting and pasting this example into a file. However it is also permissible to
express these characters as bare Unicode code points encoded using UTF-8 as specified by [XML 1.0].

Note: The localeSet element and all of its contents reside in the namespace
http://www.xfa.org/schema/xfa-locale-set/2.7/.

The order in which the locales appear is not significant. The information for each locale consists of several
sections, which may be present in any order. If any of the sections is omitted, or an element or attribute
omitted from within a section, the effect is to select the corresponding default value.

Calendar symbols

This section supplies the names for months of the year and days of the week (both the full names and the
abbreviated names). It also supplies the names for modifiers equivalent to A.D. and B.C., A.M. and P.M. The
placement of these names and modifiers is determined by the date, time, or date-time picture clause in
use.

Date and time symbols

This section supplies a vector of character mappings for use in generating localized prompts, as described
above under "FormCalc and Locale".

Date patterns

This section supplies picture clauses for four standard date formats. The formats are distinguished by
verbosity ranging from full to short.

XFA Specification

Localization and Canonicalization 169

Chapter 4, Exchanging Data Between an External Application
and a Basic XFA Form

Time patterns

This section supplies picture clauses for four standard time formats. The formats are distinguished by
verbosity ranging from full to short.

Currency symbols

This section supplies the characters to be used for the currency symbol and the currency radix. It also
supplies the string to be used for the ISO currency name. The placement of these symbols within currency
amounts is determined by the numeric picture clause in use.

Number patterns

This section supplies picture clauses for four standard number formats. There are only three picture
clauses because two number formats (decimal and integer) use the same numeric picture clause; the
integer format uses only the integer part of the numeric clause whereas decimal uses the whole thing.

Number symbols

This section supplies the characters to be used for the non-currency decimal radix, grouping separator,
percentage sign, and minus sign. The placement of these characters within numbers is determined by the
numeric picture clause in use.

XFA Specification

Loading a Template to Produce the XFA Template DOM 170

Chapter 4, Exchanging Data Between an External Application
and a Basic XFA Form

Loading a Template to Produce the XFA Template DOM
Loading an XFA Template DOM is a two-step process, which involves first creating an XML Template DOM
and from that creating an XFA Template DOM.

Template loading produces an XFA Template DOM

Creating an XML Template DOM

The XML Template DOM is filled with the complete content of the XML Form Template in the usual manner
for XML DOMs.

Creating an XFA Template DOM

A subset of the contents of the XML Template DOM is copied into the XFA Template DOM. This subset
excludes:

● elements and attributes which are not in the XFA template namespace;

● elements and attributes which are not recognized by the XFA processor as part of the template
schema;

● elements which do not belong in the current view, for example an element that is marked as
relevant only to printing but the current application is interactive.

It is an error for the XML Template DOM to contain elements or attributes in the XFA template namespace
that are not part of the template schema, but it is not a fatal error. A warning message may be generated
but processing continues. It is not an error for the other types of excluded content to be present.

The nodes of the XFA Template DOM are peered to the nodes of the XML Template DOM to allow the XFA
processor to make changes to the XFA Template DOM and then save the modifed template as a new XML
Form Template.

After this the XFA processor resolves prototypes. For each prototype reference it copies content from the
referenced prototype into the XFA Template DOM. Some prototypes may be in external XML Form
Templates, so resolving prototypes may involve creating and loading additional transient XML Template
DOMs and corresponding transient XFA Template DOMs. The transient DOMs are retained during
subsequent prototype processing so that subsequent references to the same document can be processed
without reloading. (This is not only for performance reasons. It also protects against loss of internal
consistency should the external document be modified during processing.) Once all prototypes have been
resolved, including nested prototype references, the transient DOMs are deleted.

XML Form Template

User’s XML Data

XML

XML

DOM

Data

DOM

Template

DOM

XFA Specification

Basic Data Binding to Produce the XFA Form DOM 171

Chapter 4, Exchanging Data Between an External Application
and a Basic XFA Form

Supporting Template-Creator Stamps

Templates may include information that uniquely identifies their creator and when they were last
modified. XFA processing applications are required to respect this information as described in “Tracking
and Controlling Templates Through Unique Identifiers” on page 541.

Basic Data Binding to Produce the XFA Form DOM
This section explains how data is bound to specific nodes within a Form DOM and how disconnects in
naming, types, and level are handled. This section describes data binding only for static forms, which are
forms that have a pre-defined number of subforms. Data binding for dynamic forms is described later in
the chapter “Dynamic Forms” on page 326.

The reader is assumed to be familiar with the principles and vocabulary of XML, as set out in Extensible
Markup Language (XML) 1.0 [XML]. The reader is also assumed to be familiar with the following concepts:

● Overall principles of XFA processing of user data, as described in “Creating, Updating, and Unloading a
Basic XFA Data DOM” on page 122

● Structure of an XFA form template, as described in “Template Features for Designing Static Forms” on
page 31

● SOM expressions (including scope matching), as described in “Scripting Object Model” on page 86

About Data Binding

Within XFA applications the template is instantiated as a tree-structured set of nodes called the Template
Data Object Model (Template DOM). Similarly, user data is instantiated as a tree-structured set of nodes
called the XFA Data Object Model (XFA DOM). The XFA Data DOM is further subdivided into one or more
non-overlapping subtrees, with each subtree representing a record. Data binding is the process by which
nodes in the Data DOM (data nodes) representing one record are associated with nodes in the Template
DOM (data nodes). The result is a new DOM (the Form DOM) which embodies the association. Although
the content of the Form DOM is copied from the Data DOM, its structure (arrangement and hierarchy of
nodes) is based mainly upon the Template DOM.

Binding the Data DOM to the Template to produce the Form DOM

Starting with XFA 3.1, a new option is defined to restrict the data binding operation in certain ways. This
new data binding operation is primarily intended for use with data extracted from relational databases,
but in addition it is faster than normal data binding. It is suitable for use when the structure of the data
exactly matches the binding hierarchy of the template. However as defined so far it does not allow the

XML Form Template

User’s XML Data

XML

XML

DOM

Data

DOM

Template

DOM

Form

DOM

XFA Specification

Basic Data Binding to Produce the XFA Form DOM 172

Chapter 4, Exchanging Data Between an External Application
and a Basic XFA Form

creation of new data nodes, so it is not suitable for dynamic forms. The new type of data binding is invoked
by a property of the root (outermost) subform of the template. When the mergeMode property has the
value matchTemplate the newer, more restrictive method is used. When the mergeMode property has
the value consumeData (which is its default) the original method is used.

In addition, to use relational data, there must be a data description which specifies the relationships
between keys and the data items to which they refer. When this data description is supplied it modifies the
interpretation of SOM expressions so that it is possible to reach through from a row of data to a linked row
in another table. For more information see “Labelling relational data” on page 946.

Under some circumstances, when using the consumeData algorithm, a node is created in the Form DOM
which does not match any existing node in the Data DOM. When this happens, if there is a data
description, the data description is consulted to determine what structure the data would have had if it
had been there. Then transient nodes are inserted to ensure that the appropriate structure is present.
Because they are flagged as transient they are not saved when the form data is written out. (For more
about transient nodes see “Internal Properties and Methods” on page 97.) By contrast if there is no data
description, or the algorithm is matchTemplate, then the new structure in the Form DOM is based purely
on the Template DOM and is not transient.

Note: The presence of a data description does not by itself guarantee that the Data DOM will conform to
the data description at the end of the data binding process. To ensure conformance after binding,
the data must start off conforming to, or being a subset of, the data description. In addition the
structure of merge-able nodes in the template must correspond to the data description or to a
superset of it. However these restrictions are not imposed or enforced by the data binding process.
It does not check for conformance and has no problem dealing with non-conforming data or
indeed with the absence of a data description.

Optionally, after all other processing on a record is complete, the data binding process may adjust the Data
DOM to make it exactly parallel the structure of the Form DOM. This forces the data into a shape imposed
by the template and the data description. This option may be used to improve round-tripping by using the
data description to force the data to conform to the intended structure. It is also frequently used to ensure
that new data nodes (resulting, for example, from interactive entry of data into dynamic subforms) are
structured as intended. This option is not necessary when using the matchTemplate algorithm.

Data binding is also known as merging because it can be thought of as merging the data (and possibly
data description) with the template.

A variant known as an empty merge does not use data from the Data DOM. In this case, the Form DOM is
created based on the template and the data description. Optionally, default data matching the Form DOM
may be inserted into the Data DOM.

Conventions

Many drawings in this section depict relationships between nodes in tree graphs. Nodes are depicted
using different shapes and shadings, as shown in the following figure.

XFA Specification

Basic Data Binding to Produce the XFA Form DOM 173

Chapter 4, Exchanging Data Between an External Application
and a Basic XFA Form

Key to node symbols

The relationships between nodes can be of several types. The following diagram shows the depiction of
different types of relationships. A node can have multiple children. The ordering of the children is
significant. The children are in order of decreasing age (that is, from the first child added to the last child
added) from left-to-right and top-to-bottom. As with English text, top-to-bottom has a higher priority than
left-to-right. In the same way, the words on a line of text precede the words on the next line of text, even if
the words on the next line are to the left of the words on the first line.

Form &
Template
DOMs

nam e

nam e
“value”

nam e

nam e
“value”

nam e
“value”

nam e

Data
DOM

non-transparent subform

transparent subform

subform set

instance manager

exclusion group

field

data group

data value
nam e

XFA Specification

Basic Data Binding to Produce the XFA Form DOM 174

Chapter 4, Exchanging Data Between an External Application
and a Basic XFA Form

Key to node interconnects

Within the Template DOM and Data DOM nodes are loaded in document order, so the ordering of nodes
by age is also the ordering by document order. To traverse any portion of the Template DOM or Data DOM
in document order, start at the topmost node and perform a depth-first descent of the tree, descending
from each node through its eldest child first, then upon returning to that node descending through the
next-eldest child, and so on. In the above figure, document order for nodes in the Template DOM is
A-B-C-D.

Example 4.48 XML corresponding to the preceding illustration

The template follows this pattern.

<template …>
<subform name="A">

<subform name="B">
<field name="C"> … </field>
<field name="D"> … </field>

</subform>
</subform>

</template>

The data document looks like this.

<A>
<C>xyz</C>

Data binding fills the Form DOM by copying individual nodes from the corresponding prototype nodes in
the Template DOM. In diagrams this relationship is shown by the dashed lines between the prototype
nodes in the Template DOM and the corresponding nodes in the Form DOM. Often nodes in the Form
DOM are bound to nodes in the Data DOM. When this happens diagrams show the value in the data node
duplicated in the form node. In addition the binding is shown with either a dashed line or a dot-dashed
line. The two types of line represent bindings that occur for different reasons. The different types of
binding correspond to the different types of matches to SOM expressions, dashed lines to direct matches

A

B

C

A

B

C
“xyz”

A

C

“xyz”

Template DOM Form DOM Data DOM

Multiple
children

Template
provides
prototype

Binding resulting
from a simple
match

Child node

Parent node

Parent-child
link

Binding resulting
from a scope
match

D

XFA Specification

Basic Data Binding to Produce the XFA Form DOM 175

Chapter 4, Exchanging Data Between an External Application
and a Basic XFA Form

and dot-dashed lines to either indirect or scope matches. The types of matches are explained in “Scripting
Object Model” on page 86. The consumeData algorithm may bind any type of match. By contrast
matchTemplate binds only direct matches.

Principles of Data Binding

Data binding supports data independence, which is a key XFA feature. Data independence allows a form
designer to change a template without requiring that corresponding changes be made to the structure of
the data. It also allows the same data to be used with different templates. Data independence is enhanced
by retaining the original structure of the XML Data DOM and the values of any objects in the XML Data
DOM that are not used by the template.

Data binding is sometimes called merging or the merge process. This refers to the goal of data binding,
which is to merge the data with the template. Data binding achieves this by creating the Form DOM, which
instantiates the mapping between the data and the template. The Form DOM is actively linked to the XFA
Data DOM so that changes made to data values in the Form DOM propagate automatically into the Data
DOM and vice-versa. The Form DOM can be thought of as the filled-in form. Indeed, scripts usually act
upon the Form DOM rather than dealing directly with either the Template DOM or the XFA Data DOM.

Extraneous data may be present in the Data DOM; it is preserved but does not take part in the mapping.
Likewise subforms may optionally be included in the Form DOM even though unmatched by data; the
fields within such subforms receive default values. The Form DOM may also be organized differently from
the incoming data, with content reordered and/or redistributed into subforms. Hence, some changes can
be made to the organization and content of the template independently of the format of the incoming
data. Some changes can also be made to the data independently of the template. The binding algorithm
handles such changes without any need for scripting.

The exact behavior of the data-binding process is defined in later sub-sections of this specification. Here is
a simplified overview:

The data binding process walks through the Template DOM and Data DOM, populating the Form DOM
with nodes. If a Data DOM was supplied, the data binding process attempts to match up each new form
node with a data node in accordance with the following rules:

● Explicit bind targets defined in the template take precedence over automatic bindings.

● For automatic bindings the relative order of same-named data values or groups is significant.

● For automatic bindings the relative order of uniquely-named data values or groups is not significant.

● For automatic bindings the hierarchy of structure described by data values or groups is significant.

Using the consumeData algorithm the rules for automatic bindings are equivalent to the ones used for
resolving SOM expressions. Indeed one way of describing the matching process is that the data binding
process attempts to find a data node such that, when the path from the root of the Data DOM to the data
node is written as an unqualified SOM expression, the resulting SOM expression matches the form node as
seen from the root of the Form DOM. This is explained in more detail later.

Using the matchTemplate algorithm the rules for automatic bindings are much tighter. Only a direct
match is allowed. That is to say, the path from the root of the Data DOM to the data node and the path
from the root of the Form DOM to the form node must be the same.

The data binding process sometimes adds data nodes but it never deletes any data nodes. In addition it
reads but does not modify the Template DOM. On the other hand it populates the Form DOM.

XFA Specification

Basic Data Binding to Produce the XFA Form DOM 176

Chapter 4, Exchanging Data Between an External Application
and a Basic XFA Form

The Bind Element

Each subform, field, and exclusion group object in the Template DOM and Form DOM has a bind property,
corresponding to the bind element in an XML template. The bind property contains various
sub-properties controlling the object's behavior during data binding and afterward. The sub-properties
are match, picture, and ref.

The match property

This property controls the role played the by parent object in a data binding operation. It must be set to
one of the following values:

once

The node representing the parent object will bind to a node in the XFA Data DOM in accordance
with the standard matching rules. This is the default value.

none

The node representing the parent object will not bind to any node in the XFA Data DOM. This is
normally used for nodes that are transient, that is, that will not be written out if the DOM is saved
to a file.

global

This is only allowed if the parent object is a field. It signifies that field is capable of binding to
global data. If the normal matching rules fail to provide a match for it, the data-binding process
will look outside the current record for global data to bind to the field. Note that, whereas a
regular data value node can only bind to one field, a single global data value node can bind to
many fields.

The current record is always a subtree within the Data DOM. Global data is any data value that is
not inside any record but that is at least as high in the hierarchy as a record. See “Creating,
Updating, and Unloading a Basic XFA Data DOM” on page 122 for more information.

dataRef

The parent object will bind to the node in the XFA Data DOM specified by the accompanying ref
property.

The picture property

This property specifies the format of data in the Data DOM. When data is copied into the Form DOM the
bind picture is used to convert it into canonical format. Canonical format for numbers has a "." as a
decimal point and no thousands separator. Canonical format for dates is a subset of [ISO 8601]. Converting
data to canonical format makes it possible to manipulate the data using scripts and applications that are
unaware of the local format. When the data is saved to a file, the bind picture is used in the reverse
direction to convert the data from canonical format into local format. For more information about
localization and canonicalization, see “Localization and Canonicalization” on page 152

When a script reads the value property of a form node, the value that it receives is localized using the
bind picture. When it assigns to the value property of a form node, the value it supplies is canonicalized
using the bind picture. In effect the script is treated as though it is a user who wishes to deal in localized
formats. However, unlike users, scripts can also read from and assign directly to the canonical format using
the rawValue property of the form node. In addition scripts can access the original uncanonicalized data,
as supplied in the XML data document, using the value property of the associated data node.

XFA Specification

Basic Data Binding to Produce the XFA Form DOM 177

Chapter 4, Exchanging Data Between an External Application
and a Basic XFA Form

Note that a bind picture may be supplied using the picture child of the transform element in the XFA
configuration document. A conflict would arise if two bind pictures were supplied for the same form
node, one in the template and one in the configuration. It is up to the form creator to ensure that this does
not happen.

The ref property

This property is used to explicitly bind a field to a particular data value node, overriding the automatic
data-binding process. This property is used only when the accompanying match property has a value of
dataRef. When used, the value of this property must be a fully-qualified SOM expression referring to a
data value node in the Data DOM. See “Explicit Data References” on page 199 for more information.

Simple Example of Data Binding

The simplest kind of form has a unique name for each subform or field and for each corresponding data
group or data value. For example, suppose an online form is being used to edit the registration
information for a registered user. The registration data consists of first and last name and mailing address.
The data retrieved from the registration data base is as follows.

XFA Specification

Basic Data Binding to Produce the XFA Form DOM 178

Chapter 4, Exchanging Data Between an External Application
and a Basic XFA Form

Example 4.49 Registration data

<?xml version="1.0"?>
<registration>

<first>Jack</first>
<last>Spratt</last>
<apt></apt>
<street>99 Candlestick Lane</street>
<city>London</city>
<country>UK</country>
<postalcode>SW1</postalcode>

</registration>

When the registration data is loaded into the Data DOM the
result is as shown (right).

registration

last

“Spratt”

Data DOM

apt

“”

street

“99 Candlestick Lane”

city

“London”

country

“UK”

first

“Jack”

postalcode

“SW1”

Data DOM with registration data

XFA Specification

Basic Data Binding to Produce the XFA Form DOM 179

Chapter 4, Exchanging Data Between an External Application
and a Basic XFA Form

The template was created with field names that match the data elements one-for-one. A highly simplified
skeleton of the template follows.

Example 4.50 Registration template skeleton

<template …>
<subform name="registration">

<field name="first" …>… </field>
<field name="last" …> … </field>
<field name="apt" …> … </field>
<field name="street" …> … </field>
<field name="city"…> … </field>
<field name="country"…> … </field>
<field name="postalcode"…>…
</field>

</subform>
</template>

Note that the field names match the data element names in
letter-case. This is required because when the data-binding process
matches data values with fields it uses a case-sensitive name
comparison.

When the template is loaded into the Template DOM the result is as
shown (right). All the matches are direct matches, so it doesn’t
matter what the value of mergeMode is on the root subform; both
consumeData and matchTemplate give the same result.

Template DOM

registration

first

last

apt

street

city

country

postalcode

Template DOM with
registration template

XFA Specification

Basic Data Binding to Produce the XFA Form DOM 180

Chapter 4, Exchanging Data Between an External Application
and a Basic XFA Form

The Form DOM resulting from this operation represents the binding between data and template. The
relationship between the three DOMs is shown below.

Result of binding registration data to registration template

In the above diagram, each node of the Template DOM has acted as a prototype for a node in the Form
DOM (shown by the solid grey lines between them). Each node of the Form DOM has been bound to a
node in the Data DOM (shown by the dotted black lines between them). When a form field node is bound
to a data value node the content of the data node is copied to the form node.

Data Binding Steps

Data binding a simple form such as the one described in the previous section involves the following steps:.

1. Create form nodes as copies of template nodes (“Create Form Nodes and Match with Data Nodes
(Steps 1 and 2)” on page 181).

2. Match data nodes, other than attributes of data groups, to form nodes.

3. Match attributes to remaining unmatched form nodes (“Match Attributes (Step 3)” on page 202).

Template
DOM

registration

first

last

apt

street

city

country

postalcode

registration

last

“Spratt”

Data DOM

apt

“”

street

“99 Candlestick Lane”

city

“London”

country

“UK”

first

“Jack”

postalcode

“SW1”

Form DOM

registration

first

“Jack”

last

“Spratt”

apt

“”

street

“99 Candlestick Lane”

city

“London”

country

“UK”

postalcode

“SW1”

XFA Specification

Basic Data Binding to Produce the XFA Form DOM 181

Chapter 4, Exchanging Data Between an External Application
and a Basic XFA Form

4. If the mode is consumeData, re-normalize (adjust the Data DOM to mirror the Form DOM)
(“Re-Normalization (Step 4)” on page 203).

5. Perform calculations and validations (“Calculations and Validations (Step 6)” on page 213).

6. Issue the form ready event (“Form Ready Event (Step 7)” on page 213).

7. If scripts modify the Data DOM after the Form DOM has been created, it may be necessary to wholly or
partially repeat the data binding process (“Remerge and Incremental Merge (Step 8)” on page 214).

The following subsections expand on some of the steps above.

Create Form Nodes and Match with Data Nodes (Steps 1 and 2)

Continuing the example from the previous section, Step 1 in the data-binding process is simple. Each
node in the Template DOM is copied into the Form DOM. Some nodes are not merge-able; for example,
draws can not match up with user data, nor do they contain other elements that can, so they are not
merge-able.

As each node is copied into the Form DOM, if it is merge-able, it is matched with the same-named data
element. (Only merge-able nodes have been shown in the accompanying illustrations.) These are so-called
direct matches in which, not only do the node names match, but the names of all their merge-able
ancestors match in sequence. This corresponds to the logic of SOM expressions; if a data node and a form
node directly match, they are both named by the same SOM expression relative to the current record and
the top-level subform, respectively. For example, the city field in the Template DOM could be expressed
by the SOM expression registration.city relative to the root of the Template DOM. At the same time
the city node in the Data DOM could be expressed by the SOM expression registration.city
relative to the root of the Data DOM. Hence the two nodes match and the data binding process binds
them together.

It is important to note that for a data node and a form node to bind together they must be compatible
types. A subform can bind to a data group but not a data value. A field can bind to a data value but not a
data group.

In addition, data values which represent attributes of data groups are ignored. This is done to handle the
all-too-frequent case in which an element contains both an attribute and a child element with the same
name. Experience shows that in almost all cases the data which is wanted is the content of the child
element. However the attribute comes first in document order, so without a special rule the attribute value
would be bound to the field instead of the content of the child element.

Example 4.51 Attribute and child element with the same name

Suppose the template contains the following.

<subform name="member">
…
<field name="last" …>
<field name="first" …>

</member>

And suppose that the data document contains the following.

<member last="6">
<last>Spratt</last>
<first>Jack</first>

XFA Specification

Basic Data Binding to Produce the XFA Form DOM 182

Chapter 4, Exchanging Data Between an External Application
and a Basic XFA Form

</member>

In this case the last attribute is being used to hold some other data. If it was treated in the ordinary way it
would be bind to the last field and then the data value corresponding to the last element would
remain unbound. Instead, because the data value corresponding to the last attribute is the child of a
data group, it is ignored during these stages of processing. As a result the content of the last element
gets a chance to bind correctly.

Note: The best way to prevent this sort of ambiguity is to choose better attribute and element names.
Unfortunately data schemas are often dictated by industry standards, so XFA processors have to
deal with the situation.

The highest-level subform and the data node representing the current record are special; they are always
bound even if their names don't match. In fact it is common for the highest-level subform in a template to
be unnamed, that is to not have a name attribute. In the example assume that the data holds just one
record (the registration data group and its content). This is a common arrangement. In this case, the
registration data node is the one representing the current record.

If the data was missing some elements, all fields would still be placed into the Form DOM but some field
nodes would remain unbound. This corresponds to a paper form that has not been completely filled in.
However the template may specify a default values for any field, thereby forcing the field to be initialized
with the default value whenever the data does not fill it. Furthermore if a data description is present it may
force additional structure to be included. However for this example assume that the data description is
not supplied or simply mirrors the structure of the example data.

If the data had extra elements whose names differed from anything in the template, those extra data
nodes would simply be left unbound. This is true regardless of the contents of the data description. The
resulting Form DOM would in effect represent a subset of the data. Applications can therefore use multiple
templates with different template objects to present different views of the same data. In addition many
types of template nodes have a relevant property which gives a different kind of control. The
relevant property affects what portions of the template are loaded into the Template DOM by particular
applications. For example, a particular element might be marked relevant only to printing. An interactive
client would ignore that element when loading the Template DOM. In this way the same template can
present different views in different contexts.

Now suppose that the form designer decides to separate part of the registration subform into a
separate address subform. This might be done in order to make it easier to reuse the address subform
in other templates. The resulting template has the following skeletal structure.

Example 4.52 Registration template with address subform

<template …>
<subform name="registration">

<field name="first" …>… </field>
<field name="last" …> … </field>
<subform name="address">

<field name="apt" …> … </field>
<field name="street" …> … </field>
<field name="city"…> … </field>
<field name="country"…> … </field>
<field name="postalcode"…> … </field>

</subform>
</subform>

</template>

XFA Specification

Basic Data Binding to Produce the XFA Form DOM 183

Chapter 4, Exchanging Data Between an External Application
and a Basic XFA Form

Despite this change to the template, the same data will still bind correctly to the template. Consider the
same example data as in Example 4.49, repeated here for convenience.

Example 4.53 The same data works with the modified template

<?xml version="1.0"?>
<registration>

<first>Jack</first>
<last>Spratt</last>
<apt></apt>
<street>99 Candlestick Lane</street>
<city>London</city>
<country>UK</country>
<postalcode>SW1</postalcode>

</registration>

Because the root subform does not have a mergeMode attribute, the XFA processor defaults to binding in
consumeData mode. The registration subform still matches the registration data group so they
are bound as before. Similarly the data values first and last still match their respective fields within the
registration subform. However when the data-binding process reaches the apt data value, it finds
that there is no direct match. In the absence of a direct match, when the mode is consumeData, the data
binding process looks for a scope match. A scope match occurs when the data node in question is the
sibling of a node which has an ancestor bound to an ancestor of a node with the same name as the data
node. In this case, it finds that the apt data value is a sibling of the first data value, which has an
ancestor (the registration data group) bound to the registration subform, which in turn contains
a field named apt. Hence the apt data value scope matches the apt field. (The same thing can be
expressed in terms of parallel SOM expressions thus: The SOM expression for the apt field is
$form.registration.address.apt. When applied to the root of the data record this would directly
match $record.registration.address.apt, but there is no such node. Instead, there is a
$data.registration.apt which when mapped to $form.registration.apt scope-matches
$form.registration.address.apt.) Therefore the data-binding process copies the address
subform into the Form DOM, followed by the apt field, and binds the field and data value nodes together.
By the same logic the street, city, country and postalcode data values are bound to the fields
which they scope match in the address subform. The result is shown in the following diagram.

XFA Specification

Basic Data Binding to Produce the XFA Form DOM 184

Chapter 4, Exchanging Data Between an External Application
and a Basic XFA Form

Note: XFA applications would normally renormalize this by rearranging the Data DOM, as explained in
“Re-Normalization (Step 4)” on page 203. The diagram shows how things look before
re-normalization.

Result of registration binding with template changed in consumeData mode

In the above example, the data description is not consulted during data binding because a match is found.
The data description is only consulted during data binding when there is no match of any kind for the
current form node.

Scope matches have been defined to allow changes to be made to the template without requiring
changes to the data (data independence). Note, however, that this is not symmetrical; if the data changes
probably the template will have to change. This is because fields in subforms can match data values at a
higher level, but data values in data groups can not match fields at a higher level. The principle involved is
that structure in the template is often not meaningful but structure in the data is usually meaningful.

Template DOM

registration

first

last

apt

street

city

country

postalcode

registration

last

“Spratt”

Data DOM

apt

“”

street

“99 Candlestick Lane”

city

“London”

country

“UK”

first

“Jack”

postalcode

“SW1”

Form DOM

registration

first

“Jack”

last

“Spratt”

apt

“”

street

“99 Candlestick Lane”

city

“London”

country

“UK”

postalcode

“SW1”

address address

XFA Specification

Basic Data Binding to Produce the XFA Form DOM 185

Chapter 4, Exchanging Data Between an External Application
and a Basic XFA Form

Form Objects with Non-Unique Names

It is legal for forms and data to use the same names in different contexts. For example a field in one
subform may have the same name as a field in a different subform. The two fields represent quite
different things. It is the job of the data binding process to match form nodes correctly to data nodes
whenever possible, even when the names are not unique.

A direct match is not ambiguous unless somewhere in the chain of ancestors there are siblings with the
same name. This ambiguity is resolved wherever it occurs along the chain by matching index numbers as
well as names.

What if there is still no direct match? In matchTemplate mode an appropriate data node is created and
set to default content, ensuring that there is always a direct match. By contrast, in consumeData mode,
the search continues by looking for scope matches.

It is common for a single data node to directly match one field node and scope match some others which
are in different contexts. To deal with this there is a hierarchy of matches, in which a direct match has
highest precedence, followed by scope matches. Furthermore, there are two kinds of scope matches with
different priorities. A scope match involving only direct ancestors (also known as an ancestor match) is
preferable because like a direct match it matches not only the names of the nodes but also their index
numbers where there are multiple siblings with the same name. This has an effect similar to index inferral
in the resolution of SOM expressions. Only if unable to find an ancestor match does the data binding
process fall back upon a search for a scope match involving sibling(s) of ancestor(s) (also known as a sibling
match). In other words, the data binding process tries to find a match within the current branch of the Data
DOM, but if it can't, it looks for a match in a related branch. (This two-step process does not correspond
exactly to SOM expression resolution because SOM expressions only search an existing hierarchy, they do
not create new nodes.) Finally, within the set of ancestor matches and independently within the set of
sibling matches, priority is given to matches which ascend through fewer generations toward the root
before matching. This reproduces the prioritization rule of SOM expressions. See “Scripting Object Model”
on page 86.

The above details sound complicated but conceptually the distinction between ancestor and sibling
matches is simple. An ancestor match deals with the case where a portion of the template has been
enclosed in a new subform, so the form node is now lower in the form hierarchy than the corresponding
data node is in the data hierarchy. A sibling match deals with the case where a portion of the data has been
enclosed in a new data group, so the form node is now higher in the form hierarchy than the
corresponding data node is in the data hierarchy.

The following figure shows an ancestor match. This is a portion of the data binding results shown in the
figure on page 184. All of the scope matches in that figure are ancestor matches.

XFA Specification

Basic Data Binding to Produce the XFA Form DOM 186

Chapter 4, Exchanging Data Between an External Application
and a Basic XFA Form

Ancestor match in consumeData mode

registration

street

address

registration

street

“99 Candlestick Lane”

registration

street

“99 Candlestick Lane”

address

Template
DOM

Data DOMForm DOM

XFA Specification

Basic Data Binding to Produce the XFA Form DOM 187

Chapter 4, Exchanging Data Between an External Application
and a Basic XFA Form

The following example shows a sibling match.

Example 4.54 Sibling match

The template has the following structure. All of the fields are enclosed in two levels of subforms.

<template …>
 <subform name="registration" mergeMode="consumeData" …>

<subform name="address" …>
<field name="first" …>…</field>
<field name="last" …>…</field>
<field name="apt" …>…</field>
<field name="street" …>…</field>
<field name="city" …>…</field>

</subform>
</subform>

</template>

The data is as follows.

<?xml version="1.0"?>
<registration>

<first>Jack</first>
<last>Spratt</last>
<address>

<apt>7</apt>
<street>99 Candlestick Lane</street>
<city>London</city>

</address>
</registration>

In this case, the data has the first and last name data inside the registration data group but
outside the address data group. In the template the corresponding fields are inside the address
subform. The first data value is the sibling of the address data group, and the address data group is
bound to the address subform. Therefore, with no ancestor match possible, the first data value
sibling-matches to the first field. Similarly the last data value sibling-matches to the last field.

The diagram below shows the resulting DOMs.

Note: XFA applications would normally renormalize this by rearranging the Data DOM, as explained in
“Re-Normalization (Step 4)” on page 203. The diagram shows how things look before
re-normalization.

XFA Specification

Basic Data Binding to Produce the XFA Form DOM 188

Chapter 4, Exchanging Data Between an External Application
and a Basic XFA Form

Sibling Match in consumeData mode

��������	

��

���	
��
���	
��

������������

�������

�����

����

���

������������

�������

�����

����

���

������

������������

�����

����

�������

���

������

����

������

���� ����

XFA Specification

Basic Data Binding to Produce the XFA Form DOM 189

Chapter 4, Exchanging Data Between an External Application
and a Basic XFA Form

These matching rules ensure that once a data group and a subform are bound, descendants of the data
group are never bound to form nodes which are not descendants of the subform. This does not apply in
the reverse direction, that is, descendants of the subform may be bound to nodes that are not
descendants of the data group because of scope matching.

The hierarchy of matches is not important when every field on a form has a unique name. It becomes
important when fields in different data groups share the same name, although they are logically distinct.
Depending on the exact structure of the form, data values sharing the name may be able to scope-match
to each other's fields. For example, consider the following fragment from a passport application.

Example 4.55 Passport application with same-named fields in different parts of the form

<template>
<subform name="application" mergeMode="consumeData">

<subform name="sponsor">
<field name="lastname"> … </field> <!-- sponsor's last name -->
…

</subform>
<field name="lastname"> … </field> <!-- applicant's last name -->
…

</subform>
</template>

Note that there are two fields called lastname, and one subform containing a lastname field is
descended from another subform containing a lastname field. This template is merged with the
following data.

<application>
<lastname>Abott</lastname>
…
<sponsor>

<lastname>Costello</lastname>
</sponsor>

</application>

The hypothetical result, if there was no matching hierarchy, is shown in the following figure.

XFA Specification

Basic Data Binding to Produce the XFA Form DOM 190

Chapter 4, Exchanging Data Between an External Application
and a Basic XFA Form

Hypothetical scope-matching without hierarchy would cause an incorrect binding

As depicted in the hypothetical figure above, without a hierarchy the lastname field within the sponsor
subform would bind to the applicant's last name. This would come about because when the data binding
process looked for a match for the first lastname field in the template
($form.application.sponsor.lastname), the first match it would find would be a scope-match to
$data.application.lastname (containing "Abbot"). After this binding took place, the second
lastname field would fail to match any unbound data. Hence, when the form was displayed, it would
display the applicant's last name in the field for the applicant’s last name and nothing at all in the field for
the sponsor’s last name.

The matching hierarchy prevents this from happening. When the data binding process looks for a match
for the first lastname field, it looks for a direct match first. This causes it to correctly bind this field to
$data.application.sponsor.lastname. Then, when it looks for a match for the second lastname
field, it finds $data.application.lastname which is still unbound. This yields the correct binding.

sponsor

lastname

“Costello”

Template DOM Data DOMForm DOM

applicationapplication

lastname

sponsor

lastname

“Abbot”

lastname

“Abbot”

application

lastname

sponsor

lastname

XFA Specification

Basic Data Binding to Produce the XFA Form DOM 191

Chapter 4, Exchanging Data Between an External Application
and a Basic XFA Form

Matching hierarchy yields correct binding in consumeData mode

In the above example, the matching hierarchy solved the problem because there was enough structure in
the data and form to disambiguate the match. But there are times when the hierarchy of matching cannot
save the day. For example, assume the same passport application data as the above example. But in this
case, the same subform has fields that are required to bind to the two separate same-named data values.
The basic template is as follows.

Example 4.56 Modified passport template with no way to deduce proper binding

<template>
<subform name="application" mergeMode="consumeData">

<subform name="sponsor">
<field name="lastname"> … </field> <!-- sponsor's last name -->
<field name="lastname"> … </field> <!-- applicant's last name -->
…

</subform>
…

</subform>
</template>

This template does not bind correctly to the data. The data binding process has no way to know which
field should bind to which data value. With nothing else to go by it binds them in document order, which
in this case is incorrect. The form creator has two remedies. One remedy is to change a field name so that
all field names are unique, but this requires either changing the data or modifying it on the way into the
Data DOM using a configuration option as described in “Creating, Updating, and Unloading a Basic XFA
Data DOM” on page 122. Or, one of the fields can be qualified with an explicit data reference so that it can
only bind directly to the desired data value, as described in “Explicit Data References” on page 199.
However the explicit data reference only works if the data always has the same hierarchy. Each remedy
sacrifices some kind of data independence in order to disambiguate the match. Here is the same template
fragment with an explicit data reference added to fix the problem.

application

sponsor

lastname

lastname

application

sponsor

lastname

lastname

application

lastname
“Abbot”

sponsor

lastname
“Costello”

Form DOMTemplate DOM Data DOM

Costello”“

Abbot”“

XFA Specification

Basic Data Binding to Produce the XFA Form DOM 192

Chapter 4, Exchanging Data Between an External Application
and a Basic XFA Form

Example 4.57 Preceding template repaired with explicit data reference

<template>
<subform name="application" mergeMode="consumeData">

<subform name="sponsor">
<field name="lastname"> … </field> <!-- sponsor's last name -->
<field name="lastname">

<bind match="dataRef" ref="$data.application.lastname"/>
…

</field> <!-- applicant's last name -->
…

</subform>
…

</subform>
</template>

The result using this template fragment and the same data is shown in the following figure. This is the
desired result.

Scope-matching prevented using an explicit data reference in consumeData mode

Content Type

In XFA, the template may supply a field with default data that is rich text or an image. However the type of
data bound into a field, as indicated by its contentType property, may differ from the type of the default
data. For example a field with a textual default may bind to an image. The data binding process makes no
attempt to match the content type.

Similarly, in an interactive context, the UI may constrain the user to enter data of a particular type.
However when the data is supplied from some other source it need not match the UI type. For example a

application

sponsor

lastname

lastname

application

sponsor

lastname

lastname

application

lastname
“Abbot”

sponsor

lastname
“Costello”

Form DOM Template DOM Data DOM

XFA Specification

Basic Data Binding to Produce the XFA Form DOM 193

Chapter 4, Exchanging Data Between an External Application
and a Basic XFA Form

field with a numeric UI may bind to alphabetic data. This is considered normal and proper. The user is still
constrained to enter a date when editing the field.

Transparent Nodes

In data binding, as in SOM expressions, certain template nodes (such as nameless subforms) are
transparent. This means that data binding, like SOM expression resolution, behaves as though the
transparent nodes were removed and their children adopted by the transparent node's parent. For
example, if a nameless subform is wrapped around a field, the field still binds to the same data value in the
same place in the data hierarchy. The data binding process does copy the transparent node into the Form
DOM, so the Form DOM echoes the hierarchy of the Template DOM, but the form node which is a copy of a
transparent node remains unbound.

The following example shows the registration template with a nameless subform wrapping around the
address information.

Example 4.58 Registration template with a transparent subform added

<template …>
<subform name="registration">

<field name="first" …>… </field>
<field name="last" …> … </field>
<subform>

<field name="apt" …> … </field>
<field name="street" …> … </field>
<field name="city"…> … </field>
<field name="country"…> … </field>
<field name="postalcode"…> … </field>

</subform>
</subform>

</template>

The following figure shows what results when this template is bound to the original data. All of the data
bindings are still direct matches because the nameless subform is transparent. It makes no difference
whether the merge mode is consumeData or matchTemplate.

XFA Specification

Basic Data Binding to Produce the XFA Form DOM 194

Chapter 4, Exchanging Data Between an External Application
and a Basic XFA Form

Transparent node handling

Nameless fields are also transparent, unless they make explicit data references. Explicit data references are
explained below in “Explicit Data References” on page 199. Note that the transparency of nameless
subforms and fields is not arbitrary. Rather, because they are nameless, they cannot be referred to in the
normal way by SOM expressions. Hence they are also excluded from data binding. However like nameless
subforms they are still copied into the Form DOM where appropriate so that scripts and other XFA
subsystems can use them. (Because they are nameless scripts have to refer to them via SOM expressions
using class names. For example the above nameless subform would be referred to as
$form.registration.#subform.)

A subform can also be transparent even though it has a name. This happens when the subform’s scope
property is set to none. Such a subform is treated like a nameless subform by the data binding process but
at the same time scripts can access the transparent subform by name.

Nodes representing area elements are also transparent to data binding, even when they are named.
There are also various nodes that are descended from subforms but do not participate in data binding

Template
DOM

registration

first

last

apt

street

city

country

postalcode

registration

last

“Spratt”

Data DOM

apt

“”

street

“99 Candlestick Lane”

city

“London”

country

“UK”

first

“Jack”

postalcode

“SW1”

Form DOM

registration

first

“Jack”

last

“Spratt”

apt

“”

street

“99 Candlestick Lane”

city

“London”

country

“UK”

postalcode

“SW1”

XFA Specification

Basic Data Binding to Produce the XFA Form DOM 195

Chapter 4, Exchanging Data Between an External Application
and a Basic XFA Form

because they can not contain subforms or fields, for example pageSet nodes. See “Template Features for
Designing Static Forms” on page 31 for more information about these objects. Again, these are copied
into the Form DOM for use by scripts and other XFA subsystems.

Exclusion Groups

An exclusion group is a template construct that contains a set of fields, each of which has an activated
state and a deactivated state. In an interactive context an exclusion group is normally presented to the
user as either a set of radio buttons or a set of checkboxes.

When presented as radio buttons not more than one member of the set can be activated at the same time.
When one radio button is turned on (depressed) any other radio button in the group that was on is forced
off (released). It is also permissible for every button to be off. By contrast, when an exclusion group is
presented as check boxes the fields can be activated and deactivated independently.

Each field within an exclusion group is associated with a key value. When a field is activated a variable is set
to the key value for that field. At any time the field can tell whether it is on or off by comparing the value of
the variable to its own key value.

Exclusion groups are declared in the template via an exclGroup element enclosing the members of the
set. In the following example, the exclusion group itself is named sex and it contains three radio button
fields named male, female and NA (to represent a declined response). The field named male is on when
and only when the controlling variable is "M". Similarly female is on when it is "F" and NA is on when it is
"NA". For simplicity the accompanying GUI elements are not shown.

Example 4.59 Template using an exclusion group

<subform name="main" …>
<exclGroup name="sex">

<field name="male">
<items><text>M</text></items>

</field>
<field name="female">

<items><text>F</text></items>
</field>
<field name="NA">

<items><text>NA</text></items>
</field>

</exclGroup>
</subform>

XFA Specification

Basic Data Binding to Produce the XFA Form DOM 196

Chapter 4, Exchanging Data Between an External Application
and a Basic XFA Form

Inside the Template DOM, the exclusion group is represented by a
node, as shown at right. The node exists purely to encapsulate the
logical relationship between its children. It is not itself displayable.

If the exclusion group has a name, the exclusion group node itself
may be supplied with content by the data. This is called the short
exclusion format. In this case, the fields belonging to the exclusion
group are left unbound. The fields rely on the value of their parent
exclusion group to determine whether they are on or off. The
following example shows short exclusion format.

Example 4.60 Data using the short exclusion format

<?xml version="1.0"?>
<main>

<sex>M</sex>
</main>

After binding the above template to this data, the result is as shown
in the following figure.

Exclusion group bound using short format

Alternatively the data may provide content explicitly for one or more of the fields within an exclusion
group. This is known as the long exclusion format. In this case, the field nodes are bound to the
corresponding data value nodes. Each bound field node relies on its own value to determine whether it is
on or off. The following example shows long exclusion format.

main

sex

male

on = “M”

female

on = “F”

NA

on = “NA”

Template DOM

Exclusion group in the
Template DOM

main

sex

male

on = “M”

female

on = “F”

NA

on = “NA”

Template
DOM

main

sex

male

state = ON

female

state = OFF

NA

state = OFF

Form DOM

main

sex

“M”

Data DOM

XFA Specification

Basic Data Binding to Produce the XFA Form DOM 197

Chapter 4, Exchanging Data Between an External Application
and a Basic XFA Form

Example 4.61 Data showing the long exclusion format

<?xml version="1.0"?>
<main>

<sex>
<male>M</male>
<female></female>
<NA></NA>

</sex>
</main>

The following figure shows the result of binding the above template to this data.

Exclusion group bound using long format

Note that both of the above data formats end up looking the same to scripts that test the post-binding
value of $form.main.sex. In both examples this expression evaluates to M. However there is an
operational difference between the data formats. When supplied with data in the long exclusion format,
the binding process is not responsible for enforcing exclusivity. The supplied data must obey the
exclusivity constraint. The data binding process may detect violations of this constraint and take
appropriate action (for example, emitting a warning) but it is not required to. By contrast when data is
supplied in the short exclusion format it is inherently exclusive.

Binding with the long exclusion format does not require that the exclusion group have a name. However
not having a name for the exclusion group may cause problems when submitting data from an exclusion
group to a host, because the script writer has no easy way to identify which exclusion group is being
submitted. Consequently it is recommended to supply a name for the exclusion group even when
planning to use the long exclusion format.

main

sex

male

on = “M”

female

on = “F”

NA

on = “NA”

Template
DOM

main

sex

male

state = ON

female

state = OFF

NA

state = OFF

Form DOM

main

male

“M”

Data DOM

female

“”

NA

“”

XFA Specification

Basic Data Binding to Produce the XFA Form DOM 198

Chapter 4, Exchanging Data Between an External Application
and a Basic XFA Form

Choice Lists That Can Have Multiple Values

The choice list widget (choiceList) may be configured to allow the user to select multiple values, as
shown in the following example. The property open="multiSelect" indicates the user may select
multiple values.

Example 4.62 Field using a multivalued choice list

<field name="grains" … >
<ui>

<choiceList open="multiSelect"/>
</ui>
<items save="1">

<text>wheat</text>
<text>rye</text>
<text>millet</text>

</items>
</field>

During data binding, a field object having a multi-select choice list is bound to a data group, rather than to
a data value. The value of the field object in the Form DOM is the concatenation of the values of all of that
node’s children, with newlines between them. This includes children that do not match any of the items in
the choice list. However, the choice list widget does not display values that are not in the list. For example,
suppose the relevant data is as follows.

<grains>
<value>rye</value>
<value>barley</value>
<value>wheat</value>

</grains>

In this case the value of the grains field in the Form DOM is as follows:

rye
barley
wheat

Note that there is no newline after wheat. If the template supplies a default value, it must be in the same
format.

Although barley is in the value it does not appear in the choice list, so the multi-select choice widget
ignores it. Instead it displays a list consisting of wheat, rye, and millet (in that order), with wheat and
rye selected. The user can deselect wheat, deselect rye, or select millet, but the user has no direct way
to deselect the value barley.

Note: In Acrobat if the user makes any change to the field the value barley is silently discarded.

The DOMs for this example are shown below.

XFA Specification

Basic Data Binding to Produce the XFA Form DOM 199

Chapter 4, Exchanging Data Between an External Application
and a Basic XFA Form

Binding to a field with a multi-select choice list

Explicit Data References

It is possible for the template to override the automatic matching process. When a field, exclusion group,
or subform has a bind property with a match attribute having a value of dataRef, the accompanying
ref attribute supplies a SOM expression which points directly to a data node. Because a SOM expression
can point any place in the Data DOM, the referencing node can bind to any data node of the appropriate
type in the Data DOM, regardless of its own location in the Form DOM. If there is no data node matching
the expression, the binding process creates one with default properties. If the expression specifies
ancestor data nodes that do not exist, they too are created so that the referenced data node can link into
the Data DOM at the specified location.

When an explicit data reference is supplied, the XFA processor expands the SOM expression to a list of
matching nodes. If there is no matching data node, the XFA processor creates a new data node. However if
the SOM expression contains a ".." construction the attempt to create a new node fails, because such an
expression is ambiguous. However, the SOM expression may contain "*". When it does contain "*" the XFA
processor adds one more instance of the object matching the "*". If the "*" does not match any node then
the value 0 is substituted.

When binding in matchTemplate mode it is possible to use explicit data references to reach through a
relation from the current row of data to a row in another table. To do this there must be a data description
which specifies the relationships between keys and the data items to which they refer. For more
information see “Labelling relational data” on page 946.

dough

grains

items

dough

grains

(any name)
“rye”

dough

text
“wheat”

text
“rye”

text
“millet”

grains
“rye
barley
wheat”

items

text
“wheat”

text
“rye”

text
“millet”

(any name)
“wheat”

(any name)
“barley”

XFA Specification

Basic Data Binding to Produce the XFA Form DOM 200

Chapter 4, Exchanging Data Between an External Application
and a Basic XFA Form

When a form node supplies an explicit data reference, the data binding process does not use the name
attribute of the form node. For this reason the name can be omitted for such form nodes (i.e. they can be
made nameless) without becoming transparent to binding.

Multiple Bindings to the Same Data

In consumeData mode, binding by name-matching always excludes data nodes which are already
bound. Therefore each field or exclusion group in the Form DOM binds to a unique node in the Data DOM.

By contrast in matchTemplate mode, binding by name-matching does not exclude data nodes which are
already bound, providing they are bound to fields or exclusion groups with parent subforms different from
the current parent subform in the Form DOM. In other words, data can be reused across subforms. When
multiple bindings to the same data occur, the data is shared by all of the fields and exclusion groups to
which it is bound. If any one of them is updated they all update.

This mode (matchTemplate) is normally used for data obtained from a relational database; for an
example see “Labelling relational data” on page 946.

In either mode, when binding results from an explicit data reference, multiple binding is allowed. The
result for exclusion groups and fields is once again that they share the data. However a data reference can
also bind a data group to a subform. When this happens the bound subform may have children which do
not have data references supplied for them. In this case the XFA processor descends to the children and
binds by name-matching. To retain consistency it performs this binding in whichever mode,
consumeData or matchTemplate, is specified by the root subform. Therefore in consumeData mode
the children of the subform are forced to bind to unique data nodes whereas in matchTemplate mode
they are not.

Example 4.63 Difference between consumeData and matchTemplate modes

Assume the data document contains the following data.

<root>
 <section>
 <line-item>item1</line-item>
 </section>
 <section>
 <line-item>item2</line-item>
 </section>
</root>

Assume the template is as follows.

<template …>
…
<subform name="root" mergeMode="consumeData">

<subform name="section" id="section1">
<occur min="0" max="-1"/>
<bind ref="$.section[*]"/>
<field name="line-item" …/>

</subform>
<subform name="section" id="section2">

<occur min="0" max="-1"/>
<bind ref="$.section[*]"/>
<field name="line-item" …/>

</subform>
<subform>

XFA Specification

Basic Data Binding to Produce the XFA Form DOM 201

Chapter 4, Exchanging Data Between an External Application
and a Basic XFA Form

</template>

Explict data references are supplied for the subforms but the fields fall back onto binding by
name-matching. This is the situation described earlier, in which the parent subform binds by data
reference and the child field binds by name-matching. We can see the difference between consumeData
and matchTemplate modes by examining what happens when binding this data to this template in the
two different modes.

In consumeData mode the merge operation matches item1 to an instance of section1 and item2 to a
second instance of section1. This uses up all the data nodes that match the data reference (in fact it uses
up all the data nodes in the Data DOM). When it comes to section2 the XFA processor ignores item1
and item2 because they are already bound. The result is that there are no instances of section2 in the
Form DOM. The result is shown below.

Now assume exactly the same template and data except that mergeMode is set to matchTemplate, as
follows.

<template …>
…
<subform name="root" mergeMode="matchTemplate">

<subform name="section">
<occur min="0" max="2"/>
<bind ref="$.section[*]"/>
<field name="line-item"/>

</subform>
<subform name="section">

<occur min="0" max="-1"/>
<bind ref="$.section[*]"/>
<field name="line-item"/>

</subform>
<subform>

</template>

��������	
�� ���	
��
���	
��
���� ���� ����

��������

��������

���������

���������

��������

���������
�������

��������

���������
�������

���������
�������

���������
�������

�������

�������

XFA Specification

Basic Data Binding to Produce the XFA Form DOM 202

Chapter 4, Exchanging Data Between an External Application
and a Basic XFA Form

In matchTemplate mode the merge operation matches both item1 and item2 to separate instances of
section1, just as it did in the consumeData case. However item1 and item2 are still available to bind
again under some other subform. Hence, when it comes to section2, the XFA processor again matches
each of item1 and item2 to separate instances of section2. The result is shown below.

Match Attributes (Step 3)

Attributes are by default loaded into the Data DOM. If loaded, they are represented by data value nodes
with the contentType property set to metadata. All of the preceding steps in the data-binding process
ignore data value nodes representing attributes of data values, as explained on page 181. Instead they are
handled separately at this point in the process.

If attributes have been loaded into the Data DOM, after all the above processing is complete, the data
binding process makes one more try to match any yet-unmatched ordinary fields or exclusion groups to
data. It looks for attributes of data values that match the names of unbound fields. Note that it ignores
attributes of data groups; only attributes of data values are processed. Also, attributes that are already
bound via explicit data references are excluded.

For example, suppose the data is as follows.

Example 4.64 Registration data with attributes

<?xml version="1.0"?>
<registration>

<first>Jack</first>

��������	
�� ���	
��
���	
��
���� ���� ����

��������

��������

���������

���������

��������

���������
�������

��������

���������
�������

���������
�������

���������
�������

�������

�������

��������

���������
�������

��������

���������
�������

XFA Specification

Basic Data Binding to Produce the XFA Form DOM 203

Chapter 4, Exchanging Data Between an External Application
and a Basic XFA Form

<last>Spratt</last>
<street apt="2">99 Candlestick Lane</street>
<city>London</city>
<country>UK</country>
<postalcode>SW1</postalcode>

</registration>

Failing to find a match for the apt field, the binding process extends the search to attributes of data
values. It finds the apt attribute of the street data value and binds it to the apt field. This is useful with
data produced by third-party programs which may choose to pass data in attributes rather than content.
(There is no general rule in XML for deciding what should be an attribute and what should be content.)
Attributes that are not needed to supply values for unbound fields or exclusion groups are ignored.

Re-Normalization (Step 4)

In consumeData mode, in certain cases, a data node may end up bound to a form node even though the
nearest merge-able ancestor of the data node and the nearest merge-able ancestor of the form node are
not bound to each other. XFA applications may provide an option to move data nodes around to reconcile
these contradictions. This process is referred to as re-normalizing (or adjusting) the Data DOM.
Re-normalization always does the least moving it can, so the data structure is kept as close to original
structure as possible. If the application does not request this service, existing nodes in the Data DOM stay
where they are. Re-normalization is not done in matchTemplate mode because it is not necessary.

The template that was used above in Example 4.52 to illustrate scope matching will also serve to illustrate
re-normalization. The template has the following skeleton:

Example 4.65 Registration template with added address subform

<template …>
<subform name="registration" mergeMode="consumeData">

<field name="first" …> … </field>
<field name="last" …> … </field>
<subform name="address">

<field name="apt" …> … </field>
<field name="street" …> … </field>
<field name="city"…> … </field>
<field name="country"…> … </field>
<field name="postalcode"…> … </field>

</subform>
</subform>

</template>

The supplied data is also the same as Example 4.49. The data is repeated below for convenience.

<?xml version="1.0"?>
<registration>

<first>Jack</first>
<last>Spratt</last>
<apt></apt>
<street>99 Candlestick Lane</street>
<city>London</city>
<country>UK</country>
<postalcode>SW1</postalcode>

</registration>

XFA Specification

Basic Data Binding to Produce the XFA Form DOM 204

Chapter 4, Exchanging Data Between an External Application
and a Basic XFA Form

The following figure shows the result of the data binding process, before re-normalization.

Result of registration binding with template (duplicated from page 180)

During re-normalization an address data group is added to the Data DOM and the scope matched data
nodes are moved under the new data group so that the structure of the Data DOM agrees with that of the
Form DOM. The following figure shows the result after re-normalization.

Template DOM

registration

first

last

apt

street

city

country

postalcode

registration

last

“Spratt”

Data DOM

apt

“”

street

“99 Candlestick Lane”

city

“London”

country

“UK”

first

“Jack”

postalcode

“SW1”

Form DOM

registration

first

“Jack”

last

“Spratt”

apt

“”

street

“99 Candlestick Lane”

city

“London”

country

“UK”

postalcode

“SW1”

address address

XFA Specification

Basic Data Binding to Produce the XFA Form DOM 205

Chapter 4, Exchanging Data Between an External Application
and a Basic XFA Form

Results of binding data with template after re-normalization

If the re-normalized Data DOM is subsequently written out in XML, the result is as follows.

<?xml version="1.0"?>
<registration>

<first>Jack</first>
<last>Spratt</last>
<address>

<apt></apt>
<street>99 Candlestick Lane</street>
<city>London</city>
<country>UK</country>
<postalcode>SW1</postalcode>

</address>
</registration>

Hence if the application reloads the resulting XML (that is, if the data makes a round trip) the application's
data is forced into the structure laid out by the template. This is sometimes very useful, but it is also

Template
DOM

registration

first

last

apt

street

city

country

postalcode

address

last

“Spratt”

Data DOM

apt

“”

street

“99 Candlestick Lane”

city

“London”

country

“UK”

first

“Jack”

postalcode

“SW1”

Form DOM

registration

first

“Jack”

last

“Spratt”

apt

“”

street

“99 Candlestick Lane”

city

“London”

country

“UK”

postalcode

“SW1”

address addressaddress

registration

XFA Specification

Basic Data Binding to Produce the XFA Form DOM 206

Chapter 4, Exchanging Data Between an External Application
and a Basic XFA Form

dangerous - a different template may produce a different restructuring of the data. Therefore the
application designer must carefully consider the effects of the option.

The examples on the following pages show all the ways in which the Data DOM can be altered by
re-normalization. Note that in these illustrations the left side shows the original Data DOM (rather than the
usual Template DOM).

Example 4.66 Re-normalization moves a child to a different parent

As a result of a binding operation that uses sibling matching, a data group and a data value which are
peers can end up bound to a subform and a field inside that subform, respectively. Re-normalization
moves the data value into the data group.

The data document is as follows.

<?xml version="1.0"?>
<A>

<C>XY</C>

<D>AB</D>

The template is as follows.

<template …>
<subform name="A" mergeMode="consumeData" …>

<subform name="B" …>
<field name="C" …>…</field>
<field name="D" …>…</field>

</subform>
</subform>

</template>

XFA Specification

Basic Data Binding to Produce the XFA Form DOM 207

Chapter 4, Exchanging Data Between an External Application
and a Basic XFA Form

Due to sibling matching a lower-level field in the template binds to a higher-level data value. As shown in
the following figure, value C (originally a child of Group A) is moved to become a child of Group B.

Re-normalization moves a data node

When the data is written out to XML again the resulting data document is as follows.

<?xml version="1.0"?>
<A>

<D>AB</D>
<C>XY</C>

Caution: If the field and data values named D had instead been named C, the result would have been to
reverse the order of two data values both named C. This can be very confusing for downstream
consumers of the data. The example below shows how this can happen.

Example 4.67 Re-normalization as above reverses the order of two like-named data values

Differences from the previous example are shown in bold.

The data document is as follows .

<?xml version="1.0"?>
<A>

<C>XY</C>

<C>AB</C>

The template is as follows.

�

�

�

����

	

����

	
�
�	�

��������

�

�

�

����

	

����

	
�
�	�

�������

�

�

	

����

�

����

�����	�

XFA Specification

Basic Data Binding to Produce the XFA Form DOM 208

Chapter 4, Exchanging Data Between an External Application
and a Basic XFA Form

<template …>
<subform name="A" mergeMode="consumeData" …>

<subform name="B" …>
<field name="C" …>…</field>
<field name="C" …>…</field>

</subform>
</subform>

</template>

As for the preceding example, due to sibling matching a lower-level field in the template binds to a
higher-level data value. The first value C (originally a child of Group A) is moved to become a child of Group
B. However this makes it a peer of the second value C. When the data is written out as XML the result is to
reverse the order of the two elements named C.

<?xml version="1.0"?>
<A>

<C>AB</C>
<C>XY</C>

Example 4.68 Re-normalization inserts a data group

Re-normalization inserts a data group whenever ancestor matching has led to a data value binding to a
field which is insied a lower-level subform in the template.

The data document is as follows.

<?xml version="1.0"?>
<A>

XY
<C>MN</C>
<D>PQ</D>

The template is as follows.

<template …>
<subform name="A" mergeMode="consumeData" …>

<field name="C" …>…</field>
<subform name="E" …>

<field name="B" …>…</field>
<field name="D" …>…</field>

</subform>
</subform>

</template>

XFA Specification

Basic Data Binding to Produce the XFA Form DOM 209

Chapter 4, Exchanging Data Between an External Application
and a Basic XFA Form

As shown in the following figure, data group E is inserted and two values, B and D, are moved to become
children of the new group.

Re-normalization inserts a data group

When written out as XML, the resulting data document is as follows.

<A>
<C>MN</C>
<E>

XY
<D>PQ</D>

</E>

Note that, unlike the re-normalization described above in “Re-normalization moves a child to a different
parent” on page 206, this type of re-normalization cannot change the order of same-named data values.

Example 4.69 Re-normalization creates a new value

When a required data value is missing from the data, re-normalization creates a new data value holding
default data.

The data document is as follows.

<?xml version="1.0"?>
<A>

<C>XY</C>

The template is as follows.

�

�

����

�

����

	

�
�� �

	

�
��

�

�

����

	��	��

��������

�����	��

�

�

����

�

����

	

�
��

	��	��

�������

�

�

����

XFA Specification

Basic Data Binding to Produce the XFA Form DOM 210

Chapter 4, Exchanging Data Between an External Application
and a Basic XFA Form

<template …>
<subform name="A" mergeMode="consumeData" …>

<field name="B" …>
<value><text>PQ</text></value>
…

</field>
<field name="C" …>…</field>

</subform>
</template>

As shown in the following figure, value B is created with default properties in order to provide a match for
Field B.

Re-normalization creates a data node

When written out as XML, the resultant data document is as follows.

<?xml version="1.0"?>
<A>

<C>XY</C>
PQ

Bind to Properties (Step 5)

This step was added in XFA 2.4. The binding process so far has populated by XFA Form DOM and bound
data values to the value properties of field, exclusion group, and subform nodes in the XFA Form DOM.
All the other properties of form nodes are simple copies of the corresponding properties in the template.
In this step the XFA processor updates properties (other than value) of form nodes from data values. The
data values can be taken from the XFA Data DOM or they can be obtained via connections to web services.
This process is controlled by two properties, setProperty and bindItems.

The setProperty property

This property is used to explicitly copy a particular data value node or a value returned by a web service to
a property of the containing field, draw, exclusion group, or subform. This can be used to make captions,
assists, and other portions of the form data-driven even though they are not modifiable through the user
interface.

A

C

“XY”

Data DOM

(Before)

A

C

“XY”

B

default = “PQ”

A

C

“XY”

Data DOM

(After)

B

“PQ”

Form DOM

XFA Specification

Basic Data Binding to Produce the XFA Form DOM 211

Chapter 4, Exchanging Data Between an External Application
and a Basic XFA Form

A field, draw, exclusion group, or subform may have any number of setProperty children. Each
setProperty child affects one property of its parent.

The setProperty element takes a ref attribute, plus an optional connection attribute, which
together define the source of the data to be copied. A mandatory target attribute identifies the property
to copy into.

The ref attribute takes as its value a SOM expression with one special restriction: the expression may not
use the ".." syntax. The SOM expression may be a relative expression. When there is no connect attribute
the expression is evaluated in the context of its parent (which is its container). When there is a connect
attribute the expression is evaluated in the context of the the nearest ancestor that asserts a fully-qualified
XFA SOM expression as its value of ref for the same connection. For example if a subform has a ref
attribute with a value of !connectionData.queryDatabase.body then its child field could use the
relative expression queryID as a synonym for !connectionData.queryDatabase.body.queryID.
In all other ways the value of this property is a normal XFA SOM expression.

The target must be a property (or subproperty) of the parent object. It cannot be a property of an object
contained by the parent. For example, within a subform the target may be specified as assist.tooltip
(a subproperty of the subform itself) but it may not be specified as #field.rotate (a property of a field
object contained within the subform). You have to put the setProperty on the object to which the
target belongs. For example, the following template fragment copies data from the XFA Data DOM into
several properties of a subform and other data into properties of a field contained within the subform.

Example 4.70 Subform and field using setProperty

<field name="LastName" ...>
<setProperty ref="$data.Main.Style.NameFont" target="font.typeface"/>
<setProperty ref="$data.Main.Style.NameSize" target="font.size"/>
<setProperty ref="$data.Main.Help.LastName" target="assist.toolTip"/>

</field>

The target can be almost any property of the containing object. The following restrictions apply.

● It is not legal for the target to be the setProperty property itself or any of its subproperties.

● It is not legal for the target to be a bindItems property or any of its children. Both setProperty and
bindItems are processed during a single phase of the data merge process and their respective order
of evaluation is not guaranteed.

Some targets are legal but not recommended.

● It is legal for the target to be the relevant, use or usehref property but it is not recommended.
These properties are processed early and changing them afterward has no effect.

● It is legal for the target to be a bind-related property (such as the name property or any bind or occur
subproperties) but it is not recommended. Specifying a bind-related property as the target is unlikely
to yield a useful result. Processing of setProperty is done near the end of the merge operation when
the bind-related properties have already had their effects. Changing them with setProperty has no
effect on the current merge operation. It may however affect subsequent incremental merge
operations.

● It is legal for the target to be the value property of the parent field or exclusion group, but it is not
recommended. It is better to do an explicit data reference by setting the parent’s bind.match
property to dataRef and the parent’s ref attribute to the target instead. By contrast when the parent
is a draw object there is no way to specify an explicit data reference and it is proper and expected to
specify its value property as the target of a setProperty.

XFA Specification

Basic Data Binding to Produce the XFA Form DOM 212

Chapter 4, Exchanging Data Between an External Application
and a Basic XFA Form

Note that setProperty processing is a templating process, not a binding process. Whenever a merge is
performed a snapshot of the specified data is copied into the specified properties. Subsequent updates to
the data do not propagate into the target or vice-versa. This is appropriate because the targets of
setProperty are things that the user does not normally have the ability to change interactively.

Caution: Careless use of setProperty can create security vulnerabilities. It is up to the form creator to
ensure that security is not compromised.

The bindItems property

This property is used to load the items property of a field from a set of data value nodes or from a set of
values returned by a web service. If the items property already exists and is non-empty the old contents
of the items property are lost.

It is always legal for a field to have a bindItems property, but as with items the property is ignored
unless the field has a suitable user interface. Suitable user interfaces include choice lists, check boxes, and
radio buttons. Note that when bindItems refers to a web service but the user interface is unsuitable the
web service is not accessed, so there are no side-effects.

The bindItems element takes a ref attribute, plus an optional connection attribute, which together
identify a set of data nodes. Each member of the set is used to create an item for the list. A mandatory
valueRef attribute identifies a particular data value within each member of the set. These values are
used to generate the actual value strings for the items. In addition an optional labelRef attribute
identifies a data value within each member of the set that is used to generate label strings for the items. If
there is no labelRef attribute then the value strings are also used as labels.

Note: Unlike setProperty, whenever possible bindItems does not merely use the data as a template.
Instead it makes a true binding. Any subsequent change in the bound data automatically
propagates into the items property. This is an exception to the usual XFA practice for
non-interactive properties. The exception was made to simplify interoperation with forms written in
XForms and using an itemset element. However when the connection property is non-empty
binding cannot be done because connection data is transient. In this case the XFA processor
performs a simple templating (copying) operation.

The ref attribute takes as its value a SOM expression with one special restriction: the expression may not
use the ".." syntax. When there is no connect attribute this expression is evaluated in the context of the
data node bound to the containing field object in the XFA Form DOM. When there is a connect attribute
this expression is evaluated in the context of the the nearest ancestor that asserts a fully-qualified XFA
SOM expression as its value of ref for the same connection. For example if a subform has a ref attribute
with a value of !connectionData.queryDatabase.body then its child field could use the relative
expression queryID as a synonym for !connectionData.queryDatabase.body.queryID. In all
other ways the value of this property is a normal XFA SOM expression.

The values of valueRef and labelRef must be SOM expressions. These expressions may contain ".."
if desired. They are evaluated in the context of the data node to which the ref expression points.

Example 4.71 Choice list populated with items from the data

For example, the author of a form wishes to populate a choicelist with a set of credit cards. The set of credit
cards is to be taken from the data file. The data contains the following structure.

<main>
<ccs>

<cc uiname="Visa" token="VISA"/>
<cc uiname="Mastercard" token="MC"/>

XFA Specification

Basic Data Binding to Produce the XFA Form DOM 213

Chapter 4, Exchanging Data Between an External Application
and a Basic XFA Form

<cc uiname="American Express" token="AMEX"/>
</ccs>

…
</main>

The author accomplishes his goal using the following template fragment.

<field name="CardName"...>
<bindItems ref="$data.main.ccs.cc[*]" labelRef="uiname" valueRef="token"/>
<ui>

<choiceList/>
</ui>

</field>

When the user enters the field she is presented with a drop-down list that gives a choice of Visa,
Mastercard, or American Express. Assuming the user selects Mastercard and then saves the data
to an XML document, the XML document contains the following.

<main>
<ccs>

<cc uiname="Visa" token="VISA"/>
<cc uiname="Mastercard" token="MC"/>
<cc uiname="American Express" token="AMEX"/>

</ccs>
<CardName>MC</CardName>

</main>

Calculations and Validations (Step 6)

The last thing that the data binding process does for any given record is to trigger the execution of certain
scripts.

Fields in the template may have calculation and validation scripts attached to them. A calculation script
returns a value which becomes the new value for the field. A validation script returns a status value which,
if false, causes actions to be taken such as displaying an error message. Calculation and validation scripts
must not make alterations to the structure of any of the DOMs, such as adding, deleting, or moving nodes.
In addition validation scripts must not alter any values. Calculation and validation scripts may be triggered
under various other circumstances, not only upon completion of data binding.

Note that calculations are performed even for fields that were supplied with data in the course of data
binding. The calculation may thereby update the supplied value. Similarly validations are applied even to
values that are supplied by the template to an empty merge as default values. Hence a validation may
declare a failure or warning in response to a default value.

For more information about these and other scripts and events see the chapter “Automation Objects” on
page 364.

Form Ready Event (Step 7)

After all records have been successfully processed the data binding process triggers the ready event on
the $form object. Scripts attached to this event can execute confident in the knowledge that data binding
has successfully concluded and all data has validated.

For more information about events see “Events” on page 379.

XFA Specification

Form Processing 214

Chapter 4, Exchanging Data Between an External Application
and a Basic XFA Form

Remerge and Incremental Merge (Step 8)

It is possible for scripts to modify the Data DOM after a merge operation has already taken place. Deleting
a data object may leave a form object unbound but otherwise does not alter the Form DOM. Inserting a
data object does not in itself alter the Form DOM at all; the newly inserted data object is unbound.
However it may be desired to update the bindings between data and form objects. There are two
approaches to doing this, known as remerge and incremental merge.

Remerge consists of deleting the contents of the Form DOM and performing a complete data binding
operation from beginning to end. This is drastic and may be slow.

Incremental merge consists of applying the data binding process to a subset of the Data DOM and a
subset of the existing Form DOM. In this case, the algorithm, apart from the initial conditions, is almost the
same as for an ordinary merge. Processing starts with a particular pair of nodes, one form node and one
data node, and operates only on the subtrees below those nodes. Within these subtrees, form and data
nodes which are already bound are simply ignored. Otherwise the processing is just as described above for
an ordinary merge. Incremental merge is often used after the Data DOM has been updated, for example
after receiving updated data from a web service.

Form Processing
Form processing is described as part of “Updating the XML Data DOM for Changes Made to the XFA Data
DOM” on page 148.

Data Output
Data output is described in “Unload Processing” on page 149.

 215

5 Representing and Processing Rich Text

This chapter explains how rich text is represented in the DOMs that compose an XFA form. It explains how
rich text is identified, how it is converted into plain text as it is represented in the XFA DOMs and how it is
printed.

About Rich Text
Rich text is text data that uses a subset of HTML and CSS markup conventions to signify formatting such as
bold and underline. Rich text may also include embedded text objects. XFA supports the subset of HTML
and CSS markup conventions described in “Rich Text Reference” on page 1144.

Rich text may appear in data supplied to the XFA form. Rich text may also appear in XFA templates as
boilerplate text, field captions, or default text values.

Prior to XFA 2.4 rich text was limited to languages that presented in the left-to-right, top-to-bottom order
that European languages use. Starting with XFA 2.4 right-to-left top-to-bottom languages such as Hebrew
and Arabic were also supported. This change expanded the set of Unicode character points that are
supported. The set was expanded to include all characters in right-to-left top-to-bottom languages plus
those code points which Unicode assigns to explicitly control flow direction. XFA processors also infer flow
direction from the locale property of the container and from the content of the text. However these added
capabilities are invisible to rich text markup, which is the subject of this chapter. Instead, for more
information about text flow direction see “Flowing Text Within a Container” on page 56.

Rich Text Used for Formatting
Rich text data is formatted as specified by the markup specifications in the rich text. The markup
specifications take precedence over formatting specifications in the containing element, which appear in
the font and para elements.

In general, GUI-based template design applications and XFA processing applications provide formatting
buttons that allow users to apply styling characteristics to text. For example, the UI in such applications
may provide a Bold button the user applies to selected text. In response, the application converts the
entire body of in-focus text into a rich text representation and encapsulates the selected text within a
span element, as shown in the following example.

Example 5.1 Fragment of data containing rich text

<field1>
<body xmlns="http://www.w3.org/1999/xhtml">

<p>The following word
is in bold.</p>

</body>
</field1>

The set of formatting markup supported by XFA processors is discussed in detail in “Rich Text Reference”
on page 1144.

XFA Specification

About Rich Text 216

Chapter 5, Representing and Processing Rich Text

Rich Text That Inserts External Objects
Another use for the rich text idiom is run-time insertion of data into a larger body of text. This can be done
even with text that is nominally boilerplate, such as the content of a draw element. The embedded data is
the content of some object accessible via an XFA-SOM expression. Most commonly it is the content of a
field, but it is not restricted to fields.

If the embedded object contains rich text then the content of the object may be incorporated as rich text.
However it may optionally be reduced to plain text before incorporation.

The embedded object may contain an image. In this case the image flows with the surrounding larger
body of text as though it was a single character. This is discussed in more detail in “Text” on page 52.

For more information about this use of the rich text idiom, see “Rich Text That Contains External Objects”
on page 221.

Rich Text That Contains Hyperlinks
Yet another use of rich text is for hyperlinking. In XFA a hyperlink is a rich text string that has a URL for an
external document associated with it. In an interactive environment the user can click on the text string,
causing an appropriate viewer program to start up and fetch the document. A hyperlink can appear
anywhere that rich text can appear, including in boilerplate, in captions, and in field content.

Note: In HTML and XHTML hyperlinks can also point to places within the current document. XFA does not
yet include grammar to support this functionality.

Fully qualified URLs start with the name of a scheme such as http. The scheme identifies the viewer
program required for the document. It is a function of the operating system to map scheme names to
viewer programs. However it is safe to say that desktop clients generally recognize at least the schemes
http, https, ftp, mailto, and file. Whatever the scheme, it is handled by an invocation of the viewer
in a separate window; the XFA processor continues processing uninterrupted in its own window.

If the hyperlink contains a relative URL (one that is not fully qualified) the relative URL is resolved relative to
the document containing the XFA form. For example, suppose an XFA-aware browser plugin is displaying a
document obtained from http://www.example.com/myforms/example1.pdf. This PDF file
contains an XFA form which in turn contains a hyperlink wit the the relative URL example2.pdf. When
the user clicks on the hyperlink a new browser window opens, displaying the document obtained from
http://www.example.com/myforms/example2.pdf. There is no change of state in the original
browser window which is still displaying example1.pdf.

The presence of hyperlinks in boilerplate or captions can change the tabbing sequence of a form, because
boilerplate and captions are not normally capable of receiving input focus. However each hyperlink within
boilerplate or within a caption is an entity capable of receiving input focus. For more information see
“Traversal: Tabbing Order and Speech Order” on page 493.

Version Identifiers for Rich Text Producers and Rich Text Specifications
Rich text may be produced by a variety of sources and may include a range of XHTML and CSS features, not
all of which are supported in XFA.

Since XFA 2.8 the standard XFA versioning mechanism has also normally been used to determine the
version of the rich text specification that is in use. However it is possible for rich text fragments to be
supplied to an XFA processor as data, and these fragments may use an older specification than that used

XFA Specification

Representation of Rich Text Across XML and XFA DOMs 217

Chapter 5, Representing and Processing Rich Text

by the form itself. In support of such fragments the XFA grammar continues to include version numbers as
optional attributes in the rich text HTML body element. These attributes identify the version of the
application producing the rich text (xfa:APIVersion) and identify the version of the rich text spec to
which the rich text complies (xfa:spec). These attributes are described in “Version Specification” on
page 1168.

Representation of Rich Text Across XML and XFA DOMs

Recognizing Rich Text
One set of rules is used to recognize rich text in the template and another set is used to recognize rich text
in data. The rules for recognizing rich text in data is more relaxed, reflecting the varied origins of data. Rich
text data appears within some element named according to the user's own schema, whereas in the
template it is within an element defined by an XFA schema.

Recognizing Data as Rich Text

For data to be recognized as rich text, at least one of the following criteria must be met:

● Content type. The enclosing element bears a contentType attribute in the namespace
http://www.xfa.org/schema/xfa-data/1.0/ with the value of text/html.

Note: Do not use text/xhtml as the value for contentType; it is not recognized.

● Namespace. The element content belongs to the XHTML 1.0 namespace

Recognizing Rich Text Introduced in the Template

For template text values to be recognized as rich text, all of the following criteria must be met:

● Contained in exData with contentType="text/html". (The default value for contentType is
"text/plain".

● Includes the XHTML namespace

● Rich text contained in <body> or element

Additionally, rich text may include an xfa:APIVersion attribute to indicate the rich text support it
expects. However this is not normally required for rich text in the template since it normally matches the
XFA version of the template.

The XFA subset of rich text has been specified to be forwards-compatible for all correct implementations.
However, it is possible for rich text pasted into XFA forms to use XHTML markup that is not implemented in
XFA. Such markup is silently ignored. However if a later version of XFA expands the supported grammar,
the embedded rich text could suddenly change in appearance. Specifying the rich text version prevents
this from happening. In addition, since XFA 2.8, XFA processors have been required to ignore any XHTML
grammar which is not included in the subset defined for the version of XFA specified by the template.
Hence newer XFA processors will reproduce the behavior expected by the form author.

Unfortunately Adobe’s XFA rich text engine has at times had bugs which sometimes affected the
appearance of rich text. Rich text may have been manually adjusted to compensate for those bugs. To
preserve the exact appearance of such rich text, Adobe products replicate the old (buggy) behavior when
appropriate. This behavior is based upon the originalXFAVersion processing instruction and can be
overriden either by xfa:APIVersion or by Adobe processing flags. For more information see
“Backwards compatibility when processing rich text” on page 1188.

XFA Specification

Representation of Rich Text Across XML and XFA DOMs 218

Chapter 5, Representing and Processing Rich Text

Representing Rich Text in the XFA Data DOM
Rich text does not appear within XFA Data DOM. XFA processors are required to perform some operations
directly upon the rich text (for example rendering it on a display). They do so by accessing the originating
XML DOM. Scripting languages may also make the associated rich text available but they are not required
to.

In the case of the XFA Template DOM, the rich text is simply excluded from the DOM. By contrast in the XFA
Data DOM the rich text is represented by plain unstyled text derived from the rich text. This ensures that
scripting languages can recognize and operate on the data regardless of styling. The relationship between
the XML Data DOM and the XFA Data DOM is discussed at greater length in “XML Data DOM and XFA Data
DOM” on page 85.

Rich text converted into plain text for XFA DOMs

Converting Rich Text into Plain Text

Rich text is converted to plain text in the following manner:

1. Start with a copy of the rich text including all markup.

2. Delete all start and end tags and empty elements (whether they represent supported markup or not).

3. Convert all XML character escapes to their literal form (for example, "<" to "<").

Note: Prior to XFA version 3.0 this specification laid out two more steps, which were as follows.

4. Normalize the white space by replacing all contiguous sequences of white space and/or newline
characters with single spaces.

5. Trim any leading and trailing spaces.

These additional steps are not performed for plain-text fields and were found to be undesirable for
rich-text fields. Adobe XFA processors have never performed the additional steps.

Example 5.2 Rich text converted to plain text

Assume the same rich text as the previous example.

<field1>

XML Template DOM

XFA Template DOM

XFA Form DOM

XML Data DOM

XFA Data DOM

Markup stripped
from rich text

Markup stripped
from rich text

XFA Specification

Representation of Rich Text Across XML and XFA DOMs 219

Chapter 5, Representing and Processing Rich Text

<body xmlns="http://www.w3.org/1999/xhtml">
<p>The following word
is in bold.</p>

</body>
</field1>

When loaded into the Data DOM, the value of the field1 data value is as follows. The symbol ↵
represents a newline character.

↵
The following word↵
is in bold.↵

↵

Properties of XFA Data DOM Objects That Represent Converted Rich Text

When the data loader recognizes rich text, it sets the contentType property of the dataValue node
corresponding to the enclosing element to "text/html". This property tells rich text capable
applications that they should look below the corresponding node of the XML Data DOM for the original
rich text. As mentioned in “About the XFA Data DOM” on page 123, each node in the XFA Data DOM
contains a pointer to the corresponding node in the XML Data DOM. However, XFA-SOM does not provide
access to that pointer, so access from script to the XML Data DOM is application dependent.

For example, the following XML fragment contains rich text. The rich text content is highlighted.

Example 5.3 Rich text data containing styling

<message>
 <p xmlns="http://www.w3.org/1999/xhtml">
 You owe $25.00. Please pay up!
 </p>
</message>

After loading, the above fragment is represented in the XFA Data DOM as follows.

[dataValue message = "You owe $25.00. Please pay up!"
 contentType="text/html"]

In addition to the above constraints, when specified via a contentType attribute on the enclosing
element, the rich text content must have a single outer element. Only white space is allowed within the
region of rich text content and outside the outer element.

The data loader may emit a warning message when it encounters a construct that violates the above rule.
How the application subsequently processes the affected content is implementation defined.

The content in the following example is illegal because the rich text is not enclosed within a single outer
element.

Example 5.4 Illegal rich-text data with no outer element

<message xmlns:xfa="http://www.xfa.org/schema/xfa-data/1.0/"
xfa:contentType="text/html">
You owe $25.00. Please pay up!

</message>

In the example, the message element is not part of the rich text because the contentType attribute
applies to the content of the declaring element but not to the element itself. Hence, the rich text does not

XFA Specification

Representation of Rich Text Across XML and XFA DOMs 220

Chapter 5, Representing and Processing Rich Text

include an enclosing element. However, it would not be a good idea to declare that the message element
was part of the rich text, because HTML markup does not include a message element. Rather, the above
example of illegal content could be made legal by wrapping the text in a span element as follows.

Example 5.5 Previous example corrected

<message xmlns:xfa="http://www.xfa.org/schema/xfa-data/1.0/"
 xfa:contentType="text/html">
 You owe $25.00. Please pay up!
</message>

Properties of XFA Template DOM Objects That Represent Converted Rich Text

The template loader creates a node in the XFA Template DOM for the exData object. The node has
nothing below it nor does it not have a value property. The exData object has a pointer into the XML
(not XFA) Template DOM, which allows the XFA processing application to read the original rich text. Each
node in the XFA Template DOM contains a pointer to the corresponding node in the XML Template DOM.
However, XFA-SOM does not provide access to that pointer, so any access from scripts to the XML Template
DOM is application dependent.

The following examples present several template expressions related to rich text.

Example 5.6 A draw element that includes rich text

<draw … >
<ui/>
<value>

<exData contentType="text/html" maxLength="0">
<body xmlns="http://www.w3.org/1999/xhtml"

xmlns:xfa="http://www.xfa.org/schema/xfa-data/1.0/"
xfa:APIVersion="1.4.4136.0"><p>The Title of my
Document</p>

</body>
</exData>

</value>
</draw>

Example 5.7 A field caption that includes rich text

<field … >
…
<caption reserve="18.26mm">

<value>
<exData contentType="text/html" maxLength="0">

<body xmlns="http://www.w3.org/1999/xhtml"
xmlns:xfa="http://www.xfa.org/schema/xfa-data/1.0/"
xfa:APIVersion="1.4.4136.0">
<p>Text
Field</p>

</body>
</exData>

</value>
</caption>

</field>

XFA Specification

Rich Text That Contains External Objects 221

Chapter 5, Representing and Processing Rich Text

Example 5.8 A field that accepts rich text as a data value

<field … >
<ui>

<textEdit allowRichText="1">
<border/>
<margin/>

</textEdit>
</ui>
<value>

<exData contentType="text/html" maxLength="0">
<body xmlns="http://www.w3.org/1999/xhtml"

xmlns:xfa="http://www.xfa.org/schema/xfa-data/1.0/"
xfa:APIVersion="1.4.4136.0"><p>A default data
Value</p>

</body>
</exData>

</value>
…

</field>

Providing Rich Text Data Through a User Interface
The XFA template may indicate whether the user interface can accept rich text as the value for text. This
indication is supplied with the allowRichText attribute in the textEdit element. If the textEdit
element allows rich text, the user may specify styled text, usually through styling buttons. If the textEdit
element prohibits rich text, rich text may not be provided for the value.

Updating the XML Data DOM
Rich text supplied by the XML Data DOM may be replaced by
plain text when the XML Data DOM is updated. Such replacement
can happen in the following situations:

● Rich text is not supported by the XFA processing application
or the platform upon which it is running. For example, the
platform is a cell phone with text entry via the keypad.

● User is not allowed to supply rich text, as indicated by the
allowRichText property. For example, the content of the
field is a name (which cannot usefully be styled) but the
default value for the field is, in italics, the words “Not supplied”.

● Text data provided by a calculation.

Rich Text That Contains External Objects
Rich text may contained attributes that reference external plain-text or rich-text objects. Such external
references are resolved during the layout process. The referenced data is inserted at the point where the
external reference appears and is formatted according to any relevant format picture clauses as described
“Dataflow Paths for Localizing and Canonicalizing Data” on page 159. XFA provides span attributes that
specify the type of reference and whether HTML or CSS specifications in the imported rich text should be
retained, as described in “Embedded Object Specifications” on page 1168.

XFA Form DOM

In data update,
plain text replaces rich text.

XML Data DOM

XFA Data DOM

XFA Specification

Displaying and Printing Rich Text 222

Chapter 5, Representing and Processing Rich Text

The bold expressions in the following XFA segment is an example of an embedded object. This example
uses a Script Object Model (SOM) expression to reference the contents of the field named
"AMOUNT_OWING". Such SOM expressions are later described in “Scripting Object Model” on page 86.

Example 5.9 Rich text containing an embedded object

<subform>
<field name="NOTICE">

<ui> … </ui>
<value>

<exData contentType="text/html">
<html xmlns="http://www.w3.org/1999/xhtml"

xmlns:xfa="http://www.xfa.org/schema/xfa-data/1.0/">
<p>You owe us

<span xfa:embed="AMOUNT_OWING"
xfa:embedMode="formatted"/>! Please

pay before the end of the month.
</p>

</html>
</exData>

</value>
</field>
…
<field name="AMOUNT_OWING" presence="hidden">

<format>
<picture>s$zz,zz9.99</picture>

</format>
</field>
…

</subform>

In the example the default content of the NOTICE field is rich text which contains an embedded reference
to the hidden AMOUNT_OWING field. Assuming that the value in the AMOUNT_OWING field is 52981.89, the
NOTICE field is rendered as shown below.

You owe us $52,981.89! Please pay before the end of the month.

Displaying and Printing Rich Text
When rich text is printed or displayed it may be impossible to make it look exactly as the rich text markup
commands. For example, the specified typeface may not be available on the printer that is being used. The
renderer makes a best effort to present the rich text as closely as possible to what the markup demands.
The heuristics it uses are application-dependent, however completeness (displaying all the text) always
takes precedence over appearance.

Note that the layout stage of processing necessarily assumes that the required typeface is available in the
required style and size. The renderer may discover that the required typeface is not available, but the
layout has already been done. Therefore when the renderer is forced to use a different typeface, or even a
different type size, the rendered text may have an unattractive appearance. For example, glyphs may
overlap.

XFA Specification

Using Rich Text 223

Chapter 5, Representing and Processing Rich Text

Using Rich Text

Rich Text Grammar
The rich text grammar supported by XFA is defined in “Rich Text Reference” on page 1144.

Inheritance of Rich Text Properties
Within an XFA DOM rich text is always contained by a field or a draw object. Fields and draws act as
containers, applying constraints to their contents. Rich text has a number of formatting variables that take
their initial values from properties of the containing field or draw. These are shown in the following table.

Property Subproperty Supplies default for

para hAlign text-align

para lineHeight line-height

para marginLeft margin-left

para marginRight margin-right

para orphans orphans

para radixOffset N/A

para spaceAbove margin-top

para spaceBelow margin-bottom

para tabDefault tab-interval

para tabStops tab-stops
xfa-tab-stops

para textIndent text-indent

para vAlign vertical-align or text-valign,
provided the value for
vertical-align or text-valign is
one of top, middle or
bottom

para widows widows

font baselineShift vertical-align

font fontHorizontalScale xfa-font-horizontal-scale

font fontVerticalScale xfa-font-vertical-scale

font kerningMode kerning-mode

font letterSpacing letter-spacing

font lineThrough text-decoration

font lineThroughPeriod text-decoration

XFA Specification

Using Rich Text 224

Chapter 5, Representing and Processing Rich Text

font overline N/A

font overlinePeriod N/A

font posture font-style

font size font-size

font typeface font-family

font underline text-decoration

font underlinePeriod text-decoration

font weight font-weight

Property Subproperty Supplies default for

 225

6 Template Features for Designing Forms with
Repeating Sections

Often forms have sections that are very similar or identical to other sections. For example, a form may
accommodate multiple records of data. For the sake of convenience and compactness XFA provides
facilities to support reuse of sections within the form.

There are two types of reuse supported in XFA. Prototypes allow for a declaration to be incorporated by
reference at different places in the template. The prototyping mechanism allows properties and children
of the prototype to be overridden by each instance, so it can be used for components that are similar but
not exactly the same. The mechanism for prototypes is described below. By contrast the repetition
mechanism for subforms causes the subform and its content (including fields) to be replicated exactly. In
this case only the contents of fields can vary between instances. The mechanism for exact repetition is
described in “Forms with Repeated Fields or Subforms” on page 234.

Prototypes
A form typically contains a great number of duplicated or similar objects; the same fonts, colors, borders,
etc. are used repeatedly throughout the form. Often, there are objects such as lines, rectangles, and even
whole field and draw objects repeated.

This presents an opportunity to significantly reduce the file size of a form template, by factoring out the
common aspects of the form into prototypical objects. As an additional benefit, the form designer may
easily apply sweeping change to the form template by making changes to a prototypical object and any
objects that are based upon that object will receive the changes.

Note: Prototype references are resolved when and only when the Template DOM is being loaded. Any
subsequent alteration of a prototype or of a prototype reference has no effect. In particular, scripts
never execute early enough to have any effect on prototype resolution.

Defining Prototypes
An element located anywhere in the template or in an external template can be used as a prototype.
However it is often convenient to enclose an element in a proto element to indicate that it is included in
the template purely for use as a prototype. Almost any XFA template element can be enclosed within a
proto element. When enclosed this way the enclosed element plays no part in the form except when it is
referenced by a use or usehref attribute on some other element. For example, the following fragment
defines a prototype for a field element.

Example 6.1 Defining a prototype using the proto element

<proto>
<field id="LastNameProto"

name="LastName"
anchorType="middleLeft">
<ui>

<textEdit multiLine="0"/>
</ui>

</field>
</proto>

XFA Specification
Chapter 6, Template Features for Designing Forms with Repeating Sections Prototypes 226

Even if the field is fully specified, it will never be directly visible or accessible to a form filling user, nor will it
participate directly in data binding.

The proto element itself can appear as a child of only the subform element. This isn't an undue
restriction, as every element in the template is a descendant of some subform, except for the root-level
subform elements and their enclosing template element.

The subform may hold more than one proto element for multiple prototypes, or the prototypes may be
grouped in a single such element. The following two examples are equivalent.

Example 6.2 Subform using a separate proto element for each prototype

<subform>
<proto>

<color id="RED" value="255,0,0"/>
</proto>
<proto>

<color id="GREEN" value="0,255,0"/>
</proto>

…
</subform>

Example 6.3 Subform grouping prototypes inside a single proto element

<subform>
<proto>

<color id="RED" value="255,0,0"/>
<color id="GREEN" value="0,255,0"/>

</proto>
…
</subform>

Almost any template element can be a prototype. Notable exceptions include the proto and template
elements.

Referencing Prototypes
An element can refer to a prototype through either its (the referencing element’s) use or usehref
attribute. These two attributes have similar effects but usehref is more flexible. The use attribute can
only refer to an internal prototype - a prototype in the same template. By contrast usehref can also refer
to an external prototype - a prototype in an external document. Any particular element can employ only
one prototype. If both use and usehref are present and non-empty usehref is employed.

The use attribute, if it is non-empty, holds a reference to the prototype to be used. The form of the
reference can be either of

● #ID

● expression

where ID is an XML ID string and expression is a SOM expression.

For a successful reference to occur, the reference must refer to a single element that is located in the
template packet of the document and is of the same type as the referencing element.

XFA Specification
Chapter 6, Template Features for Designing Forms with Repeating Sections Prototypes 227

Example 6.4 Declaration and invocation of a simple prototype.

<proto>
<font id="HELV-RED"

typeface="Helvetica"
size="10pt"
weight="normal"
posture="normal"
>
<fill>

<color value="255,0,0"/>
</fill>

</proto>
<field …>

…

</field>

This defines a field whose font is red 10pt Helvetica regular. Note that several fields would likely reference
this font prototype, thereby reducing file size and allowing for global format changes.

The usehref attribute, when it is non-empty, holds a reference to a prototype which may be located in an
external document. Although its function closely parallels the use attribute its syntax is different. The form
of the reference in a usehref attribute can be any of

● #ID

● URI#ID

● #som(expression)

● URI#som(expression)

● URI

where URI is the Universal Resource Identifier for an external document, ID is the XML ID of the prototype,
and expression is a SOM expression resolving to the prototype. When a URI is not supplied the prototype is
in the referencing document. Again the reference must be in the template section of whatever document
is referenced and must resolve to a single element of the same type as the referencing element.

Note: Versions of this specification prior to XFA 2.6 showed "." used as the URI to refer to the current
document. In fact the recommended practice is to refer to the current document by omitting the
URI entirely.

When a SOM expression is provided it is resolved in the context of the root XFA node, xfa. In practice the
SOM expression is usually fully-qualified.

When neither an XML ID nor a SOM expression is provided the expression
#som($template.#subform.#subform) is assumed. In other words the default place to look is the
first subform child of the root subform in the external document’s template packet.

Prototypes may reference other prototypes. In addition, descendant elements of a prototype may
reference prototypes. For example, in the following template fragment a field invokes a font prototype
called HELV-RED, which in turn invokes another font prototype called HELV. The relationship is similar to

XFA Specification
Chapter 6, Template Features for Designing Forms with Repeating Sections Prototypes 228

a superclass-subclass relationship in an object-oriented language. HELV-RED also invokes a color
prototype called RED. This achieves the same result as the previous example.

Example 6.5 Nested prototype invocations.

<proto>
<color id="RED" value="255,0,0"/>
<font id="HELV"

typeface="helvetica"
size="10pt"
weight="regular"
posture="upright"
>

<fill>
<color use="#RED"/>

</fill>

</proto>
<field …>

…

</field>

Caution: It is permissible for internal prototypes to reference external prototypes and vice versa. However
when an external prototype references an internal prototype the internal prototype is resolved
within the context of the source document, that is to say the original template. For example, in
the following example a template in the file mytemp.xdp invokes an external prototype
ClientSubform in myprot.xdp. This prototype in turn tries to make use of an internal
prototype ClientNameField within myprot.xdp. This reference fails to resolve because the
XFA processor tries to resolve it in mytemplate.xdp.

Example 6.6 Incorrect application of the use attribute within an external prototype.

Fragment from mytemplate.xdp
<subform name="root">

<subform usehref="myprot.xdp#ClientSubform"/>
</subform>

Fragment from myprot.xdp (incorrect)
<proto>

<subform name="Client" id="ClientSubform"…>
<field use="ClientNameField" …/>

</subform>
<field name="ClientName" id="ClientNameField" …/>

</proto>

The solution is to employ usehref instead of use in myprot.xdp, as follows.

Example 6.7 Corrected external prototype using the usehref attribute.

Fragment from myprot.xdp (corrected)
<proto>

XFA Specification
Chapter 6, Template Features for Designing Forms with Repeating Sections Prototypes 229

<subform name="Client" id="ClientSubform"…>
<field usehref="myprot.xdp#ClientNameField" …/>

</subform>
<field name="ClientName" id="ClientNameField" …/>

</proto>

It is possible for a template to improperly specify an endless loop of prototype references. For example, in
the following template fragment a prototype’s child invokes its own parent as a prototype.

Example 6.8 An endless prototyping loop

<proto>
<subform name="Client" id="ClientSubform"…>

<subform name="ClientName" use="#ClientSubform"…/>
</subform>

</proto>

It is the responsibility of the form creator to ensure that there are no endless prototyping loops.

Overriding Prototype Properties
An element that references a prototype is said to inherit all of the attributes, data content and child
elements of that prototype. When an element references a prototype, it has the option of overriding what
gets inherited. The general rule for inheritance is that a referencing object inherits the following:

● All attributes of the prototype, except the following:

❚ The id attribute

❚ The name attribute

❚ The use attribute

❚ Any attributes specifically overridden in the referencing element

● The data content of the prototype, unless specifically overridden

● All child elements of the prototype, unless specifically overridden

Where the referencing element does not explicitly provide values for attributes, child elements, and data
content and no such values are inherited from the referenced prototype, application defaults shall apply.
The term absolute omission describes such an absence of content.

Overriding Attributes

Any attribute present in an element overrides that attribute from the prototype. For example, the
following template fragment defines two draw elements whose fonts both reference the 10pt Helvetica
prototype. However, the second one overrides the font size with a size of 14pt, and so, it will draw with a
font of 14pt Helvetica. In the first draw element's font, the font size was omitted, so it is inherited from the
prototype.

Example 6.9 Overriding an attribute

<proto>
<font id="HELV-RED"

typeface="Helvetica"
size="10pt"
weight="normal"

XFA Specification
Chapter 6, Template Features for Designing Forms with Repeating Sections Prototypes 230

posture="normal">
<fill>

<color value="255,0,0"/>
</fill>

</proto>
<draw …>

<value>

<text>Helvetica 10pt</text>
</value>

</draw>
<draw …>

<value>

<text>Helvetica 14pt</text>
</value>

</draw>

As implied in the previous paragraph, an attribute is considered to be omitted only if it was not explicitly
specified with a value on an element. An attribute that is explicitly specified on an element with the value
of an empty string is not considered to be omitted; as should be obvious, the attribute is specified as
having the value of an empty string, which usually signifies the default.

Overriding Data Content

The presence of data content in a referencing element overrides data content from the prototype. For
example, in the following template fragment the text value of the field will be “Overriding text”.

Example 6.10 Overriding content

<proto>
<text id="TEXT">default TEXT</text>

</proto>
<field …>

<value>
<text use="#TEXT">Overriding text</text>

</value>
</field>

Note: It is not possible to override prototype data content with empty data content.

Overriding Child Elements

When both the referencing element and the prototype contain child elements, those child elements are
matched first by type and then by ordinal number within type. If the prototype has a child element of a
particular type and the referencing element does not, the referencing element inherits the child from the
prototype. When the child is present in both, the prototype's child acts as a prototype for the referencing
element's child. In other words, the referencing element's child will inherit attributes and grandchild
elements from the prototype's child, as long as it doesn't override them. The following example has a field
that inherits from a prototype field element.

Example 6.11 Overriding child elements

<proto>

XFA Specification
Chapter 6, Template Features for Designing Forms with Repeating Sections Prototypes 231

<field id="DEFAULT-FIELD">

<fill>
<color value="255,0,0"/>

</fill>

<value>

<text>xxx</text>
</value>

</field>
</proto>
<field use="#DEFAULT-FIELD" name="num" x="1in" y="1in" w="1in" h="14pt">

<border>
<edge thickness="1pt"/>

</border>

</field>

It's interesting to examine the treatment of four child elements:

● The child ui element is omitted from both the referencing field element and the prototype. The
application default applies.

● The child border element is present in the referencing field element, but omitted from the
prototype. The referencing field's border element applies, along with its child edge element.
Application defaults are invoked for any omitted border attributes.

● The child value element is omitted from the referencing field element, but present in the
prototype. The referencing field element inherits the prototype's value element and its child text
element.

● The child font element is present in both the referencing field and the prototype. The referencing
field's child font element inherits from the prototype's child font element.

The last case is of special interest. Because a child font element is present in the both the prototype and
the referencing field element, we can recursively view the prototype's font element as being a
prototype for the referencing field's font element. In consequence the referencing field will have a font
using the Times typeface, 12 points high, bold, and colored red.

When an element can have repeating child elements, overrides are matched by ordinal number. For
example, consider the following prototype border element with two edge children.

Example 6.12 Overriding children by ordinal number

<proto>
<border id="DEFAULT-BORDER">

<edge thickness="2pt"/>
<edge thickness="1pt"/>

</border>
</proto>
<field …>

<border use="#DEFAULT-BORDER">
<edge thickness="3pt"/>

</border>
…

</field>

XFA Specification
Chapter 6, Template Features for Designing Forms with Repeating Sections Prototypes 232

The two edge children of the prototype border are taken as the top/bottom and left/right edges. Using
the prototype without any overrides would therefore result in 2-point edges along the top and bottom
borders, and 1-point edges along the left and right. The prototype reference, however, overrides the first
edge element. So, the result would be 3-point edges along the top and bottom of the border and 1-point
edges at the left and right.

Resolving Prototypes with Traversals
The above description of prototype resolution is sufficient for most purposes. However it is not sufficient
when the prototype contains traversal declarations. XFA 2.8 added this section to ensure correct
interoperability in this case.

Traversal declarations tell the XFA processor how to advance the focus from field to field. There are seven
different traversal operations from each field: next, back, up, down, left, right, and first. So for
example a GUI might traverse to the next field in response to the TAB key, traverse to the back field in
response to the SHIFT/TAB key combination, to the up field in response to the up-arrow key, and so on. The
GUI might also traverse to the next field in response to the field being filled, if it is a fixed-size field. Scripts
can also move the focus and may use the traversal declarations to guide them.

In the absence of a traversal declaration for a particular operation the traversal target for the operation is
determined geographically. For example the up operation goes to the nearest field above the current field,
the down operation goes to the nearest field below the current field, the next field goes to the nearest
field to the right of the current field or if there is none wraps to the leftmost field below the current field,
and so on.

For more detailed information about traversals and how to use them, see “Traversal: Tabbing Order and
Speech Order” on page 493.

We would like to have predictable traversals across a fragment expressed as a prototype, even though the
creator of the template incorporating the fragment has no knowledge of the interal structure of the
fragment. The key requirements to achieve this are the fragment specify its own internal traversal order in
a self-contained way, and that the template referencing the fragment specify the traversal order across the
fragment. If these requirements are met the XFA processor can knit together the traversal lists.

Example 6.13 Managing traversals across prototyped fragments

To do this consistently the referencing template must supply a traverse element declaring the target for
the next operation. This points to another field in the referencing template. For example,

<subform name="Main" …>
<subform usehref="./Fragment1.xdp#som($template.form1.Fragment1)" …>

<traversal>
<traverse operation="next" ref="Field2" />

</traversal>
</subform>
<field name="Field2"…/>

</subform>

Meanwhile the fragment supplies a traverse element declaring the target for the first operation. This
is normally used on a subform to supply a target for focus upon entry to the subform. For example,

<subform name="Fragment1" …>
<traversal>

<traverse operation="first" ref="Field1" />
</traversal>

XFA Specification
Chapter 6, Template Features for Designing Forms with Repeating Sections Prototypes 233

<field name="Field1"…/>
</subform>

When the prototype is resolved the two traverse elements are treated as non-equivalent entities. Instead of
one overriding the other they are both incorporated into the Template DOM. The result is as follows:

[subform (Main)]
[subform (Fragment1)]

[traversal]
[traverse operation="next" ref="Field2"]
[traverse operation="first" ref="Field1"]

[field (Field1)]
[field (Field2)]

This behavior is in keeping with the SOM change in XFA 2.8 that made traverse elements nameable by
the operation property (see “Explicitly Named Objects” on page 93). Since XFA 2.8 the two traverse
objects have been regarded as having different names, hence they are not equivalent. Thus the above
example could equally well be shown as follows.

[subform (Main)]
[subform (Fragment1)]

[traversal]
[traverse (next) ref="Field2"]
[traverse (first) ref="Field1"]

[field (Field1)]
[field (Field2)]

One more change was required to make traversals cross fragments properly. Since XFA 2.8 the XFA
processor has implemented inheritance for the next traversal. This was required because the last field in
the fragment may be buried in a nested subform. So, if the current field lacks an explicit next target and
the next geographic target does not share the same parent, the processor checks for an explicit next
target on the enclosing container. If there is no explicit next target there it checks the container enclosing
that one, and so on. It falls back on advancing geographically only when there is no ancestor with an
explicit next target.

Note: Adobe products implement a compatibility flag which causes them to revert to the pre-2.8 traversal
processing, without inheritance. See “The v2.7-traversalOrder flag” on page 1209.

XFA Specification
Chapter 6, Template Features for Designing Forms with Repeating Sections Forms with Repeated Fields or Subforms 234

Forms with Repeated Fields or Subforms
Static non-XFAF forms (also known as old-style static forms) may
have fields and/or subforms that repeat, that is, they may have
multiple fields or subforms with the same name. This is used for
lists of data. For example, consider the membership list form
which is printed as a blank (the result of an empty merge), at
right. To make subsequent illustrations easier the form has been
cut down to a bare minimum, nevertheless it illustrates the
principles.

The number of members varies from one year to the next, but
the form has a fixed number of places for members' names. (In
this example the list is reduced to three to reduce the DOM sizes,
but it could be any number.) In addition there is a date field.
When some data is merged with the form and the result is
printed, the result is shown at left.

As shown (left), this
year the club has only two members. The complete data
document follows.

Example 6.14 Membership data for the garden club

<?xml version="1.0"?>
<Members>
<Date>01/01/04</Date>
<Member>

<First>John</First>
<Last>Brown</Last>

</Member>
<Member>

<First>Betty</First>
<Last>White</Last>

</Member>
</Members>

Anytown Garden Club
2023 Anytown Road
Anytown, USA

Membership List

Date

Empty Static Form as Printed

Anytown Garden Club
2023 Anytown Road
Anytown, USA

Membership List

Date 01/01/04

John Brown

Betty White

Filled Static Form as Printed

XFA Specification
Chapter 6, Template Features for Designing Forms with Repeating Sections Forms with Repeated Fields or Subforms 235

When this data is loaded into the Data DOM, the Data DOM has the
structure shown at left. The two Member data groups can be individually
referenced in SOM expressions as Member[0] and Member[1]. They are
stored in the Data DOM in the same order that they occur in the data
document. (“Scripting Object Model” on page 86)

Repeated Subform Declarations
A static template can express repeated subforms in two ways. The simpler way, conceptually, is repeated
declarations within the template packet. For example, the template for the garden club membership
roster could be expressed as follows.

Example 6.15 Membership roster template using repeated subform declarations

<template …>
…
<subform name="Members" …>

<field name="Date" …>…</field>
<subform name="Member" …>

<field name="First" …>…</field>
<field name="Last" …>…</field>

</subform>
<subform name="Member" …>

<field name="First" …>…</field>
<field name="Last" …>…</field>

</subform>
<subform name="Member" …>

<field name="First" …>…</field>
<field name="Last" …>…</field>

</subform>
</subform>

</template>

Note that the template has three Member subforms and therefore has room for at most three lines of
member information. If the data contains more than three Member data groups, only the first three will be

Members

Member[0]

First

“John”
Last

“Brown”

Member[1]

First

“Betty”
Last

“White”

Data DOM

Date

“01/01/04”

Data DOM after loading
data with repeated

Member data group

XFA Specification
Chapter 6, Template Features for Designing Forms with Repeating Sections Forms with Repeated Fields or Subforms 236

bound into the form. Additional data groups will be loaded into the Data DOM but, because they are not
bound, will not normally be processed. It is up to the application supplying the data to subdivide the data
into separate documents of the appropriate size. This is an inherent limit of static forms.

The figure at right shows the Template DOM after the above
template has been loaded.

When the template contains identically-named sibling subforms,
there are three rules that control which data items are bound to
which subforms. First, subforms are copied to the Form DOM and
processed in the same order that they occur in the template. Thus
The data binding process copies and seeks a match for Member[0]
first, then Member[1], then Member[2]. Second, with one minor
exception, each data node is only allowed to bind to a single form
node. The exception is discussed below under “Record Mode” on
page 243. Third, when searching for a match among
identically-named sibling data nodes, the siblings are searched in
data document order. The result of these three rules is that
matching template and data node pairs are bound in sequence
starting with the first of each in document order, as one would
intuitively expect. In one possible implementation the data binding
process traverses the Template DOM in document order. As it
encounters nodes in the Template DOM it copies them into the
Form DOM. After adding each node to the Form DOM it seeks a
match in the Data DOM, excluding data nodes that are already
bound and giving priority to data nodes that are earlier in
document order. As described in “Form Objects with Non-Unique
Names” on page 185 it seeks a direct match first, then any ancestor
match, then any sibling match. When it finds a match it binds the
data node to the form node. Then it moves on to the next template
node in document order.

Members

Member[0]

First

Last

Member[1]

First

Last

Member[2]

First

Last

Template DOM

Date

Template DOM after loading
template with repeated

Member subform

XFA Specification
Chapter 6, Template Features for Designing Forms with Repeating Sections Forms with Repeated Fields or Subforms 237

The following figure shows the DOMs for the membership form after data binding.

Result of binding repeated data groups to repeated subforms

When the given data and template are bound, the resulting Form DOM contains three Member subforms
but only the first two are bound to data groups. The data values within those groups are bound to
same-named fields of the appropriate subform. Thus the first data value called First (with the value
“John”) is bound to the First field under subform Member[0], the second First (with the value
“Betty”) is bound the First field under subform Member[1], and so on. The order of same-named data
elements is significant, and the grouping of elements within container elements (data groups) is
significant. However, the order in which differently-named sibling data values are placed in the data makes
no difference. For example, the same bindings would have been produced if the data document had
First and Last interchanged within one or more Member data groups, as follows.

Example 6.16 Membership data rearranged without affecting the presentation

<?xml version="1.0"?>
<Members>

<Date>01/01/04</Date>
<Member>

<First>John</First>
<Last>Brown</Last>

</Member>
<Member>

<Last>White</Last>
<First>Betty</First>

Members

Member[0]

First

“John”
Last

“Brown”

Member[1]

First

“Betty”
Last

“White”

Member[2]

First

Last

Members

Member[0]

First

“John”
Last

“Brown”

Member[1]

First

“Betty”
Last

“White”

Members

Member[0]

First

Last

Member[1]

First

Last

Member[2]

First

Last

Template DOM Data DOMForm DOM

Date
Date

“01/01/04”

Date

“01/01/04”

XFA Specification
Chapter 6, Template Features for Designing Forms with Repeating Sections Forms with Repeated Fields or Subforms 238

</Member>
</Members>

With the data shown above, the Form DOM contains three Member subforms as before. However within
the second Member subform the Last field (containing "White") precedes the First field (containing
"Betty"), just as it does in the data.

In addition, if a data value is missing the binding of the other data values is not affected. Suppose that the
First data value ("John") had been missing from the first Member data group, as follows.

Example 6.17 Membership data missing a field without affecting the presentation

<?xml version="1.0"?>
<Members>

<Date>01/01/04</Date>
<Member>

<Last>Brown</Last>
</Member>
<Member>

<First>Betty</First>
<Last>White</Last>

</Member>
</Members>

After the bind operation the First field under the subform Member[0] would have been left unbound,
and set to its default value. The First field under Member[1], however, would have been bound as
before to the First data value containing "Betty". The Member data groups act as containers for the set
of related data values, so that the contained data elements are grouped as intended.

Another way to construct a static form is to place repeated field declarations within a single subform.
When the template is constructed this way the data must have corresponding multiple data values with
the same name within a single data group. The data binding process binds data values to fields in the
same order that they are encountered in the data. This binding order results from hierarchy of matching
priorities described above in ““Form Objects with Non-Unique Names” on page 185”. For example, in the
following template the member detail fields have been placed together in the Members subform.

XFA Specification
Chapter 6, Template Features for Designing Forms with Repeating Sections Forms with Repeated Fields or Subforms 239

Example 6.18 Repeated fields within a subform

<template …>
…
<subform name="Members" …>

<field name="Date" …>…</field>
<field name="First" …>…</field>
<field name="Last" …>…</field>
<field name="First" …>…</field>
<field name="Last" …>…</field>
<field name="First" …>…</field>
<field name="Last" …>…</field>

</subform>
</template>

When this is loaded into the Template DOM, the result is as shown at
right.

Members

First[0]

Last[0]

First[1]

Last[1]

First[2]

Last[2]

Template DOM

Date

Template DOM with repeated
fields within the same subform

XFA Specification
Chapter 6, Template Features for Designing Forms with Repeating Sections Forms with Repeated Fields or Subforms 240

Similarly, the data has the corresponding data values directly under the
Members data group, as shown at right.

Example 6.19 Membership data flattened.

<?xml version="1.0"?>
<Members>

<Date>01/01/04</Date>
<First>John</First>
<Last>Brown</Last>
<First>Betty</First>
<Last>White</Last>

</Members>

When the Template DOM is merged with the data, the rules of
precedence cause field $form.Members.First[0] to bind to data
node $data.Members.First[0], but field
$form.Members.First[1] to bind to data node
$data.Members.First[1]. Similarly each Last field binds to its
corresponding Last data node, which is the desired behavior. The
result is shown in the figure below.

(

Result of binding repeated data values to repeated fields

Data DOM with repeated
data values within the same

data group

Members

Data DOM

Date

“01/01/04”

First[0]

“John”

Last[0]

“Brown”

Date

“01/01/04”

First[1]

“Betty”

Last[1]

“White”

Members

First[0]

Last[0]

First[1]

Last[1]

First[2]

Last[2]

Template DOM

Date

Members

Data DOM

First[0]

“John”

Last[0]

“Brown”

Date

“01/01/04”

First[1]

“Betty”

Last[1]

“White”

Members

First[0]

“John”

Last[0]

“Brown”

First[1]

“Betty”

Last[1]

“White”

First[2]

Last[2]

Date

“01/01/04”

Form DOM

XFA Specification
Chapter 6, Template Features for Designing Forms with Repeating Sections Forms with Repeated Fields or Subforms 241

When printed or displayed, the result is the same as the previous example (“Filled Static Form as Printed”
on page 234). However this method of constructing the form has an important drawback. It cannot deal
with missing data.

Example 6.20 Flattened membership data with a missing item

Suppose that John Brown’s first name is omitted from the data, similar to the example “Membership data
missing a field without affecting the presentation” on page 238. In this case the example data is as follows.

<?xml version="1.0"?>
<Members>

<Date>01/01/04</Date>
<Last>Brown</Last>
<First>Betty</First>
<Last>White</Last>

</Members>

In this case, when data binding takes place, the data value
named First (containing “Betty”) is bound not to
$data.Members.First[1] but to
$data.Members.First[0]. The result is that the
membership list is printed as “Betty Brown” followed by a
member with no first name and a last name of “White”, as
shown at right.

This result comes about because when the data is not grouped
there is not enough information for the data binding algorithm
to resolve ambiguity. There are two approaches to fixing this
problem; either change the data document or use the data
regrouping facility in the data loader. The data regrouping
facility uses additional information supplied in the configuration
to parse a flat sequence of data values and transform it inside
the Data DOM into a series of data groups containing data
values. See “The groupParent Element” on page 508.

Fixed Occurrence Numbers
A more concise way to represent static forms of this type is available. Subforms have an occur property,
which in turn has max, min, and initial sub-properties. By default these sub-properties are all 1
meaning that each subform occurs exactly once. However if they are all set to some other value N then the
meaning is that the subform occurs N times. This makes it unnecessary to repeat the subform declaration
N times in the template. Thus the membership list example template can be expressed more concisely as
follows.

Example 6.21 Using fixed occurrence numbers

<template …>
…
<subform name="Members" …>

<field name="Date" …>…</field>
<subform name="Member" …>

<occur min="3" max="3" initial="3"/>
<field name="First" …>…</field>
<field name="Last" …>…</field>

Anytown Garden Club
2023 Anytown Road
Anytown, USA

Membership List

Date 01/01/04

BrownBetty

White

Undesirable result when data is
missing and data is not grouped

XFA Specification
Chapter 6, Template Features for Designing Forms with Repeating Sections Forms with Repeated Fields or Subforms 242

</subform>
</subform>

</template>

This is fully equivalent to the earlier representation using three repetitions of the Member subform
declaration. The Form DOM that results from the data binding operation has the exact same structure
except that multiple subforms in the Form DOM share the same prototype in the Template DOM, as shown
in the following figure.

Result of binding repeated data groups to a multiply-occurring subform

As it happens, if the max attribute is not supplied then the max property defaults to the value of min.
Therefore the above template can be expressed still more compactly as follows.

Example 6.22 Using a default max attribute with fixed occurrence numbers

<template …>
…
<subform name="Members" …>

<field name="Date" …>…</field>
<subform name="Member" …>

Members

Member[0]

First

“John”
Last

“Brown”

Member[1]

First

“Betty”
Last

“White”

Member[2]

First

Last

Members

Member[0]

First

“John”
Last

“Brown”

Member[1]

First

“Betty”
Last

“White”

Members

Member

occur.min = “3”
occur.max = “3”

First

Last

Template DOM Data DOMForm DOM

Date
Date

“01/01/04”

Date

“01/01/04”

XFA Specification
Chapter 6, Template Features for Designing Forms with Repeating Sections Forms with Repeated Fields or Subforms 243

<occur min="3" initial="3"/>
<field name="First" …>…</field>
<field name="Last" …>…</field>

</subform>
</subform>

</template>

Nested subforms and subform sets can have multiple occurrences at each level of nesting. The result is to
compound the occurrences. For example, suppose a template has a subform Member which is set to occur
three times, and Member contains a subform Name which is set to occur twice. This is exactly equivalent to
a template containing three subforms called Member, each of which contains two subforms called Name.

Note that fields do not have occur properties, hence can not automatically repeat. It is common to wrap a
field in a subform simply to provide a way to associate an occur property indirectly with the field. In such
cases it may be convenient to leave the subform nameless so it does not alter the SOM expression used to
refer to the field in scripts. Alternatively, setting its scope property to none causes it to appear in SOM
expressions but to be transparent to the data binding process so it has no effect on the data hierarchy.

The occur property is more capabilities that are not depicted here. It can be used to make the form adapt
itself to the data, repeating subforms as necessary. See the chapter “Dynamic Forms” on page 326 for a full
description of this capability.

Record Mode
XFA processors can operate in two modes, record mode and non-record mode. The choice of mode is
determined by option settings described in “The record Element” on page 524 and “The range Element”
on page 523. In record mode, the data document is treated as a sequence of records. In the simplest case,
each record in turn is loaded, processed, and unloaded before the next record is loaded. Record mode is
provided purely as a way to reduce resource consumption (memory and CPU cycles) by XFA processors
when dealing with large data documents. Anything that can be done in record mode can also be done in
non-record mode providing sufficient resources are available.

In non-record mode data binding proceeds as described under Forms With Uniquely Named Fields and
Subforms. In record mode, for each record, all of the same processing steps except the last (issuing the
form ready event) are executed in the same order before moving on to the next record. The last step,
issuing the form ready event, occurs only after all records have been processed. Hence the cycle can be
described as:

For each data record in document order
{

Create a new Form DOM
Load globals before the current record into the Data DOM
Load the current record into the Data DOM
Create form nodes as copies of template nodes
Match non-attribute data nodes to form nodes
Match attributes to unmatched form nodes
Renormalize the Form DOM
Perform calculations and validations
Pass the Form DOM to the layout process
Delete the Form DOM
Unload the record from the Data DOM (but keep the globals)

}
Issue the form ready event

XFA Specification
Chapter 6, Template Features for Designing Forms with Repeating Sections Forms with Repeated Fields or Subforms 244

Note: The cycle described above is for a non-interactive XFA processor. An interactive XFA processor does
not normally proceed to the next record automatically. Instead the form creator provides buttons
with associated scripts to navigate from record to record.

A record is by definition a portion of the Data DOM contained by a data group. All records are contained by
data groups which are at the same level in the hierarchy of the Data DOM. These data groups may all be
peers but they don't have to be – they could have different ancestors. They may optionally be restricted to
having the same names, so that data groups at the same level with different names are discarded.
Alternatively records can be defined by level alone without any limitation by name.

In the membership list example, record processing could easily be used. Each Member data group
corresponds to a record. But suppose that there are two classes of members, full members and associate
members. In the data full members are represented by a Member element while associate members are
represented by an Associate element. The data document looks like this.

Example 6.23 Membership data with two classes of members

<?xml version="1.0"?>
<Members>

<Date>01/01/04</Date>
<Member>

<First>John</First>
<Last>Brown</Last>

</Member>
<Associate>

<First>Mary</First>
<Last>Black</Last>

</Associate>
<Member>

<First>Betty</First>
<Last>White</Last>

</Member>
</Members>

One possible approach is to arrange that all
data groups one level below the outermost
data group are treated as records. The record
configuration option is set to 2 so that each
record includes the contents of a second-level
datagroup (but excludes the datagroup itself).
The effect of this is shown at right.

Note that the date data value does not count
as a record because records are only defined by
data groups, not data values.

In this case, with records defined by level in the
hierarchy alone, records for both full members
and associate members are processed.

On the other hand it may be desired to process
records for full members only. In that case the associate member records are not processed even if they
match structure in the template. To accomplish this the configuration record option is set to Member so

��� �� � � 	
 � � � � � � � � � ��
��	 �� 	
 � �

��� � 	 �� � � � � � � � �� �� � 	 �
��	 �� 	
 �

�� �
 � � �� � � �� � �
 � � �
�� � � � �
 ! � �� � � � � �

�� �	 �� 	
 �
�" � � # � � � 	 �

�� �
 � � ���
 $ �� � �
 � � �
�� � � � � � � # % �� � � � � �

�� " � � # � � � 	 �
��	 �� 	
 �

�� �
 � � � 	 � � $ �� � �
 � � �
�� � � � �&� � � 	 �� � � � � �

�� �	 �� 	
 �
�� �	 �� 	
 � �

	
���������

�������������

��
���������

XFA Specification
Chapter 6, Template Features for Designing Forms with Repeating Sections Forms with Repeated Fields or Subforms 245

that only data groups with that tag are recognized as record containers. The effect of doing so is shown
below.

What if the data is not divided up into data groups? Suppose the data is in a flat stream of elements as
follows.

Example 6.24 Membership data with two classes, flattened

<?xml version="1.0"?>
<Members>

<Date>01/01/04</Date>
<First>John</First>
<Last>Brown</Last>
<Class>full</Class>
<First>Mary</First>
<Last>Black</Last>
<Class>associate</Class>
<First>Betty</First>
<Last>White</Last>
<Class>full</Class>

</Members>

The XFA configuration options allow for grouping transformations which operate when loading data into
the Data DOM. The effect of a grouping transformation is to collect sets of related data values into data
groups. This makes it possible to process flat data in record mode. See “The groupParent Element” on
page 508 for more information about the grouping transformation.

Globals
In record mode most bindings are constrained to bind a child of the record subform with a child of the
record data group. This is appropriate most of the time. However sometimes it is desired to reuse
particular data values at different places throughout a form. This can be done using global data. Global
data is any data value which is outside of any record and at the same level as or higher level than the
record data groups. For example, consider the purchase order data with records corresponding to Detail
subforms. With this record definition, all of the data values that are not inside Detail data groups are
global.

��� �� � � 	
 � � � � � � � � � ��
��	 �� 	
 � �

��� � 	 �� � � � � � � � �� �� � 	 �
��	 �� 	
 �

�� �
 � � �� � � �� � �
 � � �
�� � � � �
 ! � �� � � � � �

�� �	 �� 	
 �
�" � � # � � � 	 �

�� �
 � � ���
 $ �� � �
 � � �
�� � � � � � � # % �� � � � � �

�� " � � # � � � 	 �
��	 �� 	
 �

�� �
 � � � 	 � � $ �� � �
 � � �
�� � � � �&� � � 	 �� � � � � �

�� �	 �� 	
 �
�� �	 �� 	
 � �

	
���������

�������������

XFA Specification
Chapter 6, Template Features for Designing Forms with Repeating Sections Forms with Repeated Fields or Subforms 246

Global data can only bind to global fields. A global field is a field with a match attribute of global. Global
fields are used for data which is only present in the data once but is presented multiple places in the form.
For example, in a multi-page form it is common for a name or other identifier to be entered on the first
page and reproduced on every page. The matching rules for globals are different from regular fields in
order to support this usage. If a global field in the Form DOM can not be matched directly, a match is
sought among global data values. This applies even if the binding process did not start at the root of the
Data DOM, as in an incremental merge.

Example 6.25 Processing membership data in record mode with global data

The club membership data is as follows.

<?xml version="1.0"?>
<Members>

<Total>3</Total>
<Member>

<Number>1</Number>
<First>John</First>
<Last>Brown</Last>

</Member>
<Member>

<Number>2</Number>
<First>Mary</First>
<Last>Black</Last>

</Member>
<Member>

<Number>3</Number>
<First>Betty</First>
<Last>White</Last>

</Member>
</Members>

The Total data value holds the total number of members. It is desired to display this date on each page of
the membership form, along with the member number, in the form "Member M of N". However, the
processing is being done in record mode with record set to Member. In consequence the Total data
value is not inside any record. Because it is not inside any record it is processed as global data.

The template is as follows. The Total field is declared global using a bind directive, shown in bold.

<template …>
<subform …>

…
<field name="Number" …>…</field>
<field name="Total" …><bind match="global"/>…</field>
<field name="First" …>…</field>
<field name="Last" …>…</field>

</subform>
</template>

Because it is operating in record mode the XFA processor loads and merges the content of one Member
record into the Form DOM at a time. However by the time the processor loads the content of the first
Member record into the Data DOM it has already encountered the Total element and loaded it into the
Data DOM as a global. Consequently the Total field successfully binds to the Total data value. The same
is true as each of the other records is processed because, once loaded, global data stays resident in the
DOM until processing completes. By contrast the data for the current Member record is (by default)
removed from the Data DOM when the next record’s content is loaded.

XFA Specification
Chapter 6, Template Features for Designing Forms with Repeating Sections Forms with Repeated Fields or Subforms 247

When searching for global data, the global data value can be anywhere in the data document provided it
is not inside a record and it has already been loaded. If the desired global data value comes after the
current record it is necessary to adjust the data window to ensure the desired global data value is
pre-loaded (see Data Window, below). The search ignores the depth of the global data value in the data
hierarchy; instead it treats the Data DOM as though it was completely flattened. If there are multiple global
data values matching the field, they are treated like siblings and the data binding process picks the one
with the same index as the current record number. If an index is applied and the index is beyond the end
of the list, the field is left unbound.

Note that, unlike regular bindings but like explicit data references, there can be bindings from many global
field nodes to the same global data value node.

Note: Fields in the template sharing the same name must either be all global or all non-global. A mixture
of global and non-global fields with the same name is not supported. This restrictions prevents
ambiguities when data is round-tripped between client and server, hence merged with the
template, extracted and then merged again.

Another difference between global fields and non-global fields is that global fields are strictly passive. A
global field can never cause its ancestors to be copied into the Form DOM. Instead the field must be
dragged in when its enclosing subform is dragged in by a direct or indirect match to a data node. Only
then is an attempt made to match the global field to data in the current record, and if that fails to global
data.

There is also a difference between the handling of attributes in global data and non-global data. Attributes
of global data elements can not bind to fields. All such attributes are ignored by the data binding process.

In non-record mode there is no such thing as global data and marking a field as global has no effect.

Data Window
The placement of global data matters. If global data is placed after the record where it would be used, the
data binding process may not yet have loaded it. This specification does not dictate that XFA processors
perform two passes over the data document to pre-load globals. Rather, XFA processors support options
to control the loading of adjacent records into the Data DOM along with the current record. This is known
as a data window and it can include any specified number of records before and any specified number of
records after the current record. In most cases global data naturally comes near the beginning of the
document or just before the first record to use it. In other cases a larger data window is needed to ensure
that all needed global data is loaded before it is needed.

Explicit data references may be affected by the data window as well. A data reference can point to a data
node in a record other than the current record. If there is currently no match for the explicit data reference
in the Data DOM, the data binding process creates a node with default properties that matches the explicit
reference. This is the same behavior it displays when the appropriate section of the Data DOM is loaded
but there is no node matching the reference. Explicit data references should use $record to refer to data
in the current record, $record[-1] to refer to the previous record, $record[+1] to refer to the next
record and so on. For these references to work the data window must be set to include the desired
adjacent records.

 248

7 Template Features for Designing Dynamic Forms

This chapter describes the template features used to create dynamic forms. Such forms are capable of
adjusting to the data, moving, adding, or omitting sections as required. These features can also be used in
old-style non-XFAF static forms. Such a form has access to the full XFA template grammar, and looks like a
dynamic form to the XFA processor, but the template does not happen to use variable occurrences.

This chapter is a companion to the chapter “Template Features for Designing Static Forms” on page 31,
which should be read first. It is intended for use by form designers and others who do not need to
understand the more detailed processing guidelines of XFA forms. Accordingly, this chapter uses the terms
elements and attributes to describe template entities, as does the “Template Specification” on page 565.
Other chapters in Part 1: XFA Processing Guidelines use the terms objects and properties to describe such
entities. This shift in terminology reflects a transition to describing processing guidelines relative to XML
Document Object Model (DOM) representations of an XFA form.

Container Elements
Compared to static XFAF forms, dynamic forms have additional types of containers. These include
containers for:

● Fixed content. In a dynamic form the boilerplate must be described in the template so that it can be
laid out and rendered at run-time. Fixed content includes text, images, and basic line-drawings.

● Groups of containers. A dynamic form may assert a grouping which has no effect upon the user filling
out the form but is useful to the form creator when modifying the form.

● Physical surfaces and regions. Additional information about the partitioning of space upon pages is
required so that a dynamic form can be laid out at run time.

These additional containers are discussed below.

Containers of Fixed Content

Containers of fixed content are very similar to the containers of variable content already familiar from
static forms. For example, they can have borders and captions. In addition they have value properties
which represent the content of the element. The difference is just that fixed content cannot be altered by
the user or by user data.

Draw

Forms invariably contain fixed content. This content, often referred to as boilerplate, typically provides
context and assistance for consumers of the form. A draw element encloses each piece of fixed content. A
user cannot directly interact with a draw element. Refer to the diagram “A simple XFA form” on page 23
for some examples of draw elements. Note that call-outs indicate only two of the many draw elements on
the form. Note also that draw element content is not limited to text. For example, a line element is
legitimate content for a draw element.

The following is an example of a draw element that will produce the outline of a rectangle with the
dimensions of one-inch square, positioned at an (x,y) coordinate of (0,0).

XFA Specification
Chapter 7, Template Features for Designing Dynamic Forms 249

Example 7.1 Draw element containing a rectangle

<draw x="0" y="0" w="1in" h="1in">
<value>

<rectangle/>
</value>

</draw>

For more information, please see the syntax description of the draw element.

Containers That Group Other Container Elements

Area

An area is a grouping of form container elements. The grouping itself is not visible, although the elements
themselves may be visible. For example, in the diagram “A simple XFA form” on page 23, the vendor name
and address data entry elements, along with the corresponding static text elements might be grouped
into an area. Areas provide the form creator with a means of organizing elements on a form, so that they
may be moved or manipulated as a whole.

Areas have no effect upon the user filling out the form, or upon data from an external source binding with
the form. However areas do have effects upon the layout of the form.

An area is itself a container of containers.

The following is an example of an area element that encloses two text fields.

Example 7.2 Area element enclosing two fields

<area x="1in" y="2in">
<field name="ModelNo" …>…</field>
<field name="SerialNo" …>…</field>

</area>

For more information, please see the syntax description of the area element.

Containers That Represent Physical Surfaces and Regions

The process by which displayable content is allocated to particular places on the display surface(s) is called
layout. The containers and content that are placed onto the display surface have been discussed earlier.
This section introduces the elements which represent display surfaces and regions of display surfaces.

Content Area

A contentArea element represents a rectangular region of a display surface. This always has a fixed size
and a fixed position upon the page.

Page Area

A pageArea element represents a single display surface, for instance one side of a printed page.
Depending upon the pagination strategy of the enclosing pageSet, pageArea elements may be
restricted to certain contexts such as odd pages only or the first page in a series of pages only. For more
information about pagination strategy see “Flowing Between ContentArea Objects” on page 288.

It is the responsibility of the form creator, and the user when printing, to ensure that each individual page
is big enough to hold the contentArea regions within it.

XFA Specification
Chapter 7, Template Features for Designing Dynamic Forms 250

It is the responsibility of the form creator to ensure that the template contains at least one pageArea
element with a contentArea inside it.

Page Set

A pageSet element represents an ordered set of display surfaces, for example a series of printed pages. A
pageSet element may contain any number of child pageSet elements. For example, consider the
following template fragment.

Example 7.3 Nested page sets

<pageSet relation="simplexPaginated">
<pageArea>

<contentArea x="1in" …/>
</pageArea>
<pageSet relation="duplexPaginated">

<pageArea oddOrEven="even">
<contentArea x="0.75in" …/>

</pageArea>
<pageArea oddOrEven="odd">

<contentArea x="1.25in" …/>
</pageArea>

</pageSet>
</pageSet>

In the above example the inner pageSet element contains two pageArea elements to represent the two
sides of a duplex-printed page. Odd and even pages differ in the position of the content area so as to leave
extra room in the middle for the binding.

The outer pageSet element holds its own pageArea element, for use when printing single-sided,
together with the inner pageSet element.

Types of Layout Elements

Layout operates on layout elements. There are two general classes of layout elements. Any layout element
corresponding to a pageSet element, a pageArea element or a contentArea element represents a
physical display object or a region of a physical display object.All other layout objects are layout content.
The function of the layout processor is to apportion layout content to and position layout content upon
physical display objects.

Layout content can be further subdivided into displayable entities and structure.

● Displayable layout elements includes those elements which have no other function than to be visually
presented upon the display, such as text, images, and geometric figures. Elements descended from
draw elements are also classified as displayable because draw elements merely provide packaging
around one of the other types of displayable entities. Displayable entities may originate either from the
template (boilerplate) or from user-supplied data.

● Structural layout elements embody relationships between displayable entities and/or other structural
layout elements. Subform elements and exclusion group elements are examples of structural layout
elements. Note that structural layout elements may also be visually presented upon the display, as for
example a subform that has a border and/or a fill color.

In the context of layout, displayable layout elements are generally passive. That is, generally they are acted
upon by other layout elements but have no effect upon other layout elements except by the simple act of
taking up space. Physical layout elements, by contrast, are always active; they both act directly upon and

XFA Specification
Chapter 7, Template Features for Designing Dynamic Forms Basic Composition 251

set constraints upon other layout elements. For example, a block of text may flow across multiple
contentArea elements and be split up by them. Structural layout elements become active when they
possess non-default breakBefore or breakAfter properties. For example, usingthe breakBefore
property a structural layout element may state that it must be kept intact, or that it must be displayed on
the front surface of a page.

The w (width) and h (height) properties of layout elements are particularly likely to be a source of
confusion. The height of a contentArea is a constraint. For example when text being placed into a
contentArea crosses the lower edge of the contentArea, the text may be split and only a fragment
placed into the contentArea. By contrast if a height is specified for a subform, it is not a physical
constraint but a logical property. Hence the supplied height does not affect the layout or actual size of the
subform or its contents; it only affects how much height the layout processor reserves upon the page for
the subform. Widths work the other way around. The width of a contentArea is not a physical constraint;
the content placed into the contentArea can extend to the right of the contentArea. However the
width of a subform may be a physical constraint; text may wrap when it reaches the right or left edge of
the subform. (This asymmetry arises from the fact that XFA does not currently support languages such as
Chinese that flow vertically with lines stacked horizontally. Probably any future version of XFA that
supports such languages will expand the repertoire of contentArea elements to include splitting by
width, and of subforms to include wrapping by height.)

The following table summarizes the types of layout elements:

“Layout Objects” on page 1453 contains a table showing the characteristics and capabilities of each type
of layout element.

Basic Composition
This section describes aspects of creating a template that are not applicable to static forms. “Basic Layout
in Dynamic Forms” on page 259 describes how container elements are placed on a page.

Line, Arc, Rectangle and Border Formatting
A container element may describe formatting characteristics for lines, arcs, rectangles and borders. These
characteristics include all those which have already been described in the context of static forms. Dynamic
forms have in addition the ability to specify the handedness of the strokes that make up the figure.

Type Subtype Description Element

physical N/A physical display elements or regions
thereof

pageSet, pageArea, contentArea

layout
content

structural logical and some physical
relationships between layout
elements

subform, subformSet, area,
exclGroup, field, draw

displayable elements visibly presented upon the
display

text, image, line, arc, rectangle,
barcode, push button, checkbox,
radio button, choice list, text edit
widget, date edit widget, time edit
widget, password edit widget, image
picker widget, signature widget

XFA Specification
Chapter 7, Template Features for Designing Dynamic Forms Basic Composition 252

Handedness

Any sort of a line, whether it be a line element or a border edge, follows a logical path. This path has zero
width. During the process of rendering of the line, however, the application applies a thickness to create a
visible line. Handedness provides the forms designer with a means to specify how that thickness is applied
to the line.

Handedness of Stroke Elements

The edges, and corners elements represent strokes. Many XFA elements that represent graphical
elements (such as lines, rectangles, and borders) have outlines that are rendered according to one
or more strokes.

These elements posses an attribute which determines the thickness of the stroke, and as the thickness
increases the stroke appears to become wider and spread in one or more directions. To understand this,
recognize that a stroke is a vector possessing a point of origin, and a measurement representing the
length; the imaginary line that extends from the origin along the length is the stroke's path. Therefore,
there are three different ways for the thickness of a stroke element to be defined:

● The stroke's thickness extends to left of the path — this stroke is defined as left-handed

● The stroke's thickness extends equally to both the left and right of the path — this stroke is defined as
even-handed

● The stroke's thickness extends to right of the path — this stroke is defined as right-handed

The following diagram illustrates the three possibilities, as three thick black strokes along a common path
shown in green.

HAND-1 — Edge thickness rendering and handedness

The elements that produce the above diagram are as follows.

Example 7.4 Draw elements containing lines of different handedness

<draw x="1in" y="1in" w="0.6in" h="0.8in">
<value>

<line hand="left" slope="/">
<edge thickness="0.2in"/>

</line>
</value>

</draw>
<draw x="2in" y="1in" w="0.6in" h="0.8in">

<value>
<line hand="even" slope="/">

<edge thickness="0.2in"/>
</line>

XFA Specification
Chapter 7, Template Features for Designing Dynamic Forms Basic Composition 253

</value>
</draw>
<draw x="3in" y="1in" w="0.6in" h="0.8in">

<value>
<line hand="right" slope="/">

<edge thickness="0.2in"/>
</line>

</value>
</draw>

Handedness of Borders and Rectangles

The border and rectangle elements are drawn from the top-left corner, in a clockwise direction.
Therefore, a left-handed border will appear to draw immediately outside the border's path; a right-handed
border will appear to draw immediately inside the border's path; and an even-handed border will appear
to straddle the border's path. Each one of these options has some value to the form designer, who typically
designs forms with both container and border margin insets of zero:

● Left-handed borders draw just outside the nominal extent, thereby graphically freeing up the entire
nominal extent for content

● Right-handed borders fit within the nominal extent, ensuring that the container element's graphical
footprint doesn't exceed its nominal extent

● Even-handed borders allow for alignment of container elements by nominal extent, without unusually
thick lines where they join

It is this last point that is of greatest use to a forms designer. If the stroked edges of a border are
even-handed, the edges will appear to spread outside the container's nominal extent by half the edge
thickness. Placing two objects with this type of border adjacent to each other will result in the common
border edge between the two objects, appearing to have the same width as all the other edges — this is
very common in traditional form composition.

If the border had been right-handed causing the stroked edges to be rendered completely inside the
nominal extent, or left-handed causing the stroked edges to be rendered completely outside the nominal
extent, there would appear to be a doubly thick border between the two objects.

This effect of handedness on adjacent bordered objects is illustrated by the following diagram:

XFA Specification
Chapter 7, Template Features for Designing Dynamic Forms Basic Composition 254

HAND-2 — Border handedness

In the above diagram, note how even-handed borders avoid the doubly thick line between the two
bordered objects.

The elements that produce the above diagram are as follows.

Example 7.5 Field borders displaying different handedness

<field name="field1" x="1in" y="1in" w="1.5in" h="1in">
<border hand="right">

<edge thickness="0.125in">
<color value="128,128,255"/>

</edge>
</border>
<value>

<text/>
</value>
<ui>

<textEdit multiLine="1"/>
</ui>
<para hAlign="center" vAlign="middle"/>

</field>
<field name="field2" x="2.5in" y="1in" w="1.5in" h="1in">

<border hand="right">…</border>
<value>

<text>Right-handed borders</text>
</value>
…

XFA Specification
Chapter 7, Template Features for Designing Dynamic Forms Content Types 255

</field>
<field name="field3" x="1in" y="2.5in" w="1.5in" h="1in">

<border hand="even">…</border>
<value>

<text/>
</value>
…

</field>
<field name="field4" x="2.5in" y="2.5in" w="1.5in" h="1in">

<border hand="even">…</border>
<value>

<text>Even-handed borders</text>
</value>
…

</field>
<field name="field5" x="1in" y="4in" w="1.5in" h="1in">

<border hand="left">…</border>
<value>

<text/>
</value>
…

</field>
<field name="field6" x="2.5in" y="4in" w="1.5in" h="1in">

<border hand="left">…</border>
<value>

<text>Left-handed borders</text>
</value>
…

</field>

Content Types
The representation of fixed content using the draw element is similar to the representation of default
content in a field element. The main difference is that fixed content can contain different types of content.
Fixed content can be plain text, rich text, an image, or a geometric figure.

Caution: Fixed content can not be any of the types that are subject to localization and/or validation. Thus
it cannot be a date element, a time element, a dateTime element, a boolean element, an
integer element, a decimal element, or a float element.

Example 7.6 Fixed content that describes a red-filled semicircle, enclosed in a border

<draw y="10mm" x="10mm" w="10mm" h="10mm">
<border/>
<value>

<arc sweepAngle="180">
<fill>

<color value="255,0,0"/>
</fill>

</arc>
</value>

</draw>

Those content types which differ from variable content are described below.

XFA Specification
Chapter 7, Template Features for Designing Dynamic Forms Content Types 256

Lines, Rectangles, and Arcs
The line, rectangle, and arc content type elements enclose geometric shapes. Such content types are
meaningful only within draw value elements. In contrast, field value elements should not contain line,
rectangle, or arc elements because XFA does not specify a UI widget that would allow a user to provide
such geometric shapes.

Example 7.6provides an example of the arc content type element.

Images
The image content type element may enclose an image. XFA forms may provide images as fixed content.

Note: The image formats supported by an XFA processing is application dependent.

Background (draw) Images

Template draw elements may contain background images. Each image is embedded in the image
element as pcdata (Example 7.7) or referenced with a URI (Example 7.8).

Example 7.7 Embedded background image

<draw …>
<value>

<image contentType="image/jpeg">/9j/4AAQSkZJRgABAQEAYABgAAD/4TlsRX…
…
…ACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooA//9k=</image>

</value>
</draw>

Example 7.8 Referenced background image

<draw …>
<value>

<image
href="http://www.example.org/pathname/Picture.jpg"
contentType="image/jpeg"/>

</value>
</draw>

Icon buttons

A dynamic form may specify an image and also a text legend for a button. The image is supplied as the
field default value and the legend as the field caption. In addition if the button’s highlight mode is
push the button may specify different images and legends for each of the up, down, and rollover states.
See “Button” on page 472 for more information.

Scaling the Image to Fit the Container (aspect)

Image elements contain a property (aspect) that specifies how the image should be adjusted to fit within
the dimension of the draw. See “Images” on page 51.

XFA Specification
Chapter 7, Template Features for Designing Dynamic Forms Content Types 257

Storing Images Inside PDF

XFA allows images to be included inline where they are used or to be referenced via a URI. URIs can point
outside the document, however PDF documents are required to be self-contained. Prior to XFA 2.6, when
an XFA form was embedded in a PDF the only option was to convert each image to an inline
representation. Unfortunately sometimes images are repeated within a document. For example, a
multi-page document might have an image of a logo on every page. Converting all images to inline form
causes image data to be replicated unnecessarily.

Since XFA 2.6 images can be stored as PDF objects. The template or data can link to the object by
reference. Even if an image appears multiple places in the same form the image data only needs to appear
once in the PDF.

This facility defines mappings from URIs to images stored within the package. The XFA processor assigns
mapping within the package a higher priority than any other URI resolution it may do.

Caution: XFA processors using untrusted forms should only resolve URIs within the package. Any other
reference, even to a public website, is a security hole. For example, if the URI could be resolved to
a website, the XFA processor would fetch the images using the geographical location and
credentials of the user. This could be used to silently obtain information that would otherwise
not be accessible to the form creator.

The same mapping rule also applies to images in data if they are defined using a URI reference. This allows
for a form to contain a set of images which the user or a script can insert into image fields.

For example, an XFA form is created using images on the form creator’s local Windows file system. One of
the files is named 9Heads_300.jpg and it is located in the current directory. Each of the image files is
stored as an indirect object in the PDF. Each of the objects is a flate-compressed stream. For example,
9Heads_300.jpg is stored as indirect object 42 using the following syntax.

Example 7.9 Image stored as an indirect PDF object

42 0 obj
<</Length 74206/Filter[/FlateDecode]>>stream
H‰”R}<Ó] þm3[¸›™× ¶0$wÞ¦Q±Ýòö‰²JÈKdH¡î{<I“{‰ÊÈ”…
endstream
endobj

The flate-compressed stream, when expanded, yields bit-for-bit the contents of the original image file.

The Catalog is the root of the documents object heirarcy and contains the optional Names dictionary.
Each entry in this dictionary specifies the root of a name tree. The dictionary may be expanded and define
other entries as XFA does here. XFA adds an entry called XFAImages. The XFAImages name tree contains
a number of leaf nodes, which map keys to their values. In this case, the key is an image URI, which maps to
a value which is an indirect reference to an object.

The image object has to be linked to the URI that it represents. This is done via a name tree called
XFAImages. XFAImages is located in the Names dictionary which is under Catalog, the root of the PDF
object hierarchy. The PDF reference [PDF] enumerates the entries which are commonly used within PDF
files (see section 3.6.3 Name Dictionary).

For the example the content of XFAImages is as follows.

Example 7.10 Corresponding XFAImages name tree in PDF

43 0 obj

XFA Specification
Chapter 7, Template Features for Designing Dynamic Forms Formatting Text in Dynamic Forms 258

<</Names[(.\\9Heads_300.jpg)42 0 R(.\\anneb.jpg)45 0 R(.\\butterfly.jpg)47 0
R(.\\fish.jpg)49 0 R]>>
endobj

The first key is for the URI .\9Heads_300.jpg. It maps to the indirect object 42, which was defined in the
example above. The double-backslash (\\) in the name string represents a single literal backslash, using
the usual PDF encoding rules. The other image files used by the form are .\anneb.jpg,
.\butterfly.jpg, and .\fish.jpg, and each one maps to its own object.

Within the XFA template there is no new syntax. Each reference to an image uses the filename as a URI. For
example, 9Heads_300.jpg is used as follows.

Example 7.11 Invocation inside the XFA template

<draw …>
<image contentType="image/jpeg" href=".\9Heads_300.jpg" …/>
…

</draw>

Similarly within the XFA data document the existing syntax for URI references is used. (See “Image
referenced using a URI” on page 148.) There is no change in XFA syntax, only in interpretation.

Formatting Text in Dynamic Forms
Within dynamic forms the container into which the text (whether fixed or variable content) is being placed
may itself be growable. This adds to the complexity of the text placement algorithms. “Flowing Text Within
a Container” on page 56 describes text justification in growable containers.

Repeating Elements using Occurrence Limits
What makes dynamic forms dynamic is that certain containers can be copied into the Form DOM or the
Layout DOM more than once. Each copy is known as an occurrence. Those containers which can have
multiple occurrences take a child property which sets occurrence limits. This property is represented by
the occur element.

The occur element has three attributes, as follows:

● The min attribute is used when processing a form that contains data. Regardless of the data at least this
number of instances is included. It is permissible to set this value to zero, in which case the container is
entirely excluded if there is no data for it. When this attribute is not supplied the internal min property
defaults to 1.

● The max attribute is also used when processing a form that contains data. Regardless of the data no
more than this number of instances may be included. It is permissible to set the max attribute to -1, in
which case there is no limit to the number of instances. When this attribute is not supplied the internal
max property duplicates the value of the internal min property.

● The initial attribute is used only when the XFA processor is printing or displaying a blank form. In
this circumstance this attribute determines how many instances of the container should be used. When
the attribute is not supplied the internal initial property duplicates the value of the internal min
property.

Both subform and subformSet elements can contain occur elements. In these contexts the occurrence
limits control how many times they are copied into the Form DOM during a merge operation. The

XFA Specification
Chapter 7, Template Features for Designing Dynamic Forms Basic Layout in Dynamic Forms 259

influence of occurrence limits on merge operations is discussed in detail in “The Occur Element” on
page 332.

By contrast pageArea and pageSet elements can also contain occur elements, but in these contexts
the occurrence limits control how many times they are copied into the Layout DOM during layout. For
these elements the initial occurrence attribute has no effect. The effects of occurrence limits on layout
are described in detail in “Flowing Between ContentArea Objects” on page 288.

It is permitted to set the minimum and maximum occurrences to the same value. If the value is anything
other than 1 the effect is to force the full dynamic logic to be invoked but to constrain it so that it operates
in a pseudo-static manner. When used this way the result is equivalent to repeating the container element
N times in the template. For more information see “Using Fixed Multiple Occurrences for Pseudo-Static
Forms” on page 347.

Basic Layout in Dynamic Forms
This section describes the most common aspects of how objects are arranged and presented on the
presentation medium.

It explains how the objects that appear on a page can be positioned relative to the page and to one
another. It explains how contentArea, pageArea, and pageSet can be used to control where content is
placed upon each page.

The Layout Processor
The job of the layout processor is to assign each layout object an absolute position on a page. When
positioned layout is used for every subform the layout process is simple. Each contentArea is located at an
absolute position on a particular page. Each subform is positioned relative to a particular contentArea. The
layout objects within the subform are positioned relative to the subform. Hence to compute the absolute
position and page of each object the layout processor only needs to trace up the tree of containers,
integrating relative positions, until it reaches a contentArea which resolves the relative position to an
absolute position and page.

Box Model
The layout processor uses the same box model that has already been described for static forms. There are
some additional element types in dynamic forms which take part in the layout process. The box models for
those additional element types are described below.

Area

An area element represents a grouping of related objects. Area objects grow to the minimum size
required to hold the nominal extents of all the layout objects they contain. Area objects do not have
margins or borders of their own. These rules make an area element largely transparent to the layout
process. However when an object within the area object uses positioned layout the X and Y positions are
specified relative to the area object. Hence area elements are convenient for bundling objects that are
to be dropped into a form and moved around as a unit.

XFA Specification
Chapter 7, Template Features for Designing Dynamic Forms Basic Layout in Dynamic Forms 260

ContentArea Layout Object

A contentArea element represents a physical region of a pageArea into which content may be placed.
The size of a contentArea is fixed, hence the w and h attributes are mandatory.

Geometric Figure

Geometric figures supported by XFA include straight lines,
arcs, and rectangles. Arcs and rectangles can be filled. These
figures are inherently scalable in the sense that the figure
grows or shrinks to fit the content region of the container.
However line width does not change with the figure size.
The figure at right shows a straight line layout object within
its container.

PageSet Element

A pageSet element represents a set of display surfaces, such as a stack of sheets of paper. Width and
height do not apply.

PageArea Element

A pageArea represents a display surface, such as one side of a page. Its actual size is unknown (and
irrelevant) to the layout processor. A pageArea element may contain content such as subforms. Such
content, which is placed directly in a pageArea element, represents page background. It is up to the
creator of the template to ensure that page background and any contentArea elements contained in
the pageArea do not extend beyond the usable area of the surface. For more information about page
background see “Page Background” on page 265.

Size Requirement for Containers

For images, draws containing geometric figures, and contentAreas, the w and h attributes are mandatory. If
either of these is not supplied the layout processor should either infer a size from context (for example
from a minH attribute) or default the value to 0. Whichever strategy is taken the goal is to continue
processing even if the result is unattractive.

Layout Strategies
Dynamic forms may use a positioned layout strategy in which every subform is directly linked to a named
contentArea. The resulting form can still adapt to the data by including different pages as appropriate.
Alternatively dynamic forms can use a flowing layout strategy in which content flows through a series of
content areas. Both fixed and variable content flow so that the user data is surrounded by all of the
appropriate boilerplate. Flowing layout allows a form that contains just those subsections that are needed
for the data. In addition flowing layout can interpose such additional elements as headers and footers to
enhance the appearance of the form. Finally, dynamic forms can lay out objects aligned in rows and

line

top margin

bottom margin

right
margin

left
margin

Line object and its container

XFA Specification
Chapter 7, Template Features for Designing Dynamic Forms Basic Layout in Dynamic Forms 261

columns to form tables. The tables adapt to the size of the individual cells making up the rows and
columns.

Dynamic forms may contain a mixture of objects laid out using different layout strategies. In fact this is
inevitable because flowing is the only layout strategy available for text inside any container, whereas
positioned is the only layout strategy for any container placed inside a contentArea region. For all other
containers the default layout strategy is positioned but flowing may be specified on a per-container basis.

Note that static forms, because they do not specify any layout strategy, implicitly use a flowing layout
strategy for text but a positioned layout strategy for all other objects. The position of each field is specified
relative to the top left corner of its containing subform, and the subform is implicitly positioned to the top
left of the printable region of the page.

Flowed layout for the special case of text is described in “Alignment and Justification” on page 44. The
following section describes the rules for positioned layout. Flowed layout for container objects is
described in “Flowing Layout for Containers” on page 274.

Positioned Layout

When using positioned layout each contained object has a fixed offset vector which is an (x,y) pair. This
vector determines the location of the contained object with respect to its container. By default (and
typically) the vector gives the offset of the contained object's top-left corner from the container's top-left
corner. The offset vector is supplied as properties named x and y. The x property is interpreted as a
measurement to the right and the y property as a measurement down from the top-left-corner of the
container. The values of these properties must be measurements as described in “Measurements” on
page 36. If there is no x or y property for a contained object a value of 0 is assumed by the layout
processor. For example, assume a template as follows.

Example 7.12 Template using positioned layout

<subform name="A" layout="position">
<!-- root subform -->

<pageSet>
<pageArea name="X">

<draw name="XBackground" x="1cm" y="20cm">
<value>

<text>background text</text>
</value>

</draw>
<contentArea name="Y" x="2cm" y="2cm" w="13cm" h="15cm"/>
…

</pageArea>
</pageSet>
<draw name="ABoilerplate" x="1cm" y="12cm">

<value>
<text>boilerplate text</text>

</value>
</draw>
<field name="B" x="2cm" y="2cm">

…
</field>
<field name="C" x="2cm" y="7cm">

…
</field>

XFA Specification
Chapter 7, Template Features for Designing Dynamic Forms Basic Layout in Dynamic Forms 262

</subform>

Assume that the data binding process resulted in the
text "field B content" being associated with field
B and "field C content" with field C. The resulting
layout is reproduced at right, with some coordinates
labelled. (0,0) is the origin of the pageArea. (2,2) is the
location of the top-left corner of the contentArea,
while (15,17) is its lower-right corner. Field B is placed
2cm down and 2 cm to the right of the top-left corner
of its container, the subform. Hence field B's top-left
corner is placed at (4,4). This form also includes
background text. Background objects are explained in
“Page Background” on page 265. Here the important
things to observe are that positioned layout is used for
this block of background text and that it is positioned
relative to its own container, the pageArea itself.

A contained object may specify an anchor point which
is the reference point for its offset. The default is its
top-left corner. However the offset is always specified
with respect to the container's top-left corner
regardless of the container's own anchor point. The
anchor point is one of the following points within the
object's nominal extent:

● top left corner

● middle of the top edge

● top right corner

● middle of the left edge

● center

● middle of the right edge

● bottom left corner

● middle of the bottom edge

● bottom right corner

The anchor point affects the direction in which the contained object grows if its width and height are
increased. For example, if the template is modified to increase the height of field C, and the anchor point of
C is at the top-left, the field extends farther down the page but its top-left corner stays at (4,9). However if
its lower-right corner was the anchor point then increasing its height would cause its top-left corner to
move up the page while the lower-right corner stayed fixed.

background text

field B content

field C content

boilerplate text

subform A

contentArea Y

pageArea X

(15,20)(1,22)

(2,2)

(4,4)

(4,9)

(3,14)

(0,0)

Simple layout example with coordinates

XFA Specification
Chapter 7, Template Features for Designing Dynamic Forms Basic Layout in Dynamic Forms 263

The template may specify offset vectors that cause contained
objects to be placed partly or entirely beyond the right or bottom
limits of their containers, or to overlap each other. It is not the layout
processor's job to second-guess the offset vectors. However, this is
no guarantee that overlapped objects will render properly on all
output devices. No objects may include x or y values that are
negative or that resolve to negative numbers after conversion from
the given anchor point to the top-left corner. In other words, the
nominal extents of objects must not extend beyond the top and left
limits of their containers. The figure at right shows an example of
permitted practice, in which the container's size is fixed and the
objects contained within it both overlap each other and extend
beyond the nominal extent of the container, but in an allowed
direction.

The layout processor employs positioned layout within any area,
pageArea, or contentArea object. It also employs positioned
layout within any draw object containing an arc, line, or rectangle.
And, it employs positioned layout within any subform that has no
layout attribute or has a layout property with the value of
positioned. Exclusion groups are transparent to layout strategy,
that is, they inherit their layout strategies from their parents.

Forbidden Condition: Negative Coordinates

The x and y properties of an object, its anchor point, and its width and height, must not conspire to result
in all or part of the object's nominal extent being above or to the left of its container. The result is
unspecified. The layout processor may make a best effort to deal with the resulting negative coordinates,
but even if it copes that does not guarantee that the renderer will be able to.

Clipping

When a container has a fixed size, the content does not fit into the container, and the layout strategy is
positioned, the excess content may either extend beyond the region of the container or be clipped. The
permissible range of actions varies according to the type of container and the context (interactive or
non-interactive).

When the container is a field and the context is interactive, the content of the field may be clipped.
However some means must be provided to access the entire content. For example, the XFA application
might arrange that when a field gains focus a widget pops up. The widget could be dynamically sized or it
could support scrolling.

When the container is a field and the context is non-interactive (for example printing to paper) the content
must not be clipped. The content may be allowed to extend beyond the field or it may be shrunk to fit the
field.

When the container is a draw, in any context, the behavior is implementation-defined. It is the
responsibility of the form creator to ensure that the region is big enough to hold the content.

Note that clipping does not have to be done by the layout processor. If it is done at all it can be done
downstream in the renderer. However it may be advantageous to do partial clipping at the layout stage.
For example, when justifying it is more efficient to stop adding text after the last line that is wholly or
partly inside the content region.

contentArea
 A

Content B

Content C

Content E

Content D

Positioned layout

XFA Specification
Chapter 7, Template Features for Designing Dynamic Forms Basic Layout in Dynamic Forms 264

Locating Containers Based on Data

In a static XFAF form the everything in the form except the contents of fields is fixed. When the template is
bound to data (merged), some fields are filled in. Any fields left unfilled are present in the form but empty
(or optionally given default data). These types of forms are uncomplicated and easy to design, and suffice
for many applications.

Dynamic forms by contrast may be designed with containers that stretch or shrink to accomodate varying
amounts of data within individual fields. Containers of this sort are called growable containers. “Layout for
Growable Objects” on page 269explains how the content of forms with growable containers is laid out.
The need to accomodate variable amounts of data in fixed-size pages imposes a significant burden of
additional layout mechanism.

Dynamic forms may also be designed to change structure to accommodate changes in the structure of the
data supplied to the form. For example, a section of the form may be omitted if there is no data for it. Such
forms are called dynamic forms. From the perspective of the layout process such forms are almost the
same as static forms that have growable containers. “Layout for Dynamic Forms” on page 350 describes
the differences between layout for static forms with growable containers and layout for dynamic forms.

Page Selection
In static XFAF forms the physical sequence of pages is simply the order in which the pages appear in the
PDF. However in dynamic forms the physical sequence of pages is controlled from within XFA using the
pageSet, pageArea, and contentArea elements.

Each pageArea element along with its contained contentArea elements describes the physical layout
of one display surface (for example one side of a printed sheet of paper). Any subform can use its
breakBefore property to specify that it must appear on a display surface described by a particular
pageArea object, or in content area described by a particular contentArea object. XFA provides
additional ways to control pagination but for many forms this is all that is needed. The breakBefore
property is discussed in more detail in “Break Conditions” on page 264.

When a subform asserts a breakBefore property the layout processor attempts to satisfy it within the
current page. For example, if the subform being laid out specifies a break to a content area named xyz, the
layout processor looks for an unused contentArea with the name xyz within the current pageArea.
(Potentially the page could have many content areas with the same name). If it cannot satisfy the break
request using the current page it performs whatever completion actions are required for the current page
and then starts a new page and content area that satisfy the request. The new page may be based upon
the same pageArea as the previous page or a different pageArea.

The mechanism by which the layout processor determines which pageArea to use next is described in
detail in “Pagination Strategies” on page 289.

Break Conditions
In XFA pieces of displayable content are not tied directly to particular content areas or pages. Instead each
subform has a breakBefore property which controls what the layout processor does when it is about to
lay down that subform. It also has a breakAfter property which controls what it does after it lays down
the subform.

Both the breakBefore and breakAfter properties have targetType subproperties which specify
whether the target of the break is a pageArea or a contentArea. For many simple forms the targetType
subproperty of the breakBefore property for each subform is set to contentArea. This causes the

XFA Specification
Chapter 7, Template Features for Designing Dynamic Forms Basic Layout in Dynamic Forms 265

layout processor to place each subform into the next available content area on the current page. If there
are no more content areas on the page, the layout processor moves on to the next available page within
the page set and uses the first content area on that page. There are several different ways in which the next
available page can be determined; see “Pagination Strategies” on page 289 for more information. The
layout processor maintains a count of instances used for each page set and, when the count is exhausted,
ascends a level in the template looking for an unused page set. When it has exhausted the last page set, or
if it runs out of displayable entities to lay down, it stops.

The targetType subproperty of a breakBefore property can also be set to the value pageArea. This
causes the layout processor to treat the current page as though all of its contentArea regions have been
used. It advances to the first content area of the next page without putting anything more on the current
page. Using this a single pageArea can be used to accommodate more or fewer subforms, depending
upon the type of subform.

The breakBefore or breakAfter property may also hold a script. If there is a script the layout processor
executes the script to determine whether or not to perform the associated break action. The script must
return a Boolean value. If the script returns True the break action is taken. If the script returns False the
break action is not taken, that is the breakBefore or breakAfter has no effect. In the absence of a
script the break action is always taken.

Special values are also allowed to deal with duplex printing. The values pageEven and pageOdd force a
break to the next even-numbered and odd-numbered page, respectively. The page number may be
initialized to something other than 1, and it may be modified on the fly by scripting. Either of these options
may cause intervening pages to be printed, but the intervening pages only carry page background.

Page Background
A pageArea may contain subforms, fields, draw objects and area objects. Typically, this is used for
letterhead, watermark, and/or identifying data such as a purchase order number. This material is referred
to in this specification as page background.

Note: The user interface for LiveCycle ES2 uses PDF terminology. In that terminology content areas and
page background appear on master pages whereas foreground material appears on body pages.
When LiveCycle ES2 saves the form, it expresses each master page as a pageArea object. By contrast
it expresses each body page as a subform object which is a child of the root subform.

The layout processor makes no attempt to detect or prevent overlaps between background and
foreground objects. However the Z-order is such that all foreground objects appear on top of any
background objects.

Consider the following example.

Example 7.13 Template using a background image

<template xmlns="http://www.xfa.org/schema/xfa-template/2.8/">
<subform name="X">

<pageSet>
<pageArea name="A">

<draw>
<value>

<image href="Preliminary.jpg" contentType="image/jpeg"/>
</value>

</draw>
<contentArea name="B" id="A_ID" …/>

XFA Specification
Chapter 7, Template Features for Designing Dynamic Forms Basic Layout in Dynamic Forms 266

…
</pageArea>

</pageSet>
<subform name="C">

<breakBefore targetType="contentArea" target="#A_ID"/>
</subform>
…

</subform>
</template>

The resulting layout incorporates the “Preliminary.jpg” image
as background in each instance of pageArea A, as shown at right.

Structural layout objects used in background content may use
either positioned or flowing layout.

Fields contained in page background are somewhat restricted
compared to ordinary fields. A field in page background can be a
container for data, but it has to be linked to the data by an explicit
data reference. See “Explicit Data References” on page 199 for more
information.

A field in page background can have calculate and validate scripts
just as ordinary fields can, however in page background these are
not evaluated until after the layout process is complete. By contrast
calculations and validations for page foreground are done after
merging data but before layout processing. Since it is only the
layout process that assigns page background to the form there is no
way to perform the calculations and validations for page
background until layout is complete.

Appearance Order (Z-Order)
Z-order applies to fixed content such as draws just as it applies to fields. Draws can overlap fields and
vice-versa. As with fields overlapping fields, XFA processors are not expected to do anything to prevent
overlaps. It is up to the form creator to prevent overlap if that is what is desired.

Pre
lim

in
ary

subform C

contentArea B

pageArea A

pageArea with background
content

XFA Specification
Chapter 7, Template Features for Designing Dynamic Forms Grammar Excluded from XFAF 267

Grammar Excluded from XFAF
The following table summarizes those aspects of the XFA Template grammar that are not available to XFAF
forms but that are available to dynamic or old-style static forms. While XFAF forms cannot use these
features they are not forbidden to express the grammar, however the grammar can only be used to
express default behavior. In other words it can only be used when it doesn’t do anything. For example the
occur element can be used but only if it expresses the default values for its properties initial, min, and
max. This comes about because in XFA grammars the absolute omission of an element or attribute is
almost always equivalent to its inclusion with default values.

Element Property Note

any element use, usehref Prototype references are not allowed.

area No use allowed.

border hand = "even","left" Only right-hand borders (inside the widget)
are handled by XFA. Even and left-hand
borders are delegated to the PDF
appearance stream.

caption The Acrobat family of products only supports caption on buttons and barcodes,
but other implementations may support captions on other fields.

contentArea No use allowed. Pagination is delegated to the PDF appearance stream.

draw No use allowed. Draws are delegated to the PDF appearance stream.

field border
colSpans
margin
keep

Relation to the surrounding page is
delegated to the PDF appearance stream.

medium No use allowed. Print control is delegated to the PDF appearance stream.

occur No use allowed. Single occurrences only.

pageArea No use allowed. Pagination is delegated to the PDF appearance stream.

pageSet No use allowed. Pagination is delegated to the PDF appearance stream.

proto Prototypes are not allowed.

script instanceManager object Scripts must not modify the number or
order of objects in the Form DOM.

XFA Specification
Chapter 7, Template Features for Designing Dynamic Forms Grammar Excluded from XFAF 268

subform anchorType
allowMacro
bookend
border
break
breakBefore, breakAfter
colSpan, columnWidths
h,w
keep
layout
locale
margin
minH, maxH
minW, maxW
occur
overflow
pageSet
para
x,y

Allowed but only to express the form logic,
not to vary the appearance or number of
instances.

subformSet No use allowed. XFAF forms can only contain static objects.

Element Property Note

 269

8 Layout for Growable Objects

Various layout objects, including fields and subforms, can be made growable. A growable object starts off
at a certain size but can stretch to accommodate more content. It is possible to impose a maximum size
limit on a growable object, or it may be infinitely elastic.

Placing growable objects upon fixed-size pages presents a problem. Where should the objects be placed?
What should happen if a growable object does not fit in the region where it is to be placed? This chapter
discusses how these problems are addressed by an XFA layout processor.

Background and Goals

When an XFA processing application produces a document, the physical arrangement of the document
may change depending on the supplied data. For example, the supplied text may overflow the boundaries
of the associated region of the page into another region. This specification codifies the rules which govern
the physical placement of displayable objects upon a page or display screen and the actions which are
taken when a displayable entity does not fit in the space allocated for it. It does not deal with rendering of
the laid-out page on the display device, which is handled downstream in a renderer. Rendering is outside
the scope of XFA.

If these rules are followed any XFA layout processor, given the same Template DOM, Form DOM, locale
settings and typefaces, will produce the same layout as any other XFA layout processor. This means that all
glyphs and other displayed objects will be positioned at the same places and on the same pages. It does
not guarantee identical appearance of the finished documents because there may be differences in
rendering, for example, between a monochrome printer and a color printer. However, it is expected that
on comparable display devices, with the same fonts and page sizes, the alignment of printed entities will
be reproduced to within one pixel. This degree of reproducibility is important for some uses of electronic
forms, notably when using forms whose appearance is prescribed by law. On the other hand, forms do not
require the refined text processing that is used in publishing. For example, not all types of kerning are
required. It is more important that the placement of text be fast (because it may be done by an application
running on a multitasking server) and, above all, robust.

Some XFA applications do not include a layout processor. This may even be true of client applications that
present a form for interactive filling and update. Instead the form may have been already laid out and
rendered by an upstream process. In that case the client may (but is not required to) rely upon the
pre-rendered image of the form rather than performing layout and rendering for itself. However this is
only feasible with a subset of forms known as static forms. See “Static Forms Versus Dynamic Forms” on
page 326 for a full discussion of the difference between static and dynamic forms. The discussion in this
chapter applies to every form when it passes through the layout process, whether the form is static or
dynamic.

The reader of this specification will learn how the XFA layout process proceeds, its inputs and outputs, its
limitations and options. This information is valuable to implementors who wish to create an
XFA-compliant layout processor or generate XFA-compliant templates, and to users of electronic forms
who want to understand them in greater depth.

XFA Specification
Chapter 8, Layout for Growable Objects 270

Growable Containers
An XFA template may contain growable container elements, which means the container’s size may
change. Growable objects are very useful in form processing environments. Growth may occur along
either the X and Y axes as follows:

● Growable along both X- and Y-axes. An application of this feature is a region of freeform text on a form
with no imposed width to force word-wrapping, and no limit on height.

● Growable along the Y-axis only. An application of this feature is the body text field of a memorandum
form where many lines of input causes the field to grow vertically.

● Growable along the X-axis only. An application of this feature is a field that accommodates a product
part number of indeterminate length.

The dimensions of non-growable container objects are determined from the outside-in. In contrast, the
dimensions of a growable container are determined from the inside-out.

● Non-growable container dimensions. When a form-designer uses a GUI-based template design
application to place an container object on the template, the software application typically works form
the outside-in. That is, it starts with the rectangle drawn by the designer and applies the margins to
determine the available nominal content region.

● Growable container dimensions. The growability of a container object becomes apparent during form
fill-in. When a container object is growable, the XFA processing application typically works from the
inside-out. It computes a content region from the container's contents and then applies the margins to
determine a dynamic nominal extent.

A container object is growable if the following conditions are met:

● Container supports growth. The container’s content type or ui supports growth. Most container
elements with widget properties are growable, but container elements with arcs, lines, or rectangles
properties are not. The Appendix “Layout Objects” on page 1453 specifies the content types and ui’s
that support growth.

● Container omits one or both fixed size attributes. The container omits a fixed dimension (h or w) along
one or both axes. The presence of the h or w attributes with non-empty values fixes the height or width
of a container. The absence of those attributes in a growable container indicates the axis/axes along
which the container may grow, as described in the following table.

XFA Specification
Chapter 8, Layout for Growable Objects 271

For those draws and fields that do not support the notion of growableness (such as arcs and rects) the
minW and/or minH are used in the absence of a specified w or h attribute.

On the other hand, the growability of a field is not necessarily constrained by its user-interface properties.
Text fields by default do not accept multiline input from the user. However if such a text field is merged
with multiline data and the layout parameters make the field vertically growable, it grows regardless of the
user-interface setting.

➤ Forbidden condition: value of -1 not allowed for minH, maxH, minW, or maxW

Specifying -1 as a value of w/h/minH/maxH/minW/maxW is undefined. It does not indicate growableness or
infinity.

Non-null
attribute

Axis along
which
container
grows Explanationh w

✔ ✔ None If both h and w are non-null, the container is not growable on either axis.
Any minW/minH/maxW/MaxH values are ignored.

Example 8.1 A fixed-size container

<field name="Field1" h="1in" w="5in">…

Note: The default value for w and h are null, the default value for minH
and minW is 0, and the default value for maxH and maxW is infinity.

✔ X If h is specified (non-null) and w is null, the container is horizontally
growable and vertically fixed. Any minH/maxH values are ignored.

Example 8.2 Containers that are growable only in the X axis

<field name="A" h="0.5in" minW=".5in" maxW="3in">…
<field name="A" h="2in">…
<subform name="B" h="0.5in" minW="1in" maxW="5in">…

✔ Y If w is specified (non-null) and h is null, the container is vertically
growable and horizontally fixed. Any minW/maxW values are irrelevant.

Example 8.3 Containers that are growable only in the Y axis

<field name="A" w="2in" minH=".5in" maxH="3in">…
<field name="A" w="2in">…
<subform name="B" w="6in" minH="1in" maxH="5in">…

X and Y If neither h nor w is specified, the container is growable on both the X and
Y axes.

Example 8.4 Containers that are growable in both axes

<field name="A" minH=".5in" maxH="3in"
minW="1in" maxW="3in">…

<field name="A">…

XFA Specification
Chapter 8, Layout for Growable Objects Text Placement in Growable Containers 272

➤ Forbidden condition: maxH/W must be null or greater than or equal to minH/W

If both minimum and maximum widths are supplied for the same element the minimum width must be
smaller than or equal to the maximum width. Similarly if both minimum and maximum heights are
supplied for the same element the minimum height must be smaller than or equal to the maximum
height. However it is anticipated that layout processors will encounter some templates that are not
conforming in this way. In such a case the layout processor should emit a warning and swap the offending
maximum and minimum.

➤ No longer considered improper: maxW/H may be zero

Earlier versions of this specification said that it was improper for maxW or maxH to be present as an
attribute but with a value of zero. Furthermore they said that this was a conditioning warranting the issue
of a warning.

This restriction was removed in XFA 3.0. Declaring maxW or maxH attributes with the value zero is now
equivalent to omitting them entirely. This change was made because, being measurements, they default
to the value zero. It was inconsistent to issue a warning for the default value.

Growth and the Box Model

Typically, a growable object grows or shrinks when the geographical size of its content changes. The
object responds to the size change by adjusting the size of its nominal content region to appropriately
enclose the content. As a result, this triggers a change in the container's nominal extent, to keep the box
model consistent. The change in nominal extent may cause the container's parent to adjust itself, possibly
changing its own size as well. Note that some of a container's graphical content may be outside the
nominal extent both before and after the size changes. It's up to the object to manage this in a way that is
intuitive for users of the object.

It may be helpful to think of transformations as occurring after growth. An object establishes its new
nominal content region in the coordinates it is comfortable with. Next, applies the box model
embellishment. Only then does it do transformations.

Growth in Growable Positioned Objects

Growth always occurs away from the anchor point in the directions defined by the anchor point type. For
example, a topRight anchored object will grow only to the bottom and the left, while a middleCenter
anchored object will grow evenly in all four directions.

When a positioned object grows, we say that the growth is visually destructive. That is, the growing object
may become large enough to overlap and obscure other sibling objects that occur beneath it according to
“Appearance Order (Z-Order)” on page 70. Note that the overlap is apparent only in the presentation of
the objects, the obscured objects continue to exist in the form in their entirety.

Text Placement in Growable Containers
The rules for text placement discussed in “Flowing Text Within a Container” on page 56 are modified when
the text is being placed within a growable container. The modified rules are described below. The
examples below use the same text as that used in the earlier chapter, reproduced again here:

To be, or not to be: that is the question:↵Whether 'tis nobler in the mind to
suffer↵The slings and arrows of outrageous fortune,↵Or to take arms against
a sea of troubles,↵And by opposing end them?∇

XFA Specification
Chapter 8, Layout for Growable Objects Text Placement in Growable Containers 273

The symbol ↵ stands for the newline indicator, while ∇ stands for a Unicode new paragraph indicator
(U+2029).

Text Layout with Growable Width
When placing text into a growable-width region, the text
records are interpreted as lines. Printable characters in the
text are placed sequentially in the flow direction until a
newline character is encountered or a width limit is
reached. The layout processor then starts a new line and
places subsequent characters on the new line. The final
width of the region is equal to the width of the longest line
plus the width of the caption, if applicable. The caption
width is applicable if the caption is placed either at the left
or the right of the region.

Example 8.5 Draw with growable height and width

The figure above at right shows the layout extent, or bounding box, of a sample paragraph in solid black.
The draw object containing the paragraph is being placed into a contentArea object. The extent of the
contentArea is shown in dashed black. The template markup for the draw object follows.

<draw maxW="100mm" maxH="100mm">
<value>

<text>To be, or not to be: that is the question:
Whether 'tis nobler in the mind to suffer
The slings and arrows of outrageous fortune,
Or to take arms against a sea of troubles,
And by opposing end them?</text>

</value>
</draw>

The draw object’s anchorType property determines what point is used to position it. If the draw object
is positioned using its upper-left corner, lower-left corner, or the middle of the left edge it grows to the
right. That is, growth occurs by moving the left edge right on the page. If it is positioned using its
upper-right corner, lower-right corner, or the middle of the right edge it grows to the left. If the draw
object is positioned using either the middle of its top edge or the middle of its bottom edge it grows
equally to the right and left. In the above example the anchor point defaults to the the top-left corner.

The hAlign attribute of the para element governs whether text within a container is placed at the left,
right, or center of the container. However when the container is growable in the horizontal direction and
the horizontal size of the content exceeds the container’s minimum horizontal size, the container grows
just large enough to hold the content. In this case the hAlign attribute makes no practical difference
because growing automatically aligns the container. See Example 8.6, below, for an example of a similar
effect upon vAlign in the vertical direction.

To be, or not to be: that is the question:
Whether 'tis nobler in the mind to suffer
The slings and arrows of outrageous fortune,
Or to take arms against a sea of troubles,
And by opposing end them?

contentArea

draw

Extent of a paragraph

XFA Specification
Chapter 8, Layout for Growable Objects Flowing Layout for Containers 274

Text Layout with Growable Height
When the container for the text is growable in the vertical
direction, it increases in height as required to
accommodate the text within its usable region. The
usable region excludes the caption region, if any.

If the field is positioned using its upper-left corner,
upper-right corner, or the middle of the top edge it grows
downward. That is, growth occurs by moving the bottom
edge down on the page. If it is positioned using its
lower-left corner, lower-right corner, or the middle of the
bottom edge it grows upward. If the field is positioned
using either the middle of its left edge or the middle of its
right edge it grows equally up and down.

The vAlign attribute of the para element governs
whether text within a container is placed at the top,
bottom, or middle of the container. However when the
container is growable in the vertical direction and the
vertical size of the content exceeds the container’s
minimum vertical size, the container grows just large
enough to hold the content. In this case the vAlign
attribute makes no practical difference because growing
automatically aligns the container.

Example 8.6 Growable field satisfies vAlign requirement

In the illustration above at right, the paragraph has a vAlign attribute of bottom and an hAlign
attribute of left and the field has a region reserved for a caption. The field was placed within the
contentArea using positioned layout, which set the position of the field's top-left corner. The field is
vertically growable and has grown to hold the content. Bottom-alignment was specified for the paragraph,
but this is satisfied automatically by the field growing to the bottom of the field caption region. The text in
the field is positioned just above the caption region.

The template markup for this example follows.

<field name="FieldA" x="2cm" y="2cm" w="15cm">
<para vAlign="bottom" hAlign="left"/>
<caption placement="bottom" reserve="1cm"/>
…

</field>

Flowing Layout for Containers
Positioned layout, as discussed in “Layout Strategies” on page 43, works best when the size of each layout
object is known in advance. This is not possible for growable objects. If positioned layout is used for a
growable object then there is a danger of the object either being clipped or overlapping other objects.
Hence forms using growable objects generally use flowing layout within the container for the growable
object. Usually the container is itself growable, so its container in turn uses flowing layout, and so on.

In flowing layout the contained objects (or in some cases upper parts of objects) are placed sequentially in
abutting positions until they have all been placed or the container cannot accommodate the next

To be, or not to be: that is the question:
Whether 'tis nobler in the mind to suffer
The slings and arrows of outrageous fortune,
Or to take arms against a sea of troubles,
And by opposing end them?

field

caption region of field

contentArea

useable region of field

Effect of the vAlign attribute

XFA Specification
Chapter 8, Layout for Growable Objects Flowing Layout for Containers 275

contained object. In this type of layout the contained object's x and y properties, as well as its anchor
point, are ignored.

Flowing layout may not be used by all containers. Some containers (pageArea and contentArea
objects) always employ positioned layout for their contents. A second group (areas, subforms and
exclusion groups) inherit the layout strategies of their containers. Subforms, by contrast, have a layout
property which specifies the type of layout to be used for the content of the subform. The contained
objects (children of the subform node), if they are themselves containers, may in turn specify some other
layout strategy within themselves. If a subform element does not have a layout attribute it defaults to
positioned layout. Finally, fields and draws containing text always use flowing layout.

It is important to distinguish the layout strategy used by a container for its own content and the strategy
controlling the placement of the container itself within the object that contains it. For example the
contents of a field always flow but the field as a whole may be positioned or it may flow.

Note that, because the root subform has no container, unlike all other layout object it is not controlled by
the layout strategy of its container. Instead the root subform itself is treated as though it (but not
necessarily its content) flows across the entire document. For example, if the root subform has visible
borders, the borders are displayed on every page.

Top-to-Bottom Layout

In top-to-bottom layout the layout processor attempts to place
the first contained object at the top-left of the container. If this
succeeds it attempts to place the next contained object
immediately below the nominal extent of the previous contained
object and aligned with the left edge of the container, and repeats
for the remaining contained objects. If it comes to an object that
will not fit in the remaining height of the container, it attempts to
split the object horizontally as discussed in “Content Splitting” on
page 284. If it is able to split the object it places the top fragment
of the split object into the current container immediately below
the nominal extent of the previous object.

Example 8.7 Content splitting in top-to-bottom layout

In the example at right, content F has been split and the top
fragment placed into contentArea A. Also note that content D
extends past the right edge of the contentArea; splitting is not
done in the vertical direction. The template markup for this
example follows.

<subform name="root" layout="lr-tb">
<pageSet>

<pageArea>
<contentArea name="A" w="2in" h="9in"/>

</pageArea>
</pageSet>
<subform name="DataRecord" layout="tb">

<field name="B" w="1.75in">…</field>
<field name="C" w="1.5in">…</field>
<field name="D" w="2.25in">…</field>
<field name="E" w="1.5in">…</field>
<field name="F" w="1in">…</field>

contentArea A

Content B

Content C

Content D

Content E

Top of F

Top of
content F

Top-to-bottom layout

XFA Specification
Chapter 8, Layout for Growable Objects Flowing Layout for Containers 276

</subform>
</subform>

The layout processor employs top-to-bottom layout within any subform having a layout property with a
value of tb. However for splitting of content across pages to take place all ancestral subforms must also
specify top-to-bottom layout.

Left-to-Right Top-to-Bottom Tiled Layout

In left-to-right top-to-bottom tiled layout the layout processor attempts to place the first contained object
at the top-left of the container. For each of the remaining contained objects, it attempts to place the
object immediately to the right of the nominal extent of the previous object, or if this fails immediately
below it aligned with the left edge of the container. If it comes to an object that will not fit in the
remaining height of the container, it attempts to split the object horizontally as discussed in “Content
Splitting” on page 284. If it can split the object, it places the top fragment of the split object into the
container and then attempts to place the bottom fragment, treating each fragment as a contained object
and following the same rules given earlier in this paragraph.

Example 8.8 Left-to-right top-to-bottom tiled layout

For example, the document at right has a single container into
which seven layout objects have been placed using left-to-right
top-to-bottom tiled layout. The layout objects were placed in
order from B through H.

The layout processor employs left-to-right top-to-bottom tiled
layout within any subform having a layout property with a
value of lr-tb. It also defaults to this layout strategy when
laying out text within a draw or field object, unless the
locale property of the draw or field names a locale in which
text normally flows right-to-left and top-to-bottom. See
“Flowing Text Within a Container” on page 56 for more detail
about text layout.

When used for text, this type of flowing layout suffices for
languages that are written left-to-right, with successive lines
stacked top-to-bottom in the European style. It does not suffice
for languages written from right-to-left (such as Arabic), nor for
languages written top-to-bottom (such as Chinese).

Content B Content C

Content
D

Content
E

Content G
Content H

Content F

contentArea A

Left-to-right top-to-bottom layout

XFA Specification
Chapter 8, Layout for Growable Objects Interaction Between Growable Objects and Flowed Content 277

Right-to-Left Top-to-Bottom Tiled Layout

 Right-to-left top-to-bottom tiled layout is just like left-to-right
top-to-bottom tiled layout, above, except that objects are placed
from right to left instead of left to right.

Example 8.9 Right-to-left top-to-bottom tiled layout

For example, the document at right has a single container into
which seven layout objects have been placed using right-to-left
top-to-bottom tiled layout. The layout objects were placed in
order from B through H.

 When used for text this type of flowing layout suffices for
languages that are written right-to-left, with successive lines
stacked top-to-bottom in the style of Arabic and Hebrew.
However within such languages it is common for sections of
included text to run left to right. For example, numbers using
Western-style digits are placed left-to-right within the overall
right-to-left flow. See for more detail about text layout in
right-to-left top-to-bottom locales see “Flowing Text Within a
Container” on page 56.

The layout processor employs right-to-left top-to-bottom tiled
layout within any subform having a layout property with a value of rl-tb. It also defaults to this layout
strategy when laying out text within a draw or field object provided the locale property of the draw
or field names a locale in which text normally flows right-to-left and top-to-bottom.

➤ Error Condition: Inappropriate Layout Strategy

If a layout container has a layout property with a value that is a valid keyword but is not applicable to
that container's contents, the layout processor should issue a warning and ignore the offending property.
It is likely that some of the restrictions will be relaxed in future versions of this specification. The
recommended behavior assures that the form can still be processed, although probably not with the
expected appearance. The set of inappropriate layout strategies consists of:

● Positioned layout applied to text

● Flowing layout applied to a geometric figure inside a draw that does not assert w and h properties
(because such a geometric figure has no natural size)

● Flowing layout applied to a subform that is a leader or trailer or is contained within a leader or trailer
subform (because the leader or trailer size is fixed)

● Row layout outside of a table (see “Tables” on page 321)

Interaction Between Growable Objects and Flowed Content
Growable containers can have a dynamic size, which can affect the layout of flowed content simply by
changing the size of the container. Whether a growable container is allowed to change depends on
whether the form is being used interactively or not. “Growable Containers” on page 270 describes the
characteristics of growable containers.

Content BContent C

Content
D

Content
E

Content GContent H

Content F

contentArea A

Right-to-left top-to-bottom layout

XFA Specification
Chapter 8, Layout for Growable Objects Interaction Between Growable Objects and Flowed Content 278

Non-Interactive Form Layout
For initial layout and non-interactive layout, growable containers are re-sized to accommodate the data
they contain. The new size of the container is used to determine the containers position, as described
“Flowing Layout for Containers” on page 274, with the exception that the new container size is used rather
than the original container size.

The following example describes vertically growable fields
that have no default value. These fields are contained in a
subform with that uses flowed layout (layout="tb").
After initial layout, those fields have the appearance shown
at right.

Example 8.10 Vertically growable fields

<subform name="MySubform" layout="tb">
<field name="FieldA"

w="100mm" minH="10mm" maxH="100mm">
<ui>

<textEdit multiLine="1"/>
</ui>

</field>
<field name="FieldB"

w="100mm" minH="10mm" maxH="100mm">
<ui>

<textEdit multiLine="1"/>
</ui>

</field>
</subform>

Example 8.11 Vertically growable fields after data binding

If a non-interactive bind process associates FieldA with
data that exceeds the minimum vertical height specified for
the field (minH), the layout processor grows the field
vertically to accommodate the text and rearranges the
subsequent fields. The illustration at right shows the vertical
growth of FieldA and the relocation of FieldB, and the
following depicts the Form DOM after new data is bound to
FieldA and FieldB.

[subform (MySubform) layout="tb"]
[field (FieldA) = "To be or not to be …"

w="100mm" minH="10mm" maxH="100mm"]
…

[field (FieldB) = "Hello world."
w="100mm" minH="10mm" maxH="100mm"]
…

contentArea A

FieldA

FieldB

Growable fields after initial layout

contentArea A

FieldA

FieldB

To be or not to be, that is the
question. Whether 'tis nobler in
the mind to bear the slings and
arrows of outrageous fortune, or to
take arms against a sea of troubles
and by opposing end them?

Hello world.

Growable fields after being bound
with data (non-interactive)

XFA Specification
Chapter 8, Layout for Growable Objects The Layout DOM 279

Interactive Form Fill-In
If a person filling out a form interactively provides new data to the growable fields illustrated above, the
field is not required to change shape. Rather, the layout processor may clip the new data, as described in
“Clipping” on page 54. However if it does so then whenever the field has input focus the user interface
provides scroll bars or some other mechanism to make available the full content of the field.

The Acrobat implementation holds the field size constant while data is being entered, providing scroll bars
as it would for a non-growable field. However, when focus leaves the field it updates the layout to grow (or
shrink) the field.

Effect of Container Rotation on Flowed Layout
Flowing layout accommodates rotated containers by using the
adjusted axes of the container to determine layout. If both
fields in the illustration “Growable fields after being bound
with data (non-interactive)” are rotated 90 degrees
(counterclockwise), the subform is displayed as shown at right.

Example 8.12 Vertically growable fields rotated

<subform name="MySubform" layout="lr-tb">
<field name="FieldA" rotate="90"

w="100mm" minH="10mm" maxH="100mm">
<ui>

<textEdit multiLine="1"/>
</ui>

</field>
<field name="FieldB" rotate="90"

w="100mm" minH="10mm" maxH="100mm">
<ui>

<textEdit multiLine="1"/>
</ui>

</field>
</subform>

The Layout DOM
The relationship between layout objects is embodied in the Layout DOM. This is a tree graph representing
the result of the layout operation. This includes positioning information for all displayable layout objects.
Within the Layout DOM descent stands for relative positioning, so that the child's position on the page is
established relative to its parent. Usually the child's displayed representation is also contained within the
parent's region of the page, however this is not always the case. The parent is often described as the
container of the child, even though the child may be rendered outside the parent.

Note: The Layout DOM is an internal DOM used by the layout processor. It is not visible to scripts. The
$layout object which is accessible via XFA-SOM expressions does not correspond to the Layout
DOM but to the layout processor itself. Hence $layout is used to control or query the layout
processor. For more information about the $layout object see the Adobe XML Form Object
Reference [LC-Scripting-Reference].

A node within the Layout DOM is called a layout node. Layout nodes other than the root have the same
types as nodes in the Form DOM or in the Template DOM, from which they are copied. Sometimes multiple

contentArea A

FieldA

T
o

be
 o

r
n

ot
 t

o
be

, t
h

at
 is

 t
h

e
qu

es
ti

on
. W

h
et

h
er

 't
is

 n
ob

le
r

in

th
e

m
in

d
 t

o
be

ar
 t

h
e

sl
in

gs
 a

n
d

ar

ro
w

s
of

 o
u

tr
ag

eo
u

s
fo

rt
u

n
e,

 o
r

to

ta
ke

 a
rm

s
ag

ai
n

st
 a

 s
ea

 o
f t

ro
u

bl
es

an

d
 b

y
op

p
os

in
g

en
d

 t
h

em
?

FieldB

H
el

lo
 w

or
ld

.

Rotated growable fields after being
bound with data (non-interactive)

XFA Specification
Chapter 8, Layout for Growable Objects The Layout DOM 280

layout nodes are copied from the same form node or template node; this happens when a single layout
content object is split into fragments which are spread across multiple contentArea objects.

Layout is performed by adding layout nodes to the Layout DOM. The top level below the root holds
pageArea objects. Each new pageArea added to the Layout DOM is another display surface added to
the document. The next level holds contentArea objects. Lower levels of the Layout DOM represent
layout content. Each new node of layout content represents a layout object or fragment of a layout object
that has been placed upon a display surface. The document order of the Layout DOM is also the Z-order of
the layout content; later in document order is closer to the front. You can think of this as the later
displayable objects being printed over top of the earlier ones. This is illustrated in the following diagram.

Order in which objects in the Layout DOM are drawn on page

Among sibling pageArea objects, the document order determines the page order; the leftmost (eldest)
sibling is the first (lowest page number) in the document. This is illustrated below.

[pageArea]

[contentArea]

[subform]

[subform]

[subform]

XFA Specification
Chapter 8, Layout for Growable Objects The Layout DOM 281

Order in which pages in the Layout DOM are produced (printed)

Later pages are, by convention, placed toward the back of the document. However printers actually print
the lower-numbered pages first. Hence the same principle is observed as for displayable objects; pages
are printed and objects are rendered in document order.

[pageSet]

[pageArea]

[pageArea]

[pageArea]

Page 1

Page 2

Page 3

XFA Specification
Chapter 8, Layout for Growable Objects The Layout Algorithm 282

The Layout Algorithm
The layout processor is described below and throughout this specification in terms of an algorithm. Note
that, notwithstanding the algorithmic description in this specification, conforming implementations are
not required to follow the same algorithm internally. They are only required to produce the same results
given the same inputs. Similarly, although this specification uses object-oriented terms and concepts,
conforming implementations may be written in any language and use any internal structure, as long as
they produce the same results given the same inputs. The node structure described here is not necessarily
the same structure used by any particular implementation.

The layout processor is content-driven. It makes a single traversal of the content subtree of the Form DOM,
adding nodes to the Layout DOM as it goes until all of the content has been processed (or some other
termination condition is reached). The layout processor keeps track of a current content node and a
current container. The current content node is the node in the Form DOM representing the content
currently being processed. A new layout content node is added to the Layout DOM to represent the
newly-placed content. The current container is the node in the Layout DOM which will be the parent of the
new layout content node.

The starting point in the content is the root subform of the Template DOM. All content is descended from
the root subform. The root subform may also specify the starting point in the hierarchy of containers (the
starting container). If it does not specify a starting point the starting point defaults to the first
contentArea of the first pageSet which is a child of the root subform. The layout processor recursively
copies the nodes from the root subform down to the starting container into the Layout DOM, reproducing
the parent-child relationships.

There is a hierarchy of containers. The outermost container is the pageSet, which contains pageArea
objects. pageArea objects contain background material such as a letterhead or watermark, as well as
contentArea objects. contentArea objects contain foreground material, including both boilerplate
and user-supplied data. contentArea objects may directly contain draws, areas, fields, subforms, and
subform sets. From this level of the hierarchy down the schema is identical to that defined for the Template
DOM. Subforms and areas may directly contain draws and fields. A layout object of any other type must be
contained in a draw or a field. In addition areas, subforms, and subform sets may contain lower-level areas,
subforms, and/or subform sets nested to any depth.

The layout processor places background ahead of any other content of the same pageArea within the
Layout DOM. This gives background objects a position within the Z-order such that overlapping
foreground objects should be drawn on top. However, there is no guarantee that overlapped foreground
and background objects will render properly on all output devices.

As each new content node is encountered it is placed within the current container, unless and until the
current container fills up. When the current container fills up, the Layout DOM is extended by adding
nodes as necessary and the layout processor traverses to a new node to find the new current container. For
example, a template contains the following declarations.

Example 8.13 A simple template using positioned layout

<template …>
<subform name="A" layout="position"> <!-- root subform -->

<pageSet>
<pageArea name="X">

<draw name="XBackground" x="1cm" y="22cm">
<value>

<text>background text</text>
</value>

XFA Specification
Chapter 8, Layout for Growable Objects The Layout Algorithm 283

</draw>
<contentArea name="Y" x="2cm" y="2cm" w="13cm" h="18cm"/>

</pageArea>
</pageSet>
<draw name="ABoilerplate" x="1cm" y="12cm">

<value>
<text>boilerplate text</text>

</value>
</draw>
<field name="B" x="2cm" y="2cm">…</field>
<field name="C" x="2cm" y="7cm">…</field>

</subform>
</template>

After merging the Form DOM contains:

[subform (A)]
[field (B) = "field B content" x="2cm" y="2cm"]
[field (C) = "field C content" x="2cm" y="7cm"]
[draw (ABoilerplate) x="1cm" y="12cm"]

[text = "boilerplate text"]

The layout processor starts by copying the pageArea into the
Layout DOM and then adding a copy of the background text. At this
point it is ready to begin inserting foreground objects. It copies the
contentArea object into the Layout DOM. It initializes the current
content node as the root subform, which is subform A. It adds a copy
the root subform as a child of the contentArea. Then it looks for
the next content node, which is field B, so it adds field B into the
Layout DOM as a child of the subform. Continuing with the children
of the subform, it places field C and the boilerplate into the Layout
DOM. The resulting layout is shown at right.

The corresponding Layout DOM contains:

[pageArea (X)]
[draw (XBackground) x="1cm" y="22cm"]

[drawText = "background text"]
[contentArea (Y) layout="position"]

[subform (A)]
[field (B) = "field B content"

x="2cm" y="2cm"]
[field (C) = "field C content"

x="2cm" y="7cm"]
[draw (ABoilerplate) x="1cm" y="12cm"]

[text = "boilerplate text"]

In this case the Layout DOM is not much more than a reordering of the Form DOM. This example is simple
because all of the content fits into its assigned region of the page. The reordering is done to give each
displayable entity its proper Z-order. The background text is placed ahead of its peers in the Layout DOM
so that when rendered it will be on the bottom, overlaid by anything else that may happen to overlap it.
When putting children of a pageArea into the Layout DOM the layout processor places displayable
entities that are immediate children of a pageArea ahead of any other children. In all other cases the
layout processor retains the document order of the DOM from which it is copying so that the Z-ordering is
preserved.

background text

field B content

field C content

boilerplate text

subform A

contentArea Y

pageArea X

Simple layout example

XFA Specification
Chapter 8, Layout for Growable Objects Content Splitting 284

Error Handling
A layout processor may encounter a template which does not conform to this specification. The template
may simply be defective, or it might have been constructed using a newer version of the specification. In
the event of template non-conformity it is desirable for the layout processor to emit a warning but keep on
processing and produce output, even if the visual appearance is degraded. This fail-soft capability ensures
that data can still be viewed and operated on if at all possible. This specification describes recommended
behaviors for coping with non-conforming templates.

Content Overflow
When a layout object is too tall to fit into the remaining vertical portion of a content region, any of several
things can happen. The layout processor may place the object into the current region even though it does
not fit, either clipping it or allowing it to extend past the limits of the region. It may decide not to place the
object into that content region at all, deferring it to the next content region. Or it may split the object,
putting the top of it into the current region and the rest into the next available region.

Caution: Deferral and splitting are characteristics of a flowing layout strategy. However a layout object
may be a candidate for deferral or splitting even if its immediate container practices positioned
layout. This comes about when the container is itself positioned by its container using flowing
layout. Indeed it can happen when any container of the object (any ancestor in the Layout DOM)
uses flowing layout. The individual object has a single position relative to the other positioned
contents of its immediate container, but the entire container may be split as it flows. Splitting the
container may split the contents.

Clipping, including shrinking the content to fit into the region, does not have any explicit controls. The
rules governing clipping are described in “Clipping” on page 54.

Deferral can be controlled via the breakBefore or BreakAfter property of an object. The constraints
specified by this property can cause the object to be directed to a particular content area. See “Break
Conditions” on page 264 for more information. Deferral can also be constrained by a requirement that
adjacent subforms be kept together. See“Adhesion” on page 305 for more information.

An object can be protected from splitting by placing an explicit constraint upon it. In addition, different
types of objects are splittable only in certain places or not splittable at all. The rules for splitting are
described in “Content Splitting” on page 284.

Sometimes it is not possible to place a layout object upon the page without splitting it, but splitting it is
not possible. In these case the layout processor overrides the limits of the current content region. See
“Content Splitting” on page 284.

Content Splitting
Splitting is not trivial. Splitting within a top or bottom margin is not allowed because it would defeat the
purpose of declaring the margin. A simple multiline block of text cannot split at just any height, because
most split lines would cut through characters of text. The multiline block of text can only split at discrete
locations that fall between the lines of text. Some other objects (such as images) cannot split at all. The
details of where and how various objects can split are described below.

XFA Specification
Chapter 8, Layout for Growable Objects Content Splitting 285

Split Restrictions
Splitting is always forbidden within top and bottom margins. In addition, some types of content can not
be split. The restrictions applying to different types of content follow.

Barcode

No split is allowed.

Geometric figure

No split is allowed.

Image

No split is allowed.

Text

Text includes anything consisting of printable characters and (optionally) formatting information.
Hence it includes the content of numeric fields and of date, time, and date-time fields as well as
text fields. Editable fields may take on a different appearance temporarily while they have the
focus. For example, a date field may appear as a calendar widget with clickable dates. Layout is not
concerned with this temporary appearance. Layout deals only with the non-focus appearance,
which is also the appearance in non-interactive contexts such as when the form is printed on
paper.

Variable text (i.e. text residing in the
Data DOM) is normally splittable below
any line, at the position of the lowest
descender from the line. In the figure
at right, the dashed lines represent
possible split points between lines.
However orphan and widow controls
may place restrictions upon how many
lines are required above the split
(orphan) or below the split (widow).

Note: Text within rotated containers cannot
be split.

Widget

Widgets include buttons, check boxes, radio buttons, choice lists, and signature widgets. Widgets
may take on a different appearance temporarily while they have the focus. Layout is only
concerned with the non-focus appearance, which is also the appearance in non-interactive
contexts such as when a form is printed on paper. No split of the non-focus appearance of a
widget is allowed.

In addition to the above inherent constraints, an explicit constraint may be placed upon an individual
container object restricting when it can split. A subform, field, or draw object possesses a keep property.
The keep property has an intact sub-property which controls splitting. This can have any of three
settings. none means that the layout processor is free to split the object wherever it can. contentArea
means that the layout processor is not allowed split the object. Instead the object is placed in a single
contentArea. pageArea means that the layout processor may split the object but not across pages.

Note that the default value for the intact property varies depending upon context. For a subform which
is a row in a table (“Tables” on page 321), the default is contentArea. This is also the default when the

To be or not to be; that is the
question. Whether 'tis nobler
in the mind to bear the slings
and arrows of outrageous
fortune, or take up arms
against a sea of troubles

Split lines within text

XFA Specification
Chapter 8, Layout for Growable Objects Content Splitting 286

subform's container's layout strategy is positioned. Otherwise for subforms the default is none. For a draw
the default is always contentArea, while for a field the default is always none.

When the layout processor encounters a keep-intact constraint for the current object it simply treats the
object as unsplittable. The current object's container is prevented from splitting anywhere within the
layout extent of the current object.

For example, the following template declares a subform that is to be kept intact.

Example 8.14 Template with a keep-intact requirement

<template …>
<subform name="root" layout="tb">

<pageSet>
<pageArea>

<contentArea name="A" …/>
<contentArea name="B" …/>

</pageArea>
</pageSet>
<subform name="C" …>…</subform>
<subform name="D" …>

<keep intact="contentArea" />
…

</subform>
</subform>

</template>

Assume that the subform D contains a field holding a multiline block of text and that the layout processor
is attempting to place it into the remaining portion of contentArea A, but it is too tall to fit. Without the
intact property the layout processor would have split D in between lines and placed the top part into
contentArea A and the remainder into contentArea B. Instead it treats subform D as unsplittable and
places the whole subform into contentArea B, as shown above at right.

To be or
not to be,
that is the
question.
Whether
'tis nobler
in the mind
to bear the

C

A B

D

Effect of keep-intact property

XFA Specification
Chapter 8, Layout for Growable Objects Content Splitting 287

Splitting a Container Having Child Containers
In addition to the constraints upon
splitting individual objects, the layout
process may be trying to split a contained
object which itself contains a mixture of
other objects. For example, the object to
be split may contain a mixture of blocks of
text and images as shown at right.

Example 8.15 Splitting a container

In the figure at right, subform D cannot
split within its margins, because splitting
within margins is not allowed. It cannot
split within image E or image F because
images are not splittable. Neither can it
split below the bottom of contentArea
A because then the top fragment of
subform D would extend outside the
contentArea. The only places it can
legally split are between the images at
one of the text area's legal split points.
The dotted lines with arrowheads show
the two legal split positions.

Template markup corresponding to this
example follows.

<subform name="root" layout="tb">
<pageSet>

<pageArea>
<contentArea name="A" x="2cm" y="2cm" w="15cm" h="15cm"/>

</pageArea>
</pageSet>
<draw name="B" h="4cm" w="8cm">

…
</draw>
<draw name="C" h="4cm" w="6cm">

…
</draw>
<subform name="D" layout="position">

<keep intact="none"/> <!-- allow splitting -->
<margin topInset="1cm" bottomInset="1cm"

 rightInset="1cm" leftInset="1cm"/>
<draw name="E" w="6cm" h="4cm">

<value><image href="…" contentType="…"/></value>
</draw>
<draw name="F" y="5cm" w="6cm" h="4cm">

<value><image href="…" contentType="…"/></value>
</draw>
<field name="G" x="8cm" y="2cm" minH="1cm" w="5cm">

<ui><textEdit multiLine="1"/></ui>
…

To be or
not to be,
that is the
question.
Whether
'tis nobler
in the mind
to bear the

Image E

Image F

Content B

Content C

Subform D

contentArea A

split

split

to
p

m
ar

g
in

b
o

tt
o

m
m

ar
g

in

Splitting a container

XFA Specification
Chapter 8, Layout for Growable Objects Content Splitting 288

</field>
</subform>

</subform>

When the object to be split contains other objects, the layout processor finds the most efficient (lowest)
split location that is acceptable to all of the contained objects. In other words it finds the optimum
consensus. The optimum consensus may be found by the following procedure (written as pseudocode):

Start with the current split location set to the desired split location.
While any object in the container cannot split at the current split
location, do the following:

Set the current split location to the lowest permissible split location
for that object that is above the current split location

Thus the split location creeps upward until a location is found that is acceptable to all the contained
objects. This location may be right at the top of the container (Y offset of zero) in which case the object can
not split.

Split consensus is employed when splitting subforms, areas, and exclusion groups.

Borders and Splitting
Border objects have a break property that determines
what the layout processor does when the object to
which the border belongs splits. When break is set to
close the layout processor draws all sides of the
border around each fragment of the object. By contrast
when break is set to open, the top border is drawn
only over the first fragment and the bottom border only
under the last fragment.

Example 8.16 Effect of the border break property

The figure at right shows the effect of the break
property.

Recall that borders have no effect upon the nominal
extent of a layout object, so although borders are
affected by the layout process they have no effect upon
anything else.

Flowing Between ContentArea Objects
During flowing layout, when a contentArea becomes full, the layout processor moves to a new
contentArea. It traverses from the current contentArea to the new contentArea in document order
(depth-first, left-to-right). Hence it pours content into the current contentArea, then into its next sibling,
and so on until all the contentArea objects within the pageArea are full. At this point the pageArea
itself is considered full.

When the current pageArea is full the layout processor inserts another pageArea into the Layout DOM.
In order to do this it has to decide what pageArea in the template to use as the prototype for the new
pageArea in the Layout DOM. The method by which it selects the prototype pageArea is called its
pagination strategy. The types of pagination strategies supported by XFA are described in “Pagination
Strategies” on page 289.

���������
��	�	����
�
	��	���	��
����	���

���	����
�	���������
��	������
	�������	��

���������
��	�	����
�
	��	���	��
����	���

���	����
�	���������
��	������
	�������	��

�����������	
���������

�����������	
���������

����������
����������
��	�������

����������
����������
��	�������

Effect of the border break property

XFA Specification
Chapter 8, Layout for Growable Objects Pagination Strategies 289

Some layout objects may assert that they have to be kept together with the preceding and/or following
layout object. This is described in “Adhesion” on page 305.

XFA supports the automatic insertion of several kinds of leaders and trailers. Among these are overflow
leaders and trailers, which are described in “Overflow Leaders and Trailers” on page 312.

Overriding ContentArea Boundaries
Since XFA 2.8 the layout processor has refused to allow content overflow to result in leaving both the
current and next content areas empty. The exact circumstance is that the current content region is empty,
the current layout object will not fit (even by splitting) in the current content region and will not fit (even
by splitting) in the next content region. When this circumstance occurs the layout processor overrides the
boundaries of the current content region to force the layout object down onto the page.

This is done to prevent the layour processor from running away, churning out page after page of
boilerplate with no content, when an exceptionally tall and unsplittable layout object is encountered. For
example, rich text is supplied as variable data and there is a character in the rich text taller than any
content region of the form.

Pagination Strategies
Printers come in two types, simplex (printing on one side of the paper only) and duplex (printing on both
sides). Furthermore, when displayed on a monitor a form may be displayed as a series of individual pages
(simplex) or as a series of side-by-side pairs of pages (duplex). Often the form creator can not control
whether the form is presented in simplex or duplex. Since version 2.5 XFA has provided means for the
form to adapt to simplex or duplex presentation as required through the specification of a pagination
strategy.

The pagination strategy is controlled by the relation property of a pageSet object. This property takes
three values representing the three different strategies.

When the value of relation is orderedOccurrence the original pre-XFA 2.5 strategy is selected. In this
ordered pagination strategy the current content node starts at the root of the content subtree of the Form
DOM and traverses the content subtree depth-first and left-to-right (oldest-to-newest). This order is also
known as document order, although not all DOMs are ever expressed as XML documents. When using this
pagination strategy the same number and sequence of surfaces is printed regardless of printer type. For
backwards compatibility this is the default pagination strategy.

When the value of relation is either simplexPaginated or duplexPaginated a different approach
is taken. When the layout processor chooses the next pageArea object it takes into account a number of
qualifications specified for the pageArea. Layout strategies of this type are called qualified pagination
strategies. For example the pageArea can be limited to being a front surface or back surface, or to being
at a certain position within a contiguous series of pages from the same enclosing pageSet. (This approach
duplicates the pagination logic and much of the syntax of XSL-FO [XSL-FO].) The logic for
simplexPaginated and duplexPaginated is very similar and they are both explained in “Qualified
pagination strategies” on page 296.

When the current pageArea is full, the layout processor moves on to the next pageArea object in
accordance with the selected pagination strategy. By default, when it has filled the last pageArea object,
it stops and no more content is laid out. However, it is possible for individual pageArea objects, and the
pageSet object, to be copied multiple times into the Layout DOM. This is controlled by the maximum
occurrence property of the pageArea or pageSet.

XFA Specification
Chapter 8, Layout for Growable Objects Pagination Strategies 290

 It is also possible to make subform elements and subformSet elements sensitive to evenness or
oddness of the page count (and therefore the left-handedness or right-handedness of the page) using the
break property. This is independent of the pagination strategy.

The duplexImposition property - not a page qualifier

Compared to simplexPaginated, duplexPaginated has an extra degree of freedom. Most duplex
printers can manage their paper handling and rotate the printed image as required to allow successive
pages to join either on the long edge of the paper or the short edge of the paper. Prior to XFA 3.1, XFA
processors always told the printer to impose duplexing on the long edge. Starting with XFA 3.1 there is a
duplexImposition property on the pageSet object to control which edge the duplexing is imposed
on. The duplexImposition property takes the value longEdge (the default) or shortEdge. This
property has no effect upon page selection.

Determining the start point
Regardless of the pagination strategy there is a standard way for the layout processor to determine which
pageArea and contentArea to start with when it begins processing. The rule is as follows:

1. If the root subform asserts breakBefore, start with the pageArea and contentArea that satisfy its
break condition. If the break target is a pageArea use the first contentArea within it.

2. Else, look at the first subform child of the root subform. If it asserts breakBefore, start with the
pageArea and contentArea that satisfy its break condition. If the break target is a pageArea use
the first contentArea within it.

Note: This rule was added in XFA 2.5.

3. Else, use the the first appropriate pageArea within the first pageSet child of the root subform. If the
layout strategy for the pageSet is ordered the appropriate pageArea is the first one in document
order. If the layout strategy is qualified it is the first qualified one in document order. Start with the first
contentArea within the selected pageArea.

If this procedure arrives at a pageArea that does not contain any contentArea (a page of pure
boilerplate) the layout processor emits the page and then selects the subsequent page using the normal
algorithm appropriate to the pagination strategy of the pageSet. If that page is also pure boilerplate this
step reiterates until a page with a contentArea is reached or until all eligible page occurrences are
exhausted.

➤ Error condition: No appropriate pageArea at start

It is a fatal error if this procedure does not yield an appropriate pageArea, for example if the root subform
asserts breakBefore but there is no pageArea or contentArea matching the supplied target name.

Occurrence Limits in Ordered Pagination
The pageSet and pageArea elements, like subform elements, have occur properties. These properties
may be used to modify the layout when the pagination strategy is orderedOccurrence.

Caution: The occur properties are ignored when the pagination strategy is either simplexPaginated
or duplexPaginated.

XFA Specification
Chapter 8, Layout for Growable Objects Pagination Strategies 291

In the simplest case every page of the form is identical, except for the variable data within fields. In this
case the occur property of the pageArea element can simply be set to the required number of pages. As
with subforms the same value is supplied for the min and initial attributes, and the max attribute
defaults to the same value. For example in the following template fragment the subform has a
breakAfter property which causes a new page to start after each instance of the subform is laid out
(including a blank page after the last instance of the subform). The breakAfter property is discussed in
“Break Conditions” on page 264.

Example 8.17 A repeating subform with a layout directive

<subform name="root" layout="tb">
<pageSet relation="orderedOccurrence">

<pageArea>
<occur max="6"/>
<contentArea …/>

</pageArea>
</pageSet>
<subform name="mySubform" layout="tb">

<occur min="5" max="5"/>
<breakAfter targetType="pageArea" startNew="1"/>
…

</subform>
</subform>

A sequence of pages can also repeat. This is accomplished using the occur property of the pageSet
element. For example, in the following template fragment each of subform A and B is given a page (and
corresponding pageArea object) by itself. The pattern of alternating pages is repeated five times, for a
total of ten pages.

Example 8.18 A multiply-occurring page set

<subform name="root" layout="tb">
<pageSet relation="orderedOccurrence">

<occur min="5" initial="5"/>
<pageArea id="pageAreaA">

<occur min="1" max="1"/>
<contentArea x="1cm" …/>

</pageArea>
<pageArea id="pageAreaB">

<occur min="1" max="1"/>
<contentArea x="3cm" …/>

</pageArea>
</pageSet>
<subform name="mySubform" layout="tb">

<occur min="5" initial="5"/>
<subform name="A">

<breakBefore targetType="pageArea" target="#pageAreaA"/>
<field name="FieldA">…</field>

</subform>
<subform name="B">

<breakBefore targetType="pageArea" target="#pageAreaB"/>
<field name="FieldB">…</field>

</subform>
</subform>

</subform>

XFA Specification
Chapter 8, Layout for Growable Objects Pagination Strategies 292

The above page set arrangment can be used to ensure that left pages have the content placed to the left,
and right pages to the right, to allow more space for binding in the middle. However a qualified pagination
strategy is easier to use for this purpose and more flexible. See “Qualified pagination strategies” on
page 296.

It is legal to set the occurrence count for a page or set of pages higher than the number of pages used by
subforms in the template. When the layout processor runs out of content, it continues appending blank
pages as necessary to fulfill the minimum occurrence requirements.

Note that the default occurrence behavior of pageSet and pageArea objects differs from the default
behavior of subform objects. When no maximum or minimum occurrence is supplied for a subform the
subform limits itself to exactly one instance. However when no maximum or minimum occurrence is
supplied for a pageArea or pageSet object, the pageArea or pageSet object allows itself to replicate
without limit. In this case the layout processor stops adding new pages or sequences of pages only when it
runs out of subforms to lay down.

A pure boilerplate pageArea is a pageArea element that does not contain any contentArea elements.
A pure boilerplate pageArea must not have a maximum occurrence limit of -1 (whether by defaulting or
supplied explicitly). This is because, should the layout processor find its way into such a pageArea, it
logically should execute an infinite loop emitting pages. This is anti-social behavior and templates are
forbidden to do this. For the same reason, a pageSet element that contains only pure boilerplate
pageArea elements must not have a value of -1 for its maximum occurrence property. However it is
anticipated that layout processors will encounter some templates that are not conforming in one of these
ways. It is recommended that in such a case the layout processor emit a warning and proceed as though
the value of the offending max attribute was 1. In subsequent processing this could lead to the layout
processor using up all allowed occurrences and quitting prematurely, which is annoying but safe behavior.

One might ask why contentArea objects do not have occur properties. There would be no point,
because each instance of the contentArea would occupy the same position upon the page. By contrast
each instance of a pageArea represents a unique display surface and each instance of a pageSet
represents a unique set of display surfaces.

Algorithm for Maximum Occurrence Limits

When the layout processor finishes filling the last contentArea on a page and it is following an ordered
pagination strategy, it ascends from the current node in the Template DOM until it comes to a node with a
maximum occurrence limit that has not yet been exhausted. This may involve ascending one level to the
parent pageArea or two levels to the grandparent pageSet. When it reaches a node with a maximum
occurrence limit that has not yet been exhausted, the layout processor adds a new node of the same type
to the Layout DOM in the corresponding position. For example, suppose a template contains the following
declarations.

Example 8.19 Page set with maximum occurrence limits

<pageSet relation="orderedOccurrence" name="A">
<occur max="-1"/>
<pageArea name="B">

<occur max="1"/>
<contentArea name="C" … />
<contentArea name="D" … />

</pageArea>
<pageArea name="E">

<occur max="2"/>
<contentArea name="F" … />

XFA Specification
Chapter 8, Layout for Growable Objects Pagination Strategies 293

</pageArea>
</pageSet>

By default the layout processor starts putting content into the first contentArea (C) on the first
pageArea (B) in the first pageSet (A). At this point the Layout DOM contains:

[root]
[pageSet (A)]

[pageArea (B)]
[contentArea (C)]

When C is full the layout processor moves to contentArea D, adding a corresponding node to the Layout
DOM. When D is full it ascends to pageArea B and consults its maximum occurrence property. This is set
to 1, so it can't create a sibling for pageArea. Instead it ascends once more and finds the next pageArea,
E. It adds a node to the Layout DOM corresponding to E and descends into contentArea F. It adds a
node corresponding to contentArea F and begins pouring content into it. At this point the Layout DOM
contains:

[root]
[pageSet (A)]

[pageArea (B)]
[contentArea (C)]

… content …
[contentArea (D)]

… content …
[pageArea (E)]

[contentArea (F)]
… content …

When F is full, the layout processor ascends to E and finds that its maximum occurrence limit has not yet
been exhausted, so it adds another instance of it to the Layout DOM as a sibling of the previous instance.
Then it descends once again to contentArea F, adding another instance of it to the Layout DOM. At this
point the Layout DOM contains:

[root]
[pageSet (A) relation="orderedOccurrence"]

[pageArea (B)]
[contentArea (C)]
[contentArea (D)]

[pageArea (E[0])]
[contentArea (F)]

[pageArea (E[1])]
[contentArea (F)]

When F fills up the layout processor once again ascends to E. This time the maximum occurrence limit has
been exhausted, so it ascends once again. There are no more pageArea objects to descend into, so it
considers adding another instance of pageSet A. This has a maximum occurrence limit of -1. A maximum
occurrence property of -1 is interpreted by the layout processor as meaning no limit. Hence it may
duplicate the pageSet without limit. It adds an instance of pageSet A to the Layout DOM and descends
as before. At this point the Layout DOM contains:

[root]
[pageSet (A[0]) relation="orderedOccurrence"]

[pageArea (B)]
[contentArea (C)]

… content …
[contentArea (D)]

XFA Specification
Chapter 8, Layout for Growable Objects Pagination Strategies 294

… content …
[pageArea (E[0])]

[contentArea (F)]
… content …

[pageArea (E[1])]
[contentArea (F)]

… content …
[pageSet (A[1])]

[pageArea (B)]
[contentArea (C)]

… content …

Assuming that the last content is used up without filling this latest contentArea (which could be called
A[1].B.C), the resulting document would consist of four display surfaces. (If rendered and printed
single-sided at this point it would come out of the printer as four sheets of paper, with each sheet having
printing on one side.)

In the example above only the amount of data limits the number of surfaces. However had the maximum
occurrence limit for pageSet A been a positive number, the layout processor could have exhausted it.
When this occurs the layout processor stops adding content, and it is recommended to issue a warning
message. It does not traverse to another pageSet, even if there is one. The template syntax allows other
pageSet objects to exist but they may not be used for this purpose.

The maximum occurrence limit on the pageSet is likely to be used as a safety-valve to prevent the
accidental generation of huge print runs. However it may also be used to intentionally extract just the first
portion of a document. For that reason, when the limit is reached, the layout processor should preserve
the Layout DOM so that the content laid out to that point can be rendered.

The value of the maximum occurrence limit for a pageSet or pageArea must be either -1, which signifies
no limit, or a positive (i.e. one or greater) decimal integer. If not supplied it defaults to -1.

Note that subforms may also have maximum occurrence values, but those are used only in the data
binding (merge) process; they have no effect on the layout processor. See the “Basic Data Binding to
Produce the XFA Form DOM” on page 171 for more information about minimum and maximum
occurrence values for subforms.

➤ Error Condition: Exhaustion of pageArea Occurrences

If all available pageSet and pageArea objects have maximum occurrence properties that are not equal
to -1, there is a limit to how many pageArea objects can be included in the layout. When the last
pageArea within this limit has been laid out, the layout processor stops processing. If there is more
content that has not yet been laid out, the additional content is discarded. However the layout processor
has no way of knowing whether the situation arose deliberately or as a result of an accidental mismatch
between the template and the user data. Hence the layout processor should issue a warning but retain the
pages laid out up to that point in the Layout DOM for rendering.

Algorithm for Minimum Occurrence Limits

When the layout processor is following an ordered pagination strategy, minimum occurrence properties
on pageSet and pageArea objects force it to incorporate one or more copies of the associated object
into the Layout DOM when descending through the node, even if no content is put into it. The default
minimum occurrence property is 0. When the minimum occurrence property is greater than 1 the layout
processor creates the specified number of siblings and then descends into the leftmost (eldest) of the new

XFA Specification
Chapter 8, Layout for Growable Objects Pagination Strategies 295

sibling nodes. The other siblings are used later if an empty container is needed, rather than creating
another sibling. For example, suppose a template contains the following declarations.

Example 8.20 Page set and page area with minimum occurrence limits

<pageSet relation="orderedOccurrence" name="A">
<occur min="2"/>
<pageArea name="B">

<contentArea name="C" …/>
<contentArea name="D" …/>
<draw name="E" …>…</draw>

</pageArea>
<pageArea name="F">

<occur min="1"/>
<draw name="G" …>…</draw>

</pageArea>
</pageSet>

Assume that there is no breakBefore on either the root subform or its first child subform. At startup the
layout processor descends from the first pageSet of the root subform into its first pageArea child, and
thence into its first contentArea child. However the minimum occurrence property of pageSet A forces
the layout processor to include two instances of A into the Layout DOM. Furthermore the minimum
occurrence limit of pageArea F forces the layout processor to include an instance of F under each
instance of pageSet A. The result is as follows.

[root]
[pageSet (A[0]) relation="orderedOccurrence"]

[pageArea (B)]
[contentArea (C)]
[contentArea (D)]
[draw (E)]

[pageArea (F)]
[draw (G)]

[pageSet (A[1])]
[pageArea (F)]

[draw (G)]

Hence, the document already includes three pageArea objects, even though it does not yet have any
content. If rendered and printed single-sided at this point it would come out of the printer as three sheets
of paper, with the first sheet displaying the content of the E draw element and the other sheets displaying
the content of the G draw element.

Assume that none of the subforms or subform sets in the template specify break targets. As content pours
into pageArea B, the two pre-existing contentArea objects on that page (C and D) will be used up. If
there is more content, the layout processor adds another copy of pageArea B with two more content
areas. There is no maximum number of occurrences for pageArea B so copies of it are added until all
content has been placed.

Even though pageArea F is not filled by normal content, it can still acquire content if it is modified to
contain a field which binds to global data. Any page can contain one or more fields bound to global data,
but for pages in these circumstances this is the only way to acquire variable content.

In summary, although the layout processor is generally data-driven, laying down pageArea objects in
order to use the contentArea objects on them, it is possible for a pageArea to contain boilerplate but
no contentArea. The minimum occurrence limit makes it possible to force the layout processor to lay
down an instance of such a page, despite its lack of a contentArea.

XFA Specification
Chapter 8, Layout for Growable Objects Pagination Strategies 296

The value of a minimum occurrence limit for a pageSet or pageArea must be a non-negative (i.e. zero or
larger) decimal integer.

Minimum and maximum occurrence limits may be combined. If the same pageSet or pageArea has
both minimum and maximum occurrence limits the maximum must be either -1 or larger than the
minimum.

Note that subforms may also have minimum occurrence values, but those are used only in the data
binding (merge) process; they have no effect on the layout processor. See the “Basic Data Binding to
Produce the XFA Form DOM” on page 171 for more information about minimum and maximum
occurrence values for subforms.

Qualified pagination strategies
When the relation property of a pageSet is either simplexPaginated or duplexPaginated the
page set employs a qualified pagination strategy. When the layout processor needs to transition to a new
page it looks at the qualifications of each pageArea in the set to determine which pageArea to use. It
uses the first pageArea (in document order) that has not already been exhausted and that has suitable
qualifications.

There are three page qualifications supported in XFA. They are described below. The set of page
qualifications and the way they are interpreted is very similar to a subset of the pagination properties used
in the World-Wide Web Consortium’s Extensible Stylesheet Language [XSL-FO]. To make it easier for
readers familiar with XSL-FO the following discussion explicitly shows the parallels.

All of these page qualifications are ignored if the relation property of the parent pageSet object is
orderedOccurrence.

The pagePosition property

The pagePosition property qualifies the position of the page with respect to a contiguous sequence of
pages from the same page set. The possible values are:

● first - The page must be the first in the set.

● last - The page must be the last in the set.

● rest - The page must not be the first or last in the set but can be in any other position.

● only - The page must be the only one in the set.

● any - No qualification is asserted. This is the default.

This property corresponds to the page-position property in XSL-FO.

A pagePosition of first, last, or only inherently limits the pageArea to being used only once within
the page set. By contrast a pagePosition of any or rest implies that the pageArea can be used any
number of times within the pageSet. Because of these implied occurrence limits pageArea objects that
use qualified pagination ignore their occur properties.

Note: In order to support only and last the layout processor may have to redo the layout of the current
page under some circumstances. For example, it cannot know that the page set will contain only
one page until it encounters the break or end of processing that terminates the page set. Form
authors using only and/or last should expect an increase in CPU overhead.

XFA Specification
Chapter 8, Layout for Growable Objects Pagination Strategies 297

The oddOrEven property

The oddOrEven property qualifies the page with respect to whether the physical surface count is odd or
even (hence, when printing in duplex, whether the page is on the front or back surface). The possible
values are:

● odd - The physical surface count must be odd-numbered (front surface).

● even - The physical surface count must be even-numbered (back surface).

● any - No qualification is asserted. This is the default.

This property approximates the odd-or-even property in XSL-FO. However in XSL-FO the controlling
variable is not the physical surface count but the folio number. The XSL-FO folio number can be set by the
stylesheet wherease the XFA physical surface count cannot be altered by the application. The physical
surface count always starts at zero and increments by one for each surface printed or displayed. Also
XSL-FO allows a value inherit which is not supported by XFA.

Note: When the pagination strategy is simplexPaginated the page is always assumed to be the front
surface of a sheet, hence always odd.

The blankOrNotBlank property

The blankOrNotBlank property qualifies the page with respect to the reason why it was included. The
possible values are:

● blank - The page was included merely to satisfy a break-to-even or break-to-odd requirement, not to
hold any content. The break requirement is asserted by a subform or subformSet object. The break
requirement could have been asserted using the breakBefore property, the breakAfter property,
or the deprecated break property. However it may have been asserted, it specifies a targetType of
either pageEven or pageOdd. This context corresponds to the assertion of a force-page-count
property in XSL-FO.

● notBlank - The page was included either to hold content or to satisfy a minimum occurrence
requirement.

● any - No qualification is asserted. This is the default.

Note: A page may be included to hold content yet the content may not include anything visible to the
eye. This qualification is based upon the context, not the content of the page.

Page selection algorithm

A page set is entered at the start of processing as follows. The layout processor examines the root subform
to see if it asserts break or breakBefore. If so it enters the specified pageSet. If not it examines the
first subform child of the root subform and in the same way enters the specified pageSet if one is
specified. If that also fails then it enters the first pageSet in document order.

Matching the layout state

If the selected pageSet asserts a qualified pagination strategy then the layout processor has to decide
which pageArea to use. This also happens during layout whenever the layout processor overflows the
current page. The algorithm is simply to search the children of the current pageSet in document order
for a pageArea object that matches the current layout state. The layout state is described by the
following variables:

XFA Specification
Chapter 8, Layout for Growable Objects Pagination Strategies 298

pagePosition

Either first (before the first page is placed) or not-first (all remaining pages using the page set).

oddOrEven

Either odd (front surface) or even (back surface). When applying the simplexPaginated
strategy the layout processor stays in the odd (front surface) state. When applying the
duplexPaginated strategy the state is determined by the evenness or oddness of the physical
surface count.

blankOrNotBlank

Either blank (having no content other than whatever page background is declared by the
pageArea object) or non-blank (some foreground content will be placed upon the page).

Each pageArea object has qualifier properties with names matching the above variables. These
properties determine what states the object matches for the above variables. For example, the
oddOrEven property of a pageArea object may be odd to limit it to odd pages, even to limit it to even
pages, or any to allow it to be used for both odd and even pages.

Caution: Any pageSet using a qualified pagination strategy must supply suitably qualified pageArea
objects for every situation the layout processor finds itself in. If at any time during processing the
layout processor cannot find a pageArea that is a child of the current pageSet and that
matches its state variables a fatal error occurs. This situation can be prevented by providing an
extra catch-all pageArea at the end of the list. Such a catch-all pageArea has all of its qualifier
properties set to the default value any.

Example 8.21 Searching for a qualified pageArea for simplex printing

Suppose that the template contains the following page set.

<pageSet relation="simplexPaginated">
<pageArea name="A" pagePosition="rest" …>…</pageArea>
<pageArea name="B" pagePosition="first" …>…</pageArea>

</pageSet>

Suppose also that at startup the layout processor
discovers that it is rendering to a simplex printer.
The relation property of the pageSet object
tells the layout processor that this is a suitable
pageSet to use for simplex printing. The layout
processor will also use this page set if it is the only
page set available, even when printing to a duplex
printer. In that case when it renders to the duplex
printer it leaves the back of each sheet blank,
forcing the printer to print single-sided.

Having selected the page set, the layout processor
looks at the contained pageArea objects in
document order. A is not suitable for page 1
because it has a pagePosition property of rest,
which means it can not be used for any other
surface but not for the first surface rendered.
Instead the layout processor uses B, which explicitly
declares that it is for the first surface.

�������

�������

�������

�������

�������

�

	

�

�

XFA Specification
Chapter 8, Layout for Growable Objects Pagination Strategies 299

Assume that the form flows from page to page without any explicit breaks across pages. For each page
after the first one the layout processor uses A.

Example 8.22 Searching for a qualified pageArea for duplex printing

Suppose that the template contains the following page set.

<pageSet relation="duplexPaginated">
<pageArea name="A" oddOrEven="odd" pagePosition="rest" …>…</pageArea>
<pageArea name="B" oddOrEven="even" pagePosition="rest" …>…</pageArea>
<pageArea name="C" pagePosition="first" …>…</pageArea>

</pageSet>

Suppose in addition that the XFA processor finds at
startup that it is rendering to a duplex printer. At
startup it determines that this pageSet object is
suitable. The layout processor will also use this page
set if it is the only page set available, even when
printing to a simplex printer. In that case when it
renders to the simplex printer each surface is
printed on a separate sheet. This imposition (from
two-sided to one-sided) can be useful for
documents that will later be photocopied or sent by
facsimile.

Under that pageSet object it seeks a suitable
pageArea object to use for the first surface. A and B
are not suitable because they both assert a
pagePosition value of rest, meaning they are
suitable for any other page but not for the first page.
The XFA processor instead uses C, which is explicitly
for the first page, for page 1.

Assume that the form flows from page to page without any explicit breaks across pages. Then, for the next
printing surface (which is the back of the sheet whose front surface was just printed), the page number (2)
is even so the XFA processor uses page area B. For the surface after that (page 3) it uses page area A, and
then keeps alternating between B and A as the page number alternates between even and odd.

Breaking to a different page within the page set

While laying out foreground content the layout processor may encounter breakBefore, breakAfter,
or other properties that cause an explicit break to a different page. It is possible for a break to go from an
even page to a page that asserts even, or from an odd page to a page that asserts odd. When this
happens, if the strategy is duplexPaginated, the layout processor emits an extra filler page. The filler
page is blank, that is, it does not contain any foreground content (although it may contain page
background). The layout processor searches for a qualified pageArea object for this page in the usual
way. The pageArea object for the filler page must be qualified as odd (if breaking to an even page), even
(if breaking to an odd page), or any. It must also be qualified with a blankOrNotBlank setting of blank
or any. As with all qualified pages it must be a child of the current pageSet.

�������

�������

�������

�

	

�������

�������

�������

�

�

����� ����

XFA Specification
Chapter 8, Layout for Growable Objects Pagination Strategies 300

Example 8.23 Break to another page requires insertion of a blank page

<pageSet relation="duplexPaginated">
<pageArea name="A" oddOrEven="odd" pagePosition="rest">

<contentArea …/>
</pageArea>
<pageArea name="B" oddOrEven="even" pagePosition="rest">

<contentArea …/>
</pageArea>

</pageSet>
<subform name="X" layout="tb">

<subform name="Y" layout="tb" …>
<occur min="3" initial="3"/>
<field …/>

</subform>
<breakAfter targetType="pageOdd" startNew="1"/>

</subform>
<subform name="Z" layout="tb">

<field …/>
</subform>

Each of page area A and B contains a single content
area. Assume that each of the fields in subform X
and Z fills up a single content area. When the layout
processor encounters the three instances of
subform Y, it puts them on successive pages. The
first page is odd (using page area A), the next even
(using B), the next odd again (using A again). At this
point the layout processor finishes with subform Y
and goes back up to subform X. Subform X does not
contain any additional content but it has a
breakAfter property which specifies that the
next content must fall on an odd page and it must
not be the same odd page. The layout processor
emits a blank page (using page area B) and then
starts a new page (using page area A). The content
of subform Z goes onto this new page. After this it
has no more content but it is on the front side of the
last sheet, so it renders another blank page for the
back of the sheet, again using page area B.

Termination processing

At the end of processing, when it has exhausted the Form DOM, the layout processor performs
termination processing for the page set. This processing makes use of page areas that declare a page
position of either last or only.

If there is a pageArea that is specified as last the layout processor backtracks and tries to redo the
layout of the current page using that pageArea. However it does not do this if the current page does not
match, that is if it has a different number of content areas or is itself qualified as first or last. If the
pageArea object does match and the content fits onto it then the resulting page replaces the current
page. However if the pageArea objects don’t match or the content does not fit onto the designated
last page then the layout processor keeps the current page and in addition emits a blank instance of the
designated last page.

�������

�������

�������

�

�

�

����	
	

����	
	

����	
	

�

�

�����
���

�������	���� �������	����

�������	���� �������

�������	 �������

XFA Specification
Chapter 8, Layout for Growable Objects Pagination Strategies 301

Example 8.24 Layout using a designated last page

<pageSet relation="simplexPaginated">
<pageArea name="A"

pagePosition="any">
<contentArea …/>

</pageArea>
<pageArea name="B"

pagePosition="last">
<contentArea …/>

</pageArea>
</pageSet>
<subform layout="tb">

<subform name="Item" layout="tb">
<occur min="3" initial="3"/>
<field …/>

</subform>
<breakAfter startNew="1"/>

</subform>

In the above example the layout processor uses
page area A for laying out each of the three pages.
The breakAfter element ensures that each instance of the subform appears on a separate page.
However when the layout processor reaches the end of the data it then reprocesses the data for the last
page using page area B. This processing succeeds, so it discards the original layout for the last page. Hence
A is used for the first two instances of the subform (pages 1 and 2) but B is used for the last instance (page
3). The form in the example is an invoice. The page background for page area B includes a global field
displaying the invoice total.

Similarly if a page area has a position specified as only and the current page is the only one, the layout
processor tries to redo the layout of the current page using the designated only page area. If the content
fits then the resulting page replaces the current page, otherwise the current page is retained.

Example 8.25 Layout using a designated only page

<pageSet relation="simplexPaginated">
<pageArea name="A"

pagePosition="first">
<contentArea …/>

</pageArea>
<pageArea name="B"

pagePosition="any">
<contentArea …/>

</pageArea>
<pageArea name="C"

pagePosition="last">
<contentArea …/>

</pageArea>
<pageArea name="D"

pagePosition="only">
<contentArea …/>

</pageArea>
</pageSet>
<subform layout="tb">

<subform name="Item" layout="tb">
<occur min="1" initial="1"/>

����	�	

�

����

��������

�	
����

�	
����

�	
���

�

�

�

��
�

��
�

�����

�	�������������
�����������

�����	�
�

�	
���� �	
����

� �

���� ����

	
���

�����������
��

��
��������
���������

�
�������

�������

XFA Specification
Chapter 8, Layout for Growable Objects Pagination Strategies 302

<field …/>
</subform>
<breakAfter startNew="1"/>

</subform>

In this example the form creator has provided page areas for multi-page documents with separate page
areas for positions first, rest, and last. Page area A, for the first page, has a notation saying
“continued overleaf”. Page area B, for interior pages, has a notation saying “continued from previous” and
another saying “continued overleaf”. Page area C, for the last page, has a notation saying “continued from
previous”, plus page background which displays the invoice total. However sometimes there is only one
item in the list. In this case a single page document is generated. Initially the layout processor lays this
page out using page area A, because it is the first page. However when it reaches the end of the data it
looks for either a last page area (because this is the last page) or an only page area (because it is the
only page). In this case both exist, but only takes precedence over first, so it reprocesses the data using
page area D. The reprocessing succeeds so it discards the initial layout for the page.

Caution: Because termination processing relies upon reprocessing, the layout processor must be able to
lay out the last or only page twice. The first time it lays out the page it does not know the page is
the last or only page, so it looks for a page area that is designated first or rest. It must be able
to find a suitable page area. It is strongly recommended that form creators provide a functioning
page area designated rest in every page set.

Combining multiple pagination strategies
An XFA form can include a simple pair of alternate page sets for use with duplex and simplex printers. Or, it
can include nested page sets and switch between them under control of break or occur properties.

Sibling (alternate) page sets

Often it is necessary to print the same form sometimes on simplex printers and other times on duplex
printers. To support this XFA allows the inclusion of multiple pageSet objects as children of the root
subform. The relevant property is used to signify which pageSet is for duplex printers and which is for
simplex printers.

Note: When multiple sibling page sets are supplied they must be made mutually exclusive by the
relevant property.

XFA 2.5 augmented the existing print predefined system view with the new ones simplex and duplex.
The simplex and duplex views are mutually exclusive. In addition print must be asserted whenever
simplex or duplex is asserted.

The simplex or duplex view can be asserted in the Configuration DOM by including it among the views
listed in the relevant property. This could be used to force a form to be printed simplex even if the
printer is capable of duplex printing. Alternatively it could be used to print all the surfaces of a duplex
form even when the printer is simplex, which may be useful in photocopying.

Alternatively simplex or duplex can be asserted in an implementation-defined manner. Ideally the
application knows what printer it is using, can find out from the operating system whether that printer is
simplex or duplex, and sets the view accordingly.

Example 8.26 Alternate page sets using relevant

<pageSet relevant="simplex -duplex" relation="simplexPaginated">
<pageArea name="A" pagePosition="any">

<contentArea name="D" x="2cm" …/>

XFA Specification
Chapter 8, Layout for Growable Objects Pagination Strategies 303

…
</pageArea>

</pageSet>
<pageSet relevant="duplex -simplex" relation="duplexPaginated">

<pageArea name="B" pagePosition="odd">
<contentArea name="D" x="1cm" …/>
…

</pageArea>
<pageArea name="C" pagePosition="even">

<contentArea name="D" x="3cm" …/>
…

</pageArea>
</pageSet>

In this example the template declares alternate page sets for simplex and duplex printers. The page set for
simplex printers puts the content at the same location on every page. The page set for duplex printers has
separate page areas for odd and even pages, with the content of each shifted away from the binding edge.

Nested page sets

Ordered page sets can also be combined by nesting them, using occurrence limits on the page sets to
force the return from a child page set to its parent.

Example 8.27 Nested ordered page sets

<pageSet name="outer"
relation="orderedOccurrence">

<occur max="1"/>
<pageArea name="A">

<occur max="1"/>
…

</pageArea>
<pageSet name="inner"

relation="orderedOccurrence">
<occur max="2"/>
<pageArea name="B">

<occur max="1"/>
…

</pageArea>
<pageArea name="C">

<occur max="2"/>
…

</pageArea>
</pageSet>

</pageSet>

In this example each page set and page area has been restricted by placing a maximum occurrence limit
upon it. In the absence of an explicit occurrence limit a page set or page area is allowed to repeat without
limit.

Assume the form has content sufficient to fill more than seven pages. The first page is printed using page
area A. This has a maximum occurrence of 1, so it is used only once. The second page is printed using page
area B, then the third and fourth using page area C. After this the inner page set repeats (because it has an
occurrence limit of 2), so the fifth page is printed using B and then the sixth and seventh are printed using
C. The occurrence limit of the inner page set is now exhausted and control returns to the outer page set.
However, it has an occurrence limit of 1, so it too is exhausted. At this juncture layout stops. There is

�������

�������

�

�

�������

�����	�

�����
�

�����
�

�����	�

�

�

�

�

XFA Specification
Chapter 8, Layout for Growable Objects Pagination Strategies 304

additional content in the Form DOM, but it is not rendered. In an interactive environment the user cannot
see or modify it. In a non-interactive environment it is not printed.

Qualified page sets can also be nested with each other, as described next, but nesting of the two types of
page sets operates on different principles. There are no occurrence limits for page sets using qualified
pagination or for page areas within those page sets. Each of these objects still possesses an occur
property but it is ignored.

Note: Because of this difference it is forbidden for a qualified page set to be nested inside an ordered page
set or vice-versa.

Subforms and subform sets in the Form DOM may specify explicit breaks that direct the layout to a
different page set. When a change of page set occurs the current page set is terminated before layout
transitions to the new page set. Explicit breaks can be used with either nested ordered page sets or nested
qualified page sets. However, because there are no occurrence limits for qualified page sets, breaks of this
sort are the only way to use nested qualified page sets.

Generally explicit breaks are permitted to go to any page area or page set, however there is one restriction.
If a pageArea has its blankOrNotBlank property set to blank, it is forbidden to break to that
pageArea.

Example 8.28 Layout with a break between page sets

<pageSet relation="simplexPaginated">
<pageArea name="A" pagePosition="first">…</pageArea>
<pageArea name="B" pagePosition="rest">…</pageArea>
<pageArea name="C" pagePosition="last">…</pageArea>
<pageSet relation="duplexPaginated">

<pageArea name="D" id="Page2ID" oddOrEven="odd" pagePosition="first">
…

</pageArea>
<pageArea name="E" pagePosition="rest">…</pageArea>
<pageArea name="F" pagePosition="last">…</pageArea>

</pageSet>
</pageSet>
<subform name="DocumentSimplex" …>

<occur min="2" initial="2"/>
…

</subform>
<subform name="DocumentDuplex" …>

<occur min="2" initial="2"/>
<breakBefore targetType="pageArea" target="#Page2ID"/>
…

</subform>

XFA Specification
Chapter 8, Layout for Growable Objects Adhesion 305

In this example there are two nested page sets. The
outer page set is simplex, the inner duplex. There
are two subforms, the DocumentSimplex subform
and the DocumentDuplex subform. Each of the
subforms has two instances. To keep the example
simple each page area has the same size of content
area, and each subform consumes exactly the
content area on one page area.

The layout processor starts by laying out the first
instance of DocumentSimplex using page area A.
Next it lays out the second instance of
DocumentSimplex using page area B, however it
will soon discard this layout.

Next the layout processor attempts to lay out the
first instance of the DocumentDuplex subform.
This has a breakBefore property which directs it
to page area D. Page area D is in a different page set
than page area B, so the layout processor concludes
that the page it just finished laying out was the last
page in its set. It looks for a page area in that set
which is designated for the last page, and finds page
area C. It reprocesses the second instance of
DocumentSimplex using page area C. This
processing succeeds, so it discards the previous layout using page area B and replaces it with the new
layout using page area C. Then it lays out the first instance of the DocumentDuplex subform using page
area D.

After this the layout processor is ready to process the second instance of the DocumentDuplex subform.
It lays out this instance using page area E. However, it then finds that it has reached the end of the Form
DOM. In response to reaching the end of the Form DOM it looks for a page area in the current page set that
is for the last page. It finds page area F. It reprocesses the second instance of the DocumentDuplex
subform using page area F. This processing succeeds, so it discards the previous layout of that page and
replaces it with the layout using page area F. With this step layout processing is finished. There is no
consequence of finishing in the inner page set rather than the outer page set.

Adhesion
Generally when using a flowing layout strategy the layout processor puts as much content as possible into
each contentArea before moving on to the next contentArea, splitting layout objects where possible
to pack them more efficiently into the contentArea. However sometimes the densest packing is not
desired. For example, it may be desired to keep sequential layout objects together in the same
contentArea, similar to widow and orphan control in word processors. The keep property of a subform,
field, or draw object has sub-properties which control exceptions to the default packing.

Adhesion of the current object to an adjacent object is controlled by the next and previous
sub-properties of the keep property. These sub-properties accept three values.

● none means the object does not adhere to the adjacent object. This is the default.

● contentArea means the adjacent parts of the two objects must be placed in the same content
region.

�������

�

�������

������� �����	�

� �

�������

�������

�

XFA Specification
Chapter 8, Layout for Growable Objects Adhesion 306

● pageArea means the adjacent parts of the two objects must be placed on the same page.

Note: Adobe products do not currently support the value pageArea.

When the layout processor encounters a keep-next constraint for the current object or a keep-previous
constraint for the next object, it holds off laying down the current object until it reaches a contentArea
big enough to hold both the bottom part of the current object and the top part of the next object. The
next object may have an adhesion constraint that similarly binds it to the next object, and so on.

Prior to XFA 2.8, if consecutive adhering objects were not splittable then the layout processor holds off
laying down all of them until they can be laid down together. The unused content region was left blank.
However it has been determined that this behavior confuses people when it results in a blank page. In
addition it often ripples into further layout problems when subsequent content areas are used for content
that was not intended. Since XFA 2.8 the adhering objects have been allowed to run past the content area
(or, depending upon the implementation, clipped) and no blank page has been generated.

Note: Adobe products allow the adhering content to run outside the content area.

The default value for next and previous is always none, regardless of context.

Note that there is overlapping functionality. Two adjacent objects adhere if the first one declares that it
adheres to the next or if the second one declares that it adheres to the previous. It is also permissible for
them both to declare that they adhere to each other. In all three cases the effect is the same.

For example, the following template declares two subforms that each adhere to the next subform. The
result is that three adjacent subforms adhere together.

Example 8.29 Template using adhesion

<template …>
<subform name="root" layout="tb" …>

<pageSet …>
<pageArea …>

<contentArea name="A" … />
<contentArea name="B" … />

</pageArea>
</pageSet>
<subform name="C" …>

<keep next="contentArea" intact="contentArea" />
…

</subform>
<subform name="D" …>

<keep next="contentArea" intact="contentArea" />
…

</subform>
<subform name="E" …>

<keep intact="contentArea" />
…

</subform>
</subform>

</template>

XFA Specification
Chapter 8, Layout for Growable Objects Adhesion 307

In this case all three of the subforms have been
declared unsplittable using the intact property.
The result is as shown at right. Because all three
adhering subforms can not fit in the remaining
region of contentArea A, they are placed together
in contentArea B.

The result would have been different if the subforms
had been splittable. When an adhering object is
splittable only the adhering edge and the first
fragment of content (not including the border)
adhere to the adjacent object. However if the
smallest permissible fragment does not fit in the
available space then the layout processor holds off
laying down both objects. Consider what happens if the previous example is modified so that subform D is
splittable.

Example 8.30 Previous example modifed with a splittable subform

<template …>
<subform name="root" layout="tb" …>

<pageSet …>
<pageArea …>

<contentArea name="A" … />
<contentArea name="B" … />

</pageArea>
</pageSet>
<subform name="C" …>

<keep next="contentArea" intact="contentArea" />
…

</subform>
<subform name="D" …>

<keep next="contentArea" />
<draw …>

<value …>
<text> … </text>

</value>
</draw>

</subform>
<subform name="E" …>

<keep intact="contentArea" />
…

</subform>
</subform>

</template>

A

B

C

D

E

Adhesion of unsplittable subforms

XFA Specification
Chapter 8, Layout for Growable Objects Leaders and Trailers 308

In this case subform C and the top part of D fit in
contentArea A, while the remainder of D and
subform E are placed in contentArea B, as shown
at right. The adhesion requirements are still
satisfied because C adheres to a piece of D and a
piece of D adheres to E.

Note: Adhesion is restricted to adjacent objects
that are siblings in the Form DOM. If they do
not share the same parent they do not
adhere. The reason for this is that not being
siblings in the Form DOM implies that they
are not logically grouped. This rule is
particularly useful in dynamic forms, as
discussed in “Adhesion in Dynamic Forms” on page 350.

For example, in the following template subform D does not adhere either to subform C or subform X
because they are not siblings with D.

Example 8.31 Template in which adhesion has no effect

<template …>
<subform name="root" layout="tb" …>

<pageSet …>
…

</pageSet>
<subform name="C" … />
<subform name="X" …>

<subform name="D" …>
<keep intact="contentArea" previous="contentArea" />
…

</subform>
</subform>

</subform>
</template>

Adhesion is modified by the presence of a subform set. Subform sets have not been introduced yet. They
are used with dynamic forms. The effect of a subform set upon adhesion is discussed “Adhesion in
Dynamic Forms” on page 350.

Leaders and Trailers
A subform or subform set may be associated with leaders and/or trailers that are placed before and after
objects in a flowing layout. Leaders and trailers must be subforms, however although a leader or trailer is a
single subform it may have an arbitrary number of child subforms. Leader and trailer subforms and all their
children must use positioned layout.

Break Leaders and Trailers
A subform or subform set may specify that layout is to transition to a new content region before, after, or
both before and after the object is placed. This is described in “Break Conditions” on page 264. In addition
the object may nominate a leader and/or trailer in association with the break condition.

A

B

C

To be or not to

E

be, that is the

D

Adhesion of splittable subforms

XFA Specification
Chapter 8, Layout for Growable Objects Leaders and Trailers 309

The words leader and trailer have slightly different meanings in the context of a break condition than they
do in other contexts. The leader and trailer do not surround the content of the object. Rather they
surround the break itself. For example, suppose a before break is specified and it includes a leader and a
trailer as follows.

Example 8.32 Template using a before break leader and trailer

<template>
<subform name="W">

<pageSet …>
<pageArea …>

<contentArea name="A" id="A_ID" … />
<contentArea name="B" id="B_ID" … />
<contentArea name="C" id="C_ID" … />

</pageArea>
</pageSet>
<subform name="D" layout="tb">

<breakBefore
targetType="contentArea"
target="#B_ID"
leader="#Leader_ID"
trailer="#Trailer_ID"/>

…
</subform>

</subform>
<proto …>

<subform name="Leader" id="Leader_ID">
<draw …>

<text …> … </text>
</draw>

</subform>
<subform name="Trailer" id="Trailer_ID">

<draw …>
<text …> … </text>

</draw>
</subform>

</proto>
</template>

When it is ready to start processing subform D, the layout processor carries out the following steps:

1. Places the leader into the current layout region, which in this case is content area A.

2. Moves, if necessary, to a new layout region to satisfy the target specification and target type. In this
case it moves to content area B.

3. Places the trailer into the new layout region, content area B.

4. Begins placing the content of the object into the new layout region, content area B.

For comparison, suppose an after break is specified and it includes a leader and a trailer as follows.

XFA Specification
Chapter 8, Layout for Growable Objects Leaders and Trailers 310

Example 8.33 Template using an after break leader and trailer

<template>
<subform name="W">

<pageSet …>
<pageArea …>

<contentArea name="A" id="A_ID" … />
<contentArea name="B" id="B_ID" … />
<contentArea name="C" id="C_ID" … />

</pageArea>
</pageSet>
<subform name="D" layout="tb">

<breakBefore targetType="contentArea" target="#B_ID"/>
<breakAfter

targetType="contentArea"
target="#C_ID"
leader="#Leader_ID"
trailer="#Trailer_ID"/>

…
</subform>

</subform>
<proto …>

<subform name="Leader" id="Leader_ID">
<draw …>

<text …> … </text>
</draw>

</subform>
<subform name="Trailer" id="Trailer_ID">

<draw …>
<text …> … </text>

</draw>
</subform>

</proto>
</template>

When it is about to finish processing subform D, the layout processor carries out the following steps:

1. Finishes placing the content of the object into the current layout region. Because of the before break
this is content area B.

2. Places the leader into the current layout region, content area B.

3. Moves, if necessary, to a new layout region to satisy the target specification and target type. In this case
it moves to content area C.

4. Places the trailer into the new layout region, content area C.

5. Procedes with the next object.

Note that the trailer is placed even if there is no subsequent object to lay down. In the example this is the
case, because D is the last displayable object inside the root subform W.

XFA Specification
Chapter 8, Layout for Growable Objects Leaders and Trailers 311

Bookend Leaders and Trailers
If a subform has a bookend leader specified, the layout processor inserts the leader into the Layout DOM
as a child of the subform ahead of any other content. A bookend trailer is similar except it is placed after all
other content of the subform. Bookend leaders and trailers are controlled by the bookend property of the
flowing subform. For example, a template includes the following declarations.

Example 8.34 Template using bookend leaders and trailers

<template>
<subform name="W">

<pageSet …>
<pageArea …>

<contentArea name="A" id="A_ID" … />
</pageArea>

</pageSet>
<subform name="B" layout="tb">

<breakBefore
targetType="contentArea"
target="#A_ID"/>

<bookend
leader="#Leader_ID"
trailer="#Trailer_ID"/>

<field name="C" …> … </field>
<field name="D" …> … </field>
<field name="E" …> … </field>

</subform>
</subform>
<proto …>

<subform name="Leader" id="Leader_ID">
<draw …>

<text …> … </text>
</draw>

</subform>
<subform name="Trailer" id="Trailer_ID">

<draw …>
<text …> … </text>

</draw>
</subform>

</proto>
</template>

XFA Specification
Chapter 8, Layout for Growable Objects Leaders and Trailers 312

When flowing content into subform B, the layout processor starts by placing subform Leader at the top,
then fields C, D, and E in that order, then subform Trailer at the end. The result is shown below at left.

A subform with a bookend leader and/or trailer may be split across contentArea boundaries. As shown
above at right, fields C, D, and E, plus subforms Leader and Trailer, taken together, are too tall to fit in
contentArea A and overflow into contentArea F. The layout processor places the bookend header as
the first layout object inside contentArea A and the bookend trailer as the last layout object inside
contentArea F.

The root subform may specify a bookend leader and/or trailer. These are incorporated at the beginning
and/or end of the entire document.

Overflow Leaders and Trailers
An overflow trailer is a subform that is placed as the last content of the top fragment of the subform, if the
subform overflows from one contentArea to another. Similarly an overflow header is a subform that is
placed as the first content in the bottom fragment of the subform. Overflow leaders and trailers are
controlled by the overflow property of the flowing subform. For example, a template includes the
following declarations.

contentArea A

subform Leader

subform Trailer

field C

field D

field E

subform B

Bookend subforms

top of
subform
B

contentArea F

subform Header

subform Trailer

field C

top of
field D

bottom
of field
D

field E

bottom
of
subform
B

Effect of bookend subforms when
flowing across contentArea boundaries

XFA Specification
Chapter 8, Layout for Growable Objects Leaders and Trailers 313

Example 8.35 Template using overflow leader and trailer

<template>
<subform name="W">

<pageSet …>
<pageArea …>

<contentArea name="A" id="A_ID" … />
<contentArea name="F" id="B_ID" … />

</pageArea>
</pageSet>
<subform name="B" layout="tb" …>

<overflow
leader="#Leader_ID"
trailer="#Trailer_ID"/>

<field name="C" …> … </field>
<field name="D" …> … </field>
<field name="E" …> … </field>

</subform>
</subform>
<proto …>

<subform name="Leader" id="Leader_ID">
<draw …>

<text …> … </text>
</draw>

</subform>
<subform name="Trailer" id="Trailer_ID">

<draw …>
<text …> … </text>

</draw>
</subform>

</proto>
</subform>

XFA Specification
Chapter 8, Layout for Growable Objects Leaders and Trailers 314

Assume that the total height of fields C, D, and E is greater
than the height of contentArea A. The layout processor
places subform B into contentArea A, and starts placing
the fields into subform B. While placing the fields into B it
reserves space for Trailer. Field D overflows the
available space. The layout processor splits field D, then it
places the top of D and Trailer into subform B. It splits
subform B at the bottom of Trailer, completing the first
fragment of B. Then it begins to place the second
fragment of subform B into contentArea F. Into this it
places the bottom of D, all of E, and Trailer. The result is
shown at right.

In the example D could not split in the ideal location
(exactly at the bottom of contentArea A), so its top
fragment is a little shorter than it could have been.
Subform Trailer is placed immediately after the top
fragment of D, leaving a little space between Trailer
and the bottom of contentArea A.

Note: The layout processor must reserve space in
advance for the overflow trailer. This reservation of
space sometimes forces an overflow to happen
which would not have happened otherwise.

Example 8.36 Space reservation causes overflow

In the figure at right, which is like the previous example
but with subform Trailer taller and field D shorter, D
would have fit into the available space in contentArea A
if some of that space had not been reserved for the
overflow trailer.

When a field overflows the overflow leader and trailer is
supplied by the field's containing subform, because a field
does not have an overflow property. However when a
subform overflows it may supply its own overflow leader
and trailer. If a subform overflows and it specifies its own
overflow leader then that overflow leader is used,
otherwise it uses the inherited one. The overflow trailer
behaves the same way.

The layout processor respects maximum occurrence
properties of leader and trailer subforms. Within a
particular subform (in the example above subform B), the
layout processor stops laying down leader or trailer
subforms when the leader or trailer subform's maximum
occurrence is exhausted. For example, suppose that the
template contained the following declarations.

contentArea F

subform Leader

field C

top of
field D

bottom of
field D

subform Trailer

contentArea A

top of
subform
B field E

bottom
of
subform
B

Overflow leader and trailer subforms

contentArea F

subform Leader

field C

top of
field D

bottom of
field D

subform Trailer

contentArea A

top of
subform
B

field E

bottom
of
subform
B

Space reservation causes overflow

XFA Specification
Chapter 8, Layout for Growable Objects Leaders and Trailers 315

Example 8.37 Template with maximum occurrence properties on leader and trailer

<template>
<subform name="W">

<pageSet …>
<pageArea …>

<contentArea name="A" … />
<contentArea name="B" … />
<contentArea name="C" … />
<contentArea name="D" … />

</pageArea>
</pageSet>
<subform name="E" layout="tb" …>

<overflow leader="#Leader_ID" trailer="#Trailer_ID"/>
<field name="F"…> … </field>

</subform>
</subform>
<proto …>

<subform name="Leader" id="Leader_ID">
<occur max="2"/>
<draw …>

<text …> … </text>
</draw>

</subform>
<subform name="Trailer" id="Trailer_ID">

<occur max="1"/>
<draw …>

<text …> … </text>
</draw>

</subform>
</proto>

</template>

XFA Specification
Chapter 8, Layout for Growable Objects Leaders and Trailers 316

Assume that field F is very tall compared to the
contentArea objects. Subform E overflows from A and
B, then from B and C, and finally from C to D. Subform
Trailer's occurrences are used up after the first
overflow, so it only appears at the bottom of
contentArea A below the first fragment of E. Leader's
occurrences are used up after the second overflow, so it
appears at the top of contentArea B (Leader[0]) and
at the top of contentArea C (Leader[1]). The result is
shown at right.

Often leader and trailer subforms are placed in the proto
section of the template (rather than under the root
subform) to prevent them from taking part in the merge
process. Alternatively leader and trailer subforms may be
made nameless or given a scope of none, either of which
also prevent them from participating in the merge
process. However if none of these things are done then
the leader or trailer subform may also appear in the Form
DOM bound to a node in the Data DOM. To accommodate
this the layout processor maintains its own occurrence
counts for leaders and trailers, separate from occurrence
counts used by the merge process. On the other hand if
the same subform is used both as a leader and a trailer, its
occurrence limit applies to the total of its appearances as
leader and as trailer.

Overflow Leader/Trailer Lists
Both overflowLeader and overflowTrailer properties may have values which are space-separated
lists of target specifications. Each target specification that is an XML ID must start with the ’#’ character. All
other target specifications are interpreted as SOM expressions. The separator must be a single SPACE
(U0020) character.

Caution: When the target specification is a SOM expression the expression must not include a SPACE
(U0020) character.

(Of course a target specification which is an XML ID must not contain a space either but this is already
forbidden by the XML specification [XML1.0].)

Each target specification is (re)used as required until its maximum occurrence limit is reached, after which
the layout processor goes on to the next target specification in the list. A target specification may appear
in both lists; each use from either list counts towards its occurrence limit. It is pointless to put a target
specification more than once in the same list because for the second and subsequent appearances its
maximum occurrence limit will already have been exhausted. For example, a template includes the
following declarations.

first part
of field F

second
part of
field F

third part
of field F

last part of
field F

Trailer[0]

Leader[0]

Leader[1]

A

B

C

contentArea D

Effect of occurrence limits on leader and
trailer subforms

XFA Specification
Chapter 8, Layout for Growable Objects Leaders and Trailers 317

Example 8.38 Template using an overflow trailer list

<template>
<subform name="W">

<pageSet …>
<pageArea …>

<contentArea name="A" … />
<contentArea name="B" … />
<contentArea name="C" … />
<contentArea name="D" … />

</pageArea>
</pageSet>
<subform name="E" layout="tb" …>

<overflow
trailer="#X_ID #Y_ID #X_ID"/>

<field name="F"…> … </field>
</subform>

</subform>
<proto …>

<subform name="X" id="X_ID">
<occur max="1"/>
<draw …>

<text …> … </text>
</draw>

</subform>
<subform name="Y" id="Y_ID">

<occur max="1"/>
<draw …>

<text …> … </text>
</draw>

</subform>
</proto>

</template>

The figure above at right shows the result of laying out this form. Assume that the merge results in field F
holding a large amount of text. Subform X is used as an overflow trailer once, exhausting its maximum
occurrence limit. The layout processor moves on to the next object in the list, which is subform Y again.
After subform Y has been used the layout processor goes on to the next overflow trailer subform, which is
subform X again. However X's limit is still exhausted, so the layout processor passes over it. The end of the
list has been reached so the layout processor stops laying down overflow trailers.

➤ Warning: Invalid Leader/Trailer Target

If a leader or trailer target is not valid (for example if it does not exist or is not an appropriate object), the
layout processor issues a warning message and continues processing without laying down the leader or
trailer.

Inheritance of Overflow Leaders and Trailers
When a subform does not specify an overflow leader or trailer, it inherits the overflow leader or trailer
specified by its containing subform. Along with the leader or trailer subform (or list of subforms) it inherits
the count(s) of maximum occurrences. In other words, the inherited leaders and trailers that are laid down
by the child subform count towards the maximum occurrence limits for the parent subform. On the other
hand, when a subform asserts a leader or trailer of its own, it acquires its own set of occurrence counts.

first fragment
of field F

second
fragment of
field F

third fragment
of field F

last fragment
of field F

A B

C

contentArea D

subform X subform Y

Effect of a trailer subform list

XFA Specification
Chapter 8, Layout for Growable Objects Leaders and Trailers 318

Even if the same leader or trailer subform is used by some other subform, the occurrence count(s) start at
zero for each asserting subform.

For example, a template includes the following declarations.

Example 8.39 Template showing inheritance of overflow trailer

<template …>
<subform name="W" layout="tb">

<pageSet …>
<pageArea …>

<contentArea name="A" … />
<contentArea name="B" … />
<contentArea name="C" … />
<contentArea name="D" … />

</pageArea>
</pageSet>
<subform name="E" layout="tb">

<breakBefore
targetType="contentArea"
target="A"/>

<overflow trailer="#X_ID"/>
<field name="F" … > … </field>
<subform name="G" layout="tb">

<overflow trailer="#X_ID"/>
<field name="H" …>…</field>

</subform>
<field name="I" …>…</field>

</subform>
</subform>
<proto>

<subform name="X" id="X_ID">
<occur max="1"/>
…

</subform>
</proto>

</template>

Assuming the fields F and H each contain moderate amounts of text, the layout processor puts the first
fragment of field F into contentArea A, laying down one instance of subform X as an overflow trailer at
the bottom. This exhausts the maximum occurrence limit for subform X. The layout processor finished
processing field F by placing the second fragment of it into contentArea B. At this point it encounters
subform G. At this point, because G declares an overflow trailer for itself, the layout processor starts a
separate count of instances of subform X. It is able to place an instance of subform X at the bottom of
contentArea B as an overflow trailer because the new count of instances has not yet reached the limit.
Upon finishing with subform G the layout processor returns to subform E in order to process field I.
Subform G's occurrence count for subform X is still set to one, so it does not lay down an overflow trailer
when field I overflows contentArea C. The result is shown above at right.

Inheritance need not be direct. Objects other than subforms are transparent to inheritance of overflow
leaders and trailers.

first fragment
of field F

second
fragment of
field F

second
fragment
of field H

second
fragment
of field I

A B

C

contentArea D

subform X subform X

first fragment
of field H

first fragment
of field I

Effect of inherited occurrence counts

XFA Specification
Chapter 8, Layout for Growable Objects Leaders and Trailers 319

Example 8.40 Indirect inheritance of an overflow leader

For example, a subform A contains an area B which in turn contains a subform C. Subform A asserts an
overflow leader but subform C does not, with the result that subform C inherits the overflow leader from A.

<subform name="A" layout="tb">
<overflow leader="…"/>
<area name="B" …> <!-- transparent to overflow -->

<subform name="C" layout="tb"> <!-- inherits overflow leader from "A" -->
…

</subform>
</area>

</subform>

In addition, inheritance can chain through any number of intermediate subforms that do not assert the
leader or trailer. However the chain of inheritance can be stopped at a particular subform by asserting an
overflow leader or trailer with the name “” (the empty string).

Example 8.41 Inheritance blocked by a null name

<subform name="A" layout="tb">
<overflow leader="…"/>
<subform name="B" …> <!-- inherits overflow leader from "A" -->

<subform name="C" layout="tb">
<overflow leader=""/> <!-- rejects inheritance from "A" via "B" -->
…

</subform>
</subform>

</subform>

A subform may also inherit an overflow leader or trailer once it has exhausted the occurrence limit(s) for its
own overflow leader or trailer subform(s). When this happens the layout processor resumes spending
inherited leader or trailer subform(s). When these inherited occurrences are exhausted the layout
processor moves up the chain of inheritance and resumes spending occurrences at the next higher level,
and so on. Only when all inheritable overflow leaders or trailers have been exhausted does it stop inserting
overflow leaders or trailers.

XFA Specification
Chapter 8, Layout for Growable Objects Leaders and Trailers 320

Combined Leaders and Trailers
Leaders and trailers of all types may be combined in the same context. For example, a template includes
the following declarations.

Example 8.42 Template combining different types of leaders and trailers

<template>
<subform name="W">

<pageSet …>
<pageArea …>

<contentArea name="A" … />
<contentArea name="B" … />
<contentArea name="C" … />
<contentArea name="D" … />

</pageArea>
</pageSet>
<subform name="E" layout="tb" …>

<bookend
leader="#Title_ID"
trailer="#Source_ID"/>

<overflow
leader="#X_ID"
trailer="#Y_ID"/>

<field name="F" …> … </field>
</subform>

</subform>
<proto>

<subform name="Title" id="Title_ID">
<draw …>

<text>Wheel Invented</text>
</draw>

</subform>
<subform name="Source" id="Source_ID">

<draw …>
<text>oldnews.com</text>

</draw>
</subform>
<subform name="X" id="X_ID">

<draw …>
<text …>(continued from previous column)</text>

</draw>
</subform>
<subform name="Y" id="Y_ID">

<draw …>
<text …>(continued in next column)</text>

</draw>
</subform>

</proto>
</template>

XFA Specification
Chapter 8, Layout for Growable Objects Tables 321

After merging field F holds a large amount of text. The
result is shown at right. The bookend header named
Title, containing “Wheel Invented”, has been laid down
before the first fragment of F. The bookend trailer named
Source, containing “oldnews.com”, has been laid down
after the last fragment of F. In addition the overflow
trailer Y “(continued in next column)” and the overflow
leader X “(continued from previous column)” have been
inserted wherever F has flowed across containers.

Tables
The layout process can automatically arrange layout objects into aligned rows and columns. This is
accomplished by marking subforms in the template as table or row subforms using the layout property. A
table subform represents an entire table and contains everything in the table. A row subform represents
one row of a table and contains everything in the row. A row subform can only exist inside a table subform,
although it may not be a direct child of a table subform (for example it may be a child of a subform set
which is itself a child of a table subform).

The table subform may optionally supply a list of column widths. If the list of column widths is supplied,
each width must be either a measurement or -1. A column width of -1 tells the layout processor to fit the
column to the natural width of the widest object in the column. If no list of column widths is supplied, all
column widths default to -1. Similarly the widths for any columns that are not present in the list (that is,
beyond the length of the list) default to -1.

first fragment
of field F second

fragment of
field F

third fragment
of field F

last fragment
of field F

A

B

C

contentArea D

(continued from
previous column)

(continued from
previous column)

(continued in next
column)

(continued in next
column)

(continued in next
column)

(continued from
previous column)

Wheel Invented

- oldnews.com

Combined bookend and overflow
leaders and trailers

XFA Specification
Chapter 8, Layout for Growable Objects Tables 322

The following example shows the structure of a table in the template.

Example 8.43 Subforms using table layout

<subform name="T" layout="table" columnWidths="1in -1 25mm">
<subform name="P" layout="row">

<field name="A" …/>
<draw name="B" …/>
<subform name="C" …/>
<subform name="D" …/>

</subform>
<subform name="Q" layout="row">

<subform name="J" …/>
<field name="K" …/>
<draw name="L" …/>
<subform name="M" …/>

</subform>
</subform>

In the above example the first column is set to one inch wide, the second is unspecified, the third column
is set to 25 millimeters wide, and the fourth is unspecified. As usual in layout when a fixed size is allotted
for an object, the visible representation of the object may extend beyond the allotted region.

The layout processor regards each layout object inside a row subform as a cell in the table. First it lays out
the cells in each row in order from left to right with their natural sizes. Then it adjusts the cell sizes to align
the table. For each row it expands the cells vertically to the height of the tallest cell in the row. This results
in each row being vertically aligned. Next it lays out the rows sequentially from top to bottom. Then the
layout processor aligns the columns. It expands the cells in each column horizontally to the designated
width, or if the width is not specified to the width of the widest cell in the column. If a row does not have as
many cells as other rows then it leaves an empty region on the right of that row.

XFA Specification
Chapter 8, Layout for Growable Objects Tables 323

The following figure shows the above example before and after table alignment.

Table before and after alignment

A column is normally the set of corresponding cells from different rows, in row order. For example, the
second column consists normally of the second cell from each row. However it is possible to make an
individual cell span more than one column using the colSpan attribute of the draw, field, subform, and
area elements. If colSpan is set to a positive integer the cell spans that many columns, but if colSpan is -1
the cell spans all the remaining columns. If a row has a cell with colspan set to -1 and additional cells after
that, the extra cells are not displayed. If colSpan is not supplied the value defaults to 1. Note that colSpan
must not be set to zero.

A
C

D

J
K L

M

P

Q

A B D

J K L M

P

C

width of M

25 mm

width of B

1 inch

B

h
e

ig
h

t o
f

J

h
e

ig
h

t o
f

D

XFA Specification
Chapter 8, Layout for Growable Objects Tables 324

Consider the following example.

Example 8.44 Subforms using the colSpan property in a table layout

<subform name="T" layout="table" columnWidths="0.5in 0.5in 0.5in 25mm 0.6in ">
<subform name="P" layout="row">

<field name="A" …/>
<draw name="B" colSpan="2"…/>

<subform name="C" …/>
<subform name="D" …/>

</subform>
<subform name="Q" layout="row">

<subform name="J" colSpan="2" …/>
<field name="K" …/>
<draw name="L" colspan="-1" …/>
<subform name="M" …/>

</subform>
</subform>

The figure at right shows this example
before and after table alignment. The first
column contains A and the left side of J. The
second column contains the left side of B
and the right side of J. The third column
contains the right side of B and all of K. The
fourth column contains all of C and the left
side of L. The fifth column contains the all of
C and the right side of L. M does not appear
because it is preceded by a cell (L) with a
colSpan of -1.

In this example all the columns have
constrained widths. It is possible for a table
to contain cells spanning columns with
unconstrained widths. As long as at least
one cell in each unconstrained column does
not span multiple columns the table is
well-defined. However if any given
unconstrained column contains only cells
that span multiple columns the table is not
well-defined and the resulting layout is up
to the implementation. Most tables have
one title cell per column so this situation
does not usually arise.

Note that, in contrast to cells spanning
columns, XFA does not provide support for
cells spanning more than one row.

The examples above show uniquely-named
cells and rows but neither cells nor rows
have to be uniquely named. It is also normal
and expected for cells and rows to be
subforms or subform sets that have
multiple and/or variable (dynamic) occurrences. The layout algorithm as described here is only affected by

A
C

D

J
K L

M

P

Q

A

J

C

L

D

25
mm

B

h
e

ig
h

t o
f

J

h
e

ig
h

t o
f

D

B

K

0.5
inch

0.6
in

0.5
inch

0.5
inch

Table with cells spanning multiple columns, before
and after alignment

XFA Specification
Chapter 8, Layout for Growable Objects Tables 325

the presence of objects in the Form DOM, not by their names or how they got there.

The examples above do not show margins or borders for the table or row subforms but it is normal and
expected for them to be used. In addition the cell objects may have their own margins and/or borders.In
XFA 3.1 cells of a table are allowed some tolerance when splitting so they don’t have to line up exactly.
There is no tolerance allowance for other objects, only table cells.

Typically all the direct children of a table subform are row subforms. However a table subform may have
direct children consisting of any mixture of row subforms and ordinary subforms or other layout objects
(although row subforms must not appear as descendents at a deeper level). The non-row child is laid out
in the same place where a row would appear, but it and its contents are not adjusted for alignment in
height or width.

A table subform may descend from a table subform, causing tables to be nested. Tables may nest to any
level.

Tables can be freely combined with leaders and/or trailers. A table subform may employ a row subform as
a leader or trailer, but it may also employ an ordinary subform.

 326

9 Dynamic Forms

This chapter explains how XFA processing applications support binding and layout in dynamic forms. A
dynamic forms differ from static forms in their ability to dynamically add containers and rearrange layout
depending on the data being entered.

“Basic Data Binding to Produce the XFA Form DOM” on page 171 describes data binding for static forms
and “Basic Layout” on page 49 describes layout for static forms.

Static Forms Versus Dynamic Forms
In a static form the template is laid out exactly as the form will be presented. When the template is merged
with data, some fields are filled in. Any fields left unfilled are present in the form but empty (or optionally
given default data). These types of forms are uncomplicated and easy to design, though not as capable as
dynamic forms. XFA supports both static and dynamic forms.

In a dynamic form the number of occurrences of form components is determined by the data. For
example, if the data contains enough entries to fill a particular subform 7 times, then the Form DOM
incorporates 7 copies of the subform. Depending on the template, subforms may be omitted entirely or
rearranged, or one subform out of a set selected by the data. Dynamic forms are more difficult to design
than static forms but they do not have to be redesigned as often when the data changes. In addition
dynamic forms can provide an enhanced visual presentation to the user because unused portions of the
form are omitted rather than simply left blank. When printed, dynamic forms save paper and toner. When
displayed on glass, dynamic forms eliminate unnecessary scrolling.

Whether a form is static or dynamic is determined when it is designed. In addition a form may be partly
dynamic and partly static. The mechanism is controllable at the level of individual subforms. When a
subform has no occur sub-element, or its minimum, maximum, and initial occurrence properties are all
set to 1, it is static. When the values are fixed and equal but not 1 (for example if they are all 7), the subform
is also static. In such a subform the occurrence values merely take the place of replicating the subform so
many times. But if the values are unequal or if the maximum occurrence is unlimited (indicated by a value
of -1), the subform is dynamic. For example, if the maximum occurrence is unlimited the data binding
process will keep adding more copies of the subform to the Form DOM until it has used up all the
matching data from the Data DOM.

In addition, a form is dynamic if it includes subform sets. Subform sets allow for subforms to be grouped
into sets with certain logical relationships. For example, one out of a set of subforms can be incorporated
depending upon what element is present in the data. Any given subform set can express an ordered set,
an unordered set, or a choice set, corresponding to the set relationships defined in [XML Schema].

The same data that is used with a static form can also be used with a dynamic form.

Data Binding for Dynamic Forms
As explained in “Static Forms Versus Dynamic Forms” on page 326, dynamic forms are data-driven To the
end user this means that unused portions of the form are omitted. This makes the filled form less cluttered
and more convenient to view in a display of finite size. The number of occurrences can also be limited to a
range bounded by the max and min properties of the occur property.

XFA Specification
Chapter 9, Dynamic Forms Data Binding for Dynamic Forms 327

Example 9.1 Dynamic Club Membership Form

For example, consider the same membership
list described under “Forms with Repeated
Fields or Subforms” on page 234, converted to a
dynamic form. The Member subform is set to
repeat just as many times as the data requires.

The form is filled with the same data as before,
by merging it with the following data file.

<Members>
<Date>2004-01-01</Date>
<Member>

<First>John</First>
<Last>Brown</Last>

</Member>
<Member>

<First>Betty</First>
<Last>White</Last>

</Member>
</Members>

 The illustration on the right shows the result
when the resulting Form DOM is printed or
displayed. Note that the detail line is present
exactly twice, once for each supplied detail
record. If there had been 5 members there
would have been 5 detail lines and no more.

Example 9.2 Dynamic Purchase Order Form

The membership list example is highly simplified compared to forms used in business. Consider the
requirements for a dynamic purchase order form. This form must grow to as many detail lines (purchased
items) as required by the data. In addition, there must be fields holding the subtotal, taxes, and the grand
total, which must move down the page as the list of detail lines grows. Also, thereis a subform containing
delivery instructions which must only be included if there are delivery instructions in the data. The
following figure shows the result of merging the template with typical data.

Anytown Garden Club
2023 Anytown Road
Anytown, USA

Date 01/01/04

Membership List
John Brown

Betty White

Dynamic membership form after merge with data

XFA Specification
Chapter 9, Dynamic Forms Data Binding for Dynamic Forms 328

Dynamic purchase order form after merge with data

This example still does not illustrate the full capabilities of dynamic forms. Dynamic forms can span
columns and pages, with the number of columns and/or pages determined by the amount of data.
However columnization and pagination are not parts of the data binding process. They are done
downstream in a stage referred to as the layout process. The layout process handles all physical layout
issues such as flowing text across content regions and pages. The layout process can also insert leaders,
trailers, and bookends. See “Layout for Dynamic Forms” on page 350 for more information about the
layout process. Addressing these issues of presentation is not the job of the data binding process. The job
of data binding is simply to build the correct logical association between data nodes and template nodes,
and encapsulate that association in document order in the Form DOM.

Any Company, Inc
PURCHASE ORDER

Date

Requisition Number

Vendor Code

01/31/2004

1234567

1001

Vendor Ship To

A1 Business Products
234 Second St.
Anytown, ST
USA 12345-6789

Any Company, Inc
123 Any Ave.
Any Town
Any Country

Item Qty Description Units Unit Price Total Price

10 Mouse Pads EA 1.75 17.50 123A

5 Phone Message Pads EA 0.50 2.50 333C

10 Desk Calendars EA 5.50 55.00 777X

2 Desk Trays EA 6.60 13.20 633B

Subtotal

Tax - 7.25%

Total

 88.20

 6.39

 94.59

Delivery Instructions

Deliver these goods before the end of the fiscal year.

XFA Specification
Chapter 9, Dynamic Forms Data Binding for Dynamic Forms 329

Variable Number of Subforms
What makes a dynamic subform dynamic is that it has values other than 1 for its minimum and maximum
occurrences. The min attribute of the occur property of the subform determines its minimum
occurrences. When the subform is copied into the Form DOM this number of copies are created to start
with. A value of 0 makes the subform optional. If and when all of these copies are bound to data, and more
data remains that could bind to additional copies, the max attribute of the occur property limits how
many more copies can be added. If the value of max is -1 the only limit is the amount of data available. The
occur property for a subform set works exactly the same way.

The following example shows the dynamic membership list template corresponding to the figure on
page 327, omitting decorative elements. The markup that makes it dynamic has been highlighted in bold.

Example 9.3 Dynamic membership list template

<template ……>
<subform name="Members">

<pageSet …>…</pageSet>
<field name="Date" …> … </field>
<subform name="Member">

<occur min="1" max="20" …/>
<field name="First" …> … </field>
<field name="Last" …> … </field>

</subform>
</subform>

</template>

The occur element makes the Member subform dynamic. The grammar of the occur element is formally
described in “The Occur Element” on page 332. In this example the minimum number of detail lines
(member's names) that will be included when merging with data is one, from the min attribute. The
maximum is twenty, from the max attribute.

Note that when any of the attributes is omitted from the occur element, the value of the corresponding
property defaults to 1. In the absence of an occur sub-element all of its properties default to 1. Hence the
default behavior is for a subform to be incorporated exactly once into the Form DOM whether or not there
is data, that is, to behave as a static subform.

In the membership list example the minimum occurrence for the Detail subform defaults to 1 and the
maximum is 20. The minimum of 1 means that the subform must be copied at least once into the Form
DOM, even if there is none of the data matches it. The maximum of 20 means that it can be copied at most
twenty times into the Form DOM. If the data file contained a twenty-first Member data group, it would if
possible bind to some other subform. In this case there would be no other subform for it to bind to, so it
would simply be ignored.

Normally, for the template to be valid, the maximum occurrence value must be an integer greater than or
equal to the minimum occurrence value. However a value of -1 for the maximum occurrence is special. It
means that the number of occurrences is unlimited. When the maximum occurrence is -1 the minimum
occurrence can have any value greater than or equal to zero.

A maximum occurrence of -1 is very commonly used for dynamic subforms. When the form is to be
displayed on a graphics display the unlimited scrolling length of the virtual page suits the unlimited
length of the sequence of subforms. However when printed to paper the sequence of subforms must be
broken up into properly paginated units. This is performed downstream by the layout process, as
described in “Layout for Dynamic Forms” on page 350 and has no effect on data binding.

XFA Specification
Chapter 9, Dynamic Forms Data Binding for Dynamic Forms 330

Note that the minimum occurrence must be an integer greater than or equal to zero. In addition, it must
be less than or equal to the maximum occurrence value unless the maximum occurrence value is -1. If
either of these conditions is violated the template is invalid.

When a subform has a variable number of occurrences, the data binding process starts by creating the
specified minimum number of copies of the subform in the Form DOM. Then it seeks matching data
objects for each of these in turn. If it finds matches for all of them, and there is still another potential
match, it adds another copy and binds this to the next match. It continues adding more copies and
binding them as long as the total number of copies is less than the maximum and there is at least one
more match. In the example, it starts with one copy ($form.Members.Member[0]), because this is the
minimum, and binds it to the first Member data group ($data.Members.Member[0]). Proceeding in
template document order, it descends into the subform and the data group and binds the fields to the
data values. Returning to the $form.Members level, it finds that it is allowed to add another copy of the
same subform and also there is a match for it, so it adds $form.Members.Member[1], binding it to
$data.Member.Members[1], then descends into these and binds fields to data values. After this the
data binding process finds that, although it is allowed to add more copies of the same subform, there
would be no matches for the copies. Hence it stops adding copies of $template.Members.Member and
returns to the next higher level in the template ($template.Members) where it looks for the next child
of Members to copy into the Form DOM – but there isn't one, so it is finished. The effect is the same as if
the Members subform was declared twice in the template – just as many times as the data requires – and
each Members subform along with its contents was processed in document order. The following figure
shows the resulting relationship between the DOMs.

DOMs resulting from dynamic membership list example

Members

Member[0]

First
“John”

Last
“Brown”

Member[1]

First
“Betty”

Last
“White”

Members

Member[0]

First
“John”

Last
“Brown”

Member[1]

First
“Betty”

Last
“White”

Members

Member
occur.min = “1”

occur.max = “99”

First

Last

Template DOM Data DOMForm DOM

Date
Date

“01/01/04”
Date

“01/01/04”

XFA Specification
Chapter 9, Dynamic Forms Data Binding for Dynamic Forms 331

The template for the dynamic purchase order on page 328, omitting decorative elements, is as follows.

Example 9.4 Dynamic purchase order template

<template …>
<subform name="PO" layout="position" …>

<pageSet …>…</pageSet>
<field name="Date" …> … </field>
<field name="ReqNum" …> … </field>
<field name="VendorCode" …> … </field>
<field name="VendorName" …> … </field>
<field name="VendorAddress" …> … </field>
<subform layout="tb">

<subform name="Detail" layout="position" …>
<occur max="-1"/>
<field name="Item"…> … </field>
<field name="Qty"…> … </field>
<field name="Desc"…> … </field>
<field name="Units"…> … </field>
<field name="UnitPrice"…> … </field>
<field name="TotalPrice"…> … </field>

</subform>
<subform layout="position" …>

<field name="SubTotal"…> … </field>
<field name="Tax"…> … </field>
<field name="Total"…> … </field>

</subform>
<subform layout="position" …>

<occur min="0"/>
<field name="DeliveryInstructions"…> … </field>

</subform>
</subform>

</subform>
</template>

The different subforms have different occurrences settings in accordance with their uses. The PO subform
is the root subform so it occurs only once. Going from top to bottom, the next subform, which is nameless,
is a layout wrapper. This causes the remaining parts of the form to flow from top to bottom. It also occurs
only once because it is just a wrapper with no content of its own. The Detail subform has no maximum
occurrences and defaults to a minimum of one. This is typical for a subform corresponding to one in a list
of records. The nameless subform containing the Subtotal, Tax, and Total fields occurs exactly once.
This is present purely for layout purposes, to contain fields that are positioned rather than flowed relative
to each other. Finally, the nameless subform containing the DeliveryInstructions field has no
minimum occurrences and defaults to a maximum of one. This defines a section of the form which is
optional.

Note that fields do not have occur properties, hence can not automatically repeat. It is common to wrap a
field in a subform simply to provide a way to associate an occur property indirectly with the field. In such
cases it may be convenient to leave the subform nameless so it does not alter the SOM expression used to
refer to the field in scripts. Alternatively, setting its scope property to none causes it to appear in SOM
expressions but to be transparent to the data binding process so it has no effect on the data hierarchy.

The DOM relationships for this example are not shown here because the drawing would not fit in the
space available.

XFA Specification
Chapter 9, Dynamic Forms Data Binding for Dynamic Forms 332

The Occur Element
Each subform and subform set object has an occur property which has three sub-properties, min, max, and
initial. It governs how many iterations of the subform or subform set are required and how many are
permitted.

In a template the occur property is expressed as an occur element. It can be the child of a subform or
subform set. When the occur element is missing, all of the sub-properties default to 1. If the element is
present but any of its attributes is missing, the sub-property associated with that attribute defaults to 1.

The initial property

The initial property determines how many copies of the subform or subform set are included in the Form
DOM as siblings during an empty merge. The value of this property must be a non-negative integer. For
example, consider the following template fragment.

Example 9.5 Tax template using the initial occurrence property

<template>
<subform name="jointFiling">

<subform name="spouse">
<occur initial="2"/>
<subform name="employer">

<occur initial="3"/>
<field name="empName">…</field>

</subform>
</subform>

</subform>
</template>

XFA Specification
Chapter 9, Dynamic Forms Data Binding for Dynamic Forms 333

The following figure shows the Form and Data DOMs that result when the above template is processed
through the data binding process without data. The Template DOM has been omitted to save space.

Effect of the initial properties of nested subforms

When the initial attribute is not supplied, this property defaults to the value of the min property. Note
that the root (outermost) subform in a template must have its initial property explicitly or by default
set to 1.

This property is ignored when merging with a non-empty data document. It is also ignored when the
object to which it applies is the child of a subform set and the subform set enforces a choice between
children.

Note: The initial property must be consistent with the max and min properties. The value of the
initial property must be greater than or equal to the min property. If the max property is not
equal to -1, the value of the initial property must be less than or equal to max.

Form DOM

jointFiling

Data DOM

jointFiling

spouse[0]

empName
“”

employer[0]

employer[2]

employer[1]

spouse[0]

empName
“”

empName
“”

spouse[1]

empName
“”

employer[0]

employer[2]

employer[1]

empName
“”

empName
“”

employer[0]

empName
“”

employer[1]

empName
“”

employer[2]

empName
“”

spouse[1]

employer[0]

empName
“”

employer[1]

empName
“”

employer[2]

empName
“”

XFA Specification
Chapter 9, Dynamic Forms Data Binding for Dynamic Forms 334

The max property

The max property determines the maximum number of copies of the subform or subform set that may be
included in the Form DOM as siblings during a non-empty merge. The special value of -1 signifies that
there is no limit. Otherwise the value must be a non-negative integer. If no max attribute is supplied this
property defaults to the value of the min property.

If the value is a non-negative integer, once this number has been reached the subform or subform set is
considered exhausted and no more siblings may be inserted at that location. However if a subform or
subform set that is higher in the chain of ancestors is not yet exhausted, the data binding process may
insert another copy of that higher-level node, then add descendants to that node including a new set of
siblings copied from this same subform or subform set. For example, the following template fragment
includes a higher-level subform (spouse) with a maximum occurrence of 2 and a lower-level subform
(employer) with a maximum occurrence of 3.

Example 9.6 Tax template using the maximum occurrence property

<template>
<subform name="jointFiling">

<subform name="spouse">
<occur max="2"/>
<subform name="employer">

<occur max="3"/>
<field name="empName">…</field>

</subform>
</subform>

</subform>
</template>

XFA Specification
Chapter 9, Dynamic Forms Data Binding for Dynamic Forms 335

Given a flat data document with eight empName elements, the resulting Form and Data DOMs, before
renormalization, are shown in the following figure. Data values after the first six are left unbound because
there are no unbound empName fields left for them to bind with.

Effect of the max properties of nested subforms

Note: The root (outermost) subform of a template must have this property defaulted or explicitly set to 1.

If the value of this property is anything other than -1, it must be greater than or equal to the value of the
min property.

This property is ignored during an empty merge.

Form DOM

jointFiling

Data DOM

jointFiling

spouse[0]

empName
“FraudCo”

employer[0]

employer[2]

employer[1]

empName
“Scrooge PLC”

empName
“Smash! Shipping”

spouse[1]

empName
“FlyByNightCo”

employer[0]

employer[2]

employer[1]

empName
“Scams Unlimited”

empName
“Incompetent Inc.”

empName[0]
“FraudCo”

empName[1]
“Scrooge PLC”

empName[2]
“Smash! Shipping”

empName[3]
“FlyByNightCo”

empName[4]
“Scams Unlimited”

empName[5]
“Incompetent Inc.”

empName[6]
“Shaky Bank”

empName[7]
“Bozo Labs”

XFA Specification
Chapter 9, Dynamic Forms Data Binding for Dynamic Forms 336

The min property

The min property determines the starting number of copies of the subform or subform set that are
included in the Form DOM as siblings during a non-empty merge. The value must be a non-negative
integer. If no min attribute is supplied this property defaults to 1.

This number of siblings is created whenever the subform or subform set is used as a prototype for a node
in a new location in the Form DOM, where there were no siblings copied from it before. If the same
subform or subform set is subsequently used as a prototype somewhere else in the Form DOM the same
starting number of siblings is created there too. For example, the following template fragment has a
higher-level subform (spouse) with a minimum occurrence of 2 and a lower-level subform (employer)
with a minimum occurrence of 3.

Example 9.7 Tax template using the minimum occurrence property

<template>
<subform name="jointFiling">

<subform name="spouse">
<occur min="2"/>
<subform name="employer">

<occur min="3"/>
<field name="empName">…</field>

</subform>
</subform>

</subform>
</template>

XFA Specification
Chapter 9, Dynamic Forms Data Binding for Dynamic Forms 337

Given a data document with a single data value named empName, the resulting Form DOM is shown in the
following figure.

Effect of the min properties of nested subforms

Note: The root (outermost) subform of a template must have this property defaulted or explicitly set to 1.

If the max property is anything other than -1, the value of this property must be less than or equal to the
value of the max property.

This property is sometimes ignored during an empty merge. If there is no initial attribute then the
value of this property is used for initial. However if an initial attribute is supplied then this
property is ignored.

This property is also ignored when the object to which it applies is the child of a subform set and the
subform set enforces a choice between children.

Form DOM

jointFiling

Data DOM

jointFiling

spouse[0]

empName
“AnyCo”

employer[0]

employer[2]

employer[1]

empName
“”

empName
“”

spouse[1]

empName
“”

employer[0]

employer[2]

employer[1]

empName
“”

empName
“”

empName[0]
“AnyCo”

XFA Specification
Chapter 9, Dynamic Forms Data Binding for Dynamic Forms 338

Blank Form
When a dynamic subforms or subform sets is merged with data, the data determines (at least partly) the
number of times the subform or subform set is copied into the Form DOM. But what is to be done when
there is no data, that is during an empty merge? A separate attribute (initial) is defined which controls
how many copies of the subform or subform set are incorporated into the Form DOM during an empty
merge. Generally initial will be equal to 1 or to the value of min or max. It does not make much sense
to set initial to a value larger than max but it is not forbidden to do so. In fact initial is always used
during an empty merge, even for static subforms and subform sets, so one could perversely set min and
max to the same value but initial to some other value. Doing so is not recommended.

The garden club diagram on page 326 shows the
membership list as printed after merging with
data. Compare this to the figure at right, which
shows the same dynamic form after an empty
merge.

The template was defined in Example 9.3, but the
initial property was omitted there. It is shown
below.

Example 9.8 Dynamic membership list
template

<template …>
<subform name="Members">

<field name="Date" …> … </field>
<subform name="Member">

<occur … initial="3"/>
<field name="First" …>
 … </field>
<field name="Last" …>
 … </field>

</subform>
</subform>

</template>

Since the value supplied for initial was 3, the data binding process placed three copies of the Member
subform into the Form DOM. The resulting relationship between the DOMs is shown in the following
figure.

Anytown Garden Club
2023 Anytown Road
Anytown, USA

Date

Membership List

Membership list as printed after empty merge

XFA Specification
Chapter 9, Dynamic Forms Data Binding for Dynamic Forms 339

Relationship between the DOMs of the membership form after an empty merge

Greedy Matching
Once the data binding process has introduced a subform into the Form DOM, and the number of
occurrences is variable, the data binding process tries to match the full permitted number of siblings to
the data. This is referred to as greedy matching. But some of the matches may be indirect matches. These
indirect matches sometimes lead to non-intuitive results. For example, consider the following template
fragment from a passport application.

Example 9.9 Passport application template

<template>
<subform name="application">

<subform name="sponsor">
<occur max="7"/> <!-- up to seven sponsors -->
<field name="last"> … </field> <!-- sponsor's last name -->
…

</subform>
<field name="last"> … </field> <!-- applicant's last name -->
…

</subform>
</template>

Members

Member[0]

First

Last

Member[1]

First

Last

Member[2]

First

Last

Members

Member
occur.initial = “3”

First

Last

Template DOM Form DOM

Date Date

XFA Specification
Chapter 9, Dynamic Forms Data Binding for Dynamic Forms 340

This template is merged with the following data.

<application>
<last>Abbot</last>
<sponsor>

<last>Costello</last>
</sponsor>

</application>

The result is shown in the following figure.

Scope-matching leads to dynamic subform greedily devouring data it shouldn't

Note: The above diagram shows a transient state. Normally after performing this data binding the XFA
processor would re-normalize the data by inserting a sponsor data group as parent of the Abbot
data value, and creating a new last data value. The result is that the data does not round-trip;
when the data is written out to an XML data document it actually contains an element representing
the added sponsor data group. For more information see “Re-Normalization (Step 4)” on page 203.

At first glance this is a surprising result. Recall that data binding traverses the Template DOM in document
order. In the Template DOM the sponsor subform precedes its sibling last field, which is intended for
the applicant’s last name. So, the XFA processor adds a sponsor subform to the Form DOM and binds it to
the sponsor data group in the Data DOM. The last field beneath this subform correctly binds to the
data value containing Costello. However the sponsor subform is allowed to occur up to 7 times. Due
to greedy matching the XFA processor replicates the sponsor subform and the last field within it in
order to bind the field to the applicant's last name (Abbot). This is a valid binding because
$data.application.last scope-matches to $form.application.sponsor.last. By the time
the field for the applicant's last name is processed all the data has already been bound, so this field is left
unbound and when the form is displayed it remains blank.

application

sponsor

last

last

application

last
“Abbot”

sponsor

last
“Costello”

application

sponsor

last
“Costello”

last
“Abbot”

Template DOM Data DOMForm DOM

sponsor

last

XFA Specification
Chapter 9, Dynamic Forms Data Binding for Dynamic Forms 341

The same remedies apply in this case as apply generally when scope-matching produces an undesirable
result. The various remedies are listed in “Form Objects with Non-Unique Names” on page 185. Here is the
same template fragment with an explicit data reference added to fix the problem.

Example 9.10 Passport application template fixed to prevent greedy matching problem

<template>
<subform name="application">

<subform name="sponsor">
<occur max="7"/> <!-- up to seven sponsors -->
<bind match="dataRef" ref="sponsor"/>
<field name="last"> … </field> <!-- sponsor's last name -->
…

</subform>
<field name="last"> … </field> <!-- applicant's last name -->
…

</subform>
</template>

The result using this template fragment and the same data is shown in the following figure. This is the
desired result.

Explicit data reference prevents unwanted scope-matching

Globals
A field or exclusion group can bind to global data, as described in “Globals” on page 245. However globals
play a passive role in data binding. That is, the binding process does not drag in a subform into the Form
DOM just because the subform contains a field or exclusion group that matches to a global. However once
a subform has been dragged into the Form DOM, any field or exclusion group within that subform that
does not match non-global data may fall back to binding with global data.

application

sponsor

last

last

application

last
“Abbot”

sponsor

last
“Costello”

application

sponsor

last
“Costello”

last
“Abbot”

Template DOM Data DOMForm DOM

XFA Specification
Chapter 9, Dynamic Forms Data Binding for Dynamic Forms 342

Explicit Data References
An explicit data reference (using the dataRef sub-property) may cause a subform, field, or exclusion
group node to bind to data which would not otherwise match it, as described in “Explicit Data References”
on page 199. During dynamic binding this is treated as a special case. If the data has not already been
bound to a node in the Form DOM then the subform, field, or exclusion group declaring the explicit data
reference is dragged into the Form DOM and a binding is established. However if the data node is already
bound to some other node then the declaring subform, field, or exclusion group is not dragged into the
Form DOM. One way of looking at it is that the referenced data is treated as ordinary non-global data as
long as it has not yet been bound, but once bound it is treated like global data.

Subform Set
An individual dynamic subform can be omitted or included in response to the presence or absence of data
in the Data DOM. A subform set imposes additional constraints upon the inclusion or omission of the set of
subforms and/or subform sets which it encloses.

There are three types of subform sets, distinguished by the value of the relation attribute. The relation
attribute can have any of the values choice, ordered, and unordered.

A choice subform set encloses a set of mutually-exclusive subforms and/or subform sets. Even if the Data
DOM contains matches for more than one of the members of the set, only one will be copied into the Form
DOM. The one chosen is the first matching one encountered in the Data DOM, when descending it in data
order, that is, width-first and oldest to newest (left to right). If there is no match none of the members are
included, leaving the subform set node in the Form DOM without any children.

An unordered subform set encloses subforms and/or subform sets that have no special ordering in the
template. The whole set is copied into the Form DOM, however the ones (if any) that match data groups
are copied first, in data order. The rest are copied in template order.

An ordered subform set encloses subforms and/or subform sets that have a special ordering in the
template. The whole set is copied into the Form DOM in template order, and then matching data nodes (if
any) are bound to them. An ordered subform set is functionally equivalent to a subform with no name.

Subform sets have initial, min, and max occurrence attributes just like the subforms that belong to the
set. During an empty merge the initial attribute of the subform set determines how many copies of it
are added to the Form DOM, and then the initial attributes of the subforms determine how many
copies of each are added to the Form DOM under each copy of the subform set, except for choice subform
sets. When a choice subform set is added to the Form DOM only the first of its subforms is copied to the
Form DOM regardless of the occurrence attributes of the rest. For example, the following shows a portion
of a template for a pizza order. There is a separate subform for each type of pizza topping because each
type has different options. Pepperoni can be mild or hot, green peppers can be sliced or chopped, and
olives can be green or black. The pizza toppings are contained by an ordered subform set.

Example 9.11 Subform set for pizza toppings

<subformSet name="topping" relation="ordered">
<subform name="pepperoni">

<occur initial="2"/>
…

</subform>
<subform name="greenPeppers">

<occur initial="1"/>
…

XFA Specification
Chapter 9, Dynamic Forms Data Binding for Dynamic Forms 343

</subform>
<subform name="olives">

<occur initial="0"/>
…

</subform>
</subformSet>

The following figure shows part of a Template DOM and the corresponding part of the Form DOM after an
empty merge of the ordered subform set. For clarity the fields within the subforms are omitted from the
drawing.

Empty merge of an ordered subform set

Now consider the same fragment modified by changing the subform set from unordered to choice.

Example 9.12 Previous example changed to use a choice subform set

<subformSet name="topping" relation="choice">
<subform name="pepperoni">

<occur initial="2">
…

</subform>
<subform name="greenPeppers">

<occur initial="1">
…

</subform>
<subform name="olives">

<occur initial="0"/>
…

</subform>
</subformSet>

topping
relation = "ordered"

pepperoni
occur.initial = "2"

greenPeppers
occur.initial = "1"

olives
occur.initial=”0”

topping
relation = "ordered"

pepperoni

Template DOM Form DOM
pizzapizza

pepperoni

greenPeppers

XFA Specification
Chapter 9, Dynamic Forms Data Binding for Dynamic Forms 344

The following figure shows the result of an empty merge using this subform set. Only the pepperoni
child is used and the other child subforms are ignored.

Empty merge of a choice subform set

During a non-empty merge a subform set can be pushed into the form by its own minimum occurrence
attribute or drawn into the Form DOM by an indirect match with one of its child subforms. In this regard it
is like a subform except that a subform can also be pulled in by a direct match to a data group, whereas a
subform set cannot directly match data. For example, consider the following template fragment.

Example 9.13 Subform set for pizza topping with minimum occurrence limits

<subformSet name="topping" relation="unordered">
<subform name="pepperoni">

<occur min="0"/>
…

</subform>
<subform name="greenPeppers">

<occur min="2"/>
…

</subform>
<subform name="olives"> … </subform>

</subformSet>

The following figure shows a the result of a non-empty merge to this fragment, leaving out fields and the
data values to which they match. The data structure can be represented by the following XML document.

<pizza xmlns:xfa="http://www.xfa.org/schema/xfa-data/1.0/">
<pepperoni xfa:dataNode="dataGroup"/>

</pizza>

topping
relation = "choice"

pepperoni
occur.initial = "2"

greenPeppers
occur.initial = "1"

olives
occur.initial=”0”

topping
relation = "choice"

pepperoni

Template DOM Form DOM
pizzapizza

pepperoni

XFA Specification
Chapter 9, Dynamic Forms Data Binding for Dynamic Forms 345

The toppings subformSet is dragged into the Form DOM by its pepperoni child, which matches a data
group. Then, their minimum occurrence attributes force the inclusion of greenPeppers and olives
subforms even though they do not match any data. Note that the olives subform merely defaults to a
minimum occurrence of 1.

The min attribute forces inclusion of template siblings

Note: The above diagram shows a transient state. As part of the data binding process the XFA processor
manufactures and inserts greenPeppers data groups and an olive data group into the Data
DOM.

Once the first copy of the subform set has been placed in the Form DOM, its maximum occurrence
attribute limits how many siblings may be given to the copy. For example, compare the previous example
to the following template fragment in which some of the subforms assert maximum rather than minimum
occurrence limits.

Example 9.14 Subform set for pizza topping with maximum occurrence limits

<subformSet name="topping" relation="unordered">
<subform name="pepperoni">

<occur max="2"/>
…

</subform>
<subform name="greenPeppers">

<occur max="1"/>
…

</subform>
<subform name="olives"> … </subform>

</subformSet>

topping
relation = "unordered"

pepperoni
occur.min = "0"

greenPeppers
occur.min = "2"

olives

topping
relation = "unordered"

pepperoni

Template DOM Form DOM

pepperoni

greenPeppers

greenPeppers

olives

Data DOM
pizzapizzapizza

XFA Specification
Chapter 9, Dynamic Forms Data Binding for Dynamic Forms 346

For this example the structure of the data can be represented by the following XML document.

<pizza xmlns:xfa="http://www.xfa.org/schema/xfa-data/1.0/">
<pepperoni xfa:dataNode="dataGroup"/>
<greenPeppers xfa:dataNode="dataGroup"/>
<greenPepper xfa:dataNode="dataGroup"/>
<olives xfa:dataNode="dataGroup"/>
<olives xfa:dataNode="dataGroup"/>

</pizza>

The following figure shows a non-empty merge to this data set, in which the maximum occurrence
attributes limit the number of pepperoni and olive subforms even while some data remains
unmatched. Note that the olives subform merely defaults to a maximum occurrence of 1.
T

The max attribute forces exclusion of data siblings

Instance Manager
An instance manager is an object placed into the Form DOM by the data binding process for the use of
scripts. One instance manager is placed in the Form DOM for each dynamic subform in the Form DOM.
Using the instance manager the script can find out how many instances of the subform have been copied
into the Form DOM and it can delete instances or insert more instances. When an instance is deleted, if the
instance was bound to data, the binding is automatically broken. When a new instance is inserted the
instance manager may invoke the data binding process to attempt to bind the new instance.

Each instance manager is the peer of the subforms it manages. It is distinguished from them in two ways.
First, it is not a subform object but an instance manager object. Second, its name is different. The name of

topping
relation = "unordered"

pepperoni
occur.max = "2"

greenPeppers
occur.max = "1"

olives

topping
relation = "unordered"

pepperoni

Template DOM Form DOM

pepperoni

greenPeppers

olives

Data DOM
pizza

greenPeppers

greenPeppers

pepperoni

olives

olives

pizzapizza

XFA Specification
Chapter 9, Dynamic Forms Data Binding for Dynamic Forms 347

the instance manager is an underscore (“_”) character followed by the name of the subforms it manages.
For example, if a subform is called Member, the subform manager for that subform is called _Member.

Caution: It is legal for XFA node names to start with underscore. This can lead to a name conflict if two
sibling subforms have names that differ only by the presence of a leading underscore. It is the
responsibility of the form creator to ensure that this does not happen.

The instance manager also has an occur property which is a copy of the corresponding occur property
in the template. Individual instance subform or subformSet objects in the Form DOM do not have their
own occur properties, rather their occur properties are synonyms for the controlling instance manager’s
occur property.

Instance managers have been omitted from drawings of the Form DOM elsewhere in this specification in
order to reduce clutter. The following figure is another look at the result of merging data with the
membership list template, as shown before in the figure “DOMs resulting from dynamic membership list
example” on page 330, but this time showing the instance manager.

DOMs after merge showing instance manager

For more information about using instance managers, see “Relative References” on page 108, which is a
section in “Scripting Object Model”.

Using Fixed Multiple Occurrences for Pseudo-Static Forms
It is permissible for the maximum and minimum occurrences to be set to the same value. If the value is
anything other than 1 the result is to invoke the full dynamic form mechanism but constrain it to operate
in a pseudo-static manner.

Members

Member[0]

First
“John”

Last
“Brown”

Member[1]

First
“Betty”

Last
“White”

Members

Member[0]

First
“John”

Last
“Brown”

Member[1]

First
“Betty”

Last
“White”

Members

Member
occur.min = “1”

occur.max = “99”

First

Last

Template DOM Data DOMForm DOM

Date
Date

“01/01/04”
Date

“01/01/04”

_Member
instances = “2”

XFA Specification
Chapter 9, Dynamic Forms Data Binding for Dynamic Forms 348

For example, consider the membership list template given as Example 6.15 and reproduced below.

Example 9.15 Membership roster template using repeated subform declarations

<template …>
<subform name="Members">

<field name="Date" …>…</field>
<subform name="Member">

<field name="First" …>…</field>
<field name="Last" …>…</field>

</subform>
<subform name="Member">

<field name="First" …>…</field>
<field name="Last" …>…</field>

</subform>
<subform name="Member">

<field name="First" …>…</field>
<field name="Last" …>…</field>

</subform>
</subform>

</template>

This can be expressed more concisely using occurrence numbers as follows.

Example 9.16 Using fixed occurrence numbers

<template …>
<subform name="Members">

<field name="Date" …>…</field>
<subform name="Member">

<occur min="3" max="3" initial="3"/>
<field name="First" …>…</field>
<field name="Last" …>…</field>

</subform>
</subform>

</template>

This is functionally equivalent to the earlier representation using three repetitions of the Member subform
declaration, except that when packaged in PDF this version of the form must be packaged as a dynamic
form. The Form DOM that results from the data binding operation has the exact same structure except
that:

1. The Form DOM contains an instance manager named "_Member".

2. Multiple subforms in the Form DOM share the same prototype in the Template DOM, as shown in the
following figure.

XFA Specification
Chapter 9, Dynamic Forms Data Binding for Dynamic Forms 349

Result of binding repeated data groups to a multiply-occurring subform

The data for this example was previously given in Example 6.14 and is reproduced below. Note that this is
the input data, not the output data. After the above binding takes place a normalization step will occur,
causing a third Member data group to be added to the added to the Data DOM. If the data is subsequently
written out to an XML Data Document it will contain an extra element representing that data group.

Input data for this example
<?xml version="1.0"?>
<Members>

<Date>01/01/04</Date>
<Member>

<First>John</First>
<Last>Brown</Last>

</Member>
<Member>

<First>Betty</First>
<Last>White</Last>

</Member>
</Members>

Members

Member[0]

First
“John”

Last
“Brown”

Member[1]

First
“Betty”

Last
“White”

Member[2]

First

Last

Members

Member[0]

First
“John”

Last
“Brown”

Member[1]

First
“Betty”

Last
“White”

Members

Member
occur.min = “3”
occur.max = “3”

First

Last

Template DOM Data DOMForm DOM

Date
Date

“01/01/04”
Date

“01/01/04”

XFA Specification
Chapter 9, Dynamic Forms Layout for Dynamic Forms 350

As it happens, if the max attribute is not supplied then the max property defaults to the value of min.
Furthermore, if the initial attribute is not supplied then the initial property defaults to the value of
min. Therefore the above template can be expressed still more compactly as follows.

Example 9.17 Using default max and initial attributes with fixed occurrence numbers

<template …>
<subform name="Members">

<field name="Date" …>…</field>
<subform name="Member">

<occur min="3"/>
<field name="First" …>…</field>
<field name="Last" …>…</field>

</subform>
</subform>

</template>

Nested subforms and subform sets can have multiple occurrences at each level of nesting. The result is to
compound the occurrences. For example, suppose a template has a subform Member which is set to occur
three times, and Member contains a subform Name which is set to occur twice. This is equivalent to a
template containing three subforms called Member, each of which contains two subforms called Name.

Layout for Dynamic Forms
A previous chapter (“Layout for Growable Objects” on page 269) has described the layout algorithm and
how it accomplishes flowing layout. Dynamic forms use the same layout algorithm, except that adhesion
is modifed slightly. However there are additional layout capabilities which are only useful for dynamic
forms. Those additional capabilities are described in this section.

Flowing layout is generally used by dynamic forms so that different instances of the same subform,
represented only once in the template, can be placed in different positions upon the page. Furthermore,
flowing layout in XFA includes a simple and convenient way to lay out two-dimensional tables.

Adhesion in Dynamic Forms
The layout process treats subformSet objects as transparent. Hence a subform can adhere to another
subform even though it is not really a sibling, as long as the two subforms are separated only by
subformSet objects. For example, in the following template subform D does adhere to subform C even
though they are not true siblings. Subform E also adheres to D.

XFA Specification
Chapter 9, Dynamic Forms Layout for Dynamic Forms 351

Example 9.18 Dynamic form using adhesion

<template …>
<subform name="root" layout="tb" …>

<pageSet …>
…

</pageSet>
<subform name="C" … />
<subformSet name="X" …>

<subform name="D" …>
<keep previous="contentArea" />
…

</subform>
</subformSet>
<subform name="E" …>

<keep previous="contentArea" />
…

</subform>
</subform>

</template>

Adhesion can and does apply to multiple instances of a dynamic subform (that is, a subform with a
variable number of occurrences dictated by the data). It is very common to combine adhesion with
dynamic subforms. For example, the following template uses nested dynamic subforms to populate a form
with repeated groups of five subforms.

Example 9.19 Template using nested dynamic subforms and adhesion

<template …>
<subform name="root" layout="tb" …>

<pageSet …>
…

</pageSet>
<subform name="outer" layout="tb">

<occur max="-1"/>
<bind match="none"/>
<subform name="inner" …>

<occur max="5"/>
<keep next="contentArea" />
…

</subform>
</subform>

</subform>
</template>

Assume the data contains twelve data items. After data binding the resulting Form DOM (not Layout
DOM!) looks like this:

XFA Specification
Chapter 9, Dynamic Forms Layout for Dynamic Forms 352

[subform (root)]
[subform (outer[0])]

[subform (inner[0]) keep.next="contentArea"]
[subform (inner[1]) keep.next="contentArea"]
[subform (inner[2]) keep.next="contentArea"]
[subform (inner[3]) keep.next="contentArea"]
[subform (inner[4]) keep.next="contentArea"]

[subform (outer[1])]
[subform (inner[0]) keep.next="contentArea"]
[subform (inner[1]) keep.next="contentArea"]
[subform (inner[2]) keep.next="contentArea"]
[subform (inner[3]) keep.next="contentArea"]
[subform (inner[4]) keep.next="contentArea"]

[subform (outer[2])]
[subform (inner[0]) keep.next="contentArea"]
[subform (inner[1]) keep.next="contentArea"]

When these objects are inserted into the Layout DOM each group of inner subforms adheres together,
but there is no adherence between groups of inner subforms or between inner and outer subforms.

Tip: A more readable way to accomplish the same goal would be to place the layout constraint onto the
outer subform as follows. This gives the same result as the previous example.

Example 9.20 Same effect using layout constraint on the outer subform

<template …>
<subform name="root" layout="tb" …>

<pageSet …>
…

</pageSet>
<subform name="outer" layout="tb">

<keep intact="contentArea" />
<occur max="-1"/>
<bind match="none"/>
<subform name="inner" …>

<occur max="5"/>
…

</subform>
</subform>

</subform>
</template>

Break Conditions for Dynamic Forms
As explained in “Flowing Between ContentArea Objects” on page 288, the layout processor by default
moves to a new contentArea if and when the current contentArea overflows (which can only happen
with flowing layout). However the overflow property of the object can force the layout processor to
move to a different pageArea and/or contentArea when the overflow occurs, as discussed in “Break on
Entry” on page 353. In addition the object’s breakBefore property can force the layout processor to
move to a different pageArea and/or contentArea just before the layout processor places the object, as
discussed in “Break on Exit” on page 358. Finally, the object’s breakAfter property can force it to move
to a different pageArea and/or contentArea after it has placed the object, as discussed in “Break on
Overflow” on page 359.

XFA Specification
Chapter 9, Dynamic Forms Layout for Dynamic Forms 353

Note: The preferred syntax for expressing break conditions changed in XFA 2.4. The old syntax using the
break element is still permitted but is deprecated and will be removed from some future version of
this specification.

The overflow, breakBefore, and breakAfter elements can force the layout processor to go to a
particular contentArea or a particular pageArea. In either case, an attribute of the element provides
either an XML ID or a SOM expression identifying the target. If there is an object of the correct type
matching the XML ID or SOM expression the layout processor traverses the subtree below the pageArea
in the Template DOM, taking the shortest route to get from the node corresponding to the current
contentArea to the target node. (This traversal may have side-effects, which are discussed in “Leaders
and Trailers” on page 308.) On the descending part of the traversal it adds new instances of pageSet
and/or pageArea objects as appropriate to the Layout DOM. When the destination of the break is a
pageArea, the layout processor then descends into a contentArea, adding new instances of
contentArea objects to the Layout DOM if necessary.

The break target can be specified via a SOM expression. The expression is evaluated in the context of the
object that is currently being laid down. This is consistent with the rules for evaluating prototype
references using SOM expressions; the using object supplies the context.

A before or after break condition (but not an overflow break condition) can be controlled by a script at
layout time. If a non-empty script is supplied within a breakBefore or breakAfter element, the layout
processor executes the script at the appropriate time (just before or just after laying down the object). The
script must return a Boolean value. If the script returns True the break is executed. If the the script returns
False the break is inhibited.

The three types of layout breaks are processed at a different times and under different circumstances.
Consequently a single object may freely assert any two or all three. If the object being placed asserts
breakAfter and the next object to be placed asserts breakBefore the two breaks are processed
sequentially.

Break conditions are also used with positioned layout, as discussed in “Break Conditions” on page 264.

Break on Entry
A subform may specify default behavior explicitly via a breakBefore element with a targetType
attribute having a value of auto. Alternatively, it may specify that it must be placed inside an instance of a
particular contentArea or pageArea. If the breakBefore element has a targetType property with a
value of pageArea or contentArea, the layout processor gets a target specification from the value of
the element's target property. If the target specification starts with the character ‘#’ it is evaluated as a
reference to an XML ID; otherwise it is evaluated as a SOM expression. If there is an object of the correct
type matching the target specification the layout processor first checks whether the current container is
within a contentArea or pageArea that is an instance of the one specified. If it is not, the layout
processor breaks to the specified target. If the target is a pageArea then the layout processor traverses to
the first unused (empty) child contentArea, as it would when flowing from one contentArea to the
next. For example, a template contains the following declarations.

Example 9.21 Template employing break on entry into the root subform

<template …>
<subform name="X">

<breakBefore targetType="pageArea" target="#E_ID"/>
<pageSet name="A">

<pageArea name="B">
<contentArea name="C" … />

XFA Specification
Chapter 9, Dynamic Forms Layout for Dynamic Forms 354

<contentArea name="D" … />
</pageArea>
<pageArea name="E" id="E_ID">

<contentArea name="F" … />
</pageArea>

</pageSet>
<field name="Y" … />

</subform>
</template>

The Form DOM contains the following content:

[subform (X)]
[field (Y) = "some user-supplied data"]

At startup the layout processor would by default descend into the first contentArea (C) of the first
pageArea (B) of the first pageSet (A) of the root subform (X). Another way of looking at this is that by
default there is an implied break to the first pageArea of the root subform. However, subform X asserts an
explicit break to the pageArea with ID E_ID. This happens to be pageArea E. The layout processor
traverses the tree of pageArea and contentArea nodes until it reaches the specified pageArea. Then it
descends into the first contentArea there to place the layout content. The resulting Layout DOM is:

[root]
[pageArea (E)]

[contentArea (F)]
[subform (X)]

[field (Y) = "some user-supplied data"]

➤ Error Condition: Invalid break target

A conforming template must not supply a target specification for the breakBefore element that does
not resolve to exactly one pageArea or contentArea. However it is anticipated that layout processors
will encounter some templates that are not conforming in this way. It is recommended that in such a case
the layout processor emit a warning and go to the next available pageArea or contentArea.

Break to Empty pageArea or contentArea

A layout object may specify that it must start a new pageArea or contentArea without regard to the
current pageArea. This is done by specifying a breakBefore element having an attribute of startNew
with a value of 1 and an attribute of targetType with a value of pageArea or contentArea. When the
layout processor encounters such an object it traverses to a new instance of the current pageArea or
contentArea. For example, a template contains the following declarations.

Example 9.22 Template using break before with startNew

<template …>
<subform name="W">

<pageSet name="A">
<pageArea name="B">

<contentArea name="C" … />
</pageArea>

</pageSet>
<subform name="X">

<occur max="-1"/>

XFA Specification
Chapter 9, Dynamic Forms Layout for Dynamic Forms 355

<breakBefore targetType="pageArea" startNew="1"/>
<field name="Y"/>

</subform>
</subform>

</template>

The Form DOM contains the following content:

[subform (X[0])]
[field (Y) = "data from first record"]

[subform (X[1])]
[field (Y) = "data from second record"]

At startup the layout processor descends into the first contentArea (C) of the first pageArea (B) of the
first pageSet (A). The first content it finds in the Form DOM is subform X[0], which asserts that it must be
placed into a new pageArea. This forces the layout processor to leave the current pageArea (even
though it is empty) and create a new one. Then the layout processor places the field and its text “data
from first record” into the instance of contentArea C. This small amount of text does not fill
contentArea C. Now it comes to the second instance of subform X (X[1]). Again the startNew condition
forces it to start a new pageArea, the third instance of pageArea B. After this it adds a new instance of
contentArea C and places subform X[1] and its field into the new instance of contentArea C. The
resulting Layout DOM is:

[root]
[pageset (A)]

[pageArea (B[0])]
[contentArea (C)]

[subform (W)]
[pageArea (B[1])]

[contentArea (C)]
[subform (W)]

[subform (X)]
[field Y = "data from the first record"]

[pageArea (B[2])]
[contentArea (C)]

[subform (W)]
[subform (X)]

[field Y = "data from the second record"]

If the above example (which has no boilerplate) is rendered and printed, the first page is blank, the second
page shows the text data from the first record and the third page shows the text data from
the second record.

The root subform (subform W in the above example) may assert startNew, but it has no practical effect
because the root subform always starts a new pageArea and contentArea.

Combining startNew with beforeTarget

The same breakBefore element may have both startNew and target attributes. This combination
requires the layout processor to fulfill both the startNew and target conditions, that is, the subform
must be placed in a pageArea or contentArea that is empty and also corresponds to a template object
which matches the target specification.

XFA Specification
Chapter 9, Dynamic Forms Layout for Dynamic Forms 356

Conditional Break on Entry

The breakBefore element may contain a script element. When the script is non-empty it is executed by
the layout processor just before attempting to place the object. The script must return a Boolean value. If
the value is False the before break is inhibited. However if the return value is True the before break is
executed. In the absence of a script the break is always executed.

Scripts can be in any supported language. When the scripting language does not have a formal return
value mechanism the last right-hand value computed by the script is used. This also allows the use of
simple expressions that do not fulfill the syntax requirements for procedures. For example, in the
following template the script is used to force the report to start a new page whenever the list of detail
records starts a new customer ID.

Example 9.23 Subform breaking conditionally upon a script

<template …>
<subform name="root" layout="tb">

<pageSet>
<pageArea id="pageX" …> … </pageArea>

</pageSet>
<subform name="detailLine">

<occur min="0" max="-1"/>
<breakBefore target="#pageX" targetType="pageArea" startNew="1">

<script>
if (exists(detailLine[-1]))

then detailLine[-1].CustID ne detailLine.CustID
endif

</script>
</breakBefore>
<field name="CustID" …/>
…

</subform>
</subform>

</template>

Note that the script is, as usual, evaluated in the context of the enclosing subform. The FormCalc
expression used tests for the existence of the previous record in order to avoid a run-time error on the first
record. As a side effect on the first record the before break is inhibited because the script returns the value
False which was returned by the exists() function. For all other records the customer ID for the current
and previous records are compared and the break is executed, starting a new page, only when they differ.

Inserting a Trailer

A trailer is an object which is laid down before any other action is carried out. In particular it is laid down
before any movement to another pageArea or contentArea as mandated by the before break. A trailer on
a before break has the same effect as a leader on an after break asserted by the previous layout object.

In the following template a before break trailer is used to lay down a message indicating that the text is
continued overleaf.

Example 9.24 Subform using a trailer on a before break

<template …>
<subform name="root" layout="tb">

<pageSet … />

XFA Specification
Chapter 9, Dynamic Forms Layout for Dynamic Forms 357

<subform name="SubformA" …>
<field name="FieldA" … />

</subform>
<subform name="SubformB" …>

<breakBefore targetType="pageArea" trailer="#continued"/>
…

</subform>
 </subform>

<subform name="continued" id="continued" layout="tb">
<draw><value><text>--- continued overleaf ---</text></value></draw>

</subform>
</template>

In the example the layout processor places the contents of SubformA on the first page, including the
content of FieldA. Then the layout processor advances to SubformB. Seeing the breakBefore
property, it places the text from the continued subform (--- continued overleaf ---) into the
remaining space in the same content area after the content of FieldA. (If there is not enough space it
searches for the next content area in the usual way.) Then it begins a new page and lays down the contents
of SubformB on that page.

As before, the breakBefore element may supply a script. When there is a script the trailer is only laid
down if the script returns True.

Inserting a Leader

A leader is an object which is laid down just before the before the object asserting breakBefore but after
the break mandate has been carried out, that is, after moving (if necessary) to the break target.

In the following template fragment a before break leader is used to lay down a heading. This is a common
use of before break headers.

Example 9.25 Subform using a leader on a before break

<subform name="TsAndCs">
<breakBefore targetType="pageArea" leader="#TAndCTitle"/>
…

</subform>
…

<subform name="TAndCTitle" id="TAndCTitle" layout="tb">
<draw>

<value><text>Terms and Conditions</text></value>

</draw>
</subform>

In the example the heading Terms and Conditions appears above the contents of the TsAndCs
subform, in 24 point type and underlined.

As before, the breakBefore element may supply a script. When a script is supplied the trailer is only laid
down if the script returns True.

A breakBefore leader may be combined with a bookend leader. The bookend leader is treated like part
of the object that is being laid down, hence after the break mandate has been carried out the
breakBefore leader is laid down first, then the bookend leader, then the content of the object itself.

XFA Specification
Chapter 9, Dynamic Forms Layout for Dynamic Forms 358

Break on Exit
A layout object may use its breakAfter property to force the layout processor to traverse to a different
pageArea and/or contentArea after laying down the object.

The semantics and use of this property exactly mirror those of the breakBefore property which is
discussed in “Break on Entry” on page 353. Despite this symmetry (or perhaps because of it) the handling
of leaders and trailers may be confusing. When either breakAfter or breakBefore specifies a leader,
the leader is placed after moving to the break target. Consequently the same effect is produced when an
object is used as a leader for an object’s after break or as a leader for the next object’s before break.

The key to remember is that the choice of breakBefore or breakAfter depends only on what layout
object specifies the break, whereas the choice of leader or trailer depends only on how the leader/trailer is
being used.

For example, assume that the Form DOM contains subforms as follows.

[subform (root)]
[subform (TransactionDetails)]
[subform (TsAndCs)]

Suppose the template contains the following fragment.

Example 9.26 Fragment using a leader on an after break

<subform name="TransactionDetails">
<breakAfter targetType="pageArea" leader="#TAndCTitle"/>
…

</subform>
<subform name="TsAndCs">

…
</subform>

The layout processor places the content of the TransactionDetails subform into its page area. Then,
in response to the breakAfter property, it starts a new page area and lays down the subform at
#TAndCTitle. Finally it appends the content of the TsAndCs subform to the same page area. The same
visual result can be produced as follows.

Example 9.27 Equivalent fragment using a leader on a before break

<subform name="TransactionDetails">
…

</subform>
<subform name="TsAndCs">

<breakBefore targetType="pageArea" leader="#TAndCTitle"/>
…

</subform>

In this case the layout processor places the content of the TransactionDetails subform into its page
area as before. Then it begins to process the TsAndCs subform. Finding the breakBefore property, it
starts a new page area and then lays down the subform at #TAndCTitle before continuing with the
content of TsAndCs within the same page area.

Similarly, when either breakAfter or breakBefore specifies a trailer, the trailer is appended to the
content that has been laid down before moving to the break target. Consequently the same visual effect is

XFA Specification
Chapter 9, Dynamic Forms Layout for Dynamic Forms 359

produced when an object is used as a trailer for an object’s after break or as a trailer for the next object’s
before break.

Also note that a breakAfter trailer may be combined with a bookend trailer. The bookend trailer is
treated like part of the object that is being laid down, hence after the content of the object itself is laid
down then the bookend trailer is laid down, followed by the breakAfter trailer, and then the break
mandate is carried out.

Break on Overflow
A layout object may specify that when it does not fit in the current pageArea or contentArea, the
object (or remaining fragment of the object) must be placed in a pageArea or contentArea matching a
particular XML ID or SOM expression. This is done by specifying an overflow element. The XML ID or
SOM expression is supplied as the value of the overflow element’s target attribute. If overflow occurs
and there is an object of the correct type matching the target specification, the layout processor breaks to
the specified target.

Note that there is no targetType attribute for overflow. It is not necessary because the target
attribute uniquely specifies an object. If the value of target is the empty string (the default) then the
overflow property has no effect.

For example, a template contains the following declarations.

Example 9.28 Template using break on overflow

<subform name="X" layout="tb">
<overflow target="#F_ID"/>
<pageSet name="A">

<pageArea name="B">
<contentArea name="C" h="0.2in" … />
<contentArea name="D" … />

</pageArea>
<pageArea name="E">

<contentArea name="F" id="F_ID" h="1in" … />
</pageArea>

</pageSet>
<field name="Y" maxW="1.5in">

<ui>
<textEdit multiLine="1"/>

</ui>
</field>

</subform>

The Form DOM contains the following content:

[subform (X)]
[field (Y) = "lots and lots of text that overflows the contentArea"]

At startup the layout processor descends into the first contentArea (C) of the first pageArea (B) of the
first pageSet (A). The first content it encounters in the Form DOM is subform X. It tries to place subform X
into contentArea C but finds that it doesn't fit. So, it splits the subform and places the top fragment of it
into contentArea C. At this point the overflow break comes into play. Instead of traversing to
contentArea D as it would normally do, the layout processor traverses to the overflow target, which is
contentArea F. There it puts the remainder of subform X (or at least as much of it as fits). Assuming the
typeface is Courier and the typesize is 10 points, the result is:

XFA Specification
Chapter 9, Dynamic Forms Layout for Dynamic Forms 360

[root]
[pageSet (A)]

[pageArea (B)]
[contentArea (C)]

[subform (X)]
[field (Y) = "lots and lots of"]

[pageArea (E)]
[contentArea (F)]

[subform (X)]
[field (Y) = "text that overflows the contentArea"]

In this example, the overflow break of subform X affects every new pageArea or contentArea (unless
overridden by a lower-level subform) because the X is the root subform and the root subform in effect
flows through the entire document.

➤ Error Condition: Invalid break target

A conforming template must not supply a target specification for the overflow element that does not
resolve to exactly one pageArea or contentArea. However it is anticipated that layout processors will
encounter some templates that are not conforming in this way. It is recommended that in such a case the
layout processor emit a warning and go to the next available pageArea or contentArea.

Combining Breaks and Occurrence Limits
A template may combine a subform asserting break conditions with contentArea and/or pageArea
objects asserting occurrence limits. The layout processor simultaneously satisfies both the break
condition(s) and the occurrence limit(s).

Combining Break and Maximum Occurrence

A maximum occurrence limit may force the layout processor to add nodes to the Layout DOM at a higher
level than it would have otherwise done, in order to satisfy a break condition.

For example, a template contains the following declarations.

Example 9.29 Template combining break with maximum occurrence of a page area

<template …>
<subform name="O">

<pageSet name="A">
<occur max="-1"/>
<pageArea name="B" id="B_ID">

<occur max="1"/>
<contentArea name="C" … />

</pageArea>
</pageSet>
<subform name="P">

<field name="Q"> … </field>
</subform>
<subform name="R">

<breakBefore targetType="pageArea" target="#B_ID" startNew="1"/>
<field name="S"> … </field>

</subform>
</subform>

XFA Specification
Chapter 9, Dynamic Forms Layout for Dynamic Forms 361

</template>

The Form DOM contains the following content:

[subform (O)]
[subform (P)]

[field (Q) = "text in field Q"]
[subform (R)]

[field (S) = "text in field S"]

The layout processor lays out subform P first. This does not assert a break condition, so it is processed with
default processing rules. After laying out subform P the Layout DOM contains:

[root]
[pageSet (A)]

[pageArea (B)]
[contentArea (C)]

[subform (O)]
[subform (P)]

[field (Q) = "text in field Q"]

Subform P does not fill contentArea C. However, the next subform to be laid out is R. This subform
asserts a breakBefore break condition. The break condition could be satisfied by adding another
instance of B to the Layout DOM as a sibling of the current pageArea. However pageArea B has an
occurrence limit of 1. In order to respect both this occurrence limit and the break condition, the layout
processor ascends to the pageSet and adds another sibling in the Layout DOM at that level. Then it
descends to the contentArea level, adding new nodes to the Layout DOM of as it goes. The result is:

[root]
[pageSet (A[0])]

[pageArea (B)]
[contentArea (C)]

[subform (O)]
[subform (P)]

[field (Q) = "text in field Q"]
[pageSet (A[1])]

[pageArea (B)]
[contentArea (C)]

[subform (O)]
[subform (R)]

[field (S) = "text in field S"]

Combined Break and Minimum Occurrence

A minimum occurrence limit may force the layout processor to add sibling nodes to the Layout DOM that it
would otherwise not have added, in order to satisfy a break condition.

For example, a template contains the following declarations.

XFA Specification
Chapter 9, Dynamic Forms Layout for Dynamic Forms 362

Example 9.30 Template combining break with minimum occurrence on a page area

<template …>
<subform name="O">

<pageSet name="A" relation="orderedOccurrence">
<occur min="1"/>
<pageArea name="B">

<contentArea name="C" … />
</pageArea>
<pageArea name="D" id="D_ID">

<occur min="2"/>
<contentArea name="E" … />

</pageArea>
</pageSet>
<subform name="P">

<field name="Q"> … </field>
</subform>
<subform name="R">

<breakBefore targetType="pageArea" target="#D_ID" startNew="1"/>
<field name="S"> … </field>

</subform>
</subform>

</template>

The Form DOM contains the following content:

[subform (O)]
[subform (P)]

[field (Q) = "text in field Q"]
[subform (R)]

[field (S) = "text in field R"]

The layout processor starts by descending to the first contentArea (C) of the first pageArea (B) of the
first pageSet (A). It puts the subform P into contentArea C. At this point the Layout DOM contains:

[root]
[pageSet (A)]

[pageArea (B)]
[contentArea (C)]

[subform (O)]
[subform (P)]

[field (Q) = "text in field Q"]

Subform P does not fill contentArea C. However, the next subform to be laid out is R, which asserts a
breakBefore condition at the pageArea level. The layout processor satisfies this condition by traversing
to pageArea D and adding an instance of it to the Layout DOM. However, pageArea D asserts a
minimum occurrence limit which forces the layout processor to incorporate another instance of it into the
Layout DOM. After subform R has been processed the result is:

[root]
[pageSet (A)]

[pageArea (B)]
[contentArea (C)]

[subform (O)]
[subform (P)]

[field (Q) = "text in field Q"]
[pageArea (D[1])]

XFA Specification
Chapter 9, Dynamic Forms Layout for Dynamic Forms 363

[contentArea (D)]
[subform (O)]

[subform (R)]
[field (S) = "text in field S"]

[pageArea (D[2])]

Hence when the form is rendered and printed single-sided it will have an extra page at the end. Since the
pageArea for the extra page includes neither boilerplate nor variable data, the extra page will be blank.

Note: This example employs a page set asserting an ordered pagination strategy. Had the page set
asserted a qualified pagination strategy the occurrence limits would have been ignored and,
whenever it needed a page area, the layout processor would have picked the first page area in
document order that met all the currently applicable constraints. Pagination strategies are
described in “Pagination Strategies” on page 289.

 364

10 Automation Objects

This chapter describes the automation objects: calculate, validate, and event. It describes how automation
objects are typical used, how they are activated, and how they interact with other automation objects.

The processing application invokes automation objects in response to an activity particular to the type of
object. Examples of such activities include a form loading or a user clicking a field.

When an automation object is invoked, it performs some task particular to the type of object. Examples of
such tasks include executing a script or executing a web services file. The tasks that can be performed are
particular to the type of automation object.

How Script Objects Are Used Within Automation Objects
This section describes how procedural extensions such as calculations, validations, and event handling are
specified in a template. The procedural descriptions of how values within a form are validated and
calculated are among the central concepts that define what a form is. This is true of both electronic forms
and traditional paper-based forms.

Electronic forms may be processed by a wide variety of processing applications. The obvious example is a
visual presentation of a form that allows the user to enter data. In such a context, the form can be
associated with a set of behaviors that can be described procedurally. This kind of scripting of
user-initiated events is common to many applications. This specification recognizes that a form may be
part of a much larger process. At each stage in that process, the form may be processed by very different
kinds of applications. This specification allows a single form template to describe behaviors appropriate to
very different processing applications within that process.

The XFA family of specifications includes a scripting language called FormCalc [“FormCalc Specification”
on page 1007], a simple expression language that implements a common set of functions useful for
calculation. While FormCalc has special status due to the need for interoperable form templates, this
specification allows processing applications to support alternative scripting languages such as JavaScript.

This specification takes the position that the abstraction of the form object model that is presented to any
particular scripting language is not an inherent property of either the form object model or the scripting
engine, but is a distinct script binding (not to be confused with data binding). The XFA Scripting Object
Model specification [“Scripting Object Model” on page 86] describes a script binding between the form
object model and the scripting languages (in particular, FormCalc) that can be used for interoperable form
templates.

The related set of values associated with form objects is an essential aspect of what a form represents. This
specification defines the following methods for defining the value of a field:

● Set an initial value, by providing non-empty content in a value object. A static value would be defined
by the template designer.

● Bind data to a value. Such data is provided by an external source, such as a person filling in the form or
by a database server.

● Derive a value dynamically, likely from other form values or ambient properties such as date and time.
Such a value is defined using the calculate or calcProperty object.

XFA Specification
Chapter 10, Automation Objects How Script Objects Are Used Within Automation Objects 365

● Derive a Boolean value that indicates whether the current value of a form object is valid. This is
controlled by a validate object.

The field, subform and exclusionGroup objects are all capable of calculations and validations. In
addition the draw object, although it does not hold a data value, is capable of calculating a property.

The calculate and validate objects contain scripting to derive a data value and return it to the
processing application. Any scripting that is invoked by these objects must not attempt to alter the state of
the form object model in any way. Not all scripting language implementations or processing applications
may be able to enforce this restriction, so form templates should adhere to this restriction if they are
designed to be interoperable.

The calculateProperty object contains scripting to derive and apply a property value. It is commonly
used to change the appearance of a field (for example, by changing the color of the frame).

The calculate and value objects are related in that each of them can be used to set an initial value.

Scripts in calculate, calculateProperty, and validate objects are interpreted as expressions. The
value of such an expression is returned to the processing application. For scripting languages that cannot
be interpreted as an expression, the binding of the scripting language to the XFA object model may
include some facility for explicitly returning a value.

Calculate, calculate property, and validate scripts are not passed any parameters from the processing
application. However the scripting language may allow access to values in the DOMs.

XFA Specification
Chapter 10, Automation Objects How Script Objects Are Used Within Automation Objects 366

Purchase Order Example
The following form shows a simple purchase order application, and illustrates how calculations and
validations might be used on such a form.

Purchase Order Form — A form with calculations

Down-pointing call-outs indicate all the field names on this form. In the tabular area of the form are four
fields called Item, four fields called Quantity, four fields called UnitPrice, and four fields called
Amount. Green up-pointing call-outs indicate fields with embedded calculations, and the red up-pointing
call-outs indicate fields with embedded validations and property calculations.

A subset of the XML used to defined this purchase order form might be as follows.

Example 10.1 Purchase order form with calculations and validations

<template …>
<subform name="FORM-1" layout="tb">

<pageSet …>…</pageSet>
<subform name="Detail">

<occur min="4" max="4"/>
<field name="Item" …>…</field>
<field name="Quantity" w="1" h="12pt">

<validate>

�������	
���	�

����������	�
���������

��
������
����
���
�����
��

���������
��������

���
����
�����	���
�� ��
!��"�
�#

��������
��������

������

�������

	
����

�������

���������

$��������
$����� � %&%% %&%%

'������
'����� � ��&%% �(&%)

�)&%))&%)

� %)&%%

�*�&%*

���� �������� ��������� ������

��+��+�,��	
������ ����� *

�����������

%)&%%%

������������

))

������������������������

%

��

�����������

))

�����������

%%

�����������

%

��

���

�

�����������

	
����

��

!

�������

����

�

������

���

��

�������

�����

�

	
������

-���"
-�./�

$���"
$���"����"

��������������������������������

��

��������

�

��������

�

��������

�������������

��

���

���������

%

��

���������

�

%

�

���������

%

�

�

&

�

�

%&

������

&

�

���������

�

�

���

��

������

�

������

�

������

�

���������������

������������������������������

XFA Specification
Chapter 10, Automation Objects Document Variables 367

<script>Within($, 0, 19)</script>
</validate>

</field>
<field name="UnitPrice" …>

<validate>
<script>$ >= 0</script>

</validate>
</field>
<field name="Amount" …>

<calculate>
<script>Quantity * UnitPrice</script>

</calculate>
</field>

</subform>
<subform name="Summary">

<field name="ShipDate" …>
<calculate>

<script>Num2Date(date() + 2, DateFmt())</script>
</calculate>

</field>
<field name="Total" …>

<calculate>
<script>Str(Sum(Detail[*].Amount), 10, 2)</script>

</calculate>
</field>

</subform>
</subform>

</template>

An explanation of the FormCalc expressions used in this sample is contained in the FormCalc “Language
Overview” on page 1007. The Quantity field is validated to ensure that it is no less than zero and no more
than 19. The UnitPrice field is validated to ensure it is not negative. The Amount field is calculated from
the other fields in the same Detail subform. The ShipDate field is calculated as the current date plus
two days. The Total field is calculated as the sum of the Amount fields from all instances of the Detail
subform, formatted as ten digits with two after the radix point.

Note: In the above example a multiply-occurring subform is used. In the corresponding example in the
FormCalc “Language Overview” the subform occurs only once, but each field is declared four
separate times within that subform. Yet the very same FormCalc expressions work in both examples.
This is a result of the way SOM expressions are resolved in XFA, and applies equally to other
scripting languages, for example JavaScript. For more information see “Relative References” on
page 108.

The scripts in calculations, validations and events may specify whether the script is to be executed at the
client, the server, or both. See “Specifying Where to Execute a Script” on page 404.

Document Variables
Document variables may be used to hold boilerplate or image references that can be inserted
conditionally under control of a script or they may be used to define script object references.

XFA Specification
Chapter 10, Automation Objects Document Variables 368

Variables Used to Hold Boilerplate or Image References
For example, the terms and conditions of a purchase agreement can vary depending on some piece of
information entered in the form. Placing the boilerplate or image references into a variables object
makes it accessible to scripts via the usual mechanism of SOM expressions.

The variables object can hold any number of separate data items. The data items can be any kind of data.
Each data item bears its own name attribute so they are individually addressable by scripts. In SOM
expressions, data items are directly under the subform. The variables object is un-named, as described
in “Variables Objects Are Always Transparent” on page 95. As a result, variables objects are treated as a
transparent object in resolving SOM references.

Document variables may be read from or written to. That is, a document variable may be changed by the
form, perhaps as the result of an event script.

It is common to place a single variables object in the root subform to hold all document variables, but
this is only a convention. Any subform can hold a variables object.

Individual variables can be named for convenient access, as shown in the following example. Because the
variables object itself is transparent the named variables are referenced in SOM expressions as though
they were children of the subform containing the variables object.

Example 10.2 Using named variables

<subform name="root" …>
<variables>

<text name="ProductName">Widget ES</text>
<text name="ProductPrice">…</text>
<image name="ProductImage" …>…</image>

</variables>
<subform name="x">

<subform name="y">
<subform name="z">

<field …>
<calculate><script>ProductName</script></calculate>

</field>
</subform>

</subform>
</subform>

</subform>

In accordance with the rules for SOM expression resolution, when the reference to ProductName does
not resolve in the context of the field, the XFA processor recursively checks up the list of ancestral nodes.
Eventually the name resolves in the root subform node. Hence, as in this example, named variables
defined in the root subform can easily be referenced anywhere in the form.

Variable sets

Variables can also be used in sets, as shown in the fragment below.

XFA Specification
Chapter 10, Automation Objects Document Variables 369

Example 10.3 Using a set of variables

<subform layout="tb" …>
<variables>

<text name="AZ">…</text> <!-- Ts and Cs for Arizona -->
<text name="CA">…</text> <!-- Ts and Cs for California -->
…

</variables>
<exclGroup name="State" layout="tb">

<field …>
<ui><checkButton …/></ui>
<caption …><value><text>California</text></value></caption>
<items><text>CA</text></items>
…

</field>
<field …>

<ui><checkButton …/></ui>
<caption …><value><text>Arizona</text></value></caption>
<items><text>AZ</text></items>
…

</field>
…

</exclGroup>
<field name="TsAndCs" access="readOnly" …>

<ui><textEdit multiLine="1" …/></ui>
<calculate>

<script>xfa.resolveNode(State)</script>
</calculate>

</field>
</subform>

In this purchase agreement form there are terms and conditions which vary from state to state. A set of
variables is used to hold the text for the terms and conditions, with each state’s text contained in its own
named text element. The user selects a particular state using a radio button. Selecting a radio button
causes the value of the State exclusion group to be set to the two-letter postal abbreviation for that
state. Whenever the state is (re)selected the calculation for the TsAndCs field loads it with the content of
the variable having a name matching the value of the exclusion group. Since the TsAndCs field has its
access property set to readOnly, the user can scroll through the terms and conditions and paste them
to the clipboard but cannot edit them in the form.

In this case, just for convenience, the set of variables has been defined in the subform where it is used
rather than in the root subform. This way the set is kept together and apart from other variables.

Variables Used to Define Named Script Objects
XFA allows variables (defined using the variables element) to define named script objects. The
properties and methods of such objects may be referenced using the familiar class expression,
object.property or object.method().

Instantiation of Named Script Objects

Subforms are instantiated during data binding. At the same time, the variables contained in each subform
are instantiated. If multiple occurrences of the same subform are instantiated, then each instance has its
individual set of variables.

XFA Specification
Chapter 10, Automation Objects Document Variables 370

When a script document variable is instantiated, the contents of the object are compiled into a script
object and that object is then registered with the subform. From that point, when the document variable is
referenced the compiled script object is returned.

Declaring and Referencing Named Script Objects

Note: Scripts can only reference script document variables if they have the same contentType.

Example 10.4 Declaring and using a named script object

<subform name="form1" …>
<pageSet>…</pageSet>
<variables>

<script name="foo" contentType="application/x-javascript">
var a = 0;
var b = 0;
var factor = 1;
function sum(val1,val2)
{

var sum = (val1 + val2) * this.factor;
return (sum);

}
</script>

</variables>
<field name="f1" …>
<!-- this example assumes naked references are available -->

<calculate>
<script contentType="application/x-javascript">

foo.a = 2;
foo.b = 2;
foo.factor = 2;

</script>
</calculate>

</field>
<field name="f2" …>
<!-- this example assumes naked references are available -->

<calculate>
<script contentType="application/x-javascript">

foo.sum(foo.a, foo.b);
</script>

</calculate>
</field>
<field name="f3" …> <!-- this example doesn't use naked references -->

<calculate>
<script contentType="application/x-javascript">

xfa.form.form1.foo.a = 4;
xfa.form.form1.foo.b = 4;
xfa.form.form1.foo.factor = 4;

</script>
</calculate>

</field>
<field name="f4" …> <!-- this example doesn't use naked references -->

<calculate>
<script contentType="application/x-javascript">

xfa.form.form1.foo.sum(xfa.form.form1.foo.a,xfa.form.form1.foo.b);

XFA Specification
Chapter 10, Automation Objects Calculations 371

</script>
</calculate>

</field>
</subform>

Tip: The above has been modified to make it work in Acrobat. In earlier versions of this specification the
script declared property names foo.x and foo.y. This should be acceptable, but Acrobat confounds
them with the field properties of the same name (#field.x and #field.y), causing the script to
execute improperly or fail to execute. The workaround is to use property names that are distinct from
any field property names.

After the XFA processing application completes data binding the above template, it executes the resulting
form’s calculations. If those calculations are executed in the order f1 to f4, the following results occur:

1. The data binding algorithm instantiates the subform named form1, which interns creates an instance
of the script object foo, by compiling the contents of script object.

2. The calculation on the field named f1 fires, setting variables on foo to x = 2, y = 2 and
factor = 2.

3. The calculation on the field named f2 fires, which calls the function sum(2,2) on foo calculating
((2+2)* 2), resulting in the field value being set to 8.

4. The calculation on f3 fires, setting variables on foo to x = 4, y = 4 and factor = 4.

5. The calculation on f4 fires, which calls the function sum(4,4) on foo computing ((4+4)* 4), resulting
in the field value being set to 32.

Note: The above result sequence assumes the post-binding execution of calculations proceeds in order
from f1 to f4. There is no guarantee that this will be the execution order for all XFA processors or all
XFA forms. However it is the order in Acrobat for this simple, static, example form.

Variables in datasets
SinceXFA 2.8 Adobe has defined a dataset called variables. This dataset is used to hold information
pertaining to the state of the client-server relationship. It is defined primarily because it is outside the
scope of form certification, so variables can be modified or added at run time without breaking
certification. (Of course the same is true of any custom dataset.)

For more information about this Adobe-specific DOM see “Adobe Variables Set Specification” on
page 1449.

Calculations
This section explains how the processing application supports the calculateobjects in the Form DOM. It
describes how these objects relate to other automation objects, when the processing application activates
them, where it stores the results of the calculations, and how it observes precedence in interconnected
calculations.

The “Template Specification” describes the syntax of the calculate elements.

XFA Specification
Chapter 10, Automation Objects Calculations 372

About

The calculate object is a member of the family of automation objects. The other members are the
event and validate objects. Automation objects are procedural extensions to the XFA architecture.

The calculate object provides a means of calculating the value of a container object, with the
calculation being represented as a script. The parameters in such a script may include the values of other
container objects. The XFA processing application is responsible for updating the value of the container
object with the value returned from the calculate script, although this obligation does not apply to
subform calculate objects.

The calculate object can be a child of the container objects: exclGroup, field, and subform. It
specifies a script to use for calculating the value of its parent container. The script is evaluated as a
function, and its return value is the value assigned to the parent container.

A calculate object may also specify override conditions. Such conditions specify whether a processing
application can allow a user to override a calculated value, and if so, what types of warnings should be
issued.

Activation

This section describes the stimuli that cause the processing application to activate calculate objects.
Many of those stimuli also cause the processing application to activate the other automation objects,
event and validate. In cases where a single stimulus activates multiple automation objects, the order
of activation is as follows: (1) event objects, (2) calculate objects, and (3) validate objects. (See
“Order of Precedence for Automation Objects Activated by the Same Action” on page 397.)

The processing application activates calculate objects whenever the value of the containing field,
subform, or exclusion group has changed.(Subforms do not have values of their own, but for this purpose
a subform is considered to change whenever the value of any of its contained objects changes.) Those
values can change as a result of any of the following actions:

● Data-binding. As a final phase of data-binding, the processing application activates all calculate
objects. It also re-activates calculate objects, as described below in Cascading value changes.

There is no Form DOM until it is constructed by data binding. Hence, the first time data binding (data
merge) takes place all values present into the Form DOM are new values, even those which have taken
defaults. So, after data binding is complete, all calculate objects in the Form DOM are activated.

After subsequent data bindings (data re-merges), when the value of an existing field, exclusion group,
or subform has changed, the associated calculate objects are re-activated. In addition calculate
objects associated with newly-added fields, exclusion groups, and subforms are activated. All activated
scripts see the values currently in the Form DOM, that is, the values resulting from the re-merge.

● Interactive data entry. A processing application allows users to enter data, without repeating the
data-binding process. Such entries simultaneously change values in the form and Data DOM. When a
user enters data, the processing application activates calculate objects that are directly dependent
upon that container’s value. It may also re-activate other calculate objects, as described in
Cascading value changes.

● Cascading value changes. In some cases, multiple calculations may depend on one another, in a
cascading relationship. In other words, a change to the value of one field or property can influence the
calculated values of many others. In such cascading calculations the processing application
re-activates calculate objects as the values upon which they depend change.

XFA Specification
Chapter 10, Automation Objects Validations 373

Note: In the Adobe implementation, references to named script objects are not considered in
determining dependencies. That is, if a calculation includes a reference to a property or method of a
named script object and the properties of that object are changed by another calculation, the
calculation under consideration is not re-activated (“Variables Used to Define Named Script
Objects” on page 369). In other words dependencies due to self-modifying or mutually-modifying
scripts are not detected.

If the calculation of an object references its own value, either directly or indirectly, a circular reference is
said to exist. The following points address responsibilities related to circular references:

❚ XFA form creators. It is the responsibility of XFA form creators to prevent circular references from
being specified in calculate scripts. Such checks should be done concurrently with form creation,
rather than through the addition of validation scripts.

❚ Processing application. It is recommended that the processing application provide some means of
identifying and terminating the execution of seemingly infinite loops.

Note: Scripts do not manage calculation dependencies; rather, the processing application is
responsible for managing calculation dependency on behalf of the form. (See “Scripting” on
page 403.)

Result

The processing application uses the return value from a calculate object’s script as described below:

Validations
This section describes the nature of validation, what types of tests are included in validation, when
validation is done, and how an interactive XFA processing application interacts with a user when validation
fails.

Validation allows a template designer to specify a set of tests to be performed on a field, subform, or
exclusion group. As with calculations, validation tests are fired by changes to the field, subform, or
exclusion group.

The “Template Specification” describes the syntax of the validate element.

About

As compared to UI validation

In an interactive context, the UI may perform some validation. For example, a numeric edit widget will not
accept letters of the alphabet as input. However this type of validation does not apply to non-interactive

Parent object Result destination in the parent object

field Replaces the value of the field container object.

exclGroup Replaces the value of the exclGroup container object. This action has the side
effect of changing the state and value of the fields contained in the exclusion
group.

subform subform objects do not have explicit values; however the result of a subform
calculate script can be used to initiate some other function unrelated to
setting a value.

XFA Specification
Chapter 10, Automation Objects Validations 374

applications, because they have no UI. Furthermore, this type of validation is quite limited. It cannot, for
example, compare the numeric content of two fields to validate that one is larger than the other.
Validation scripts provide a mechanism to perform validations that are more intelligent and that,
optionally, apply in non-interactive as well as interactive contexts.

As compared to XML validation

XFA validation differs from XML validation, in the following ways:

● Type of testing. While some XFA validation tests have counterparts in XML validation, XFA validation
also supports scripted tests. Such tests support highly specific validation for containers that can
consider the values of other fields.

● Activation of tests. Activation of XFA validation for specific container may be independent of activation
for validation in other containers and may be fired at various stages in the life of the a form. For
example, XFA validation may be done at all of the following stages: when the focus leaves a field (after
data is entered), when a button is clicked, and when the form is committed.

In contrast, XML validation is an all-or-none endeavor and would be performed just before committing
the form. Unfortunately, such errors occur too late in the form’s life for a user to respond. Consider a
user’s response to being pelted with numerous validation error messages, when attempting to commit
(submit) a form with numerous inter-related fields. As a compromise, XFA 3.0 defined a common
configuration option that controls the handling of validation messages when multiple validation
failures occur simultaneously. See “The validationMessaging option” on page 379.

Types of Validation Tests
Validation provides up to four types of tests. The following table describes those test types, the order in
which they are executed, and their relevance to the container object. All but the data-type test are
specified in the container object’s validate property.

Exe-

cution
order Test type

Container object

Field Subform
Exclusion
group

1 Null-content test (nullTest). Null content is not
allowed. Typically, this is a mechanism for
ensuring the user enters a value in a particular
container object. This test is not applicable if the
template provides a default value.

✔ Not
applicable

✔

2 Datatype test. The datatype of a field must be
consistent with the type of data entered in the
field. Unlike the other validation tests, this test is
not specified in the validate property; rather,
the datatype test is implied by the existence of a
datatype property (i.e. integer and float) on
the field’s value object, and the error messages
it generates are application-specific.

✔ Not
applicable

Not
applicable

XFA Specification
Chapter 10, Automation Objects Validations 375

For any field, subform, or exclusion group, all validation tests specified for the form object or its content
must succeed for the form object's value to be considered valid. If any test fails, the XFA processing
application responds, as described in “Responding to Test Failures” on page 377.

As described in the “Localization and Canonicalization” on page 152, the result of any presentation
formatting defined for the form object does not alter the value of the form object — it remains
unformatted. Therefore, validation tests (nullTest, formatTest, and scriptTest) are performed
against the unformatted value.

Activation
Validate objects can be activated multiple times during the life of a form.

Initialization

When an XFA-processing application initializes a form, it executes all validation tests specified for the form.

Interactive

An interactive XFA application performs the tests in a validation object upon exit from the field or subform,
provided the user has entered a value into the field or into some field contained by the subform. The
application is not required to perform the validation tests if the value of the container object is
unchanged. In addition the XFA application performs any other validation tests that it can infer might be
affected by the changed data. For example, it can use dependency tracking to infer that the validation
script for another field depends on this field. However such dependencies cannot always be tracked.

An interactive XFA application also performs the tests in all validation objects when trying to commit the
form. A form is said to be committed when it is in a final state, such as when it is submitted to a server.

Non-Interactive

An XFA application may perform the tests in validation objects after the data binding (merge) operation
completes. This is optional because there is no point to a validation complaining about a field being empty
when the partly-blank form is only going to be printed on paper so that blank fields can be filled in with
pen and ink. The same situation occurs when a partly-blank form is going to be rendered into an
interchange format (such as HTML) to send to a non-XFA client for filling in.

See “Order of Precedence for Automation Objects Activated by the Same Action” on page 397.

3 Format test (formatTest). The picture clause
specified in the validate property must
successfully format the canonical value .

✔ Not
applicable

Not
applicable

4 Script test (scriptTest). The script supplied in
the validate property must return a true value
for a script test to succeed.

✔ ✔ ✔

Exe-

cution
order Test type

Container object

Field Subform
Exclusion
group

XFA Specification
Chapter 10, Automation Objects Validations 376

User Interactions With Validation Tests

Error and Warning Messages

The form designer uses the child message object to provide an optional warning message for each type
of validation (null test, format test and script test). The processing application presents the appropriate
message to the user if the value fails any of the validations tests. If no such message is configured for a
particular validation test, the application provides its own. Note that there are attribute values that
suppress the presentation of the warning message.

The name of each text object within a message object specifies the validation test to which it applies, as
shown in the bold-faced lines in the following example. The example contains a null test that verifies the
LoanAmount field is non-empty and a script test that limits the amount entered to a value between $1.00
and $100,000.00.

Example 10.5 Messages associated with individualvalidation tests

<field name="LoanAmount" …>
…
<ui>

<numericEdit/>
</ui>
<value>

<decimal/>
</value>
<validate nullTest="error" scriptTest="error">

<message>
<text name="nullTest">

Enter the amount of the loan in dollars.
</text>
<text name="scriptTest">

The amount must be at least $1 and not more than $100,000.
</text>

</message>
<script>

(LoanAmount <= 100000) & (LoanAmount >= 1)
</script>

</validate>
</field>

Note that the script test does not have any special code to deal with an empty LoanAmount field. It is
sufficient that when the field is empty the null test fails, thereby flagging the field content as invalid. In
addition the numericEdit element imposes the constraint that only a number can be inserted into the
field, and the decimal element by default imposes the constraint that there cannot be more than two
decimal places in the number.

Interacting with the User to Obtain a Valid Value

Though a value just entered may be invalid, interactive processing applications are recommended not to
force the user to remain in the current form object until the validation constraints are satisfied. Complex
forms often contain validations that compare values across a number of form objects. Disallowing the user
from navigating out of the currently active form object may make it impossible for the user to satisfy the
validation of the current form object by altering one or more other values on the form.

XFA Specification
Chapter 10, Automation Objects Validations 377

The processing application may choose to prevent the form from being committed if any part of the form
is invalid. For example, a processing application may choose to prevent the submission or saving of a form
until it is considered valid.

Responding to Test Failures
This section explains how the processing application responds to errors in the validation tests applied to a
field, subform, or exclusion group. For most tests the validate object’s attributes specify how the XFA
processing application should respond when an error occurs. For example, the following fragment
specifies that the data will not be accepted if it fails a formatting validation (that is, a validation against a
picture clause).

Example 10.6 Fragment specifying a formatting test that data must pass

<validate formatTest="error">
<picture>…</picture>

</validate>

In addition there is a datatype test for which the error response is implied, as described in “The datatype
test” on page 379.

The following sections describe the attributes of the validate object that control error response levels.

The nullTest attribute

The nullTest attribute on the validate object has three potential values that determine how this
validation test is applied to the form:

disabled

The form object is permitted to have a value of null; that is, the field can be left without a value,
and it will not negatively impact the validity of the form. This attribute value disables this
validation test.

warning

The form object is recommended to have a non-null value. If the user does not supply any value
for the form object or explicitly sets the value to null, the processing application will present the
warning message. The message must inform the user that the form object is recommended to
have a value, and provide two choices:

dismiss — The user understands the form's recommendation and wishes to return to the form, so
that s/he may satisfy this constraint.

override — The user understands the form's recommendation, but has chosen to contravene this
constraint.

error

The form object is required to have a non-null value. Failure to provide a non-null value shall
constitute an error. The processing will present an error message, and the form object is
considered invalid. XFA application may skip the remaining validations for the field or exclusion
group.

The formatTest attribute

The formatTest attribute on the validate object has three potential values that determine how this
validation test is applied to the form:

XFA Specification
Chapter 10, Automation Objects Validations 378

disabled

the form object is permitted to have a value that does not conform to the input mask; that is, the
field can be left with a non-conformant value, and it will not negatively impact the validity of the
form. This attribute value disables this validation test.

warning

The form object is recommended to have a value that conforms to the input mask. If the user does
not supply such a value, the processing application will present the warning message. The
message must inform the user that the form object is recommended to have a value that
conforms to the input mask, and provide two choices:

dismiss — The user understands the form's recommendation and wishes to return to the form, so
that s/he may satisfy this constraint.

override — The user understands the form's recommendation, but has chosen to contravene this
constraint.

error

The form object is required to have a value that conforms to an input mask. Failure to provide such
a value shall constitute an error. The processing will present an error message, and the form object
is considered invalid. XFA application may skip the remaining validations for the field.

The scriptTest attribute

Scripts specified as part of a validation should make no assumptions as to how the processing application
might use the validation results, or when the validate object is invoked. In particular, the script should
not attempt to directly provide feedback to a user or alter the state of the form in any way. (Feedback
should instead be provided using a scriptTest message as described in “User Interactions With
Validation Tests” on page 376.)

The scriptTest attribute on the validate object has three potential values that determine how this
validation test is applied to the form:

disabled

The form object is permitted to have a value that does not conform to the script; that is, the field
can be left with a non-conformant value, and it will not negatively impact the validity of the form.
This attribute value disables this validation test.

warn

The form object is recommended to have a value that conforms to the script. If the user does not
supply such a value, the processing application will present the warning message. The message
must inform the user that the form object is recommended to have a value that conforms to the
script's constraints, and provide two choices:

dismiss — The user understands the form's recommendation and wishes to return to the form, so
that s/he may satisfy this constraint.

override — The user understands the form's recommendation, but has chosen to contravene this
constraint.

error

The form object is required to have a value that conforms to the script. Failure to provide such a
value shall constitute an error. The processing will present an error message, and the form object
is considered invalid.

XFA Specification
Chapter 10, Automation Objects Events 379

The datatype test

This test is implied by the existence of a restrictive datatype property (for example integer or float)
within the field’s value object. The error messages generated when the datatype test fails are
application-specific, and the error handling is equivalent to a level of error. That is, if the datatype test
fails, the form object is considered invalid.

The validationMessaging option

Since XFA 3.0, XFA defines a validationMesssaging option in the common configuration grammar
which controls the display of validation messages. Note that this option only controls the reporting of
validation errors to the user. It does not affect the programmatic effect of validations. The
validationMessaging option can take any of the following values:

allMessagesIndividually

Each validation message is displayed individually. This is the default.

allMessagesTogether

All validation messages are combined in a single dialog.

firstMessageOnly

Only the first validation message is displayed. The messages for the remaining validation failures
are suppressed, however the content of those objects is still invalid.

noMessages

All validation failure messages are suppressed, however invalid content is still invalid.

Non-interactive applications may ignore this option.

Events
In XFA templates, scripts may be associated with particular events. An event is a particular change of state
in the form. When the particular change of state happens, the actions associated with the event are
automatically invoked. Those actions may be any of the following:

● Script. A script property specifies a set of scripted instructions that can perform a variety of actions,
such as transforming the data, changing the presentation of the data, or firing other events. See
“Scripting” on page 403.

● Execute. An execute property invokes a WSDL web service. Such a service can be used to initate a
complex interaction with a server. See “Using Web Services” on page 449.

● Submit. A submit property invokes an HTTP protocol to send all or part of the form to a server, and in
some cases to accept new data provided by that server. See “Submitting Data and Other Form Content
via HTTP” on page 443.

● Sign. A signData property causes a signature handler to create an XML digital signature, as specified in
the signData property. See “XML Digital Signatures” on page 552.

The object whose change of state fires the event is called the target. There are six general classes of events,
distinguished by the type of target. Some events in different classes share the same name because they
are similar in function, however they are distinct events because an event is distinguished by both name
and target. In addition calculations and validations are very much like events and can be treated as special
types of events.

XFA Specification
Chapter 10, Automation Objects Events 380

The “Template Specification” describes the syntax of the event element.

Cancelling Event-Driven Actions

Since XFA 2.8 it has been possible to cancel actions such as submitting data to a host by setting the flag
$event.cancelAction. This does not cancel execution of scripts associated with the current event
(unless scripts check the flag programatically) but it does cause the XFA processor to bail out of the
pending action at a higher level. In support of this, many events occur in pairs as matching pre- and a
post-events. For example, preSubmit is paired with postSubmit. If a script invoked by the pre-submit
event sets $event.cancelAction, the submit action does not take place. Nonetheless a post-submit
event is fired in order to match the pre-submit event. This ensures that cleanup code is invoked as
expected and in the right order.

Event Propagation

Since XFA 3.0, event objects may be told to listen to events not only on a container (as specified by the ref
property) but also on the container and all of its content. Hence events can now propagate upward to
enclosing containers.

This is controlled by a new property of the event object called listen. When the value is
refAndDescendents the event object responds to events on contained objects. When the value is
refOnly the container does not respond to events on contained objects. For the sake of backwards
compatibility the default is refOnly.

This change brings XFA event processing into closer alignment with W3C XML event processing, as
described in [XMLEvents]. XFA events can now bubble upward as XML events can. However XML events
are required to be dispatched starting with the target node and working in sequence upward through the
target node's ancestors, whereas the dispatch order of XFA events is implementation defined.

Note: Adobe products dispatch propagating events in document order. Hence the outermost container
receives the event first. This is the inverse of XML event processing.

Adding this functionality allows form creators to conveniently implement global procedures for a form. For
example, a single event object can be used to control the appearance of all invalid fields, subforms, and
exclusion groups. (See the example in “Validation Events” on page 389.) Similarly event objects catching
field enter and exit events could color the active field wherever it resides in the form.

Event Classes
This section describes the types of events assigned to each class of event.

Application Events

Application events are fired by actions of the XFA application. Because application events are not directly
linked to user actions, they are fired in both interactive and non-interactive contexts. The script in an
application event can reference the event object using the SOM expression xfa.host, or the alias $host,
as described in “Internal Properties and Methods” on page 97

The application events are as follows:

XFA Specification
Chapter 10, Automation Objects Events 381

docClose

This event fires at the very end of processing if and only if all validations succeeded. Success in this
case is defined as generating nothing worse than a warning (no errors). Note that this event
comes too late to modify the saved document; it is intended to be used for generating an exit
status or completion message.

docReady

This event fires before the document is rendered but after data binding. It comes after the ready
event associated with the Form DOM.

prePrint, postPrint

The prePrint event fires just before rendering for print begins.

The postPrint event fires just after the rendered form has been sent to the printer, spooler, or
output destination.

preSave, postSave

The preSave event fires just before the form data is written out in PDF or XDP format. It does not
occur when the Data DOM or some other subset of the form is exported to XDP. XSLT
postprocessing, if enabled, takes place after this event.

The postSave event fires just after the form has been written out in PDF or XDP format. It does
not occur when the Data DOM or some other subset of the form is exported to XDP.

DOM Events

DOM events fire when a DOM changes state. Because they are not directly linked to user actions, they are
fired in both interactive and non-interactive contexts.

A script binds to a DOM event by expressing a ref property whose value is a SOM expression pointing to
the DOM. For example, the value xfa.form (or its alias $form) binds to the Form DOM.

The following DOM events are defined:

ready

The ready event fires after an XFA DOM has finished loading. This event applies to the Form DOM
and the Layout DOM. It does not apply to the Template DOM or Data DOM primarily because it
would be difficult for an XFA application to ensure that the scripts were loaded and bound to the
events before the events fired.

In the case of the Form DOM ($form) it fires after the Template and Data DOMs have been merged
to create the Form DOM, and the calculations and validations have fired. In addition, the ready
event fires when the current data record advances. See “Exchanging Data Between an External
Application and a Basic XFA Form” on page 122 for more information about processing data as
records.

In the case of the Layout DOM ($layout), the ready event fires when the layout is complete but
rendering has not yet begun. Thus a script can modify the layout before it is rendered.

Note: When the form ready event fires the layout process has not run, so page background has not yet
been assigned to the form. This means that the form ready event cannot propagate to objects
(such as fields and subforms) within page background. By contrast the layout ready event can
propagate to all objects because by the time it fires all DOMs are fully built.

XFA Specification
Chapter 10, Automation Objects Events 382

preSubmit, postSubmit

These events fire whenever form data is submitted to the host via the HTTP protocol, via e-mail, or
via SOAP/WSDL using a RawPost request.

preSubmit fires just after the data has been marshalled in the Connection Data DOM but before
validation and before the data is submitted to the host. A script triggered by this event has the
chance to examine and alter the data before it is submitted. If the script is marked to be run only at
the server, the data is sent to the server with an indication that it should run the associated script
before performing the rest of the processing.

Submit operations (that do not use e-mail) may return updated data. After a successful submit
postSubmit fires just after the returned data has been marshalled in the Connection Data DOM.
A script triggered by this event has the chance to examine and alter the data before it is merged
back into the Data DOM. If the script is marked to be run only at the server, the submit request is
set to the server with an indication that it should run the associated script before returning the
result of the submit. After a cancelled or failed submit operation a postSubmit event also fires to
allow clean-up code to run.

The preSubmit event applies only to the Form DOM ($form). Note that preSubmit does not
distinguish between submissions initiated by different button pushes or to different URLs. Any
script that needs to make these distinctions must include code to find out what button was
pushed. In general preSubmit is analogous to preSave and serves a similar purpose.

For example, consider the following template fragment.

Example 10.7 Fragment using preSubmit event

<subform name="root">
<subform name="sub1">

<field name="field1" … >
<event ref="$" activity="click">

<submit target="http://www.example.com/t1/?abcd" … />
</event>

</field>
<field name="field2" … >

<event ref="$" activity="click">
<submit target="http://www.example.com/y78/" … />

</event>
</field>

</subform>
<event ref="$form" activity="preSubmit">

<script>
if ($event.target.name == "field1") then …

</script>
</event>

</subform>

In this example the click events from either of two fields initiate the submission of form data to
a host. There is a script associated with the Form DOM's preSubmit event, so when either field is
clicked, the outgoing data is marshalled, the preSubmit script runs, then the submit transaction
takes place. The preSubmit script uses the $event object to find out which click event
triggered it. The $event object is described below in the section “Properties” on page 391.

XFA Specification
Chapter 10, Automation Objects Events 383

Subform Events

Subform events fire in response to changes of state which affect subforms. Some are generated in
interactive contexts and some in both interactive and non-interactive contexts.

A script binds to a subform event by expressing a ref property whose value is a SOM expression pointing
to the subform.

The subform events are as follows:

enter, exit

The enter event fires when some field directly or indirectly within the subform gains keyboard
focus, whether caused by a user action (tabbing into the field or clicking on it with the mouse) or
by a script programmatically setting the focus. It is not fired by keyboard focus moving to another
field within the same subform – focus must come in from outside the subform.

The exit event fires when keyboard focus is yielded from a field directly or indirectly within the
subform to a field or other object outside the subform. It is not fired by keyboard focus moving to
another field within the same subform – focus must go out from inside the subform.

initialize

This event fires after data binding is complete. A separate event is generated for each instance of
the subform in the Form DOM.

Exclusion Group Events

Exclusion Group events fire in response to user actions which affect exclusion groups. Some are generated
in interactive contexts and some in both interactive and non-interactive contexts.

A script binds to an exclusion group event by expressing a ref property whose value is a SOM expression
pointing to the exclusion group.

The exclusion group events are as follows:

enter, exit

The enter event fires when some field within the exclusion group gains keyboard focus, whether
caused by a user action (tabbing into the field or clicking on it with the mouse) or by a script
programmatically setting the focus. It is not fired by keyboard focus moving to another field
within the same exclusion group – focus must come in from outside the exclusion group.

The exit event fires when keyboard focus is yielded from a field within the exclusion group to a
field or other object outside the exclusion group. It is not fired by keyboard focus moving to
another field within the same exclusion group – focus must go out from inside the exclusion
group.

initialize

This event fires after data binding is complete. A separate event is generated for each instance of
the exclusion group in the Form DOM.

Field Events

Field events fire in response to user actions which affect a field. Some are generated in interactive
contexts and some in both interactive and non-interactive contexts.

XFA Specification
Chapter 10, Automation Objects Events 384

A script binds to a field event by expressing a ref property whose value is a SOM expression pointing to
the field.

The field events are as follows:

change

This event fires when the content of the field is changed by the user. This event fires on every
keystroke as long as the field has keyboard focus. It also fires when the user pastes into the field,
makes a selection from a choice list or drop-down menu, checks or unchecks a checkbox, or
changes the setting of a set of radio buttons. It is not fired by content changes that are made by
the XFA application, for example calculations, nor is it fired by a merge operation.

click

This event fires when a mouse click occurs within the region.

enter, exit

The enter event fires when the field gains keyboard focus, whether caused by a user action
(tabbing into the field or clicking on it with the mouse) or by a script programmatically setting the
focus. It also fires when a new selection is made in a choice list, but this behavior can be inhibited.
See below.

The exit event fires when the field loses keyboard focus. It also fires whenever a new selection is
made in a choice list (followed by an enter event), but this behaviour can be inhitibited. See
“Change in the handling of choice list fields” on page 385.

full

This event fires when the user has entered the maximum allowed amount of content into the field
and tries to enter more content.

initialize

This event fires after data binding is complete. A separate event is generated for each instance of
the field in the Form DOM.

mouseDown, mouseUp

The mouseDown event fires when the mouse button is depressed at a moment when the mouse
pointer is within the region.

The mouseUp event fires when the mouse button is released at a moment when the mouse
pointer is within the region.

Caution: Mouse up and down events are not necessarily symmetrical. For example if the user presses the
mouse button when the mouse pointer is within the region, but then slides the mouse pointer
out of the region without releasing the button, a mouseDown event fires but no corresponding
mouseUp event.

mouseEnter, mouseExit

The mouseEnter event fires when the user moves the mouse pointer into the region of the field,
without necessarily pressing the mouse button. It does not fire when the mouse pointer moves
into the field for some other reason, for example because an overlying window closes.

The mouseExit event fires when user moves the mouse pointer out of the field, whether the
mouse button is depressed or not. It does not fire when the mouse pointer moves out of the field
for some other reason, for example because an overlying window opens.

XFA Specification
Chapter 10, Automation Objects Events 385

Caution: Mouse enter and exit events are not necessarily symmetrical. For example if the user slides the
mouse pointer into the region, but then a window opens up covering the region, a mouseEnter
event fires but no corresponding mouseExit event.

preOpen, postOpen

These events apply only to drop-down choice lists, or more specifically choice lists for which
open="userControl" or open="onEntry". The events are intended to trigger scripts that
add choices to and remove choices from the choice list. This is especially useful when the choice
list varies dynamically.

The form object model method addItem() is particularly useful in scripts triggered by preOpen
events. addItem() is described in the LiveCycle Designer ES2 Scripting Reference
[LC-Scripting-Reference].

The preOpen event fires under the following circumstances:

● User clicks on the symbol that causes the choice list to drop down. This symbol is usually a
down arrow.

● While the choice list is in focus, the user presses the keyboard sequence that causes the
choice list to drop-down. In this situation, the choice list gains focus through some
mechanism other than clicking, such as tab-order traversal or clicking the associated text
box.

● Any script calls the $host.openList() method with a parameter pointing to the field
which contains the choice list object. This causes the preOpen event to fire, the choice list to
gain focus, and eventually the postOpen event to fire. openList() is described in the
Adobe XML Scripting Object Reference [LC-Scripting-Reference].

The preOpen event does not fire in response to the user pressing the Enter key while the combo
box has the focus.

It is recommended that users be provided with some sort of feedback mechanism before the body
of the script is executed. The script might block interaction for a time, which would be an
unexpected characteristic of choice lists.

The postOpen event fires after the combo box is displayed. It also fires when the display of the
combo box fails, to ensure that any cleanup code is executed.

Change in the handling of choice list fields

Starting with XFA 2.4 the issuing of events in a choice list field was modified. In versions of XFA prior to 2.4
an exit event was generated whenever a selection was clicked in the choice list, but an enter event was
only generated on the first click, as long as the choice list held focus between clicks. In consequence when
the user changed the selection without first transferring focus outside the choice list, consecutive exit
events were generated without an enter in between. In XFA 2.4 this behavior was corrected. When the user
commits a selection by clicking on it or pressing Enter an exit event is generated, even though focus
remains on the choice list. If the user subsequently clicks on a selection or presses enter another enter
event is generated, followed by an exit event. However each enter event that would not have been
generated prior to XFA 2.4 is identified as such by its reenter property as described in “reenter” on
page 396.

Normally the XFA processor is required to display the new choice list behavior whenever the XFA schema
specified by the template is 2.4 or above. However to facilitate editing and updating older templates,
without necessarily having to rewrite the template’s scripts, a processing instruction is provided which
forces the XFA processor to follow the older behavior even though the template references a newer
schema. An example of this processing instruction follows.

XFA Specification
Chapter 10, Automation Objects Events 386

Example 10.8 Template with originalXFAVersion processing instruction

<template xmlns="http://www.xfa.org/schema/xfa-template/3.0/">
<? originalXFAVersion http://www.xfa.org/schema/xfa-template/2.1/

LegacyEventModel:1 ?>
…

</template>

The first parameter in the originalXFAVersion processing instruction is an XFA namespace URI. When
this indicates version 2.4 or later, meaning the template started life in XFA version 2.4 or greater, the
processing instruction is ignored and the XFA 2.4 behavior is always followed. Otherwise any remaining
parameters are inspected. If there is an additional parameter with the value LegacyEventModel:1 the
pre-2.4 behavior is followed. Otherwise the XFA 2.4 behavior is followed.

In the example the XFA schema in use by the template is 3.0 but there is an originalXFAVersion
processing instruction, the original XFA version is 2.1, and there is a LegacyEventModel:1 parameter so
the pre-2.4 behavior is followed.

Connection Events

Connection events fire in response to activity in a link between the XFA processor, acting as a client, and
some external processor providing a web service. Because connection events are not directly linked to
user actions, they fire in both interactive and non-interactive contexts.

A script binds to a connection event by expressing a ref property whose value is a SOM expression
identifying the connection.

The connection events are as follows:

preExecute, postExecute

The preExecute event fires when a request is sent to a web service via WSDL, just after the data
has been marshalled in the Connection Data DOM but before the request has been sent. A script
triggered by this event has the chance to examine and alter the data before the request is sent. If
the script is marked to be run only at the server, the data is sent to the server with an indication
that it should run the associated script before performing the rest of the processing.

After a successful WSDL transaction the postExecute event fires just after the reply to the
request has been received and the received data is marshalled in the Connection Data DOM. A
script triggered by this event has the chance to examine and process the received data. After
execution of this event the received data is deleted. After a failed or cancelled WSDL transaction
the postExecute event also fires to allow clean-up code to run.

For example, consider the following template fragment and accompanying connection set.

Example 10.9 Template fragment declaring a postExecute script

<subform name="root">
<subform name="sub1">

<field name="field1" … >
<event ref="$" activity="click">

<execute connection="service1" … >
</event>

</field>
<field name="field2" … >

<event ref="$" activity="click">

XFA Specification
Chapter 10, Automation Objects Events 387

<execute connection="service1" … >
</event>

</field>
</subform>
<event ref="$connectionSet.service1"

activity="postExecute">
<script>… </script>

</event>
</subform>

Example 10.10 Connection set accompanying Example 10.9

<connectionSet … >
 <wsdlConnection name="service1" … >
 …
 </wsdlConnection>
</connectionSet>

In this example the click events from either of two fields initiate a web service transaction. There is a
script associated with the connection's postExecute event, so when either field is clicked, the outgoing
data is marshalled, the web server transaction takes place, the resulting incoming data is marshalled, then
the postExecute script runs.

Signing Events

Signing events fire in response to applying a signature. The signature can be any kind, that is to say it can
be an XML signature or a PDF document signature. Because signing events are not always directly linked
to user actions, they fire in both interactive and non-interactive contexts.

The signing events are as follows:

preSign, postSign

The preSign event fires when a signature is about to be applied. A script triggered by this event
has the chance to make fields read-only or (in an interactive context) issue a custom dialog. If the
script is marked to be run only at the server, the data is sent to the server with an indication that it
should run the associated script before performing the rest of the processing.

After successfully applying a signature the postSign event fires. A script triggered by this event
has the chance to make fields read-only, issue a custom dialog, or submit the signed data to a
host. After a failed or cancelled attempt to apply a signature a postSign event also fires to allow
clean-up code to run.

Scripts triggered by these events can examine $event.target to find out what object fired the event.
The event target is determined as follows:

● When an approval or certification signature is applied the event target is the field which instigated the
signing. This field is always a signature type field.

● When a signature is applied by the host application the event target is the $host object.

● When an XML signature is applied by declarative markup (a signData object), the event target is the
container (field, exclusion group or subform) which contains the signData object.

● When an XML signature is applied by a script using $signature.sign(), the event target is the
$signature object.

XFA Specification
Chapter 10, Automation Objects Events 388

Instance Manager Events

An instance manager is an object that manages a dynamic array of same-named sibling objects. There is
one instance manager for each such array. The instance manager fires an event to inform an object in the
array that some change has happened to its position in the array.

indexChange

This event fires to tell an object that it has just been added to an array or that its position in the
array (its subscript) has changed. The object’s position can change because another object was
added in front of it or because an object was removed in front of it.

When field objects are created and added to an array by data binding, the initialize event
fires before the indexChange events.

All of the objects managed by a particular instance manager share the same declaration in the template
and therefore the same script. However there is a property instanceIndex which holds the zero-based
index of the current object. This can be used by the script to take different actions in different instances.
For example, in the following fragment the color of the subform border is dependent on the position of
the subform. It is calculated when the subform is added to the Form DOM (for example during data
binding) and recalculated whenever the position of the subform changes.

Example 10.11 Fragment using the instance manager to obtain its own index

<subform name="Detail" layout="tb">
<occur min="1" max="10"/>
<border><edge/></border>
<event activity="indexChange">

<script>
; Compute subform border color based on the index
if (Mod(instanceIndex, 3) eq 0) then

border.edge[0].color.#value = "225,0,0"
else

border.edge[0].color.#value = "0,255,0"
endif

</script>
</event>
…

</subform>

As explained in “Activation” on page 372, the XFA processor performs automatic dependency tracking to
ensure that calculations are recomputed for all affected objects whenever necessary. Recalculation is
performed whenever an instance is added, deleted, or moved for all calculations that use objects in the
affected array. For example, the Total field in the following fragment has a dependency upon the
Detail subform. Hence the XFA processor recalculates the value of the Total field whenever an instance
of the Detail subform is added, deleted, or moved.

XFA Specification
Chapter 10, Automation Objects Events 389

Example 10.12 Fragment that recalculates when the instance manager adds an instance

<subform name="Detail">
<occur min="1" max="10"/>
<field name="ItemValue" …>…</field>
…

</subform>
<field name="Total" …>

<calculate>
<script>

Sum(Detail[*].ItemValue)
</script>

</calculate>
…

</field>
<field name="AddDetail" …>

<event activity="click">
<script>

_Detail.addInstance()
</script>

</event>
…

</field>

Validation Events

Since XFA 3.0 events can be triggered by changes in the validation state of form content. The
validationState event is triggered for each field, exclusion group, and subform when the object is first
initialized. Afterwards it is triggered only when either of two things happens. It is triggered when the
object changes state from valid to invalid or invalid to valid, and it is triggered when the reason for
invalidity changes (for example from nullTest to scriptTest).

It is necessary to understand when validation state changes. The rules are different for the nullTest
validation than for the scriptTest and formatTest validations.

The nullTest validation is only evaluated in response to an explicit scripting call to execValidate(),
or automatically in an implementation-determined manner during a pre-event. It is restricted this way to
prevent annoying the user with premature validation failure messages when the form is only partly filled
in.

Note: Adobe XFA processors may perform pre-event validation during preSubmit, prePrint,
preSave, and/or preExecute events. For LiveCycle ES2 this behavior is controlled by the value of
$config.present.validate. For the Acrobat family of products it is controlled by
$config.acrobat.validate.

By contrast scriptTest and formatTest validations are re-evaluated in response to possible changes
in content during the lifetime of a form (for example, when input focus leaves a field). In addition for these
validations the XFA processor uses dependency tracking to decide which other objects need to be
re-validated when the content of any particular object changes. On the other hand neither the
scriptTest nor formatTest validation, even if declared, is applied to fields having null or empty
content.

The above rules can sometimes lead to surprising results. Suppose that a field has a nullTest validation.
It starts off valid because it contains a default value. However, the user tabs to the field and clears it. This
does not cause the nullTest validation to be executed, so the field continues to register a valid state.

XFA Specification
Chapter 10, Automation Objects Events 390

Only when the user attempts to submit the form does the field state become invalid as a result of the
preSubmit event applying the nullTest validation.

A container becomes invalid as the result of any content failing to validate. On the other hand, a container
becomes valid when none of its content is currently failing a validation test. The latter includes the case in
which no validation tests are evaluated for that container or its content. For example if nullTest is not
evaluated in that validation context, and there is no other validation test specified, then the container is
valid regardless of its content.

One common use of validation events in interactive applications is to change the visual appearance of
fields and subforms to display their validation state. In the Acrobat family of products this function is built
into the application. However sometimes the form author prefers a different appearance. The following
script fragment turns off the built-in function and highlights invalid fields using the validation state event.

Example 10.13 Highlighting driven by the validation state event

<subform …>
<!-- turn off acrobat/reader highlighting -->
<event activity="ready" ref="$form">

<script contentType="application/x-javascript">
if (xfa.host.name == "Acrobat")

app.runtimeHighlight = false;
</script>

</event>
<!-- Show any invalid fields with a red border -->
<event activity="validationState" listen="refAndDescendents">

<script>
if (HasValue($event.target.errorText)) then

$event.target.border.edge.color.value = "255,0,0"
else

$event.target.border.edge.color.value = "0,0,0"
endif

</script>
</event>
…

</subform>

The XFA processor is required to generate validation state events only upon the initialization of the target
object and thereafter only when a change of validation state is detected. Nevertheless it is recommended
that scripts be robust enough to handle the receipt of a validation state event even when the validation
state has not actually changed. In the example above this is done by examining the
$event.target.errorText property.

Note: In the Adobe implementation each field object has an errorText property which holds the text
of the currently applicable validation error message. When the content of the field is valid the
property does not exist. This convenience property is not part of the XML representation of a field,
hence is not defined by this specification. Instead see [LC-Scripting-Reference].

Script writers may also wish to differentiate between nullTest on the one hand, and either
scriptTest or formatTest on the other. They can do this by checking the value of the field in
question. If it is null or empty, the validation failed as a result of a nullTest validation.

XFA Specification
Chapter 10, Automation Objects Events 391

Properties
With respect to properties there are two general categories of events, primary events which correspond to
a user action and secondary events which are fire in response to an internal change of state. Primary events
update some or all of the primary properties of an object called xfa.event (more commonly known by
the alias $event). By contrast, secondary events do not update the primary properties of $event. If a
secondary event results from a primary event then the primary properties of $event during the
secondary event have the values set by the primary event. However, secondary events may set secondary
properties of $event.

It is an error for a script to try to use a property that is not set in the current context. The following table
shows which properties are set by each primary event:

Target Type Event Name Sets Primary Properties

subform enter

exit

validationState

name

target

exclGroup validationState name

target

field click

enter

mouseEnter

mouseExit

mouseDown

mouseUp

name

modifier

reenter

shift

target

field exit commitKey

name

modifier

shift

target

XFA Specification
Chapter 10, Automation Objects Events 392

In addition, the following secondary events set secondary properties but don't change any primary
properties:

In addition, a script may conjure up an event from thin air using the $event object. Only the name,
target, and cancelAction properties are initialized when an event is created this way. It is up to the
script that creates the event to assign values to the remaining relevant properties of $event before firing
the event.

Most properties of $event are read-only. However the cancelAction, selStart, selEnd and change
properties are writable as well as readable.

The cancelAction flag is used to cancel whatever action fired the event. The action may have fired
multiple events and might, in the normal course of affairs, fire more events. At the beginning of the action
the XFA processor clears cancelAction. Setting cancelAction, either in a script or internally in the
XFA processor, causes the current action to abort. However, some events come in pre-event and
post-event pairs. For example, preSubmit is matched by postSubmit. It is important that pre-events

field change change

keyDown

fullText

modifier

name

newContentType

newT

prevContentType

prevText

selEnd

selStart

shift

start

target

field full change

fullText

newContentType

newText

prevContentType

prevText

target

field validationState name

target

Target Type Event Name Sets Secondary Properties

connection preExecute

postExecute

soapFaultCode

soapFaultString

XFA Specification
Chapter 10, Automation Objects Events 393

executed so far in the action be matched by post-events in the correct order, to ensure that scripts clean
up properly. For this reason pre-events push their matching post-events onto a last-in first-out stack. The
cleanup process pops stacked post-events and fires them in the expected order.

Scripts invoked by either a pre- or post-event may themselves fire events, including pre- and post-events.
However if the XFA processor finds that cancelAction is already asserted when it enters an action block
(before the pre-event fires), it reduces processing overhead by skipping the pre-event and post-event as
well as the action itself.

selStart, selEnd, prevText, newText, and change are used together. The change property holds
the text which is inserted into the field. Assigning to the change property replaces the typed or pasted
characters with the characters from the assigned string. prevText holds the contents of the field as it was
prior to the event. newText is read-only and yields the text that is placed into the field after the script has
terminated. The value of newText changes in response to changes in the values of change, selStart,
and selEnd. selStart and selEnd control which characters in the prevText is replaced by the
characters in change. Like a UI text edit cursor, selStart and selEnd do not point to characters but to
the boundaries between characters. A value of 0 points in front of the first character in the field, 1 points in
between the first and second characters, 2 points in between the second and third characters, and so on.
When a change or full event occurs, if characters were selected in the field, selStart and selEnd are
set to bracket the selected characters. By contrast, if no characters were selected, selStart and selEnd
are both set to the text entry cursor position. selStart is always smaller than or equal to selEnd.
Changing selEnd also repositions the text entry cursor in the UI.

Example 10.14 Event script that modifies the change property

For example, suppose the original content
of the field was abcd (as shown at right).
The user selected bc and then typed g.
When the change event script is invoked,
the value of prevText is abcd, the value
of change is g, the value of selStart is 1,
the value of selEnd is 3, and the value of
newText is agd. If the script does not
modify any of the change, selStart, or
selEnd properties the letter g replaces the
selected characters bc as one would
expect. The blue ^ shows the location of
the text entry cursor after the operation.

Now suppose that the script assigns the value xyz to the change property, using the line shown in bold
below.

<subform …>
<!-- Catch and modify field change events -->
<event activity="change" listen="refAndDescendents">

<script>
$event.change = "xyz"
$event.selEnd = "1"

</script>
</event>
…

</subform>

selStart selEnd

g

abcd

agd

change

newText

prevText

1 3 ^

Two characters selected, one inserted

XFA Specification
Chapter 10, Automation Objects Events 394

Since selStart and selEnd haven't
been changed (yet) the value of newText
becomes axyzd. In other words the
string xyz replaces the selected
characters, as though the user had pasted
xyz instead of typing g. This is shown at
right.

After this the script changes the value of
selEnd from 3 to 1, which happens to
equal the value of selStart. The
relevant line is shown in bold below.

<subform …>
<!-- Catch and modify field change events -->
<event activity="change" listen="refAndDescendents">

<script>
$event.change = "xyz"
$event.selEnd = "1"

</script>
</event>
…

</subform>

Now the value of newText
becomes axyzbcd and the text
cursor in the UI is repositioned
between the z and the b. It is as
though the user had not
selected any text, but
positioned the text cursor
between the a and the b and
then pasted xyz. This is shown
at left.

selStart selEnd

x

abcd

a d

change

newText

prevText

1 3
yz

xyz
^

Two characters selected, three inserted

selStart selEnd

x

abcd

a d

change

newText

prevText

1 1
yz

xyzbc
^

No characters selected, three inserted

XFA Specification
Chapter 10, Automation Objects Events 395

$event properties

The individual properties of $event are described below:

cancelAction

A Boolean flag which is both readable and writeable. This flag is cleared by the XFA processor at
the beginning of an action such as submitting data to a host. Setting this flag at any time before
the action is consumated causes the action to abort and a cleanup process to take place. Once the
action has been consumated the effect of this flag is undefined.

This flag may be set either by script or by the XFA processor. Scripts must not attempt to clear this
flag.

change

When a change or full event occurs, this property holds the text that is to be inserted or
updated. When referenced this property yields a string. Assigning to this property replaces the
typed or pasted text with the value assigned. For example, the following fragment shows a script
that converts the entered text to upper case.

Example 10.15 Script updating only changed text

<field … >
…
<event activity="change">

<script>
$event.change = Upper($event.change)

</script>
</event>

</field>

The boundaries of the window are controlled by the selStart and/or selEnd properties.

commitKey

Describes what happened to the value in the field when the form field lost focus. The value of this
property must be one of:

0

The value was not committed (for example, the escape key was pressed)

1

The value was committed by a click of the mouse outside the field

2

The value was committed by pressing the enter key

3

The value was committed by tabbing to a new field

fullText

If the user pastes into a field, the field may truncate the pasted text. The full (untruncated) value is
stored in this property. Content type is indicated by $event.newContentType.

keyDown

A Boolean that is true if the arrow key was used to make a selection, otherwise false.

XFA Specification
Chapter 10, Automation Objects Events 396

modifier

A boolean that is true if and only if the modifier key (the control or “Ctrl” key on Microsoft
Windows) was held down during the event.

name

Name of the current event as a text string.

newContentType

Content type of the new data. The value of this property must be one of:

allowRichText

The field supports rich text. If the content is rich text, it is marked up as described in the “Basic
Data Binding to Produce the XFA Form DOM” on page 171.

plainTextOnly

The field does not support rich text. Even if markup is present in the data it should be passed
through rather than interpreted. However it is not guaranteed whether or not downstream
processing will respond to the markup.

In this version of XFA, the values of the newContentType and prevContentType properties
are always the same. It is anticipated that future versions will allow for them to differ.

newText

Content of the field after it changed.

prevContentType

Content type of the data before it changed. The value of this property must be one of:

allowRichText

The field supports rich text. If the content is rich text it is marked up as described in “Basic Data
Binding to Produce the XFA Form DOM” on page 171.

plainTextOnly

The field does not support rich text. Even if markup is present in the data it should be passed
through rather than interpreted. However it is not guaranteed whether or not downstream
processing will respond to the markup.

In this version of XFA, the values of the newContentType and prevContentType properties
are always the same. It is anticipated that future versions will allow for them to differ.

prevText

Content of the field before it changed.

reenter

Boolean which is false for a non-choice-list field or for the first enter event generated after a choice
list gains focus. It is true for subsequent enter events generated while the same choice list still has
uninterrupted focus.

selEnd

Ending position in prevText of the text to be replaced with the value of change. This is a 0-based
index into the boundaries between characters. If no text was selected this is set to the position of
the text entry cursor at the time the change was made. This property is read-write. Changing the
value of this property changes which characters is replaced by the value of change and also
repositions the text entry cursor.

XFA Specification
Chapter 10, Automation Objects Order of Precedence for Automation Objects Activated by the Same Action 397

selStart

Starting position in the prevText of the change window. This is a 0-based index into the
boundaries between characters. If no text was selected this is set to position of the text entry
cursor at the time the change was made. This property is read-write. Changing the value of this
property changes which characters is replaced by the value of change.

shift

A boolean that is true if and only if the shift key was held down during the event.

soapFaultCode

The fault code returned by the SOAP operation within the faultcode child of the Fault
element, as described in [SOAP1.1]. If no Fault element is returned this defaults to the empty
string ““. This is a secondary property.

soapFaultString

A human-readable string returned by the SOAP operation within the faultstring child of the
Fault element, as described in [SOAP1.1]. If no Fault element is returned this defaults to the
empty string ““. This is a secondary property.

target

The object whose change of state fired the event. This property is of type XFANode.

Order of Precedence When Multiple Actions Are Defined for an Event
A single event may contain any combination of the actions: script, execute, submit, and signing. When the
event fires, the order in which these actions are satisfied is implementation-dependent.

Due to the way in which one event can cause another event to fire, the order of event processing cannot
be specified in a general way. For example, a submit object may have child signData objects which
specify that signatures are to be added. This means that whenever the submit event fires one or more
signing events will also fire. Conversely a postSign event may trigger a script which programatically
inititiates a submit operation. In this case after the signing event fires a submit event will fire.

Order of Precedence for Automation Objects Activated by the
Same Action

One might expect that the template schema would include an element for each event, with each event
containing the script to which it is bound. In fact the schema does just the opposite. Scripts are usually
located inside the element that declares the object which is modified by the script. Each script identifies
the particular event to which it is bound by name and the object which gives rise to the event by SOM
expression. This can be thought of as a “come from” notation, in contrast to the more conventional “go to”
notation. The advantage of this inverted notation is that a complete object, including all the scripts it
requires, can simply be dropped into a template intact. The included scripts plug themselves into the
required events using the inverted notation.

One consequence of the above-described notation is that one event can be bound to any number of
scripts. Note that when a single event is bound to multiple scripts, the order of execution of the scripts is
not defined. The scripts could even in principle run concurrently, but this is unlikely because concurrency
is not supported in most scripting languages (including FormCalc). For example, given the following
template fragment, when the form ready event occurs the order of execution of the two scripts is not

XFA Specification
Chapter 10, Automation Objects Order of Precedence for Automation Objects Activated by the Same Action 398

defined. If the scripts are simple and the XFA processor is an Adobe product the scripts execute in
document order, but this can change when, for example, one script has a side-effect which triggers
another script.

Example 10.16 Single event bound to multiple scripts

<subform name="outer">
<subform name="sub1">

<event activity="ready" ref="$form">
<script>… </script>

</event>
</subform>
<subform name="sub2">

<event activity="ready" ref="$form">
<script>… </script>

</event>
</subform>

</subform>

Multiple events may fire in response to a single change of state or user action. For example, tabbing from
the current field to the next field fires both the exit event for the current field and the enter event for
the next field. If the current and next fields are in different subforms a total of four events fire, namely,
exit events for the current field and subform and enter events for the next subform and field. Also,
when opening a new form Acrobat generates two form ready events before it reaches the stage of
rendering the form.

It is sometimes necessary for script authors to know in what order their event scripts will be executed. The
order of event generation, including calculates and validates, is governed by the following rules.

➤ Rule 1: Enter/exit events, calculations and validations

This section describes the order in which an XFA processing application executes enter and exit events,
calculations and validations in response to a single change of state; a change in focus caused by the user’s
selection or by the user tabbing from one field/subform to another.

1. When focus moves from one field, exclusion group, or subform to another, validations and exit events
precede enter events

2. When focus leaves a field, exclusion group, or subform, calculation and validation precede the exit
event

3. Calculations precede validations

4. Value calculations precede property calculations

5. Calculations, validations and exit events for nested objects occur in order from inner to outer object

6. Calculations, validations and enter events for nested objects occur in order from outer to inner object

Note that although the order of validations is well-defined, this should not make any difference to the
script writer, because validations can not legally make any changes to the DOMs. They are only allowed to
inspect values and return true (valid) or false (invalid).

For example, consider the following template fragment.

XFA Specification
Chapter 10, Automation Objects Order of Precedence for Automation Objects Activated by the Same Action 399

Example 10.17 Scripts bound to nested enter and exit events

<subform name="outer">
<subform name="X">

<validate … />
<event activity="exit" ref="$" … />
<field name="A">

<validate … />
<event activity="exit" ref="$" … />

</field>
</subform>
<subform name="Y">

<validate … />
<subform name="enter" ref="$" … />
<field name="B">

<validate … />
<event activity="enter" ref="$" … />

</field>
</subform>

</subform>

When the user tabs from field A to field B the order of events is:

1. Validation for field A

2. Exit event for field A

3. Validation for subform X

4. Exit event for subform X

5. Enter event for subform Y

6. Enter event for field B

➤ Rule 2: Full and change events

For full and change events fired in response to the same change of state the change event occurs
before the full event. For example, consider the following template fragment.

Example 10.18 Field with both full and change events

<field name="A" …>
<value><text maxChars="10"/></text>
<event activity="full" ref="$" … />
<event activity="change" ref="$" … />
…

</field>

When the user types the last allowed character into field A, the order of events is:

1. change event for field A

2. full event for field A

Typing another character with the field still full generates the same events in the same order, but does not
alter the content of the field.

XFA Specification
Chapter 10, Automation Objects Order of Precedence for Automation Objects Activated by the Same Action 400

➤ Rule 3: Merge completion

For calculations, validations, and initialize events fired in response to the completion of a merge operation:

● All value calculations are done, then all property calculations, then all validations, and then all initialize
events are fired

● Calculations are repeated if the values on which they depend change

● The order of validations is not defined

● Initialize events occur in order of depth-first traversal of the Form DOM

It should not matter to the script writer that the order of validations is not defined, because validations can
not legally make any changes to the DOMs. They are only allowed to inspect values and return true (valid)
or false (invalid).

➤ Rule 4: Scripts That Fire (Invoke) Other Events

A script may cause changes of state that in turn fire or invoke other events. It may also directly declare an
event. Thus, a script triggered by one event can indirectly fire other events. In such cases the order of
execution is implementation-defined.

Note: In the Adobe implementation scripts execute in a single thread. No concurrency is allowed.

For example, the following template fragment illustrates a script triggered by one event (form ready) that
in turn explicitly fires another event (enter event for field A).

Example 10.19 A script in one field fires an event in another field

<subform name="root" …>
<event activity="ready" ref="$form">

<script>
…
$form.root.A.execEvent("enter")
…

</script>
</event>
<field name="A" …>

<event activity="enter" ref="$">…</event>
</field>

</subform>

Normally the enter event for a field fires when the field gains keyboard focus. However, the line
highlighted in bold causes an enter event to fire for field A even though no change of focus occurs.

The above expression $form.root.A.execEvent() has the following parts:

● $form references the Form DOM. $form is described in “Scripting Object Model” on page 86.

● $form.root.A references the specific field in the Form DOM.

● $form.root.A.execEvent("enter") fires the enter event for the referenced field.

In the above example, the order of execution of the field’s enter event script and the portion of the form
ready script after the highlighted line is not defined by this standard. However, in the Adobe
implementation the execution of the form ready script is suspended while the field enter script executes,
then the form ready script resumes executing.

XFA Specification
Chapter 10, Automation Objects Effect of changing the presence value 401

The following template fragment illustrates a script performing an action which indirectly fires another
event. The layout ready event fires whenever the layout engine determines that the layout needs updating
and then finishes updating it. This can be triggered by many different actions. In this case the action that
triggers the layout event is changing the content of a field.

Example 10.20 A script that causes an event indirectly

<field name="A" …>
…

</field>
<field name="B" …>

<event activity="click" ref="$">
<script>

A = concat(A, "x")
</script>

</event>
</field>
<field name="C" …>

<event activity="ready" ref="$layout" … />
</field>

In an interactive context the line highlighted in bold causes the content of field A to change whenever the
user clicks on field B. This change to the content of field A causes the layout processor to run, and when it
is finished updating the layout it generates a layout ready event. Field C then experiences the layout ready
event because it has an event child that is listening for such events.

As for the previous example, the order of execution of the scripts after the bolded line executes is
undefined. In a non-interactive context there may not be a layout ready event generated, because layout
may not be automatically updated. A non-interactive XFA processor is likely to perform the layout
operation only when needed, such as when the form is about to be printed. But even in an interactive
context, it is very much implementation-dependent when exactly the layout processor runs.
Implementors will employ optimizations to reduce unnecessary layout reprocessing. Hence the form
creator must not rely on layout ready events occurring in a particular sequence relative to other events.

XFA applications are not required to actually run concurrent events concurrently. The application may
queue the events and run them sequentially. (This is what Adobe products do.) It is up to the form creator
to avoid constructions that could yield different results across different implementations.

➤ Rule 5: submit

The order of processing submits relative to click events is not specified. Hence it is not safe to place a
submit and a click event script on the same button. Instead, place the script on the preSubmit event.

Effect of changing the presence value
Containers and other objects have presence properties. When a container’s presence property is set to
inactive its normal participation in calculations, validations, and events is inhibited. However this
property may be altered on-the-fly by scripting, which can lead to ambiguous situations. The following
rules apply.

➤ Rule 1: triggering events

When a container has the value of its presence property set to inactive, it does not generate any of its
normal calculations, validations, or events. The property is inspected at the moment that the calculation,

XFA Specification
Chapter 10, Automation Objects Effect of changing the presence value 402

validation, or event would be triggered and if at that moment the value is inactive the action is silently
omitted.

➤ Rule 2: listening to events

A container may contain event handlers that target (listen to) events from other objects. In a
single-threaded implementation such as Adobe’s, when such a targeted object generates its event the
associated handler is placed on the event queue as normal. However, when the queued handler reaches
the front of the queue, the presence property of the handler’s container is checked. It at this moment it is
inactive the handler is silently ignored rather than its script being executed.

➤ Rule 3: programmatic invocation

A script may attempt to programmatically execute a handler script belonging to a container using the
execEvent() method. If this call succeeds the handler is executed right away (not queued) and when it
is finished control returns to the calling script. However, if the container has its presence property set to
inactive at the moment the call to execEvent() is made, the call fails and does not execute the
handler.

 403

11 Scripting

This chapter describes the role of scripting objects in templates. It describes how scripting langauges are
selected and how their environments must be set up. It also describes exception handling

Purpose of Scripting
It is important to understand that scripting is optional. The template author can take advantage of
scripting to provide a richer user experience, but all of the features described so far operate without the
use of scripts. Script creation is part of the template authoring process.

XFA supports scripting in JavaScript, but it also defines its own script language, FormCalc, which is
described in “FormCalc Specification” on page 1007. Often, the scripts attached to a form are similar to
those attached to a spread-sheet. FormCalc has been designed as an expression-oriented language, with
simple syntax for dealing with groups of values in aggregate operations.

Both JavaScript and FormCalc expose the same object model. Scripting almost always works with data
values, so these are easily referenced (though you can script against any XFA DOM element present).
Indeed, XFA defines a complete Scripting Object Model (XFA-SOM). A key feature of XFA-SOM is that it
manages relative references. For example, when defining an invoice detail line the creator of a form sets up
fields named unitPrice, quantity and amount. The calculation for amount is simply unitPrice*quantity. The
form contains multiple detail records using the same field names, but XFA-SOM automatically manages
the scope to select the unitPrice and quantity data that corresponds to the same detail record. It can do
this in two ways: by selecting fields that are in the same or related subforms; or by selecting from among
multiple fields with the same name within the same subform. For more information about XFA-SOM see
“About SOM Expressions” on page 87.

Because of the declarative nature of XFA-Template, the largest use of scripting is for field calculations. A
field with such a script typically is protected against data entry, and instead gets its value from an
expression involving other fields. A field's calculation automatically fires whenever any field on which it
depends changes (those fields may, in turn, also have calculated values dependent on other fields, and so
on). See “Calculations” on page 371.

Similar to calculation, a field can have a validation script applied that validates the field's value, possibly
against built-in rules, other field values or database look-ups. Validations typically fire before significant
user-initiated events (e.g., saving the data). See “Validations” on page 373.

Finally, scripts can be assigned to events, for example, onEnter, onExit, onClick, and so on. See
“Events” on page 379.

XFA Specification
Chapter 11, Scripting Specifying Where to Execute a Script 404

Specifying Where to Execute a Script
Scripts may include a property (runAt) that specifies where the script should be executed. The possible
values for this property are as follows:

Caution: For security reasons, the server should discard any template it receives in a submitted XDP
package and obtain a fresh copy of the template from a trusted source.

The following template fragment includes a calculation that the server executes when the field value
changes or when some other event triggers the calculate event on the server.

Example 11.1 Calculation that takes place only on server

<field …">
…
<calculate>

<script runAt="server">Num2Date(Date())</script>
</calculate>

</field>

Note: When the XFA processor is operating upon a local PDF file, it takes on both the roles of client and
server for itself. Thus if the above markup is contained in the local file C:\abc.pdf, and this file is
opened using an XFA processor such as Acrobat, the XFA processor does perform the calculation.
Similarly when LiveCycle is generating PDF for printing rather than distribution, knowing that the
printer does not handle XFA, it processes all events itself regardless of the runAt setting. (LiveCycle
then sends the printer a PDF containing only a visual reproduction of the form with no XFA
content.)

Applications of the runAt="both" property

The script property runAt="both" is used primarily for calculations and validations. This script property
supports the follow scenarios:

● Server re-calculates and re-validates submissions from the client XFA processing application.

● Client XFA processing application delegates to the server scripts that it (the client) cannot perform.
That is, if the client determines that it cannot run the script, it can submit the form to the server with
instructions to execute the event. For example, the XFA plug-in for Acrobat (a client XFA processing
application) can change pages without going to the server, but the HTML client cannot. The following
template segment supports both types of client applications: See “Submitting Data and Other Form
Content via HTTP” on page 443.

runAt value Desciption

client (default) Indicates scripts that may be executed only on an XFA processing application set
up as a client.

server Indicates scripts that may be executed only on an XFA processing application set
up as a server.

both Indicates scripts that may be executed on either an XFA processing application
set up as either a client or a server.

XFA Specification
Chapter 11, Scripting Selecting a Script Language 405

Selecting a Script Language
XFA processors are only required to support one scripting language, FormCalc. FormCalc was designed for
XFA to be easy for novice programmers to pick up. At the same time it is fully capable. For more
information about FormCalc see the “FormCalc Specification” on page 1007.

The Adobe implementations of XFA also support JavaScript. It is expected that many form creators will
prefer JavaScript because it is more familiar to them.

For each script in a template, the script language is encoded in the script element by the contentType
attribute. The value application/x-formcalc signifies FormCalc. The value
application/x-javascript signifies JavaScript. If this attribute is not specified the language defaults
to FormCalc.

It is entirely permissible to mix scripts of different languages within the same form.

Object References
In XFA scripts, whether in FormCalc or in JavaScript, objects are referenced using XFA-SOM expressions.
XFA-SOM has been defined in such a way that simple references can be used directly either in FormCalc or
in JavaScript as the name of the object. For example, the following object references are syntactically valid
in both FormCalc and JavaScript. Both references refer to the Total field within the Receipt subform of
the form that is being processed. The Receipt subform is the root (outermost) subform.

Example 11.2 Simple object references valid in either FormCalc or JavaScript

xfa.data.Receipt.Total.value
$data.Receipt.Total.value

The JavaScript specification places certain restrictions upon the syntax of object names. These restrictions
mean that more sophisticated XFA-SOM expressions may not be useable as object names. In these cases it
is necessary to dereference an XFA-SOM expression by supplying it as a string to a method at run time.
FormCalc can dereference mostXFA-SOM expressions without an explicit method call, however it too does
have limitations. For more information about these limitations see “Using SOM Expressions in FormCalc”
on page 106 and “Using SOM Expressions in JavaScript” on page 106.

Referring to the current container
In XFA scripts it is possible to refer explicitly to the current container in the Form DOM. This is done
differently in JavaScript and FormCalc. In JavaScript the symbol this is used. In FormCalc the symbol "$"
(dollar sign) is used. For more information see “Template DOM, XFA Data DOM, and Form DOM” on
page 85.

Caution: Adobe products use two different JavaScript engines. Acrobat uses one engine and all other
Acrobat products use a different engine. The Acrobat JavaScript engine, and only to that engine,
treats "$" as a synonym for this. The other JavaScript engine uses "$" to refer to a special object
which is not part of the XFA DOMs. Therefore, for a script written in JavaScript to run equally well
on client or server, and in general to conform to JavaScript practice, it must only use the symbol
this for the current container. This caution does not apply to FormCalc which always uses "$"
on both the client and the server.

XFA Specification
Chapter 11, Scripting Selecting a Script Language 406

Naked References in JavaScript
In JavaScript it is normal to refer to a property of the current object using the this symbol. This works as
one would expect in XFA, given that the current object is understood as the current container. For
example, a script associated with a field refers to the field’s Y position property as this.y.

However, in XFA any property of this may also be referred to by the property name alone. For example,
this.y can be referred to simply as y. This type of reference is known as a naked reference.

Naked references are resolved using the normal XFA-SOM rules for resolving object references. They are
mentioned separately here because they are commonly used and because a programmer familiar with
other implementations of JavaScript, but unfamiliar with XFA-SOM, is likely to be puzzled by them.

Passing a Pointer to an Object
As described in “Obtaining the value of an expression” on page 106, JavaScript (unlike FormCalc) does not
automatically resolve object references into references to the object’s value. Instead an expression that
resolves to an object represents a reference to the entire object (effectively a pointer to the object). This is
in keeping with the object orientation of JavaScript as contrasted to the value orientation of FormCalc.

There are times when scripts must employ references to entire objects. To make such a reference is easier
in JavaScript than in FormCalc. In JavaScript it is enough to name the object whereas in FormCalc you have
to use the built-in function ref() to make the reference. For example, the following script is simpler in
JavaScript than it is in FormCalc.

Example 11.3 Script using an object reference in JavaScript

<script contentType="application/x-javascript">
var p = $data.Receipt.Total;
…
if (free_as_in_beer) {

p.value = "0.00";
}

</script>

Example 11.4 Equivalent script in FormCalc

<script>
var p = Ref($data.Receipt.Total)
…
if (free_as_in_beer) then

p.value = "0.00"
endif

</script>

In both cases the script uses the variable p as a pointer to a dataValue object in the Data DOM. Once the
variable is set up with a pointer to an object, naming the variable is equivalent to naming the object to
which it currently points. In JavaScript simply naming the object $data.Receipt.Total generates a
reference to it. However FormCalc normally interprets the bare name of the object
$data.Receipt.Total as a reference to its content ($data.Receipt.Total.value). But, as shown
above, the built-in pseudo-function Ref() converts the reference back to an object reference.

XFA Specification
Chapter 11, Scripting Setting Up a Scripting Environment 407

Setting Up a Scripting Environment
The XFA processor contains a scripting engine for each scripting language that it supports. The scripting
engine creates the environment in which scripts of its language will run. For all scripting engines this
environment includes a global object called xfa. The xfa object is the root of a tree under which are
located a number of Document Object Models as subtrees. For example it includes the Template DOM
under xfa.template, the Form DOM under xfa.form, the Data DOM under xfa.data, and so on.
There are also some pseudomodels such as xfa.host. For an introduction to the various DOMs see
“Document Object Models” on page 76. Most of the time scripts operate exclusively on the Form DOM.

The scripting environment also contains a number of pseudoobjects, each of which is a shortcut for a DOM
or pseudomodel. For example $form is a shortcut for xfa.form. For the sake of symmetry $xfa can also
be used as a synonym for xfa. For more information about the short forms see “Shortcuts” on page 91.

For a list of the objects below xfa, their methods, and their properties see the LiveCycle Designer ES2
Scripting Reference [LC-Scripting-Reference].

In addition to the objects under xfa, global variables within each scripting engine persist across
invocations of the same script or any other script using the same engine. However there is no sharing of
global variables across engines, apart from xfa and the objects below it. Nor do global variables persist
between sessions, except that the XFA processor may save the Data DOM as an XML document and
subsequently reload it.

Because of peristence, a FormCalc script may declare functions that are available to subsequent FormCalc
scripts. Similarly an JavaScript script may declare a global object with methods available to subsequent
JavaScript scripts.

Script authors may place data in a subtree under xfa.datasets or in a hidden field within the form.
Hidden fields are more powerful because they can generate events and otherwise take an active part in
the form just as any field can. By contrast data under xfa.datasets is passive.

Scripts may be allowed to make changes in any DOM but the change may or may not have any effect
depending upon details of the implementation. For example, changing the data loading options in the
Configuration DOM generally will not affect data which has already been loaded. Scripts are themselves
resident in the Template DOM and Form DOM and must not be altered during processing.

The Relationship Between Scripts and Form Objects
Scripts in XFA do not have an independent existence. Rather a script is always attached to an object,
similar to the way a method is attached to an object in object-based programming languages. For a script
in XFA this object is either a field, a subform, or a subform set. When the script is executing the symbol for
the current object ("$" in FormCalc or this in JavaScript) always resolves to the object to which the script
is attached.

Note: A script may be physically placed under a proto element. However in that location it is just inert
text, not executable. Such a script prototype can however supply content for scripts attached to
objects. Potentially one prototype can supply content for many scripts.

A field may have a script under its calculate property. Such a script is executed whenever the value of
the field is needed (for example to display it) and dependency analysis reveals that the previously
established value is out of date. The XFA processor understands complicated and indirect dependencies.
However when the field content is altered some other way, for example it is manually altered by the user,
the resulting value is considered sacrosanct and calculations are inhibited for that field from then on.

XFA Specification
Chapter 11, Scripting The Relationship Between Scripts and Form Objects 408

A field may have a script under its validate property. Such a script is executed in interactive contexts
when the focus is about to leave the subform containing the field and dependency analysis reveals that
validity may have changed.

A field, subform, or exclusion group may have a script under one or more event children. In this position
the script is invoked when the specified event occurs. The event may have been triggered by the
associated field, subform, or exclusion group, but a different object may be specified as the source of the
event. For example a script on one field may be triggered by the cursor exiting some other field.

Tip: Script authors may be tempted to put all the code that is invoked by a particular event into one script.
This is not the best style to use with XFA. It is better to put all the code that operates on a particular
object into event children of that object. In this way each small script can refer to its target as the
current object ("$" or this). This yields better modularity because it means the content of the
object is only modified by script provided by the object itself. Modularity in turn make it easier to
reuse the script in another field with related functionality. In particular it allows the identical script to
be used in each of a potentially large set of fields, where the whole set is represented in the template
by a single field with multiple occurrences. To take advantage of this requires an understanding of
relative references in XFA-SOM expressions. See “Relative References” on page 108.

For example, the order form below has two buttons each of which operates on multiple text fields. The
actions for each text field are gathered together in scripts held by event objects under the text field itself.

Example 11.5 Recommended style for linking events on one object to script acting on another

<field name="SetDefaults" …>
…
<ui><button/></ui>

</field>
<field name="Clear" …>

…
<ui><button/></ui>

</field>
<subform name="Detail" …>

<occur max="-1"/>
<field name="Item" …>

…
<event activity="click" ref="SetDefaults">

<script>$ = "TodaysSpecial"</script>
</event>
<event activity="click" ref="Clear">

<script>$ = "N/A"</script>
</event>

</field>
<field name="Quantity" …>

…
<event activity="click" ref="SetDefaults">

<script>$ = "1"</script>
</event>
<event activity="click" ref="Clear">

<script>$ = ""</script>
</event>

</field>
…

</subform>

XFA Specification
Chapter 11, Scripting Exception Handling 409

In this example the Detail subform is dynamic. When a new instance of the Detail subform is added,
the new Item and Form fields within it inherit the event scripts. Hence they automatically process the
click events from the two buttons. This is one of the advantages of this style of linking events. However the
style has other advantages that also apply to static forms. For example, using this style within form
fragments allows the fragments to automatically link into events when the fragments are incorporated
into a form.

Exception Handling
Exceptions can be thrown during the execution of a script. In general, if the scripting environment doesn't
support a feature and this feature is invoked via script, an exception is thrown automatically. Both
FormCalc and JavaScript also allow scripts to throw exceptions programmatically, although FormCalc has
no method for scripts to catch exceptions.

FormCalc and JavaScript respond to exceptions as follows:

● FormCalc. The script stops as soon as an exception is thrown. FormCalc exceptions are described in
“FormCalc Specification” on page 1007.

● JavaScript. If an algorithm throws an exception, execution of the algorithm is terminated and no result
is returned. The calling algorithms are also terminated, until an algorithm step is reached that explicitly
deals with the exception. Once such an algorithm step has been encountered, the exception is no
longer considered to have occurred.

XFA processors should display or log a helpful message the first time any particular uncaught exception is
thrown by a particular script. Subsequent repetitions of the same exception from the same script within
the same session may be silent.

Tip: In the Acrobat family of products FormCalc error messages are displayed in the standard error pane
but JavaScript error messages are displayed in the JavaScript Console. Use Control/J to bring up the
JavaScript Debugger, which includes the Console.

Exceptions do not affect other scripts. If there is a queue of scripts to be executed, processing continues
with the next one in the queue.

Exceptions do not prevent subsequent re-execution of the same script. This is important because a script
may refer to an object that does not yet exist, causing an exception. Yet the required object may exist later
when the script is re-executed.

Picture Clauses and Localization
The FormCalc functions support localization in several ways, as listed in “Locales” on page 1035.

Unicode Support
FormCalc supports Unicode 3.2 [Unicode-3.2], and JavaScript supports some range of Unicode, depending
on the implementation. A conforming implementation of JavaScript interprets characters in conformance
with the Unicode Standard, Version 2.1 or later, and ISO/IEC 10646-1 with either UCS-2 or UTF-16 as the
adopted encoding form, implementation level 3. If the adopted ISO/IEC 10646-1 subset is not otherwise
specified, it is presumed to be the BMP subset, collection 300 [Unicode-2.1].

XFA Specification
Chapter 11, Scripting Unicode Support 410

Caution: An XFA processor and its scripting engine(s) may internally support bytecodes that are not
allowed in XML and thus cannot be loaded from or saved to an XML data document.

XML 1.0 restricts characters to the following production:

Char ::= #x9 | #xA | #xD | [#x20-#xD7FF] | [#xE000-#xFFFD] | [#x10000-#x10FFFF]

This restriction applies even to characters expressed as numeric entities, according to "Well-formedness
constraint: Legal Character" in [XML1.0].

XML 1.1 [XML1.1] removes this restriction, but XML 1.1 is not widely used and XFA processors are not
required to support it. (The Acrobat family of products does not.) In addition, XFA expressly forbids the use
of character code zero (#x0), as described on page 126.

 411

12 Using Barcodes

Barcodes require specialized knowledge to use. This chapter does not substitute for a barcode textbook.
However it does introduce and discuss issues that arise when using barcodes in XFA forms.

XFA supports barcodes as first-class features of a form. A barcode field is a normal field in every way except
that its data is presented as an appropriately formed set of bars. Depending on the type of barcode the
data may also be shown as characters in, over, or under the bars. In addition XFA supports compressing
and encrypting the data in barcode fields. Compression and encryption are not appropriate for normal
human-readable fields but are appropriate for some types of barcodes.

The function of a barcode is to supply data to a computer. This is accomplished either by a specialized
piece of hardware called a barcode reader, or by a camera and image-processing software. Some barcodes
also display the data in human-readable format as a string of glyphs, but this is a secondary function. Since
the barcode is intended to be read by a machine its appearance is usually strictly constrained. For example,
for a particular type of barcode the bars may have to have to particular height and distance apart. In
addition it is common for a barcode to require a minimum amount of white space around it (the quiet
zone) and a particular range of distances from a designated edge of the page.

There are many different types of barcodes, hundreds in wide use and thousands more in specialized
applications. Some types of barcode are specified formally by standards organizations. Others, however,
are nothing more than conventions. See the bibliographic appendix“Barcode References” on page 1506
for references for some barcode types. Note, however, that the barcode bibliography is not authoritative
and includes only those barcode types mentioned in the specification and for which references could be
identified.

Some printers (notably label printers) are capable of printing some barcodes all by themselves. The XFA
application driving the printer only has to select the barcode type and supply any necessary parameters,
including the data to be encoded in bars. This specification refers to such barcodes as hardware barcodes.
In other cases the printer does not handle the barcode. In those cases the XFA application has to tell the
printer to draw the barcode a line at a time. This specification refers to such barcodes as software barcodes.

Note: Some of the barcode images in this chapter are hardware barcodes, obtained by scanning the
output of label printers. We apologize for the quality of barcode images in this chapter.

Because support for barcodes is a function of both hardware and software, XFA cannot specify a universal
set of supported barcodes. Instead XFA supplies a generalized barcode grammar that includes a barcode
type identifier and parameters controlling such things as the ratio of thick to thin bar widths. Later
sections of this chapter describe those parameters. These parameters cover the needs of all of the
common barcode types. However for any particular barcode type some settings are inapplicable. It is
normal and expected for templates to contain inapplicable barcode settings; they are silently ignored.

Note: A barcode may require blank space around it, known as a quiet zone. XFA does nothing to express or
enforce positioning or quiet zone requirements. It is up to the form creator to ensure that these
requirements are met.

XFA specifies barcode identifiers for some of the most commonly used types of barcodes. XFA applications
(in combination with particular printers) that support any of these barcodes recognize the specified
barcode type identifier.

XFA Specification
Chapter 12, Using Barcodes 412

XFA applications may use custom identifiers to support other types of barcodes. This recognizes that it is
common for large organizations to specify their own custom barcodes. Indeed, many of the standardized
or semi-standardized barcodes started out as in-house barcodes.

When a specified barcode type is not supported either in hardware or software the result is
application-defined. Depending upon the context this may or may not be a serious problem. For example,
in an interactive application (rendering to glass) failure to render a barcode is just a cosmetic defect.
However, when printing to paper, failure to render a barcode should be treated as a fatal error.

In most barcodes the data is presented as a series of bars with varying widths. However, most postal
barcodes use bars with varying length and vertical position rather than varying width. In addition some
codes which are generally lumped in with barcodes do not use bars at all, but dots or some other shape.
For the purposes of this specification they are all barcodes whether they really use bars or not. The
important thing is that they are printed and they are machine-readable.

Common barcodes fall into one of three groups. One-dimensional barcodes have a single horizontal line of
bars. Two-dimensional barcodes have multiple rows of bars stacked vertically. Composite barcodes consist
of two or more barcodes in a fixed position relative to each other, holding related data.

Example 12.1 Code 128, a 1D barcode

<field …>
<ui>

<barcode type="code128" …/>
</ui>
<value>

<text>Hello world.</text>
</value>

</field>

Assuming the field contains its default value, the resulting barcode is rendered as shown above at the
right.

Example 12.2 PDF 417, a 2D barcode

<field …>
<ui>

<barcode type="pdf417" …/>
</ui>

<value>
<text>The quick brown fox jumps over the lazy dog.</text>

</value>
</field>

Assuming the field contains its default value, the resulting barcode is rendered as shown above at the
right.

Hello world.

XFA Specification
Chapter 12, Using Barcodes 413

Example 12.3 RSS 14 stacked, a composite barcode

<field …>
<ui>

<barcode type="rss14StackedOmni"
dataLength="13" …/>

</ui>
<value>

<text>1234567890123</text>
</value>

</field>

The resulting barcode is shown at the right. The image is artwork drawn to match
an original printed by a label printer.

A note about the barcode images in this chapter

Most of the barcode images in this chapter were created by capturing the output of the Adobe XFA
processor. The exceptions are those showing MSI and UPS Maxicode barcode types. These are only
supported in Adobe products as hardware barcodes. For these the barcode was printed on a Zebra label
printer and then scanned. However the scanned image of the MSI barcode was of poor quality, so artwork
was substituted.

All barcodes illustrated in this chapter are life-sized when printed at 100% scaling. However they may not
be surrounded by a quiet zone required for successful scanning.

The 2D barcodes are rendered as bitmaps which have limited resolution but should be adequate for
300-dpi printing. By contrast the 1D barcodes are rendered as vectors which can print with the full
resolution of the print device.

XFA Specification
Chapter 12, Using Barcodes Barcode type 414

Barcode type
The barcode element supplies the information required to display a barcode. This includes the type of
the barcode and a set of options which varies from one type of barcode to another. The most important
property of the barcode is the type. This is a string controlling what sort of barcode to display. This
property must be supplied (there is no approved default).

Note: Unlike most XFA property values, the value of the type property is case-insensitive.

The barcode type determines what properties of the barcode element apply to it. Some properties apply
to all or nearly all barcodes. For example the properties described in “Pre-Processing of Barcode Data” on
page 417 apply to most barcodes. By contrast the properties described in “Module properties of
one-dimensional barcodes” on page 427 apply to 1D and composite barcodes but not to most 2D
barcodes. The sole exception among the codes listed below is Code 49, which is a 2D barcode made by
stacking 1D barcodes on top of each other. By contrast the properties described in “Module and extra
properties of two-dimensional barcodes” on page 430 apply only to 2D bar codes.

The set of supported values for the type property is implementation-defined and may also be specific to
the display or print device. However certain values have been defined for this property as indicating
particular barcode types. For any of the defined types that are listed in the Template Reference, if the XFA
processor implements the type it recognizes the defined name.

In addition individual XFA processors may implement other values for other barcode types, including
custom barcodes. However many domain-specific barcodes are merely variations of standard barcodes
with their properties limited to particular values; this type of barcode is handled efficiently in XFA using a
prototype without needing any custom code.

Example 12.4 Using a protype for a domain-specific barcode

<subform name="root" …>
<pageSet>…</pageSet>
<proto>

<barcode id="QRJIS" type="QRCode" charEncoding="Shift-JIS" />
</proto>
…
<field …>

<ui>
<barcode use="#QRJIS" …/>

</ui>
…

</field>
</subform>

In the example the prototype barcode element is declared with a type of QRCode and a character
encoding of Shift-JIS. The instance barcode, and potentially many others like it, reference the
prototype by ID to inherit whatever properties the prototype has declared. This way it is not necessary to
declare a common combination of property values in many different places.

The prototyping mechanism also allows the prototype declaration to be in an external document. When
running in a secure environment this allows a single update to one document to automatically update the
barcode properties for all referencing barcodes in all forms.

For more information about using prototypes see “Prototypes” on page 225.

XFA Specification
Chapter 12, Using Barcodes Content for Barcode Fields 415

Content for Barcode Fields
Some types of barcodes can hold arbitrary binary data. Others are limited to a particular set of characters
or codes. The XFA processor detects an error condition when it is asked to render inappropriate data for
the type and capacity of the barcode. However in most cases barcode content is calculated based upon
one or more other fields. If so it is the responsibility of the form creator to ensure that the user has a clear
indication of where the problem lies.

Some types of barcodes are inherently fixed in data capacity. Others may optionally grow to fit the
supplied data. However even growable one-dimensional barcodes hold a few tens of bytes at most.
Two-dimensional barcodes can hold up to few kilobytes. When the data does not fit into the barcode the
data is truncated.

Example 12.5 Enforcing character count and content

<field name="EnterProductCode" …>
<ui>

<textEdit>
<border hand="right">

<edge/>
</border>
<comb numberOfCells="8"/>

</textEdit>
</ui>

</field>
…
<field name="ProductCode" …>

<calculate>
<script>EnterProductCode</script>

</calculate>
<ui>

<barcode type="ean8"/>
</ui>

</field>

In the above example the field EnterProductCode restricts input to a maximum of eight characters. The
ProductCode field has no explicit validation but, if the XFA processor is Acrobat and the data is invalid for
an EAN8 barcode, Acrobat reports an error condition when it tries to render the field. However if the form
is a complex one it might not be apparent to the user where the problem lies. The form author might
choose to add a validation on the ProductCode field providing additional guidance via a validation
message.

When the barcode is a type that may hold 8-bit or ASCII data and the content of the field is calculated, the
calculated content may include characters that cannot legally be represented in XML 1.0. The XML 1.0
specification [XML1.0] forbids documents containing any of the character codes below 32 (ASCII space)
except tab, carriage return, line feed, and formfeed. It is not even legal to represent these characters using
an XML character entity such as “”. A strict XML parser or validator (for example, the one in FireFox
3.5) will reject such an entity as illegal. Hence it is not possible to legally save such data in an XML data
document.

This situation commonly arises when using UPS Maxicode, because the field content coding specified by
UPS requires embedded ASCII RS and GS characters as well as a terminating EOT. All of these characters are
forbidden in XML.

XFA Specification
Chapter 12, Using Barcodes Content for Barcode Fields 416

The proper way to handle this is to make sure the barcode field does not bind into the Data DOM by
setting its bind scope to none. This ensures that the barcode content will be excluded from the XML data
document when the form is saved. Later, when the form is reloaded, the barcode content will
automatically be recalculated.

Example 12.6 Ensuring that illegal characters do not show up in XML

<field access="readOnly" …>
<ui>

<barcode type="upsMaxicode" …/>
</ui>
<bind scope="none"/>
<calculate>

<script>
var GS = "\u001D" ; illegal character in XML 1.0
var RS = "\u001E" ; illegal character in XML 1.0
var EOT = "\u0004"; illegal character in XML 1.0
var city = $data.sendto.cityName
var state = $data.sendto.stateCode
…
$ = concat("])>", RS, "01", GS, … , city, GS, state, RS, EOT)

</script>
</calculate>

</field>

In the example the field access is set to readOnly to ensure that the user cannot alter the computed field
content. The field content is prevented from binding to the Data DOM by setting the bind scope to none.
The calculation script uses the FormCalc character code syntax to initialize variables GS, RS, and EOT with
values that cannot be expressed directly in XML. It then calculates the value of the field by concatenating
the contents of other fields along with GS as a group separator, RS as a record separator, and EOT as a
terminator in accordance with the UPS Maxicode specification.

Note: If the template allows a field containing non-XML 1.0 characters to bind to data, when the XML data
document is saved the XFA processor is put into an impossible position. It has to either violate the
XML 1.0 specification or omit the non-XML characters from the saved content for that field. Adobe
XFA processors choose to omit the non-XML characters.

XFA Specification
Chapter 12, Using Barcodes Pre-Processing of Barcode Data 417

Pre-Processing of Barcode Data
In view of the limited capacity of even two-dimensional barcodes it is desireable to be able to easily
specify a subset of the data to incorporate into the barcode. XFA includes a manifest element which can
reside under variables and represents a collection of nodes. A script can walk the list and assemble the
content of the nodes into a formatted data stream for the barcode.

Alternatively, if the barcode has enough capacity, Adobe’s XFA processors provide a method which makes
it easy for a script to set the value of a barcode field to an XML representation of the values of the nodes
below $data or below any given datagroup.

Example 12.7 Writing an XML datastream to a barcode

<subform name="ShipInfo">
<field name="Item" …/>
<field name="Packaging" …/>
<field name="QuantityPerPackage" …/>
<field name="ExportCode" …/>

</subform>
<field name="PackageBarCode" …>

<bind match="none"/>
<calculate>

<script>$data..ShipInfo.saveXML()</script>
</calculate>
<ui>

<barcode type="PDF417"/>
</ui>

</field>

In the example the content of the ShipInfo subform is converted to an XML document by the
saveXML() method and entered into the barcode. For example, the text in the barcode might read as
follows.

<?xml version="1.0" encoding="UTF-8"?>
<ShipInfo
><Item
>Mouse Pad</Item
><Packaging
>Blister pack</Packaging
><QuantityPerPackage
>10</QuantityPerPackage
><ExportCode
>12-337-H5</ExportCode
></ShipInfo
>

The data must be expressed as a stream of bytes before it can be placed into the barcode. By default it is
encoded and serialized as UTF-8 (without a byte order mark). However other codings can be specified so
that the encoding matches the expectations of existing applications. This is particularly important for
QRCode barcodes which normally use Shift-JIS encoding.

The chosen encoding affects only the printed barcode, not the internal representation of the data or what
the user sees when the field has focus in interactive contexts.

XFA Specification
Chapter 12, Using Barcodes Pre-Processing of Barcode Data 418

Example 12.8 Specifying a character encoding

<field …>
<ui>

<barcode type="PDF417" charEncoding="ISO-8859-1"/>
 </ui>
 <value>

<text>Plus ça change, plus c'est la même chose.</text>
</value>

</field>

The default content for this field contains
the French adage “Plus ça change, plus c'est
la même chose.” The accented characters
are represented by Unicode code points in
the range0x80 through 0xFF. The default
UTF-8 serialization for these characters uses
two or more bytes to represent each
character, whereas the ISO-8859-1
serialization uses one byte per character.
The illustration at right shows the specified
ISO-8859-1 serialization in the left barcode,
and for contrast, the default UTF-8 bar code on the right. PDF417 is used because it is one of the few
barcode types that can display arbitrary 8-bit data.

There is an option to apply lossless compression to the data after it is encoded but before it is printed in
the barcode. The default behavior is not to compress. However when the dataPrep attribute is set to
flateCompress the data that is placed in the barcode is a byte with a numeric value of 129, followed by
a byte with a numeric value of 1, followed by the data compressed using the method defined by the
Internet Engineering Task Force (IETF) in [RFC1951]. No predictor is used. Compression must not be
specified for barcode types that cannot hold arbitrary binary.

The chosen compression affects only the printed barcode, not the internal representation of the data or
what the user sees when the field has focus in interactive contexts.

Example 12.9 Applying compression

<field name="BarCode1" …>
<ui>

<barcode type="PDF417" dataPrep="flateCompress"/>
</ui>
<value>

<text>The quick brown fox jumps over the lazy dog.
The quick brown fox jumps over the lazy dog.
The quick brown fox jumps over the lazy dog.</text>

</value>
</field>

XFA Specification
Chapter 12, Using Barcodes Pre-Processing of Barcode Data 419

The illustration at right shows PDF417
barcodes displaying the above data with
and without Flate compression. The Flate
algorithm has reduced the redundancy of
the data stream and decreased the amount
of data. As a result there are more rows in
the uncompressed barcode than in the
compressed barcode. Flate decompression,
applied to the data in the barcode, will
expand it back to the original data stream
without any data loss. Once again PDF417 is
used because it can carry the 8-bit data produced by Flate compression

Caution: Flate compression can increase the amount of data if there is little redundancy or if the data
stream is short.

Finally, the data may be encrypted after it is encoded and optionally compressed but before it is printed in
the barcode. The default behavior is not to encrypt. But when the barcode element has an encrypt
child the certificate property of the encrypt element is used to encrypt the data with a public key.
This way the printed barcode does not reveal its content to anyone who does not know the private key.
The encrypted data consists of:

● A byte containing the hexadecimal value 82 (decimal 130).

● A byte containing the value 1.

● A byte containing the second-least-significant byte of the certificate serial number.

● A byte containing the least-significant byte of the certificate serial number.

● A random 16-byte session key encrypted using the algorithm and the public key specified by the
certificate.

● The serialized and optionally compressed data encrypted using the RC4 algorithm and the session key.

Note: RC4 is a copyrighted, proprietary algorithm of RSA Security, Inc. Adobe Systems has licensed this
algorithm for use in its Acrobat products. Independent software vendors may be required to license
RC4 to develop software that encrypts or decrypts RC4-encrypted barcodes. For further
information, visit the RSA Web site at <http://www.rsasecurity.com> or send e-mail to
<products@rsasecurity.com>.

The chosen encryption affects only the printed barcode, not the internal representation of the data or
what the user sees when the field has focus in interactive contexts.

Example 12.10 Applying encryption

<field …>
<ui>

<barcode type="PDF417"/>
</ui>
<encrypt>

<certificate>Aq34o…
…
…Q2nzpb4</certificate>

</encrypt>
</field>

XFA Specification
Chapter 12, Using Barcodes Pre-Processing of Barcode Data 420

There are a number of properties which govern how the data will be processed before it is written out to
the barcode. This processing does not affect the content of the field in the DOM, only the data carried by
the barcode.

For any particular barcode type only some of these properties may apply. For example the standard for a
particular barcode may dictate the character encoding, in which case the charEncoding property is
ignored by the XFA processor.

The processing described above is controlled by a number of properties of the barcode element, as
shown in the examples. For detailed descriptions of these properties see the Template Reference.

Not all of these properties apply to all barcode types. For a list of which properties apply to which barcode
type, see “Which 1D properties apply to which type” on page 433 and “Which 2D properties apply to
which type” on page 435.

XFA Specification
Chapter 12, Using Barcodes Framing 421

Framing
Some barcode types support the inclusion of supplemental data in the barcode as framing around the
payload data. This framing may include a start character, a stop character, and one or more checksum or
error correction characters. The barcode element includes attribute properties providing control of
framing. However, if the barcode type does not allow a particular type of framing or allows no choice
about it, the property controlling that aspect of framing is silently ignored.

Example 12.11 Specifying start and end characters

<field …>
<ui>

<barcode type="codabar"
startChar="B" endChar="D"/>

</ui>
<value>

<text>123-456/78.9</text>
</value>

</field>

Codabar barcodes always have a start character and a stop character. These characters are restricted to the
letters A through D (which represent reserved bar combinations that cannot occur within the bar payload).
The start character is controlled by the startChar property and defaults to “a”. The end character is
controlled by the endChar property and defaults to “b”.

For Codabar it is normal to include the start character and end character in the legend, as shown above to
the right. This cannot cause confusion because the payload is limited to the digits 0 through 9 and the
characters ‘$’ (dollar), ‘:’ (colon), ‘+’ (plus), ‘-’ (minus), ‘/’ (slash), and ‘.’ (period).

Note: The Adobe implementation preserves the case of the start character and end character within the
legend. However the case of the start and end characters is ignored when drawing the actual bars.

Example 12.12 Specifying a checksum

<field …>
<ui>

<barcode type="msi"
checksum="2mod10"/>

</ui>
</field>
<field …>

<ui>
<barcode type="msi"

checksum="none"/>
</ui>

</field>

MSI barcodes allow a choice of several checksum algorithms, as well as allowing no checksum at all. When
the checksum is present it extends the barcode to the right, as shown in the lower of the two images
above.

Some barcodes (mostly 2D barcodes) have built-in error correction that is more sophisticated than a
simple checksum. A checksum can only reveal that an error exists, whereas error correction can be used to
correct at least minor errors in the data. When error-correction is used the checksum property is ignored.

B123-456/78.9D

�������	
�

�������	
�

XFA Specification
Chapter 12, Using Barcodes Framing 422

Some of the barcodes that use error-correction allow a selection of different error-correction levels. The
higher the level the more error-resistant the barcode is, but also the less data it can hold in the same
physical space.

Example 12.13 Specifying the error correction level

<field …>
<ui>

<barcode type="PDF417" errorCorrectionLevel="4"/>
</ui>
<value>

<text>The quick brown fox jumps over the lazy dog.</text>
</value>

</field>

For PDF417 barcodes the error correction
level ranges from 0 through 8. As the
illustration at right shows, when the barcode
uses error correction level 4 it takes 256 more
bits than when it uses error correction level 0.
For that reason such a high level of error
correction is not recommended for such a
small payload. Level 2 would be more
appropriate in this case.

For PDF417 the extra data doubles with each
additional level of error correction, so at level 8 the extra data is 4096 bits.

Level 4 Level 0

XFA Specification
Chapter 12, Using Barcodes Legends 423

Legends
Some barcodes support the printing of the text in the barcode inside, above, or below the barcode itself.
The region available for embedded text, if any, is determined by the barcode format. For most barcode
formats it is a single contiguous region, but for EAN series barcodes it is split up into four separate regions.

Example 12.14 Specifying the location of the legend

<field …>
<ui>

<barcode textLocation="belowEmbedded"
type="code128"/>

</ui>

<value>

<text>Hello world.</text>
</value>

</field>
<field …>

<ui>
<barcode textLocation="below"

type="code128"/>
</ui>

<value>

<text>Hello world.</text>
</value>

</field>

Many barcodes support only a subset of the possible values for this property. Some barcodes (mostly 2D
barcodes) do not support legends at all. If the template specifies belowEmbedded, and the barcode does
not support belowEmbedded but does support below, the XFA processor silently places the legend
below. It does the same thing for a value of aboveEmbedded and legend placement above. In all other
circumstance, if a legend is drawn, the template must specify a location that is legal for the particular
barcode.

The content of the legend always reflects the data carried in the barcode, in a manner dictated by the
barcode specification. This is the primary difference between a barcode legend and a field caption.
However, the XFA processor does not prevent you from using the barcode field’s caption property
independently of the barcode legend.

Example 12.15 Combining a caption with a legend

<field …>
<caption placement="top" reserve=”0.4in”>

<value>
<text>A barcode!</text>

</value>
</caption>
<ui>

<barcode textLocation="belowEmbedded"
type="code128"/>

</ui>

<value>

Hello world.

Hello world.

A barcode!

Hello world.

XFA Specification
Chapter 12, Using Barcodes Legends 424

<text>Hello world.</text>
</value>

</field>

In the example a reserve is set on the caption to prevent it from intruding into the quiet zone around the
barcode.

Note: When rendering a static XFDF form, Acrobat cannot display both a caption and a legend on the
same barcode field. However the same construct works properly in a dynamic form (whether or not
the barcode field is inside a dynamic subform).

Note that you cannot specify the distance between the legend and the barcode. This is fixed by the
barcode specification. However, you can specify the typeface and typesize of the legend. These are
inherited from the enclosing field. The template must specify a typeface and typesize for the field that will
fit into the provided space without overlapping any bars. The typeface should be non-proportional, but
the XFA processor is not required to enforce this. The XFA processor centers the text in the provided space.

Example 12.16 Specifying the printing of a check digit

<field …>
<ui>

<barcode textLocation="below" type="msi"
startChar="Y" <!-- see note below -->
printCheckDigit="1" checksum="2mod10"/>

</ui>

<value>

<text>1234567890</text>
</value>

</field>
<field …>

<ui>
<barcode textLocation="below" type="msi"

printCheckDigit="0" checksum="2mod10"/>
</ui>

<value>

<text>1234567890</text>
</value>

</field>

The top barcode prints the check digits (31) at the end of the legend. The bottom barcode omits the check
digits from the legend, but the sequence of bars is identical to the top barcode.

Note: As of October 2009 there is a bug in the Adobe driver for MSI barcodes. It checks startChar for Y
or N rather than printCheckDigit for 1or 0. The startChar attribute in the first field element
above is a workaround for this bug.

Prior to XFA 3.1 this specification said that if the data in the barcode is encrypted or compressed the
legend, if any, is the compressed and/or encrypted text. However, this is not workable. Compressing or
encrypting printable text produces arbitrary binary which may contain control characters or non-Unicode
values. Indeed, most barcode types that support arbitrary binary do not provide for legends, because of
the possible unprintability of such data. Hence starting with XFA 3.1 the rule is as follows: when the data in
the barcode is encrypted or compressed the legend is not printed.

�������	
���

�������	
�

XFA Specification
Chapter 12, Using Barcodes Adjusting the Size of the Barcode 425

Adjusting the Size of the Barcode
Some barcodes are fixed in size. Other barcodes have a fixed size for the individual bars but add more bars
as the content grows, so the entire barcode grow longer. Still other barcodes allow variable bar widths
and/or heights. In the case of 2D barcodes there can even be variable numbers of rows and columns.

When the barcode type allows it, the XFA processor defaults to adjusting the barcode so that the barcode
(and its legend, if any) completely fill the field. If the barcode is adjustable in only one dimension then the
XFA processor adjusts only that dimension. It is common for templates containing barcodes to explicitly
specify a width (the w property) and a height (the h property) for each barcode field.

Example 12.17 Specifying width and height of a 1D barcode

<field w="3in" h="1.5in" …>
<ui>

<barcode type="code128"/>
</ui>
<value>

<text>Hello world.</text>
</value>

</field>
<field w="1in" h="0.5in" …>

<ui>
<barcode type="code128"/>

</ui>
<value>

<text>Hello world.</text>
</value>

</field>

In the example the specified height, width, and payload produce barcodes which fall within the range
allowed by the Code 128 standard, so each barcode with its legend exactly fills its field. It also happens in
this case that both legends, using default typeface and typesize, fit within their field widths. However a
legend in this position can extend beyond the field width without making the barcode unreadable.

Caution: Adobe XFA processors do not enforce minimum bar widths or heights for software barcodes.
Hence you can produce unreadable (and even unprintable) barcodes by making the field too
small in either width or height.

Example 12.18 Specifying width and height of a 2D barcode

<field x="0" y="0in"
w="1.5in" h="1.5in" …>

<ui>
<barcode type="PDF417"/>

</ui>
…

</field>
<field x="2in" y="0.5in"

w="1in" h="1in" …>
<ui>

<barcode type="PDF417"/>
</ui>
…

</field>

Hello world.

Hello world.

1.5 by 1.5 inches 1.0 by 1.0 inches

XFA Specification
Chapter 12, Using Barcodes Adjusting the Size of the Barcode 426

In the example, both barcodes carry the same text, “The quick brown fox jumps over the lazy dog.”. Only
the field sizes are different. However the rules for PDF417 specify that only particular combinations of row
and column count can be used. In order to print a conforming code, for the right-hand barcode the XFA
processor has selected much shorter bars. (The right-hand barcode is in fact more typical of PDF417 usage
than the left barcode.)

Note that PDF417 barcodes by default end with a wide white bar on the right-hand side, so the barcode is
wider than it appears at first glance. Each barcode in the example, including its final white bar, does
occupy the full width allotted to it.

If the barcode type cannot fit into the specified height or width it may cause the field boundaries to grow..
This may lead to the barcode overprinting other objects on the page, making it unreadable. It is up to the
form creator to ensure this does not happen.

Example 12.19 Overprinting caused by a barcode extending beyond its allocated area

<field w="2in" h="1in" …>
<ui>

<barcode type="postUSImb"
textLocation="below"/>

</ui>
<value>

<text>1234567890123456789012345678901</text>
</value>

</field>
<field w="1in" x="2in" …>

<value>
<text>Text field</text>

</value>
</field>

In the example above the maximum US Post Office Intelligent Mail payload of 31 characters is simulated
(the actual data string is not valid content). This type of barcode has fixed bar widths, and with 31
characters the barcode occupies a width of 2.584 inches. The field containing the barcode expands to the
same width. However the form creator allowed only 2 inches for the barcode field plus its right-hand quiet
zone, and consequently the barcode overprints the content of the adjacent text field.

The template could have supplied a maxW property for the barcode field to prevent the field object from
expanding, but this would not have prevented the overprinting. If the field cannot grow in width to
accomodate the barcode the barcode simply extends beyond the field. This is in keeping with the
standard relationship of layout containers and their content in XFA. For more information see “Layout for
Growable Objects” on page 269.

It is also possible to specify individual properties such as module size (that is, the width of a narrow bar)
and bar height. When such individual parameters are specified they override the XFA processor’s efforts to
fit the barcode into the field. This may again lead to the barcode overprinting other objects on the page.
For more information about controls over individual properties see “Module properties of
one-dimensional barcodes” on page 427 and “Module and extra properties of two-dimensional barcodes”
on page 430.

Whichever way overprinting might arise, it is the responsibility of the form creator to prevent it. The
simplest and most reliable way to prevent it is to use a positioned layout with a big enough field to
accomodate the application’s worst-case data. The use of flowing layout for subforms containing barcodes
is possible but not recommended. In many applications the barcode must be in a predefined position on
the page, which precludes flowing layout.

1234567890123456789012345678901

Text field

XFA Specification
Chapter 12, Using Barcodes Module properties of one-dimensional barcodes 427

Module properties of one-dimensional barcodes
A module is a set of bars encoding one symbol. In the absence of compression or encryption, a symbol
usually corresponds to a character of supplied data.

Each 1D barcode object also has the properties listed below, which govern their modules. For any
particular barcode type only some of these properties may apply. For example the standard for a particular
barcode may specify a fixed module height, in which case the moduleHeight property is ignored by the
XFA processor. See “Which 1D properties apply to which type” on page 433 for more information about
individual barcode types.

Example 12.20 Specifying the ratio of wide bar width to narrow bar width

<field w="3in" h="1in" …>
<ui>

<barcode type="codabar"
wideNarrowRatio="2.2"/>

</ui>
…

</field>
<field w="3in" h="1in" …>

<ui>
<barcode type="codabar"

wideNarrowRatio="3.0"/>
</ui>
…

</field>

In the example only the ratio of wide to narrow bars is allowed to change between the two barcodes. The
overall size of each barcode is fixed by the field size, and the two field sizes are the same. The data in the
two fields is also the same. The result is shown above at the right; the XFA processor adjusts the module
size as required so that, despite the change in ratio of widths, the total width of all white and black bars
adds up to the fixed field width.

Example 12.21 Specifying the 1D module height

<field w="3in" h="1in" …>
<ui>

<barcode type="codabar"
moduleHeight="0.5in"/>

</ui>
…

</field>
<field w="3in" h="1in" …>

<ui>
<barcode type="codabar"/>

</ui>
…

</field>

In this example the field size is fixed but the module height is explicitly set in the first barcode. The module
height is such that the barcode and its legend consume only the top part of the field. By contrast in the
lower barcode the module height is not explicitly specified so the bars grow to fill the space available.
Note, however, that most barcode types have a limited range of module heights, which limits the
barcode’s ability to grow or shrink.

a1234567890b

a1234567890b

a1234567890b

a1234567890b

XFA Specification
Chapter 12, Using Barcodes Module properties of one-dimensional barcodes 428

The module height property defaults to 5mm. Thus if the barcode type allows a variable module height,
and the template does not specify either the field height or the module height, the XFA processor uses
5mm for the module height.

Note: The Adobe implementation erroneously defaults to 0 instead of 5 mm.

For 1D barcodes the module width is the width of a narrow bar, also known as the X size. The
moduleWidth property can be used to control the module width, provided the barcode allows variation
in the module width.

Example 12.22 Specifying the 1D module width

<field w="3in" h="1in" …>
<ui>

<barcode type="codabar"
moduleWidth="0.191mm"/>

</ui>
…

</field>
<field w="3in" h="1in" y="1in" …>

<ui>
<barcode type="codabar"

moduleWidth="0.5mm"/>
</ui>
…

</field>

In the example the top bar has a module width of 0.191 mm, which is the minimum allowed for Codabar
and most other barcode types. The bottom bar has a module width of 0.5 mm, which is close to the largest
that would fit in the space available. If the module width had not been specified but the field width had
been the same, the bars would have been just slightly wider. The maximum module width allowed for
Codabar and most other barcodes is 1.25 mm.

If the field width is not specified then the width of the field depends upon the module width and the
content of the barcode. The module width defaults to 0.25 mm. Thus if the barcode type allows variable
module width, and the template does not specify either the field width or the module width, the XFA
processor uses 0.25 mm for the module width.

Note: The Adobe implementation erroneously defaults to 0 instead of 0.25 mm.

Another way to control the module width is to specify the number of characters that the barcode should
allow for. The XFA processor uses this in combination with the field width to compute the module width.

The specified number of characters is used in place of the number of characters in the actual field content.
This means that if the content is longer than specified the barcode will extend outside the extent of the
field. It is up to the form creator to ensure that this does not happen.

a1234567890b

a1234567890b

XFA Specification
Chapter 12, Using Barcodes Module properties of one-dimensional barcodes 429

Example 12.23 Specifying the module width using the data length

<field w="3in" h="1in" …>
<ui>

<barcode type="codabar"
dataLength="20"/>

</ui>
<value>

<text>1234567890</text>
</value>

</field>
<field w="3in" h="1in" y="1in" …>

<ui>
<barcode type="codabar"/>

</ui>
<value>

<text>12345678901234567890</text>
</value>

</field>

In the example above the data length of the upper barcode is specified as 20, but the content is only ten
characters long. As a result the barcode does not fill the entire width of the field. The lower barcode has no
data length specified, but the content is 20 characters long, so the module width is the same as that used
for the upper barcode. The first 10 characters of data in the lower barcode are also the same as the
corresponding characters in the upper barcode, and as a result the bars of the two barcodes align.

Note that the data length only counts characters of field content. It does not include start and end
characters (here “a” and “b”). It also excludes other framing such as start and stop symbols, checksums, and
the like. The XFA processor accounts for all those based upon the barcode type and options.

For most barcodes the character set is limited to a subset of ASCII so data characters correspond
one-for-one to Unicode characters. However for barcodes capable of representing 8-bit data the data
length is the length of the content in bytes when expressed using the specified character encoding,
optionally followed by compression and/or encryption. For more information about these data formatting
options see “Pre-Processing of Barcode Data” on page 417.

a1234567890b

a12345678901234567890b

XFA Specification
Chapter 12, Using Barcodes Module and extra properties of two-dimensional barcodes 430

Module and extra properties of two-dimensional barcodes
A module is a set of bars encoding one symbol. In the absence of compression or encryption, a symbol
usually corresponds to a character of supplied data.

Each 2D barcode object also has properties listed below which govern their modules. For any particular
2D barcode type only some of these properties may apply. For example QRCode has a fixed size, so the
dataColumnCount and dataRowCount properties are ignored by the XFA processor. See “Which 2D
properties apply to which type” on page 435 for more information. In addition any particular XFA
implementation, or in the case of hardware barcodes any particular printer, may not support all applicable
properties.

Example 12.24 Specifying module width for a 2D barcode

<field …>
<ui>

<barcode type="dataMatrix"
moduleWidth="0.0167in"/>

</ui>
<value>

<text>ABCDEFG</text>
</value>

</field>
<field x="1.5in" …>

<ui>
<barcode type="dataMatrix"

moduleWidth="0.03in"/>
</ui>
<value>

<text>ABCDEFG</text>
</value>

</field>

In this example the module width for each barcode is specified by the moduleWidth property. The
module width for the right-hand barcode is twice that for the left-hand barcode.

For many barcode types the barcode specification makes the module height a function of the module
width. That is the case for the Data Matrix barcodes shown above. In this situation the XFA processor
ignores the moduleHeight property even when it is supplied.

The meaning of moduleWidth is looser for 2D barcodes than for 1D barcodes because many 2D barcodes
do not use wide and narrow bars. Some use the presence or absence of dots, as in the example above.
Some use hexagons instead of bars. However the general sense is the same; scaling up the module width
tries to scale up the geometric size of the barcode components and, proportionately, the barcode as a
whole. However any field size ilimits may interfere with this scaling-up process.

Example 12.25 Specifying the number of rows and columns

The dataRowCount and dataColumnCount properties are defined to allow the template to specify the
number of rows and columns in a 2D barcode. However it is not possible to give an example of this,
because none of the 2D barcode types supported by the Adobe implementation allows these to be
directly specified.

● For many 2D barcodes the length of the data payload determines the number of rows and columns.
There is no provision for padding the data, so there cannot be unused rows or columns.

0.0167in 0.03in

XFA Specification
Chapter 12, Using Barcodes Module and extra properties of two-dimensional barcodes 431

● For Code 49 each row carries eight characters and this cannot be changed. The number of rows goes
up as the length of the data payload grows.

● For PDF417 the data need not fill the barcode, but only certain combinations of row count and column
count are allowed. Given a field height, width, and optionally module width the XFA processor picks
legal row and column counts that satisfy the constraints.

Example 12.26 Specifying the ratio of rows to columns

The rowColumnRatio property is defined to allow the template to specify the ratio of row count to
column count in a 2D barcode. Again it is not possible to give an example of this because none of the 2D
barcode types supported by the Adobe implementation allows these to be directly specified.

● For many 2D barcodes the ratio of rows to columns is fixed so that the barcode always has the same
aspect ratio. This is particularly common among barcode types that are designed to be scanned by
software analysis of a camera image, such as Aztec and QR Code.

● For Code 49 each row carries eight characters and this cannot be changed. The number of rows goes
up as the length of the data payload grows.

● For PDF417 only certain combinations of row count and column count are allowed. Given a field
height, width, and optionally module width the XFA processor picks legal row and column counts that
satisfy the constraints.

Some of the 2D barcodes have properties specific to the given type of barcode. For example, the
upsMaxicode type has an extra upsMode property.

Example 12.27 Specifying the mode for upsMaxicode

<field access="readOnly" …>
<ui>

<barcode type="upsMaxicode"
upsMode="usCarrier" …/>

</ui>
<bind scope="none"/>
<calculate>…</calculate>

</field>
<field access="readOnly" …>

<ui>
<barcode type="upsMaxicode"

upsMode="standardSymbol" …/>
</ui>
<bind scope="none"/>
<calculate>…</calculate>

</field>

The resulting barcodes are shown at the right. In this case both carry the same content but the mode
setting differs. Note that these images were made by scanning actual printed barcodes, so the barcodes
portrayed are not perfect. For example, some hexagons are missing pixels.

Caution: The barcode field cannot be initialized to a legal UPS-encoded string with a default value in the
template as has been done for other barcode examples. That is because UPS-encoded strings
contain ASCII control characters RS, GS, and EOT which are not allowed in XML 1.0 documents,
even as coded entities. Instead you have to initialize the field using a script. See Example 12.6 for
more information.

usCarrier standardSymbol

XFA Specification
Chapter 12, Using Barcodes Module and extra properties of two-dimensional barcodes 432

Example 12.28 Specifying that PDF417 is not to have a right-hand synchronization mark

The truncate property is defined to allow the template to specify that a PDF417 barcode is not to
contain a right-hand synchronization mark. However it is not possible to give a working example of this
because the Adobe implementation does not support it.

XFA Specification
Chapter 12, Using Barcodes Which 1D properties apply to which type 433

Which 1D properties apply to which type
The following table lists the allowed 1D properties for each defined barcode type that accepts
1D properties.

Barcode Type

Module Size Limits

Wide to
Narrow

Ratio
Legend

Location Checksum

D
at

a
Le

ng
th

St
ar

t C
ha

r

En
d

Ch
ar

M
in

 w
id

th
 (m

m
)

M
ax

 W
id

th
 (m

m
)

M
in

 H
ei

gh
t (

m
m

)

M
in

M
ax

N
on

e
A

bo
ve

Be
lo

w
A

bo
ve

 E
m

be
dd

ed

Be
lo

w
 E

m
be

dd
ed

A
ut

o
N

on
e

1m
od

10
2m

od
10

1m
od

10
_1

m
od

11
Pr

in
t C

he
ck

 D
ig

it

codabar 0.191 1.25 5 2.2 3.0

code11 0.125 1.25 0.125 2.0 3.0

code128
code128a
code128b
code128c
code128sscc

0.191 1.25 5 Fixed

code2of5industrial
code2of5interleaved
code2of5matrix

0.191 1.25 5 2.2 3.0

code2Of5standard 0.125 1.25 0.125 2.0 3.0

code3of9
code3of9extended

0.191 1.25 5 2.2 3.0

code49 0.125 1.25 0.125 Fixed

code93 0.125 1.25 0.125 Fixed

ean8
ean8add2
ean8add5

0.191 1.25 5 Fixed

ean13
ean13add2
ean13add5
ean13pwcd

0.191 1.25 5 Fixed

fim Fixed N/A

logmars 0.125 1.25 0.125 2.0 3.0

msi 0.125 1.25 0.125 2.0 3.0 1 - 14

plessey 0.125 1.25 0.125 2.0 3.0

postAUSCust2
postAUSCust3

Fixed N/A

XFA Specification
Chapter 12, Using Barcodes Which 1D properties apply to which type 434

postAUSReplyPaid
postAUSStandard

Fixed N/A 8

postUKRM4SCC Fixed N/A

postUS5Zip Fixed N/A 5

postUSImb Fixed N/A

postUSDPBC Fixed N/A 11

postUSStandard Fixed N/A 9

rss14
rss14Expanded
rss14Limited
rss14Truncated

0.125 1.25 0.125 2.0 3.0

rss14Stacked
rss14StackedOmni

0.125 1.25 0.125 2.0 3.0

telepen 0.19 0.32 N/A Fixed 1- 16

ucc128
ucc128random
ucc128sscc

0.191 1.25 5 Fixed

upcA
upcAadd2
upcAadd5
upcApwcd

0.191 1.25 5 Fixed

upcE
upcEadd2
upcEadd5

0.125 1.25 0.125 Fixed 10

upcean2 0.125 1.25 0.125 Fixed 2

upcean5 0.125 1.25 0.125 Fixed 5

Barcode Type

Module Size Limits

Wide to
Narrow

Ratio
Legend

Location Checksum

D
at

a
Le

ng
th

St
ar

t C
ha

r

En
d

Ch
ar

M
in

 w
id

th
 (m

m
)

M
ax

 W
id

th
 (m

m
)

M
in

 H
ei

gh
t (

m
m

)

M
in

M
ax

N
on

e
A

bo
ve

B
el

ow
A

bo
ve

 E
m

be
dd

ed

B
el

ow
 E

m
be

dd
ed

A
ut

o
N

on
e

1m
od

10
2m

od
10

1m
od

10
_1

m
od

11
Pr

in
t C

he
ck

 D
ig

it

XFA Specification
Chapter 12, Using Barcodes Which 2D properties apply to which type 435

Which 2D properties apply to which type
2D barcodes have more quirks than 1D barcodes. Each 2D barcode has unique limitations.

Most 2D barcodes are intended to be read by a camera (rather than mechanically scanned). For these
barcodes it is useful to be able to enlarge or shrink the whole barcode to accomodate different expected
distances to the camera or different lenses. For example, QRCode is sometimes printed on billboards so
that it can be read by cellphones of passing consumers. To allow enlarging or shrinking the whole 2D
barcode the moduleWidth property controls the symbol size.

For most 2D barcodes the module height is dependent upon the module width, so the moduleHeight
property is ignored.

For most 2D barcodes the numbers of rows and columns are determined by the size of the payload. The
payload consists of field content plus error-correcting codes plus framing. The notable exception to this is
PDF417, which encodes padding bytes using a special symbol, allowing it to be expanded to larger sizes
than the payload requires.

At a mimimum the following limitations apply to 2D barcodes.

aztec

The dot size is controlled by the moduleWidth property. The ratio of rows to columns and ratio of
module width to height are both fixed at 1:1. The number of rows and columns depends upon the
size of the payload.

code49

The module width is controlled by the moduleWidth property. The selection of error correction
level varies with the number of rows and columns and is not user-settable. The number of rows is
determined by the size of the payload.

dataMatrix

The module size is controlled by the moduleWidth property. The ratio of rows to columns and
ratio of module width to height are both fixed at 1:1. The number of rows and columns depends
upon the size of the payload. The error correction level is variable, but older levels are deprecated
by the Data Matrix standard. XFA processors default to ECC-200.

maxicode

The module width and height and overall barcode dimensions are fixed.

pdf417

The module size is variable within limits. Height in rows and width in columns are variable within
limits. There is a complicated interdependency between the row count, the column count, the
error correction level, the length of the content, and the overall dimensions of the barcode.

Note: Because of this complicated interdependency the Adobe implementation does not try to
support rowColumnRatio or moduleHeight even though in theory they could be supported.
However dataCount, moduleWidth and field width and height are supported.

QRCode

The dot size is controlled by the moduleWidth property. The ratio of rows to columns and ratio of
module width to height are both fixed at 1:1. The number of rows and columns depends upon the
field content. There are two error correction levels but the level known as Model 1 is deprecated.
XFA processors default to Model 2.

XFA Specification
Chapter 12, Using Barcodes Which 2D properties apply to which type 436

upsMaxicode

The module width and height and overall barcode dimensions are fixed. One of four modes is
selected by the upsMode property. Each mode fully specifies the encoding and error correction
level.

XFA processors may ignore or override properties which are outside the limitations of the particular
barcode. For instance, when printing a UPS Maxicode barcode the size and shape of the barcode is fixed.
By contrast when printing a PDF417 barcode the XFA processor ajusts the barcode to fit within the field
width and height, but only within the allowed limits for a PDF417 barcode.

Individual XFA processors may ignore or override other properties. This is inevitable because hardware
barcodes may have different limitations on different printers.

XFA Specification
Chapter 12, Using Barcodes Properties of radio-frequency ID Tags 437

Properties of radio-frequency ID Tags
When the barcode type property is rfid the field is not a barcode at all. The field data is written to an
RFID chip embedded in a label. The label printer must be equipped with an RFID programmer. The
barcode field should have a presence property of hidden so it does not take up space in the layout.

None of the 1D or 2D barcode properties applies, nor do the properties governing the legend. However
the data formatting options do apply.

Example 12.29 Specifying an RFID tag

<field presence="hidden" …>
<ui>

<barcode type="rfid"/>
</ui>
<value>

<text>23a34ba812021 … </text>
</value>

</field>

The content of an RFID tag may include characters that can not be represented in XML 1.0. If this might be
the case for the particular application, the template should ensure that the field content is calculated and
can not bind into the Data DOM. See Example 12.6 for more information.

 438

13 Forms That Initiate Interactions with Servers

This chapter describes the behavior of XFA objects that interact with servers. Such objects allow you to
implement forms with a range of Web behaviors.

Types of Interactions
XFA supports three general categories of interaction between clients and servers. The three categories are
submission, service invocation, and database operations.

Submit transactions require the server to understand the data schema used in the form. Submission
involves sending (at a minimum) the variable data contained in the form to the server. This can be done via
e-mail, via HTTP, via WSDL, or via an application-specific interface. If the medium is anything other than
e-mail the submission operation may also involve the server returning data to the client, which then
merges the data back into the form.

Service invocations do not require the server to understand the data schema used in the form. Instead the
client does a conversion to and from the schema used by the service. Service invocation involves the client
sending an XML document to the server along with a request for an operation, and receiving an XML
document back. The client may then extract data from the received document and use it to modify the
form. These operations must be done via WSDL.

Database operations involve calls to insert, retrieve, delete, and otherwise process records in a database.
XFA supports database operations defined by the ActiveX® Data Object (ADO) API.

Ways to Invoke Interactions
XFA provides different facilities for invoking different types of interactions.

● Events having submit actions can be used to invoke submissions via e-mail and HTTP.

● Events having execute actions can be used to invoke WSDL interactions. Prior to XFA 2.8 these
interactions could only be service invocations. Since XFA 2.8 it has also been possible to use WSDL to
perform submits.

● Scripts can make method calls on the $sourceset object to invoke database operations. The Source
Set DOM provides additional information to fully define the database operation.

● Scripts can call the submit() method of a field object to make a submission via e-mail or HTTP.

● In the Adobe implementation scripts can call the submitForm() method on the Doc object to make a
submission via e-mail or HTTP. For more information about this see the LiveCycle Designer ES2
Scripting Reference [LC-Scripting-Reference].

Processing Rules
Some processing rules are standardized across different client-server transactions.

● Null handling is standardized as described in “Null Handling” on page 439.

XFA Specification
Chapter 13, Forms That Initiate Interactions with Servers Null Handling 439

● Since XFA 2.8 submit operations of all kinds have passed through certain uniform pre-submit and
post-submit steps on the client. These steps are described in “Standard Submit Processing” on
page 439. This applies both to submits accomplished via HTTP and submits accomplished via
SOAP/WSDL.

● Some transactions cause signing operations to take place. Signing operations follow standardized
procedures described in “Standard Signature Processing” on page 441.

● Pre- and post-transaction events are generated. Since XFA 2.8 all pre-events have been matched by
post-events, for example preSubmit is matched by postSubmit, preOpen is matched by
postOpen, and preSign is matched by postSign. When a pre-event is generated the corresponding
post-event is queued on a last-in first-out stack.

● Any processing that takes place before the transaction is consumated may cancel the transaction by
setting the flag $event.cancelAction. Once this flag is set the transaction does not proceed any
farther, however queued post-events are generated to match the pre-events that have already been
generated. This ensures that all expected clean-up is performed.

Other processing differs depending upon the protocol used for client-server communication. For that
reason the rules for each protocol are described separately.

● The rules for e-mail are defined in “Submitting Data and Other Form Content via E-mail” on page 442.

● The rules for HTTP are defined in “Submitting Data and Other Form Content via HTTP” on page 443.

● The rules for SOAP/WSDL are defined in “Using Web Services” on page 449.

● The rules for database operations are defined in “Interacting with a Database” on page 465.

Null Handling
XFA supports the use of the xsi:nil attribute to explicitly mark an element as containing or not
containing null data. This is an extension of the notation defined in [XMLSchema]. The use of xsi:nil in
XFA is described in “Data Values Representing Null Data” on page 139.

Standard Submit Processing
Standard pre-submit processing on the client

Since XFA 2.8 the following steps have been performed on the client before any submit operation:

1. Collect the specified data into a connectionData element underneath $datasets.

Note: When the above step completes, the Connection Data DOM changes state.

2. Examine the form for any preSubmit events that contain scripts with a runAt attribute set to
client, both or undefined. If such scripts are found, execute them. Scripts executed at this point have
the chance to examine and alter the data before it is submitted. If this step raises exceptions, the
requested content may still be submitted to the server. (“DOM Events” on page 381) However scripts
can ensure that content is not submitted by setting the $event.cancelAction flag.

3. Execute all validation scripts that contain a runAt attribute set to client, both or undefined. If this
step raises exceptions, the requested content should not be submitted to the server.

4. Execute all nullTest checks. If this step raises exceptions, the requested content should not be
submitted to the server.

XFA Specification
Chapter 13, Forms That Initiate Interactions with Servers Standard Submit Processing 440

5. Execute all formatTest checks. If this step raises exceptions, the requested content is not submitted
to the server.

Note: Validation, nullTest and formatTest are executed for the entire form, regardless of the
actual content submitted.

6. If the interaction is not via e-mail, examine the form for any preSubmit events that contain scripts
with a runAt attribute set to server, both or undefined. If such scripts are found, make a list of them.
This list is to be sent to the server along with the submitted data.

7. If the interaction is not via e-mail, examine the form for any postSubmit events that contain scripts
with a runAt attribute set to server, both or undefined. If such scripts are found, make a list of them.
This list is to be sent to the server along with the submitted data. This list was added in XFA 2.8.

Standard submit processing on the host

SinceXFA 2.8 the server XFA processor has performed the following steps in response to the submit
request, unless the interaction took place via e-mail:

1. Open the form template.

Caution: It is physically possible for the client to supply a copy of the template, but it is not recommended
for the server to use any template supplied by a client. This opens many potential vulnerabilities.
The server should use its own copy of the template which is known to be trustworthy.

2. Build a Data DOM and a Form DOM using the supplied data.

3. Execute the scripts in the pre-submit list supplied by the client.

4. Perform whatever submission processing is required, using and updating the data in the Data DOM.

5. Execute the scripts in the post-submit list supplied by the client. This list was added in XFA 2.8.

6. Return the content from the Data DOM.

Standard post-submit processing on the client

The client XFA processor performs the following steps after any attempted submit operation:

1. Whether or not the submit succeeded, examine the form for any postSubmit events that contain
scripts with a runAt attribute set to client, both or undefined. If such scripts are found, execute
them. Scripts executed at this point have the chance to examine and alter the data in the Connection
DOM before it is merged back into the form. This event was added in XFA 2.8.

2. If the submit succeeded and data was returned, merge the data from the Connection DOM into the
Data DOM.

Because the preSubmit and postSubmit events are always generated as a pair, the preparation and
cleanup steps are symmetrical.

Note: Adobe products have configuration options to inhibit validations in the client during submit. This
was done because validations for forms with many fields can be quite slow.

This pre- and post-submit processing applies to the following types of interactions between clients and
servers:

XFA Specification
Chapter 13, Forms That Initiate Interactions with Servers Standard Signature Processing 441

● Sending data via e-mail. Because e-mail is a slow operation the server does not execute the pre-submit
or post-submit scripts and does not return data to the client.

● Sending data via an HTTP POST operation.

● Performing a web services (SOAP) request with the cRequestStyle parameter set to
SOAPRequestStyle.RawPost.

● Programmatically invoking a submit operation from within a script. In Adobe products this would be
done using the Doc.submitForm method.

XFA allows each script to be flagged as running on the client, the server, or both. However clients cannot
necessarily cause scripts to run on the server. This can not be done unless the server has a copy of the
template and an XFA processor of its own. It also requires that the transaction takes place via a medium
with a reasonable round-trip time, that is to say not via e-mail.

Standard Signature Processing
Signature processing includes the following operations:

verify

Causes the signature of the data to be verified. If the verification fails, the XFA processor sets
$event.cancelAction and issues a message indicating why the action failed. This operation is
performed before any signature is added or cleared.

clear

Causes the signature, if it exists, to be removed from the data. This operation is performed before
any signature is created.

sign

Adds (applies) a signature to the data.

Before a signature is applied a preSign event fires. After the signature is applied, or after the attempt at
applying it has failed or been cancelled, a postSign event fires. These events were added in XFA 2.8.
There are no corresponding events for signature verify or clear operations.

Like other scripts, PreSign and PostSign scripts can be flagged to execute on the client, on the host, or
both. However clients cannot necessarily cause scripts to run on the server. This can not be done unless
the server has a copy of the template and an XFA processor of its own. It also requires that the transaction
takes place via a medium with a reasonable round-trip time, that is to say not via e-mail. In addition
signing requires access to signing certificates.

XFA Specification
Chapter 13, Forms That Initiate Interactions with Servers Submitting Data and Other Form Content via E-mail 442

Submitting Data and Other Form Content via E-mail
An XFA processor recognizes that it is required to submit via e-mail message when the URI supplied for a
submit object begins with the mailto: domain.

E-mail submission is in some ways simpler and in some way more complicated than other types of
submission.

It is simpler because it is by nature a one-way process. No response is expected within a short enough time
that a user could reasonably be expected to wait for it. Nor is it possible to invoke scripts upon the host.
Indeed this specification imposes no requirements upon the host whatsoever; the host application is free
to do whatever it likes.

It is more complicated because the e-mail medium is not secure. Even if delivery itself is secure (between
mail transfer agents that encrypt their conversation), there is no guarantee that the recipient is who he
says he is. Neither is there a guarantee that the sender is who he says he is. XFA supports the use of
public-key encryption both to sign the submission and to ensure that the message can only be read by the
intended recipient.

An XFA processor carries out the following steps to perform an e-mail submit:

1. Perform the processing described in “Standard pre-submit processing on the client” on page 439

2. If the submit object has signData children, perform the processing described in “Standard Signature
Processing” on page 441. There can be multiple children so that multiple signatures can be
manipulated at once. Note that all of these children have the same container so they are all associated
with the same event source.

3. Encrypt the data under the control of the submit object’s encrypt child.

4. Generate and send the e-mail message.

5. Perform the processing described in “Standard post-submit processing on the client” on page 440.

Signing and encryption operations operate only on the data under the connectionData object.

The encrypt object has a format property that selects the type of envelope to be used, a PDF envelope
or an XML envelope. If PDF is selected the data is inserted as an attachment into an encrypted PDF file. If
XML is selected the data is encrypted using W3C XML encryption [XMLEncryption] and placed inside an
XML wrapper.

Note: The Acrobat family of products does not support the use of XML encryption or an XML wrapper. It is
limited to inserting the data as an attachment inside an encrypted PDF file.

The wrapper with the encrypted, signed data inside is sent as an attachment to an e-mail message. The
addressee of the e-mail (the To: field) is the submit URI with mailto: domain name stripped from the
beginning. In an interactive environment the user may be given the option to edit the subject line, the
body text, or other aspects of the message before sending it.

XFA Specification
Chapter 13, Forms That Initiate Interactions with Servers Submitting Data and Other Form Content via HTTP 443

Submitting Data and Other Form Content via HTTP
An XFA processor recognizes that it is required to submit via an HTTP POST operation when the URI
supplied for a submit object begins with the http: domain.

POST operations are defined rather generically in [HTTP]. What matters for this discussion is that the XFA
processor does not know exactly what operation will be performed. There may be an operation encoded
in the URL, but it is inscrutable to the XFA processor. Hence this operation is treated as a simple submit.

Content submission is specified using an event object that has a non-empty submit property. (See also
the syntax description for the submit element.) The event can be triggered by the UI, for example when
the user clicks on a submit button. This section describes the tasks that occur when such an event is
activated, the types of content included in the submission, packaging of that content, and the encoding of
those packages.

Any event object may specify a submit, however a submit is typically associated with a click event that has
a button appearance, as shown in the following example. Users would click such a button to indicate they
have finished filling out the form and wish to submit it for processing. Before the content submission is
allowed to progress, the form data must be successfully validated and other scripts must successfully
execute. Typically, if the validation or scripts fail, users are asked to make corrections and resubmit the
form. When the processing application successfully submits the form content, the form is said to be
committed. That is, the content is in a final form.

Example 13.1 Field which is a submit button

<field name="Button1" y="223.31mm" x="134.41mm" w="35.98mm" h="18.52mm">
<ui>

<button/>
</ui>
…
<event activity="click">

<submit
embedPDF="1"
format="xdp"
target="http://www.example.org"
textEncoding="UTF-16"
xdpContent="pdf datasets template"/>

</event>
</field>

In the above example the domain part of the target URI is "http:", which indicates that the submission is
to be performed via an HTTP POST operation. If the domain was "mailto:" then the submission would
take place via e-mail.

Submitting a form and saving a form are similar in that they convert the Template/Form/Data DOM into an
XML or PDF representation, but they differ in the level of checking done. Saving a form does not involve
any validation or other checks because users may save forms at various stages of completion. Users do not
expect to see error reports and warnings during such saves.

Content Interchange

The submit syntax is intended to support most XML-based content interchanges. It does so by specifying
what types of content are submitted to the server, how content should be packaged (format, embedPDF

XFA Specification
Chapter 13, Forms That Initiate Interactions with Servers Submitting Data and Other Form Content via HTTP 444

and xdpContent) and how the content should be encoded (textEncoding). It also specifies what
signatures should be applied (signData) and what encryption should be used (encrypt).

The behavior of a submit element differs depending on other properties in the submitting event. That is,
submission may invoke any of the following behaviors:

● Client submits the specified content to the server. The server executes scripts flagged for execution on
the server or on both the server and the client.

● Client submits the specified content with the expectation that the server will perform the script and
return a result. The server performs the script and returns the result in its response to the HTTP POST.

The factors that influence submission behavior include the following:

Factor Explanation

Event trigger Submission may differ for an event triggered by user interaction, as
opposed to an event activated by some other trigger. User-triggered
events include: enter, exit, mouseEnter, mouseExit, change,
click, mouseUp, and mouseDown.

Script Submission may differ, depending on whether a script is included in
the event and on the value of the script’s runAt attribute. The runAt
attribute specifies where the script should be executed.

Encryption The submitted data is encrypted as specified by the submit
element’s encrypt property.

Signature The submitted data is signed as specified by the submit element’s
signData children.

XFA Specification
Chapter 13, Forms That Initiate Interactions with Servers Submitting Data and Other Form Content via HTTP 445

The following table describes shows how the above factors affect submission behavior. This table applies
only to events that include submit elements.

Factors That Influence Submission Behavior

Factors Client tasks Server tasks

event trigger script

User initiated runAt="client"
or runAt undefined

Execute script. Do not post data to
server. The client has no expectation
that data will be returned.

runAt="server" Post data to server with an indication
of the triggered event. When data
returned from server, remerge it into
form and display results.

Bind data to form, activate
indicate event, and return
data to client. The data is
returned in the HTTP POST
response.

runAt="both" If the client successfully executes the
script, the client does not post data
to the server. This approach is taken
to avoid a flood of unintentional
interactions between the client and
server.

If the client cannot to process the
script, the XFA processing application
may chose to invoke the submit
element to elicit the same behavior
as described for runAt="server".

Bind data to form, activate
indicate event, and return
data to client. The data is
returned in the HTTP POST
response.

no script provided
(but event contains a
submit element)

Submit data to server, with an
indication that a preSubmit event
has occurred. The client has no
expectation that data will be
returned.

other initiated,
such as form
ready

runAt="client"
or undefined

Execute script. Do not POST data to
server.

runAt="server" Ignore event. Such events are
ignored to avoid a flood of
unintentional interactions between
the client and server.

runAt="both" Execute script. Do not POST data to
server.

no script provided
(but event contains a
submit element)

Submit data to server. The client has
no expectation that data will be
returned.

XFA Specification
Chapter 13, Forms That Initiate Interactions with Servers Submitting Data and Other Form Content via HTTP 446

Cycle of Operation in an HTTP Submit

This section describes the processing steps that are initiated when a submitting event is activated. The
steps depend on whether the XFA processing application declares itself as a client or as a server.

Client. The client XFA processing application performs the following steps when a submit event is
activated:

1. Perform the pre-submit steps described in “Standard pre-submit processing on the client” on
page 439. If any validation fails skip forward to the post-submit processing.

2. Package the data and any other content, as specified in the submit properties: format, embedPDF
and xdpContent. (“Content Interchange” on page 443)

3. If the submit object has signData children, perform the processing described in “Standard Signature
Processing” on page 441. There can be multiple children so that multiple signatures can be
manipulated at once. Note that all of these children have the same container so they are all associated
with the same event source.

4. Encrypt the signature, data and other content as specified by the encrypt child of the controlling
submit element.

5. Send the data and the list of pre-submit and post-submit scripts to the server using the HTTP post
operation. The format of the pre-submit and post-submit script lists is implementation-defined.

Note: LiveCycle uses a custom packet to carry these lists.

HTTP post is a synchronous transaction so the client waits for the server to reply.

Server. The server XFA processing application typically performs the following steps after it receives the
data:

1. Decrypt the HTTP POST data if it is encrypted.

2. Validate the signature if one is required.

3. Perform the processing described in “Standard submit processing on the host” on page 440.

4. Send an appropriate HTTP POST return to complete the transaction. If the client is expecting returned
data this is packaged inside the POST return.

Client. After the host replies or the HTTP Post operation fails the client performs the processing described
in “Standard post-submit processing on the client” on page 440.

Examples

Example 13.2 An event that does not expect data to be returned from the server

<field name="Button1" …>
<event activity="click">

<submit target="http://example.org/ns/xyz?abc"
textEncoding="UTF-8" xdpContent="datasets template"/>

</event>
</field>
<field name="NumericField1" …>

XFA Specification
Chapter 13, Forms That Initiate Interactions with Servers Submitting Data and Other Form Content via HTTP 447

<value>
<float>100</float>

</value>
</caption>
<event activity="preSubmit" ref="$form">

<script runAt="server">valueA * valueB</script>
</event>

</field>
<field name="valueA" …>

<value>
<float/>

</value>
</field>
<field name="valueB" …>

<value>
<float/>

</value>
</field>

Example 13.3 Invoking a submission defined in the template programmatically

<field name="x" …>
…
<event activity="click" …>

<script contentType="application/x-javascript">
submitButton = this.resolveNode("submitButton");
submitButton.execEvent("click");

</script>
</field>
…
<field name="submitButton" …>

…
<event activity="click">

<submit target="http://submit.example.com/myapp" …/>
</event>

</field>

Example 13.4 Script falls back to carrying out the pageDown() action on the host

This facility is especially useful when the client may not support a needed function, as shown in this
example.

<field name="pagedown" …>
…
<event activity="click">

<script runAt="both" contentType="application/x-javascript">
…
pageDownSubmitButton = this.resolveNode("pageDownSubmitButton")
system = xfa.host.pageDown();
onerror = pageDownSubmitButton.execEvent("click");

</script>
</event>

</field>
<field name="pageDownSubmitButton" presence="hidden" …>

<event activity="click">
<submit target="http://submit.example.org/myapp?pageDown" …/>

XFA Specification
Chapter 13, Forms That Initiate Interactions with Servers Submitting Data and Other Form Content via HTTP 448

</event>
</field>

Because the script has runAt="both" it would not normally be submitted to a server. However the script
tries to process the pageDown() method on the current XFA processor and, if that fails, programmatically
submits the request to the host. JavaScript is used rather than FormCalc because JavaScript provides
convenient facilities for catching runtime errors.

A template that contained the above example would elicit different results, depending on the capabilities
of the application processing it. The behavior is described below assuming Adobe clients.

● Acrobat with XFA plug-in. This XFA processing application implements the pageDown() method. As a
result, if the user clicks on the field named pagedown, the script command to page down is successful.

● Adobe XFA HTML client. This XFA processing application does not implement the pageDown()
method. As a result, if the user clicks on the field named pagedown, JavaScript detects an error event
(onerror). The JavaScript error event invokes the submit element in the hidden field
pageDownSubmitButton, which causes the XFA HTML client to send the script to the server for
execution and then to merge the returned result.

XFA Specification
Chapter 13, Forms That Initiate Interactions with Servers Using Web Services 449

Using Web Services
Web services provide a flexible communication interface between many different systems, allowing clients
to submit data to and request data from servers, databases, custom systems, vendors exposing Web
Services, and others. XFA allows fields to connect to web services and thus access any of these facilities.

Data descriptions and connection sets are used heavily for web services based on [WSDL1.1] and
[SOAP1.1]. Furthermore the XFA structures for the two are tightly integrated. For that reason, the reader
should be familiar with “Data Description Specification” on page 943 and “Connection Set Specification”
on page 927 before proceeding with this section.

It is important to clarify the terms client and server. Normally in XFA the server is the computer that serves
the template to the XFA client. However web services have their own client-server relationship. The server
that provides a web service most likely has no knowledge of XFA or of the template. Instead, in web
services parlance, the XFA processor that initiates the transaction with (makes the request of) the web
service is the client and the provider of the web service is the server. In this chapter the words client and
server, unless otherwise qualified, have the web service meanings.

Web Service Architecture

The web service architecture can be summarized as follows:

● Fields and exclusion groups can act as either senders of data to a particular web service, receivers of
data from the web service, or both.

● A field or exclusion group is not limited to a single Web Service. Instead it has the ability to interact with
different web services at different times.

● Data may be coerced into a web service's input message schema, as defined by a provided data
description. The coercion is done in a separate DOM (the Connection Data DOM) so it does not affect
the regular Data DOM. The root node for the Connection Data DOM is
xfa.datasets.connectionData (also known as!connectionData).

● Scripts in the template may inspect and modify the data while it is in the Connection Data DOM.

● Data returned from the web service is retained in the Connection Data DOM in its own schema.

● Scripts in the template may inspect and modify data returned from a web service while it is retained in
the connection DOM.

● Data from a web service may be imported into the existing Form DOM, or used to create a new Form
DOM.

● XFA supports web services that implement doc-literal SOAP operations over HTTP. This means that the
web service's WSDL defines a SOAP binding, operations with “document” style, and messages with
“literal” encoding. These terms are defined in Web Services Description Language (WSDL) 1.1
[WSDL1.1]. RPC (Remote Procedure Call)-style operations are not supported by this version of XFA. Also
“encoded” messages are not supported by XFA, even though [WSDL1.1] permits their use with
“document” style operations.

● XFA supports web services that implement post SOAP operations. This means that the web service’s
WSDL defines a SOAP binding with a RequestStyle of "RawPost". The processing of these operations is
somewhat different from the processing of doc-literal operations. In XFA terms they are treated as
submits rather than service requests.

XFA Specification
Chapter 13, Forms That Initiate Interactions with Servers Using Web Services 450

Cycle of Operation in a Web Service Transaction

The cycle of operation in a web service transaction goes through the following steps.

Client. The client marshals and sends the request.

1. An event object is activated. The event object has an execute property. The execute property has a
connection subproperty which names a particular connection within the connectionSet.

2. If the RequestStyle parameter in the SOAP request header is set to RawPost the standard pre-submit
operations are carried out. See “Standard pre-submit processing on the client” on page 439.

3. The XFA processor marshals the complete SOAP message in the Connection Data DOM. The schema for
the message comes from the data description named by the connection's dataDescription
property. The message includes data from all subforms, fields, and exclusion groups that are linked to
the connection by their connect children. Each connect child supplies a pointer mapping to a node in
the message where its parent's data is copied.

4. If the RequestStyle parameter in the SOAP request header is anything other than RawPost the
preExecute event is triggered. If there is a script associated with it, the script has a chance to examine
and modify the message in the Connection Data DOM. For example, the script may add additional
SOAP headers.

5. The XFA processor serializes the message in the Connection Data DOM to XML and constructs the input
message for the service.

6. The XFA processor sends the input message to the server.

Server. The server does not need to be aware of XFA or know anything about the form. It processes the
request the same way it would for any client.

1. The server accepts and parses the input document.

2. It performs the operation requested by the header.

3. The server sends a reply to the client. The reply may include an output message.

Client. The XFA processor processes the reply as follows.

1. If the operation has an output message, it contains data serialized as XML. The XFA processor loads the
data from the received message into the Connection Data DOM, replacing the input message that was
there previously.

2. If the RequestStyle parameter in the SOAP request header is anything other than RawPost the
postExecute event is triggered. If there is an associated script, it runs. While the script is
running$event.soapFaultCode and$event.soapFaultString are set to the received fault
code and fault string. These are contained in the soap:faultcode and soap:faultstring
elements, respectively, inside the soap:fault element. If the operation succeeded, there is no
soap:fault element and both event properties default to the empty string (“”). The script can detect
success by checking for an empty string in $event.soapFaultCode. The script can also inspect and
modify the received data in the Connection Data DOM before it is imported into the Form DOM. For
example, it may check for headers.

3. The XFA processor imports the received data into the Form DOM. There are two ways the XFA processor
can carry out the importation. When the executeType property of the event object is set to import, it

XFA Specification
Chapter 13, Forms That Initiate Interactions with Servers Using Web Services 451

simply updates the data that is bound to the output of the connection. This is simple and efficient but it
does not support dynamic subforms, which are inserted into the form where required and/or as often
as required by the data. For dynamic subforms the XFA processor clears the Form DOM and rebuilds it
using a merge (data binding) operation. This is done when the executeType property of the event
object is set to import.

Note: The merge operation is modified when there is a connection active. As the XFA processor builds
the Form DOM, when it comes to a candidate field or exclusion group associated with the
current connection, it reaches into the Connection Data DOM and plucks the associated data (if
any) from there. If the field or exclusion group was already bound to data in the Data DOM, the
new data propagates through to the Data DOM, updating the node that is already there;
otherwise a new data node is created to hold the data.

4. The XFA processor deletes the message in the Connection Data DOM.

5. If the RequestStyle parameter in the SOAP request header is set to RawPost the XFA processor carries
out the standard post-submit client operations. See “Standard post-submit processing on the client”
on page 440.

Structure of a Web Service Message

A Web Service message uses the XFA data description grammar to describe its header and body (“Data
Description Specification” on page 943) and references a Web connection defined in the XFA connection
set (“Connection Set Specification” on page 927).

The data description for a web service is a special case. The data description must declare the schema for
the input message (from client to server). In addition it must declare the name of the web service
connection which will be referenced in connect elements in the template. This is done using the following
structure:

<dd:dataDescription
xmlns:dd="http://ns.adobe.com/data-description/"
dd:name="dataDescriptionName">
<connectionName>

<soap:Header
xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/">
... data description for header ...

</soap:Header>
<soap:Body

xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/">
... data description for message ...

</soap:Body>
</connectionName>

</dd:dataDescription>

Note: There can only be one connectionName element per data description. Note also that the
connectionName element's namespace is ignored.

For example, the following data description declares the message schema to use with a web service
connection called POConnection.

Example 13.5 Data description for the POConnection web service

<dd:dataDescription
xmlns:dd="http://ns.adobe.com/data-description/"

XFA Specification
Chapter 13, Forms That Initiate Interactions with Servers Using Web Services 452

dd:name="ExampleSoapInfo">
<POConnection>

<soap:Body
xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/">
<po1:orderItem

xmlns:po1="http://www.example.com/po1">
<po1:OrderId/>
<po1:Description dd:minOccur="0"/>
<po1:Quantity/>

</po1:orderItem>
</soap:Body>

</POConnection>
</dd:dataDescription>

In the above example, the soap:Body element contains the schema for the message. The optional
soap:Header element has been omitted.

Example That Illustrates the Web Services Architecture

The best way to understand this architecture is to go through an example. This example uses a simple
stock-quote service. In order to use the service the client sends a message to the server containing a
header and a ticker symbol. The server replies with a message containing status information and, if the
query is successful, the current stock price.

This example is borrowed from the WSDL 1.1 specification [WSDL1.1].

Example 13.6 Stockquote web service description file

1 <?xml version="1.0"?>
2 <definitions name="StockQuote"
3 targetNamespace="http://example.com/stockquote.wsdl"
4 xmlns:tns="http://example.com/stockquote.wsdl"
5 xmlns:xsd1="http://example.com/stockquote.xsd"
6 xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"
7 xmlns="http://schemas.xmlsoap.org/wsdl/">
8 <types>
9 <schema targetNamespace="http://example.com/stockquote.xsd"
10 xmlns="http://www.w3.org/2000/10/XMLSchema">
11 <element name="TradePriceRequest">
12 <complexType>
13 <all>
14 <element name="tickerSymbol" type="string"/>
15 </all>
16 </complexType>
17 </element>
18 <element name="TradePrice">
19 <complexType>
20 <all>
21 <element name="price" type="float"/>
22 </all>
23 </complexType>
24 </element>
25 </schema>
26 </types>

XFA Specification
Chapter 13, Forms That Initiate Interactions with Servers Using Web Services 453

27
28 <message name="GetLastTradePriceInput">
29 <part name="body" element="xsd1:TradePriceRequest"/>
30 </message>
31
32 <message name="GetLastTradePriceOutput">
33 <part name="body" element="xsd1:TradePrice"/>
34 </message>
35
36 <portType name="StockQuotePortType">
37 <operation name="GetLastTradePrice">
38 <input message="tns:GetLastTradePriceInput"/>
39 <output message="tns:GetLastTradePriceOutput"/>
40 </operation>
41 </portType>
42
43 <binding name="StockQuoteSoapBinding"
44 type="tns:StockQuotePortType">
45 <soap:binding style="document"
46 transport="http://schemas.xmlsoap.org/soap/http"/>
47 <operation name="GetLastTradePrice">
48 <soap:operation
49 soapAction="http://example.com/GetLastTradePrice"/>
50 <input>
51 <soap:body use="literal"/>
52 </input>
53 <output>
54 <soap:body use="literal"/>
55 </output>
56 </operation>
57 </binding>
58
59 <service name="StockQuoteService">
60 <documentation>My first service</documentation>
61 <port name="StockQuotePort"
62 binding="tns:StockQuoteBinding">
63 <soap:address
64 location="http://example.com/stockquote"/>
65 </port>
66 </service>
67
68 </definitions>

This definition file tells potential clients how to access the service. The following table describes the
definition file’s parts. For more information about the meaning of WSDL definition files see [WSDL1.1].

Line # Element name Defines

8 types XML components used in the other sections

 28 message Input message

32 message Output message

36 portType Operations and how they use messages

XFA Specification
Chapter 13, Forms That Initiate Interactions with Servers Using Web Services 454

Input message queries server for the trading price of a corporation

The input message defined by the above WSDL definition carries a ticker symbol for a publicly-listed
corporation. It has the following form:

<soap:Body
xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/">
<tns:TradePriceRequest>

<tns:tickerSymbol>stockTickerSymbol</tns:tickerSymbol>
</tns:TradePriceRequest>

</soap:Body>

Note: This is not an XFA-specified schema. It is specified by the web service.

Output message provides trading price (if successful) or a status indicator (if not successful)

If the query succeeds (that is, if a share quotation can be obtained for the given ticker symbol), the output
message from the server carries the price per share for the requested corporation. It has the following
form:

<soap:Body
xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/">
<tns:TradePrice>

<tns:price>pricePerShare</tns:price>
</tns:TradePrice>

</soap:Body>

Note: This is not an XFA-specified schema. It is specified by the web service.

If the query fails (for example because there is no known listing for the given ticker symbol), the output
message carries a status indicator. It has the following general form (with whitespace added for clarity):

<soap:Body
xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/">
<soap:Fault>

<faultcode>...</faultcode>
<faultstring>...</faultstring>

</soap:Fault>
</soap:Body>

The soap:Fault element can also contain a faultactor element but this is uncommon.

Note: This is not an XFA-specified schema. It is specified by the web service.

43 binding Binding between the messages and the SOAP protocol
(GetLastTradePriceInput as the input message and
GetLastTradePriceOutput as the output message)

59 service URL of the server and the name of the service (port)

Line # Element name Defines

XFA Specification
Chapter 13, Forms That Initiate Interactions with Servers Using Web Services 455

Definition file may define multiple individual operations, each using a different connection set

The service defined by this definition file can include many individual operations. However a
wsdlConnection element describes just one operation. Hence it may require many wsdlConnection
elements to fully describe a service.

The simple service in this example supports a single operation, so in this case only one wsdlConnection
element is needed.

Example 13.7 Complete connection set packet

<connectionSet
xmlns="http://www.xfa.org/schema/xfa-connection-set/2.8/">
<wsdlConnection

dataDescription="DataConnectionTradePriceRequestDD"
name="TradePriceWS">
<wsdlAddress>

http://example.com/stockquote.wsdl
</wsdlAddress>
<soapAction>

http://example.com/GetLastTradePrice
</soapAction>
<soapAddress>

http://example.com/StockQuote
</soapAddress>
<operation input="GetLastTradePriceInput"

output="GetLastTradePriceOutput">
TradePriceRequest

</operation>
</wsdlConnection>

</connectionSet>

The wsdlConnection element has attributes (below) that link it to other parts of the XDP.

● the dataDescription attribute points to a data description that must be created (“Data Description
Specification”).

● the name attribute supplies a name for this connection. Elsewhere in the template container objects
(fields, exclusion groups, and subforms) contain connect elements that use this name to indicate that
they take part in the transaction (“Connection Set Specification”).

The wsdlAddress child of the wsdlConnection element contains the URL of the WSDL service
definition. This is optional information for the use of form creation tools. In this case, its location happens
to be the same as its namespace, but it could be anywhere.

The soapAction child of wsdlConnection is copied from the soapAction attribute of the
soap:operation element in the WSDL definition file. In this case soapAction is empty because in the
WSDL definition file the value of the attribute is the null string.

Similarly, the soapAddress child of wsdlConnection is copied from the location attribute of the
soap:address element in the WSDL definition file.

The operation child of wsdlConnection associates the names used within the XDP to the operation(s)
and messages defined in the WSDL definition. Here, the service exposes one operation, identified by the
string "TradePriceRequest". This is the content of the operation element. The input and output
attributes identify the element definitions for the input and output messages, respectively, in the WSDL
definition.

XFA Specification
Chapter 13, Forms That Initiate Interactions with Servers Using Web Services 456

Note that in a WSDL file several operations with the same name can exist. This is analogous to function
overloading. In this case, the input and output attributes uniquely identify the selected operation. If the
input or output element in the WSDL file does not have a name attribute, the attributes must be set to the
default input or output name as specified in [WSDL1.1] Section 2.4.5.

The associated data description controls the format of the message sent by the XFA processor to the web
server. This message includes the input message defined by the WSDL description and a [SOAP 1.1]
envelope around it.

Example 13.8 Data description packet for the example

<dd:dataDescription
xmlns:dd="http://ns.adobe.com/data-description/"
dd:name="DataConnectionTradePriceRequestDD">
<TradePriceWS>

<soap:Body
xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/">
<tns:TradePriceRequest>

<tns:tickerSymbol/>
</tns:TradePriceRequest>

</soap:Body>
</TradePriceWS>

</dd:dataDescription>

This data description matches the input message GetLastTradePriceInput from the WSDL service
description. Note that the data description merely describes the message format. It does not define the
binding of data in the Data DOM to the message. This binding is performed by the individual connect
children of fields, exclusion groups, and/or subforms in the Form DOM.

This data description does not include a schema for the output message. This is not required because XFA
does not need a schema to import data.

Messages Represented in the Connection Data DOM

The structure of data in the Data DOM is unlikely to match the required structure for input and output
messages, more so because a single form may exchange data with any number of web services. In addition
the messages are wrapped in SOAP envelopes which may also contain information of interest. Therefore
the input message is sent from, and the output message received into, a separate DOM called the
Connection Data DOM. The Connection Data DOM is located under the node
xfa.datasets.connectionData (or equivalently !connectionData).

Associating Fields and Exclusion Groups with Nodes in the Connection Data DOM

Fields and exclusion groups can have connect children that associate them with particular nodes in the
Connection Data DOM. The connect children control the movement of data between the Data DOM and
the Connection Data DOM, in either or both directions. Each connect child controls only that particular
data value which is bound to its parent.

In the example there are two wrapper subforms involved in data transfer. The subform input and its
contents provide the input message, while output and its contents display the output message. The
section of the template containing input is reproduced below.

Example 13.9 Portion of the template controlling the input message

<subform name="input" ...>

XFA Specification
Chapter 13, Forms That Initiate Interactions with Servers Using Web Services 457

<subform name="query">
<field name="stockTickerSymbol" ...>

...
<connect

connection="TradePriceWS"
ref="!connectionData.TradePriceWS.Body.TradePriceRequest.tickerSymbol"
usage="exportOnly"/>

</field>
...

</subform>
...

</subform>

For each connect element, the connection attribute identifies a wsdlConnection in the
connectionSet. The connect element has no effect except when the XFA processor is exchanging data
with the service represented by that particular connection.

The ref attribute is a modified SOM expression that identifies the location of the node in the Connection
Data DOM corresponding to the subform, field, or exclusion group. Note that ref must point to a node
inside the Connection Data DOM.

When the SOM expression is fully qualified, it is a standard SOM expression. Hence, in the example, the
contents of the field are mapped to the node
xfa.datasets.connectionData.TradePriceWS.Body.TradePriceRequest.tickerSymbol, which is in
the Connection Data DOM. The name Body in this SOM expression refers to a SOAP element that contains
the message to be sent inside the SOAP envelope.

When the SOM expression is relative, the base location (“$”) is inherited from the connect child of the
enclosing container, instead of being the location in the Form DOM of the container that asserts the SOM
expression. Consider the following modified template fragment for input.

Example 13.10 Previous example modified to take advantage of connect-relative SOM resolution

<subform name="input" ...>
<connect

connection="TradePriceWS"
ref="!connectionData.TradePriceWS.Body"
usage="exportOnly"/>

<subform name="query">
<connect

connection="TradePriceWS"
ref="TradePriceRequest"
usage="exportOnly"/>

<field name="stockTickerSymbol" ...>
...
<connect

connection="TradePriceWS"
ref="tickerSymbol"
usage="exportOnly"/>

</field>
...

</subform>
...

</subform>

XFA Specification
Chapter 13, Forms That Initiate Interactions with Servers Using Web Services 458

In this example, the input subform has a ref property asserting a fully-qualified SOM expression
“!connectionData.TradePriceWS.Body”. Because this is fully-qualified it does not matter what
value of “$”, if any, it inherits from its parent. The expression resolves to
xfa.datasets.connectionData.TradePriceWS.Body. Its child subform TradePriceRequest
inherits the node xfa.datasets.connectionData.TradePriceWS.Body as its base location. The
TradePriceRequest subform in turn has a connect.ref asserting a relative SOM expression,
“TradePriceRequest”. This combines with the inherited base, resolving to
xfa.datasets.connectionData.TradePriceWS.Body.TradePriceRequest. This resolved
node in turn becomes the base location inherited by the field stockTickerSymbol, which is the child of
input. The field has a connect.ref asserting the relative SOM expression “tickerSymbol”. This
combines with the inherited base to resolve into
xfa.datasets.connectionData.TradePriceWS.Body.TradePriceRequest.tickerSymbol. Hence, the
effect is the same as the earlier syntax.

The inheritance mechanism has an important advantage when dealing with arrays of data (sets of sibling
data nodes sharing the same name). The rules for resolving SOM expressions allow the expression to leave
out some subscripts. When the subscript is omitted from an unqualified reference, the XFA processor uses
the subscript of the container in the Form DOM that is asserting the SOM expression. (Or it may use the
subscript of an ancestor. See “Inferred Index for Ancestors of the Container” on page 117. This makes it
possible to use dynamic subforms. Such a subform is declared just once in the template but allowed to
instantiate multiple times in the Form DOM. Using an unqualified SOM expression, each of its
instantiations correctly references the data, even though each instantiation uses the same SOM
expression. Index inferral does not apply to fully-qualified SOM expressions. The inheritance mechanism
makes it possible to use unqualified SOM expressions and thus to take advantage of index inferral.

Data Conditionally Copied Between the Data DOM and the Connection Data DOM

The usage attribute controls whether data is copied from the Data DOM to the Connection Data DOM
(exportOnly), from the Connection Data DOM to the Data DOM (importOnly), or both ways
(exportImport). The effect of copying data both ways with exportImport is to update the data. This is
not required for the example application. Hence, in the example fragments, the field associated with the
input message has a connect.usage of exportOnly.

After the message is marshalled in the Connection Data DOM, but before it is sent, the preExecute event
triggers. A script activated by preExecute can modify the input message before it is sent. It is also
acceptable for a preExecute script to programmatically copy data out of the Connection Data DOM. For
example, the following fragment shows some debug code in a test template.

Example 13.11 Script executing on the preExecute event

<field name="PREEXECUTE" ...> ... </field>
<event activity="preExecute"

ref="$connectionSet.TradePriceWS">
<script>

PREEXECUTE =
$xfa.datasets.connectionData.TradePriceWS.saveXML();

</script>
</event>

In the example, when the preExecute script is invoked, the Connection Data DOM contains:

[dataGroup (soap:Body)
xmlns="http://schemas.xmlsoap.org/soap/envelope/"]
[dataGroup (tns:TradePriceRequest)

xmlns="http://example.com/stockquote.wsdl"]

XFA Specification
Chapter 13, Forms That Initiate Interactions with Servers Using Web Services 459

 [dataValue (tns:tickerSymbol) = "stockTickerSymbol"
xmlns="http://example.com/stockquote.wsdl"]

This is exactly equivalent to the input message shown above. The mapping between XML and objects in
the Connection Data DOM is the same as the default mapping rules used in the regular Data DOM, as
described in “Default Data Mapping Rules” on page 131.

Replying to the Web Server and Error Responses

After the preExecute event finishes, the input message in the Connection Data DOM is converted to
XML and sent to the web server. The web server replies with the output message, also in XML.

In the example, if the query succeeds, the output message contains the share price for the requested
stock. This data is wrapped inside a SOAP envelope. In addition, when the query fails, the element
soap:Fault is returned. As described in [SOAP1.1], the soap:Fault element is a child of the
soap:Body element. soap:Fault contains a fault code and a human-readable (but not localized) fault
string. When the query succeeds, the message does not contain a soap:Fault element.

If there is a communication error or an error reported by the HTTP protocol, the XFA client is unable to
receive the output message. In this case the client generates an error message, clears the Connection Data
DOM, and terminates the transaction.

Upon receipt of the output message, the client XFA processor parses it and adds its content to the
Connection Data DOM. Nodes that are already present (as parts of the input message) are retained. If a
particular node corresponds to content in both the input and output messages, its value is updated in
place.

After the output message is added to the Connection Data DOM, the client XFA processor triggers a
postExecute event. In preparation for the postExecute event it copies the fault code and fault string
into $event.soapFaultCode and $event.soapFaultString, respectively. If the query succeeds,
these elements are not present in the output message, and the values of $event.soapFaultCode and
$event.soapFaultString are both empty strings (“”). Note that the event properties
$event.soapFaultCode and $event.soapFaultString are only available for the duration of the
postExecute event, hence only to scripts activated by the postExecute event. The following fragment
illustrates how a script can check for the failure of the query.

Example 13.12 Script executing on the postExecute event

<event activity="postExecute"
ref="$connectionSet.TradePriceWS">
<script>

if ($event.soapFaultCode == "")
{

// No fault code. Check for the header:
// connectionData.TradePriceWS.Header
if (connectionData.nodes.namedItem("Header") != null)

{
// Header exists - do something with it...
}

}
else
{

// display $event.soapFaultString...
}

</script>

XFA Specification
Chapter 13, Forms That Initiate Interactions with Servers Using Web Services 460

</event>

When the service request fails, the return message may include a faultactor element. This element is
not used by the stock quote service and in fact is rarely used. Even when faultactor is used, the XFA
processor does not copy the content of faultactor into $event. However the postExecute script
can get its contents directly from the Connection Data DOM.

It is also acceptable for a postExecute script to programmatically copy data out of the Connection Data
DOM. For example, the following fragment shows some debug code in a test template.

Example 13.13 Script executing on postExecute copies data out of the Connection Data DOM

<field name="POSTEXECUTE" ...> ... </field>
<field name="FAULTSTRING" ...> ... </field>
<field name="FAULTCODE" ...> ... </field>
<event activity="postExecute"

ref="$connectionSet.TradePriceWS">
<script>

POSTEXECUTE = !connectionData.TradePriceWS.saveXML();
FAULTCODE = $event.soapFaultCode;
FAULTSTRING = $event.soapFaultString;

</script>
</event>

After the postExecute script finishes the XFA processor resets the $eventobject, so
$event.soapFaultCode and $event.soapFaultString are no longer available.

At this point if a soap:Fault element was returned the XFA processor clears the Connection Data DOM
and the transaction is finished. However if no soap:Fault element was received the XFA processor
proceeds to import the received data from the Connection Data DOM into the main Data DOM. Note that
this version of XFA does not define any way for the postExecute script to prevent the import from
happening. However the script can delete all nodes from the Connection Data DOM, which has much the
same effect.

The usage attribute of each connect element controls whether the associated data is copied from the Data
DOM to the Connection Data DOM (exportOnly), from the Connection Data DOM to the Data DOM
(importOnly), or both ways (exportImport). Note that the same node in the Connection Data DOM
can receive exported data from one node in the Data DOM while supplying imported data to another
node in the Data DOM, using one connect.usage set to exportOnly and another set to importOnly.
This is not necessary for the example template because the web service uses a separate element for the
data returned by the query. The section of the template that imports the returned data is.

Example 13.14 Portion of the template handling the output message

<subform name="output" ... >
<subform name="response">

<field name="sharePrice" ...>
...
<connect

connection="TradePriceWS"
ref="!connectionData.TradePriceWS.Body.TradePrice.price"
usage="importOnly"/>

</field>
...

</subform>
...

XFA Specification
Chapter 13, Forms That Initiate Interactions with Servers Using Web Services 461

</subform>

After the data has been copied from the Connection Data DOM to the Form DOM and Data DOM the
transaction is complete. At this point the XFA processor clears the Connection Data DOM. This prevents
any possible interference between consecutive web service transactions and simplifies security analysis.

One thing remains to be arranged. There must be some way to trigger the data exchange with the web
service. This can be done using an execute child of event, as follows.

Example 13.15 Button field initiates web service request

<field name="getQuoteBtn" ...>
...
<ui>

<button ... />
</ui>
<event activity="click">

<execute connection="TradePriceWS"
executeType="import"
 runAt="client"/>

</event>
</field>

The field getQuoteBtn is a button. When the user clicks on the button, the XFA processor initiates the
web service transaction.

The execute element has a runAt property which specifies whether the transaction is to be initiated on
the XFA client, on the XFA server, or both. Note that the XFA server is in no way related to the web service
server. The XFA server is the computer that served the template to the XFA client. The web service server
may be located somewhere else and have no knowledge of XFA. Hence, runAt does not affect the web
service server. Rather it determines whether the XFA client, the XFA server, or both, may act as a client to
the web service server.

The execute element also has an executeType property. This can take the values import and re-merge.
When the value is imported, the XFA processor updates the existing nodes in the Form DOM and Data
DOM with the values from the Connection Data DOM. However if the value is re-merged, the existing
nodes are not updated in place. Instead the Form DOM is cleared and a fresh merge operation is
performed between the Template DOM and both the Connection Data DOM and the Data DOM. In this
merge operation, as the template is traversed, candidate data for binding is sought not only in the Data
DOM but also in the Connection Data DOM. If suitable data is found in the Connection Data DOM, it is
appended to the Data DOM. The result is that, if data from the Connection Data DOM can be appended
the Data DOM and bound to the Form DOM, it is. But any data in the Connection Data DOM that does not
match suitable template structure remains un-copied and is lost when the Connection Data DOM is
cleared. The re-merge operation has the advantage that the output message can include dynamic
structure (optional elements or variable numbers of occurrences of elements) and the form adapts just as
it would to dynamic structure in an ordinary data document. However many web services produce output
messages with static structures which are more efficiently processed using import.

Schema and WSDL

The architecture of WSDL transactions in XFA relies on XFA-style data descriptions to determine the
structure of the messages exchanged with the server. XFA data descriptions are described in “Data
Description Specification” on page 943. However application programmers are more likely to be familiar
with the W3C XML Schema schema language [XMLSchema]. As a convenience for application

XFA Specification
Chapter 13, Forms That Initiate Interactions with Servers Using Web Services 462

programmers the connection set can hold additional information linking particular data descriptions
either to sample data or to schemas expressed in XML Schema. This additional information is optional and
not used by XFA processors.

Linking a Data Description to a W3C Schema

The xsdConnection element links a data description to a schema expressed in W3C XML Schema
language [XMLSchema].

The data description is referred to by name and must be located in the Data Description DOM. If this
attribute is not supplied the name of the root subform in the template is used.

The schema is referred to by URI. The URI is contained in an element called, appropriately, uri. This URI in
turn can point to a user packet in the XDP or to an external schema accessible via, for example, HTTP. The
uri element must be supplied and non-empty.

Caution: A URI followed to an external resource provides a potential point of attack. Applications should
only follow the URI to a resource outside the package if the package as a whole is trusted.

The xsdConnection element also contains a rootElement element which specifies the starting point
within the associated schema. This identifies the outermost element that was used to create the
associated data description. This element must be supplied and non-empty.

The following example extends “Example That Illustrates the Web Services Architecture” on page 452 by
adding schemas for the trade price request message in W3C Schema language. Two schemas are required
because the message combines elements belonging to two different namespaces. The schemas are
included as custom packets within the XDP. The associated data description is shown in “Data description
packet for the example” on page 456.

Example 13.16 An xsdConnection linking to a schema in the package

<xdp …>
<!-- A schema for the stock quote soap envelope -->
<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema"

xmlns:tns="http://example.com/stockquote.wsdl"
id="getTradePriceRequestEnvelopeID"
targetNamespace="http://schemas.xmlsoap.org/soap/envelope/">
<import namespace="http://example.com/stockquote.wsdl"

schemaLocation="#getTradePriceRequestSchemaID"/>
<xsd:element name="Body">

<xsd:complexType>
<xsd:sequence>

<xsd:element ref="tns:TradePriceRequest"/>
</xsd:sequence>

</xsd:complexType>
</xsd:element>

</xsd:schema>
<!-- A schema for the stock quote request -->
<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema"

xmlns:tns="http://example.com/stockquote.wsdl"
xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/"
targetNamespace="http://example.com/stockquote.wsdl"
id="getTradePriceRequestSchemaID">
<import namespace="http://schemas.xmlsoap.org/soap/envelope/"

schemaLocation="#getTradePriceRequestEnvelopeID"/>

XFA Specification
Chapter 13, Forms That Initiate Interactions with Servers Using Web Services 463

<xsd:element name="TradePriceWS"/>
<xsd:complexType>

<sequence>
<xsd:element ref="soap:Body"/>

</sequence>
</xsd:complexType>

</xsd:element>
<xsd:element name="TradePriceRequest">

<xsd:complexType>
<xsd:sequence>

<xsd:element name="tickerSymbol"
</xsd:sequence>

</xsd:complexType>
</xsd:element>

</xsd:schema>
…

<connectionSet
xmlns="http://www.xfa.org/schema/xfa-connection-set/2.8/">
…
<xsdConnection name="TradePriceWS"

dataDescription="DataConnectionTradePriceRequestDD">
<rootElement>TradePriceWS</rootElement>
<uri>#getTradePriceRequestSchemaID</uri>

</xsdConnection>
</connectionSet>

</xdp>

Linking a Data Description to a Sample Document

The xmlConnection element links a data description to a sample XML document.

The data description is referred to by name and must be located in the Data Description DOM. If this
attribute is not supplied the name of the root subform in the template is used.

The sample is referred to by URI. The URI is contained in an element called, appropriately, uri. This URI in
turn can point to a user packet in the XDP or to an external schema accessible via, for example, HTTP. The
uri element must be supplied and non-empty.

Caution: A URI followed to an external resource provides a potential point of attack. Applications should
only follow the URI to a resource outside the package if the package as a whole is trusted.

The following example extends “Example That Illustrates the Web Services Architecture” on page 452 by
adding a sample document for the trade price request message. The document is included as a custom
packet within the XDP. The associated data description is shown in “Data description packet for the
example” on page 456.

Example 13.17 An xmlConnection linking to a sample document in the package

<xdp …>
<!-- A sample stock quote request -->
<tns:TradePriceWS id="getTradePriceRequestSampleID"

xmlns:tns="http://example.com/stockquote.wsdl"
xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/">
<soap:Body>

<tns:TradePriceRequest>

XFA Specification
Chapter 13, Forms That Initiate Interactions with Servers Using Web Services 464

<tns:tickerSymbol>XXXXXX</tns:tickerSymbol>
</tns:TradePriceRequest>

</soap:Body>
</tns:TradePriceWS>

…
<connectionSet

xmlns="http://www.xfa.org/schema/xfa-connection-set/2.8/">
…
<xmlConnection name="TradePriceWS"

dataDescription="DataConnectionTradePriceRequestDD">
<uri>#getTradePriceRequestSampleID</uri>

</xmlConnection>
</connectionSet>

</xdp>

XFA Specification
Chapter 13, Forms That Initiate Interactions with Servers Interacting with a Database 465

Interacting with a Database
Of course HTTP POST and web services can be used to access databases, however XFA also supports
record-oriented database access. The Source Set DOM is used to control interactions with the database,
especially to define the data view.

The supported operations are a subset of those defined by the ADO API. Although usually ADO is used to
access databases, it is sometimes used for other purposes. XFA’s implementation of the API is strongly
oriented to data base access.

It is necessary to employ some scripting to use this facility. The names of objects in the source set DOM for
the most part correspond closely to names of objects defined in the ADO API Reference [ADO]. The Adobe
LiveCycle Designer ES2 Scripting Reference [LC-Scripting-Reference] should be consulted for detailed
information about the scripting interface. However the objects in the source set DOM are not hard to use
and a simple example suffices to illustrate them.

In the example there is a customer database containing a table of contact information. Each row of the
contacts table contains first and last names for one contact, and possibly other columns but we are not
interested in them. The form displays one row from the table at a time, using one field for each of the first
and last names. The fields are editable. There are buttons to open and close the database, to move
forward or backward in the table, to update the current record after editing, and so on. Each button
operates on the database via a very simple (one-line) script which invokes a method of an object in the
source set DOM.

The Source Set Packet

The source set packet for the customer contact example described above follows.

Example 13.18 Source set packet for the customer contact example

<sourceSet xmlns="http://www.xfa.org/schema/xfa-source-set/2.8/">
 <source name="FFADOData1" db="customer">
 <connect>
 <connectString>DSN=NoPasswordTest</connectString>
 <user/>
 <password/>
 </connect>
 <command timeout="30">
 <query>
 <recordSet cursorType="static" cursorLocation="client"
 lockType="optimistic" max="0" bofAction="moveFirst"
 eofAction="moveLast"/>
 <select>Contacts</select>
 <map from="FirstName" bind="#bind0"/>
 <map from="LastName" bind="#bind1"/>
 </query>
 </command>
 <bind id="bind0" ref="$record.contact.FirstName"/>
 <bind id="bind1" ref="$record.contact.LastName"/>
 </source>
</sourceSet>

The elements that make up the source set packet are discussed individually below. They are discussed in
the order in which they occur in this example. See “Source Set Specification” on page 959.

XFA Specification
Chapter 13, Forms That Initiate Interactions with Servers Interacting with a Database 466

The sourceSet element

This is the outer element of the source set document, or source set packet inside an XDP. It must be in the
namespace http://www.xfa.org/schema/xfa-source-set/2.8/ as must the other elements
discussed here.

The source element

The source set DOM contains any number of source objects, each of which represents an individual
connection to a data base or other ADO object. These can be connections to different data bases, or
different views of the same data base, or the same view of the same data base. The same piece of data in
the data base may be involved in different connections at the same time. It is up to the form creator to
understand the data base and ensure that such concurrent connections do not cause bad results.

Each source object has a db property which identifies the ADO object to which it connects. In the
example the target object is the customer database, which contains the contacts table.

The connect element

Each source element contains a single connect element. The connect element controls the
connection to the data base, but not interactions with the individual data records. The connect element
holds at most one connectString element, at most one user element, and at most one password
element.

The connectString element

The value of connectString is arbitrary as far as XFA is concerned. The string is simply passed to the
data base server at connect time.

The user and password elements

The user and password elements are available so that the form can supply the required credentials for
logon automatically. Clearly there is a security risk in displaying the password in plain text! The password
should only be included if the form will have limited circulation. However, it is generally the case that ADO
is used only with a corporate LAN or WAN, not on the public Internet. If the user name and/or password
are omitted, and the data base requires one or both, the XFA application prompts the user to supply it or
them.

The command element

Each source element in the source set packet contains one or more command elements. In the example
there is just one command element, which has a query child.

The query element

 A query element represents a method that maintains a cursor and a record set. The type and
characteristics of the cursor are determined by its contained recordSet element. The query element
also contains a select element and one or more bind elements.

The recordSet Element

The recordSet object in the source set DOM has many important properties. For convenience the
recordSet element from the example is reproduced below.

XFA Specification
Chapter 13, Forms That Initiate Interactions with Servers Interacting with a Database 467

Example 13.19 The recordSet element from the customer contact example

<recordSet cursorType="static" cursorLocation="client"
 lockType="optimistic" max="0"
 bofAction="moveFirst" eofAction="moveLast"/>

The cursorType property causes a a static cursor to be used, which grabs a copy of the record set and
does not respond to subsequent changes by other users. Furthermore, updates to the record set are not
committed to the data base automatically. They are committed only when the update method of the
recordSet object is invoked.

The cursorLocation property here causes the cursor to be located on the client. Where the cursor is
located affects the efficiency and responsiveness of the interaction. In this case, because the cursor type is
static, it is desirable to maintain the cursor on the client.

The lockType property governs locking of the data in the database while the client has the record set
open. The optimum value for this is determined by the data base design, the cursor type, and the nature
of the application.

The max property sets a limit for the number of records to be returned in the record set. When the value is
zero, as in the example, there is no limit.

The bofAction and eofAction properties control what the cursor does when a cursor positioning
command places the cursor at the beginning or end, respectively, of the record set. Using bofAction and
eofAction the form can auto-insert a new record at the end, pre-position for insertion at the beginning,
and so on. With all these options available it is possible to make a form that accesses a database with a
minimum of scripting. Indeed in the example all of the scripts associated with each button are single
method invocations.

The select element

The select element contains a SQL select clause. This defines the set of records that belong to the record
set. In this case the selection is all columns from a table called Contacts.

The map element

A map element connects a column in the data base to a bind element in the source set. Note that it can
not connect directly to a bind element in the template.

In the example there are two columns of interest, FirstName and LastName.

The bind element

Columns in the record set must be mapped into the Data DOM so that the data can be processed there. In
the example there are two columns of interest, FirstName and LastName, and each is mapped via a
binding. Each of the bindings is identified by an XML ID so that a map element can make reference to it.

In the example the data in the current record is bound to nodes under $record. It is not automatic that
query data is located there. Rather the source set dictates where the query data will be located. However
it is convenient to use $record and this is frequently done. The relevant part of the source set is
highlighted below.

Example 13.20 Two bind elements using $record

<source name="FFADOData1" db="customer">
 <connect ...>...</connect>

XFA Specification
Chapter 13, Forms That Initiate Interactions with Servers Interacting with a Database 468

 <command ...>...</command>
 <bind id="bind0" ref="$record.contact.FirstName"/>
 <bind id="bind1" ref="$record.contact.LastName"/>
</source>

For each data item two bindings are necessary, one from the data base into the XFA Data DOM and
another from a field into the same node of the Data DOM. The binding of fields to nodes in the Data DOM
is controlled by the template, as shown in “Fields bound to columns in the data base” on page 468.

Template features used with the Source Set DOM

Fields bound to columns in the data base

In the example the table (or view) being queried has two columns, for a contact’s first and last name.
These columns are bound to fields in the form using the bind property of each field. A skeleton of the
template for the two fields is as follows.

Example 13.21 Fields bound to database columns for the customer contact example

<field …>
 <value>
 <text/>
 </value>
 <ui>
 <textEdit/>
 </ui>
 <bind match="dataRef" ref="$record.contact.FirstName"/>
</field>
…
<field …>
 <value>
 <text/>
 </value>
 <ui>
 <textEdit/>
 </ui>
 <bind match="dataRef" ref="$record.contact.LastName"/>
</field>

The push buttons

In the example the form has a separate button for each database function. The skeleton for a typical
button is shown below.

Example 13.22 Delete button for the customer contact example

<field name="FFButton7" …>
 <ui>
 <button/>
 </ui>
 <caption>
 <value>
 <text>Del</text>
 </value>
 </caption>

XFA Specification
Chapter 13, Forms That Initiate Interactions with Servers Interacting with a Database 469

 <event activity="click">
 <script>$sourceSet.FFADOData1.delete()</script>
 </event>
</field>

When the button in the example is pressed it deletes the current record from the record set. FFADOData1
is the name of the source object which controls the query.

The table below shows all of the buttons in the form. Each of them simply invokes a method of the
controlling source object. None of these methods require parameters, because the parameters are
supplied by the source set document.

Updates and rollbacks

Updates take place in three stages. The first two stages can be cancelled (rolled back) if the changes have
not yet been committed to the next stage. The stages are:

Function Performed by Button Script associated with button

Make a connection, select a set of records, and create
a cursor for that record set.

$sourceSet.FFADOData1.open()

Rewind to the beginning of the record set. $sourceSet.FFADOData1.first()

Move backward one record in the record set. $sourceSet.FFADOData1.previous()

Move forward one record in the record set. $sourceSet.FFADOData1.next()

Fast forward to the end of the record set. $sourceSet.FFADOData1.last()

Delete the current record in the record set. $sourceSet.FFADOData1.delete()

Update the current record from the data in the form
(which presumably has been edited by the user).

$sourceSet.FFADOData1.update()

Reload the current record from the data base. $sourceSet.FFADOData1.resync()

Close the connection to the data base and free the
cursor. If updates have been made but not
committed with updateBatch() they are thrown
away.

$sourceSet.FFADOData1.close()

Post updated records from the record set to the data
base. This commits the changes made via previous
calls to the update() method.

$sourceSet.FFADOData1.updateBatch()

Roll back changes made via previous calls to the
update() method.

$sourceSet.FFADOData1.cancelBatch()

Repeat the query, regenerating the record set. $sourceSet.FFADOData1.requery()

Insert a new record into the record set at the current
position, shifting the current and subsequent
records down one.

$sourceSet.FFADOData1.addNew()

Cancel changes made to the data representing the
current row, prior to an invocation of the update()
method.

$sourceSet.FFADOData1.cancel()

XFA Specification
Chapter 13, Forms That Initiate Interactions with Servers Interacting with a Database 470

● Updating the contents of the current row in the Data DOM by assigning to the data values or by editing
associated fields via the UI. This can be cancelled by the cancel() method.

● Updating the contents of the current row in the data set using the update() method. Multiple rows
can be updated this way, one at a time. This can be cancelled by the cancelBatch() method.

● Updating the contents of the data base using the updateBatch() method. This commits the
changes to the data base.

 471

14 User Experience

This chapter describes the appearance and behavior or template user interface (UI) objects. It also
provides guidance on using such objects to provide accessibility.

Widgets
This section describes the general appearance and behavior of the widgets specified by forms that
interface with a user.

As described in “Size, Margins and Borders of Widgets” on page 53, a widget refers to a simulated
mechanism displayed by the user interface to enable the user to enter or alter data. For example, a check
box displayed on a monitor, which checks or unchecks in response to a mouse click, is a widget.

If a field omits a widget, the XFA processing application selects a widget for the field, as follows:

● Field has data. If the field includes default data or if the field is bound to data, the XFA processing
application assigns a widget that reflects the type of data.

● Field is empty. If the field contains neither a default value nor is bound to data, the XFA processing
application assigns the text editing widget.

This default behavior is identical to that of the default UI widget, described “Default UI” on page 483.

Barcode Widget
Barcodes are normally used only in non-interactive contexts (printing to paper or facsimile). Usually the
barcode field is filled with data by a calculation and is not editable by the user. However XFA does permit
barcode fields to be editable. When an editable barcode field gains focus the application displays some
sort of edit widget, probably the same edit widget used for ordinary text fields. When the field loses focus
the application may display it as a realistically rendered barcode or it may just display a placeholder. It only
has to be rendered accurately to paper (or facsimile), not to glass.

There are many different types of barcodes. Here is an example of a common type of barcode, code 128,
conveying the text Hello world.

Example 14.1 A code 128 barcode

<field …>
<ui>

<barcode type="code128"
textLocation="below" …/>

</ui>
</field>

There are many options that control the appearance and content of barcodes. For more information see
the chapter entitled “Using Barcodes” on page 411.

There are restrictions upon the content of barcode fields. There may also be restrictions upon the layout of
the page containing the barcode. These restrictions are defined by barcode standards and differ from one

Hello world.

XFA Specification
Chapter 14, User Experience Widgets 472

type of barcode to another. XFA processors do not enforce these restrictions. Instead it is up to the
template creator to ensure that the template meets the requirements for each barcode on the page.

Button
The button widget (button) provides a button interface, usually associated with a
click event. When the user selects the button, the click event is activated.

Buttons usually have two appearances, an up appearance and a down appearance. The highlight
property determines how the two appearances differ. However a button with its highlight property set
to push has three appearances: up, down, and rollover. Moreover such a button may have a different
legend in each state. The down and rollover legends are contained in the field’s items property and must
be named down and rollover, respectively.

Example 14.2 A button with up, down, and rollover legends

<field …>
<ui>

<button highlight="push"/>
</ui>
<caption>

<value><text> Up Text </text></value>
</caption>
<items>

<text name="down"> Down Text </text>
<text name="rollover"> Rollover Text </text>

</items>
</field>

Starting with XFA 2.5 a button widget in a dynamic form (but not in XFAF) may be an icon button. An icon
button displays an image and may also display a text legend. The image is specified in the field default
value and the legend in the field caption.

Example 14.3 An icon button

<field …>
<ui>

<button highlight="none"/>
</ui>
<caption>

<value><text> Up Text </text></value>
</caption>
<value>

<image contentType="image/jpeg" href="Up_Image.jpg"/>
</value>

</field>

Note: Adobe products do not support icon buttons. If the default value for the button field is an image
element the image element is ignored.

If the highlight property of an icon button is set to push the button can have three different images
and three different legends.

Example 14.4 An icon widget with up, down, and rollover images and legends

<field ...>

XFA Specification
Chapter 14, User Experience Widgets 473

<ui>
<button highlight="push"/>

</ui>
<caption>

<value><text> Up Text </text></value>
</caption>
<value>

<image contentType="image/jpeg" href="Up_Image.jpg"/>
</value>
<items>

<image name="down" contentType="image/jpeg" href="Down_Image.jpg"/>
<text name="down"> Down Text </text>
<image name="rollover" contentType="image/jpeg"

href="Rollover_Image.jpg"/>
<text name="rollover"> Rollover Text </text>

</items>
</field>

Note: Adobe products do not support icon buttons. If image elements are given as item values the
image elements are ignored.

The button widget is commonly used to trigger a click event that submits a completed form to a server.

Button widgets do not provide a mechanism for entering a value for the parent field. A value may be set as
the default, acquired by binding to data, or assigned by a calculation.

Check Box and Check Button
The check box or check button widget (checkButton) allows the user to turn on or off the value of its
enclosing field. The following are examples of the appearance of a check button widget.

Example 14.5 Check Button Shapes

<field …>
<ui>

<checkButton shape="square">
<border>

<edge stroke="lowered"/>
<fill/>

</border>
</checkButton>

</ui>
<caption placement="right">

<value>
<text>Square check button</text>

</value>
</caption>

</field>
<field …>

<ui>
<checkButton shape="round">

<border> … </border
</checkButton>

</ui>
<caption placement="right">

Square check button

Round check button

XFA Specification
Chapter 14, User Experience Widgets 474

<value>
<text>Round check button</text>

</value>
</caption>

</field>

When the user selects the check button target, the widget fills in the
target to indicate selection. The user may select the button by
clicking on it or by pressing the enter key when the containing field
is in focus. In the image at right the user has selected both targets in
turn.

The marks shown - a cross in a square check button and a filled circle
in a round check button - are the default marks. However the
template may select these or other marks explicitly using the mark property.

Example 14.6 Selecting the Mark for a Check Button

<field …>
<ui>

<checkbutton shape="square" mark="circle"/>
</ui>
…

</field>
<field …>

<ui>
<checkbutton shape="round" mark="check"/>

</ui>
…

</field>

The result is shown above at right. The first check button, when selected, shows a filled circle. The second
check button, when selected, shows a checkmark.

Note that the filled circle in the square check button (this example) is larger than the filled circle in the
round check button (previous example). These fine details of appearance are at the discretion of the XFA
processor.

Check Buttons Not Contained in an Exclusion Group

Check buttons not contained in an exclusion group set the field value to the strings on or off. The value
off corresponds to an empty target and on to a target with a mark in it. The check button widget cycles
through the values as the user repeatedly selects the field.

Check Buttons Contained in an Exclusion Group

When multiple fields are contained within an exclusion group and each field contains a check-button
widget, those widgets interact so that at most one of the check-buttons within the exclusion group is on.

When initially presented to the user all check buttons in the group can be off or one can be on and the
others off. When the user selectes a check button its value becomes on and all the others in the exclusion
group become off. There is no way for the user to set all the check buttons off, although a script can do
so.

Square check button

Round check button

Square check button

Round check button

●

✔

XFA Specification
Chapter 14, User Experience Widgets 475

Choice List
The choice list widget (choiceList) describes a user interface that provides a set of choices. Some types
of choice lists are also called drop-down lists.

Example 14.7 Basic choice list that provides a default and that uses selections as values

<field …>
<ui>

<choiceList open="onEntry">
<border>

<edge/>
</border>

</choiceList>
</ui>
<items save="1">

<text>apples</text>
<text>bananas</text>
<text>pears</text>

</items>
<value>

<text>apples</text>
</value>

</field>

The above example displays a drop-down list with the choices apples, bananas, and pears in that
order. The initial selection is apples. In this case the item displayed in the list is also the value placed into
the field when the user clicks on it, however the displayed item and corresponding value can be two
separate strings. Also, in this choice list the user is not allowed to type into the field, only select from the
drop-down list.

The choice list widget has an open property that controls when the widget displays the drop-down list
and whether or not the user can select multiple items simultaneously. There is also a textEntry property
which controls whether or not the user can type in a value that is not on the list. Finally, there is a
commitOn property that controls when the widget propagates the selected data value(s) to the XFA Data
DOM. The effect of these properties is described in the following sections.

Choice List Before Interacting with User

The choice list widget specifies the appearance of the widget before the user interacts with it.

Choice list hidden when not active

By default, the choice list is hidden until the user selects the field or takes some other action to activate the
list. However, even when the choice list is hidden the currently-selected value is displayed.

The choice list element may provide a default value, as shown in
Example 14.7. The illustration at the right shows the appearance in
Acrobat of the choice list field in that example before the field is
entered. This is the same appeareance the field would have if the
user had previously chosen the value apples and then exited the field.

Acrobat displays a small button on the right-hand side of the field. This is for the user to click on in order to
make the list drop down. However Acrobat only displays the button when rendering to glass. When Acrobt

������

������

�������

���	�

������

XFA Specification
Chapter 14, User Experience Widgets 476

renders the same field to paper (for example after the user clicks on the print icon), Acrobat leaves out the
button. This is in keeping with the general rule that widgets adapt to the medium.

Choice list visible when not active

When the open property of the choice list object is set to always or multiSelect the choice list is
always visible, even when the field is not active. In this case the current selection is indicated by
highlighting that item. If there is no current selection (for example, because the field is empty), no items
are highlighted.

Example 14.8 Simple multiselect choice list

<field …>
<ui>

<choiceList open="multiSelect">
<border>

<edge/>
</border>

</choiceList>
</ui>
<items save="1">

<text>apples</text>
<text>bananas</text>
<text>pears</text>

</items>
<value>

<text>apples</text>
</value>

</field>

Before this field is becomes active, Acrobat renders it in the manner shown above at the right. Again, this is
the same appearance that would be generated if the user had previously chosen the value apples and
then exited the field.

When rendering to glass the XFA processor may use some more suitable method to highlight, for example
printing the selected item(s) in bold.

User Selects Choice-List Field

If the choice list is not already visible, selecting the field (or using keyboard sequences to enter the field)
may cause the choice list to be come visible. Alternatively the widget may display a button which, when
clicked, causes the list to appear.

When the user selects an item from the choice list, that item becomes highlighted. The highlighting
disappears when another selection is made, except for choice lists that allow selection of multiple data
items.

The illustration at right depicts the choice list field from Example 14.7
as rendered by Acrobat while the user is making a selection. The user
has positioned the cursor to select bananas, but not yet confirmed
the choice by clicking on the list item.

������

�������

���	�

������

������

�������

���	�

XFA Specification
Chapter 14, User Experience Widgets 477

Whether the User May Select Multiple Items

If the choice list allows the user to select multiple items (open property set to multiSelect), the user
may select multiple items. In Acrobat on Windows this is done by holding down the shift or control key
while clicking. If multiple items are selected the value of the field is set to a space-separated list of the
values of all the selected items.

The illustration at the right depicts the choice list field from
Example 14.8 with both bananas and pears selected, as rendered
by Acrobat. This selection sets the content of the field to the string
"bananas pears".

Whether the User May Provide A Data Value

The choice list may allow the user to provide a data value. This allows the the user to provide an arbitrary
data value which is not necessarily found in the choice list. In this mode the choice list is only a
convenience for the user, not a limitation upon the field value. However, the user may not provide data
values when the choice list open property is set to always or multiSelect, regardless of the value of
textEntry.

Example 14.9 Simple choice list which permits user-entered values

<field …>
<ui>

<choiceList open="onEntry"
textEntry="1">
<border>

<edge/>
</border>

</choiceList>
</ui>
<items save="1">

<text>apples</text>
<text>bananas</text>
<text>pears</text>

</items>
<value>

<text>apples</text>
</value>

</field>

When Acrobat displays this field it provides a button to activate the drop-down list, however it also allows
the user to type into the field. Typing into the field starts an ordinary text entry operation, and if the
drop-down list is showing dismisses it. The drop-down list can be activated again by clicking on the
button.

User Exits Choice-List Field

When the user exits the field (for example by pressing the enter key, tabbing out, or selecting another
field), the choice list reverts to its inactive appearance.

������

�������

���	�

XFA Specification
Chapter 14, User Experience Widgets 478

Choice list which hides its list when inactive

For lists of this type the field reverts to displaying just the current
selection. For example, the illustration at the right shows the choice
list field in Example 14.7, as rendered by Acrobat, after the user has
selected bananas and then exited the field.

Choice list which displays its list when inactive

For lists of this type the field appearance does not need to change
when the field loses focus. For example, the illustration at right
shows the choice list field in Example 14.8, as rendered by Acrobat,
after the user has selected bananas and pears and then exited the
field.

Data Associated with Choice List Selections

A choice list element may use the data displayed in the choice list widget as the value associated with the
selection, as does Example 14.7. Alternatively, a choice list element may define values associated with a
selection, as shown in the following example.

Example 14.10 Choice list that associates hidden data values with selections

<field >
<ui>

<choiceList … />
</ui>
<items>

<text>apples</text>
<text>bananas</text>
<text>pears</text>

</items>
<items save="1">

<text>0</text>
<text>1</text>
<text>2</text>

</items>
<value>

<text>0</text>
</value>

</field>

The first set of items (here apples, bananas, and pears) appear to the user as possible choices and the
second set of items (here 0, 1, and 2) are used for data values. The association between display items and
data items is positional. For example, if the user selects apples the data value for the field is 0. The
association is bi-directional. Hence if a script, a binding operation, or as here the default value sets the
content of the field to 0 then the field is presented to the user as having apples selected.

Although the data values in the example are numeric, any text string can be used. The only requirement is
that each string be unique.

Note that save property on the second set of items is there to tell the XFA processor that it represents
values rather than display items. However the Acrobat implementation also requires that the items
elements be in sequence with the display items first and the data items second.

�������

������

�������

���	�

XFA Specification
Chapter 14, User Experience Widgets 479

When to Update the XFA Data DOM

The choice list element includes an attribute (commitOn) that allows the widget to specify whether the
data selected in the choice list should be propagated to the XFA Data DOM as soon as the selection is
made (value select)or after focus leaves the field (value exit). The former is the default value. The latter
is recommended for multiselect choice lists.

Note: Having a choice list commit data as soon as selections are made may be important in forms that
contain non-XFA interactive features, such as Acrobat annotations or hypertext links. People filling
out such forms may erroneously believe that selecting an item from a choice list followed by
clicking a non-XFA interactive feature is the same as exiting the check list. In fact, the check list
remains the field in focus.

Date/Time Editing Widget
The date-time editing widget (dateTimeEdit) helps the user supply content for a field that expects a
date, a time, or a date-time. The behavior of this widget alters depending upon whether the default value
element for the field in the template contains a date element, a time element, or a dateTime element.
The date, time, or dateTime element may be empty to indicate that there is no actual default value.
Nevertheless the mere presence of such an element, even when it is empty, tells the application what type
of data the field expects.

Example 14.11 Date-time widget expecting a date

<field name="DueDate" …>
<ui>

<dateTimeEdit/>
</ui>
<value>

<date/>
</value>
<calculate override="warning">

<script>
var isoDate;
isoDate = Num2Date(Date()+60, "YYYYMMDD");

</script>
</calculate>

</field>

It is rare for a date field to default to a fixed value. Instead it is common to compute a default value based
upon the current date. In the example the default due date for payment is 60 days beyond the current
date. The calculation uses the FormCalc Num2Date() function to format the computed date as an
[ISO-8601] date-time string. The format used (lacking any separators between fields) is not a valid
user-level format in any locale, so it always fails to match the prevailing date picture clause. However
because it is a valid ISO 8601 date-time string it is then accepted and processed as a date value in internal
format. This trick avoids any need for the script to look up the locale and format the date appropriately for
the locale.

Field with a Date-Time Edit Widget Before Interacting with User

When the field does not have focus, the widget displays the field’s data using the field’s display picture
clause (inside the field’s format element) if present. Prior to XFA 2.6, when such a picture clause was not
present, the widget displayed the canonical format of the data. (“Canonical Format Reference” on

XFA Specification
Chapter 14, User Experience Widgets 480

page 1003). Since XFA 2.6 the widget falls back upon a picture clause that is drawn from the default locale
information as follows:

● If the field expects a date the fallback picture clause is the medium date format for the locale.

● If the field expects a time the fallback picture clause is the medium time format for the locale.

● If the field expects a date-time the fallback picture clause is a concatentation of the default medium
date picture and the default medium time picture for the locale. The style of concatentation (which
comes first and what character separates them) is dependent upon the locale.

The displayed text is copied to the formattedValue property of the field object in the Form DOM.
This is a rather dynamic view of the field content; for example, it can change when the field gains or loses
focus and a different picture clause comes into effect. However these cosmetic changes do not affect
either the rawValue property of the field object or any dataValue node bound to it in the Data DOM,
both of which normally hold the date, time, or date-time in [ISO-8601] format.

User Selects a Field That Has Date-Time Edit Widget

When the user selects a field or tabs into a field that uses a date-time editing widget, the widget
re-displays the field’s data using the field’s UI picture clause if present. Prior to XFA 2.6, when such a picture
clause was not present, the widget displayed the canonical format of the data. (“Canonical Format
Reference” on page 1003). Since XFA 2.6 the widget falls back upon a picture clause that is drawn from the
default locale information as follows:

● If the field expects a date the fallback picture clause is the short date format for the locale.

● If the field expects a time the fallback picture clause is the short time format for the locale.

● If the field expects a date-time the fallback picture clause is a concatentation of the default short date
picture and the default short time picture for the locale. The style of concatentation (which comes first
and what character separates them) is dependent upon the locale.

See “Localization and Canonicalization” on page 152.

Example 14.12 Date-time widget using a supplied picture clause

<field name="DueDate" …>
<ui>

<dateTimeEdit/>
<picture>date.medium{}</picture>

</ui>
<value>

<date/>
</value>
…

</field>

A date-time edit widget may display a date picker when the field is selected. A date picker makes it easy to
enter the current date or a date picked from a calendar-style display of dates. There is a picker property
to disable the date picker, forcing purely text-based operation. However there is no option to require a
data picker because it may not be supported by all XFA clients.

Acrobat illustrates a third approach. If there is a picker attribute Acrobat does not honor a value of none,
but neither does it bring up a date picker automatically. Regardless of the value of picker, it displays a
button to the right of the field when the field is selected. Clicking on this button causes the date picker to
display over top of the field. The date picker is initially positioned to the date currently showing in the field.

XFA Specification
Chapter 14, User Experience Widgets 481

These operational details are patterned after the behavior of a choice list in Acrobat. On the other hand, for
backward compatibility, if there is no picker attribute Acrobat does not display a picker button.

A date-time edit widget may optionally display comb lines in between character positions to improve the
appearance of the text. This is controlled by the comb property. In order to use a comb the widget must
also be instructed to draw a right-handed (inside) border, because the comb is part of this border.

Example 14.13 Date-time widget using a comb

<field name="DueDate" …>
<ui>

<dateTimeEdit>
<comb numberOfCells="8"/>
<border hand="right">

<edge/>
</border>

</dateTimeEdit>
<picture>date.short{}</picture>

</ui>
…

</field>

It is possible for the field content to exceed the physical size allocated for display. By default a date-time
edit widget supports horizontal scrolling to handle this situation. However scrolling may be forbidden by a
setting of the hScrollPolicy property. In that case when the field is not selected content which
extends beyond the physical space is not visible; upon selection the extra content may be made available,
but whether it is or not is implementation-defined.

User Supplies Date and/or Time Data to the Field

After selecting a field, if a date picker is displayed the user may select a date by clicking on the date picker.
If the date picker is activated by a button, as in Acrobat, clicking on the date picker also causes the date
picker to disappear. However it can be reactivated using the button.

Alternatively the user may enter date, time, or date-time data for the field as text. The data may be entered
as text in the format specified by the UI picture clause. Alternatively it may be entered using a default
picture for the locale as follows:

● If the field expects a date, a date may be entered using the short default date picture for the locale or
using the canonical date format.

● If the field expects a time, a time may be entered using the short default time picture clause for the
locale or using the canonical time format

● If the field expects a date-time, a date and time may be entered using a concatenation of the short
default date and time picture clauses for the locale, with the style of the concatenation (which comes
first and what character separates them) dependent upon the locale. Normally this picture clause
allows the user to enter just a date without a time if desired. Alternatively a date-time may be entered
using the canonical date-time format.

If the entered data is incompatible with the available formats, the XFA processing application nevertheless
accepts the data as a string and displays it just as provided. The results of subsequent date and/or time
calculations using the field content are not defined. The template may prevent this by specifying a
validation for the field.

XFA Specification
Chapter 14, User Experience Widgets 482

The widget puts the data as entered into the formattedValue property of the node in the Form DOM
that represents the field. If the data matched any supported picture it also converts the data into canonical
format and puts that into the rawValue property of the same node. If the data did not match any
supported picture it copies the formattedValue unchanged from the rawValue. In either case, if the
node is bound to the Data DOM, the value property of the corresponding dataValue node is copied
from rawValue.

Note: Depending on implementation-dependent details of the UI, the user may only be able to enter the
date or time by doing something which also deselects the field. If that happens, deselection of the
field causes the application to apply the display picture clause to the contents of the field as
described in “Field with a Date-Time Edit Widget Before Interacting with User” on page 479. This
updates the display of the field contents on the screen and the contents of the formattedValue
property in the Form DOM, but does not affect the rawValue property in the Form DOM or the
value property in the Data DOM.

Example 14.14 User enters a date that matches the UI picture clause

Suppose the template includes the following.

<field name="DueDate" locale="en_US" …>
<ui>

<dateTimeEdit …>
<picture

>date{MMM D, YYYY}</picture>
</ui>
<value>

<date/>
</value>

</field>

Assume that the user enters the string Jan 20,
2006. As shown in the diagram at right, this value
matches the UI picture clause (also known as the edit
picture), so the XFA processor converts it to the raw string 2009-01-20 which is in ISO format. This value
is also copied into the Data DOM.

Example 14.15 User enters the date in canonical format

Now assume that the user is pasting data that
originates from another application into the same
template used for the previous example. The other
application placed the date onto the clipboard in
[ISO-8601] form as 2009-01-20. The XFA processor
recognizes the canonical format and accepts it as
the raw value.

This back door may also be used by scripts to supply
data to the field without having to format the data
in accordance with the UI picture clause.
Example 14.11 shows a script that uses this back
door for calculated field content.

�����������	

�����������	

��������
������

��������
������

���	������

����������

��������

��������������

��������������

��������������

���	������

!����

����������

����������

��		
����
�����

�����
���
������

����������

����	������

�������

�������������

�������������

�������������

����������

����

XFA Specification
Chapter 14, User Experience Widgets 483

Example 14.16 User enters text which is not a date

Finally, the user enters a text string which does not
represent a date. The XFA processor simply accepts
it as literal content for the field. Since this content
cannot be transformed successfully by the UI
picture clause and at the same time is not canonical
format, picture clause processing does not occur
either on input or output.

The template creator may, of course, impose a
validation to reject such non-date (or non-time)
content. Validation can itself be performed by a
picture clause so it is an easy matter to supply the
same picture clause for validation as for the edit
picture.

A date-time edit widget by default supports horizontal scrolling and allows the entry of content that is too
long for the phsyical space available. Alternatively the hScrollPolicy property may forbid scrolling, in
which case the user is prevented from typing or pasting content into the field beyond the physical space
allocated.

User De-Selects the Field Having a Date-Time Widget

After the user de-selects the field (for example by pressing the enter key, tabbing out, or selecting another
field), the field’s data is displayed as described above in “Field with a Date-Time Edit Widget Before
Interacting with User” on page 479.

Default UI
Note: This widget is deprecated. For new designs use dynamic subforms to make the data control the

structure of the form, use alternate picture clauses to accomodate alternate data types, and use the
relevant property to distinguish between print and interactive contexts.

The default UI widget (defaultUi) allows a template to be defined without exact knowledge of the field
content type. During form fill-in, the appearance and interaction of the default UI widget is determined by
examining the contentType property of the data value node bound to the field. For example, if the
content type is image, an image editing widget is used.

Form designers use the default UI widget when the type of data to be bound to the field is not known at
the time the template is created. Instead the form creator supplies a script that sets the contentType
property of the data value node at run time.

As a minimum the XFA processor should make the associations in the following table.

����

����

���	
����
������

�����
���
�����

����

���������

�������

�������������

�������������

��������������

����

�����

content type widget type

boolean checkButton

date dateTimeEdit

date-time dateTimeEdit

decimal numericEdit

XFA Specification
Chapter 14, User Experience Widgets 484

Image Edit Widget
The image edit widget (imageEdit) provides a UI that allows the user to supply image data as URI
references. When an image edit widget is selected, it presents a file browser widget that allows the user to
select the specific image desired for the field. When an image edit widget is not selected, it presents the
image specified as the field’s value.

If the user selects an image from the client file system, the XFA processor on the client serializes the image
using an appropriate xfa:transferEncoding style. This allows the user to submit the image to a host.

Example 14.17 User selects an image from the client file system

The template contains the following markup.

<field name="ImageField1">
<ui>

<imageEdit/>
</ui>

</field>

After the user selects the image he clicks on a button that uploads the data to the host. The data
document that is uploaded contains the following.

<ImageField1 xmlns:xfa="http://www.xfa.org/schema/xfa-data/1.0/"
xfa:contentType="image/jpg" href=""
>/9j/4AAQSkZJRgABAQAAA … GflXehY0z5zH8gi4GUo0E4/E/9k=</ImageField1>

The href parameter is set to the null string to indicate that the image is stored by value rather than by
reference. The transfer encoding is base64, which is the default for images. Most of the image content has
been replaced here by an ellipsis (…) because even a small image takes many lines of text.

On the other hand, if the form supplies the field with a value referencing a file on the client machine, the
image is loaded and displayed on the client. However when the form is uploaded to the host or a web
service only the URI, not the image content, is sent to the host.

Example 14.18 Form supplies a value that references a file on the client file system

<field name="ImageField1">
<ui>

<imageEdit/>
</ui>
<value>

<image href=".\Client_Image.jpg" contentType="image/jpg"/>
</value>

</field>

float numericEdit

image imageEdit

integer numericEdit

text textEdit

time dateTimeEdit

content type widget type

XFA Specification
Chapter 14, User Experience Widgets 485

Assuming the user has an image file that satisfies the URL, the user sees that image as the content of the
field. If he then causes the form to be uploaded without having made some other selection for the field,
the uploaded data is as follows.

<ImageField1 xmlns:xfa="http://www.xfa.org/schema/xfa-data/1.0/"
xfa:contentType="image/jpg" href=".\Client_Image.jpg" />

In this case the host only sees the same URI that it originally supplied, not the content of the client’s image
file.

The combination of these behaviors protects user privacy. The user can voluntarily supply an image which
can be uploaded, however the form cannot spy on the user by sneakily uploading an image from the client
file system without the user’s knowledge or consent.

When packaging an XFA form inside a PDF, it is recommended to use the Catalog/Names/XFAImages
dictionary to store image files, as described in “Storing Images Inside PDF” on page 257. This makes it
possible to store the image just once even though it is used multiple places inside the form.

Image aspect

An image object has an aspect property which controls the behavior of the image when it does not
exactly fit the container into which it is placed. (This applies to image boilerplate as well as image fields.)

There are several values that cause the image to be scaled in the same direction in both the vertical and
horizontal directions. These values are suitable for use with pictures. A value of fit, which is the default,
causes the scale to be such that the image fills as much of the field as possible without overflowing it in
either dimension. Values of vertical and horizontal cause the scale to be such as to fill the height or
width of the field respectively. The latter values may cause the image to extend beyond the boundaries of
the field or to be cropped in one dimension. (Adobe implementations crop the image.)

A value of none indicates no aspect ratio, so the image is independently scaled in the horizontal and
vertical directions to exactly fill the field. This would be suitable for an abstract pattern such as a gradient
fill.

A value of actual turns off scaling, causing the image to be drawn at its native size. However, some image
formats do not specify a physical width or height, only a number of pixels, so for these images the native
size may vary depending upon the display technology. The rendered image may extend beyond the
boundaries of the field or be cropped in either or both dimensions. (Adobe implementations crop the
image.)

Numeric Edit
The numeric editing widget (numericEdit) helps the user supply an integer, float or decimal number or
a currency amount. Unlike a text widget, the numeric widget may ignore keystrokes that do not fit the
pattern of a number. For example, Acrobat ignores letters that are typed into the numeric edit widget. This
is a better user experience than one could obtain using a text widget, even if there was a validation for
numeric content. The validation would not stop the inappropriate characters from being entered. It would
only produce an error message when the user attempted to move on to another field.

Appearance of a Numeric Edit Widget Before the Field is Selected

When the field is not selected (does not have focus), the XFA processor attempts to format the field
content for display as follows:

XFA Specification
Chapter 14, User Experience Widgets 486

● First it tries to use the field’s display picture clause (under the format object).

● If there is no display picture clause supplied it tries to apply the default numeric picture clause for the
locale. Unless otherwise specified, localization is always done for the current locale. See “Localization
and Canonicalization” on page 152.

● If both the above fail it tries to display the data in the canonical number format (see “Canonical Format
Reference” on page 1003).

● If all of the above fail it displays the data exactly as it is in the Data DOM.

The default numeric picture clause is constructed using the numeric number pattern for the applicable
locale in the the locale set. This is not used verbatim; instead it is expanded to fit the number of digits in
the content, in the style defined for the Unicode CLDR project. The resulting picture clause is then used to
format the data.

Example 14.19 Numeric edit widget uses display picture clause when not selected

<field …>
<ui>

<numericEdit/>
</ui>
<format>

<picture>99999.99999</picture>
</format>

</field>

Assuming the content of the field, in canonical format, is 123.456 and the locale is en_US, when the field is
not selected it displays "00123.45600".

User Selects a Field That Has a Numeric Edit Widget

When the user selects or tabs into a field that has a numeric editing widget, the widget displays the field’s
data using the field’s edit picture clause if present. Prior to XFA 2.6, when such a picture clause was not
present, the widget displayed the canonical format of the data. Since XFA 2.6 the widget instead falls back
onto the default numeric picture for the locale.

The default numeric picture is generated as described above under “Appearance of a Numeric Edit Widget
Before the Field is Selected” on page 485, except that after the picture clause is generated it is modifed by
stripping out the grouping separators (represented in the picture clause by comma characters). This is
done because users should not be required to enter grouping separators.

In any case, if the field content cannot be formatted by the picture clause the widget instead displays the
field content just as it is.

It is possible for the field content to exceed the physical size allocated for display. By default a numeric edit
widget supports horizontal scrolling to handle this situation. However scrolling may be forbidden by a
setting of the hScrollPolicy property. In that case when the field is not selected content which
extends beyond the physical space is not visible; upon selection the extra content may be made available,
but whether it is or not is implementation-defined.

Example 14.20 Numeric edit widget uses edit picture clause when selected

<field …>
<ui>

<numericEdit/>
<picture>99999.99999</picture>

XFA Specification
Chapter 14, User Experience Widgets 487

</ui>
</field>

Assuming that the content of the field, in canonical format, is 123.456 and that the locale is en_US, then
upon selection of the field the field displays "00123.45600".

User Supplies Data

After selecting the field, the user may enter numeric data for the field. The data may be entered in any of
the following formats:

● As specified by the UI picture clause.

● Default short numeric format, as specified for the appropriate locale in the localeSet. Unless otherwise
specified, localization is always done for the current locale. See “Localization and Canonicalization” on
page 152.

● Canonical number format.

● Any string of characters that is recognizable as a number, on a best-effort basis. For example, the XFA
processor may recognize field content in exponential format, such as 1.234e5 for 123,400.

● A null string.

The numeric edit widget may enforce numeric entry using dead keys. For example, it may ignore
keypresses that generate letters. It may also ignore a keypress that generates a radix point if there is
already a radix point in the string. It may also ignore keypresses that are otherwise legitimate but would
exceed the number of characters or number of decimal points allowed in the field. Acrobat does all these
things.

Note: It is legitimate to use a text edit widget for a field containing numeric data. This is an easy way to
avoid the dead-key operation of the numeric edit widget, if so desired.

Default Value Constraint

In addition, the allowable content for a field using a numeric edit widget can be constrained by the default
value declaration for the field. The purpose of the value constraint is to ensure that the data in the field is in
the correct form for further processing. Consequently, the value constraint operates separately from any
picture clauses and may even have the effect of throwing away digits that the user has entered or that
were in the field content already. The operation of the value constraint is described below.

If the default value for the field is an integer object then the numeric edit widget only accepts integers
(which may be positive, zero, or negative) or a blank field.

Example 14.21 Field allowing only integers

<field …>
<ui>

<numericEdit/>
</ui>
<value>

<integer/>
</value>

</field>

If the default value for the field is a decimal object then the numeric edit widget accepts floating-point
decimal numbers. The decimal object has a fracDigits property which controls the number of
decimals it will accept after the radix point. This property defaults to 2. There is also a leadDigits

XFA Specification
Chapter 14, User Experience Widgets 488

property which controls the number of digits allowed before the radix point. This property defaults to -1,
which means no limit. You can also explicitly set fracDigits to -1 to mean no limit.

Example 14.22 Field allowing floating point

<field name="DueDate" h="1in" w="2in">
<ui>

<numericEdit/>
</ui>
<value>

<decimal fracDigits="3" leadDigits="4"/>
</value>

</field>

If the data can be parsed as a number the XFA processor by default accepts the entered characters without
complaint. However the form creator may supply the field with a validation test or some other script that
verifies the data value. For example, the validation might ensure that an order quantity is always greater
than zero.

If the current content of the field comes from some other source than the numeric edit widget (for
example if it is set by a script) the content may not be parsable as a number. If the data can be parsed as a
number the XFA processor puts the data as entered into the formattedValue property of the node in
the Form DOM that represents the field. It also converts the data into canonical format and puts that into
the rawValue property of the same node. However, Since XFA 2.6, if the data cannot be parsed as a
number the value placed in rawValue is zero.

If the user enters an empty string (an enter key without numeric data), the widget sets the value of the
field to the empty string. The corresponding rawValue property of the field object in the Form DOM is
zero.

A numeric edit widget may optionally supply comb lines in between character positions to assist the user
in entering text.

A numeric edit widget by default supports horizontal scrolling and allows the entry of content that is too
long for the phsyical space available. Alternatively the hScrollPolicy property may forbid scrolling, in
which case the user is prevented from typing or pasting content into the field beyond the physical space
allocated.

User De-Selects the Field

After the user de-selects the field (for example by pressing the enter key, tabbing out, or selecting another
field), the XFA processor displays the field’s data as described in “Appearance of a Numeric Edit Widget
Before the Field is Selected” on page 485.

After the user de-selects the field, the entered data is propagated to the XFA Data DOM. If the user has not
altered the field content it may (still) be non-numeric. Since XFA 2.6 the propagated data is always
numeric. If the supplied characters do not parse as a number the value propagated to the XFA Data DOM is
zero.

Password Edit Widget
The password edit widget (password) is similar to the text edit widget, except that it is restricted to
single-line operation and it displays each character as an asterisk. See “Text Edit Widget” on page 489.

XFA Specification
Chapter 14, User Experience Widgets 489

Signature Widget
The signature widget (signature) allows the user to sign the completed form. This is a signature
covering the whole document or part of the document using the PDF signing facility. For the broader
context see “Signature Widget Produces a PDF Signature” on page 492. This section describes only the
detailed interaction of the user with the widget.

User in an Interactive Context Clicks on a Signature Widget

A digital signature is generated and added to the document. The appearance of the signature widget
changes to indicate that the document has been signed.

There may be multiple signature widgets. They operate independently of each other.

User in an Interactive Context Changes Signed Data

Signing does not affect the signing user’s ability, or any other user’s ability, to modify the data. However
when any change is made to the content of any field all signatures covering that field become invalid. All
invalid signatures are removed from the document and the appearance of the associated signature
widgets changes to indicate that the signatures are missing.

User in a Non-Interactive Context Hand-Signs a Printed Form

When the form is printed signature widgets are not rendered. The form author may choose to include
signature boxes for hand-written signatures, but that is not automatic. One reason for this is that
hand-written signatures can not be validated automatically so they do not have an equivalent place in the
work flow.

Text Edit Widget
The text editing widget (textEdit) allows the user to supply text.

Appearance of a Text Edit Widget Before the Field is Selected

The field may specify a display picture under the format object. If this picture clause is supplied it is used to
format the content of the field. However if there is no such picture clause the content of the field is
displayed just as it is. Unlike the date, time or date-time content types or the numeric content types, text is
not localized.

Example 14.23 Field using a text display picture

<field name="Field1" h="0.5in" w="2in">
<ui>

<textEdit/>
</ui>
<format>

<picture>XXXXX:XXXXX</picture>
</format>
<value>

<text>Helloworld</text>
</value>

</field>

XFA Specification
Chapter 14, User Experience Widgets 490

In the example the content of the field is the string Helloworld. In the picture clause a character of
content is represented by an X symbol whereas a colon (:) character is a literal. Hence, the content of the
field is displayed as Hello:world.

If the content of the field after formatting exceeds the physical size allocated for display of the field and
the field is not growable, the widget adds a visual clue to the field indicating that some text is hidden from
view.

If the content of the field after formatting exceeds the size of the field and the field is growable (“Growable
Containers” on page 270), the widget may interact with the layout processor to resize the field and in the
case of flowable layout, to reposition the field. Alternatively the visual representation of the field may be
clipped to the size available, provided that when the field regains focus some mechanism is provided to
allow access to the full content of the field (for example a scroll bar).

User Selects a Field That Has a Text Editing Widget

The template may supply a UI picture (edit picture). This may cause the appearance of the field to change
when the user selects it.

Example 14.24 Text widget using a text edit picture

<field …>
<ui>

<textEdit/>
<picture>XXXXX-XXXXX</picture>

</ui>
…
<value>

<text>Helloworld</text>
</value>

</field>

In the example the content of the field is initially the string Helloworld. In the picture clause a character
of content is represented by an X symbol whereas a minus (-) character is a literal. Hence, when the field is
selected the display of the field changes from whatever it was to Hello-world.

In the example above the template supplied a text picture as the UI picture. However it is legal to supply
some other type of picture, for example a numeric picture.

Example 14.25 Text widget using a numeric edit picture

<field name="Field1" …>
<ui>

<textEdit/>
<picture>num{9999.9999}</picture>

</ui>
<value>

<text>1.234</text>
</value>

</field>
<field name="Field2" …>

<ui>
<textEdit/>
<picture>text{9999.9999}</picture>

</ui>

XFA Specification
Chapter 14, User Experience Widgets 491

<value>
<text>1.234</text>

</value>
</field>

In this example the only difference between the fields is that Field1 uses a numeric picture clause while
Field2 uses a text picture clause. The picture clauses look rather similar but they behave quite differently.
The numeric picture clause in Field1 pads the number with leading and trailing zeros. The text picture
clause in Field2 does not do any padding. It is important to realize that although the symbols 9 and dot
(.) are used in both text and numeric picture clauses they have quite different effects depending upon the
type of picture clause.

It is possible for the field content to exceed the physical size allocated for display. By default a text edit
widget handles this situation by supporting horizontal scrolling for a one-line field and vertical scrolling
for a multi-line field. However horizontal scrolling may be forbidden by a setting of the hScrollPolicy
property, and similarly vertical scrolling by a setting of the vScrollPolicy property. If the appropriate
scrolling is forbidden then when the field is not selected content which extends beyond the physical space
is not visible; upon selection the extra content may be made available, but whether it is or not is
implementation-defined.

User Supplies Data

After selecting the field, the user may enter text data for the field. The widget is responsible for enforcing
the following text properties:

Scrolling is never necessary when the field is allowed to grow to the size of its content. If the field is
growable in the horizontal direction hScrollPolicy is superfluous and is ignored. Likewise if the field is
growable in the vertical direction vScrollPolicy is superfluous and is ignored.

Property name Description

maxChars Specifies the maximum number of characters that may be entered in
the field. This is the string length when the content is expressed as
[Unicode-3.2] code points packaged in UTF-32, as defined by [UAX-19].
This is not necessarily the same number of glyphs seen by the user. For
example, the user may enter an accented letter which appears as a
single glyph but is stored as two successive Unicode characters in the
string.

allowRichText Specifies whether the text may be rich text, which is text that includes
HTML styling instructions.

multiLine Specifies whether a line entered in the field may wrap.

hScrollPolicy Specifies whether the text may scroll horizontally to accomodate text
too wide for the physical width allocated. If not, and the field is
single-line, the user is prevented from typing or pasting content that
extends beyond the space allocated.

vScrollPolicy Specifies whether the text may scroll vertically to accomodate a block
of text too tall for the physical height available. If not, and the field is
multi-line, the user is prevented from typing or pasting content that
extends beyond the space allocated.

XFA Specification
Chapter 14, User Experience User Experience with Digital Signatures 492

The widget puts the data into both the formattedValue property and the rawValue property of the
node in the Form DOM that represents the field. In addition if rich text is allowed the corresponding data
nodes in the Data DOM are structured as described in “Representing Rich Text in the XFA Data DOM” on
page 218.

Continuing Example 14.24, if the user changes Hello-world to Hello-World, the widget updates the
formattedValue property to Hello-World and the rawValue property to HelloWorld.

Optionally a text edit widget may supply comb lines in between character positions to assist the user in
entering text. A comb can only be used when the widget is operating in a single-line non-scrollable mode.

User De-Selects the Field

After the user de-selects the field, if the field is bound to a node in the XFA Data DOM, the content of the
rawValue property is propagated to the XFA Data DOM. Then the field is re-displayed as described in
“Appearance of a Text Edit Widget Before the Field is Selected” on page 489.

User Experience with Digital Signatures
XFA includes two mechanisms for digitally signing a form: XML digital signatures and PDF digital
signatures. A single form may contain both types of signatures, although such use seems unlikely
considering the purpose and level of security provided by each type. These mechanisms and the levels of
security they can achieve are described in “Signed Forms and Signed Submissions” on page 545.

Signature Event Produces an XML Digital Signature
A template designer can create a button widget that allows the person filling out the form to apply an XML
digital signature to the form (“XML Digital Signatures” on page 552). The person selects the button widget
after completing the form. The template designer creates such a button by associating a signData action
to the button.

A single form may contain multiple signature events, each one signing different or overlapping parts of
the form.

XML digital signatures are used to ensure data integrity, as described in “Using Digital Signatures to
Achieve Different Levels of Security” on page 545.

Signature Widget Produces a PDF Signature
A template designer uses the signature widget to allow the person filling out the form to create a PDF
digital signature. The person would select the signature widget after completing the form. PDF signatures
can achieve various levels of security, the most important of which is "integrity". A document with integrity
is called a document-of-record. See “PDF Signatures” on page 559.

The PDF digital signature includes the template as well as the data so that it attests to what the user saw
and signed. The fact that the document has been signed is indicated in some implementation-defined
way in the visual representation of the signature widget. The presence of a signature does not by itself
prevent further changes to the data but if any such change is made the signature widget changes in
appearance to indicate that the document is no longer signed.

It is possible to apply multiple document-of-record signatures to the same form. Once multiple signatures
have been applied, a change to any data invalidates all of the signatures.

XFA Specification
Chapter 14, User Experience Accessibility and Field Navigation 493

Starting with XFA 2.5 a PDF signature may optionally cover only parts of the form, not the entire
document. This is the XFA implementation of the signature digest introduced into [PDF] in version 1.5.

For a detailed discussion of the user’s interaction with the signature widget, see “Signature Widget” on
page 489.

Accessibility and Field Navigation
XFA templates can specify form characteristics that improve accessibility and guide the user through filling
out a field.

● Traversal order. An XFA template may be defined with a traversal order, which allows the user to tab
from one field to the next (“Traversal: Tabbing Order and Speech Order” on page 493).

● Accelerator keys. An XFA template may include accelerator keys that allow users to move from field to
field, by typing in a control sequence in combination with a field-specific character (“Accelerator Keys:
Using Keyboard Sequences to Navigate” on page 498).

● Speech. An XFA template supports speech enunciation, by allowing a form to specify the order in
which text descriptions associated with a field should be spoken (“Speech of Text Associated with a
Container” on page 498).

● Visual aids. XFA template may specify text displayed when the tooltip hovers over a field or a subform
(“Other Accessibility-Related Features” on page 498).

Traversal: Tabbing Order and Speech Order
The traversal (sequencing) capability of XFA forms simplifies navigation between objects on a form and
supports speech programs.

The traversal capability simplifies navigation by allowing a person filling out a form to more easily move
from one field to the next. The user initiates such movement by typing special characters such as tab,
up-arrow, or down-arrow, or by supplying the maximum number of characters allowed in a field.

The traverse capability of XFA forms allows speech programs to advance from one object to the next, after
they have completed reading the text associated with the container.

Traversal specifications are provided in traversal elements, which may contain a set of traverse
elements. Traverse specifications are properties of the following types of containers: subforms, exclusion
groups, fields, and draws.

Each traverse element contains an operation attribute that specifies a keystroke or event that
triggers traversal, and a traverse destination. The traverse destination is specified as a SOM expression or
as a script. In either case, the destination must resolve to a SOM expression for a valid layout object.
Default transition directions are defined for any omitted traverse operations.

Note: The Acrobat implementation of traverse is restricted to the operations next and first. The XFA
language defines other operations but the Acrobat family of products ignores traverse elements
specifying those operations.

Traversals can be defined in prototypes. The XFA grammar for defining traversals is intended to make it
practical to define a traversal order in a prototype and have it work the way you want wherever the an
instance of the prototype is located. For more information about specifying traversals in prototypes, see
“Resolving Prototypes with Traversals” on page 232.

XFA Specification
Chapter 14, User Experience Accessibility and Field Navigation 494

If traversal order is not explicitly defined, it defaults to a left-to-right and top-to-bottom order.

In an XFAF form the PDF content may include non-XFA entities that can assume the focus, for example PDF
annotations. When these entities are present they also participate in traversal. Traversal follows the
XFA-defined entities first, then when those are exhausted it goes through the non-XFA entities. The order
of transition through non-XFA entities is not defined here, but it may be defined by [PDF].

Explicitly Defined Keystroke-Initiated Traversals

The following example is illustrated on page 495.

Example 14.26 Explicitly-defined traversals

<subform name="mySubform" … >
<field name="A" x="5mm" y="20mm" …>

<traversal>
<traverse operation="next" ref="mySubform[+1].A"/>

</traversal>
<ui … />
<value … />

</field>
<field name="B" x="45mm" y="20mm" …>

<traversal>
<traverse operation="next" ref="mySubform[+1].B"/>

</traversal>
<ui … />
<value … />

</field>
</subform>
<subform name="mySubform" … >

<field name="A" x="5mm" y="120mm"…>
<traversal>

<traverse operation="next" ref="mySubform[-1].A"/>
</traversal>
<ui … />
<value … />

</field>
<field name="B" x="45mm" y="120mm" …>

<traversal>
<traverse operation="next" ref="mySubform[-1].B"/>

</traversal>
<ui … />
<value … />

</field>
</subform>

XFA Specification
Chapter 14, User Experience Accessibility and Field Navigation 495

Explicitly-defined traversal

Default Keystroke-Initiated Traversal

Each traverse operation contains a default traversal destination. For example, if a container omits a
specification for next (operation="next"), the container is assigned a default next destination
relative to the container’s position, going left-to-right and top-to-bottom of the current container. For
example, if all traversal specifications are omitted from Example 14.26, the traversal direction changes to
that shown in the following illustration.

Default traversal

Non-Keystroke Traversals

Non-keystroke traverses are associated only with traverse elements that have operation values of
next and first. The effect of the latter value is described in “Delegating Focus to Another Container” on
page 497.

mySubform[0]

FieldA FieldB

mySubform[1]

FieldA FieldB

1

2

3

4

mySubform[0]

FieldA FieldB

mySubform[1]

FieldA FieldB

1

3

2

4

XFA Specification
Chapter 14, User Experience Accessibility and Field Navigation 496

Traversal Initiated When Maximum Number of Characters Supplied

In the following example, focus changes between fields when the maximum number of characters
(determined by the maxChars property) is entered. This example yields the same behavior shown on
page 495. Note, however, that the number of characters is actually the string length when expressed as
[Unicode-3.2] code points packaged in UTF-32 as defined by [UAX-19]. This gurantees applications safe
storage of the data, but it also means that the character count may not coincide with the number of glyphs
displayed on the screen. For example, a letter decorated with an accent and/or breathing mark may
display as a single glyph but be coded as a sequence of two or more Unicode code points.

Example 14.27 Default traversal for fields having a maximum number of characters

<subform name="mySubform" … >
<field name="A" x="5mm" y="20mm" …>

<ui … />
<value … >

<text maxChars=3 … />
</value>

</field>
<field name="B" x="45mm" y="20mm" …>

<ui … />
<value … >

<text maxChars=3 … />
</value>

</field>
</subform>
<subform name="mySubform" … >

<field name="A" x="5mm" y="120mm"…>
<ui … />
<value … >

<text maxChars=3 … />
</value>

</field>
<field name="B" x="45mm" y="120mm" …>

<ui … />
<value … >

<text maxChars=3 … />
</value>

</field>
</subform>

Traversal When Speech Application Completes the Current Container

If a speech-capable XFA processing application is presenting an XFA form, the text associated with each
container is spoken. The speak element describes the order in which a container’s text should be spoken.
See “Speech of Text Associated with a Container” on page 498.

Traversal Sequences That Include Objects Ineligible for Input Focus

In order to serve the speech tool, the chain of next links may include draw and caption objects. Such
objects cannot accept input focus unless they happen to contain hyperlinks. Therefore, when advancing
focus to the next input widget the XFA application continues traversing the chain until it reaches an object
that does accept input focus. It is up to the template creator to ensure that the template does not present
the XFA application with a non-terminating loop. See also “Speech of Text Associated with a Container” on
page 498.

XFA Specification
Chapter 14, User Experience Accessibility and Field Navigation 497

Each individual hyperlink within a draw or caption object is a separate object that can accept input focus.
When the draw or caption object is reached in the traversal sequence, traversal proceeds sequentially
through each hyperlink in the object. The only operations available to the user when such a hyperlink has
input focus is to actuate the link (typically by clicking on it or pressing Enter) or to traverse away from the
hyperlink.

In contrast, when a hyperlink occurs in a field that provides read/write access, the user may also modify the
content of the hyperlink, including both the displayed text and the target URL. A hyperlink in a read/write
field is not part of the traversal sequence but, once the field has input focus, the hyperlink text may be
navigated to and over using arrow keys just like any other text in the field. Necessarily the hyperlink text
must be at least one character long. Removing the last of the hyperlink text removes the entire hyperlink,
and the target URL is discarded.

Delegating Focus to Another Container

The traverse element allows a container to delegate focus to another container. When an XFA form is first
displayed, focus is assigned to the first subform, per document order. Such focus assignment may be
delegated to another container with operation="first", as shown in the following example.

Example 14.28 Delegated focus

<subform … >
<traversal>

<traverse ref="mySubform.A" operation="first"/>
</traversal>
<subform name="mySubform" … >

<field name="A" … />
</subform>

</subform>

Script Override of Traversal Order

Scripts can set the keyboard focus explicitly via a call to $host.setFocus(). This call takes precedence
over any traversal that is pending due to the user’s actions. For example, consider the following fragment.

Example 14.29 setFocus() overrides traversal

<field name="fieldA" …>
<traversal>

<traverse ref="fieldB" operation="next"/>
</traversal>
<event action="onExit">

<script>$host.setFocus($.resolveNode("fieldC"))</script>
</event>

</field>
<field name="fieldB" …/>
<field name="fieldC" …/>

When the user tabs out of fieldA, a traversal to fieldB is queued. Next the event script runs with the
focus (and current container) still set to fieldA. However the event script sets the focus explicitly to
fieldC. As a side-effect of setting the focus explicitly, the traversal to fieldB is discarded without being
executed.

XFA Specification
Chapter 14, User Experience Accessibility and Field Navigation 498

The same behavior applies if the user attempts to leave fieldA by clicking on another field, or via any
other means of interactive navigation.

Accelerator Keys: Using Keyboard Sequences to Navigate
An XFA template may include accelerator keys that allow users to move from field to field, by typing in a
control sequence in combination with a field-specific character. Accelerator keys may also be specified for
exclusion groups.

Accelerator keys support the following:

● Accessibility for sight-impaired users

● Speed navigation for expert users

The following XFA template segment shows fields for which accelerator keys have been defined.

Example 14.30 Accelerator keys

<field name="fieldA" accessKey="A" … />
<field name="fieldB" accessKey="B" … />
<exclGroup name="exclusionGroupC" accessKey="C" … />

If a form having the fields and exclusion groups summarized above is opened on a Windows system,
typing the keys Alt and A takes the user to the field named fieldA and typing the the keys Alt and C
takes the user to the exclusion group named exclusionGroupC.

Speech of Text Associated with a Container
XFA template supports speech enunciation, by allowing a form to specify whether the text associated with
a container should be spoken and if so, the order in which it should be spoken. This element is a property
of the following container elements: subform, field, exclusion group, and draw.

The speak element specifies speech order of the following text sources:

● Text defined by the speak element itself

● Text defined by the toolTip element

● Container caption, although this does not apply to speak properties within subform containers

● Container name

Other Accessibility-Related Features
Each XFA container may include a role property, which specifies the role played by the container. XFA
processing applications can use this property to identify the role of subforms, exclusion groups, fields, and
draws. One possible use of this new attribute is to assign it values from the HTML conventions. Such values
would declare the role of the parent container, such as role="TH" (table headings) and role="TR"
(table rows). Such role declarations may be used by speech-enabled XFA processing applications to
provide information about a particular container.

In the following example, the TableHeading subform sets the role property to TH to indicate it is a
table heading and the TableRow subforms sets the role property to TR to indicate it is a row. XFA allows
the role attribute to be any pcdata; however, this example adopts naming conventions described in the
HTML Techniques for Web Content Accessibility Guidelines 1.0.

XFA Specification
Chapter 14, User Experience The User Experience of Validation 499

Example 14.31 Fragment using assist to declare row and column roles

<subform layout="table" columnWidths="1in -1" … >
<subform layout="row" name="TableHeading" … >

<assist role="TH"/>
<draw name="ColumnHeadA" … />
<draw name="ColumnHeadB" … />
<draw name="ColumnHeadC" … />

</subform>
<subform name="TableRow" … >

<assist role="TR"/>
<field name="CellA" … />
<field name="CellB" … />
<field name="CellC" … />

</subform>
</subform>

A speech-enabled XFA processing application might include role info in the spoken or tool-top
information about a particular container. For example, if the user floats the tool tip over CellA, a speech
program might announce information about the heading under which CellA appears.

The User Experience of Validation
Validation of user-supplied data is an important benefit of electronic forms. However validation can also
present a trying experience to the user. This section describes the user experience that XFA processors
must provide in interactive environments.

There are three types of validation checks: non-empty checks, field pictures, and validation scripts. The
checks are not always performed at the same time.

Often a session starts out with the user opening an empty form. Clearly at this point the non-empty
validation checks, if applied, would fail. Even after the user has filled in the first field, other fields are as yet
empty and would still fail non-empty validation checks. For that reason non-empty validation checks are
only applied when the form is about to commit its data, for example by submitting it or saving it to a file.

Picture validations are applied whenever a field has been modified by the user and the focus is about to
shift out of the field, or the field has been modified by a calculation, or a commit is about to occur.
However picture validation is not applied if the non-empty validation has already failed for the same field.

Each validation script runs whenever the user or a calculation alters the content of any field upon which
the script depends. Validation scripts also run when a commit is about to occur. However the validation
script for a field is not applied if the non-empty validation or picture validation has already failed for that
field.

It is not easy to find all dependencies in validation scripts, even when they depend upon dynamic data
processing inside a script. For instance, a script could generate SOM expressions as text strings and
evaluate them at run time. It is also possible to interpret dynamically-generated Javascript or FormCalc
expressions using the eval() function. Static analysis could not detect such dependencies. Instead, the
Adobe implementation tracks all references that are made by the script as it is executed. And, it executes
the script even if the non-empty or picture validation would fail, but in those cases it ignores the result
returned by the script. (This is safe to do because validation scripts are not allowed to have side-effects.)
This approach catches dependencies that static analysis would not, however it can also miss dependencies
if they occur inside code branches that have never yet been executed.

XFA Specification
Chapter 14, User Experience The User Experience of Validation 500

Note that, even in an interactive environment, some data may be pre-supplied as a data document or
during the session by a web service. This data is entered into the form using a merge operation. XFA
processors are not required to verify data entered this way, however the Acrobat family of products does
so.

Since XFA 2.8, when the XFA processor has detected a validation failure, and the validation severity is set to
warning, the XFA processor has presented the user with a choice. The user can dismiss the validation
failure or override it.

dismiss

Dismissing the failure indicates to the XFA processor that the user understands the failure and
wishes to return to the form to correct the data. Implicit in this is the understanding that if the XFA
processor subsequently detects the same validation failure in the same field it will once again
prompt for user action. This was all the user could do prior to XFA 2.8.

override

Overriding the failure tells the XFA processor that the user takes responsibility for the data as it is.
Once the validation has been overridden the XFA processor does not display this validation failure
again. Note that in order to ensure consistency the validation is still performed, but the result of
the validation is ignored by the XFA processor.

Some XFA applications (such as the Acrobat family of products) can save the form to an external file and
reload it later in a different session. It is desirable for the new session to pick up where the old session left
off, with validation overrides still in place. The Acrobat family of products solves this problem by inserting
markup into the saved form, as described in “The v2.7-scripting flag” on page 1209.

 501

15 Dealing with Data in Different XML Formats

Although XFA’s default data loading mechanism is quite generalized, there are times when it is not
appropriate for a particular XML document. XFA provides alternate data loading behaviors, described in
“Extended Mapping Rules” on page 501. For most (but not all) of these extended mapping rules the
behavior on input and output is symmetrical, so that round-tripping is automatically accommodated. In
addition XFA also supports the use of XSLT to transform the data document before it is loaded and/or after
it is unloaded, as described in “XSLT Transformations” on page 538.

Extended Mapping Rules
This specification provides a number of rules that are not in effect by default, but are made available by the
implementation as overrides or extensions to the default mapping rules. These extended mapping rules
may be invoked via configuration settings in the XFA Configuration DOM or via namespaced attributes in
the XML data document. The extended mapping rules are described in detail in the following sections.

The following table summarizes the relationship between the extended mapping rules. Sequence indicates
the order in which the rules are applied to the data as it is loaded from an XML data document into the XFA
Data DOM, processed, and subsequently unloaded from the XFA Data DOM into a new XML data
document. Category is a rough grouping of rules that are similar in character. Description indicates the
specific rule. Governed By indicates what part of the XFA Configuration DOM controls the invocation of the
rule.

The phrases in the Category column have the following meanings:

Data Binding. Modifies data in the XFA Data DOM but not until data binding is performed

Document Range. Alters what portion of the original XML data document is mapped into the XFA Data
DOM during load and back out again during unload

Transform. Modifies data in the XFA Data DOM and possibly the XML data DOM

Sequence Category Description Governed By

1 Document Range Nominate start element, which is
described on page 532

startNode element in
configuration

2 Document Range Exclude namespaces excludeNS element in
configuration

3 Document Range Map attributes to dataValue
nodes

attributes element in
configuration

4 Transform Omit content based on element
name

presence element in
configuration with value
ignore or dissolve

5 Transform Force mapping to a dataValue
node or dataGroup node, as
described on page 505

xfa:dataNode attribute in
XML data document

XFA Specification
Chapter 15, Dealing with Data in Different XML Formats Extended Mapping Rules 502

For simplicity, the descriptions of some of the extended mapping rules below assume that the XFA Data
DOM is first loaded using the default behavior and then the extended mapping rules are applied in
subsequent passes by modifying the XFA Data DOM. Conforming implementations may reduce the
number of physical passes to optimize performance provided the same end result is obtained.

The extended mapping rules are invoked by supplying the appropriate content to elements in the XFA
Configuration DOM. For many of those elements the content may be one of the following standardized
keywords:

preserve

preserve in every case causes the data loader to copy the content as-is from the XML data DOM
into the XFA Data DOM. (Note that this description assumes that XML escape sequences such as
""" have already been converted to literal Unicode characters in the XML data DOM. The
details of an implementation may differ provided the effect is the same.) For most mapping rules
preserve mimics the default behavior, but there are exceptions, which are described along with
the individual mapping rules below.

ignore

ignore in every case causes the data loader to omit content from the XFA Data DOM but do not
make any changes to it in the XML data DOM. If a subsequent unload operation is done, the data
unloader inserts the ignored content into the output document at the appropriate place, copying
it from the XML data DOM.

6 Transform Rename nodes based on
element or attribute name

rename element in
configuration

7 Transform Replace element name with
attribute value

nameAttr element in
configuration

8 Transform Flatten substructure based on
original element name

presence element in
configuration with value
dissolveStructure

9 Transform Trim white space whitespace element in
configuration

10 Transform Modify structure based on
empty content

ifEmpty element in
configuration

11 Transform Group adjacent data into records groupParent element in
configuration

12 Document Range Nominate record elements record element in
configuration

13 Document Range Exclude records by position range element in configuration

14 Data Binding Supply default bind picture
clause

picture element in
configuration

Sequence Category Description Governed By

XFA Specification
Chapter 15, Dealing with Data in Different XML Formats Extended Mapping Rules 503

remove

remove in every case causes the data loader to omit content from the XFA Data DOM and also
remove it from the XML data DOM. If a subsequent unload operation is done, the data unloader
produces a document without the removed content.

Other keywords and their meanings are defined under the extended mapping rule in which they are used.

Document Range

The term document range refers to the extent of the XML data document that is processed by the data
loader, such as the whole XML data document or a fragment, as previously described in the section
“Default Data Mapping Rules” on page 131.

Some extended mapping rules affect the position and extent of the document range. The set of elements
associated with these rules consists of startNode, record, incrementalLoad, and window.

Transforms

Some of the extended mapping rules are known collectively as transforms. The elements that invoke these
rules are only valid inside a transform element, as specified by the XFA configuration schema “Config
Common Specification” on page 846. The set of elements associated with transforms consists of
presence, whitespace, ifEmpty, nameAttr, rename and groupParent.

The XFA Configuration DOM may include one or more transform elements. Each transform element
has a ref attribute. The value of the ref attribute determines where the mapping is applied. The value is
a list of one or more names, where each name is either an element tag or "*". The transform element
applies to all data elements with tags that match any of the names in its list. "*" is a special pattern that
matches all tags. The transform also matches all tags if the value of its ref attribute is an empty string ("").
The set of data element tags that match a particular transform element is referred to here as the
transform set for that element.

The data loader applies the mapping to elements whose names match (case-sensitive) the value of the
ref attribute or, if the value of the ref attribute is the empty string (""), to the entire document. Some
transforms apply to all content of the matched element, including sub-elements, whereas other
transforms apply only to the element itself and its character data. The scoping in each case is natural to the
type of transform. For example, white space trimming transforms, when applied to data values, affect all of
the descendants of the dataValue node containing data (as opposed to metadata), whereas renaming
affects only the node corresponding to the nominated element or attribute itself. However, an element
mapped by one transform may include an element mapped by the same or a different transform. The
data loader responds to such nesting by applying the specified transforms sequentially in a depth-first
manner. For example, if the transform for an outer element says it is to be discarded but the transform for
an inner element says it is to be preserved, the inner element is at first preserved (by its own transform) but
then discarded along with the other descendents of the outer element.

Some transforms change the name of the node in the XFA Data DOM that corresponds to the element.
These do not affect which later transforms will be applied to the node. Processing is controlled by the
original element tag, not the name of the node in the XFA Data DOM.

Note: The value of ref must be a simple node name. Readers who are familiar with XFA SOM expressions
might assume that SOM expression syntax is valid here, but it is not. As a consequence of this
restriction, the transforms within the transform element apply to every node in the document
range with a matching name and appropriate type, regardless of the node's position in the tree.

XFA Specification
Chapter 15, Dealing with Data in Different XML Formats Extended Mapping Rules 504

Each transform element must include at least one operation (child element). There must not be more
than one child element of the same name within a single transform element.

The data loader does not apply these transformations to any part of the XML data document above the
start element, as described in “The startNode Element” on page 532. Likewise it does not apply these
transformations to any part of the XFA Data DOM representing parts of the XML data document above the
start element. Also, it does not apply these transformations to any part of the XML data document
excluded from loading by the namespace rules except when carrying out a remove directive. When
carrying out a remove, all descendents of the node to be removed from the XML DOM are also removed,
regardless of namespace.

The data loader applies these transformations in the order shown in the table in Extended Mapping Rules.
The ignore keyword has an effect both when data is loaded into the XFA Data DOM and when it is
unloaded into an XML data document. The other transforms only have effects when loading.

It is not recommended for a single XFA Configuration DOM to contain multiple transform elements with
the same value for ref. However if this does happen the data loader selects the highest-precedence
transformation of the type currently being processed for a particular data element as shown by the
following table. In the table higher precedence is indicated by a higher number.

The table has no entries for the other transforms because they do not prioritize. Instead when there are
conflicting transforms, the data loader uses the one that comes last in the configuration document.
Similarly when different transforms have the same type and precedence (for example ltrim and rtrim)
the data loader uses whichever comes last in the configuration document.

Example 15.1 Fragment showing transforms of different priorities

Suppose the XFA configuration document contains the following.

<transform ref="book">
 <rename>pamphlet</rename>
 <presence>dissolve</presence>

Transform Precedence Option

presence 3 dissolveStructure

2 dissolve

1 ignore

0 preserve

whitespace 3 normalize

2 trim

1 ltrim, rtrim

0 preserve

ifEmpty 2 remove

1 ignore

0 dataGroup, dataValue

XFA Specification
Chapter 15, Dealing with Data in Different XML Formats Extended Mapping Rules 505

 <whitespace>trim<whitespace>
</transform>
<transform ref="book">
 <rename>publication</rename>
 <ifEmpty>remove</ifEmpty>
 <whitespace>normalize<whitespace>
 <presence>preserve</presence>
</transform>

The order of processing for a book element in the XML data document is:

1. the last-occurring rename transformation publication

1. the higher-precedence presence transformation dissolve

2. the higher-precedence whitespace transformation normalize

3. the sole ifEmpty transformation remove

The XFA Configuration DOM may contain a transform element with a ref value of "" (the empty string),
which supplies a default transformation for all elements. The data loader applies this transformation to all
elements that do not match a transform element with a non-empty value for ref. For example,
consider the following fragment of an XFA configuration document.

Example 15.2 Fragment showing use of ref=""

<transform ref="">
<whitespace>trim</whitespace>

</transform>
<transform ref="address">

<whitespace>preserve</whitespace>
</transform>

This causes leading and trailing white space to be trimmed from all dataValue node value properties
except for those originating from address elements, which keep their leading and trailing white space.

There can be multiple transform elements with a ref value of "". Conflicts between these are resolved
the same way as described above for transform elements having identical values for ref.

The attributes Element

This section defines an extended mapping rule that can be used to prevent the mapping of XML attributes
to dataValue nodes.

The XFA Configuration DOM may include an attributes element that overrides the default behavior.
See “Config Common Specification” on page 846 for the full schema. The content of the attributes
element must be one of the following keywords:

attribute keyword Meaning

delegate Allows an implementation-defined behavior, which may have the effect of the
ignore or preserve keywords.

XFA Specification
Chapter 15, Dealing with Data in Different XML Formats Extended Mapping Rules 506

Invoking the extended mapping rule with preserve keyword produces the same results as the default
mapping behavior for attributes. This default behavior excludes certain attributes that have special
meanings. For more information see “Attributes” on page 142.

Attributes may also be excluded from loading based on namespace (as described in “The excludeNS
Element” on page 506). The data loader does not load attributes with excluded namespaces regardless of
the value of the attributes element in the XFA Configuration DOM.

Invoking the extended mapping rule with the ignore keyword causes the loader to exclude all attributes
from the XFA Data DOM. This does not prevent the processing of attributes that have special meanings;
they are still processed but are not represented by dataValue nodes in the XFA Data DOM. When the
data is unloaded the XFA processor reinserts the attributes preserved in the XML Data DOM. It may reinsert
them in a different order than their order in the original XML data document. This is permissible because
the XML Specification [XML1.0] dictates that the order of elements is not significant.

Apart from the above exclusions, the behavior specified by the XFA Configuration DOM overrides the
default behavior for the entire XML data document.

The excludeNS Element

This specification provides an extended mapping rule to exclude document content from data loader
processing by providing one or more XML namespaces that refer to the content intended for exclusion. By
default, as described in the section “Namespaces” on page 134, the data loader excludes content
belonging to a number of predetermined namespaces.

The XFA Configuration DOM may include an excludeNS element that overrides the default behavior. See
“Config Common Specification” on page 846 for the full schema. The behavior specified by the XFA
Configuration DOM overrides the default behavior for the entire XML data document.

The content of the excludeNS element is a white space separated list of Uniform Resource Identifiers as
described by [URI]. The data loader excludes elements belonging to any namespace associated with any of
these URIs. The data loader also excludes any attributes belonging to any such namespace. Finally, it
excludes all attributes belonging to any element, which is itself excluded.

Note that a namespace specified with a namespace prefix is not inherited, whereas the default namespace
is inherited. Thus if an element declares a default namespace that is excluded, elements contained within
it are excluded by default. However any of the contained elements may declare a different namespace and
so escape exclusion. When a containing element is excluded but its contained element is included, the
node corresponding to the contained element is appended to the XFA Data DOM at the same point where
the node corresponding to the containing element would have been appended had it not been excluded.

Example 15.3 Data including some portions with non-default namespace

In this fragment of an XML data document, the default name prefix is declared to be
"http://www.example.org/orchard/". This is inherited by most elements and their attributes,
however some override the default with the namespace "http://www.example.org/field/", which
is signified by the namespace prefix field.

ignore The data loader does not map attributes to dataValue nodes.

preserve The data loader maps attributes to dataValue nodes, except those attributes
excluded by some other rule.

attribute keyword Meaning

XFA Specification
Chapter 15, Dealing with Data in Different XML Formats Extended Mapping Rules 507

<property xml:lang="en">
 <farm xmlns="http://www.example.org/orchard/"
 xmlns:field="http://www.example.org/field/">
 <tree class="pome">apple</tree>
 <tree class="citrus">lemon</tree>
 <field:plant class="tuber">potato</field:plant>
 <tree field:role="border">poplar</tree>
 </farm>
</property>

Assume that the XFA Configuration DOM has been set to load attributes into the XFA Data DOM, as
described in “The attributes Element” on page 505. Without the excludeNS option, the resulting subtree
of the XFA Data DOM contains:

[dataGroup (property)
 [dataGroup (farm) xlmns="http://www.example.org/orchard/"]
 [dataValue (tree) = "apple"
 xlmns="http://www.example.org/orchard/"]
 [dataValue (class) = "pome" contains="metadata"
 xlmns="http://www.example.org/orchard/"]
 [dataValue (tree) = "lemon"
 xlmns="http://www.example.org/orchard/"]
 [dataValue (class) = "citrus" contains="metadata"
 xlmns="http://www.example.org/orchard/"]
 [dataValue (plant) = "potato" namePrefix="field"
 xlmns="http://www.example.org/field/"]
 [dataValue (class) = "tuber" contains="metadata"
 xlmns="http://www.example.org/orchard/"]
 [dataValue (tree) = "poplar"
 xlmns="http://www.example.org/orchard/"]
 [dataValue (role) = "border" namePrefix="field"
 contains="metadata" xlmns="http://www.example.org/field/"]

Note that the xml:lang attribute of the property element is excluded by the default namespace
exclusion rule described in “Namespaces” on page 134. The default namespace exclusions are mandatory
and not controlled by the XFA Configuration DOM.

Example 15.4 Data excluded by namespace

If the excludeNS option was used to exclude http://www.example.org/field/, the XFA Data DOM
would include only those portions shown below in bold.

<property xml:lang="en">
 <farm xmlns="http://www.example.org/orchard/"
 xmlns:field="http://www.example.org/field/">
 <tree class="pome">apple</tree>
 <tree class="citrus">lemon</tree>
 <field:plant class="tuber">potato</field:plant>
 <tree field:role="border">poplar</tree>
 </farm>
</property>

The namespace declarations on the farm element are processed by the data loader but not placed
directly into the dataValue node corresponding to the element where they are found, as described in
“About the XFA Data DOM” on page 123. However, since the farm element type does not include a

XFA Specification
Chapter 15, Dealing with Data in Different XML Formats Extended Mapping Rules 508

namespace prefix it adopts the default namespace declared by one of its attributes. The resulting subtree
of the XFA Data DOM would contain:

[dataGroup (property)]
 [dataGroup (farm) xmlns="http://www.example.org/orchard/"]
 [dataValue (tree) = "apple"
 xlmns="http://www.example.org/orchard/"]
 [dataValue (class) = "pome" contains="metadata"
 xlmns="http://www.example.org/orchard/"]
 [dataValue (tree) = "lemon"
 xlmns="http://www.example.org/orchard/"]
 [dataValue (class) = "citrus" contains="metadata"
 xlmns="http://www.example.org/orchard/"]
 [dataValue (tree) = "poplar"
 xlmns="http://www.example.org/orchard/"]

Example 15.5 Different data excluded by namespace

If instead the namespace "http://www.example.org/orchard/" was excluded, the XFA Data DOM
would include the portions shown below in bold.

<property xml:lang="en">
 <farm xmlns="http://www.example.org/orchard/"
 xmlns:field="http://www.example.org/field/">
 <tree class="pome">apple</tree>
 <tree class="citrus">lemon</tree>
 <field:plant class="tuber">potato</field:plant>
 <tree field:role="border">poplar</tree>
 </farm>
</property>

The resulting subtree of the XFA Data DOM would contain:

[dataGroup (property)]
 [dataValue (plant) ="plant" namePrefix="field"
 xmlns="http://www.example.org/field"

Example 15.6 Most data excluded by namespace

Finally, if both "http://www.example.org/orchard/" and
"http://www.example.org/field" were excluded, only the property element would remain. As
an empty element it would by default be mapped to a dataValue node.

[dataValue (property) = ""]

The groupParent Element

XFA is designed to deal efficiently with data grouped into records. A record consists of a dataGroup node
with dataValue nodes and possibly lower-level dataGroup nodes under it. Most XML data documents
are already grouped this way, but some are just flat streams of elements. The flat streams nonetheless
usually consist of sets of adjacent related elements comprising logical records. This transform provides for
grouping logical records under dataGroup nodes, hence turning them into XFA-style records. Once
grouped the data can then be processed record-by-record rather than all at once, which reduces resource
consumption for documents containing many records. This transform also gives more control over the
mapping of records into dataGroup nodes than the data binding process alone.

XFA Specification
Chapter 15, Dealing with Data in Different XML Formats Extended Mapping Rules 509

Example 15.7 Book records as flat data (not grouped)

The following data file contains information about two different books as a flat series of elements.

<items>
 <ISBN>15536455</ISBN>
 <title>Introduction to XML</title>
 <firstname>Charles</firstname>
 <lastname>Porter</lastname>
 <ISBN>15536456</ISBN>
 <title>XML Power</title>
 <firstname>John</firstname>
 <lastname>Smith</lastname>
</items>

Each group of related records begins with an ISBN element and ends with a lastname element. It would
be appropriate to regroup the data so that each group of related records is descended from a unique book
dataGroup node. This regrouping can be done by the loader. The result is that dataGroup nodes which
are not directly represented in the XML data document are inserted into the Data DOM. The dataValue
nodes from the XML data document are placed as children of the inserted groups as follows:

[items]
 [book]
 [ISBN = "15536455"]
 [title = "Introduction to XML"]
 [firstname = "Charles"]
 [lastname ="Porter"]
 [book]
 [ISBN = "15536456"]
 [title = "XML Power"]
 [firstname = "John"]
 [lastname = "Smith"]

The transformation that accomplishes this regrouping uses the groupParent element. The syntax is as
follows.

<transform name="ISBN, title, firstname, lastname">
 <groupParent>book</groupParent>
</transform>

When the loader encounters an ISBN element, it starts a new book dataGroup node and begins placing
dataGroup nodes under it. It continues doing so until it encounters an element that is either not in the
current transform set, or is in the set but has already occurred once within the record. Hence in the
example it starts a new book dataGroup node (book[0]) when it encounters the first ISBN element,
continues the same dataGroup node for the subsequent title, firstname, and lastname elements,
then closes that dataGroup node because the next element (ISBN) has already appeared in the current
record. Instead it starts a new dataGroup node (book[1]) and makes the next four dataValue nodes
children of that dataGroup node.

This algorithm makes it possible to correctly group dataValue nodes even if individual data values
within a group are sometimes missing from the data, or in a different order than they are listed in the
transform set.

Example 15.8 Flat book data with some values omitted

Suppose the data had been as follows.

XFA Specification
Chapter 15, Dealing with Data in Different XML Formats Extended Mapping Rules 510

<items>
 <ISBN>15536455</ISBN>
 <title>Introduction to XML</title>
 <lastname>Porter</lastname>
 <title>XML Power</title>
 <ISBN>15536456</ISBN>
 <firstname>John</firstname>
 <lastname>Smith</lastname>
</items>

Given the same configuration option as the previous example, the resulting Data DOM would contain:

[items]
 [book]
 [ISBN = "15536455"]
 [title = "Introduction to XML"]
 [lastname ="Porter"]
 [book]
 [title = "XML Power"]
 [ISBN = "15536456"]
 [firstname = "John"]
 [lastname = "Smith"]

Note that when any groupParent transform is present in the configuration, the loader operates in a
mode which accepts only record data. Any element other apart from the outermost enclosing element
that is not listed in a groupParent transform set is ignored, that is, not loaded into the Data DOM. By
contrast if the outermost enclosing element is not named in a groupParent transform set it is loaded in
the normal (default) way.

Example 15.9 Non-group elements ignored

Suppose the data document above had additional elements as follows.

<items>
 <reportDate>17 December 2004</reportDate>
 <ISBN>15536455</ISBN>
 <title>Introduction to XML</title>
 <lastname>Porter</lastname>
 <pubDate>August 2001</pubDate>
 <title>XML Power</title>
 <ISBN>15536456</ISBN>
 <pubDate>April 2002</pubDate>
 <firstname>John</firstname>
 <lastname>Smith</lastname>
</items>

Given the same configuration option as the previous examples, the resulting Data DOM would contain:

[items]
 [book]
 [ISBN = "15536455"]
 [title = "Introduction to XML"]
 [lastname ="Porter"]
 [book]
 [title = "XML Power"]
 [ISBN = "15536456"]
 [firstname = "John"]

XFA Specification
Chapter 15, Dealing with Data in Different XML Formats Extended Mapping Rules 511

 [lastname = "Smith"]

In the example, the items element is not associated with any groupParent but it is the outermost
element so it is loaded as a dataGroup node in the normal way. However, the reportDate element and
the two pubDate elements are not loaded because they are not associated with any groupParent and
they are not the outermost element in the data document. This shows how the transform can be used to
exclude unwanted data.

Sometimes a data value appears more than once within a single record. This can be handled simply by
repeating the name of the data value in the transformation set. The loader accepts one child by that name
for each occurrence of the name in the transformation set.

Example 15.10 Group containing up to two comment elements

Suppose each group of book data may contain up to two comment elements, as follows.

<items>
 <ISBN>15536455</ISBN>
 <title>Introduction to XML</title>
 <firstname>Charles</firstname>
 <lastname>Porter</lastname>
 <comment>new</comment>
 <ISBN>15536456</ISBN>
 <title>XML Power</title>
 <firstname>John</firstname>
 <lastname>Smith</lastname>
 <comment>used</comment>
 <comment>good condition</comment>
</items>

The grouping transform is as follows:

<transform name="ISBN, title, firstname, lastname, comment, comment">
 <groupParent>book</groupParent>
</transform>

When loaded into the Data DOM, the result is:

[items]
 [book]
 [ISBN = "15536455"]
 [title = "Introduction to XML"]
 [firstname = "Charles"]
 [lastname ="Porter"]
 [comment ="new"]
 [book]
 [ISBN = "15536456"]
 [title = "XML Power"]
 [firstname = "John"]
 [lastname = "Smith"]
 [comment = "used"]
 [comment = "good condition"]

The regrouping facility can also deal with a mixture of record types.

XFA Specification
Chapter 15, Dealing with Data in Different XML Formats Extended Mapping Rules 512

Example 15.11 Grouping a mixture of group types

Suppose the data file contained the following mixture of book and CD records.

<items>
 <ISBN>15536455</ISBN>
 <title>Introduction to XML</title>
 <firstname>Charles</firstname>
 <lastname>Porter</lastname>
 <cdid>4344-31020-2</cdid>
 <title>Big Calm</title>
 <artist>Morcheeba</artist>
 <ISBN>15536456</ISBN>
 <title>XML Power</title>
 <firstname>John</firstname>
 <lastname>Smith</lastname>
</items>

Separate grouping transforms must be defined for the cd and book nodes, as follows.

<transform name="ISBN, title, firstname, lastname">
 <groupParent>book</groupParent>
</transform>
<transform name="cdid, title, artist">
 <groupParent>cd</groupParent>
</transform>

The result of applying both these transforms when loading the Data DOM is:

[items]
 [book]
 [ISBN = "15536455"]
 [title = "Introduction to XML"]
 [firstname = "Charles"]
 [lastname ="Porter"]
 [cd]
 [cdid = "4344-31020-2"]
 [title = "Big Calm"]
 [artist = "Morcheeba"]
 [book]
 [ISBN = "15536456"]
 [title = "XML Power"]
 [firstname = "John"]
 [lastname = "Smith"]

Note that title appears as a member of both the book group and the cd group. This is acceptable and
does not cause any problems as long as title is not the first element in its logical record. If it is the first
element in its record, the loader assigns it to the group parent defined by the first transform in document
order that has the element tag in its transform set and that defines a group parent. Note that it does not
matter whether or not title is the first name in its transform set. Order in the transform set is never
significant.

Grouping transforms can nest to any level. This is done by including the name of the parent for the inner
group in the transform set for the outer group.

XFA Specification
Chapter 15, Dealing with Data in Different XML Formats Extended Mapping Rules 513

Example 15.12 Nesting groups

We wish to group the firstname and lastname elements under an author node, which is itself a child
of the book node. This is expressed as follows.

<transform name="ISBN, title, author">
 <groupParent>book</groupParent>
</transform>
<transform name="firstname, lastname">
 <groupParent>author</groupParent>
</transform>

Assume the book data is as follows.

<items>
 <ISBN>15536455</ISBN>
 <title>Introduction to XML</title>
 <firstname>Charles</firstname>
 <lastname>Porter</lastname>
 <ISBN>15536456</ISBN>
 <title>XML Power</title>
 <firstname>John</firstname>
 <lastname>Smith</lastname>
</items>

When the book data is loaded using these transformations, the result is:

[items]
 [book]
 [ISBN = "15536455"]
 [title = "Introduction to XML"]
 [author]
 [firstname = "Charles"]
 [lastname ="Porter"]
 [book]
 [ISBN = "15536456"]
 [title = "XML Power"]
 [author]
 [firstname = "John"]
 [lastname = "Smith"]

There is one important difference between grouping data values and grouping data groups. dataGroup
nodes are allowed to repeat an unlimited number of times as siblings under the same parent, even though
the name of the data group appears only once in its transform set. This rule is appropriate for most data
documents. For example, consider the set of transforms defined for the previous example. The author
dataGroup node contains at most two data values, firstname and lastname. It would not be
appropriate to accept another firstname or lastname into the record containing the author’s name.
Similarly, in this database, each book can have only one ISBN and one title. However, a book can have any
number of authors.

Example 15.13 Book with multiple authors

Consider the following data.

<items>
 <ISBN>15536455</ISBN>
 <title>Introduction to XML</title>

XFA Specification
Chapter 15, Dealing with Data in Different XML Formats Extended Mapping Rules 514

 <firstname>Charles</firstname>
 <lastname>Porter</lastname>
 <firstname>Elizabeth</firstname>
 <lastname>Matthews</lastname>
 <ISBN>15536456</ISBN>
 <title>XML Power</title>
 <firstname>John</firstname>
 <lastname>Smith</lastname>
</items>

The result upon loading is:

[items]
 [book]
 [ISBN = "15536455"]
 [title = "Introduction to XML"]
 [author]
 [firstname = "Charles"]
 [lastname ="Porter"]
 [author]
 [firstname = "Elizabeth"]
 [lastname ="Matthews"]
 [book]
 [ISBN = "15536456"]
 [title = "XML Power"]
 [author]
 [firstname = "John"]
 [lastname = "Smith"]

There is a limitation to the type of data that this transform can handle. The data must not contain nested
dataValue nodes. (This implies that it must not contain rich text.) To deal with this use, the
dissolveStructure option of the presence transform, described under “The presence Element” on
page 521, to ensure the data is flattened before the groupParent transform processes it.

The ifEmpty Element

This section describes an extended mapping rule that can be used to modify the handling of elements
that are empty in the XML data document. This handling affects the XFA Data DOM and may optionally
alter the XML data DOM.

By default, as described in “Data Values Containing Empty Elements” on page 138, the data loader
represents empty elements in the XML data document with dataValue nodes in the XFA Data DOM. This
extended mapping rule provides for alternate behaviors in which the dataValue node is removed from
the Data DOM(s) or is converted to a dataGroup node.

For purposes of this specification:

● A dataGroup node is considered empty if and only if it has no children.

● A dataValue node is considered empty if and only if it has no children and its value property is
equal to the empty string ("").

As described in “Data Values Containing Mixed Content” on page 137, a dataValue node representing
mixed content has a value property equal to the ordered concatenation of the value properties of its
content-containing children. Hence it can have a value property equal to the empty string if all of its

XFA Specification
Chapter 15, Dealing with Data in Different XML Formats Extended Mapping Rules 515

children also have value properties equal to the empty string. However, even in this case it is not
considered empty because it has children.

Similarly a dataValue node representing an element with no content has a value property equal to the
empty string, but if it has a child representing an attribute it is not considered empty. Attributes are not
loaded by default but they may be loaded under control of a configuration option, as described in “The
attributes Element” on page 505.

Example 15.14 Empty and non-empty elements

Consider the following XML data document:

<item>
 <book>
 <ISBN registered="no"></ISBN>
 <title>Introduction to XML</title>
 <author>
 <firstname></firstname>
 <lastname></lastname>
 </author>

 </book>

</item>

The elements firstname and lastname are considered empty. The author, book and item elements
are not empty because each of them has children. Assuming attributes were not loaded the element ISBN
is empty, however if attributes were loaded it is not empty.

The XFA Configuration DOM may include one or more transform elements, each of which may include
an ifEmpty element that overrides the default behavior. See “Config Common Specification” on
page 846 for the full schema. If an ifEmpty element is present and the corresponding node is empty, the
behavior specified by the ifEmpty element overrides the default behavior within the scope of the
transform element.

The ifEmpty element must contain one of ignore, remove, dataGroup, or dataValue, where:

● ignore causes the data loader to remove the node representing the element from the XFA Data DOM,
unless it is the root node. This does not affect the XML data DOM.

● remove causes the data loader to remove the node representing the element from the XFA Data DOM,
unless it is the root node. In addition, if that node was removed from the XFA Data DOM, the data
loader removes the node corresponding to the element from the XML data DOM, so that if a new XML
data document is subsequently generated it does not contain the element.

● dataGroup causes the data loader to replace the dataValue node in the XFA Data DOM with a
dataGroup node, unless the node's parent is a dataValue node. This does not affect the XML data
DOM.

● dataValue causes the data loader to retain the dataValue node representing the element.

Invoking the extended mapping rule with dataValue produces the same results as the default behavior
for empty elements as described in section“Data Values Containing Empty Elements” on page 138.

As described above, an ifEmpty operation will be suppressed if it is trying to remove the root node or if it
is trying to make a dataGroup node the child of a dataValue node. When an operation is suppressed in
this way, the data loader should not issue an error message because the same operation may operate

XFA Specification
Chapter 15, Dealing with Data in Different XML Formats Extended Mapping Rules 516

legitimately on elements with the same name elsewhere in the XML data document, hence this is
expected to be a common occurrence.

Example 15.15 Empty elements mapped to data values

Consider the following XML data document:

<item>
 <book>
 <ISBN></ISBN>
 <title>Introduction to XML</title>
 <author>
 <firstname></firstname>
 <lastname></lastname>
 </author>

 </book>

</item>

With dataValue empty element handling, expressed in the XFA configuration document as:

<transform ref="ISBN">
 <ifEmpty>dataValue</ifEmpty>
</transform>
<transform ref="firstname">
 <ifEmpty>dataValue</ifEmpty>
</transform>
<transform ref="author">
 <ifEmpty>dataValue</ifEmpty>
</transform>

the author dataGroup node is not changed to a dataValue node because it has children, hence is not
empty. The result of the mapping is as follows:

[dataGroup (item)]
 [dataGroup (book)]
 [dataValue (ISBN) = ""]
 [dataValue (title) = "Introduction to XML"]
 [dataGroup (author)]
 [dataValue (firstname) = ""]
 [dataValue (lastname) = ""]

The above mapping is identical to that produced by default empty element handling, however it has a
higher priority. Default empty element handling can be overridden by forced data group mapping as
described below in “The xfa:dataNode Attribute” on page 535. By contrast dataValue empty element
handling takes precedence over forced data group mapping. This is a consequence of coming earlier in
the processing sequence.

Example 15.16 Empty elements mapped to data groups

With dataGroup empty element handling, expressed in the XFA configuration document as:

<transform ref="ISBN">
 <ifEmpty>dataGroup</ifEmpty>
</transform>
<transform ref="firstname">
 <ifEmpty>dataGroup</ifEmpty>

XFA Specification
Chapter 15, Dealing with Data in Different XML Formats Extended Mapping Rules 517

</transform>
<transform ref="author">
 <ifEmpty>dataGroup</ifEmpty>
</transform>

the result of the mapping in the XFA Data DOM is as follows:

[dataGroup (item)]
 [dataGroup (book)]
 [dataGroup (ISBN)]
 [dataValue (title) = "Introduction to XML"]
 [dataGroup (author)]
 [dataGroup (firstname)]
 [dataValue (lastname) = ""]

Example 15.17 Empty elements ignored

With ignore empty element handling, expressed in the XFA configuration document as:

<transform ref="ISBN">
 <ifEmpty>ignore</ifEmpty>
</transform>
<transform ref="firstname">
 <ifEmpty>ignore</ifEmpty>
</transform>
<transform ref="author">
 <ifEmpty>ignore</ifEmpty>
</transform>

the author dataGroup node is not ignored because it has a child and is therefore not empty. Hence the
result of the mapping in the XFA Data DOM is as follows:

[dataGroup (item)]
 [dataGroup (book)]
 [dataValue (title) = "Introduction to XML"]
 [dataGroup (author)]
 [dataValue (lastname) = ""]

Example 15.18 Empty elements lead to deletion of a data group

If on the other hand the XFA configuration document contains:

<transform ref="ISBN">
 <ifEmpty>ignore</ifEmpty>
</transform>
<transform ref="firstname">
 <ifEmpty>ignore</ifEmpty>
</transform>
<transform ref="lastname">
 <ifEmpty>ignore</ifEmpty>
</transform>
<transform ref="author">
 <ifEmpty>ignore</ifEmpty>
</transform>

XFA Specification
Chapter 15, Dealing with Data in Different XML Formats Extended Mapping Rules 518

the firstname and lastname dataValue nodes are both deleted from the XFA Data DOM, leaving the
author dataGroup node empty, so it in turn is deleted. This results in the following mapping in the XFA
Data DOM:

[dataGroup (item)]
 [dataGroup (book)]
 [dataValue (title) = "Introduction to XML"]

The data loader ensures that the order of declaration of ifEmpty rules in the configuration document
does not affect the outcome of empty node processing. One way to do this is to perform an ifEmpty pass
over the XFA Data DOM in bottom-up order, that is to perform the ifEmpty processing on the return back
from a leaf node towards the root.

Example 15.19 Recursive deletion of empty nodes

Alternatively ignore can be applied to the whole document as follows:

<transform ref="">
 <ifEmpty>ignore</ifEmpty>
</transform>

and in this case the recursive deletion of all empty nodes results in the following mapping in the XFA Data
DOM:

[dataGroup (item)]
 [dataGroup (book)]
 [dataValue (title) = "Introduction to XML"]

With remove in place of ignore, the result of the mapping in the XFA Data DOM is the same in every case
as for ignore (above), but for every node deleted from the XFA Data DOM the corresponding node in the
XML data DOM is also deleted.

The nameAttr Element

Some XML data documents use the same element type for different families of elements, with an attribute
indicating the element family. This style of XML is referred to in the following paragraphs as inverted XML.
(Inverted is not meant pejoratively.)

Example 15.20 Data expressed as inverted XML

Assume a document that conventionally would contain the following.

<?xml version="1.0"?>
<directory>
 <address>
 <street>10 King</street>
 </address>
</directory>

This could be expressed in inverted XML as follows.

<?xml version="1.0"?>
<directory>
 <item nodename="address">
 <item nodename="street">10 King</item>
 </item>
</directory>

XFA Specification
Chapter 15, Dealing with Data in Different XML Formats Extended Mapping Rules 519

This section describes an extended mapping rule that can be used to alter the handling of data expressed
as inverted XML. This affects the XFA Data DOM but has no effect on the XML data DOM.

By default, as described in “Default Data Mapping Rules” on page 131, the name property of each node in
the XFA Data DOM is copied from the local part of the element type of the corresponding element in the
XML data document. This extended mapping rule provides for behaviors in which the name property of a
nominated element is taken from the value of its nominated attribute.

The XFA Configuration DOM may include one or more transform elements, each of which may enclose a
nameAttr element that overrides the default behavior. See “Config Common Specification” on page 846
for the full schema. The behavior specified by the nameAttr element overrides the default behavior for
elements matching the ref property of the transform element. For each such element that has an
attribute with the given name that has a non-empty value, the data loader copies the value of the
nominated attribute into the name property of the associated node in the XFA Data DOM. For such
elements the data loader does not load the nominated attribute as a dataValue node even when
attribute loading is enabled, as described in “The attributes Element” on page 505; this applies even if the
attribute has an empty value.

Example 15.21 Loading inverted XML

For the example data above, the following fragment in the XFA configuration document would cause the
inverted XML to be represented in the XFA Data DOM the same way as the conventional XML:

<transform ref="item">
 <nameAttr>nodename</nameAttr>
</transform>

Although this renaming is performed before some other transformations it does not affect which later
transformations apply to the renamed node.

Example 15.22 Other transformations applied after loading inverted XML

For example, the following configuration fragment:

<transform ref="item">
 <nameAttr>nodename</nameAttr>
 <whitespace>normalize</whitespace>
</transform>

causes the data from the address elements in the above example to be renamed. It also causes those
same nodes to be normalized in whitespace, even though their names no longer match the ref value in
the transform element.

The XFA configuration document must not declare multiple different nameAttr mappings for the same
value of ref.

Example 15.23 Conflicting mappings

For example, the following fragment from an XFA configuration document illegally declares two different
nameAttr mappings for foo:

<transform ref="foo">
 <nameAttr>x</nameAttr>
</transform>
<transform ref="foo">
 <nameAttr>y</nameAttr>

XFA Specification
Chapter 15, Dealing with Data in Different XML Formats Extended Mapping Rules 520

</transform>

This is forbidden because it can lead to paradox. For example, consider the above illegal configuration
fragment and the following XML data document:

<foo x="abc" y="def">some content</foo>

If the configuration was legal, the data loader would be required to map the data value simultaneously to
both names abc and def, which is impossible.

If the value supplied by the nominated attribute is not a valid XML node name, the behavior of the data
loader is implementation-defined.

Note that this mapping is data-dependent in that the data determines what node names result.
Consequently it is not reversible; inverted XML can be loaded into the XFA Data DOM but cannot be
copied back into the XML data DOM.

The picture Element

During data binding and after an item of data has been bound to a particular field in the form, the
supplied data may be interpreted using a bind picture clause. The bind picture clause describes the
formatting of the data. For example, a bind picture clause of "$999.99" indicates that the data contains
a currency symbol, followed by three digits, followed by a radix indicator, followed by two more digits.

The XFA processor uses bind picture clauses to parse the numeric content and make the value available in
canonical format to scripting engines. It also uses the same picture clause on output to convert the
internal canonical number into the appropriate human-readable format. In the example, if the data string
is "€439,02" the canonical format is "439.02".

Bind pictures may be supplied by the template; however, if a particular field definition in the template
does not supply a bind picture clause, the data binding process looks for a default bind picture clause
supplied in the XFA configuration document. If a default clause is supplied, the data binding processor
uses it. In either case, the rawValue property of the field is set to the supplied value (in the example
"€439,02") and the value property is set to the canonical string (in the example "439.02"). If there is
no default clause, both properties are set to the supplied value.

The default picture clause is specified using a picture element. The picture element must be the child
of a transform element. The example default picture clause could be declared as follows.

Example 15.24 Picture clause supplied by the transform

<transform ref="prix">
 <picture>$999.99</picture>
</transform>

In this case, since the value of the ref attribute is prix, the default picture clause applies only to data
elements named prix, after any renaming imposed by other extended mapping rules. As always with
picture clauses, if the data does not match the picture clause the picture clause has no effect. For example
if the data was "gratis" both the rawValue and value properties of the field would be set to
"gratis". For more information about picture clauses see “Picture Clause Specification” on page 1108.
For an introduction to localization and canonicalization, see “Localization and Canonicalization” on
page 152.

XFA Specification
Chapter 15, Dealing with Data in Different XML Formats Extended Mapping Rules 521

The presence Element

This section describes an extended mapping rule that can be used to flatten or remove parts of the
hierarchy of data in the XFA Data DOM and optionally the XML data DOM.

The XFA Configuration DOM may include one or more transform elements, each of which may contain a
presence element that overrides the default behavior. See “Config Common Specification” on page 846
for the full schema. The behavior specified by the presence element overrides the default behavior
within the scope described for each keyword below.

The content of the presence element must be one of the keywords described below:

Invoking the extended mapping rule with preserve produces the same results as the default mapping
behavior for element names as described in “About the XFA Data DOM” on page 123.

Note the different scope for each keyword. In summary, ignore affects the specified node and its
descendents, whereas dissolve affects just the specified node and dissolveStructure affects just
the descendents.

Example 15.25 Example data for presence

Consider the following XML data document:

<item>
 <book>
 <ISBN>15536455</ISBN>
 <title>Introduction to XML</title>
 <author>
 <firstname>Charles</firstname>
 <lastname>Porter</lastname>
 </author>

 </book>

</item>

presence value Directs the data loader to …

preserve Preserves the original hierarchy.

ignore Removes the node matching the ref property and also its descendents from
the XFA Data DOM but not from the XML data DOM, unless the node is the
root node in which case the original hierarchy is preserved.

dissolve Removes the dataGroup node matching the ref property from the XFA and
XML data DOMs, promoting its immediate children to children of its parent,
unless the node is the root node in which case it is preserved. Descendents are
not affected by this operation.

dissolveStructure Removes all dataGroup nodes that are descendants of the node matching
the ref property from the XFA and XML data DOMs. The matching node itself
is not removed. All dataValue nodes that are descendants of the node are
promoted to children of the node.

XFA Specification
Chapter 15, Dealing with Data in Different XML Formats Extended Mapping Rules 522

Example 15.26 Default presence processing

With no suppression of data group mapping, expressed in the XFA configuration grammar [“Config
Common Specification” on page 846] as:

<transform ref="book">
 <presence>preserve</presence>
</transform>

the result of the mapping is identical to the default mapping as follows:

[dataGroup (item)]
 [dataGroup (book)]
 [dataValue (ISBN) = "15536455"]
 [dataValue (title) = "Introduction to XML"]
 [dataGroup (author)]
 [dataValue (firstname) = "Charles"]
 [dataValue (lastname) = "Porter"]

Example 15.27 Ignore presence processing

The following example suppresses the author dataGroup node and its substructure, expressed in the
XFA configuration document as:

<transform ref="author">
 <presence>ignore</presence>
</transform>

The result of the mapping is as follows:

[dataGroup (item)]
 [dataGroup (book)]
 [dataValue (ISBN) = "15536455"]
 [dataValue (title) = "Introduction to XML"]

Example 15.28 Dissolve presence processing

The following example suppresses the data group mapping of the book element, expressed in the XFA
configuration document as:

<transform ref="book">
 <presence>dissolve</presence>
</transform>

The result of the mapping is as follows:

[dataGroup (item)]
 [dataValue (ISBN) = "15536455"]
 [dataValue (title) = "Introduction to XML"]
 [dataGroup (author)]
 [dataValue (firstname) = "Charles"]
 [dataValue (lastname) = "Porter"]

Because dissolve also modifies the XML data DOM, when the data unloader creates a new XML data
document the new document reflects the dissolve operation. In this case the resulting XML data
document contains:

<item>
 <ISBN>15536455</ISBN>

XFA Specification
Chapter 15, Dealing with Data in Different XML Formats Extended Mapping Rules 523

 <title>Introduction to XML</title>
 <author>
 <firstname>Charles</firstname>
 <lastname>Porter</lastname>
 </author>
</item>

Example 15.29 Dissolve structure presence processing

The following example suppresses all data group mapping within the book element, expressed in the XFA
configuration document as:

<transform ref="book">
 <presence>dissolveStructure</presence>
</transform>

The result of the mapping is as follows:

[dataGroup (item)]
 [dataGroup (book)]
 [dataValue (ISBN) = "15536455"]
 [dataValue (title) = "Introduction to XML"]
 [dataValue (firstname) = "Charles"]
 [dataValue (lastname) = "Porter"]

Because dissolveStructure also modifies the XML data DOM, when the data unloader creates a new
XML data document the new document reflects the dissolveStructure operation. In this case the
resulting XML data document contains:

<item>
 <book>
 <ISBN>15536455</ISBN>
 <title>Introduction to XML</title>
 <firstname>Charles</firstname>
 <lastname>Porter</lastname>
 </book>
</item>

The data loader does not issue a warning when ignore or dissolve is suppressed at the root node,
because the same element type may legitimately appear other places in the XML data document.

The range Element

This section describes an extended mapping rule to specify a subset of records for processing.

By default the data loader processes all records in the XML data document. However, the XFA
Configuration DOM may contain a range element, which specifies a set of record indices. See “Config
Common Specification” on page 846 for the full schema. When this element is provided and is non-empty,
records with indices not included in the list are not processed. Hence the mere existence of the list reverses
the default behavior. The behavior specified by the XFA Configuration DOM overrides the default behavior
for the entire XML data document.

The content of the range element must be a comma-separated list of record numbers and/or record
number ranges, where:

● A record number is a positive base ten integer specifying a record index that is to be included in the set.
The index of the first record in the XML data document is 0, of the second is 1, and so on.

XFA Specification
Chapter 15, Dealing with Data in Different XML Formats Extended Mapping Rules 524

● A record number range is a positive base ten integer followed by a hyphen character ("-") followed by
another positive base ten integer, specifying a range of record indices that are to be included in the set.
The range includes the two numbers given. The two integers may be in either order, smallest-first or
largest-first.

All records with indices in the set are processed. The set of indices may extend beyond the index of the last
record in the XML data document (indeed it is expected that this will frequently be the case).

Use of this mapping rule does not affect the order in which records are processed, only which ones are
included. Therefore the order of processing will be the same as described elsewhere in this specification.

The record Element

This section describes an extended mapping rule to nominate the data group elements within the
document range that represent records.

By default, as described in “Record Elements” on page 136, the data loader considers the document range
to include one record of data represented by the first data group. This data handling option provides a
mechanism for controlling the partitioning of the document into one or more records by nominating data
group elements where partitioning occurs. The extent of the document range is not affected by record
elements, rather the content within the document range is partitioned by record elements.

Notionally a record is a complete logical unit, which the application processes separately. For example a
tax department collects tax returns from many individuals. All of the tax returns could be expressed as a
single large XML data document with each individual return comprising one record. The division of a
document into records may have side-effects in the way they are processed by the XFA application. It is
expected that the application will process records sequentially and separately. For example, it is common
to sequentially merge each record with a template, then lay out and print the merged record before
moving on to the next record. In this operation the output for each record starts on a new page, even if
there is space remaining on the last page of the previous record. In addition, portions of the XFA Data DOM
that lie outside any record may passively supply data but in this operation do not force any output to
occur.

The XFA Configuration DOM may include a record element that overrides the default behavior. See
“Config Common Specification” on page 846 for the full schema. The behavior specified by the XFA
Configuration DOM overrides the default behavior for the entire XML data document.

The record element nominates dataGroup nodes, which are marked as records by setting their
isRecord properties to true. The content of the record element must be either a node level or an
element type, where:

A node level is an integer that specifies the level in the XML data DOM hierarchy for which the data loader
is required to mark each corresponding dataGroup node in the XFA Data DOM as a record. The node level
is relative to the start node, as follows: the start node is located at level 0, its children are at 1, its
grandchildren at 2 and so on.

An element type (tag name) of an element present within the XML data document where the data loader
is required to mark each corresponding dataGroup node at the same level in the hierarchy with the
specified element type (tag name) as a record.

The second case requires some clarification. If an element type is supplied, the data loader traverses the
nodes in the XML data DOM beneath the start node in depth-first left-to-right (document) order, until it
encounters a node that corresponds to a dataGroup node in the XFA Data DOM and for which the local
part of the element type matches the supplied string (case-sensitive). The corresponding dataGroup

XFA Specification
Chapter 15, Dealing with Data in Different XML Formats Extended Mapping Rules 525

node in the XFA Data DOM is marked as a record. Subsequent nodes at the same depth in the XML data
DOM (but not necessarily siblings) that also correspond to dataGroup nodes and have the same name
property are also marked as records.

Example 15.30 Record processing with element type supplied

The following XML data document shows a situation in which there are two records but they are not
siblings. Assume that in the configuration document the record element contains book. The result is that
the subsections shown in bold print are processed as records.

<order>
 <item>
 <book>
 <ISBN>15536455</ISBN>
 <title>Introduction to XML</title>
 </book>
 </item>
 <item>
 <book>
 <ISBN>15536456</ISBN>
 <title>XML Power</title>
 </book>
 </item>
</order>

Note that there are two cases in which a node in the XML data DOM might have the correct name and level
but not cause a record to be marked. First, the node in the XML data DOM might be mapped into a
dataValue node in the XFA Data DOM, but dataValue nodes cannot be marked as records because
they have no isRecord property. Second, the node in the XML data DOM might be excluded from the
XFA Data DOM because of its namespace, as described in “The excludeNS Element” on page 506, in which
case there is nothing to mark as a record.

It is also worth noting that namespace exclusion may raise the level of a node in the XFA Data DOM relative
to the corresponding node in the XML data DOM, when a container element is excluded but not its
contained element, as described in “The excludeNS Element” on page 506. The level that matters in
determining which dataGroup nodes are records is the level in the XML data DOM, not the level in the
XFA Data DOM. This is appropriate because the record structure is normally expressed in the structure of
the XML data document as it is supplied before any exclusions.

Example 15.31 Namespace exclusion affects grouping into records

Consider the following XML data document:

<order>
 <number>1</number>
 <shipto>
 <reference><customer>c001</customer></reference>
 </shipto>
 <contact>Tim Bell</contact>
 <date><day>14</day><month>11</month>
 <year>1998</year></date>
 <item>
 <book>
 <ISBN>15536455</ISBN>
 <title>Introduction to XML</title>
 <author>

XFA Specification
Chapter 15, Dealing with Data in Different XML Formats Extended Mapping Rules 526

 <firstname>Charles</firstname>
 <lastname>Porter</lastname>
 </author>
 <quantity>1</quantity>
 <unitprice>25.00</unitprice>
 <discount>.40</discount>
 </book>
 </item>
 <item>
 <book>
 <ISBN>15536456</ISBN>
 <title>XML Power</title>
 <author>
 <firstname>John</firstname>
 <lastname>Smith</lastname>
 </author>
 <quantity>2</quantity>
 <unitprice>30.00</unitprice>
 <discount>.40</discount>
 </book>
 </item>
 <notes>You owe $85.00, please pay up!</notes>
</order>

With no record element in the XFA Configuration DOM, the order element is considered to be the one
and only record. The dataGroup node representing the single record is represented in bold type:

[dataGroup (order)]
 [dataValue (number) = "1"]
 [dataGroup (shipTo)]
 [dataGroup (reference)]
 [dataValue (customer) = "c001"]
 [dataValue (contact) = "Tim Bell"]
 [dataGroup (date)]
 [dataValue (day) = "14"]
 [dataValue (month) = "11"]
 [dataValue (year) = "1998"]
 [dataGroup (item)]
 [dataGroup (book)]
 [dataValue (ISBN) = "15536455"]
 [dataValue (title) = "Introduction to XML"]
 [dataGroup (author)]
 [dataValue (firstname) = "Charles"]
 [dataValue (lastname) = "Porter"]
 [dataValue (quantity) = "1"]
 [dataValue (unitprice) = "25.00"]
 [dataValue (discount) = ".40"]
 [dataGroup (item)]
 [dataGroup (book)]
 [dataValue (ISBN) = "15536456"]
 [dataValue (title) = "XML Power"]
 [dataGroup (author)]
 [dataValue (firstname) = "John"]
 [dataValue (lastname) = "Smith"]
 [dataValue (quantity) = "2"]
 [dataValue (unitprice) = "30.00"]

XFA Specification
Chapter 15, Dealing with Data in Different XML Formats Extended Mapping Rules 527

 [dataValue (discount) = ".40"]
 [dataValue (notes) = "You owe $85.00, please pay up!"]

The following example assumes that the record element contains item.The result of mapping the same
XML data document is as follows, with the dataGroup nodes representing records appearing in bold
type:

[dataGroup (order)]
 [dataValue (number) = "1"]
 [dataGroup (shipTo)]
 [dataGroup (reference)]
 [dataValue (customer) = "c001"]
 [dataValue (contact) = "Tim Bell"]
 [dataGroup (date)]
 [dataValue (day) = "14"]
 [dataValue (month) = "11"]
 [dataValue (year) = "1998"]
 [dataGroup (item)]
 [dataGroup (book)]
 [dataValue (ISBN) = "15536455"]
 [dataValue (title) = "Introduction to XML"]
 [dataGroup (author)]
 [dataValue (firstname) = "Charles"]
 [dataValue (lastname) = "Porter"]
 [dataValue (quantity) = "1"]
 [dataValue (unitprice) = "25.00"]
 [dataValue (discount) = ".40"]
 [dataGroup (item)]
 [dataGroup (book)]
 [dataValue (ISBN) = "15536456"]
 [dataValue (title) = "XML Power"]
 [dataGroup (author)]
 [dataValue (firstname) = "John"]
 [dataValue (lastname) = "Smith"]
 [dataValue (quantity) = "2"]
 [dataValue (unitprice) = "30.00"]
 [dataValue (discount) = ".40"]
 [dataValue (notes) = "You owe $85.00, please pay up!"]

The expression of data records via a node level is likely not the typical usage of this extended mapping
rule, but does have particular utility in specific cases similar to the one illustrated below. Using the
previous XML data document as an example, with a record element containing 1, the result of the
mapping is as follows:

[dataGroup (order)]
 [dataValue (number) = "1"]
 [dataGroup (shipTo)]
 [dataGroup (reference)]
 [dataValue (customer) = "c001"]
 [dataValue (contact) = "Tim Bell"]
 [dataGroup (date)]
 [dataValue (day) = "14"]
 [dataValue (month) = "11"]
 [dataValue (year) = "1998"]
 [dataGroup (item)]
 [dataGroup (book)]

XFA Specification
Chapter 15, Dealing with Data in Different XML Formats Extended Mapping Rules 528

 [dataValue (ISBN) = "15536455"]
 [dataValue (title) = "Introduction to XML"]
 [dataGroup (author)]
 [dataValue (firstname) = "Charles"]
 [dataValue (lastname) = "Porter"]
 [dataValue (quantity) = "1"]
 [dataValue (unitprice) = "25.00"]
 [dataValue (discount) = ".40"]
 [dataGroup (item)]
 [dataGroup (book)]
 [dataValue (ISBN) = "15536456"]
 [dataValue (title) = "XML Power"]
 [dataGroup (author)]
 [dataValue (firstname) = "John"]
 [dataValue (lastname) = "Smith"]
 [dataValue (quantity) = "2"]
 [dataValue (unitprice) = "30.00"]
 [dataValue (discount) = ".40"]
 [dataValue (notes) = "You owe $85.00, please pay up!"]

As a result of the above mapping, the XML data document is partitioned into four records: shipTo, date,
item, item. The two item records represent the same grouping of data as order items. The other two
records shipTo and date don't represent the same grouping of data as order items, and they don't even
relate directly to each other. Given this XML data document, such a mapping is only useful if the
processing application is able to discriminate among the dataGroup nodes that are of interest. This
example illustrates how the expression of data records via a node level can easily produce a mapping of
heterogeneous data records.

Example 15.32 Node level identifies record boundaries despite different element types

In cases where the XML data document makes use of different element types for roughly the same
grouping of data, the ability to express data records via a node level is very useful, as illustrated by the
following example with a record element containing 1.

<order>
 <bookitem>
 <ISBN>15536455</ISBN>
 <title>Introduction to XML</title>
 <author>
 <firstname>Charles</firstname>
 <lastname>Porter</lastname>
 </author>
 <quantity>1</quantity>
 <unitprice>25.00</unitprice>
 <discount>.40</discount>
 </bookitem>
 <musicitem>
 <cdid>4344-31020-2</cdid>
 <title>Big Calm</title>
 <artist>Morcheeba</artist>
 <quantity>1</quantity>
 <unitprice>19.00</unitprice>
 </musicitem>
</order>

XFA Specification
Chapter 15, Dealing with Data in Different XML Formats Extended Mapping Rules 529

The result of the mapping,with the dataGroup nodes representing records appearing in bold type, is as
follows:

[dataGroup (order)]
 [dataGroup (bookitem)]
 [dataValue (ISBN) = "15536455"]
 [dataValue (title) = "Introduction to XML"]
 [dataGroup (author)]
 [dataValue (firstname) = "Charles"]
 [dataValue (lastname) = "Porter"]
 [dataValue (quantity) = "1"]
 [dataValue (unitprice) = "25.00"]
 [dataValue (discount) = ".40"]
 [dataGroup (musicitem)]
 [dataValue (cdid) = "4344-31020-2"]
 [dataValue (title) = "Big Calm"]
 [dataValue (artist) = "Morcheeba"]
 [dataValue (quantity) = "1"]
 [dataValue (unitprice) = "19.00"]

The XML data document may have content that is outside any record. Although such content is not
marked as part of a record, it is nevertheless loaded into the XFA Data DOM. Although it is not inside any
record it can still be used in special circumstances, for example if a calculation explicitly makes reference to
it.

Example 15.33 Content outside any record

For example, the previous example could be modified with some extra-record data as follows:

<order>
 <customername>Delta Books</customername>
 <customerorder>300179</customerorder>
 <bookitem>
 <ISBN>15536455</ISBN>
 <title>Introduction to XML</title>
 <author>
 <firstname>Charles</firstname>
 <lastname>Porter</lastname>
 </author>
 <quantity>1</quantity>
 <unitprice>25.00</unitprice>
 <discount>.40</discount>
 </bookitem>
 <musicitem>
 <cdid>4344-31020-2</cdid>
 <title>Big Calm</title>
 <artist>Morcheeba</artist>
 <quantity>1</quantity>
 <unitprice>19.00</unitprice>
 </musicitem>
</order>

When this is loaded into the XFA Data DOM, the additional data is not part of any record but is available for
use.

[dataGroup (order)]
 [dataValue (customername) = "Delta Books"]

XFA Specification
Chapter 15, Dealing with Data in Different XML Formats Extended Mapping Rules 530

 [dataValue (customerorder) = "300179"]
 [dataGroup (bookitem)]
 [dataValue (ISBN) = "15536455"]
 [dataValue (title) = "Introduction to XML"]
 [dataGroup (author)]
 [dataValue (firstname) = "Charles"]
 [dataValue (lastname) = "Porter"]
 [dataValue (quantity) = "1"]
 [dataValue (unitprice) = "25.00"]
 [dataValue (discount) = ".40"]
 [dataGroup (musicitem)]
 [dataValue (cdid) = "4344-31020-2"]
 [dataValue (title) = "Big Calm"]
 [dataValue (artist) = "Morcheeba"]
 [dataValue (quantity) = "1"]
 [dataValue (unitprice) = "19.00"]

The rename Element

This section describes an extended mapping rule that can be used to cause the substitution of new names
for names of elements from the XML data document. This substitution affects the XFA Data DOM but does
not affect the XML data DOM.

By default, as described in “Default Data Mapping Rules” on page 131, the data loader copies the local
parts of element-types from elements into the corresponding name properties of nodes in the Data DOM.
This extended mapping rule provides for an alternate behavior in which the local (non-namespace) part of
each element type is matched against a set of (name, substitute) pairs and, if it is in the set, the substitute
string is copied into the name property of the node in its place. Matching is case-sensitive in keeping with
XML norms. If the local part of the element type does not match any member of the set, it is used verbatim,
as in the default case.

The XFA Configuration DOM may include one or more transform elements, each of which may include
one rename elements that override the default behavior. See “Config Common Specification” on
page 846 for the full schema. The behavior specified by the rename overrides the default behavior for
every element in the XML data document with the local part of the element type matching the ref
property of the transform. It also overrides the default behavior for every attribute in the XML data
document with the local part of the name matching the ref property of the transform, when attributes
are being mapped to dataValue nodes as described in “The attributes Element” on page 505.

If the rename element is non-empty, the data loader sets the name property of the corresponding node in
the XFA Data DOM to the content of the rename element. The content of the rename element must be a
valid local name as specified by [XMLNAMES].

Note that name mapping only applies to the local part of a name. It is not affected by and does not affect
namespace designators.

Example 15.34 Renaming while loading

Consider the following XML data document:

<item>
 <book>
 <ISBN>15536455</ISBN>
 <title>Introduction to XML</title>
 <author>

XFA Specification
Chapter 15, Dealing with Data in Different XML Formats Extended Mapping Rules 531

 <firstname>Charles</firstname>
 <lastname>Porter</lastname>
 </author>

 </book>

</item>

With name mapping for author and title elements, expressed in the XFA configuration document as:

<transform ref="author">
 <rename>writer</rename>
</transform>
<transform ref="title">
 <rename>bookName</rename>
</transform>

the result of the mapping in the XFA Data DOM is as follows:

[dataGroup (item)]
 [dataGroup (book)]
 [dataGroup (ISBN)]
 [dataValue (bookName) = "Introduction to XML"]
 [dataGroup (writer)]
 [dataValue (firstname) = "Charles"]
 [dataValue (lastname) = "Porter"]

Although renaming is performed before some other transformations it does not affect which later
transformations apply to the renamed node.

Example 15.35 Other transformations applied after renaming

For example, the following configuration fragment:

<transform ref="address">
 <rename>MailingAddress</rename>
 <whitespace>normalize</whitespace>
</transform>

causes data from address elements to be renamed to MailingAddress in the Data DOM. It also causes
those same nodes to be normalized in whitespace, even though their names no longer match the ref
value in the transform element.

Almost any valid XML tag or attribute name (as defined in [XML]) can be used in the XML data document
without a name mapping. The only restriction of XFA names which does not also apply to XML names is
that XFA names may not contain an embedded ":" (colon). Fortunately XML such as the following, while
legal, is rarely encountered.

Example 15.36 Element tag renamed to meet XFA restrictions

<outer xmlns:abc="http://example.org/ns/abc/">
<abc:foo:bar>xxx</abc:foo:bar>

</outer>

In the example the inner data element has the name foo:bar. To map this into theXFA Data DOM it
would be necessary to rename the data value. For example,

<transform ref="foo:bar">
<rename>foo_bar</rename>

XFA Specification
Chapter 15, Dealing with Data in Different XML Formats Extended Mapping Rules 532

</transform>

The startNode Element

This section describes an extended mapping rule to nominate an element within the XML data document
that is the starting point for the data loader. The data loader processes only the fragment of the XML data
document consisting of that element and its content.

By default, as described in “Start Element” on page 132, the data loader starts at the outermost element of
the document. This causes it to attempt to map the whole of the XML data document. When this
extended mapping rule is used, the data loader starts processing at the nominated element. Other
document range constraints, such as namespace constraints, still apply. As a result the document range is
constrained to be not greater than the fragment within the start element.

The XFA Configuration DOM may include a startNode element which overrides the default behavior. See
“Config Common Specification” on page 846 for the full schema. The behavior specified by the XFA
Configuration DOM overrides the default behavior for the entire XML data document. The content of the
startNode element is a string of the form "xfasom(somExpr)" where somExpr is a restricted SOM
expression. The general syntax of SOM expressions is defined in “Scripting Object Model” on page 86. The
expression in the startNode element must be a fully-qualified path of element types (tag names)
starting with the root of the XML data document and referring to a single element, as illustrated in the
following example.

Example 15.37 Restricting the load range with startNode

<order>
 <number>1</number>
 <shipto>
 <reference><customer>c001</customer></reference>
 </shipto>
 <contact>Tim Bell</contact>
 <date><day>14</day><month>11</month>
 <year>1998</year></date>
 <item>
 <book>
 <ISBN>15536455</ISBN>
 <title>Introduction to XML</title>
 <author>
 <firstname>Charles</firstname>
 <lastname>Porter</lastname>
 </author>
 <quantity>1</quantity>
 <unitprice>25.00</unitprice>
 <discount>.40</discount>
 </book>
 </item>
 <item>
 <book>
 <ISBN>15536456</ISBN>
 <title>XML Power</title>
 <author>
 <firstname>John</firstname>
 <lastname>Smith</lastname>
 </author>
 <quantity>2</quantity>

XFA Specification
Chapter 15, Dealing with Data in Different XML Formats Extended Mapping Rules 533

 <unitprice>30.00</unitprice>
 <discount>.40</discount>
 </book>
 </item>
 <notes>You owe $85.00, please pay up!</notes>
</order>

Assume that the start node has been set with "xfasom(order.item[1].book)". Recall that XFA
SOM expressions use zero-based indexing, so "item[1]" refers to the second instance of item. The result
of the mapping is as follows:

[dataGroup (book)]
 [dataValue (ISBN) = "15536456"]
 [dataValue (title) = "XML Power"]
 [dataGroup (author)]
 [dataValue (firstname) = "John"]
 [dataValue (lastname) = "Smith"]
 [dataValue (quantity) = "2"]
 [dataValue (unitprice) = "30.00"]
 [dataValue (discount) = ".40"]

With a start element expressed as "xfasom(order.item)", the result of the mapping is as follows:

[dataGroup (item)]
 [dataGroup (book)]
 [dataValue (ISBN) = "15536455"]
 [dataValue (title) = "Introduction to XML"]
 [dataGroup (author)]
 [dataValue (firstname) = "Charles"]
 [dataValue (lastname) = "Porter"]
 [dataValue (quantity) = "1"]
 [dataValue (unitprice) = "25.00"]
 [dataValue (discount) = ".40"]

It should be noted that an identical mapping is produced with a start element expressed as
"xfasom(order.item[0])".

With a start element expressed as "xfasom(order.item[1])", the result of the mapping is as
follows:

[dataGroup (item)]
 [dataGroup (book)]
 [dataValue (ISBN) = "15536456"]
 [dataValue (title) = "XML Power"]
 [dataGroup (author)]
 [dataValue (firstname) = "John"]
 [dataValue (lastname) = "Smith"]
 [dataValue (quantity) = "2"]
 [dataValue (unitprice) = "30.00"]
 [dataValue (discount) = ".40"]

The whitespace Element

This section describes an extended mapping rule that can be used to alter the handling of white space in
the XML data document. This handling affects the XFA Data DOM and also the XML data DOM.

XFA Specification
Chapter 15, Dealing with Data in Different XML Formats Extended Mapping Rules 534

By default, as described in “White Space Handling” on page 145, white space is preserved in the value
property of dataValue nodes. This extended mapping rule provides for alternate behaviors in which
white space is trimmed from both ends, trimmed only on the left, trimmed only on the right, or
normalized. Note that both element content and attribute values are represented by dataValue nodes,
so this operation applies equally to both.

The XFA Configuration DOM may include one or more transform elements, each of which may contain a
whitespace element that overrides the default behavior. See “Config Common Specification” on
page 846 for the full schema. When applied to a dataGroup node, this transform has no effect, either
upon the dataGroup node or upon its children. When applied to a dataValue node, this transform
overrides the default behavior for the dataValue node and its descendents. However, its descendents
may have different white space transforms applied to them, and such transforms are applied depth-first as
described in “Transforms” on page 503.

The content of the whitespace element must be one of the following keywords:

When the document contains mixed content, the operation is performed on the complete text of the
value property of the outermost data value, then the inner data values are modified as necessary to
remain consistent. When the operation is normalize, where within mixed content there is embedded
white space at the end of one data value, whether or not the next data value starts with white space, the
replacement SPACE character is assigned to the first data value; but where a data value ends in non-white
space and the next data value starts with white space, the replacement SPACE character is assigned to the
second data value.

Example 15.38 Loading data with leading and trailing whitespace

For example, consider the following XML data:

<book>
 <ISBN>15536455</ISBN>
 <title>Introduction to XML</title>
 <desc>Primer on <keyword> XML </keyword> technology.</desc>
</book>

The resulting XFA Data DOM, after default white space handling (preserve), is as follows:

[dataGroup (book)]
 [dataValue (ISBN) = "15536455"]
 [dataValue (title) = "Introduction to XML"]

whitespace value Directs the data loader to …

trim Trim white space from both ends but preserve embedded white space, both in
the XFA Data DOM and in the XML data DOM.

rtrim Trim trailing white space but preserve leading and embedded white space,
both in the XFA Data DOM and in the XML data DOM.

ltrim Trim leading white space but preserve embedded and trailing white space,
both in the XFA Data DOM and in the XML data DOM.

normalize Trim leading and trailing white space and replace each instance of embedded
white space with a single SPACE character (U+0020), both in the XFA Data
DOM and in the XML data DOM.

preserve Preserve all white space.

XFA Specification
Chapter 15, Dealing with Data in Different XML Formats Extended Mapping Rules 535

 [dataValue (desc) = "Primer on XML technology."]
 [dataValue () = "Primer on "]
 [dataValue (keyword) = " XML "]
 [dataValue () = " technology."]

After the normalize operation no more than one blank separates each word:

[dataGroup (book)]
 [dataValue (ISBN) = "15536455"]
 [dataValue (title) = "Introduction to XML"]
 [dataValue (desc) = "Primer on XML technology."]
 [dataValue () = "Primer on "]
 [dataValue (keyword) = "XML"]
 [dataValue () = " technology."]

Example 15.39 Getting rid of unwanted leading and/or trailing whitespace

In the following example two different transforms are defined, rtrim for one element and ltrim for the
other.

<transform ref="desc">
 <whitespace>rtrim</whitespace>
</transform>
<transform ref="keyword">
 <whitespace>ltrim</whitespace>
</transform>

In the XML data document an element that is nominated for rtrim encloses an element nominated for
ltrim.

<desc>Primer on<keyword> XML </keyword> </desc>

The result is that the inner element is first subject to ltrim on its own, and then to rtrim as content of
the outer element. Hence the value of the inner element starts off as " XML ", is trimmed on the left to
become "XML ", and then trimmed on the right as part of the string "Primer on XML ", resulting finally
in:

[dataValue (desc) = "Primer onXML"]
 [dataValue (keyword) = "XML"]

The xfa:dataNode Attribute

This specification provides an extended mapping rule that can be used to force the creation of
dataValue nodes and dataGroup nodes from a particular element within the document range. For
instance, this is useful in circumstances where the structure of the original XML data document is not
considered to be useful information; only the data value content is desired.

Unlike all the other extended mapping rules, this rule is invoked from within the XML data document. The
rule may be invoked for any element within the document range by placing a particular attribute in the
element. The name of the attribute is dataNode and it must belong to the namespace
"http://www.xfa.org/schema/xfa-data/1.0/". The attribute is defined as:

dataNode="dataValue"|"dataGroup"

where:

XFA Specification
Chapter 15, Dealing with Data in Different XML Formats Extended Mapping Rules 536

The data loader does not permit this extended mapping rule to be used to violate the relationships
between dataGroup nodes and dataValue nodes, as described by this specification. For instance, as a
result of a forced mapping of an element to a dataValue node, the element's contained elements are not
considered as candidate data groups, because dataValue nodes can be ancestors only to other
dataValue nodes. Similarly, a forced mapping attempt to a dataGroup node does not succeed where
the dataGroup node would be descended from a dataValue node, again because dataValue nodes
can be ancestors only to other dataValue nodes. Any attempt to force the mapping of an element that
would violate the relationships between dataGroup nodes and dataValue nodes is detected by the
data loader and the request ignored.

The following examples illustrate the usage of this extended mapping rule.

Example 15.40 Forcing an element to be loaded as a data group

Consider the following example:

<book xmlns:xfa="http://www.xfa.org/schema/xfa-data/1.0/">
 <ISBN xfa:dataNode="dataGroup">15536455</ISBN>
 <title>Introduction to XML</title>
 <author xfa:dataNode="dataValue"
><firstname>Charles</firstname
><lastname>Porter</lastname
></author>
 <desc xfa:dataNode="dataGroup">Basic primer on <keyword>XML</keyword
> technology.</desc>
</book>

The result of mapping this XML data document is as follows:

[dataGroup (book)]
 [dataGroup (ISBN)]
 [dataValue () = "15536455"]
 [dataValue (title) = "Introduction to XML"]
 [dataValue (author) = "CharlesPorter]
 [dataValue (firstname) = "Charles"]
 [dataValue (lastname) = "Porter"]
 [dataGroup (desc)]
 [dataValue () = "Basic primer on "]
 [dataValue (keyword) = "XML"]
 [dataValue () = " technology."]

In the above example, the XML for the author element has been modified from previous similar examples
which had the firstname and lastname on separate lines and indented to aid legibility. This white
space was removed for this example in order to produce the mapping above. See the section “White Space
Handling” on page 145 for more information on white space handling inside data values.

dataNode value Directs the data loader to …

dataValue Map the associated element to a dataValue node according the rules
defined by this specification.

dataGroup Map the associated element to a dataGroup node according the rules
defined by this specification.

XFA Specification
Chapter 15, Dealing with Data in Different XML Formats Extended Mapping Rules 537

When this extended mapping rule causes an element containing character data, which would otherwise
be mapped to a dataValue node, to be mapped instead to a dataGroup node, the data loader inserts
an unnamed dataValue node as child of the dataGroup node to hold the character data.

Example 15.41 An extra data value node is automatically inserted

For example, given the following XML data document:

<book xmlns:xfa="http://www.xfa.org/schema/xfa-data/1.0/">
 <ISBN>15536455</ISBN>
 <title xfa:dataNode="dataGroup">Introduction to XML</title>
</book>

After loading with default mapping rules the XFA Data DOM contains:

[dataGroup (book)]
 [dataValue (ISBN) = "15536455"]
 [dataGroup (title)]
 [dataValue () = "Introduction to XML"

A common use for this extended mapping rule is to ensure that an empty element that represents a data
group is not mapped to a dataValue node as would occur based on the default mapping rules described
in the section “Data Values Containing Empty Elements” on page 138.

Example 15.42 Empty element is loaded as a data value

Consider the following example:

<book>
 <ISBN>15536455</ISBN>
 <title>Introduction to XML</title>
 <author/>
</book>

We know from previous examples that the element author is a data group element that usually encloses
data value elements firstname and lastname; however, in this specific example, the author element
is empty and therefore would, by default, map to a dataValue node.

Example 15.43 Forcing an empty element to load as a data group

To ensure that the author element maps to a dataGroup node, the following example uses this
extended mapping rule:

<book xmlns:xfa="http://www.xfa.org/schema/xfa-data/1.0/">
 <ISBN>15536455</ISBN>
 <title>Introduction to XML</title>
 <author xfa:dataNode="dataGroup"/>
</book>

Note: This extended mapping rule only overrides the default mapping rule for non-empty elements. It
does not override the extended mapping rule for empty elements, which is described in the section
“The ifEmpty Element” on page 514 if the extended mapping rule for empty elements is declared in
the XFA configuration document.

XFA Specification
Chapter 15, Dealing with Data in Different XML Formats XSLT Transformations 538

XSLT Transformations
XSLT is a special-purpose language defined by [XSLT]. An XSLT program or stylesheet can be used to
transform an input XML document into an output XML or non-XML document. XFA supports the use of
XSLT to transform arbitrary XML input data into a temporary XML document, which is then loaded by the
XFA loader. XFA also supports the use of XSLT to transform the output XML document into a final arbitrary
XML or non-XML document. Note that XSLT is not reversible, hence if it is necessary to round-trip two
different XSLT stylesheets are required, one for the input transformation and one for the output
transformation.

XSLT Preprocessing

This section describes a facility that can be used to modify the incoming data under control of an XSLT
script [XSLT]. This transformation makes changes to the XML data DOM before the XFA Data DOM is
loaded by the data loader. Thus, if a new XML data document is created it reflects the result of the XSLT
preprocessing.

Note that it is possible to incorporate a processing instruction into the XML data document that causes an
XSLT transformation to be applied before (or as) the data is loaded into the XML data DOM. This is quite
separate from the facility described here. The facility described here does not require the addition of a
processing instruction, or any other modification, to the XML data document.

The XFA Configuration DOM may include an xsl element. If present, the xsl element must contain a uri
element that nominates the XSLT script. See “Config Common Specification” on page 846 for the full
schema. When the xsl element is supplied, the data loader executes the script and uses its output in place
of the original XML data document.

The XFA Configuration DOM may include a debug element that nominates a place in which to save a copy
of the data after the XSLT transformation but before any other transformations. If the debug element is
supplied and is non-empty, and the XSLT transformation is performed, the data loader copies the output
of the XSLT transformation into the nominated place.

Example 15.44 Preprocessing via an XSLT script

For example, the following fragment from an XFA configuration document causes the script
"massage.xslt" to be used for preprocessing the XML data document. The preprocessed document is
copied to "massage.xml" before being loaded by the data loader.

<xsl>
 <debug>
 <uri>massage.xml</uri>
 </debug>
 <uri>massage.xslt</uri>
</xsl>

XSLT Postprocessing

This section describes an extended mapping rule that can be used to modify data being written to a new
XML data document under control of an XSLT script [XSLT].

The XFA Configuration DOM may include an outputXSL element. If present, the outputXSL element
must contain a uri element that nominates the XSLT script. See “Config Common Specification” on
page 846 for the full schema. When the outputXSL element is supplied, the data loader executes the
script after applying all other transformations to the data.

XFA Specification
Chapter 15, Dealing with Data in Different XML Formats XSLT Transformations 539

Note that debug may not be used inside outputXSL.

Example 15.45 Postprocessing via an XSLT script

For example, an XFA Configuration DOM includes the following fragment:

<outputXSL>
 <uri>out.xslt</uri>
</outputXSL>

This causes the output XML document from the data loader to be passed to an XSLT interpreter, along with
the local file "out.xslt", which contains an XSLT style sheet. The style sheet supplies all required
additional configuration such as the destination of the transformed document.

 540

16 Security and Reliability

It is important to understand what security XFA does not support. XFA does not guarantee that a form will
look the same to everyone who looks at it. Indeed the relevant attribute exists purely to make the form
look and/or act differently under different circumstances, for example when printed instead of viewed on a
display. In addition XFA allows scripting, even in static forms, and scripts can be constructed to be
deceptive. In short XFA cannot guarantee that a form does what it appears to do. What XFA can guarantee
is described in the topics “Tracking and Controlling Templates Through Unique Identifiers” on page 541,
“Protecting an XFA Server from Attack” on page 543, “Signed Forms and Signed Submissions” on
page 545, and “Using the Security Features of Web Services” on page 562.

Similarly XFA does not guarantee that an archived form will still be accessible and identical when it is
retrieved in the future. This is true of PDF generally. However there is a subset of PDF called PDF/A which is
reliably archivable. PDF/A is an ISO standard, defined by [ISO-19005-1]. PDF/A omits all XFA content
except, optionally, the XML Data Document. When a form using XFA is converted to PDF/A for archiving
both the boilerplate and field content are flattened into a PDF appearance stream. This guarantees the
appearance of the form but it also voids all digital signatures and removes any evidence of why the form
looks like it does.

Sometimes a lower level of archivability is acceptable in exchange for keeping the XFA structure. This has
the additional benefit of optimizing the portability of the XFA form. This is discussed in “Structuring Forms
for Portability and Archivability” on page 563.

Controlling XFA Versions and Updates
There is a large installed base of XFA processors (in the hundreds of millions). These implement various
different versions of XFA. SinceXFA 2.6 a facility has been provided to control whether a particular form
may be processed by older or newer XFA processors and whether it may be upgraded to a newer version.

The Config DOM contains, under the common object, a property called versionControl. XFA processors
compatible with XFA 2.6 or later examine this property upon loading or saving a form. This property has
separate subproperties to control the following cases:

● The version of the form being loaded is below (older than) that of the XFA processor. The choices are to
update the form to the version of the XFA processor, or to process the form using the logic of the older
version. Processors are not required to support all older versions, however if the processor is asked to
use the logic of a version it cannot support it must report an error condition and refuse to process the
form. The default is to update.

● The version of the form being loaded is above (newer than) that of the XFA processor. The choices are
to issue a warning that the form may contain functionality that is not supported by the XFA processor,
or to issue an error and refuse to process the form. The default is to warn.

● The version of the current XFA processor is above (newer than) that of a target XFA processor for which
the form is being saved. For example one of the Acrobat 8.1 family of products (which implement XFA
2.6) is asked to generate a PDF for processing by Acrobat 6.0 (XFA 2.1). The choices are to warn that
functionality may be lost but go ahead and save it in the older version, to issue a warning and save it in
the newer version, or to issue an error message and refuse to save the form. The default is to warn and
save in the older version.

XFA Specification

Tracking and Controlling Templates Through Unique Identifiers 541

Chapter 16, Security and Reliability

Prior to XFA 2.6 scripting was often used to obtain similar functionality. The defaults are chosen to allow
such forms to continue to function.

For more information see the versionControl element in the “Config Common Specification”.

Caution: Not all existing forms specify their versions explicitly or correctly. It is recommended that, when
loading a form, theXFA processor examine the elements and attributes present in the form to
confirm or deduce the version.

Tracking and Controlling Templates Through Unique Identifiers
This section describes how templates can be uniquely identified. It also explains the requirements XFA
template designing applications and XFA processing applications must satisfy to retain such identification.

Uniquely identifying an XFA template allows its use to be tracked and controlled, whether the template is
used for form fill-in or is modified by other template designers for another purpose.

IMPORTANT: All applications that produce XFA templates (XFA template designers) or that process forms
based on XFA templates (XFA processing applications) are required to respect template-creator unique
identifiers and time stamps.

Unique Identifiers and Time Stamps

The XDP representation of XFA include a Universally Unique Identifier (UUID) and a time stamp. The UUID
is kept with the template throughout its life and the time stamp is updated whenever the template is
modified. The presence of the UUID and time stamp allows XFA template designing and XFA form
processing applications to track and control XFA templates.

The UUID and time stamp are included in any serialized representation of the template. In XDP format, this
information appears in the XDP root element as the attributes UUID and timeStamp (“XDP Specification”
on page 989).

If an XFA form is stored in PDF format, the UUID and time stamp are lost.

Processing Requirements for Template Designing Applications

If an XFA template designing application opens a template that omits a UUID, it must create one for it. If it
opens a template that includes a UUID, it must not change the value of that UUID.

XFA template designing applications must update a template’s time stamp whenever the template is
changed.

Processing Requirements for XFA Processing Applications

Although XFA processing applications cannot change a template, they can be directed to submit an XFA
template to a server. In such a situation, the XFA processing application must include in its submittal the
UUID and time stamp from the original template.

The following template segment includes an submit button that causes the data and template to be
submitted to the server.

element-versioncontrol

XFA Specification

Tracking and Controlling Templates Through Unique Identifiers 542

Chapter 16, Security and Reliability

Example 16.1 Submitting event that sends the template and data to the target server

<subform … >
<field … >

<event activity="click" … >
<submit format="xdp" xdpContent="template datasets" … />

</event>
</field>

</subform>

If an XFA template includes a UUID and time stamp and that template is submitted to a server, the UUID
and time stamp are included in the XDP or PDF created for that template.

XFA Specification

Protecting an XFA Server from Attack 543

Chapter 16, Security and Reliability

Protecting an XFA Server from Attack

Respecting External References in Image Data and Rich Text

External references may appear in data supplied to the XFA processing application. In some contexts the
reference is automatic, that is, it is a request for the referenced data to be inserted into the XFA Data DOM.
In other contexts the reference is manual, that is, the user is presented with an option to open the external
document. External references appear in the following forms:

● Referenced images, where the reference is represented as an href specification (“Image Data” on
page 146). This is an automatic reference.

● Embedded references in rich text, where the reference is represented as an xfa:embed, where the
adjacent xfa:embedType is set to "URI" (“Embedded Object Specifications” on page 1168). This is also
an automatic reference.

● Anchor (a) elements in rich text, where the reference is represented as an href specification
(“Hyperlink Support” on page 1146). This is a manual reference.

Whether automatic external references are resolved depends on the trust given to the URI described in
that reference.

● Trusted. If the href reference is trusted, the image data may be included in the XFA Data DOM
regardless of where the reference points.

● Not trusted. If it is not trusted, the XFA processor verifies that the referenced location is inside the
current package, i.e. inside the XDP or PDF that supplied the template. If it is not inside the current
package the reference is blocked.

Referenced images in data are described in “Image Data” on page 146.

Caution: Automatic references that point outside the package, even to a trusted URI, are undesireable
from the standpoint of reliability and portability. See “Structuring Forms for Portability and
Archivability” on page 563 for more information.

The Acrobat family of products requires any images that are supplied with a form to be included in the
package. Image references are resolved based on the images in the package. If a reference cannot be
resolved in the package the image is not displayed. However image fields (fields with an image-picker UI
type) allow the user to pick an image from some other place, for example from a file on disk. In this case
the application saves a copy of the image by value so it is rendered correctly.

Manual references are not usually considered security risks. The referenced document is only opened in
response to an action taken by the user. However it is worth noting that the user may be misled as to the
destination of the hyperlink(a "phishing" attack). The scripting facilities of XFA exacerbate this
vulnerability because the URL may be altered on the fly by scripting. Furthermore in the Acrobat family of
products the PDF permissions which determine whether scripts may alter URLs do not apply to URLs in
XFA.

In addition, opening an external document requires that the URL be passed to the operating system to be
resolved. There have been operating system vulnerabilities exposed through this route. So there is a risk
exposure associated with this facility in XFA. However, PDF already includes hyperlink annotations. For an
XFA form packed inside a PDF document this existing risk exposure through PDF is not made any worse by
XFA.

XFA Specification

Protecting Users from Being Misled 544

Chapter 16, Security and Reliability

Discarding Unexpected Submitted Packets

The XFA submit mechanism provides the option of submitting the template and configuration
information along with the data. However templates may contain scripts that execute on the server side.
However XFA does not provide a native mechanism for establishing that a submitted template is
trustworthy. Hence in any environment in which submissions are accepted from untrusted clients, care
should be taken to ensure that any submitted template is discarded and a local copy of the template used
instead.

Potentially similar problems could arise from accepting a configuration packet from an untrusted client.
The best thing to do when dealing with untrusted clients is to discard every submitted packet that is not
expected.

Encrypting Submitted Data

Starting with XFA 2.5, data submitted via HTTP or e-mail may be encrypted. This is more secure than
SSL/TSP because it is not subject to man-in-the-middle attacks. The SSL/TSP approach only ensures that
the conversation between client and server is private, not that the server is who it says it is.

Caution: For maximum security the form must also be certified (that is, signed by the form creator). This
prevents a form of man-in-the-middle-attack in which the blank form is intercepted by a third
party and the third party tricks the client into submitting data to a forged URI.

Signing Submitted Data

Starting with XFA 2.5, data submitted via HTTP or e-mail may be signed with one or more private keys. This
provides the host with a way to ensure that the data was provided by a trusted source and has not been
tampered with along the way. Encrypting and signing may be combined for maximum security.

Protecting Users from Being Misled
XFA processors used in interactive contexts should endeavor to protect the user from sneak attacks that
depend upon misleading users into authorizing some action that they would not have approved, or giving
away data to someone that they would not want to have that data. The latter are known as phishing
attacks.

One of the simplest phishing attacks is the misleading hyperlink. The text displayed by a hyperlink might
say, for example, http://www.example.com/login.html while the actual target URL points to a different
location where there is a fake page that mimicks the example.com login page. This is used to harvest login
credentials from the victims. The victims may never know that they have been tricked, because the fake
login page can pass the credentials on to the real example.com login page and then forward the browser
there. To help prevent this attack many browsers now display the actual target URL in a tooltip and/or in a
message pane whenever the cursor hovers over the hyperlink.

There are many more varieties of attack and they continue to evolve as users and browsers become more
sophisticated. This specification cannot therefore mandate exact practices to deal with these problems.
The best we can say is that XFA processors used in interactive contexts should conform to best practices in
this regard.

One useful mechanism to help protect users from being misled is the use of digitally signed forms, as
described in “Signed Forms and Signed Submissions” on page 545.

XFA Specification

Signed Forms and Signed Submissions 545

Chapter 16, Security and Reliability

Signed Forms and Signed Submissions
Digital signatures can be applied to forms to provide various levels of security. Digital signatures, like
handwritten signatures, allow signers to identify themselves and to make statements about a document.
Such statements include authorship of data in the form or approval of part or all of a form. The technology
used to digitally sign documents helps to ensure that both the form signer and the form recipients can be
clear about what was signed and whether the document was altered since it was signed.

A digital signature can be used to authenticate the identity of a user and the document’s contents. It can
store information about the signer and the state of the document when it was signed. The signature may
be purely mathematical, such as a public/private-key encrypted document digest, or it may be a biometric
form of identification, such as a handwritten signature, fingerprint, or retinal scan. The level of security and
integrity associated with a digital signature depends upon the handlers and algorithms used to generate
the signature and the parts of the form reflected in the signature.

Another application of digital signatures is to authenticate data which is submitted from a client to a
server. Starting with XFA 2.5 such submitted data may be signed.

Digital signatures are an important component of secure XML applications, although by themselves they
are not sufficient to address all application security/trust concerns, particularly with respect to using
signed XML (or other data formats) as a basis of human-to-human communication and agreement.

Types of Digital Signatures

This section introduces digital signatures and describes how a template can be designed with clickable
features that initiate the creation of digital signatures.

Note: The clickable features that initiate the creation of digital signatures are separate from the signatures
themselves.

XFA supports the following signature mechanisms:

● XML digital signature. One or more signatures can be inserted into a form using the mechanism defined
by the W3C for an XML Digital Signature [XMLDSIG-CORE]. This mechanism is selective in regard to
what portion of the form is included in the signature. It can be used to sign any or every portion of the
form which is expressed in XML, including the template, the configuration document, and/or the data.

The clickable feature that produces an XML digital signature is an event with a signData property.

● PDF digital signature. A form which is embedded inside PDF can use the PDF signing mechanism [PDF].
The PDF signing mechanism may sign the whole of the XFA form and in addition may sign non-XFA
content of the form. Hence a PDF signature can generate a document of record, which is described in
the next section.

The clickable feature that produces a PDF digital signature is a signature widget.

A single form may contain multiple XML digital signatures and multiple PDF digital signatures, although
such use is not expected to be useful.

Using Digital Signatures to Achieve Different Levels of Security

XML digital signatures are used to achieve various levels of security. This section discusses those different
purposes and how XML and PDF digital signatures can be used to achieve them.

XFA Specification

Signed Forms and Signed Submissions 546

Chapter 16, Security and Reliability

There are several different types of signature purposes, each of which imposes its own requirements. The
different types of signatures are summarized by the following table. The following sections explain how
digital signatures can be used to achieve these purposes. Similar information on PDF digital signatures is
available in the PDF Reference [PDF] and in A primer on electronic document security [ElectronicSecurity].

Differences Between XML and PDF Digital Signatures

There are substantial differences in the capabilities of XML and PDF digital signatures.

This specification defines XML digital signatures that support only data integrity; however, XML digital
signatures could conceivably be designed to achieve the same level of integrity and signer authentication
as PDF signatures.

Note: These comments apply only to situations in which the form itself is signed. It is also possible to
generate a separate document wrapped in a PDF envelope or an XML envelope and sign the
contents of the envelope. For example, this is what happens when signed data is submitted from a

Signature purposes

Purpose Use How achieved

Integrity Verify that data has not been corrupted in
transit or processing. For example, when a
digital signature is applied to a quarterly
financial statement, recipients have more
assurance that the financial information
has not been altered since it was sent. See
“Integrity” on page 549.

● Signature based on relevant
parts of the form and optionally
a private key

Authenticity

Achieving this
purpose results in a
"trusted document"
or a "document of
record".

Verify a signer’s digital identity. For
example, a digitally signed quarterly
financial statement allows recipients to
verify the identity of the sender and
assures them that the financial information
has not been altered since it was sent. See
“Authenticity” on page 551.

● Signature based on selected
portions of the template and
configuration and on
pre-rendered PDF and a private
key

● Verification using a public key

● Assurance of the sender’s
identity

Non- repudiability

Achieving this
purpose results in a
"certified
document".

Establish unequivocally that the person
signing the document did in fact see and
sign the document, or to establish that the
recipient did in fact receive the document.
See “Non- Repudiability” on page 552.

Same as for Authenticity with the
following addition:

● Trusted third-party software
prevents the signer of the
document from denying that
they signed the document

Usage rights

Achieving this
purpose results in a
"ubiquitized
document".

(a PDF capability)

If signature permissions have been issued
by a bona fide granting authority, enable
additional rights (such as the ability to
sign) in special viewing applications such
as the Acrobat family. See “Usage Rights
Signatures (Ubiquitized Documents)” on
page 552..

● Establish the identity of the
granting authority

● Specify additional rights to be
granted by the special viewing
application

XFA Specification

Signed Forms and Signed Submissions 547

Chapter 16, Security and Reliability

client to a host. In such cases the contents of the envelope are not limited by this specification so
any appropriate signature mechanism can be used.

Using certified signatures to restrict changes

Both XML digital signatures and PDF signatures can optionally cause the entire form to be locked upon
signing. There can only be one signature on such a form, although there may be multiple signature fields;
the first signature applied locks out any others.

PDF signatures, but not XML signatures, support a finer-grained control over locking. A PDF certified
signature allows the document author to specify which changes are allowed in the form. A PDF viewing
application such as one of the Acrobat family of proucts then detects and prevents disallowed changes. A
certified signature must be the first signature applied to a form. To provide the same functionality for an
XML signature requires the use of scripts triggered by the postSign event.

What part of the document can be signed

XML digital signatures can include part or all of the XFA form; however, they cannot include resources such
as fonts, referenced images, or other attachments. In contrast, PDF signatures can include such resources.

Tracking changes during a form’s lifetime

XFA does not provide a mechanism for tracking the changes made during the form’s lifecycle. In contrast,
the PDF architecture can identify what changes have been made to a document, including when the
document was signed.

Refresher on the Relationship Between XFA and PDF

An understanding of the relationship between the XFA grammar, the PDF language and the applications
typically used to create and process them is important in understanding how XML and PDF digital
signatures affect security. Combinations of XML and PDF digital signatures may be applied to the same
form; however, the different signature types have different processing requirements.

XFA and PDF digital signatures may be used in a form, regardless of the packaging (PDF or XDP), provided
the objects referenced in the signature manifest are included in the package.

An XFA form can enclose a PDF object or can be enclosed by a PDF object. These different structures
dictate whether the form is an XML document or a PDF document. The following diagram shows how an
XFA form can be packaged.

XFA Specification

Signed Forms and Signed Submissions 548

Chapter 16, Security and Reliability

Packaging of XFA form components into XDP or PDF

The following scenarios describe the addition and use of digital signatures in forms.

➤ Adding a PDF digital signatures to an existing template

In the following scenario, PDF digital signatures are added to the PDF that contains the XFA. Such a PDF
digital signature can be used to produce a document of record, by referencing the XFA object from the
manifest.

The form created by the following scenario can be opened only with a PDF-processing application, such as
one of the Acrobat family of products. That is, it cannot be opened with XML-processing applications
because it is not conforming XML.

1. A form designer creates the form using an XFA creating application such as Adobe LiveCycle Designer
ES2.

2. The designer creates a submission button that causes the entire form to be included in the submission.
This is the format in which the form data and parts of the form are submitted to a server when the user
completes the form and selects the form’s submit button. (This statement assumes a rather simple form
submission process.)

3. The designer saves the form as PDF.

4. The designer opens the form using a PDF-capable application.

datasets template
Other
XFA-related
packages

PDF

data

XML

XFA

XDP

datasets template
Other
XFA-derived
packages

PDF

data

PDF

XML form data template
Other
objects

FDF (annots)

Data

Submit or export as XDP Submit, export, or save as PDF

An XML document

Internal XFA form components

A PDF document

XFA Specification

Signed Forms and Signed Submissions 549

Chapter 16, Security and Reliability

5. The designer applies a PDF digital signature widget. (Within the Acrobat family, Acrobat Professional is
required for this operation.)

6. The designer saves the resulting form, again as PDF.

The following scenario applies when the form is being filled out.

1. The form is opened using a PDF-capable application that also supports XFA.

2. In the case of a trusted document, the application declares the trustability of the form.

3. The person fills out the form.

4. The person submits the form by selecting a submit button. In response, the XFA processing application
bundles the designated parts of the form into a PDF document and submits that document to a server.
(This statement assumes a rather simple form submission process.)

➤ Adding an XML digital signatures to a template

In this example, an XML digital signature is added to the template. Such a signature would be used for data
integrity, by referencing the data object from the signature manifest.

1. A form designer creates a template. One of the elements in the template is a button associated with
XML digital signature action (signData).

2. The designer defines the submission format as XDP. This is the format in which the form data and parts
of the form are submitted to a server. After completing the form, the user selects a submit button. In
response to this selection, the XFA processing application bundles the designated parts of the form
into an XDP package and submits that package to a server. (This statement assumes a a simple form
submission process.)

3. The designer saves the form as PDF or XDP.

The following scenario applies when the form is being filled out.

1. The form is opened using an XFA processing application.

2. The person fills out the form.

3. The user submits the form by selecting a submit button. In response, the XFA processing application
bundles the designated parts of the form into an XDP package and submits that package to a server.
(This statement assumes a simple form submission process.)

Integrity

Digital signatures enable recipients to verify the integrity of an electronic document used in one-way or
round-trip workflows. For example, when a digital signature is applied to a quarterly financial statement,
recipients have more assurance that the financial information has not been altered since it was sent.
A primer on electronic document security [ElectronicSecurity] describes methods for maintaining integrity.

The following types of signatures are commonly used to support document integrity:

● Ordinary signatures, which can associate a signer with part or all of the document. For example, a user’s
signature may indicate approval of the data in certain fields of the form.

XFA Specification

Signed Forms and Signed Submissions 550

Chapter 16, Security and Reliability

● Modification Detection and Prevention (MDP) signatures, which specify what changes are permitted to
be made the document and what changes invalidate the author’s signature.

● Usage rights (UR) signatures, which identify the authorizing agent and enable capabilities in special
PDF-viewing applications.

The main differences between these signatures lies in what portions of the form are covered by the
signature and what supplemental information is provided about each signer or signature. XFA provides all
the necessary grammar to express any of these types of signature. However what types of signature are
supported by a particular application is entirely application-defined. Individual XFA applications may
support any, all, or none of the above types of signatures. For example, a non-interactive application might
verify signatures but would probably never generate signatures.

It is normal and expected that different signatures may cover overlapping portions of the form. For
example, Susan fills out a request for vacation. Her signature signs the subform that she filled out. Her boss
Henry then approves the request. Henry’s signature signs the entire form, including the subform that
Susan filled out. Any change to that subform invalidates both signatures.

Note that forms may lock the signed portions of the form, but whether they do or not is irrelevant to
signatures. Locking is not necessary for maintaining or verifying the integrity of signatures.

Using XML digital signatures for integrity

XML digital signatures can establish the integrity of a form, by incorporating1 relevant objects in the
signature. For example, if there is a concern only about the integrity of a form’s data, the signature would
incorporate only the form’s data. If there is a concern about other aspects of the form, the signature would
incorporate those other aspects, too.

An XML digital signature can incorporate the PDF object used in a form, but this is useful only for archiving.
It is not useful in a workflow where other individuals subsequently validate the original signature. This
limitation applies only to forms whose signature manifests include a PDF object. This limitation exists
because PDF objects contain volatile information, such as date and time. If a PDF processing application
such as Acrobat reopens and saves forms whose signatures include the PDF object, those signatures are
voided, even if no changes are made.

It is possible to sign a template to indicate that the form can be trusted. When doing so the form creator
must be careful with setProperty. Suppose that a form uses setProperty to copy user data into a URI.
One user could enter a toxic URI and then forward the resulting form to someone else, perhaps via e-mail.
In this way a signed template from a trusted source could be subverted. The setProperty property is
described in “The setProperty property” on page 210.

Using PDF digital signatures for integrity

The PDF signature mechanism is described in the PDF reference, [PDF].

A PDF digital signature can incorporate the XFA stream used in a form, provided the XDP is packaged
inside the PDF, but this is useful only for archiving. It is not useful in a workflow where other individuals
subsequently validate the original signature. This limitation applies only to forms whose signature
manifests include the XFA stream. This limitation exists because the XFA stream is in XML and there may be
changes made to an XML stream which are defined as not significant by the XML standard [XML1.0]. For
example white space preceding the closing '>' or '/>' of a tag is by definition not significant. The digital
signature for an XML stream should not be invalidated by the addition, deletion, or modification of any
such insignificant content. However the PDF signing mechanism is not XML-aware so PDF signatures are
1. The term "incorporating" refers to the creation of hash code (or other representative binary number) that reflects the por-
tions of the form specified in the signData manifest element. This code is then stored in the signature property created when
the form is actually signed.

XFA Specification

Signed Forms and Signed Submissions 551

Chapter 16, Security and Reliability

invalidated by such changes. Therefore simply writing the XFA stream out again using a different XFA
processor (or a different version of the same processor) may invalidate the PDF signature even though
there is no substantive difference in the form.

Starting with XFA 2.5, a client can apply one or more to the data that it submits to a host. This allows the
host to verify that the data has not been modified in transit. This is stronger than simply submitting via
SSL/TSP because it is not susceptible to man-in-the-middle attacks. It also ensures that the signature
travels all the way to the host application rather than being stripped off at the communications layer.

Authenticity
Achieving this purpose results in a "trusted document" or a "document of record".

Authenticity provides confidence that a document or part of a document does not take on a different
appearance after being signed. The XFA grammar and the PDF language provide a number of capabilities
that can make the rendered appearance of a form or PDF document vary. These capabilities could
potentially be used to construct a document that misleads the recipient of a document, intentionally or
unintentionally. These situations are relevant when considering the legal implications of a signed XFA form
or PDF document. Therefore, it is necessary to have a mechanism by which a document recipient can
determine whether the document can be trusted.

Using XML digital signatures for authenticity

XML digital signatures can establish the authenticity of a form, by incorporating in the signature relevant
parts of the form (including the template) and certificates that identify the sender, and by using
private-key encryption.

Using PDF Digital signatures for authenticity

Authenticity includes ensuring the integrity of the form and verifying the identity of the sender. With
forms intended for fill-in, authenticity may be required in a form that is then fill-in and signed. For example,
an accounting firm might send a financial report to another agency for comments and signatures. The
accounting firm would want to ensure the recipient of its identity (authenticity) and prevent the financial
report from being modified (integrity), with the exception of fields set aside for text comments and the
signature of the recipient. After adding comments to the designed fields, the recipient would sign the
document. The signature would be associated with the current state of the document. Although further
modifications to the comment fields would be allowed, they would not be associated with the signature
field.

PDF MDP signatures support the kind of form fill-in and signature described in the above paragraph.

Starting with XFA 2.5, a client can apply one or more signatures when sending data to a host. This allows
the host to verify the identity of the sender by validating the signature against the corresponding public
key.

It is possible for a template to invoke prototypes from external documents. These external prototypes can
in turn invoke prototypes from other documents and so on. To ensure the authenticity of the document
the PDF processor resolves all prototype references before generating the signature. The resulting PDF has
vestigial prototype references (it still contains the URLs of the external prototypes) but it no longer has any
dependence upon the external documents.

XFA Specification

Signed Forms and Signed Submissions 552

Chapter 16, Security and Reliability

Non- Repudiability

Non-repudiation is a document security service that prevents the signer of the document from denying
that they signed the document. Such a service is often driven by authentication and time-stamping from a
trusted third-party.

Non- repudiable security is the same as document of record, with the additional verification that the
person signing the form cannot deny signing the form. Using PDF signatures to establish non-
repudiability is described in the PDF Reference [PDF] and in A primer on electronic document security
[ElectronicSecurity].

Using XML digital signatures to establish non- repudiable documents is beyond the scope of this
specification.

Usage Rights Signatures (Ubiquitized Documents)

Usage rights signatures are a PDF feature that enables additional interactive features that are not available
by default in a particular viewer application (such as members of the Acrobat family of products). Such a
signature is used to validate that the permissions have been granted by a bona fide granting authority and
to determine which additional rights should be enabled if the signature is valid. If the signature is invalid
because the document has been modified in a way that is not permitted or if the identity of the signer has
not granted the extended permissions and additional rights are not granted.

Usage rights signatures are applied as described in “Adding a PDF digital signatures to an existing
template” on page 548. XML digital signatures do not specify usage rights.

XML Digital Signatures

XFA specifies the structures used to support XML digital signatures. One structure specifies the
signature-related operation the XFA processing application should perform and the other contains the
result of a signing operation — an XML digital signature. An XFA processing application produces an XML
digital signature when the person filling out a form activates an event that contains instructions for
producing a signature.

The structure that specifies the signature-related operation is an XFA template element (signData). This
structure provides operations for signing a form. It also provides operations for verifying and clearing
existing signatures. The operation to perform is determined by the operation subproperty. When the
value of operation is sign the effect is to create the signature. When the value is verify the effect is to
verify the data against the signature and generate a message if it does not match. Scripts can also
manipulate XML digital signatures using methods of the xfa.signature object.

The structure that contains the result of a signing operation (Signature) is an XML element that resides
outside the template namespace. [XMLDSIG-CORE] defines how digital signatures are produced and how
they are represented in a Signature property, with the following additions: XFA augments the
Signature object with information that allows XFA processing applications torespect the signed state
and to verify and clear the signature. Respecting the signed state of the form means not changing the
values of any data used in producing the signature. This addition information is discussed in “Template
Provides Instructions on Signature Operation” on page 555.

XFA Specification

Signed Forms and Signed Submissions 553

Chapter 16, Security and Reliability

Signing a Form

An XFA processing application produces an XML digital signature in response to a user activating an event
that contains a signData property with an operation property of "sign". Such an event is usually
activated by the user clicking a button. In response to the event activation, an XFA processing application
performs steps such as the following, although the exact steps are application-dependent:

1. Initiate a dialog with the person filling out the form to determine which of the user’s private certificates
should be used to produce the signature. Typically certificates are used only when the application and
handler specify a signature algorithm that supports a public key-based signature algorithm.

Note: The following steps are paraphrased from Section 3.1.1, “Reference Generation” and Section 3.1.2,
“Signature Generation” in [XMLDSIG-CORE], with additional information pertinent to the XFA
signData element.

2. For each object being signed, apply the application-determined transforms, calculate the digest value
over the resulting data object, and create a reference element. The XFA template signData element
specifies the objects being signed, as described “Manifest: Data and other content digested by the
signature handler” on page 556.

3. Create the XML object (SignedInfo) that describes how the signature is being produced. This object
includes a description of the canonicalization method, the signature method, any transform
algorithms, and the digest method.

4. Canonicalize over the objects specified in Step 2. The canonicalization algorithm is application-defined.
Canonicalization is used because not every alteration to an XML document has meaning. For example,
it is irrelevant whether an element start tag is separated from the following attribute name by a single
space, multiple spaces, a line feed, or any other valid white space. Naively signing every character in the
document would mean that any change at all to the document, even a meaningless change, would
void the signature. Rather a canonical copy of the document is extracted and the signature is
generated or verified based on the canonicalized copy. The W3C specification Exclusive XML
Canonicalization [EXCLUSIVE-XML-CANONICALIZATION] specifies a variety of canonicalization
algorithms.

5. Calculate the signature value over the objects specified in Step 2. This is done by invoking the signature
handler specified or by invoking an application-defined algorithm. If the signData element specifies
a handler that is required, the XFA processing application is obliged to use the specified handler. A
signature handler is usually third-party software that handles the raw signing operation. The XFA
processing application invokes it after applying other transformations and after obtaining other
information, such as certificates, used by the signature handler. The signature handler computes a hash
value based upon a combination of the data included in the manifest and a (usually private) signing
key. This value is the digital signature.

6. Construct the Signature element that includes SignedInfo, the signature value, and other
information that allows the signature to later be verified or cleared. The signature object includes the
computed hash and URIs identifying the certificates and certificate policies needed to verify the
signature. It also includes a manifest that identifies each of the XML elements included in the
signature. Although this manifest is derived from one originally specified as XFA-SOM expressions
within an XFA manifest element, within the signature the manifest is expressed using [XPATH]
expressions as required by the [XMLDSIG-CORE] specification. The signature also includes additional
information, not mandated by [XMLDSIG-CORE], which is described below.

XFA Specification

Signed Forms and Signed Submissions 554

Chapter 16, Security and Reliability

Role of <signData> and <Signature> in producing a digital signatures

Respecting the Signed State of a Form

Respecting the signed state of a form prevents the person filling out the form from changing any of the
data used in producing the signature. The most sophisticated implementation of this sets the fields that
are used in the signature - and only those fields - to be read-only. This can be done using script triggered
by the postSign event. However a simpler implementation, which is often good enough, locks the entire
form as soon as the form is signed. The lockDocument element was introduced in XFA 2.8 to support this
simple implementation without scripting.

The lockDocument element takes a type attribute which specifies whether locking is optional (the
default) or required. If locking is required the document is locked without giving any choice to the user.
However if locking is optional the user is prompted and is allowed to accept or decline the lock.

The content of the lockDocument element can be 0, 1, or auto. The value 1 causes the document to be
locked upon signing. The value 0 forbids the locking of the document upon signing. The value auto
delegates locking behavior to the application. The default value is auto for backwards compatibility with
older versions of XFA, because previous versions of this specification did not specify any locking behavior.
For a discussion of the Acrobat implementation of auto, see “Handling of lockDocument auto” on
page 1180.

Data and other items
specified in manifest

Data includes all or part of any of the objects (packets)
normally written out as XDP. For example, the manifest
may specify only part of the data object or it may
specify all of the objects.

XFA processing
application

<signData>

Public key certificate
and personal info

<Signature>

optional

a. Transformations
b. Canonicalization algorithm
c. Signature algorithm (handler)

<event activity="click">
 <signData operation="sign">
 ...
 </signData>
</event>

User clicks the button associated with the event

XFA Specification

Signed Forms and Signed Submissions 555

Chapter 16, Security and Reliability

Removing a Signature

An XFA processing application produces an XML digital signature in response to a user activating an event
that contains a signData property with a operation property of "clear". Such an event is usually
activated by the user clicking a button.

In response to such an event being activated, the XFA processing application removes the signature
signature by simply by stripping out the signature object. This can be done by anyone with access to the
document. Hence, signatures are hard to apply (i.e. they require possession of private keys to apply) but
they are easy to remove.

Verifying a Signature

An XFA processing application produces an XML digital signature in response to a user activating an event
that contains a signData property with a operation property of "verify". Such an event is usually
activated by the user clicking a button.

In response to such an event being activated, the XFA processing application invokes the signature
handler, specifying that signature verification is desired and supplying a pointer to the signature object.

Template Provides Instructions on Signature Operation

The signData property specifies a signature-related operation, which may be used to produce a
signature (sign), verify an existing signature (verify), or clear an existing signature (clear). If the
operation is to produce a signature, the signData property specifies how the digital signature should be
produced, including the signature handler, the signature destination, and the signature manifest (what
part of the XFA document is being signed). If the operation is to verify or clear an existing signature, only
the location of the signature (as the ref property) need be provided. The signature being cleared or
verified is self-describing.

Signature filter: Handler, algorithms, and certificates to use to produce a signature

The signData filter property specifies the signature handler and certificates for use in producing the
signature. It also specifies a list of potential reasons a document is being signed.

The architecture specified by [XMLDSIG-CORE] allows for different signatures to use different signature
algorithms. XFA processors support at least the RSA-SHA1 and DSA-SHA1 methods. The method used is
recorded in the digital signature so that the signature can be processed by generic software.

A digital certificate allows a document’s recipient to know whether or not a specific public key really
belongs to a specific individual. Digital certificates bind a person (or entity) to a public key. Certificate
authorities (CA) issue these certificates and recipients must trust the CA who issued the certificate. X.509 is
the widely accepted certificate standard that Adobe uses.

Most of the properties in filter include a type subproperty. This property indicates whether the XFA
processing application is restricted to using the indicated item or selecting from the indicated items. The
following example requires the XFA processing application to use the signature method
"Adobe.PPKList" and to restrict the signing certificates to one of the seed values provided. These
settings limit the individuals who can use this signature to the department head and the supervisor.

Example 16.2 Signature instructions that restrict who can sign

<event>
<signData operation="sign" …>

XFA Specification

Signed Forms and Signed Submissions 556

Chapter 16, Security and Reliability

<manifest … />
<filter>

<handler type="required">Adobe.PPKList</handler>
<certificates url="">

<signing type="required">
<!-- Department heads certificate -->
<certificate>MIB4jCCAUugAwkdE13 … </certificate>
<!-- Supervisors certificate -->
<certificate>MIB4jCCAUugAwkdE13 … </certificate>

</signing>
</certificates>

</filter>
</signData>

</event>

Manifest: Data and other content digested by the signature handler

The signData manifest property provides a list of SOM expressions that specify which parts of the
form should be reflected in the digital signature. If the manifest is non-empty, the signature handler uses
the referenced items in its production of the XML digital signature. The SOM expressions may reference
part or all of any of the packets written out to XDP (“XDP Specification” on page 989). Such packets include
dataSets, config, and localeSet.

XML digital signatures adopt the mechanism specified by [XMLDSIG-CORE], which is an XML-specific
mechanism. The signature handler digests the XML prior to being written out as XDP. This distinction is
important relative to data, which has one form in the XFA Data DOM and another (possibly) different form
in the XML Data DOM. Such differences exist for the following reasons:

● XSLT transformations which may be applied when loading or saving the XML Data Document. Use of
these transformations is described in “XSLT Transformations” on page 538.

● Before rich text in the XML Data DOM is brought into the XFA Data DOM, it is converted into plain text.
This separation is described in “Representing Rich Text in the XFA Data DOM” on page 218.

● Hypertext references to images in rich text are resolved in the XFA Form DOM, but not in the XML Data
DOM. As a result, the data in such references is omitted even if the entire form is included in the
manifest.

It is an error to specify a manifest for an XML digital signature that includes a node that is not written out.
For example, the manifest must name neither data nodes that are marked transient nor other form
properties that are never written out.

Signature destination

The signData ref property specifies the location where the Signature element is to be stored (if the
signData operation is "create") or has been stored (if the signData operation is "clear" or
"verify").

The signature can be place anywhere that a SOM expression can reach. However it is recommended that
Signature elements be placed within the datasets element, but outside the data element which is
the child of datasets. Multiple sibling Signature elements can be accommodated. The signatures are
distinguished by XML ID, not by element name, in keeping with the dictates of [XMLDSIG-CORE]. See “The
datasets Element (an XDP Packet)” on page 996.

Occasionally, it is necessary to place a signature in a location that will not travel with the data. In this case
Signature elements may be placed as XDP packets, that is, as children of the XDP’s root xdp element.
See “The signature Element (an XDP Packet)” on page 998.

XFA Specification

Signed Forms and Signed Submissions 557

Chapter 16, Security and Reliability

XFA-Specific Information in the XML Digital Signature

XML digital signatures generated by XFA processors contain additional information beyond that required
by [XMLDSIG-CORE]. The additional information uses namespaces other than the namespace for XML
signatures so it does not interfere with generic signature processing. The additional information that is
included is:

● Date and time of signing

● A reason for signing.

The reason for signing must be selected from a list of possible reasons which is descended from the
reasons subproperty of the filter property of the signData object. For example, assume the
template contains the following fragment.

Example 16.3 Template fragment using a list of reasons

<field ...>
<event ...>

<signData operation ="sign" ...>
...
<filter>

<reasons ...>
<reason>Requested</reason>
<reason>Approved</reason>

<reasons>
</filter>

</signData>
</event>

</field>

Then the additional information inserted into the XML digital signature could look like this:

<Signature Id=”mySIg” xmlns="http://www.w3.org/2000/09/xmldsig#">
<SignedInfo>

...
<Object>

<SignatureProperties>
<SignatureProperty ...>

<x:xmpmeta xmlns:x='adobe:ns:meta/'>
<rdf:RDF

xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#">
<rdf:Description rdf:about=""

xmlns:xmp="ns.adobe.com/xap/1.0/"
xmlns:dc="http://purl.org/dc/elements/1.1/"
xmlns:xfa="http://www.xfa.org/schema/xfa-template/3.1/">
<xmp:CreateDate>2005-08-15T17:10:04Z</xmp:CreateDate>
<dc:description>Approved</dc:description>

</rdf:Description>
</rdf:RDF>

</x:xmpmeta>
</SignatureProperty>

</SignatureProperties>
</Object>

</SignedInfo>
</Signature>

XFA Specification

Signed Forms and Signed Submissions 558

Chapter 16, Security and Reliability

Example

The following form presents buttons for signing, verifying, and unsigning the form. The signature includes
the root element of the data document and all of its content, but nothing else. When the signature is
present it is enclosed in an element called signatures which is placed within the datasets element.
Note the use of a prototype to avoid repeating information in each signData element.

Example 16.4 Full signing example template

<template xmlns="http://www.xfa.org/schema/xfa-template/2.1/">
<subform name="form1" ...>

<pageSet>
…

</pageSet>
<subform …>

<field …>…</field>
…
<field name="Sign" …>

<ui>
<button/>

</ui>
<caption>

<value>
<text>Sign the data</text>

</value>
</caption>
<bind match="none"/>
<event activity="click">

<signData operation="sign" use="#mySignData"/>
</event>

</field>
<field name="Verify" ...>

<ui>
<button/>

</ui>
<caption>

<value>
<text>Verify the signature</text>

</value>
</caption>
<bind match="none"/>
<event activity="click">

<signData operation="verify" use="#mySignData"/>
</event>

</field>
<field name="Clear" …>

<ui>
<button/>

</ui>
<caption>

<value>
<text>Remove the signature</text>

</value>
</caption>
<bind match="none"/>

XFA Specification

Signed Forms and Signed Submissions 559

Chapter 16, Security and Reliability

<event activity="click">
<signData operation="clear" use="#mySignData"/>

</event>
</field>

</subform>
<proto>

<signData id="mySignData" target="mySignature" ref="!signatures">
<manifest>

<ref>$data.form1</ref>
</manifest>
<filter>

<lockDocument type="required">1</lockDocument>
<handler version="…" type="required">…</handler>
<reasons type="required">

<reason>…</reason>
…

</reasons>
<certificates url="MyCertURL">

<signing type="optional">
<certificate>…</certificate>
…

</signing>
<issuers type="required">

<certificate>…</certificate>
…

</issuers>
<oids type="optional">

<oid>…</oid>
…

</oids>
</certificates>

</filter>
</signData>

</proto>
</subform>

</template>

PDF Signatures

PDF signatures can be applied to the XFA form itself or to a separate document which accompanies
submitted data.

PDF Signatures Applied to the Form Itself

When aPDF signature is applied to the XFA form itself it is a document-of-record signature because it
always includes all portions of the XFA template, configuration, and data and all portions of the PDF that
bear upon the signed field(s).

Prior to XFA 2.5, PDF signatures always included all fields of the form. Starting with XFA 2.5 a PDF signature
may be restricted to a subset of the fields.

A PDF signature is placed upon a form by the user clicking on a signature widget. To this end, XFA defines a
signature widget that is used only for PDF signatures. The widget itself displays the signed or unsigned

XFA Specification

Signed Forms and Signed Submissions 560

Chapter 16, Security and Reliability

state of the document. Since there can potentially be more than one signature widget on a document,
each widget independently displays its own signed state.

The signature widget is associated with an XFA field object but it never contains user data. By default the
signature computation includes all fields, as well as the Template and Config DOMs, creating a document
of record for the entire form. However the signature field may specify a manifest which limits the signature
to a subset of the fields in the form. This provides the XFA equivalent of the PDF object digest for
signatures, except that the grammar for the XFA manifest is more flexible.

Applying a PDF signature to a form does not prevent subsequent alterations to the form; however, if the
signed portion of the form is altered, the signature dictionary stored in the document no longer matches a
freshly calculated signature value. Hence, analysis can determine that the form was tampered with after
signing.

When the PDF signature covers all fields in the form its computation includes the entire XFA form
embedded in the PDF and most of the non-XFA content in the PDF as well. Some portions of the non-XFA
content are omitted as specified in the PDF standard [PDF].

Unlike an XML digital signature, a PDF signature signs the XFA form exactly as it is currently expressed,
rather than signing a normalized copy. This means that it is not possible to make even meaningless
changes to the XFA form without voiding the signature. For example, changing a space to a tab in between
an element tag and the following attribute name voids the signature, even though it does not change the
meaning of the XML.

Respecting the Signed State of a Form

Respecting the signed state of a form prevents the person filling out the form from changing any of the
data used in producing the signature. The most sophisticated implementation of this sets the fields that
are used in the signature - and only those fields - to be read-only. This can be done in PDF using certified
signatures. Some people find this facility difficult to use.

Starting with Adobe Extensions Level 3 a facility is available which is easier to use. It is possible to specify
that the entire document will be or may optionally be locked upon signing the form. This facility is
controlled by the LockDocument key in the SV dictionary, which is described in table 8.83 of [PDF]. There is
a similar facility in XFA which is described in “Respecting the Signed State of a Form” on page 554.

PDF Signatures Accompanying Submitted Data

Data may be submitted in a PDF envelope that also bears one or more signatures. This envelope is an
independent document, entirely separate from the XFA form. The envelope is constructed, filled, and
signed during the submit operation. Once the client has sent it to the host the client deletes the envelope
and its content.

Because the PDF envelope is constructed when needed and deleted immediately afterward the usual
problems with signing XML inside PDF do not apply. It does not matter that PDF and XML signature filters
differ because the PDF signature applies to the exact stream of bytes carried within the PDF. Signatures
that apply only to portions of the data can be delineated by simple byte ranges within the contained
stream of bytes. This is within the capability of the PDF signature mechanism.

XFA Specification

Signed Forms and Signed Submissions 561

Chapter 16, Security and Reliability

Multiple-Appearance Signatures
Sometimes it is useful for a single person to be able to present multiple appearances for his or her
signature. For example, Fred Dobson’s job title is “Manager, QA”. He supervises several employees. He also
sits on several project committees as the QA representative. When he is signing a survey for the IS
department he wants to title himself “Fred Dobson, Manager, QA”. When he is signing vacation and other
forms related to the people he supervises he wants to title himself “Fred Dobson, Manager”. When he is
signing off a project committee report he wants to title himself “Fred Dobson, QA Liaison”.

XFA processors may optionally provide a way to set up multiple signature appearances for a single user.
(The Acrobat family of products does so.) Since XFA 2.8 the form template has been able to suggest or
control which signature appearance to use.

Each signature appearance must have a unique identifier associated with it. The identifier is a non-empty
string. The content of the appearanceFilter element supplies the identifier of the suggested or
required signature appearance. In addition the element may have a type attribute which has the value
optional or required. When the value is required, there must be an appearance with the given
identifier or else signing fails, and the specified appearance is the one used by the XFA processor. When
the value is optional (the default) the user is allowed to override the suggested appearance and it is not
an error if no identifier matches.

The same facility is also added to PDF starting with Adobe Extensions Level 3. The markup is somewhat
different but the keyword AppearanceFilter is used. This key appears in the SV dictionary and is explained
in table 8.83 of [PDF].

XFA Specification

Using the Security Features of Web Services 562

Chapter 16, Security and Reliability

Using the Security Features of Web Services
In XFA 2.8 the Connection Set grammar was extended to include descriptions of the authentication
policies for particular web services. This description uses the generalized grammar defined in [WS-Policy].
The grammar can describe a great many authentication methods ranging from simple passwords to
Kerberos . However it is implementation-defined which authentication methods are supported and in
what contexts. The implementation in Adobe products is described in “Support for authentication during
client-server interchange” on page 1185.

XFA Specification

Structuring Forms for Portability and Archivability 563

Chapter 16, Security and Reliability

Structuring Forms for Portability and Archivability
Portability is a basic premise of PDF, hence the name Portable Document Format. PDF documents can be
used on-line or off-line, and they can distributed electronically or as hard copy.

By contrast XDP is not intended for portability but for ease of interoperability with other software. That is
why it is based on XML.

In order to be portable a PDF document must be self-contained. It must not depend on network access.
People expect to copy a PDF file to a CD-ROM or a USB key and be able to use it even when they don’t have
network access.

XDP documents are not expected to have this degree of portability. The primary use for XDP documents is
either within a server or in transit between a client and a server. Hence an XDP file may include URIs
pointing to network resources. For example, it may invoke external prototypes which are located on an
HTTP server.

When converting an XFA form from XDP format to PDF, the following rules must be followed to ensure that
the PDF file is properly portable.

● Resolve external prototypes.

● Put external images inline.

● Include definitions for all required locales.

● Include all non-default configuration settings.

Fields containing rich text may contain image elements which reference external images. Such elements
are not required to be respected as rich text markup, however XFA processors may still parse the image
element and inspect the target of the URI. However to preclude portability problems XFA processors
refrain from following such URIs outside the package, as described in “Image Data” on page 146.

The requirements for archiving are similar to the requirements for portability but more stringent. For
example, a non-archival document might rely on the default settings for a well-known locale. However an
archival document must specify definitions for all the locales it uses because locale definitions change
from time to time. When the name of the national currency changes, and possibly at the same time its
value, the archived document must not automatically pick up the new currency while retaining the old
numbers!

Because XFA is intended for use in financial transactions we recommend adhering to the tougher archival
standard for all XFA forms packaged as PDF files. Ideally one would wish to include all known locales in
every form but this is not practical because each locale definition adds about 3 kilobytes and there are
hundreds of locales defined. Instead the form should include definitions for all locales in which the form
might be used.

 564

Part 2: XFA Grammar Specifications

This part provides a set of specifications that describe the elements and attributes of each of the grammars
that comprise XFA. Each chapter describes one of these grammars.

 565

17 Template Specification

This chapter is the language specification for the XFA template syntax. The reference portion of this
specification with syntax descriptions begins on page 571.

Guide to the Template Specification
This chapter provides information that will help you understand the material presented in the template
syntax reference. It describes typographic and formatting conventions and concepts represented by each
element description, including properties, one-of properties, and children. It also discusses default
properties and property occurrence.

XFA Profiles

Starting with XFA 2.5 there is a facility to specify that a form uses a subset of the full XFA capability. This is
indicated in the template element by a non-default value for the baseProfile attribute. Currently the
only specified value is interactiveForms, which corresponds to the XFAF subset.

When the template element specifies a profile, the contents of the template must be restricted to the set
of elements and attributes allowed by that profile. For the restrictions of the XFAF profile see “Grammar
Excluded from XFAF” on page 267.

Note: The XFA Schema attached to this document in “Schemas” on page 1496 is defined for the full XFA
grammar. It will not detect the presence of elements or attributes that are not appropriate for the
profile specified by the form.

How to Read an Element Specification

The Template Syntax Reference contains a subsection for each element in the XFA-Template language. All
of those subsections follow the same format; indeed, they are machine-compiled.

Each subsection starts with the name of the element and a short description of the element’s function.

The next part is an XML syntax definition — a human readable schema for the element. This includes all
attributes and child elements that are available in any context.

The element description comprises nested subsections that describe each of the element’s attributes and
child elements. These attributes and child elements are partitioned into the groups: properties, one-of
properties and children, as is apparent in the following example. These groups are described in the
following subsections.

XFA Specification
Chapter 17, Template Specification Guide to the Template Specification 566

Caution: Sometimes an attribute or child element is only useable in some contexts, but there is no
indication of this in the syntax definition. Where appropriate such limitations are described in
the textual description of the attribute or child element. The XFA schemas do not enforce these
contextual limitations. Instead XFA processors ignore out-of-context attributes and child
elements, optionally emitting warnings.

All elements and attributes described in this specification, unless otherwise indicated, belong to the
following namespace:

http://www.xfa.org/schema/xfa-template/3.1/

Note: The trailing “/” is required.

Properties

As in object-oriented programming, properties describe the objects to which they are attached.

A property represents a logical grouping of information that may be represented as a single attribute or as
as a tree structure of elements. A property includes all the information contained in the elements and
attributes used to represent it.

Properties may be unstructured or structured; XFA-Template uses attributes to describe unstructured
properties and child elements to describe structured properties. For example, the fill element’s
attributes (see above syntax) are all unstructured properties, while its color element is a structured
property.

<fill

Properties:
id="xml-id"
presence="visible | inactive | invisible |

hidden"
use="cdata" >
<color> [0..1]

>
One-of properties:

<linear> [0..1]
<pattern> [0..1]
<radial> [0..1]
<solid> [0..1]
<stipple> [0..1]

Children:
<extras> [0..n]

</fill>

A red italicized type-name is a
placeholder for a value of the given
type.

Non-italicized words are enumerated
values. All the allowed values are
listed.

Underlined words indicate the
default value. The application uses
this value if the attribute is omitted.

Attribute names are green.

Element names are black.

Comments are blue italic.

[min..max] shows the allowed
number of occurrences of the
element. The value n indicates no
maximum.

XFA Specification
Chapter 17, Template Specification Guide to the Template Specification 567

All properties must be in the XFA template namespace to be included in the template DOM. That is, the
XFA template grammar cannot be extended through the use of custom namespaces. However, the XFA
template grammar provides extras elements that can be used for extensions.

The element descriptions in the template syntax reference differentiate between (regular) properties and
one-of properties, as shown in the example on the previous page.

Regular Properties

Regular properties can be added to the element without regard to other properties in the element. The
element descriptions in this specification use the term Property to identify such regular properties.

In the case of elements, occurrence constraints must be honored.

One-of Properties

There are occasions where an element supports mutually-exclusive properties. For unstructured
properties, an attribute enumeration represents the mutually-exclusive values, and these are not
distinguished from regular properties. However, for structured properties, the entire structures are likely
mutually-exclusive.

The element descriptions in this specification use the term One-of property to identify mutually-exclusive,
structured properties. The element must hold at most one of the allowed one-of property child elements.

In the fill element example at the beginning of this chapter, the linear, pattern, radial, solid
and stipple elements are mutually-exclusive, having been identified as One-of properties.

Property Defaults

The processing application must supply defaults for properties omitted from an element, using the
following guidelines:

● Regular properties. The processing application must provide the default values indicated in the
element descriptions in this specification.

● One-of properties. The processing application must provide one of the properties as a default. That is,
the absence of any one-of child elements implies the application must provide a default.

Children

Elements in the Children category don't represent properties at all. They represent tangible objects that
often have the capability to contain each other and often are indeed called “containers”. Examples of such
children include the field and subform elements. A subform element has a variety of attributes and
child elements that represent the properties of the subform itself. Additionally, the subform may
enclose a number of child elements that express children of the subform, such as fields, draws, or other
subforms.

The distinction between child elements that are (structured) properties and those that are “true” children
is intentional. While all properties could be expressed as attributes, the attribute proliferation required to
describe a deep structure would be overwhelming. Property child elements tend to be singly occurring, or
occurring in known numbers (e.g., four edges in a border).

XFA Specification
Chapter 17, Template Specification Guide to the Template Specification 568

Element Occurrence

Singly Occurring Elements

Elements that are defined as singly occurring [0..1] are permitted to be defined only once within the scope
of the enclosing element. Unless stated otherwise all elements are singly occurring. Singly occurring
elements usually each represent a property of the enclosing element, rather than an object aggregated by
the enclosing element. Observe the following example of a filled white rectangle, with rounded corners
and alternating solid and dashed edges.

Example 17.1 Fragment showing a singly occurring element
<draw>

<value>
<rectangle>

<fill>
<color value="255,255,255">
<solid/>

</fill>
</rectangle>

</value>
</draw>

In the example above, we see a single fill element. The fill element is specified as a [0..1] occurrence
child of rectangle, and therefore it can only legally occur once or not at all in that position.

Observe the following incorrect adaptation of the previous example of a white rectangle.

Example 17.2 Fragment showing an improperly duplicated element
<draw>

<value>
<rectangle>

<fill>
<!-- white -->
<color value="255,255,255">
<solid/>

</fill>
<fill>

<!-- black -->
<color value="0,0,0">
<solid/>

</fill>
</rectangle>

</value>
</draw>

In the example above, the rectangle element incorrectly contains two fill elements. It makes no
difference whether or not they are contiguous. All that matters is that they are both children of the same
rectangle element. If the processing application encounters such an XFA Template that expresses an
excessive number of a given element, the processing application may consider this an error or continue
processing. If the application chooses to continue processing, it must accept only the first occurrence of
the given element. Therefore, in this example the rectangle would have a fill of white (color value of
255,255,255).

XFA Specification
Chapter 17, Template Specification Guide to the Template Specification 569

Multiply Occurring Elements

Elements that are defined as multiply occurring are permitted to be defined more than once within the
scope of the enclosing element. Multiply occurring elements are used to represent array-type properties
or sub-objects aggregated by the enclosing element.

Observe the following example of a filled black rectangle, with rounded corners and alternating solid and
dashed edges.

Example 17.3 Fragment showing multiply occurring elements
<draw>

<value>
<rectangle>

<corner join="round"/>
<edge stroke="solid"/>
<edge stroke="dashed"/>

</rectangle>
</value>

</draw>

In the example above, we see that the edge element has been multiply specified within the rectangle
element. The edge and corner elements are both specified as [0..4] occurrence XFA element types, and
so both edge elements contribute to the definition of some part of the rectangle.

When more multiply occurring elements are present than required, the XFA processor uses the maximum
allowed number of elements from the beginning of the set. Observe the following adaptation of the
previous example.

Example 17.4 Fragment showing too many multiply occurring elements
<draw>

<value>
<rectangle>

<corner join="round"/>
<edge stroke="solid"/>
<edge stroke="dashed"/>
<edge stroke="solid"/>
<edge stroke="dashed"/>
<edge stroke="dotted"/>
<edge stroke="dotted"/>

</rectangle>
</value>

</draw>

In the example above, we see that the edge element has been multiply specified inside the rectangle
element for a total of six edge elements. The element specification for the rectangle element decrees
that there may be up to four edges specified for a rectangle. Therefore, only the first four occurrences of
the edge element are accepted. The last two edge elements (both of which specify a stroke of dotted)
do not contribute to the rectangle.

Processing Instructions

Processing instructions are not formally part of the schema. They contain information which is of use to
particular applications and may be ignored by others. However several processing instructions have
conventional meanings in an XFA template. These processing instructions are discussed in the descriptive

XFA Specification
Chapter 17, Template Specification Guide to the Template Specification 570

text for the element in which they are enclosed. XML also allows for processing instructions located at the
head of the document, not enclosed in any element, but this reference chapter by definition does not
discuss anything that is outside the template packet.

As a matter of style processing instructions are conventionally placed ahead of any other content within
the enclosing element.

XFA Specification
Chapter 17, Template Specification Template Reference 571

Template Reference

The appearanceFilter element
An element that controls whether the document can be signed with a choice of named signature
appearances.

<appearanceFilter

Properties:
 id="cdata"
 type="optional | required"
 use="cdata"
 usehref="cdata"
>
 ...pcdata...
</appearanceFilter>

The appearanceFilter element is used within the following other elements:
filter proto

This element provides functionality similar to that provided in PDF by the AppearanceFilter entry in the SV
dictionary, as described in table 8.83 of [PDF].

Note that in XFA, as in PDF, the application is not required to maintain a list of named signature
appearances. Those implementations that do not do so ignore this element.

Content

A text string which matches the name of the signature appearance to be used. An empty string does not
match any appearance.

The id property

A unique identifier that may be used to identify this element as a target.

The type property

Determines whether the user is free to select a different signature appearance. The value must be one of
the following.

optional

The user may select a different signature appearance. This is the default.

required

The user may not select a different signature appearance.

The use property

At template load time, invokes another object in the same document as a prototype for this object. The
content of this property is either a SOM expression (which cannot start with '#') or a '#' character followed
by an XML ID.

The object used as a prototype does not need to be the child of proto. Any object of the appropriate
class can be used as a prototype.

XFA Specification
Chapter 17, Template Specification Template Reference 572

If both use and usehref are non-empty usehref takes precedence.

The usehref property

At template load time, invokes an external object as a prototype for this object. The content of this
property is an URL, followed by '#', followed by either an XML ID or by som(SOM_expr) where SOM_expr
represents a SOM expression.

The XML ID or SOM expression is resolved in the context of the external document.

If both use and usehref are non-empty usehref takes precedence.

XFA Specification
Chapter 17, Template Specification Template Reference 573

The arc element
A curve that can be used for describing either an arc or an ellipse.

<arc

Properties:
 circular="0 | 1"
 hand="even | left | right"
 id="cdata"
 startAngle="0 | angle"
 sweepAngle="360 | angle"
 use="cdata"
 usehref="cdata"
>

 <edge/> [0..1]
 <fill/> [0..1]
</arc>

The arc element is used within the following other elements:
proto value

Unlike borders and rectangles, the path of an arc follows a counter-clockwise direction. This has
implications for handedness. In particular, an arc with a left-handed edge will render the edge's thickness
just inside the path, while left-handed borders and rectangles render the thickness just outside the path.
Similarly, an arc with a right-handed edge will render the edge's thickness just outside the path, while
right-handed borders and rectangles render the thickness just inside the path.

The circular property

Specifies whether the arc will be adjusted to a circular path.

0

The arc will not be adjusted to a circular path.

1

The arc will be adjusted to a circular path.

The default value of this property is 0.

Setting this property to 1 causes the arc to become circular, even if the content region into which the arc is
being placed is not square. When forced into a circle, the radius is equal to the smaller dimension of the
content region.

The edge property

A formatting element that describes an arc, line, or one side of a border or rectangle.

The fill property

A formatting element that applies a color and optional rendered designs to the region enclosed by an
object.

XFA Specification
Chapter 17, Template Specification Template Reference 574

The hand property

Description of the handedness of a line or edge.

even

Center the displayed line on the underlying vector or arc.

left

Position the displayed line immediately to the left of the underlying vector or arc, when following
that line from its start point to its end point.

right

Position the displayed line immediately to the right of the underlying vector or arc, when
following that line from its start point to its end point.

The id property

A unique identifier that may be used to identify this element as a target.

The startAngle property

Specifies the angle where the beginning of the arc shall render.

The sweepAngle property

Specifies the length of the rendered arc as an angle.

The use property

At template load time, invokes another object in the same document as a prototype for this object. The
content of this property is either a SOM expression (which cannot start with '#') or a '#' character followed
by an XML ID.

The object used as a prototype does not need to be the child of proto. Any object of the appropriate
class can be used as a prototype.

If both use and usehref are non-empty usehref takes precedence.

The usehref property

At template load time, invokes an external object as a prototype for this object. The content of this
property is an URL, followed by '#', followed by either an XML ID or by som(SOM_expr) where SOM_expr
represents a SOM expression.

The XML ID or SOM expression is resolved in the context of the external document.

If both use and usehref are non-empty usehref takes precedence.

XFA Specification
Chapter 17, Template Specification Template Reference 575

The area element
A container representing a geographical grouping of other containers.

<area

Properties:
 colSpan="1 | integer"
 id="cdata"
 name="cdata"
 relevant="cdata"
 use="cdata"
 usehref="cdata"
 x="0in | measurement"
 y="0in | measurement"
>

 <desc/> [0..1]
 <extras/> [0..1]
Children:
 <area/> [0..n]
 <draw/> [0..n]
 <exObject/> [0..n]
 <exclGroup/> [0..n]
 <field/> [0..n]
 <subform/> [0..n]
 <subformSet/> [0..n]
</area>

The area element is used within the following other elements:
area pageArea proto subform

The area property

A container representing a geographical grouping of other containers.

The colSpan property

Number of columns spanned by this object, when used inside a subform with a layout type of row.
Defaults to 1.

The desc property

An element to hold human-readable metadata.

The draw property

A container element that contains non-interactive data content.

The exObject property

An element that describes a single program or implementation-dependent foreign object.

The exclGroup property

A container element that describes a mutual exclusion relationship between a set of containers.

XFA Specification
Chapter 17, Template Specification Template Reference 576

The extras property

An enclosure around one or more sets of custom properties. The content of this element may be used by
custom applications.

The field property

A container element that describes a single interactive container capable of capturing and presenting data
content.

The id property

A unique identifier that may be used to identify this element as a target.

The name property

An identifier that may be used to identify this element in script expressions.

The relevant property

Specifies the views for which the enclosing object is relevant. The views themselves are specified in the
config object.

Views are supplied as a space-separated list of viewnames: relevant="[+|-]viewname
[[+|-]viewname [...]]". A token of the form viewname or +viewname indicates the enclosing
element should be included in that particular view. A token of the form -viewname indicates the element
should be excluded from that particular view.

If a container is excluded, it is not considered in the data binding process.

See also Concealing Containers Depending on View and Config Specification.

The subform property

A container element that describes a single subform capable of enclosing other containers.

The subformSet property

An element that describes a set of related subform objects.

The use property

At template load time, invokes another object in the same document as a prototype for this object. The
content of this property is either a SOM expression (which cannot start with '#') or a '#' character followed
by an XML ID.

The object used as a prototype does not need to be the child of proto. Any object of the appropriate
class can be used as a prototype.

If both use and usehref are non-empty usehref takes precedence.

The usehref property

At template load time, invokes an external object as a prototype for this object. The content of this
property is an URL, followed by '#', followed by either an XML ID or by som(SOM_expr) where SOM_expr
represents a SOM expression.

The XML ID or SOM expression is resolved in the context of the external document.

XFA Specification
Chapter 17, Template Specification Template Reference 577

If both use and usehref are non-empty usehref takes precedence.

The x property

X coordinate of the container's anchor point relative to the top-left corner of the parent container's
nominal content region when placed with positioned layout. Defaults to 0.

The y property

Y coordinate of the container's anchor point relative to the top-left corner of the parent container's
nominal content region when placed with positioned layout. Defaults to 0.

XFA Specification
Chapter 17, Template Specification Template Reference 578

The assist element
An element that supplies additional information about a container for users of interactive applications.

<assist

Properties:
 id="cdata"
 role="cdata"
 use="cdata"
 usehref="cdata"
>

 <speak/> [0..1]
 <toolTip/> [0..1]
</assist>

The assist element is used within the following other elements:
draw exclGroup field proto subform

The assist element provides a means to specify the tool tip and behavior for a spoken prompt.

The id property

A unique identifier that may be used to identify this element as a target.

The role property

Specifies the role played by the parent container. Such a role specification may be used by speech-enabled
XFA processing applications to provide information. For example, this attribute may be assigned values
borrowed from HTML, such as role="TH" (table headings) and role="TR" (table rows).

The speak property

An audible prompt describing the contents of a container. This element is ignored by non-interactive
applications.

The toolTip property

An element that supplies text for a tool tip. This element is ignored by non-interactive applications.

The use property

At template load time, invokes another object in the same document as a prototype for this object. The
content of this property is either a SOM expression (which cannot start with '#') or a '#' character followed
by an XML ID.

The object used as a prototype does not need to be the child of proto. Any object of the appropriate
class can be used as a prototype.

If both use and usehref are non-empty usehref takes precedence.

The usehref property

At template load time, invokes an external object as a prototype for this object. The content of this
property is an URL, followed by '#', followed by either an XML ID or by som(SOM_expr) where SOM_expr
represents a SOM expression.

XFA Specification
Chapter 17, Template Specification Template Reference 579

The XML ID or SOM expression is resolved in the context of the external document.

If both use and usehref are non-empty usehref takes precedence.

XFA Specification
Chapter 17, Template Specification Template Reference 580

The barcode element
An element that represents a barcode.

<barcode

Properties:
 charEncoding="cdata"
 checksum="none | 1mod10 | 1mod10_1mod11 | 2mod10 | auto"
 dataColumnCount="cdata"
 dataLength="cdata"
 dataPrep="none | flateCompress"
 dataRowCount="cdata"
 endChar="cdata"
 errorCorrectionLevel="cdata"
 id="cdata"
 moduleHeight="5mm | measurement"
 moduleWidth="0.25mm | measurement"
 printCheckDigit="0 | 1"
 rowColumnRatio="cdata"
 startChar="cdata"
 textLocation="below | above | aboveEmbedded |
 belowEmbedded | none"
 truncate="0 | 1"
 type="cdata"
 upsMode="usCarrier | internationalCarrier | secureSymbol |
 standardSymbol"
 use="cdata"
 usehref="cdata"
 wideNarrowRatio="cdata"
>

 <encrypt/> [0..1]
 <extras/> [0..1]
</barcode>

The barcode element is used within the following other elements:
proto ui

The barcode element supplies the information required to display a barcode. This includes the type of the
barcode and a set of options which varies from one type of barcode to another. For more information
about using this element see the chapter Using Barcodes.

The charEncoding property

The data written out as a barcode is serialized into a sequence of bytes as specified by this attribute. This
has no effect upon the data in the DOM or upon loading data into the DOM.

Note that the value of this property is case-insensitive. For that reason it is defined in the schema as cdata
rather than as a list of XML keywords. The list of supported encodings is implementation-dependent.
However patterns are defined for a number of text encodings so that, if implemented, a value that
matches a pattern in a case-insensitive manner has the specified meaning.

XFA Specification
Chapter 17, Template Specification Template Reference 581

UTF-8

The characters are encoded using Unicode code points as defined by [Unicode-3.2], and UTF-8
serialization as defined by ISO/IEC 10646 [ISO-10646].

Big-Five

The characters are encoded using Traditional Chinese (Big-Five). Note: there is no official standard
for Big-Five and several variants are in use. XFA uses the variant implemented by Microsoft as code
page 950, [Code-Page-950].

fontSpecific

The characters are encoded in a font-specific way. Each character is represented by one 8-bit byte.
The font referred to is the default font of the enclosing field or draw.

GBK

The characters are encoded using the GBK extension to GB-2312. This was originally defined by
the Chinese IT Standardization Technical Committee in 1995, but was not published outside
China. For this encoding XFA adopts as a reference Microsoft's Code Page 936, [Code-Page-936].

GB-18030

The characters are encoded using Simplified Chinese [GB18030].

GB-2312

The characters are encoded using Simplified Chinese [GB2312].

ISO-8859-NN

The characters are encoded as specified by ISO-8859 [ISO-8859] part NN.

KSC-5601

The characters are encoded using the Code for Information Interchange (Hangul and Hanja)
[KSC5601].

none

No special encoding is specified. The characters are encoded using the ambient encoding for the
operating system.

Shift-JIS

The characters are encoded using JIS X 0208, more commonly known as Shift-JIS [Shift-JIS].

UCS-2

The characters are encoded using Unicode code points as defined by [Unicode-3.2], and UCS-2
serialization as defined by ISO/IEC 10646 [ISO-10646].

UTF-16

The characters are encoded using Unicode code points as defined by [Unicode-3.2], and UTF-16
serialization as defined by ISO/IEC 10646 [ISO-10646].

The checksum property

Algorithm for the checksum to insert into the barcode. For some barcode types this attribute is ignored.
For others all or only a subset of the following values is supported.

XFA Specification
Chapter 17, Template Specification Template Reference 582

none

Do not insert a checksum. This is the default and is always allowed (but may be ignored).

auto

Insert the default checksum for the barcode format. Always allowed.

1mod10

Insert a "1 modulo 10" checksum.

2mod10

Insert a "2 modulo 10" checksum.

1mod10_1mod11

Insert a "1 modulo 10" checksum followed by a "1 modulo 11" checksum.

"1 modulo 10", "2 modulo 10", and "1 modulo 11" are defined in barcode standards documents for the
barcodes to which they apply.

The dataColumnCount property

(2-d barcodes only.) Optional number of data columns to encode for supported barcodes. The template
supplies this property in conjunction with dataRowCount to specify a fixed row and column bar code. The
template must not supply the dataColumnCount property unless the dataRowCount property is also
supplied. When these properties are used the size of the bar code is fixed. If the supplied data does not fill
the barcode it is padded out with padding symbols.

The dataLength property

(1-d barcodes only.) The expected maximum number of characters for this instance of the barcode.

For software barcodes, when moduleWidth is not specified, this property must be supplied by the
template. The XFA processor uses this value and the field width, plus its knowledge of the barcode format,
to compute the width of a narrow bar. The width of a wide bar is derived from the width of a narrow bar.
When moduleWidth is specified this property, if present, is ignored by the XFA processor.

For hardware barcodes this parameter is ignored. Because the XFA processor does not know the details of
the barcode format, it cannot use this information to determine the bar width.

The data being displayed is not validated against this parameter. For software barcodes the XFA processor
allows the data to overflow the assigned region of the field. For hardware barcodes the result of the
overflow depends upon the printer.

Note that there is no corresponding minimum length restriction. Some barcode formats have a fixed
number of symbols and must be filled with padding characters. Others allow a variable number of symbols
and terminate after the last symbol.

The dataPrep property

(Recommended for 2-d barcodes only.) Preprocessing applied to the data before it is written out as a
barcode. This does not affect the data in the DOMs, nor does it affect what the user sees when the field
has focus in interactive contexts.

none

Use the data just as supplied. This is the default.

XFA Specification
Chapter 17, Template Specification Template Reference 583

flateCompress

Write out a header consisting of a byte with decimal value 129 (0x81 hex) followed by another
byte with decimal value 1. Then write the data compressed using the Flate algorithm, as defined
by the Internet Engineering Task Force (IETF) in [RFC 1951]. No predictor algorithm is used. It is
an error to specify this option with a type that cannot encode arbitrary binary data.

The dataRowCount property

(2-d barcodes only.) Optional number of data rows to encode for supported barcodes.

The template supplies this property in conjunction with dataColumnCount in order to specify a fixed
row and column barcode. The dataRowCount property must not be present unless the
dataColumnCount property is also present. When these properties are used the size of the barcode is
fixed. If the supplied data does not fill the barcode the remaining cells are padded out with padding
symbols.

The encrypt property

An element that controls encryption of barcode or submit data.

The endChar property

Optional ending control character to append to barcode data. This property is ignored by the XFA
processor if the barcode pattern does not allow it.

The errorCorrectionLevel property

(2-d barcodes only.) Optional error correction level to apply to supported barcodes. For PDF417 the valid
values are integers in the range 0 through 8, inclusive.

For barcode types that accept this property the XFA processor ignores the checksum property.

For control of error correction when using UPS Maxicode see the UPSMode property.

The extras property

An enclosure around one or more sets of custom properties. The content of this element may be used by
custom applications.

The id property

A unique identifier that may be used to identify this element as a target.

The moduleHeight property

Module height.

A module is a set of bars encoding one symbol. Usually a symbol corresponds to a character of supplied
data. This property determines the height of the bars in the module. The allowable range of heights varies
from one barcode pattern to another. The template must not specify a height outside the allowable range.

When this property is not supplied, the default behavior depends on the type of barcode. 1-D barcodes
grow to the height of the enclosing field, limited by the allowable height range. 2-D bar codes default to a
module height of 5mm.

XFA Specification
Chapter 17, Template Specification Template Reference 584

The moduleWidth property

The property has different meanings for different classes of bar codes.

For 1-d software barcodes the XFA processor sets the width of the narrow bars to the value of this
property. The width of the wide bars is derived from that of the narrow bars. The allowable range of widths
varies from one barcode format to another. The template must not specify a value outside the allowable
range. If moduleWidth is supplied the XFA processor ignores the dataLength property. Conversely
moduleWidth has no default, so when dataLength is not supplied then moduleWidth must be
supplied.

For 1-d hardware barcodes moduleWidth either has no effect or has the same effect as for a software
barcode, depending upon the printer and barcode. However for hardware barcodes the template may fall
back upon the default value for this property. The default is 0.25mm. The allowable range for the value
varies between printers and between barcodes.

For 2-d barcodes the value of this property determines the module width. A module is a set of bars
encoding one symbol. Usually a symbol corresponds to a character of supplied data. The allowable range
of widths varies from one barcode format to another. The template must not specify a value outside the
allowable range. The default value for this property (0.25mm) is not useful for 2-d barcodes.

The printCheckDigit property

Specifies whether the check digit(s) is/are printed in the human-readable text.

When the XFA processor is not generating a checksum it ignores this property.

0

Do not print the check digit in the human-readable text, only in the barcode itself. This is the
default.

1

Append the check digit to the end of the human-readable text.

The rowColumnRatio property

(2-d barcodes only.) Optional ratio of rows to columns for supported 2-D barcodes.

The XFA processor ignores this property if dataRowCount and dataColumnCount are specified.

When rowColumnRatio is supplied the XFA processor allows the barcode to grow to the number of rows
required to hold the supplied data. If the last row is not filled by the supplied data it is padded out with
padding symbols.

The startChar property

Optional starting control character to prepend to barcode data.

This property is ignored by the XFA processor if the barcode pattern does not allow it.

The textLocation property

Location, if any, of human-readable text. May be one of:

below

Text is placed below the barcode. This is the default.

XFA Specification
Chapter 17, Template Specification Template Reference 585

above

Text is placed above the barcode.

belowEmbedded

Text is partially embedded in the bottom of the barcode. The baseline of the text is aligned with
the bottom of the bars.

aboveEmbedded

Text is partially embedded at the top of the barcode. The top of the text is aligned with the top of
the bars.

none

No text is displayed.

When the specification for the barcode type requires the legend to be in one particular place, or forbids
the display of a legend, this property is ignored. If the themplate specifies belowEmbedded and there is
no embedded text region at the bottom of the barcode, the XFA processor may interpret the property as
below. Similarly if the themplate specifies aboveEmbedded and there is no embedded text region at the
top of the barcode, the XFA processor may interpret the property as above. Otherwise it is an error for the
template to specify a location that is not supported by the type of barcode.

The truncate property

Truncates the right edge of the barcode for supported formats. Of the barcodes in the standard types list,
this applies only to PDF417. The XFA processor ignores this property for barcode formats to which it does
not apply.

0

The right-hand synchronization mark must be included. This is the default.

1

The right-hand synchronization mark must be omitted.

The type property

A string that identifies the type of barcode. This property must be supplied.

Note that the value of this property is case-insensitive. For that reason it is defined in the schema as cdata
rather than as a list of XML keywords. The list of supported barcode types is implementation-dependent.
However patterns are defined for a number of text encodings so that, if implemented, a value that
matches a pattern in a case-insensitive manner has the specified meaning.

aztec

Aztec, a 2D barcode, as defined in ANSI/AIM BC133 ISS [Aztec].

codabar

Codabar, a 1D barcode, as defined in ANSI/AIM BC3-1995, USS Codabar [Codabar]. Also known as
NW-7.

code2Of5Industrial

Code 2 of 5 Industrial, a 1D barcode. There is no official standard for this type.

XFA Specification
Chapter 17, Template Specification Template Reference 586

code2Of5Interleaved

Code 2 of 5 Interleaved, a 1D barcode, as defined in ANSI/AIM BC2-1995, USS Interleaved 2-of-5 [
Code2Of5Interleaved].

code2Of5Matrix

Code 2 of 5 Matrix, a 1D barcode. There is no official standard for this type.

code2Of5Standard

Code 2 of 5 Standard, a 1D barcode. Despite the name there is no official standard for this type.

code3Of9

Code 39 (also known as code 3 of 9), a 1D barcode, as defined in ANSI/AIM BC1-1995, USS Code 39
[Code39].

code3Of9extended

Code 39 extended, a 1D barcode. There is no official standard for this type.

code11

Code 11 (USD-8), a 1D barcode. There is no official standard for this type.

code49

Code 49, a 2D barcode made by stacking 1D barcodes, as defined in ANSI/AIM BC6-1995, USS
Code 49 [Code49].

code93

Code 93, a 1D barcode, as defined in ANSI/AIM BC5-1995, USS Code 93 [Code93].

code128

Code 128, a 1D barcode, as defined in ANSI/AIM BC4-1995, ISS Code 128 [Code128-1995].

code128A

Code 128 A, a 1D barcode, as defined in ANSI/AIM BC4-1995, ISS Code 128 [Code128-1995].

code128B

Code 128 B, a 1D barcode, as defined in ANSI/AIM BC4-1995, ISS Code 128 [Code128-1995].

code128C

Code 128 C, a 1D barcode, as defined in ANSI/AIM BC4-1995, ISS Code 128 [Code128-1995].

code128SSCC

Code 128 serial shipping container code, a 1D barcode, as defined in ANSI/AIM BC4-1995, ISS Code
128 [Code128-1995].

dataMatrix

Data Matrix, a 2D barcode, as defined in ANSI/AIM BC11 ISS - Data Matrix [DataMatrix]

ean8

EAN-8, a 1D barcode, as defined in ISO/EEC 15420 [ISO-15420]

XFA Specification
Chapter 17, Template Specification Template Reference 587

ean8add2

EAN-8 with 2-digit addendum, a 1D barcode, as defined in ISO/EEC 15420 [ISO-15420]

ean8add5

EAN-8 with 5-digit addendum, a 1D barcode, as defined in ISO/EEC 15420 [ISO-15420]

ean13

EAN-13, a 1D barcode, as defined in ISO/EEC 15420 [ISO-15420]

ean13add2

EAN-13 with 2-digit addendum, a 1D barcode, as defined in ISO/EEC 15420 [ISO-15420]

ean13add5

EAN-13 with 5-digit addendum, a 1D barcode, as defined in ISO/EEC 15420 [ISO-15420]

ean13pwcd

EAN-13 with price/weight customer data, a 1D barcode, as defined in ISO/EEC 15420 [ISO-15420]

fim

United States Postal Service FIM (Facing Identification Mark), a 1D barcode, as described in
First-Class Mail [USPS-C100]. Note that the FIM cannot carry arbitrary data because there are just 4
possible bar combinations. The data supplied for the barcode must be one of the strings "A", "B",
"C", or "D" for FIM A, FIM B, FIM C, FIM D, respectively.

logmars

LOGMARS (Logistics Applications of Automated Marking and Reading Symbols), a 1D barcode, as
defined by U.S. Military Standard MIL-STD-1189B [LOGMARS].

maxicode

UPS Maxicode, a 2D barcode, as defined in ANSI/AIM BC10-ISS Maxicode [Maxicode]. This is for
barcodes that conform to the ANSI/AIM standard, as opposed to upsMaxicode which is for
barcodes that conform to UPS usage. Also known as Code 6 and Dense Code.

msi

MSI (modified Plessey), a 1D barcode. There may have once been a formal specification for this
type but not any longer.

pdf417

PDF417, a 2D barcode, as defined in USS PDF417 [PDF417].

pdf417macro

PDF417, a 2D barcode, but allowing the data to span multiple PDF417 bar codes. The barcode(s)
are marked so that the barcode reader knows when it still has additional barcodes to read, and can
if necessary prompt the operator. This facility is defined in USS PDF417 [PDF417].

plessey

Plessey, a 1D barcode. There is no official standard for this type.

XFA Specification
Chapter 17, Template Specification Template Reference 588

postAUSCust2

Australian Postal Customer 2, a 1D barcode, as defined in Customer Barcoding Technical
Specifications [APO-Barcode].

postAUSCust3

Australian Postal Customer 3, a 1D barcode, as defined in Customer Barcoding Technical
Specifications [APO-Barcode].

postAUSReplyPaid

Australian Postal Reply Paid, a 1D barcode, as defined in Customer Barcoding Technical
Specifications [APO-Barcode].

postAUSStandard

Australian Postal Standard, a 1D barcode, as defined in Customer Barcoding Technical
Specifications [APO-Barcode].

postUKRM4SCC

United Kingdom RM4SCC (Royal Mail 4-State Customer Code), a 1D barcode, as defined in the
How to Use Mailsort Guide [RM4SCC].

postUSDPBC

United States Postal Service Delivery Point Bar Code, a 1D barcode, as defined in DMM C840
Barcoding Standards for Letters and Flats [USPS-C840].

postUSIMB

United Status of America Postal Service Intelligent Mail Barcode (formerly 4-State Customer
Barcode), as defined in [USPS-B-3200].

postUSStandard

United States Postal Service POSTNET barcode (Zip+4), a 1D barcode, as defined in DMM C840
Barcoding Standards for Letters and Flats [USPS-C840].

postUS5Zip

United States Postal Service POSTNET barcode (5 digit Zip), a 1D barcode, as defined in DMM C840
Barcoding Standards for Letters and Flats [USPS-C840].

QRCode

QR Code, a 2D barcode, as defined in ISS - QR Code [QRCode].

rfid

Not a barcode at all. The field content is written to an RFID chip embedded in a label. The label
printer must be equipped with an RFID programmer. The containing field should have the
presence property of hidden so it does not take up space in the layout.

rss14

RSS 14, a 1D barcode, as defined in [RSS14]. Also known as GS1.

rss14Expanded

RSS 14 Expanded, a 1D barcode, as defined in [RSS14]. Also known as GS1 Expanded.

XFA Specification
Chapter 17, Template Specification Template Reference 589

rss14Limited

RSS 14 Limited, a 1D barcode, as defined in [RSS14]. Also known as GS1 Limited.

rss14Stacked

RSS 14 Stacked, a composite barcode, as defined in [RSS14]. Also known as GS1 Stacked.

rss14StackedOmni

RSS 14 Stacked Omnidirectional, a composite barcode, as defined in [RSS14]. Also known as GS1
Omnidirectional.

rss14Truncated

RSS 14 Truncated, a 1D barcode, as defined in [RSS14]. Also known as GS1 Truncated.

telepen

Telepen, a 1D barcode, as defined in USS Telepen [Telepen].

ucc128

UCC/EAN 128, a 1D barcode, as defined in International Symbology Specification - Code 128
(1999) [Code128-1999]. Also known as GS1-128.

ucc128random

UCC/EAN 128 Random Weight, a 1D barcode, as defined in International Symbology Specification
- Code 128 (1999) [Code128-1999]. Also known as GS1-128 Random Weight.

ucc128sscc

UCC/EAN 128 serial shipping container code (SSCC), a 1D barcode, as defined in International
Symbology Specification - Code 128 (1999) [Code128-1999]. Also known as GS1-128 SSCC.

upcA

UPC-A, a 1D barcode, as defined in ISO/EEC 15420 [ISO-15420].

upcAadd2

UPC-A with 2-digit addendum, a 1D barcode, as defined in ISO/EEC 15420 [ISO-15420].

upcAadd5

UPC-A with 5-digit addendum, a 1D barcode, as defined in ISO/EEC 15420 [ISO-15420].

upcApwcd

UPC-A with price/weight customer data, a 1D barcode, as defined in ISO/EEC 15420 [ISO-15420].

upcE

UPC-E, a 1D barcode, as defined in ISO/EEC 15420 [ISO-15420].

upcEadd2

UPC-E with 2-digit addendum, a 1D barcode, as defined in ISO/EEC 15420 [ISO-15420].

upcEadd5

UPC-E with 5-digit addendum, a 1D barcode, as defined in ISO/EEC 15420 [ISO-15420].

XFA Specification
Chapter 17, Template Specification Template Reference 590

upcean2

UPC/EAN with 2-digit addendum, a 1D barcode, as defined in ISO/EEC 15420 [ISO-15420].

upcean5

UPC/EAN with 5-digit addendum, a 1D barcode, as defined in ISO/EEC 15420 [ISO-15420].

upsMaxicode

UPS Maxicode, a 2D barcode, as used by United Parcel Service. This is similar to the standard
defined in ANSI/AIM BC10-ISS Maxicode [Maxicode], but enforces particular combinations of data
formatting, compression, and error correction. See the upsMode property for more information.

The upsMode property

Controls the mode of a UPS Maxicode barcode. The XFA processor ignores this property for all other
barcodes.

usCarrier

U. S. carrier with a postal code up to 9 digits in length.

internationalCarrier

International carrier with an alphanumeric postal code up to 6 characters in length.

standardSymbol

Non-shipping encoded information. This is limited to about 90 characters of user data.

secureSymbol

Non-shipping encoded information with more error correction than standardSymbol. This is
limited to about 74 characters of user data.

The use property

At template load time, invokes another object in the same document as a prototype for this object. The
content of this property is either a SOM expression (which cannot start with '#') or a '#' character followed
by an XML ID.

The object used as a prototype does not need to be the child of proto. Any object of the appropriate
class can be used as a prototype.

If both use and usehref are non-empty usehref takes precedence.

The usehref property

At template load time, invokes an external object as a prototype for this object. The content of this
property is an URL, followed by '#', followed by either an XML ID or by som(SOM_expr) where SOM_expr
represents a SOM expression.

The XML ID or SOM expression is resolved in the context of the external document.

If both use and usehref are non-empty usehref takes precedence.

The wideNarrowRatio property

Ratio of wide bar to narrow bar in supported barcodes.

XFA Specification
Chapter 17, Template Specification Template Reference 591

The allowable range of ratios varies between barcode formats and also, for hardware barcodes, the output
device. The template must not specify a value outside the allowable range. The XFA processor ignores this
property for barcode formats which do not allow a variable ratio of wide to narrow bar widths. The default
value for this property is 3:1.

The syntax for the value of this property iswide[:narrow] where:

wide is a positive number representing the numerator of the ratio, and

narrow is an optional positive number representing the denominator of the ratio. If narrow is not supplied
it defaults to 1.

The following values are equivalent: 2.5:1, 2.5, and 5:2.

XFA Specification
Chapter 17, Template Specification Template Reference 592

The bind element
An element that controls the behavior during merge operations of its enclosing element.

<bind

Properties:
 match="once | dataRef | global | none"
 ref="cdata"
>

 <picture/> [0..1]
</bind>

The bind element is used within the following other elements:
exclGroup field subform

The match property

Controls the role played the by enclosing element in a data-binding (merge) operation.

once

The node representing the enclosing element will bind to a node in the XFA Data DOM in
accordance with the standard matching rules.

none

The node representing the enclosing element is transient. It will not be bound to any node in the
XFA Data DOM.

global

The containing field is global. If the normal matching rules fail to provide a match for it, the
data-binding process will look outside the current record for data to bind to the field.

dataRef

The containing field will bind to the node in the XFA Data DOM specified by the accompanying
ref attribute.

See Basic Data Binding to Produce the XFA Form DOM for more information about, and an authoritative
definition of, the effects of this property.

The picture property

A rendering element that describes input parsing and output formatting information.

The ref property

An XFA SOM expression defining the node in the XFA Data DOM to which the enclosing container will
bind. This is used only when the match attribute has the value dataRef.

See the XFA-Scripting Object Model Expression Specification [XFA-SOM] for more information about XFA
SOM expressions.

XFA Specification
Chapter 17, Template Specification Template Reference 593

The bindItems element
An element that extracts data into an item list.

<bindItems

Properties:
 connection="cdata"
 labelRef="cdata"
 ref="cdata"
 valueRef="cdata"
>
</bindItems>

The bindItems element is used within the following other elements:
field proto

This element builds the items list for a choicelist or a set of check boxes or radio buttons. However unlike
the items element this element gets the data from the Data DOM or from a connection to a web service.

The connection property

An optional attribute that, if present, supplies the name of a connection for a web service. If this attribute is
supplied it alters the meaning of the ref property such that it is interpreted according to the same rules as
the ref attribute of the connect element.

The labelRef property

An optional attribute that, if present, tells where to find the data value to use as a label for each item. The
value of this property is a SOM expression which is relative to a node selected by the ref attribute. If this
attribute is not supplied or empty each item is labelled with its value.

The ref property

A SOM expression that selects a set of nodes, each of which corresponds to an item in the list. If there is a
connection attribute then the value of this property is a SOM expression interpreted in relation to that
connection according to the same rules as the ref attribute of the connect element. However if there is
no connection attribute then the value of this attribute is an ordinary SOM expression interpreted relative
to the data node to which its containing object is bound.

The valueRef property

An attribute that tells where to find the data value for each item. The value of this property is a SOM
expression which is relative to a node selected by the ref attribute.

XFA Specification
Chapter 17, Template Specification Template Reference 594

The bookend element
An element controlling content that is inserted to "bookend" the contents of the parent object.

<bookend

Properties:
 id="cdata"
 leader="cdata"
 trailer="cdata"
 use="cdata"
 usehref="cdata"
>
</bookend>

The bookend element is used within the following other elements:
proto subform subformSet

The id property

A unique identifier that may be used to identify this element as a target.

The leader property

The value of this property is either a SOM expression (which can not start with '#') or a '#' followed by an
XML ID. The SOM expression or XML ID points to a subform or subform set to be laid down before the
content of the parent object. When this property is empty or blank no leader is laid down.

Note that this replaces the bookendTrailer attribute on the deprecated break element.

The trailer property

The value of this property is either a SOM expression (which can not start with '#') or a '#' followed by an
XML ID. The SOM expression or XML ID points to a subform or subform set to be laid down after the
content of the parent object. When this property is empty or blank no trailer is laid down.

Note that this replaces the bookendLeader attribute on the deprecated break element.

The use property

At template load time, invokes another object in the same document as a prototype for this object. The
content of this property is either a SOM expression (which cannot start with '#') or a '#' character followed
by an XML ID.

The object used as a prototype does not need to be the child of proto. Any object of the appropriate
class can be used as a prototype.

If both use and usehref are non-empty usehref takes precedence.

The usehref property

At template load time, invokes an external object as a prototype for this object. The content of this
property is an URL, followed by '#', followed by either an XML ID or by som(SOM_expr) where SOM_expr
represents a SOM expression.

The XML ID or SOM expression is resolved in the context of the external document.

XFA Specification
Chapter 17, Template Specification Template Reference 595

If both use and usehref are non-empty usehref takes precedence.

XFA Specification
Chapter 17, Template Specification Template Reference 596

The boolean element
A content element describing single unit of data content representing a Boolean logical value.

<boolean

Properties:
 id="cdata"
 name="cdata"
 use="cdata"
 usehref="cdata"
>
 ...pcdata...
</boolean>

The boolean element is used within the following other elements:
desc exObject extras items proto value variables

Content

The content must be one of the following:

0

The content represents a logical value of false.

1

The content represents a logical value of true.

When no content is present, the content shall be interpreted as representing a null value, irrespective of
the value of the associated nullType property in the data description.

The id property

A unique identifier that may be used to identify this element as a target.

The name property

An identifier that may be used to identify this element in script expressions.

The use property

At template load time, invokes another object in the same document as a prototype for this object. The
content of this property is either a SOM expression (which cannot start with '#') or a '#' character followed
by an XML ID.

The object used as a prototype does not need to be the child of proto. Any object of the appropriate
class can be used as a prototype.

If both use and usehref are non-empty usehref takes precedence.

The usehref property

At template load time, invokes an external object as a prototype for this object. The content of this
property is an URL, followed by '#', followed by either an XML ID or by som(SOM_expr) where SOM_expr
represents a SOM expression.

The XML ID or SOM expression is resolved in the context of the external document.

XFA Specification
Chapter 17, Template Specification Template Reference 597

If both use and usehref are non-empty usehref takes precedence.

XFA Specification
Chapter 17, Template Specification Template Reference 598

The border element
A box model element that describes the border surrounding an object.

<border

Properties:
 break="close | open"
 hand="even | left | right"
 id="cdata"
 presence="visible | hidden | inactive | invisible"
 relevant="cdata"
 use="cdata"
 usehref="cdata"
>

 <corner/> [0..4]
 <edge/> [0..4]
 <extras/> [0..1]
 <fill/> [0..1]
 <margin/> [0..1]
</border>

The border element is used within the following other elements:
checkButton choiceList dateTimeEdit draw exclGroup field imageEdit numericEdit passwordEdit proto
signature subform textEdit

The edges of a border are rendered in a clockwise fashion, starting from the top left corner. This has
implications for the border's handedness. In particular, a left-handed stroke will appear immediately
outside the rectangle's edge, while a right-handed edge will appear immediately inside. Such behavior is
consistent with rectangles, but not arcs.

The break property

Sometimes a layout object with a full (4-sided) border breaks across a page or content area boundary. This
property controls whether the border is open at the bottom of the first page/content area and top of the
second page/content area or closed in both places.

closed

The border is closed on each side of a page break.

open

The border is open on each side of a page break.

 The same behavior is maintained if the object breaks across multiple pages or content areas. Thus if the
value is open the border is reduced, for pages or content areas in the middle, to just a left and right
border.

The corner property

A formatting element that describes the appearance of a vertex between two edges

The edge property

A formatting element that describes an arc, line, or one side of a border or rectangle.

XFA Specification
Chapter 17, Template Specification Template Reference 599

The extras property

An enclosure around one or more sets of custom properties. The content of this element may be used by
custom applications.

The fill property

A formatting element that applies a color and optional rendered designs to the region enclosed by an
object.

The hand property

Description of the handedness of a line or edge.

even

Center the displayed line on the underlying vector or arc.

left

Position the displayed line immediately to the left of the underlying vector or arc, when following
that line from its start point to its end point.

right

Position the displayed line immediately to the right of the underlying vector or arc, when
following that line from its start point to its end point.

The id property

A unique identifier that may be used to identify this element as a target.

The margin property

A box model element that specifies one or more insets for an object.

The presence property

Controls the participation of the associated object in different phases of processing. If the object is a
container the contents of the container inherit whatever restrictions this control applies.

visible

Participate in interaction, layout, and rendering. The object is visible and takes up space. If it is
capable it takes part in calculations, validations, and events.

hidden

Participate in interaction but not layout or rendering. The object is not displayed and does not
take up space. However, if it is capable it does participate in calculations, validations, and events.

inactive

Do not participate in interaction, layout, or rendering. The object is not displayed, does not take
up space, and does not take part in calculations, validations, or event processing. (New in XFA 3.0.)

invisible

Participate in interaction and layout but not rendering. The associated object takes up space but is
invisible. If it is capable it takes part in calculations, validations, and events.

This control does not affect the ability of the associated object to hold data or to take part in data binding.

XFA Specification
Chapter 17, Template Specification Template Reference 600

The relevant property

Specifies the views for which the enclosing object is relevant. The views themselves are specified in the
config object.

Views are supplied as a space-separated list of viewnames: relevant="[+|-]viewname
[[+|-]viewname [...]]". A token of the form viewname or +viewname indicates the enclosing
element should be included in that particular view. A token of the form -viewname indicates the element
should be excluded from that particular view.

If a container is excluded, it is not considered in the data binding process.

See also Concealing Containers Depending on View and Config Specification.

The use property

At template load time, invokes another object in the same document as a prototype for this object. The
content of this property is either a SOM expression (which cannot start with '#') or a '#' character followed
by an XML ID.

The object used as a prototype does not need to be the child of proto. Any object of the appropriate
class can be used as a prototype.

If both use and usehref are non-empty usehref takes precedence.

The usehref property

At template load time, invokes an external object as a prototype for this object. The content of this
property is an URL, followed by '#', followed by either an XML ID or by som(SOM_expr) where SOM_expr
represents a SOM expression.

The XML ID or SOM expression is resolved in the context of the external document.

If both use and usehref are non-empty usehref takes precedence.

XFA Specification
Chapter 17, Template Specification Template Reference 601

The break element
(DEPRECATED) An element that describes the constraints on moving to a new page or content area before
or after rendering an object.

<break

Properties:
 after="auto | contentArea | pageArea | pageEven |
 pageOdd"
 afterTarget="cdata"
 before="auto | contentArea | pageArea | pageEven |
 pageOdd"
 beforeTarget="cdata"
 bookendLeader="cdata"
 bookendTrailer="cdata"
 id="cdata"
 overflowLeader="cdata"
 overflowTarget="cdata"
 overflowTrailer="cdata"
 startNew="0 | 1"
 use="cdata"
 usehref="cdata"
>

 <extras/> [0..1]
</break>

The break element is used within the following other elements:
proto subform subformSet

As of XFA 2.4 this element has been deprecated. New designs should use the overflow, bookend,
breakBefore, and/or breakAfter elements instead.

The after property

This property specifies the constraints on moving to a new page or content area after rendering the
subform.

The behaviors described below can be further refined by optionally specifying a destination page or
content area via the afterTarget attribute.

auto

The determination of a transition to a new page or content area will be delegated to the
processing application. No transition to a new page or content area will be forced.

contentArea

Rendering will transition the next available content area.

pageArea

Rendering will transition to a new page.

XFA Specification
Chapter 17, Template Specification Template Reference 602

The afterTarget property

Specifies the explicit destination page or content area for the after property. The content of this
property is a '#' character followed by an XML ID.

The value of property is expected to be compatible with the value of the after property. For instance, it
would be considered an error for the after property to have a value of pageArea and the
afterTarget property to reference a content area, or vice versa.

The before property

Specifies the constraints on moving to a new page or content area before rendering the subform.

The behaviors described below can be further refined by optionally specifying a destination page or
content area via the beforeTarget attribute. The startNew attribute also modifies some of these
behaviors.

auto

The determination of a transition to a new page or content area will be delegated to the
processing application. No transition to a new page or content area will be forced.

contentArea

Rendering will transition the next available content area. See also the startNew attribute.

pageArea

Rendering will transition to a new page.See also the startNew attribute.

The beforeTarget property

This property specifies the explicit destination page or contentArea for the before property. The content
of this property is a '#' character followed by an XML ID.

The value of the beforeTarget property is expected to be compatible with the value of the before
property. For instance, it would be considered an error for the before property to have a value of
pageArea and the beforeTarget property to reference a content area, or vice versa.

The bookendLeader property

Identifies a subform which is to be placed into the current content area or page before any other content.
The content of this property is a '#' character followed by an XML ID.

If both bookendLeader and bookendTrailer are supplied the two subforms bracket the content in
the manner of bookends.

The bookendTrailer property

Identifies a subform which is to be placed into the current content area or page after any other content.
The content of this property is a '#' character followed by an XML ID.

If both bookendLeader and bookendTrailer are supplied the two subforms bracket the content in
the manner of bookends.

The extras property

An enclosure around one or more sets of custom properties. The content of this element may be used by
custom applications.

XFA Specification
Chapter 17, Template Specification Template Reference 603

The id property

A unique identifier that may be used to identify this element as a target.

The overflowLeader property

Identifies a subform which is to be placed at the top of the content area or page when it is entered as a
result of an overflow. The content of this property is either a '#' character followed by an XML ID.

The overflowTarget property

Specifies the explicit destination page or contentArea that shall be the transition target when the current
content area or page area has been overflowed. The content of this property is a '#' character followed by
an XML ID.

The overflowTrailer property

Identifies a subform which is to be placed at the bottom of the content area or page when it overflows. The
vertical space required for the overflow trailer must be reserved. The content of this property is a '#'
character followed by an XML ID.

The startNew property

Determines whether it is necessary to start a new content area or page even when the current content
area or page has the required name.This attribute has no effect unless the before attribute has the
value contentArea or pageArea.

0

Do not start a new content area or page area if the current one has the specified name.

1

Always start a new content area or page.

The name of the content area or page is supplied by the accompanying beforeTarget attribute.

The use property

At template load time, invokes another object in the same document as a prototype for this object. The
content of this property is either a SOM expression (which cannot start with '#') or a '#' character followed
by an XML ID.

The object used as a prototype does not need to be the child of proto. Any object of the appropriate
class can be used as a prototype.

If both use and usehref are non-empty usehref takes precedence.

The usehref property

At template load time, invokes an external object as a prototype for this object. The content of this
property is an URL, followed by '#', followed by either an XML ID or by som(SOM_expr) where SOM_expr
represents a SOM expression.

The XML ID or SOM expression is resolved in the context of the external document.

If both use and usehref are non-empty usehref takes precedence.

XFA Specification
Chapter 17, Template Specification Template Reference 604

The breakAfter element
An element that controls actions to be taken after laying down the contents of the parent object.

<breakAfter

Properties:
 id="cdata"
 leader="cdata"
 startNew="0 | 1"
 target="cdata"
 targetType="auto | contentArea | pageArea | pageEven |
 pageOdd"
 trailer="cdata"
 use="cdata"
 usehref="cdata"
>

 <script/> [0..1]
</breakAfter>

The breakAfter element is used within the following other elements:
proto subform subformSet

When layout of the parent object is complete and this element contains a non-empty script the script is
evaluated. If the script returns false no break occurs and layout proceeds using the current layout
container. However if the script returns true, or if there is no script, or the script is empty, a break occurs
and various actions occur under control of the other properties of this element.

The id property

A unique identifier that may be used to identify this element as a target.

The leader property

The value of this property is either a SOM expression (which can not start with '#') or a '#' followed by an
XML ID. The SOM expression or XML ID points to a subform or subform set to be laid down after all other
actions of the break are complete (for example transitioning to a new page). When this property is empty
or blank no leader is laid down.

The script property

An automation element that contains a script.

The startNew property

Controls whether or not to start a new layout container if the current layout container matches the target
specification.

0

If the current layout container matches the target specification continue filling the same
container. Only start a new layout container when the current one does not match the target
specification.

1

Always start a new layout container.

XFA Specification
Chapter 17, Template Specification Template Reference 605

The target property

The value of this property is either a SOM expression (which can not start with '#') or a '#' followed by an
XML ID. The SOM expression or XML ID points to a layout container which may or may not be the current
layout container. When this property is empty or blank layout continues in the existing container.

Note that this replaces the afterTarget attribute on the deprecated break element.

The targetType property

Controls movement to new a layout container after laying out the content of the parent object.

auto

Layout continues using the current layout container.

contentArea

Layout transitions to the next available content area.

pageArea

Layout transitions to a new page.

Note that this replaces the after attribute on the deprecated break element.

The trailer property

The value of this property is either a SOM expression (which can not start with '#') or a '#' followed by an
XML ID. The SOM expression or XML ID points to a subform or subform set to be laid down after the
content of the parent object but before any other actions of the break such as transitioning to a new page.
When this property is empty or blank no trailer is laid down.

The use property

At template load time, invokes another object in the same document as a prototype for this object. The
content of this property is either a SOM expression (which cannot start with '#') or a '#' character followed
by an XML ID.

The object used as a prototype does not need to be the child of proto. Any object of the appropriate
class can be used as a prototype.

If both use and usehref are non-empty usehref takes precedence.

The usehref property

At template load time, invokes an external object as a prototype for this object. The content of this
property is an URL, followed by '#', followed by either an XML ID or by som(SOM_expr) where SOM_expr
represents a SOM expression.

The XML ID or SOM expression is resolved in the context of the external document.

If both use and usehref are non-empty usehref takes precedence.

XFA Specification
Chapter 17, Template Specification Template Reference 606

The breakBefore element
An element that controls actions to be taken before laying down the contents of the parent object.

<breakBefore

Properties:
 id="cdata"
 leader="cdata"
 startNew="0 | 1"
 target="cdata"
 targetType="auto | contentArea | pageArea | pageEven |
 pageOdd"
 trailer="cdata"
 use="cdata"
 usehref="cdata"
>

 <script/> [0..1]
</breakBefore>

The breakBefore element is used within the following other elements:
proto subform subformSet

When layout of the parent object is about to start and this element contains a non-empty script the script
is evaluated. If the script returns false no break occurs and layout proceeds using the current layout
container. However if the script returns true, or if there is no script, or the script is empty, a break occurs
and various actions occur under control of the other properties of this element.

The id property

A unique identifier that may be used to identify this element as a target.

The leader property

The value of this property is either a SOM expression (which can not start with '#') or a '#' followed by an
XML ID. The SOM expression or XML ID points to a subform or subform set to be laid down before the
content of the parent object but after other actions of the break such as starting a new page. When this
property is empty or blank no leader is laid down.

The script property

An automation element that contains a script.

The startNew property

Controls whether or not to start a new layout container if the current layout container matches the target
specification.

0

If the current layout container matches the target specification continue filling the same
container. Only start a new layout container when the current one does not match the target
specification.

1

Always start a new layout container.

XFA Specification
Chapter 17, Template Specification Template Reference 607

The target property

The value of this property is either a SOM expression (which can not start with '#') or a '#' followed by an
XML ID. The SOM expression or XML ID points to a layout container which may or may not be the current
layout container. When this property is empty or blank layout continues in the existing container.

Note that this replaces the beforeTarget attribute on the deprecated break element.

The targetType property

Controls movement to new a layout container before laying out the content of the parent object.

auto

Layout continues using the current layout container.

contentArea

Layout transitions to the next available content area.

pageArea

Layout transitions to a new page.

Note that this replaces the before attribute on the deprecated break element.

The trailer property

The value of this property is either a SOM expression (which can not start with '#') or a '#' followed by an
XML ID. The SOM expression or XML ID points to a subform or subform set to be laid down before the
content of the parent object and before any other actions of the break such as staring a new page. When
this property is empty or blank no trailer is laid down.

The use property

At template load time, invokes another object in the same document as a prototype for this object. The
content of this property is either a SOM expression (which cannot start with '#') or a '#' character followed
by an XML ID.

The object used as a prototype does not need to be the child of proto. Any object of the appropriate
class can be used as a prototype.

If both use and usehref are non-empty usehref takes precedence.

The usehref property

At template load time, invokes an external object as a prototype for this object. The content of this
property is an URL, followed by '#', followed by either an XML ID or by som(SOM_expr) where SOM_expr
represents a SOM expression.

The XML ID or SOM expression is resolved in the context of the external document.

If both use and usehref are non-empty usehref takes precedence.

XFA Specification
Chapter 17, Template Specification Template Reference 608

The button element
A user interface element that describes a push-button widget.

<button

Properties:
 highlight="inverted | none | outline | push"
 id="cdata"
 use="cdata"
 usehref="cdata"
>

 <extras/> [0..1]
</button>

The button element is used within the following other elements:
proto ui

The extras property

An enclosure around one or more sets of custom properties. The content of this element may be used by
custom applications.

The highlight property

Controls the graphic treatment of the button when activated in an interactive environment.

push

The button presents an appearance similar to a mechanical button being pushed. It has three
appearances, up (inactive), down (active) and rollover (highlighted but retaining its current state
unless and until toggled by a mouse click).

inverted

The button (within the frame) is inverted in shading and/or color when activated. There is no
special rollover appearance.

none

There is no special change in graphic appearance when activated. The only change is that
specified by the mark attribute of the associated checkButton element. There is no special
rollover appearance.

outline

The frame of the button is inverted in shading and/or color when activated. There is no special
rollover appearance.

When (and only when) push mode is selected, alternate captions may be specified for the down and
rollover states. The alternate captions are specified using an items list containing named items. The item
named "down", if present, is used in the down state and the item named "rollover", if present, is used in the
rollover state. For example,

<field>
 <ui>
 <button/>

XFA Specification
Chapter 17, Template Specification Template Reference 609

 </ui>
 <caption>
 <value><text> Up Text </text></value>
 </caption>
 <items>
 <text name="down"> Down Text </text>
 <text name="rollover"> Rollover Text </text>
 </items>
</field>

The id property

A unique identifier that may be used to identify this element as a target.

The use property

At template load time, invokes another object in the same document as a prototype for this object. The
content of this property is either a SOM expression (which cannot start with '#') or a '#' character followed
by an XML ID.

The object used as a prototype does not need to be the child of proto. Any object of the appropriate
class can be used as a prototype.

If both use and usehref are non-empty usehref takes precedence.

The usehref property

At template load time, invokes an external object as a prototype for this object. The content of this
property is an URL, followed by '#', followed by either an XML ID or by som(SOM_expr) where SOM_expr
represents a SOM expression.

The XML ID or SOM expression is resolved in the context of the external document.

If both use and usehref are non-empty usehref takes precedence.

XFA Specification
Chapter 17, Template Specification Template Reference 610

The calculate element
An automation element that controls the calculation of its container's value.

<calculate

Properties:
 id="cdata"
 override="disabled | error | ignore | warning"
 use="cdata"
 usehref="cdata"
>

 <extras/> [0..1]
 <message/> [0..1]
 <script/> [0..1]
</calculate>

The calculate element is used within the following other elements:
exclGroup field proto subform

The extras property

An enclosure around one or more sets of custom properties. The content of this element may be used by
custom applications.

The id property

A unique identifier that may be used to identify this element as a target.

The message property

A automation element that holds one or more sub-elements containing messages used with validations
and calculations.

The override property

Determines whether the calculated value can be overridden by the user in an interactive context, or
disables calculation in any context.

As one would expect, every field object has a calculate property, whether or not the XML representation
of the field contains a calculate element. Unusually for XFA, the default value for the calculate object's
override property differs depending upon whether the XML representation includes or does not include a
calculate element.

disabled

The calculation is disabled. This is the default when the XML representation of the field does not
include a calculate element. In an interactive context the user is free to enter data into the field.
The effect of this override value is independent of user action. The disabled value allows an
event script to dynamically enable/disable a calculate element.

error

The calculation is enabled. This is the default when the XML representation of the field does
include a calculate element. The processing application must not change the calculated value
with any user-supplied values. User attempts to directly set the value derived by a calculate

XFA Specification
Chapter 17, Template Specification Template Reference 611

object having an error override causes the processing application to present an error message. To
avoid the need for such error messages, form creators may wish to define such fields as read-only.

ignore

The calculated value is mandatory. The processing application ignores any attempt by the user to
set the value of the form object.

warning

The calculation is enabled, and the calculated value is recommended over user-supplied values. If
the user takes action to directly set the value of the form object, the processing application
presents a warning message. The message informs the user that the form object is recommended
to have a calculated value, and provides the user with two choices: dismiss or override. Users
select dismiss to indicate they wish to leave the calculated value undisturbed. Users select
override to indicate they understand the form's recommendation, but have chosen to override
the calculated value with a value of their choosing. The application does not issue any warnings
or prompts on subsequent gain of focus by the same object.

The script property

An automation element that contains a script.

The use property

At template load time, invokes another object in the same document as a prototype for this object. The
content of this property is either a SOM expression (which cannot start with '#') or a '#' character followed
by an XML ID.

The object used as a prototype does not need to be the child of proto. Any object of the appropriate
class can be used as a prototype.

If both use and usehref are non-empty usehref takes precedence.

The usehref property

At template load time, invokes an external object as a prototype for this object. The content of this
property is an URL, followed by '#', followed by either an XML ID or by som(SOM_expr) where SOM_expr
represents a SOM expression.

The XML ID or SOM expression is resolved in the context of the external document.

If both use and usehref are non-empty usehref takes precedence.

XFA Specification
Chapter 17, Template Specification Template Reference 612

The caption element
A box model element that describes a descriptive label associated with an object.

<caption

Properties:
 id="cdata"
 placement="left | bottom | inline | right | top"
 presence="visible | hidden | inactive | invisible"
 reserve="-1 | measurement"
 use="cdata"
 usehref="cdata"
>

 <extras/> [0..1]
 [0..1]
 <margin/> [0..1]
 <para/> [0..1]
 <value/> [0..1]
</caption>

The caption element is used within the following other elements:
draw exclGroup field proto

The extras property

An enclosure around one or more sets of custom properties. The content of this element may be used by
custom applications.

The font property

A formatting element that describes a font.

The id property

A unique identifier that may be used to identify this element as a target.

The margin property

A box model element that specifies one or more insets for an object.

The para property

A formatting element that specifies default paragraph and alignment properties to be applied to the
content of an enclosing container.

The placement property

Specifies the placement of the caption.

left

The caption is located to the left of the content in a rectangular region that spans the height of the
margined nominal extent.

XFA Specification
Chapter 17, Template Specification Template Reference 613

right

The caption is located to the right of the content in a rectangular region that spans the height of
the margined nominal extent.

top

The caption is located above the content in a rectangular region that spans the width of the
margined nominal extent.

bottom

The caption is located below the content in a rectangular region that spans the width of the
margined nominal extent.

inline

The caption appears inline with, and prior to, the text content.

The presence property

Controls the participation of the associated object in different phases of processing. If the object is a
container the contents of the container inherit whatever restrictions this control applies.

visible

Participate in interaction, layout, and rendering. The object is visible and takes up space. If it is
capable it takes part in calculations, validations, and events.

hidden

Participate in interaction but not layout or rendering. The object is not displayed and does not
take up space. However, if it is capable it does participate in calculations, validations, and events.

inactive

Do not participate in interaction, layout, or rendering. The object is not displayed, does not take
up space, and does not take part in calculations, validations, or event processing. (New in XFA 3.0.)

invisible

Participate in interaction and layout but not rendering. The associated object takes up space but is
invisible. If it is capable it takes part in calculations, validations, and events.

This control does not affect the ability of the associated object to hold data or to take part in data binding.

The reserve property

A measurement value that specifies the height or width of the caption.

The effect of this property is determined by the placement property. When the caption is placed at the
left or right the reserve property specifies the width of the caption region. When the caption is placed at
the top or bottom the reserve property specifies the height. When the caption is placed inline the
reserve property is ignored.

When this attribute is omitted or has a value of "0" the height or width (as appropriate) is just enought to
hold the content of the caption and text auto-wrapping does not occur.

XFA Specification
Chapter 17, Template Specification Template Reference 614

The use property

At template load time, invokes another object in the same document as a prototype for this object. The
content of this property is either a SOM expression (which cannot start with '#') or a '#' character followed
by an XML ID.

The object used as a prototype does not need to be the child of proto. Any object of the appropriate
class can be used as a prototype.

If both use and usehref are non-empty usehref takes precedence.

The usehref property

At template load time, invokes an external object as a prototype for this object. The content of this
property is an URL, followed by '#', followed by either an XML ID or by som(SOM_expr) where SOM_expr
represents a SOM expression.

The XML ID or SOM expression is resolved in the context of the external document.

If both use and usehref are non-empty usehref takes precedence.

The value property

A content element that encloses a single unit of data content.

XFA Specification
Chapter 17, Template Specification Template Reference 615

The certificate element
An element that holds a suitable Base64 DER-encoded X.509v3 certificate.

<certificate

Properties:
 id="cdata"
 name="cdata"
 use="cdata"
 usehref="cdata"
>
 ...pcdata...
</certificate>

The certificate element is used within the following other elements:
encrypt issuers proto signing

A certificate binds a person or entity to a specific public key. 509v3 certificates are described in RFC 3280,
Internet X.509 Public Key Infrastructure, Certificate and Certificate Revocation List (CRL) Profile [RFC3280].

Content

A Base64 DER-encoded X.509v3 certificate.

Depending upon the context this element can contain a certificate holding either a public key or a private
key. When used for encryption, as a property of a barcodeelement, the certificate holds a public key.
When used for authenticating a signing certificate, as a property of an issuerselement, it also holds a
public key. But when used for signing, as a property of a signing element, it holds a private key.

The id property

A unique identifier that may be used to identify this element as a target.

The name property

An identifier that may be used to identify this element in script expressions.

The use property

At template load time, invokes another object in the same document as a prototype for this object. The
content of this property is either a SOM expression (which cannot start with '#') or a '#' character followed
by an XML ID.

The object used as a prototype does not need to be the child of proto. Any object of the appropriate
class can be used as a prototype.

If both use and usehref are non-empty usehref takes precedence.

The usehref property

At template load time, invokes an external object as a prototype for this object. The content of this
property is an URL, followed by '#', followed by either an XML ID or by som(SOM_expr) where SOM_expr
represents a SOM expression.

The XML ID or SOM expression is resolved in the context of the external document.

XFA Specification
Chapter 17, Template Specification Template Reference 616

If both use and usehref are non-empty usehref takes precedence.

XFA Specification
Chapter 17, Template Specification Template Reference 617

The certificates element
An element that holds a collection of certificate filters used to identify the signer.

<certificates

Properties:
 credentialServerPolicy="optional | required"
 id="cdata"
 url="cdata"
 urlPolicy="cdata"
 use="cdata"
 usehref="cdata"
>

 <issuers/> [0..1]
 <keyUsage/> [0..1]
 <oids/> [0..1]
 <signing/> [0..1]
 <subjectDNs/> [0..1]
</certificates>

The certificates element is used within the following other elements:
filter proto

The certificates element identifies certificates used for Public Key Infrastructure (PKI), including
signing certificates, issuer certificates, and object IDs. Issuer certificates and object IDs are used to verify
the signing certificate is valid. PKI information allows the document recipient to determine whether or not
a specific public key really belongs to a specific individual. X.509v3 certificates are described in RFC 3280,
Internet X.509 Public Key Infrastructure, Certificate and Certificate Revocation List (CRL) Profile [RFC3280].
The document "A primer on electronic security" [ElectronicSecurity] provides a more basic explanation of
the roles of certificates in signer identification.

The credentialServerPolicy property

Determines Whether the signer must use the given URI or whether another may be used.

optional

Another URI may be used.

required

Only the supplied URI may be used.

The id property

A unique identifier that may be used to identify this element as a target.

The issuers property

A collection of issuer certificates that are acceptable for data signing an XML digital signature.

The keyUsage property

An element that specifies the key usage settings required in the signing certificate.

XFA Specification
Chapter 17, Template Specification Template Reference 618

The oids property

A collection of Object Identifiers (OIDs) which apply to signing data with an XML digital signature.

The signing property

A collection of signing certificates that are acceptable for use in affixing an XML digital signature.

The subjectDNs property

An element that contains the collection of key-value pairs used to specify the Subject Distinguished Name
(DN) that must be present within the certificate for it to be acceptable for signing.

The url property

A URI that can be used to obtain a new credential if a matching credential is not found.

The urlPolicy property

The type of server which is at the associated URI.

enrollmentServer

A server where the user can enrol via browser for a new credential. The equivalent in PDF is an
"urlType" of "Browser".

roamingCredentialServer

A signature web service for server-based signing. The equivalent in PDF is an "urlType" of "ASSP".

userDefinedString

Third parties can extend the meaning with custom values. The custom values must conform to
the guidelines described in appendix E of the PDF Manual.

The use property

At template load time, invokes another object in the same document as a prototype for this object. The
content of this property is either a SOM expression (which cannot start with '#') or a '#' character followed
by an XML ID.

The object used as a prototype does not need to be the child of proto. Any object of the appropriate
class can be used as a prototype.

If both use and usehref are non-empty usehref takes precedence.

The usehref property

At template load time, invokes an external object as a prototype for this object. The content of this
property is an URL, followed by '#', followed by either an XML ID or by som(SOM_expr) where SOM_expr
represents a SOM expression.

The XML ID or SOM expression is resolved in the context of the external document.

If both use and usehref are non-empty usehref takes precedence.

XFA Specification
Chapter 17, Template Specification Template Reference 619

The checkButton element
A user interface element that describes either a checkbox or radio-button widget.

<checkButton

Properties:
 id="cdata"
 mark="default | check | circle | cross | diamond |
 square | star"
 shape="square | round"
 size="10pt | measurement"
 use="cdata"
 usehref="cdata"
>

 <border/> [0..1]
 <extras/> [0..1]
 <margin/> [0..1]
</checkButton>

The checkButton element is used within the following other elements:
proto ui

The border property

A box model element that describes the border surrounding an object.

The extras property

An enclosure around one or more sets of custom properties. The content of this element may be used by
custom applications.

The id property

A unique identifier that may be used to identify this element as a target.

The margin property

A box model element that specifies one or more insets for an object.

The mark property

This property controls the appearance of the checkButton when its state is asserted.

default

The asserted appearance matches the unasserted appearance, as controlled by the shape
attribute. If the unasserted appearance is a square outline then the asserted appearance is a
corner to corner X. If the unasserted appearance is a circular outline then the asserted
appearance is a filled circle.

check

The asserted appearance is a check mark.

circle

The asserted appearance is a filled circle.

XFA Specification
Chapter 17, Template Specification Template Reference 620

cross

The asserted appearance is a corner-to-corner X.

square

The asserted appearance is a filled square.

star

The asserted appearance is a filled star.

These descriptions are deliberately vague to allow latitude for the application. For example when
presenting on glass the filled circle might appear as a glowing light whereas when presenting on paper it
would probably appear as a flat black circle taken from a font.

The shape property

This property controls the appearance of the checkButton when its state is unasserted.

square

The checkButton appears as a square outline. This is usually used to represent an unchecked box.

round

The CheckButton appears as a circular outline. This is usually used to represent an unpressed
radio-button.

The size property

A measurement specifying the size of the checkbox or radio-button outline representing either the
height/width for a square or the diameter for a circle. The default is 10pt.

The use property

At template load time, invokes another object in the same document as a prototype for this object. The
content of this property is either a SOM expression (which cannot start with '#') or a '#' character followed
by an XML ID.

The object used as a prototype does not need to be the child of proto. Any object of the appropriate
class can be used as a prototype.

If both use and usehref are non-empty usehref takes precedence.

The usehref property

At template load time, invokes an external object as a prototype for this object. The content of this
property is an URL, followed by '#', followed by either an XML ID or by som(SOM_expr) where SOM_expr
represents a SOM expression.

The XML ID or SOM expression is resolved in the context of the external document.

If both use and usehref are non-empty usehref takes precedence.

XFA Specification
Chapter 17, Template Specification Template Reference 621

The choiceList element
A user interface element that describes a widget presenting a list of options. The list of options is specified
by one or more sibling items elements.

<choiceList

Properties:
 commitOn="select | exit"
 id="cdata"
 open="userControl | always | multiSelect | onEntry"
 textEntry="0 | 1"
 use="cdata"
 usehref="cdata"
>

 <border/> [0..1]
 <extras/> [0..1]
 <margin/> [0..1]
</choiceList>

The choiceList element is used within the following other elements:
proto ui

The border property

A box model element that describes the border surrounding an object.

The commitOn property

This property specifies when the user's selections are propagated to the XFA Data DOM.

select

When the user clicks choice-list data with the mouse, the selected data value is written to the XFA
Data DOM. Alternatively, if the user presses the enter key after previously using other keyboard
sequences to shift focus to a particular entry in the choice list, the selected data is written to the
XFA Data DOM.

Note: Having a choice list commit data as soon as selections are made may be important in forms
that contain non-XFA interactive features, such as Acrobat annotations or hypertext links. People
filling out such forms may erroneously believe that selecting an item from a choice list followed by
clicking a non-XFA interactive feature is the same as exiting the check list. In fact, the check list
remains the field in focus.

exit

The selected data is not written to the XFA Data DOM until the field loses focus. This is the
recommended setting for choice lists that support multiple selections (open="multiSelect").

XFA Specification
Chapter 17, Template Specification Template Reference 622

The extras property

An enclosure around one or more sets of custom properties. The content of this element may be used by
custom applications.

The id property

A unique identifier that may be used to identify this element as a target.

The margin property

A box model element that specifies one or more insets for an object.

The open property

This property determines when the drop-down choice list is presented by interactive applications.

userControl

The list drops down when the user clicks on a button or makes some other appropriate gesture. It
disappears when the cursor moves outside the list or some other appropriate user-interface event
occurs.

onEntry

The list drops down on entry into the field. It disappears upon exit from the field.

always

The list is displayed whenever the field is visible.

multiSelect

The user may select multiple entries from the list, by holding down the shift key while making
selections. The list of choices is displayed whenever the field is visible.

The textEntry property

This property determines whether the user is allowed to enter the value by typing it.

0

The user is not allowed to type. The value must be chosen by selecting from the drop-down list.

1

The user is allowed to type or select from the drop-down list. This opens up the field value to be
anything that the user might type; the list becomes more like a set of hints. If the open attribute is
set to multiSelect, the user is not allowed to enter values in the widget.

The use property

At template load time, invokes another object in the same document as a prototype for this object. The
content of this property is either a SOM expression (which cannot start with '#') or a '#' character followed
by an XML ID.

The object used as a prototype does not need to be the child of proto. Any object of the appropriate
class can be used as a prototype.

If both use and usehref are non-empty usehref takes precedence.

XFA Specification
Chapter 17, Template Specification Template Reference 623

The usehref property

At template load time, invokes an external object as a prototype for this object. The content of this
property is an URL, followed by '#', followed by either an XML ID or by som(SOM_expr) where SOM_expr
represents a SOM expression.

The XML ID or SOM expression is resolved in the context of the external document.

If both use and usehref are non-empty usehref takes precedence.

XFA Specification
Chapter 17, Template Specification Template Reference 624

The color element
An element that describes a color.

<color

Properties:
 cSpace="cdata"
 id="cdata"
 use="cdata"
 usehref="cdata"
 value="cdata"
>

 <extras/> [0..1]
</color>

The color element is used within the following other elements:
corner edge fill linear pattern proto radial stipple

The cSpace property

This property specifies the color space. The default, and currently the only allowed value, is SRGB.

The extras property

An enclosure around one or more sets of custom properties. The content of this element may be used by
custom applications.

The id property

A unique identifier that may be used to identify this element as a target.

The use property

At template load time, invokes another object in the same document as a prototype for this object. The
content of this property is either a SOM expression (which cannot start with '#') or a '#' character followed
by an XML ID.

The object used as a prototype does not need to be the child of proto. Any object of the appropriate
class can be used as a prototype.

If both use and usehref are non-empty usehref takes precedence.

The usehref property

At template load time, invokes an external object as a prototype for this object. The content of this
property is an URL, followed by '#', followed by either an XML ID or by som(SOM_expr) where SOM_expr
represents a SOM expression.

The XML ID or SOM expression is resolved in the context of the external document.

If both use and usehref are non-empty usehref takes precedence.

The value property

This property specifies a comma separated list of values for each color component of the color space.

XFA Specification
Chapter 17, Template Specification Template Reference 625

For the color-space of SRGB, the component values must be r,g,b, wherer is the red component value, g
is the green component value, and b is the blue component value. Each component value must be in the
range 0 through 255, inclusive. 255 represents maximum display intensity. For example, 255,0,0
specifies the color red.

The default is dependent upon the context of where the color is used; the default color is determined by
the object enclosing the color element.

XFA Specification
Chapter 17, Template Specification Template Reference 626

The comb element
An element that causes a field to be presented with vertical lines between the character positions.

<comb

Properties:
 id="cdata"
 numberOfCells="0 | integer"
 use="cdata"
 usehref="cdata"
>
</comb>

The comb element is used within the following other elements:
dateTimeEdit numericEdit proto textEdit

Comb fields must be single-line fields and do not support scrolling.

Each tine of the comb is the full height of the field. Each tine's color and width is that defined for the
widget border's third (bottom) edge.

Rich text is not supported in comb fields.

Comb fields must have the corresponding border handedness set to right. This follows from the fact that
left-handed borders by definition are entirely outside the field region, while even-handed borders are
equally inside and outside. To be useful the comb has to be inside the field region.

The id property

A unique identifier that may be used to identify this element as a target.

The numberOfCells property

Specifies the number of character positions available for input or display.

The default for this attribute is 0. When the value is 0 the XFA processor falls back upon the maxChars
property of the associated text element. If that is also 0 or unspecified then the XFA processor draws one
cell.

Number of cells and number of characters are not the same thing. In languages using accents or other
combining characters the combining characters count as characters but do not contribute to the cell
count.

When merging with data from an XML data document the data may exceed the number of cells and/or
characters allotted. In this case the data is preserved at the cost of a less than optimal appearance. For
example if the form is being printed the excess data may overprint other text in the direction of text flow.

The use property

At template load time, invokes another object in the same document as a prototype for this object. The
content of this property is either a SOM expression (which cannot start with '#') or a '#' character followed
by an XML ID.

XFA Specification
Chapter 17, Template Specification Template Reference 627

The object used as a prototype does not need to be the child of proto. Any object of the appropriate
class can be used as a prototype.

If both use and usehref are non-empty usehref takes precedence.

The usehref property

At template load time, invokes an external object as a prototype for this object. The content of this
property is an URL, followed by '#', followed by either an XML ID or by som(SOM_expr) where SOM_expr
represents a SOM expression.

The XML ID or SOM expression is resolved in the context of the external document.

If both use and usehref are non-empty usehref takes precedence.

XFA Specification
Chapter 17, Template Specification Template Reference 628

The connect element
An element that describes the relationship between its containing object and a connection to a web
service, schema, or data description.

Connections are defined outside the template in a separate packet with its own schema. See the XFA
Connection Set Specification for more information.

<connect

Properties:
 connection="cdata"
 id="cdata"
 ref="cdata"
 usage="exportAndImport | exportOnly | importOnly"
 use="cdata"
 usehref="cdata"
>

 <picture/> [0..1]
</connect>

The connect element is used within the following other elements:
exclGroup field proto subform

The connection property

The name of the associated connection element in the connection set.

The id property

A unique identifier that may be used to identify this element as a target.

The picture property

A rendering element that describes input parsing and output formatting information.

The ref property

A modified XFA-SOM expression pointing to the node in the message or data document corresponding to
the containing object.

When the connection is a web service, the message resides under
!connectionData.connectionName where connectionName is the value of name.

The schema of the message is defined by the connection. The value of this property must match a node
that is in the message. Furthermore, within a set of connect elements sharing the same name each
connect element must point to a unique message node.

The rules for relative referencing are different in this context than in any other context using XFA-SOM
expressions. Normally in XFA SOM expressions the current location ("$") is the container for the property
the asserts the expression. Hence relative expressions are relative to the container. However in this
context the value of "$" is inherited from the nearest ancestor that asserts a fully-qualified XFA SOM
expression as its value of ref for the same connection. For example if a subform has a ref attribute with
a value of !connectionData.queryDatabase.body then its child could use the relative expression
queryID as a synonym for !connectionData.queryDatabase.body.queryID. In all other ways the

XFA Specification
Chapter 17, Template Specification Template Reference 629

value of this property is a normal XFA SOM expression. See the XFA-Scripting Object Model Expression
Specification [XFA SOM] for more information about XFA SOM expressions.

The usage property

The context(s) in which the connection is to be used. The value of this property must be one of the
following:

exportAndImport

Used during both import and export. This value is allowed both for connections to web services
and connections to XML data documents.

exportOnly

Used during export, ignored during import. This value is only allowed for connections to web
services.

importOnly

Used during import, ignored during export. This value is only allowed for connections to web
services.

The use property

At template load time, invokes another object in the same document as a prototype for this object. The
content of this property is either a SOM expression (which cannot start with '#') or a '#' character followed
by an XML ID.

The object used as a prototype does not need to be the child of proto. Any object of the appropriate
class can be used as a prototype.

If both use and usehref are non-empty usehref takes precedence.

The usehref property

At template load time, invokes an external object as a prototype for this object. The content of this
property is an URL, followed by '#', followed by either an XML ID or by som(SOM_expr) where SOM_expr
represents a SOM expression.

The XML ID or SOM expression is resolved in the context of the external document.

If both use and usehref are non-empty usehref takes precedence.

XFA Specification
Chapter 17, Template Specification Template Reference 630

The contentArea element
An element that describes a region within a page area eligible for receiving content.

<contentArea

Properties:
 h="0in | measurement"
 id="cdata"
 name="cdata"
 relevant="cdata"
 use="cdata"
 usehref="cdata"
 w="0in | measurement"
 x="0in | measurement"
 y="0in | measurement"
>

 <desc/> [0..1]
 <extras/> [0..1]
</contentArea>

The contentArea element is used within the following other elements:
pageArea proto

The desc property

An element to hold human-readable metadata.

The extras property

An enclosure around one or more sets of custom properties. The content of this element may be used by
custom applications.

The h property

Height for layout purposes. A measurement value for h overrides any growth range allowed by the minH
and maxH attributes. The absolute omission of this attribute or a value specified as an empty string
indicates that the minH and maxH must be respected.

This attribute has no default. Setting this attribute to "-1" is an error.

The id property

A unique identifier that may be used to identify this element as a target.

The name property

An identifier that may be used to identify this element in script expressions.

The relevant property

Specifies the views for which the enclosing object is relevant. The views themselves are specified in the
config object.

Views are supplied as a space-separated list of viewnames: relevant="[+|-]viewname
[[+|-]viewname [...]]". A token of the form viewname or +viewname indicates the enclosing

XFA Specification
Chapter 17, Template Specification Template Reference 631

element should be included in that particular view. A token of the form -viewname indicates the element
should be excluded from that particular view.

If a container is excluded, it is not considered in the data binding process.

See also Concealing Containers Depending on View and Config Specification.

The use property

At template load time, invokes another object in the same document as a prototype for this object. The
content of this property is either a SOM expression (which cannot start with '#') or a '#' character followed
by an XML ID.

The object used as a prototype does not need to be the child of proto. Any object of the appropriate
class can be used as a prototype.

If both use and usehref are non-empty usehref takes precedence.

The usehref property

At template load time, invokes an external object as a prototype for this object. The content of this
property is an URL, followed by '#', followed by either an XML ID or by som(SOM_expr) where SOM_expr
represents a SOM expression.

The XML ID or SOM expression is resolved in the context of the external document.

If both use and usehref are non-empty usehref takes precedence.

The w property

Width for layout purposes. A measurement value for w overrides any growth range allowed by the minW
and maxW attributes. The absolute omission of this attribute or a value specified as an empty string
indicates that the minW and maxW must be respected.

This attribute has no default. Setting this attribute to "-1" is an error.

The x property

X coordinate of the container's anchor point relative to the top-left corner of the parent container's
nominal content region when placed with positioned layout. Defaults to 0.

The y property

Y coordinate of the container's anchor point relative to the top-left corner of the parent container's
nominal content region when placed with positioned layout. Defaults to 0.

XFA Specification
Chapter 17, Template Specification Template Reference 632

The corner element
A formatting element that describes the appearance of a vertex between two edges

<corner

Properties:
 id="cdata"
 inverted="0 | 1"
 join="square | round"
 presence="visible | hidden | inactive | invisible"
 radius="0in | measurement"
 stroke="solid | dashDot | dashDotDot | dashed | dotted |
 embossed | etched | lowered | raised"
 thickness="0.5pt | measurement"
 use="cdata"
 usehref="cdata"
>

 <color/> [0..1]
 <extras/> [0..1]
</corner>

The corner element is used within the following other elements:
border proto rectangle

In addition to properties of the corner element, the handedness specification of the enclosing element
also influences the appearance of the corner. In turn, the corner exerts some influence over the
appearance of the edges it draws, particularly through its radius property.

The default color for a corner if black.

The color property

An element that describes a color.

The extras property

An enclosure around one or more sets of custom properties. The content of this element may be used by
custom applications.

The id property

A unique identifier that may be used to identify this element as a target.

The inverted property

Specifies whether the corner appears convex (it joins the edges tangentially) or is inverted and appears
concave (it joins the edges at right angles).

0

The corner appears convex.

1

The corner appears concave.

XFA Specification
Chapter 17, Template Specification Template Reference 633

The join property

Specifies the shape of the corner.

square

The corner has the shape of a right-angle between the adjoining edges.

round

The corner has the shape of a round curve between the adjoining edges.

The presence property

Controls the participation of the associated object in different phases of processing. If the object is a
container the contents of the container inherit whatever restrictions this control applies.

visible

Participate in interaction, layout, and rendering. The object is visible and takes up space. If it is
capable it takes part in calculations, validations, and events.

hidden

Participate in interaction but not layout or rendering. The object is not displayed and does not
take up space. However, if it is capable it does participate in calculations, validations, and events.

inactive

Do not participate in interaction, layout, or rendering. The object is not displayed, does not take
up space, and does not take part in calculations, validations, or event processing. (New in XFA 3.0.)

invisible

Participate in interaction and layout but not rendering. The associated object takes up space but is
invisible. If it is capable it takes part in calculations, validations, and events.

This control does not affect the ability of the associated object to hold data or to take part in data binding.

The radius property

Specifies the radius of the corner.

This property always influences the appearance of round corners, but will also determine the depth of an
inverted square corner.

Each edge is trimmed from its end points by the corner radius, irrespective of the values of the inverted
and join attributes. In general, this is of no consequence, as the corner will visibly join with the edges at
their trim points. However, if the corner specifies a presence of invisible, the trimming of the edges will
become apparent, even when the corner is square and not inverted.

The stroke property

Specifies the appearance of the line.

solid

Solid.

dashed

A series of rectangular dashes.

XFA Specification
Chapter 17, Template Specification Template Reference 634

dotted

A series of round dots.

dashDot

Alternating rectangular dashes and dots.

dashDotDot

A series of a single rectangular dash followed by two round dots.

lowered

The line appears to enclose a lowered region.

raised

The line appears to enclose a raised region.

etched

The line appears to be a groove lowered into the drawing surface.

embossed

The line appears to be a ridge raised out of the drawing surface.

The thickness property

Thickness or weight of the displayed line. Defaults to 0.5pt.

The use property

At template load time, invokes another object in the same document as a prototype for this object. The
content of this property is either a SOM expression (which cannot start with '#') or a '#' character followed
by an XML ID.

The object used as a prototype does not need to be the child of proto. Any object of the appropriate
class can be used as a prototype.

If both use and usehref are non-empty usehref takes precedence.

The usehref property

At template load time, invokes an external object as a prototype for this object. The content of this
property is an URL, followed by '#', followed by either an XML ID or by som(SOM_expr) where SOM_expr
represents a SOM expression.

The XML ID or SOM expression is resolved in the context of the external document.

If both use and usehref are non-empty usehref takes precedence.

XFA Specification
Chapter 17, Template Specification Template Reference 635

The date element
A content element that describes a single unit of data content representing a date.

<date

Properties:
 id="cdata"
 name="cdata"
 use="cdata"
 usehref="cdata"
>
 ...pcdata...
</date>

The date element is used within the following other elements:
desc exObject extras items proto value variables

XFA dates conform to a subset of ISO-8601, as specified in Canonical Format Reference. This element is
intended to hold a date only to the resolution of a single day and any date information beyond that
resolution will be truncated. For instance, a date element enclosing the value 20010326T0630, meaning
6:30am on March 26th 2001, will truncate the time and hold the value of 20010326, resulting in a value of
March 26th 2001.

Content

This element may enclose date data which is a subset of [ISO-8601] as specified in Canonical Format
Reference.

When no content is present, the content shall be interpreted as representing a null value, irrespective of
the value of the associtated nullType property in the data description.

The id property

A unique identifier that may be used to identify this element as a target.

The name property

An identifier that may be used to identify this element in script expressions.

The use property

At template load time, invokes another object in the same document as a prototype for this object. The
content of this property is either a SOM expression (which cannot start with '#') or a '#' character followed
by an XML ID.

The object used as a prototype does not need to be the child of proto. Any object of the appropriate
class can be used as a prototype.

If both use and usehref are non-empty usehref takes precedence.

The usehref property

At template load time, invokes an external object as a prototype for this object. The content of this
property is an URL, followed by '#', followed by either an XML ID or by som(SOM_expr) where SOM_expr
represents a SOM expression.

XFA Specification
Chapter 17, Template Specification Template Reference 636

The XML ID or SOM expression is resolved in the context of the external document.

If both use and usehref are non-empty usehref takes precedence.

XFA Specification
Chapter 17, Template Specification Template Reference 637

The dateTime element
A content element that describes a single unit of data content representing a date and time value.

<dateTime

Properties:
 id="cdata"
 name="cdata"
 use="cdata"
 usehref="cdata"
>
 ...pcdata...
</dateTime>

The dateTime element is used within the following other elements:
desc exObject extras items proto value variables

Content

This element may enclose date/time data which is a subset of [ISO-8601] as specified in Canonical Format
Reference.

When no content is present, the content shall be interpreted as representing a null value, irrespective of
the value of the associtated nullType property in the data description.

The id property

A unique identifier that may be used to identify this element as a target.

The name property

An identifier that may be used to identify this element in script expressions.

The use property

At template load time, invokes another object in the same document as a prototype for this object. The
content of this property is either a SOM expression (which cannot start with '#') or a '#' character followed
by an XML ID.

The object used as a prototype does not need to be the child of proto. Any object of the appropriate
class can be used as a prototype.

If both use and usehref are non-empty usehref takes precedence.

The usehref property

At template load time, invokes an external object as a prototype for this object. The content of this
property is an URL, followed by '#', followed by either an XML ID or by som(SOM_expr) where SOM_expr
represents a SOM expression.

The XML ID or SOM expression is resolved in the context of the external document.

If both use and usehref are non-empty usehref takes precedence.

XFA Specification
Chapter 17, Template Specification Template Reference 638

The dateTimeEdit element
A user interface element describing a widget intended to aid in the selection of date and/or time.

<dateTimeEdit

Properties:
 hScrollPolicy="auto | off | on"
 id="cdata"
 picker="host | none"
 use="cdata"
 usehref="cdata"
>

 <border/> [0..1]
 <comb/> [0..1]
 <extras/> [0..1]
 <margin/> [0..1]
</dateTimeEdit>

The dateTimeEdit element is used within the following other elements:
proto ui

The border property

A box model element that describes the border surrounding an object.

The comb property

An element that causes a field to be presented with vertical lines between the character positions.

The extras property

An enclosure around one or more sets of custom properties. The content of this element may be used by
custom applications.

The hScrollPolicy property

Controls the scrollability of the field in the horizontal direction.

auto

If the field is single-line it scrolls horizontally. Multi-line fields do not scroll horizontally.

on

A horizontal scroll bar is always displayed whether or not the input overflows the boundaries of
the field. The field is scrollable regardless of whether it is a single-line or multi-line field.

off

The user is not allowed to enter characters beyond what can physically fit in the field width. This
applies to typing and pasting from the clipboard. However data which is merged into the field
from the Data DOM is not restricted. If the data exceeds the field size the user may not be able to
view all of it.

Note that members of the Acrobat family do not implement the value on. If this value is encountered it is
treated as auto.

XFA Specification
Chapter 17, Template Specification Template Reference 639

The id property

A unique identifier that may be used to identify this element as a target.

The margin property

A box model element that specifies one or more insets for an object.

The picker property

Controls whether a date-time picker UI, when available, should be used.

host

Use a date-time picker when it is available in the host environment.

none

Do not use a date-time picker.

The use property

At template load time, invokes another object in the same document as a prototype for this object. The
content of this property is either a SOM expression (which cannot start with '#') or a '#' character followed
by an XML ID.

The object used as a prototype does not need to be the child of proto. Any object of the appropriate
class can be used as a prototype.

If both use and usehref are non-empty usehref takes precedence.

The usehref property

At template load time, invokes an external object as a prototype for this object. The content of this
property is an URL, followed by '#', followed by either an XML ID or by som(SOM_expr) where SOM_expr
represents a SOM expression.

The XML ID or SOM expression is resolved in the context of the external document.

If both use and usehref are non-empty usehref takes precedence.

XFA Specification
Chapter 17, Template Specification Template Reference 640

The decimal element
A content type element that describes a single unit of data content representing a number with a fixed
number of digits after the decimal.

<decimal

Properties:
 fracDigits="2 | integer"
 id="cdata"
 leadDigits="-1 | integer"
 name="cdata"
 use="cdata"
 usehref="cdata"
>
 ...pcdata...
</decimal>

The decimal element is used within the following other elements:
desc exObject extras items proto value variables

Note that the decimal element and the float element differ only in the user interface. They are
interchangeable in every other way.

Content

This element may enclose decimal-data which is an optional leading minus sign (Unicode character
U+002D), followed by a sequence of decimal digits (Unicode characters U+0030 - U+0039) separated by a
single period (Unicode character U+002E) as a decimal indicator.

To maximize the potential for data interchange, the decimal point is defined as '.' (Unicode character
U+002E). No thousands/grouping separator, or other formatting characters, are permitted in the data. The
template may specify a picture clause to provide a presentation more suitable for human consumption.

When no content is present, the content shall be interpreted as representing a null value, irrespective of
the value of the associated nullType property in the data description.

The fracDigits property

The maximum number of digits (inclusively) following the decimal point to capture and store. The default
value is 2. A value of -1 allows any number of decimal places.

Prior to XFA 3.1 this specification defined a different meaning for a value of -1, but this was deemed
undesireable because it left no way for a template not to set any limit upon the number of decimal places.
(Acrobat never implemented the previously defined meaning.)

It is an error if the number of fractional digits in the decimal value exceeds the value of fracDigits.

The id property

A unique identifier that may be used to identify this element as a target.

The leadDigits property

The maximum number of digits (inclusively) preceding the decimal point to capture and store. The default
value (-1) indicates the number of preceding digits is retained. For example, if the data associated with the

XFA Specification
Chapter 17, Template Specification Template Reference 641

decimal content type is "00012.0", the unformatted data is printed or displayed as "00012.0". It is an error
if the number of preceding digits in the value exceeds the value of leadDigits.

The name property

An identifier that may be used to identify this element in script expressions.

The use property

At template load time, invokes another object in the same document as a prototype for this object. The
content of this property is either a SOM expression (which cannot start with '#') or a '#' character followed
by an XML ID.

The object used as a prototype does not need to be the child of proto. Any object of the appropriate
class can be used as a prototype.

If both use and usehref are non-empty usehref takes precedence.

The usehref property

At template load time, invokes an external object as a prototype for this object. The content of this
property is an URL, followed by '#', followed by either an XML ID or by som(SOM_expr) where SOM_expr
represents a SOM expression.

The XML ID or SOM expression is resolved in the context of the external document.

If both use and usehref are non-empty usehref takes precedence.

XFA Specification
Chapter 17, Template Specification Template Reference 642

The defaultUi element
(DEPRECATED) An element for widgets whose depiction is delegated to the XFA application.

<defaultUi

Properties:
 id="cdata"
 use="cdata"
 usehref="cdata"
>

 <extras/> [0..1]
</defaultUi>

The defaultUi element is used within the following other elements:
proto ui

When the depiction of the widget is defaulted this element is used. In this mode the appearance and
interaction of the widget is determined by examining the default data for the field. For example, if the
default data is a number object then a numeric editing widget is used. This element can also supply
additional hints to a custom GUI via its extras child.

This element is now deprecated. New designs should use dynamic subforms for data-driven forms, or use
the relevant property to tailor the form to context. Custom GUIs should employ an extras child
directly under ui.

The extras property

An enclosure around one or more sets of custom properties. The content of this element may be used by
custom applications.

The id property

A unique identifier that may be used to identify this element as a target.

The use property

At template load time, invokes another object in the same document as a prototype for this object. The
content of this property is either a SOM expression (which cannot start with '#') or a '#' character followed
by an XML ID.

The object used as a prototype does not need to be the child of proto. Any object of the appropriate
class can be used as a prototype.

If both use and usehref are non-empty usehref takes precedence.

The usehref property

At template load time, invokes an external object as a prototype for this object. The content of this
property is an URL, followed by '#', followed by either an XML ID or by som(SOM_expr) where SOM_expr
represents a SOM expression.

The XML ID or SOM expression is resolved in the context of the external document.

If both use and usehref are non-empty usehref takes precedence.

XFA Specification
Chapter 17, Template Specification Template Reference 643

The desc element
An element to hold human-readable metadata.

<desc

Properties:
 id="cdata"
 use="cdata"
 usehref="cdata"
>
Children:
 <boolean/> [0..n]
 <date/> [0..n]
 <dateTime/> [0..n]
 <decimal/> [0..n]
 <exData/> [0..n]
 <float/> [0..n]
 <image/> [0..n]
 <integer/> [0..n]
 <text/> [0..n]
 <time/> [0..n]
</desc>

The desc element is used within the following other elements:
area contentArea draw exclGroup field pageArea proto subform subformSet

The boolean property

A content element describing single unit of data content representing a Boolean logical value.

The date property

A content element that describes a single unit of data content representing a date.

The dateTime property

A content element that describes a single unit of data content representing a date and time value.

The decimal property

A content type element that describes a single unit of data content representing a number with a fixed
number of digits after the decimal.

The exData property

A content element that describes a single unit of data of a foreign datatype.

The float property

A content element that describes a single unit of data content representing a floating point value.

The id property

A unique identifier that may be used to identify this element as a target.

XFA Specification
Chapter 17, Template Specification Template Reference 644

The image property

A content element that describes a single image.

The integer property

A content element that describes a single unit of data content representing an integer value.

The text property

A content element that describes a single unit of data content representing a plain textual value.

The time property

A content element that describes a single unit of data content representing a time value.

The use property

At template load time, invokes another object in the same document as a prototype for this object. The
content of this property is either a SOM expression (which cannot start with '#') or a '#' character followed
by an XML ID.

The object used as a prototype does not need to be the child of proto. Any object of the appropriate
class can be used as a prototype.

If both use and usehref are non-empty usehref takes precedence.

The usehref property

At template load time, invokes an external object as a prototype for this object. The content of this
property is an URL, followed by '#', followed by either an XML ID or by som(SOM_expr) where SOM_expr
represents a SOM expression.

The XML ID or SOM expression is resolved in the context of the external document.

If both use and usehref are non-empty usehref takes precedence.

XFA Specification
Chapter 17, Template Specification Template Reference 645

The digestMethod element
An element to hold the name of an acceptable digest method for a signature.

<digestMethod

Properties:
 id="cdata"
 use="cdata"
 usehref="cdata"
>
 ...pcdata...
</digestMethod>

The digestMethod element is used within the following other elements:
digestMethods proto

Content

One of the following values:

SHA1

May be used with credentials containing RSA or DSA public/private keys.

SHA256

May be used only with credentials containing RSA public/private keys.

SHA512

May be used only with credentials containing RSA public/private keys.

RIPEMD160

May be used only with credentials containing RSA public/private keys.

The id property

A unique identifier that may be used to identify this element as a target.

The use property

At template load time, invokes another object in the same document as a prototype for this object. The
content of this property is either a SOM expression (which cannot start with '#') or a '#' character followed
by an XML ID.

The object used as a prototype does not need to be the child of proto. Any object of the appropriate
class can be used as a prototype.

If both use and usehref are non-empty usehref takes precedence.

The usehref property

At template load time, invokes an external object as a prototype for this object. The content of this
property is an URL, followed by '#', followed by either an XML ID or by som(SOM_expr) where SOM_expr
represents a SOM expression.

The XML ID or SOM expression is resolved in the context of the external document.

XFA Specification
Chapter 17, Template Specification Template Reference 646

If both use and usehref are non-empty usehref takes precedence.

XFA Specification
Chapter 17, Template Specification Template Reference 647

The digestMethods element
An element to hold a list of names of acceptable digest methods for a signature.

<digestMethods

Properties:
 id="cdata"
 type="optional | required"
 use="cdata"
 usehref="cdata"
>
Children:
 <digestMethod/> [0..n]
</digestMethods>

The digestMethods element is used within the following other elements:
filter proto

The digestMethod property

An element to hold the name of an acceptable digest method for a signature.

The id property

A unique identifier that may be used to identify this element as a target.

The type property

Specifies whether the values provided in the element should be treated as a restrictive or non-restrictive
set.

optional

The values provided in the element are optional seed values from which the XFA processing
application may choose. The XFA processing application may also supply its own value.

required

The values provided in the element are seed values from which the XFA processing application
must choose.

The use property

At template load time, invokes another object in the same document as a prototype for this object. The
content of this property is either a SOM expression (which cannot start with '#') or a '#' character followed
by an XML ID.

The object used as a prototype does not need to be the child of proto. Any object of the appropriate
class can be used as a prototype.

If both use and usehref are non-empty usehref takes precedence.

The usehref property

At template load time, invokes an external object as a prototype for this object. The content of this
property is an URL, followed by '#', followed by either an XML ID or by som(SOM_expr) where SOM_expr
represents a SOM expression.

XFA Specification
Chapter 17, Template Specification Template Reference 648

The XML ID or SOM expression is resolved in the context of the external document.

If both use and usehref are non-empty usehref takes precedence.

XFA Specification
Chapter 17, Template Specification Template Reference 649

The draw element
A container element that contains non-interactive data content.

<draw

Properties:
 anchorType="topLeft | bottomCenter | bottomLeft |
 bottomRight | middleCenter | middleLeft |
 middleRight | topCenter | topRight"
 colSpan="1 | integer"
 h="0in | measurement"
 id="cdata"
 locale="cdata"
 maxH="0in | measurement"
 maxW="0in | measurement"
 minH="0in | measurement"
 minW="0in | measurement"
 name="cdata"
 presence="visible | hidden | inactive | invisible"
 relevant="cdata"
 rotate="0 | angle"
 use="cdata"
 usehref="cdata"
 w="0in | measurement"
 x="0in | measurement"
 y="0in | measurement"
>

 <assist/> [0..1]
 <border/> [0..1]
 <caption/> [0..1]
 <desc/> [0..1]
 <extras/> [0..1]
 [0..1]
 <keep/> [0..1]
 <margin/> [0..1]
 <para/> [0..1]
 <traversal/> [0..1]
 <ui/> [0..1]
 <value/> [0..1]
Children:
 <setProperty/> [0..n]
</draw>

The draw element is used within the following other elements:
area pageArea proto subform

Note that although all draw elements have minH, maxH, minW and maxH properties, not all draws are
growable. Draw elements that are not growable ignore these properties. Draw elements with the
following content types cannot grow:

● image

● arc

● rectangle

XFA Specification
Chapter 17, Template Specification Template Reference 650

● line

The anchorType property

Location of the container's anchor point when placed with positioned layout strategy.

topLeft

Top left corner of the nominal extent.

topCenter

Center of the top edge of the nominal extent.

topRight

Top right corner of the nominal extent.

middleLeft

Middle of the left edge of the nominal extent.

middleCenter

Middle of the nominal extent.

middleRight

Middle of the right edge of the nominal extent.

bottomLeft

Bottom left corner of the nominal extent.

bottomCenter

Center of the bottom edge of the nominal extent.

bottomRight

Bottom right corner of the nominal extent.

The assist property

An element that supplies additional information about a container for users of interactive applications.

The border property

A box model element that describes the border surrounding an object.

The caption property

A box model element that describes a descriptive label associated with an object.

The colSpan property

Number of columns spanned by this object, when used inside a subform with a layout type of row.
Defaults to 1.

The desc property

An element to hold human-readable metadata.

XFA Specification
Chapter 17, Template Specification Template Reference 651

The extras property

An enclosure around one or more sets of custom properties. The content of this element may be used by
custom applications.

The font property

A formatting element that describes a font.

The h property

Height for layout purposes. A measurement value for h overrides any growth range allowed by the minH
and maxH attributes. The absolute omission of this attribute or a value specified as an empty string
indicates that the minH and maxH must be respected.

This attribute has no default. Setting this attribute to "-1" is an error.

The id property

A unique identifier that may be used to identify this element as a target.

The keep property

An element that describes the constraints on keeping content together within a page or content area.

The locale property

A designator that determines the ambient locale and hence default direction of text flow within this
element. The text layout engine may override this within portions or all of such text as per the rules in the
Unicode Annex 9 [UAX-9] reference.

The value of this property must be one of the following:

ambient

Causes the ambient locale of the XFA application to be used.

localeName

A valid locale name that conforms to the syntax: language[_country]. Examples of valid locales are
zh for Chinese and en_CA for English specific for Canada. For a complete list of valid locale values,
refer to the IETF RFC 1766 [RFC1766] and ISO 639 [ISO-639-1] / ISO 3166 [ISO-3166-1] specifications.
Note that this is the same set of locale names used by the xml:lang attribute defined in
[XML1.0].

When this property is absent or empty the default behavior is to inherit the parent object's locale. If the
outermost subform does not specify a locale it uses the ambient locale from the operating system. If the
operating system does not supply a locale it falls back onto en_US.

The margin property

A box model element that specifies one or more insets for an object.

The maxH property

Measurement specifying the maximum height for layout purposes. This attribute is relevant only if the
enclosing container element is growable and has an h attribute whose value is null. If an h attribute is
supplied, the container is not vertically growable and this attribute is ignored.

XFA Specification
Chapter 17, Template Specification Template Reference 652

If this attribute is not supplied or has a value of zero, there is no limit. The default is zero.

The maxW property

Measurement specifying the maximum width for layout purposes. This attribute is relevant only if the
enclosing container element is growable and has a w attribute whose value is null. If a w attribute is
supplied, the container is not horizontally growable and this attribute is ignored.

If this attribute is not supplied or has a value of zero, there is no limit. The default is zero.

The minH property

Measurement specifying the minimum height for layout purposes. This attribute is relevant only if the
enclosing container element is growable and has an h attribute whose value is null. If an h attribute is
supplied, the container is not vertically growable and this attribute is ignored.

If this attribute is not supplied or has a value of zero, the minimum width is zero. Note that a minimum
width of zero may have potentially undesireable side-effects such as making the field impossible to select
via the user interface.

The minW property

Measurement specifying the minimum width for layout purposes. This attribute is relevant only if the
enclosing container element is growable and has a w attribute whose value is null. If a w attribute is
supplied, the container is not horzontally growable and this attribute is ignored.

If this attribute is not supplied or has a value of zero, the minimum height is zero. Note that a minimum
height of zero may have potentially undesireable side-effects such as making the field impossible to
select via the user interface.

The name property

An identifier that may be used to identify this element in script expressions.

The para property

A formatting element that specifies default paragraph and alignment properties to be applied to the
content of an enclosing container.

The presence property

Controls the participation of the associated object in different phases of processing. If the object is a
container the contents of the container inherit whatever restrictions this control applies.

visible

Participate in interaction, layout, and rendering. The object is visible and takes up space. If it is
capable it takes part in calculations, validations, and events.

hidden

Participate in interaction but not layout or rendering. The object is not displayed and does not
take up space. However, if it is capable it does participate in calculations, validations, and events.

inactive

Do not participate in interaction, layout, or rendering. The object is not displayed, does not take
up space, and does not take part in calculations, validations, or event processing. (New in XFA 3.0.)

XFA Specification
Chapter 17, Template Specification Template Reference 653

invisible

Participate in interaction and layout but not rendering. The associated object takes up space but is
invisible. If it is capable it takes part in calculations, validations, and events.

This control does not affect the ability of the associated object to hold data or to take part in data binding.

The relevant property

Specifies the views for which the enclosing object is relevant. The views themselves are specified in the
config object.

Views are supplied as a space-separated list of viewnames: relevant="[+|-]viewname
[[+|-]viewname [...]]". A token of the form viewname or +viewname indicates the enclosing
element should be included in that particular view. A token of the form -viewname indicates the element
should be excluded from that particular view.

If a container is excluded, it is not considered in the data binding process.

See also Concealing Containers Depending on View and Config Specification.

The rotate property

Causes the object to be rotated about its anchor point by the specified angle.

The angle is measured in degrees counter-clockwise with respect to the default position. The value must
be a positive or negative multiple of 90. The default is 0. Positive values cause the object to rotate
counter-clockwise, and negative values, clockwise.

Note that the direction of rotation is the same as for positive angles in PostScript, PDF, and PCL but
opposite to that in SVG.

The setProperty property

An element that causes a property of the container to be copied from a value in the XFA Data DOM or
from data returned by a web service.

The traversal property

An element that links its container to other objects in sequence.

The ui property

A user-interface element that encloses the actual user interface widget element.

The use property

At template load time, invokes another object in the same document as a prototype for this object. The
content of this property is either a SOM expression (which cannot start with '#') or a '#' character followed
by an XML ID.

The object used as a prototype does not need to be the child of proto. Any object of the appropriate
class can be used as a prototype.

If both use and usehref are non-empty usehref takes precedence.

XFA Specification
Chapter 17, Template Specification Template Reference 654

The usehref property

At template load time, invokes an external object as a prototype for this object. The content of this
property is an URL, followed by '#', followed by either an XML ID or by som(SOM_expr) where SOM_expr
represents a SOM expression.

The XML ID or SOM expression is resolved in the context of the external document.

If both use and usehref are non-empty usehref takes precedence.

The value property

A content element that encloses a single unit of data content.

The w property

Width for layout purposes. A measurement value for w overrides any growth range allowed by the minW
and maxW attributes. The absolute omission of this attribute or a value specified as an empty string
indicates that the minW and maxW must be respected.

This attribute has no default. Setting this attribute to "-1" is an error.

The x property

X coordinate of the container's anchor point relative to the top-left corner of the parent container's
nominal content region when placed with positioned layout. Defaults to 0.

The y property

Y coordinate of the container's anchor point relative to the top-left corner of the parent container's
nominal content region when placed with positioned layout. Defaults to 0.

XFA Specification
Chapter 17, Template Specification Template Reference 655

The edge element
A formatting element that describes an arc, line, or one side of a border or rectangle.

<edge

Properties:
 cap="square | butt | round"
 id="cdata"
 presence="visible | hidden | inactive | invisible"
 stroke="solid | dashDot | dashDotDot | dashed | dotted |
 embossed | etched | lowered | raised"
 thickness="0.5pt | measurement"
 use="cdata"
 usehref="cdata"
>

 <color/> [0..1]
 <extras/> [0..1]
</edge>

The edge element is used within the following other elements:
arc border line proto rectangle

The properties here influence the appearance of the edge. In addition, the handedness of the enclosing
element influences the edge's appearance.

When an edge is part of a border or rectangle, the sibling corner elements exert some influence over the
appearance of edges. In particular, each edge is trimmed back from its endpoints by the corner radius in
effect at that endpoint, irrespective of whether the corner is round or square, inverted or not, and visible or
invisible.

The default edge color is black.

The cap property

Specifies the rendered termination of the stroke. Strokes that form an enclosed area do not have such
termination. In particular,all rectangle and border edges, as well as all 360-degree arc edges are not
considered to have any termination, and this property does not apply. Arcs with sweep angles less than
360 degrees and lines do have terminations at both endpoints.

square

The stroke shall be terminated by rendering the end of the edge squarely beyond the edge's
endpoint a distance equal to one-half the edge's thickness.

butt

The stroke shall be terminated by rendering the end of the edge squarely across the endpoint.

round

The stroke shall be terminated by rendering the end of the edge with a semi-circle at the edge's
endpoint, having a radius equal to one-half the edge's thickness.

The color property

An element that describes a color.

XFA Specification
Chapter 17, Template Specification Template Reference 656

The extras property

An enclosure around one or more sets of custom properties. The content of this element may be used by
custom applications.

The id property

A unique identifier that may be used to identify this element as a target.

The presence property

Controls the participation of the associated object in different phases of processing. If the object is a
container the contents of the container inherit whatever restrictions this control applies.

visible

Participate in interaction, layout, and rendering. The object is visible and takes up space. If it is
capable it takes part in calculations, validations, and events.

hidden

Participate in interaction but not layout or rendering. The object is not displayed and does not
take up space. However, if it is capable it does participate in calculations, validations, and events.

inactive

Do not participate in interaction, layout, or rendering. The object is not displayed, does not take
up space, and does not take part in calculations, validations, or event processing. (New in XFA 3.0.)

invisible

Participate in interaction and layout but not rendering. The associated object takes up space but is
invisible. If it is capable it takes part in calculations, validations, and events.

This control does not affect the ability of the associated object to hold data or to take part in data binding.

The stroke property

Specifies the appearance of the line.

solid

Solid.

dashed

A series of rectangular dashes.

dotted

A series of round dots.

dashDot

Alternating rectangular dashes and dots.

dashDotDot

A series of a single rectangular dash followed by two round dots.

lowered

The line appears to enclose a lowered region.

XFA Specification
Chapter 17, Template Specification Template Reference 657

raised

The line appears to enclose a raised region.

etched

The line appears to be a groove lowered into the drawing surface.

embossed

The line appears to be a ridge raised out of the drawing surface.

The thickness property

Thickness or weight of the displayed line. Defaults to 0.5pt.

The use property

At template load time, invokes another object in the same document as a prototype for this object. The
content of this property is either a SOM expression (which cannot start with '#') or a '#' character followed
by an XML ID.

The object used as a prototype does not need to be the child of proto. Any object of the appropriate
class can be used as a prototype.

If both use and usehref are non-empty usehref takes precedence.

The usehref property

At template load time, invokes an external object as a prototype for this object. The content of this
property is an URL, followed by '#', followed by either an XML ID or by som(SOM_expr) where SOM_expr
represents a SOM expression.

The XML ID or SOM expression is resolved in the context of the external document.

If both use and usehref are non-empty usehref takes precedence.

XFA Specification
Chapter 17, Template Specification Template Reference 658

The encoding element
An element holding the name of an acceptable recipe for signature encoding.

<encoding

Properties:
 id="cdata"
 use="cdata"
 usehref="cdata"
>
 ...pcdata...
</encoding>

The encoding element is used within the following other elements:
encodings proto

This element corresponds to the subFilters element in PDFL.

Content

A signature encoding recipe name. Certain names have been assigned by Adobe but other security
handlers may define their own. The names assigned by Adobe are:

adbe.x509.rsa_sha1

adbe.pkcs7.detached

adbe.pkcs7.sha1

The id property

A unique identifier that may be used to identify this element as a target.

The use property

At template load time, invokes another object in the same document as a prototype for this object. The
content of this property is either a SOM expression (which cannot start with '#') or a '#' character followed
by an XML ID.

The object used as a prototype does not need to be the child of proto. Any object of the appropriate
class can be used as a prototype.

If both use and usehref are non-empty usehref takes precedence.

The usehref property

At template load time, invokes an external object as a prototype for this object. The content of this
property is an URL, followed by '#', followed by either an XML ID or by som(SOM_expr) where SOM_expr
represents a SOM expression.

The XML ID or SOM expression is resolved in the context of the external document.

If both use and usehref are non-empty usehref takes precedence.

XFA Specification
Chapter 17, Template Specification Template Reference 659

The encodings element
An element holding a list of names of acceptable recipes for signature encoding.

<encodings

Properties:
 id="cdata"
 type="optional | required"
 use="cdata"
 usehref="cdata"
>
Children:
 <encoding/> [0..n]
</encodings>

The encodings element is used within the following other elements:
filter proto

The encoding property

An element holding the name of an acceptable recipe for signature encoding.

The id property

A unique identifier that may be used to identify this element as a target.

The type property

Specifies whether the values provided in the element should be treated as a restrictive or non-restrictive
set.

optional

The values provided in the element are optional seed values from which the XFA processing
application may choose. The XFA processing application may also supply its own value.

required

The values provided in the element are seed values from which the XFA processing application
must choose.

The use property

At template load time, invokes another object in the same document as a prototype for this object. The
content of this property is either a SOM expression (which cannot start with '#') or a '#' character followed
by an XML ID.

The object used as a prototype does not need to be the child of proto. Any object of the appropriate
class can be used as a prototype.

If both use and usehref are non-empty usehref takes precedence.

The usehref property

At template load time, invokes an external object as a prototype for this object. The content of this
property is an URL, followed by '#', followed by either an XML ID or by som(SOM_expr) where SOM_expr
represents a SOM expression.

XFA Specification
Chapter 17, Template Specification Template Reference 660

The XML ID or SOM expression is resolved in the context of the external document.

If both use and usehref are non-empty usehref takes precedence.

XFA Specification
Chapter 17, Template Specification Template Reference 661

The encrypt element
An element that controls encryption of barcode or submit data.

<encrypt

Properties:
 id="cdata"
 use="cdata"
 usehref="cdata"
>

 <certificate/> [0..1]
</encrypt>

The encrypt element is used within the following other elements:
barcode proto submit

The presence of this element with its content causes the data to be encrypted before writing it to the
barcode or submitting it to the host. If this element is absent or empty no encryption is performed.

For a barcode the data is packaged by first writing out a four-byte encryption header, followed by a
randomly generated RC4 session key that has been encrypted according to the enclosed certificate, then
finally the RC4 encryption of the original data under the previously mentioned random RC4 session key.
The four-byte encryption header consists of a byte with the decimal value 130 (0x82 hex), a byte with the
decimal value 1, then finally two bytes which are the two least significant bytes of the serial number of the
enclosed certificate. These last two bytes serve as a hint to barcode decoders as to which public key
certificate was used in the original encryption, and can thus aid in the selection of private keys for
decrypting.

For submission the encrypted data is added to a PDF as an encrypted attachment.

The certificate property

An element that holds a suitable Base64 DER-encoded X.509v3 certificate.

The id property

A unique identifier that may be used to identify this element as a target.

The use property

At template load time, invokes another object in the same document as a prototype for this object. The
content of this property is either a SOM expression (which cannot start with '#') or a '#' character followed
by an XML ID.

The object used as a prototype does not need to be the child of proto. Any object of the appropriate
class can be used as a prototype.

If both use and usehref are non-empty usehref takes precedence.

The usehref property

At template load time, invokes an external object as a prototype for this object. The content of this
property is an URL, followed by '#', followed by either an XML ID or by som(SOM_expr) where SOM_expr
represents a SOM expression.

XFA Specification
Chapter 17, Template Specification Template Reference 662

The XML ID or SOM expression is resolved in the context of the external document.

If both use and usehref are non-empty usehref takes precedence.

XFA Specification
Chapter 17, Template Specification Template Reference 663

The event element
An automation element that causes a script to be executed or data to be submitted whenever a particular
event occurs.

<event

Properties:
 activity="click | change | docClose | docReady | enter |
 exit | full | indexChange | initialize |
 mouseDown | mouseEnter | mouseExit | mouseUp |
 postExecute | postOpen | postPrint | postSave |
 postSign | postSubmit | preExecute | preOpen |
 prePrint | preSave | preSign | preSubmit |
 ready | validationState"
 id="cdata"
 listen="refOnly | refAndDescendents"
 name="cdata"
 ref="cdata"
 use="cdata"
 usehref="cdata"
>

 <extras/> [0..1]
One-of properties:
 <execute/> [0..1]
 <script/> [0..1]
 <signData/> [0..1]
 <submit/> [0..1]
</event>

The event element is used within the following other elements:
exclGroup field proto subform

Any given object can only generate certain types of events. For example, a subform can generate
initialize, enter, and exit events but it cannot generate events associated with key strokes and
mouse gestures because it cannot accept input focus. It is the responsibility of the template creator to
ensure that events are bound to appropriate objects.

The activity property

The name of the event. The accompanying ref property must specify an object that can generate the
named event.

change

Occurs when the user changes the field value. This will occur with each key-stroke, when text is
pasted, when a new choice is selected, when a check button is clicked, and so on.

click

Occurs when the user clicks in the field. Most systems define click as pressing and releasing the
mouse button while not moving the pointer beyond a very small threshold.

XFA Specification
Chapter 17, Template Specification Template Reference 664

docClose

Occurs at the very end of processing if and only if all validations succeeded. Success in this case is
defined as generating nothing worse than a warning (no errors). Note that this event comes too
late to modify the saved document; it is intended to be used for generating an exit status or
completion message.

docReady

Occurs before the document is rendered but after data binding. It comes after the ready event
associated with the Form DOM.

enter

For a field, occurs when the field gains keyboard focus. For a subform or exclusion group, occurs
when some field within the subform or exclusion group gains keyboard focus, that is, keyboard
focus moves from outside the object to inside it.

exit

For a field, occurs when the field loses keyboard focus. For a subform or exclusion group, occurs
when all fields within the subform or exclusion group lose keyboard focus, that is, focus moves
from inside the object to outside it.

full

Occurs when the user has entered the maximum allowed amount of content into the field.

indexChange

Occurs whenever the instance manager for a variable-occurrence object initially adds an instance
or changes the instance number of an existing instance. The event is received only by the affected
instances.

initialize

Occurs after data binding is complete. A separate event is generated for each instance of the field
in the Form DOM.

mouseDown

Occurs when the user presses the mouse button in the field, but before the button is released.

mouseEnter

Occurs when the user drags the mouse pointer over the field without necessarily pressing the
button.

mouseExit

Occurs when the user drags the mouse pointer out of the field without necessarily pressing the
button.

mouseUp

Occurs when the user releases the mouse button in the field.

postExecute

Occurs when data is sent to a web service via WSDL, just after the reply to the request has been
received and the received data is marshalled in a connectionData element underneath
$datasets. A script triggered by this event has the chance to examine and process the received
data. After execution of this event the received data is deleted.

XFA Specification
Chapter 17, Template Specification Template Reference 665

postOpen

Occurs after a drop-down choice list is displayed, or an attempt has been made to display one,
provided the choice list has its open property set to userControl or onEntry.

postPrint

Occurs just after the rendered form has been sent to the printer, spooler, or output destination.

postSave

Occurs just after the form has been written out in PDF or XDP format. Does not occur when the
Data DOM or some other subset of the form is exported to XDP.

postSign

Occurs after a signature is applied or an attempt to apply a signature has failed.

postSubmit

Occurs when data is sent to the host via a submit operation, just after the returned data has been
marshalled in a connectionData element underneath $datasets but before the returned data is
merged back into the Data DOM. A script triggered by this event has the chance to examine and
alter the data before it is re-merged. If the script is marked to be run only at the server, the data is
sent to the server with an indication that it should run the associated script before returning the
resulting data.

preExecute

Occurs when a request is sent to a web service via WSDL, just after the data has been marshalled
in a connectionData element underneath $datasets but before the request has been sent. A
script triggered by this event has the chance to examine and alter the data before the request is
sent. If the script is marked to be run only at the server, the data is sent to the server with an
indication that it should run the associated script before performing the rest of the processing.

preOpen

Occurs before a drop-down choice list opens, provided the choice list has its open property set to
userControl or onEntry. Typically used to populate the drop-down list dynamically.

prePrint

Occurs just prior to rendering for print.

preSave

Occurs just before the form data is written out in PDF or XDP format. Does not occur when the
Data DOM or some other subset of the form is exported to XDP. XSLT postprocessing, if enabled,
occurs after this event.

preSign

Occurs before a signature is applied. A script triggered by this event has a chance to change
content and field access rights (e.g. making fields read-only) before the signature is applied.

preSubmit

Occurs when data is sent to the host via a submit operation, just after the data has been
marshalled in a connectionData element underneath $datasets but before the data is
submitted to the host. A script triggered by this event has the chance to examine and alter the
data before it is submitted. If the script is marked to be run only at the server, the data is sent to

XFA Specification
Chapter 17, Template Specification Template Reference 666

the server with an indication that it should run the associated script before performing the rest of
the processing.

ready

Occurs when the DOM has finished loading.

validationState

Occurs whenever the validation state of the target changes. The validation state is considered to
change when it transitions from a valid to an invalid state or from an invalid to a valid state. It is
also considered to change when it is still invalid but a different validation test fails than failed
previously, for example if the target fails the format test whereas previously it failed the null test.

The execute property

An element that causes an event to invoke a WSDL-based web service.

The extras property

An enclosure around one or more sets of custom properties. The content of this element may be used by
custom applications.

The id property

A unique identifier that may be used to identify this element as a target.

The listen property

Controls whether events can propagate up from objects contained within the target.

Note that the order of propagation is not defined by this specification. Within Adobe products, events
initially fire in document order (i.e. top-down) but in the course of event processing new events may be
enqueued out of order.

This property must have one of the following values.

refOnly

Respond only to the referenced target.

refAndDescendents

Respond to the target and any objects it contains.

This property is new in XFA 3.0.

The name property

An identifier that may be used to identify this element in script expressions.

The ref property

A SOM expression identifying the object which generates the event. Defaults to the object containing this
element.

This syntax requires explanation. The ref property points to the source of the event, not the destination
of the event. (It is a "come-from", not a "go-to".) The advantage of this is that a component can be dropped
into a template and plug itself into the events it needs to monitor.

XFA Specification
Chapter 17, Template Specification Template Reference 667

Depending upon the value of the accompanying activity property, the ref property may point to a
subform, field, or exclusion group, to $host, or to a DOM such as $layout. See Events for a discussion
about what type of event each object can generate.

The script property

An automation element that contains a script.

The signData property

An element controlling an XML digital signature.

The submit property

An element that describes how to submit data to a host, using an HTTP POST operation.

The use property

At template load time, invokes another object in the same document as a prototype for this object. The
content of this property is either a SOM expression (which cannot start with '#') or a '#' character followed
by an XML ID.

The object used as a prototype does not need to be the child of proto. Any object of the appropriate
class can be used as a prototype.

If both use and usehref are non-empty usehref takes precedence.

The usehref property

At template load time, invokes an external object as a prototype for this object. The content of this
property is an URL, followed by '#', followed by either an XML ID or by som(SOM_expr) where SOM_expr
represents a SOM expression.

The XML ID or SOM expression is resolved in the context of the external document.

If both use and usehref are non-empty usehref takes precedence.

XFA Specification
Chapter 17, Template Specification Template Reference 668

The exData element
A content element that describes a single unit of data of a foreign datatype.

<exData

Properties:
 contentType="cdata"
 href="cdata"
 id="cdata"
 maxLength="-1 | integer"
 name="cdata"
 rid="cdata"
 transferEncoding="none | base64 | package"
 use="cdata"
 usehref="cdata"
>
One-of properties:
 ...text...
 ...xHTML...
 ...xml...
</exData>

The exData element is used within the following other elements:
desc exObject extras items proto value variables

Content

This element may enclose foreign data which is PCDATA that represents the actual data content of the
specified content type, encoded in the specified transfer encoding.

When no data content is provided, the data content may be interpreted as representing a null value. This
behavior is dependent upon the context of where the data content is used. For instance, a field may
interpret empty data content as null based upon the associated nullType property in the data
description.

The contentType property

The type of content in the referenced document, expressed as a MIME type. For more information, please
see [RFC2046].

The following values are allowed for documents containing text:

text/plain

Unadorned text. The XFA application may accept content that does not conform strictly to the
requirements of the MIME type.

pcdata

Support for other text types, such as text/html is implementation-defined.

When the referenced document is an image, a suitable MIME-type must be supplied for this property to
tell the application that the content is an image. However, the application is free to override the supplied
value if upon examining the image data it determines that the image data is of a different type. Which
image types are supported is implementation-defined.

XFA Specification
Chapter 17, Template Specification Template Reference 669

The href property

Specifies a reference to an external entity.

The set of supported URI schemes (e.g., http:, ftp:) is implementation-defined.

The id property

A unique identifier that may be used to identify this element as a target.

The maxLength property

Specifies the maximum (inclusive) allowable length of the content, or -1 to signify that there is no
maximum length imposed on the content. The default is -1.

The interpretation of this property is affected by the content type. This specification only defines the
interpretation of this property for content types that represent some form of textual content. In this case
this property specifies the maximum (inclusive) allowable length of the content in characters. For instance,
where the content type is text/plain this property represents the maximum (inclusive) number of
characters of plain text content. In kind, where the content type is "text/html" this property represents the
maximum (inclusive) number of characters of content excluding markup, insignificant whitespace, etc.

The name property

An identifier that may be used to identify this element in script expressions.

The rid property

This is a placeholder attribute. It reserves the name in the XFA template namespace to prevent confusion
with the xliff:rid attribute. The xliff:rid attribute uses the namespace
"urn:oasis:names:tc:xliff:document:1.1".

The transferEncoding property

The encoding of binary content in the referenced document.

none

The referenced document is not encoded. If the referenced document is specified via a URI then it
will be transferred as a byte stream. If the referenced document is inline it must conform to the
restrictions on PCDATA.

base64

The binary content is encoded in accordance with the base64 transfer encoding s specified in
[RFC2045].

The use property

At template load time, invokes another object in the same document as a prototype for this object. The
content of this property is either a SOM expression (which cannot start with '#') or a '#' character followed
by an XML ID.

The object used as a prototype does not need to be the child of proto. Any object of the appropriate
class can be used as a prototype.

If both use and usehref are non-empty usehref takes precedence.

XFA Specification
Chapter 17, Template Specification Template Reference 670

The usehref property

At template load time, invokes an external object as a prototype for this object. The content of this
property is an URL, followed by '#', followed by either an XML ID or by som(SOM_expr) where SOM_expr
represents a SOM expression.

The XML ID or SOM expression is resolved in the context of the external document.

If both use and usehref are non-empty usehref takes precedence.

XFA Specification
Chapter 17, Template Specification Template Reference 671

The exObject element
An element that describes a single program or implementation-dependent foreign object.

<exObject

Properties:
 archive="cdata"
 classId="cdata"
 codeBase="cdata"
 codeType="cdata"
 id="cdata"
 name="cdata"
 use="cdata"
 usehref="cdata"
>

 <extras/> [0..1]
Children:
 <boolean/> [0..n]
 <date/> [0..n]
 <dateTime/> [0..n]
 <decimal/> [0..n]
 <exData/> [0..n]
 <exObject/> [0..n]
 <float/> [0..n]
 <image/> [0..n]
 <integer/> [0..n]
 <text/> [0..n]
 <time/> [0..n]
</exObject>

The exObject element is used within the following other elements:
area exObject proto subform

The archive property

A URI specifying the location of an archive file that may contain program code related to the exObject.

The boolean property

A content element describing single unit of data content representing a Boolean logical value.

The classId property

A URI specifying a name or location of the program code represented by the exObject.

The codeBase property

A URI specifying a location that may be used to assist the resolution of a relative classID.

The codeType property

This property specifies an identifier corresponding to a MIME type that identifies the program code
represented by the object, such as "application/java". For more information, please see [RFC2046] and
[MIMETYPES].

XFA Specification
Chapter 17, Template Specification Template Reference 672

The date property

A content element that describes a single unit of data content representing a date.

The dateTime property

A content element that describes a single unit of data content representing a date and time value.

The decimal property

A content type element that describes a single unit of data content representing a number with a fixed
number of digits after the decimal.

The exData property

A content element that describes a single unit of data of a foreign datatype.

The exObject property

An element that describes a single program or implementation-dependent foreign object.

The extras property

An enclosure around one or more sets of custom properties. The content of this element may be used by
custom applications.

The float property

A content element that describes a single unit of data content representing a floating point value.

The id property

A unique identifier that may be used to identify this element as a target.

The image property

A content element that describes a single image.

The integer property

A content element that describes a single unit of data content representing an integer value.

The name property

An identifier that may be used to identify this element in script expressions.

The text property

A content element that describes a single unit of data content representing a plain textual value.

The time property

A content element that describes a single unit of data content representing a time value.

The use property

At template load time, invokes another object in the same document as a prototype for this object. The
content of this property is either a SOM expression (which cannot start with '#') or a '#' character followed
by an XML ID.

XFA Specification
Chapter 17, Template Specification Template Reference 673

The object used as a prototype does not need to be the child of proto. Any object of the appropriate
class can be used as a prototype.

If both use and usehref are non-empty usehref takes precedence.

The usehref property

At template load time, invokes an external object as a prototype for this object. The content of this
property is an URL, followed by '#', followed by either an XML ID or by som(SOM_expr) where SOM_expr
represents a SOM expression.

The XML ID or SOM expression is resolved in the context of the external document.

If both use and usehref are non-empty usehref takes precedence.

XFA Specification
Chapter 17, Template Specification Template Reference 674

The exclGroup element
A container element that describes a mutual exclusion relationship between a set of containers.

<exclGroup

Properties:
 access="open | nonInteractive | protected | readOnly"
 accessKey="cdata"
 anchorType="topLeft | bottomCenter | bottomLeft |
 bottomRight | middleCenter | middleLeft |
 middleRight | topCenter | topRight"
 colSpan="1 | integer"
 h="0in | measurement"
 id="cdata"
 layout="position | lr-tb | rl-tb | row | table | tb"
 maxH="0in | measurement"
 maxW="0in | measurement"
 minH="0in | measurement"
 minW="0in | measurement"
 name="cdata"
 presence="visible | hidden | inactive | invisible"
 relevant="cdata"
 use="cdata"
 usehref="cdata"
 w="0in | measurement"
 x="0in | measurement"
 y="0in | measurement"
>

 <assist/> [0..1]
 <bind/> [0..1]
 <border/> [0..1]
 <calculate/> [0..1]
 <caption/> [0..1]
 <desc/> [0..1]
 <extras/> [0..1]
 <margin/> [0..1]
 <para/> [0..1]
 <traversal/> [0..1]
 <validate/> [0..1]
Children:
 <connect/> [0..n]
 <event/> [0..n]
 <field/> [0..n]
 <setProperty/> [0..n]
</exclGroup>

The exclGroup element is used within the following other elements:
area pageArea proto subform

An exclGroup is used to cause a set of radio buttons or check boxes to be mutually exclusive. This means
that when the user activates one member of the set the other members are automatically deactivated.
For example, if the set consists of radio buttons, clicking one button causes the other buttons to be
released.

XFA Specification
Chapter 17, Template Specification Template Reference 675

Each member of the exclusion group has an "on" value and "off" value associated with it. When the
member is activated it assumes the "on" value and when it is deactivated it assumes the "off" value. The
"on" value for each member of a particular exclusion group must be unique.

Selecting one of the members of the exclusion group in the user interface causes each member's value to
be set to its "on" or "off" value as appropriate. Similarly assigning a value to a member of the exclusion
group, if the value assigned is the "on" value, causes the other members to be deactivated.

Alternatively a value may be assigned to the exclusion group itself. In this case each member is activated
if and only if the value matches the "on" value for that member.

The access property

Controls user access to the contents.

nonInteractive

Allow the content to be loaded from the data document, but not updated interactively. The
effect is to behave (for this container) as though rendering to paper regardless of whether or not
the context is interactive. Calculations are performed as usual and the content can be modified by
scripts or web service invocations.

open

Allow update without restriction. The interactive user may modify the container's content, and tab
or otherwise navigate into it. The container will produce events.

protected

The processing application must prevent the user from making any direct changes to the
container's content. Indirect changes (e.g., via calculations) may occur. The container will not
participate in the tabbing sequence, though an application may allow the selection of text for
clipboard copying. A protected container will not generate any events.

readOnly

The processing application must not allow the user to make direct changes to the container's
content. Indirect changes (e.g., via calculations) may occur. The container shall participate in the
tabbing sequence and must allow the user to view its content, possibly scrolling through that
content if required. The user must be able to select the container's content for clipboard copying.
The container shall also generate a subset of events (those not associated with the user making
direct changes to the content).

Prior to XFA 2.8 this property existed only on fields and exclusion groups. Since XFA 2.8 this property has
extended to subforms. When used on a subform the property supplies default behavior to the objects
within that subform. However any such object can override the inherited default by asserting its own
more-restricted access. In this evaluation the order of precedence, from highest to lowest, is
nonInteractive, protected, readOnly, and finally open.

The accessKey property

An accelerator key used by an interactive application to move the input focus to a particular field element.
The value of this attribute is a single character. When the user synchronously presses the platform-specific
modifier key and the single character, the XFA processing application sets the focus to this field. On
Windows systems, the modifier key is the Alt key; and on Mac systems, it is the Option key.

For example: The form author sets the accessKey of a field to "f". If a Windows user holds down Alt key
while pressing "f", the focus shifts to that field.

XFA Specification
Chapter 17, Template Specification Template Reference 676

When designing forms that include accelerator keys, form designers should instruct the user on the
availability of the accelerator keys.

The anchorType property

Location of the container's anchor point when placed with positioned layout strategy.

topLeft

Top left corner of the nominal extent.

topCenter

Center of the top edge of the nominal extent.

topRight

Top right corner of the nominal extent.

middleLeft

Middle of the left edge of the nominal extent.

middleCenter

Middle of the nominal extent.

middleRight

Middle of the right edge of the nominal extent.

bottomLeft

Bottom left corner of the nominal extent.

bottomCenter

Center of the bottom edge of the nominal extent.

bottomRight

Bottom right corner of the nominal extent.

The assist property

An element that supplies additional information about a container for users of interactive applications.

The bind property

An element that controls the behavior during merge operations of its enclosing element.

The border property

A box model element that describes the border surrounding an object.

The calculate property

An automation element that controls the calculation of its container's value.

The caption property

A box model element that describes a descriptive label associated with an object.

XFA Specification
Chapter 17, Template Specification Template Reference 677

The colSpan property

Number of columns spanned by this object, when used inside a subform with a layout type of row.
Defaults to 1.

The connect property

An element that describes the relationship between its containing object and a connection to a web
service, schema, or data description.

Connections are defined outside the template in a separate packet with its own schema. See the XFA
Connection Set Specification for more information.

The desc property

An element to hold human-readable metadata.

The event property

An automation element that causes a script to be executed or data to be submitted whenever a particular
event occurs.

The extras property

An enclosure around one or more sets of custom properties. The content of this element may be used by
custom applications.

The field property

A container element that describes a single interactive container capable of capturing and presenting data
content.

The h property

Height for layout purposes. A measurement value for h overrides any growth range allowed by the minH
and maxH attributes. The absolute omission of this attribute or a value specified as an empty string
indicates that the minH and maxH must be respected.

This attribute has no default. Setting this attribute to "-1" is an error.

The id property

A unique identifier that may be used to identify this element as a target.

The layout property

Layout strategy to be used within this element.

position

The content of the element is positioned according to the to the location information expressed
on the content elements.

lr-tb

The content of the element is flowed in a direction proceeding from left to right and top to
bottom.

XFA Specification
Chapter 17, Template Specification Template Reference 678

rl-tb

The content of the element is flowed in a direction proceeding from right to left and top to
bottom.

row

This is an inner element of a table, representing one or more rows. The objects contained in this
element are cells of the table and their height and width attributes, if any, are ignored. The cells
are laid out from right to left and each one is adjusted to the height of the row and the width of
one or more contiguous columns.

table

This is the outer element of a table. Each of its child subforms or exclusion groups must have its
layout property set to row. The rows of the table are laid out from top to bottom.

tb

The content of the element is flowed in a direction proceeding from top to bottom.

The margin property

A box model element that specifies one or more insets for an object.

The maxH property

Measurement specifying the maximum height for layout purposes. This attribute is relevant only if the
enclosing container element is growable and has an h attribute whose value is null. If an h attribute is
supplied, the container is not vertically growable and this attribute is ignored.

If this attribute is not supplied or has a value of zero, there is no limit. The default is zero.

The maxW property

Measurement specifying the maximum width for layout purposes. This attribute is relevant only if the
enclosing container element is growable and has a w attribute whose value is null. If a w attribute is
supplied, the container is not horizontally growable and this attribute is ignored.

If this attribute is not supplied or has a value of zero, there is no limit. The default is zero.

The minH property

Measurement specifying the minimum height for layout purposes. This attribute is relevant only if the
enclosing container element is growable and has an h attribute whose value is null. If an h attribute is
supplied, the container is not vertically growable and this attribute is ignored.

If this attribute is not supplied or has a value of zero, the minimum width is zero. Note that a minimum
width of zero may have potentially undesireable side-effects such as making the field impossible to select
via the user interface.

The minW property

Measurement specifying the minimum width for layout purposes. This attribute is relevant only if the
enclosing container element is growable and has a w attribute whose value is null. If a w attribute is
supplied, the container is not horzontally growable and this attribute is ignored.

XFA Specification
Chapter 17, Template Specification Template Reference 679

If this attribute is not supplied or has a value of zero, the minimum height is zero. Note that a minimum
height of zero may have potentially undesireable side-effects such as making the field impossible to
select via the user interface.

The name property

An identifier that may be used to identify this element in script expressions.

The para property

A formatting element that specifies default paragraph and alignment properties to be applied to the
content of an enclosing container.

The presence property

Controls the participation of the associated object in different phases of processing. If the object is a
container the contents of the container inherit whatever restrictions this control applies.

visible

Participate in interaction, layout, and rendering. The object is visible and takes up space. If it is
capable it takes part in calculations, validations, and events.

hidden

Participate in interaction but not layout or rendering. The object is not displayed and does not
take up space. However, if it is capable it does participate in calculations, validations, and events.

inactive

Do not participate in interaction, layout, or rendering. The object is not displayed, does not take
up space, and does not take part in calculations, validations, or event processing. (New in XFA 3.0.)

invisible

Participate in interaction and layout but not rendering. The associated object takes up space but is
invisible. If it is capable it takes part in calculations, validations, and events.

This control does not affect the ability of the associated object to hold data or to take part in data binding.

The relevant property

Specifies the views for which the enclosing object is relevant. The views themselves are specified in the
config object.

Views are supplied as a space-separated list of viewnames: relevant="[+|-]viewname
[[+|-]viewname [...]]". A token of the form viewname or +viewname indicates the enclosing
element should be included in that particular view. A token of the form -viewname indicates the element
should be excluded from that particular view.

If a container is excluded, it is not considered in the data binding process.

See also Concealing Containers Depending on View and Config Specification.

The setProperty property

An element that causes a property of the container to be copied from a value in the XFA Data DOM or
from data returned by a web service.

XFA Specification
Chapter 17, Template Specification Template Reference 680

The traversal property

An element that links its container to other objects in sequence.

The use property

At template load time, invokes another object in the same document as a prototype for this object. The
content of this property is either a SOM expression (which cannot start with '#') or a '#' character followed
by an XML ID.

The object used as a prototype does not need to be the child of proto. Any object of the appropriate
class can be used as a prototype.

If both use and usehref are non-empty usehref takes precedence.

The usehref property

At template load time, invokes an external object as a prototype for this object. The content of this
property is an URL, followed by '#', followed by either an XML ID or by som(SOM_expr) where SOM_expr
represents a SOM expression.

The XML ID or SOM expression is resolved in the context of the external document.

If both use and usehref are non-empty usehref takes precedence.

The validate property

A automation element that controls validation of user-supplied data.

The w property

Width for layout purposes. A measurement value for w overrides any growth range allowed by the minW
and maxW attributes. The absolute omission of this attribute or a value specified as an empty string
indicates that the minW and maxW must be respected.

This attribute has no default. Setting this attribute to "-1" is an error.

The x property

X coordinate of the container's anchor point relative to the top-left corner of the parent container's
nominal content region when placed with positioned layout. Defaults to 0.

The y property

Y coordinate of the container's anchor point relative to the top-left corner of the parent container's
nominal content region when placed with positioned layout. Defaults to 0.

XFA Specification
Chapter 17, Template Specification Template Reference 681

The execute element
An element that causes an event to invoke a WSDL-based web service.

<execute

Properties:
 connection="cdata"
 executeType="import | remerge"
 id="cdata"
 runAt="client | both | server"
 use="cdata"
 usehref="cdata"
>
</execute>

The execute element is used within the following other elements:
event proto

Events can cause transactions to occur with web services. This element associates its parent event with a
particular connection to a web service as defined in the connectionSet packet of the XDP. The connection
definition supplies the particulars of the transaction such as the URIs to be used and the operation to
request. The fields and exclusion groups which exchange data with the web service are nominated by
their connect properties.

The event can be processed by the client, by the server, or both. When an event is processed by both, the
client does its part of the processing first, then sends the resulting data to the server for completion.

The connection property

The name of the associated connection element in the connection set.

Connections are defined outside the template in a separate packet with its own schema. See Connection
Set Grammar for more information.

This property identifies the connection to the server. It is an error if this property is not supplied or is
empty.

If the value of the runAt property is client and the XFA processor is acting as server this property is
ignored. Likewise if the property is server and the XFA processor is acting as client. Otherwise it is an
error for there to not be any connection with the given name.

Not all connections point to a web service. Some point to a data description or a schema. The connection
named by this property must point to a web service.

The executeType property

Specifies how the XFA processor should process imported data, assuming the following conditions exist:
(1) the name of the connection attribute matches the name of the currently executing connection; and
(2) the usage attribute has a value of importOnly or exportAndImport.

import

The XFA processor updates the values of containers that are already bound to the output of the
connection.

XFA Specification
Chapter 17, Template Specification Template Reference 682

remerge

The XFA processor clears the Form DOM and then rebuilds it, using a merge (data binding)
operation. When merging data with dynamic forms, the XFA processor may dynamically create
subforms to accommodate data.

The id property

A unique identifier that may be used to identify this element as a target.

The runAt property

Specifies whence the script is to be invoked. The value must be one of the following:

client

The service is invoked only by the client.

server

The service is invoked only by the server.

both

The service is invoked by both client and server.

The use property

At template load time, invokes another object in the same document as a prototype for this object. The
content of this property is either a SOM expression (which cannot start with '#') or a '#' character followed
by an XML ID.

The object used as a prototype does not need to be the child of proto. Any object of the appropriate
class can be used as a prototype.

If both use and usehref are non-empty usehref takes precedence.

The usehref property

At template load time, invokes an external object as a prototype for this object. The content of this
property is an URL, followed by '#', followed by either an XML ID or by som(SOM_expr) where SOM_expr
represents a SOM expression.

The XML ID or SOM expression is resolved in the context of the external document.

If both use and usehref are non-empty usehref takes precedence.

XFA Specification
Chapter 17, Template Specification Template Reference 683

The extras element
An enclosure around one or more sets of custom properties. The content of this element may be used by
custom applications.

<extras

Properties:
 id="cdata"
 name="cdata"
 use="cdata"
 usehref="cdata"
>
Children:
 <boolean/> [0..n]
 <date/> [0..n]
 <dateTime/> [0..n]
 <decimal/> [0..n]
 <exData/> [0..n]
 <extras/> [0..n]
 <float/> [0..n]
 <image/> [0..n]
 <integer/> [0..n]
 <text/> [0..n]
 <time/> [0..n]
</extras>

The extras element is used within the following other elements:
area barcode border break button calculate caption checkButton choiceList color contentArea corner
dateTimeEdit defaultUi draw edge event exObject exclGroup extras field fill font format imageEdit keep
linear manifest margin numericEdit occur pageArea pageSet passwordEdit pattern proto radial signature
solid stipple subform subformSet template textEdit traversal traverse ui validate

The boolean property

A content element describing single unit of data content representing a Boolean logical value.

The date property

A content element that describes a single unit of data content representing a date.

The dateTime property

A content element that describes a single unit of data content representing a date and time value.

The decimal property

A content type element that describes a single unit of data content representing a number with a fixed
number of digits after the decimal.

The exData property

A content element that describes a single unit of data of a foreign datatype.

XFA Specification
Chapter 17, Template Specification Template Reference 684

The extras property

An enclosure around one or more sets of custom properties. The content of this element may be used by
custom applications.

The float property

A content element that describes a single unit of data content representing a floating point value.

The id property

A unique identifier that may be used to identify this element as a target.

The image property

A content element that describes a single image.

The integer property

A content element that describes a single unit of data content representing an integer value.

The name property

An identifier that may be used to identify this element in script expressions.

The text property

A content element that describes a single unit of data content representing a plain textual value.

The time property

A content element that describes a single unit of data content representing a time value.

The use property

At template load time, invokes another object in the same document as a prototype for this object. The
content of this property is either a SOM expression (which cannot start with '#') or a '#' character followed
by an XML ID.

The object used as a prototype does not need to be the child of proto. Any object of the appropriate
class can be used as a prototype.

If both use and usehref are non-empty usehref takes precedence.

The usehref property

At template load time, invokes an external object as a prototype for this object. The content of this
property is an URL, followed by '#', followed by either an XML ID or by som(SOM_expr) where SOM_expr
represents a SOM expression.

The XML ID or SOM expression is resolved in the context of the external document.

If both use and usehref are non-empty usehref takes precedence.

XFA Specification
Chapter 17, Template Specification Template Reference 685

The field element
A container element that describes a single interactive container capable of capturing and presenting data
content.

<field

Properties:
 access="open | nonInteractive | protected | readOnly"
 accessKey="cdata"
 anchorType="topLeft | bottomCenter | bottomLeft |
 bottomRight | middleCenter | middleLeft |
 middleRight | topCenter | topRight"
 colSpan="1 | integer"
 h="0in | measurement"
 id="cdata"
 locale="cdata"
 maxH="0in | measurement"
 maxW="0in | measurement"
 minH="0in | measurement"
 minW="0in | measurement"
 name="cdata"
 presence="visible | hidden | inactive | invisible"
 relevant="cdata"
 rotate="0 | angle"
 use="cdata"
 usehref="cdata"
 w="0in | measurement"
 x="0in | measurement"
 y="0in | measurement"
>

 <assist/> [0..1]
 <bind/> [0..1]
 <border/> [0..1]
 <calculate/> [0..1]
 <caption/> [0..1]
 <desc/> [0..1]
 <extras/> [0..1]
 [0..1]
 <format/> [0..1]
 <items/> [0..2]
 <keep/> [0..1]
 <margin/> [0..1]
 <para/> [0..1]
 <traversal/> [0..1]
 <ui/> [0..1]
 <validate/> [0..1]
 <value/> [0..1]
Children:
 <bindItems/> [0..n]
 <connect/> [0..n]
 <event/> [0..n]
 <setProperty/> [0..n]
</field>

XFA Specification
Chapter 17, Template Specification Template Reference 686

The field element is used within the following other elements:
area exclGroup pageArea proto subform

Note that although all field elements have minH, maxH, minW and maxH properties, not all fields are
growable. Fields that are not growable ignore these properties. Field elements with the following content
or user interface types cannot grow:

● image

● choice list

The access property

Controls user access to the contents.

nonInteractive

Allow the content to be loaded from the data document, but not updated interactively. The
effect is to behave (for this container) as though rendering to paper regardless of whether or not
the context is interactive. Calculations are performed as usual and the content can be modified by
scripts or web service invocations.

open

Allow update without restriction. The interactive user may modify the container's content, and tab
or otherwise navigate into it. The container will produce events.

protected

The processing application must prevent the user from making any direct changes to the
container's content. Indirect changes (e.g., via calculations) may occur. The container will not
participate in the tabbing sequence, though an application may allow the selection of text for
clipboard copying. A protected container will not generate any events.

readOnly

The processing application must not allow the user to make direct changes to the container's
content. Indirect changes (e.g., via calculations) may occur. The container shall participate in the
tabbing sequence and must allow the user to view its content, possibly scrolling through that
content if required. The user must be able to select the container's content for clipboard copying.
The container shall also generate a subset of events (those not associated with the user making
direct changes to the content).

Prior to XFA 2.8 this property existed only on fields and exclusion groups. Since XFA 2.8 this property has
extended to subforms. When used on a subform the property supplies default behavior to the objects
within that subform. However any such object can override the inherited default by asserting its own
more-restricted access. In this evaluation the order of precedence, from highest to lowest, is
nonInteractive, protected, readOnly, and finally open.

The accessKey property

An accelerator key used by an interactive application to move the input focus to a particular field element.
The value of this attribute is a single character. When the user synchronously presses the platform-specific
modifier key and the single character, the XFA processing application sets the focus to this field. On
Windows systems, the modifier key is the Alt key; and on Mac systems, it is the Option key.

For example: The form author sets the accessKey of a field to "f". If a Windows user holds down Alt key
while pressing "f", the focus shifts to that field.

XFA Specification
Chapter 17, Template Specification Template Reference 687

When designing forms that include accelerator keys, form designers should instruct the user on the
availability of the accelerator keys.

The anchorType property

Location of the container's anchor point when placed with positioned layout strategy.

topLeft

Top left corner of the nominal extent.

topCenter

Center of the top edge of the nominal extent.

topRight

Top right corner of the nominal extent.

middleLeft

Middle of the left edge of the nominal extent.

middleCenter

Middle of the nominal extent.

middleRight

Middle of the right edge of the nominal extent.

bottomLeft

Bottom left corner of the nominal extent.

bottomCenter

Center of the bottom edge of the nominal extent.

bottomRight

Bottom right corner of the nominal extent.

The assist property

An element that supplies additional information about a container for users of interactive applications.

The bind property

An element that controls the behavior during merge operations of its enclosing element.

The bindItems property

An element that extracts data into an item list.

The border property

A box model element that describes the border surrounding an object.

The calculate property

An automation element that controls the calculation of its container's value.

XFA Specification
Chapter 17, Template Specification Template Reference 688

The caption property

A box model element that describes a descriptive label associated with an object.

The colSpan property

Number of columns spanned by this object, when used inside a subform with a layout type of row.
Defaults to 1.

The connect property

An element that describes the relationship between its containing object and a connection to a web
service, schema, or data description.

Connections are defined outside the template in a separate packet with its own schema. See the XFA
Connection Set Specification for more information.

The desc property

An element to hold human-readable metadata.

The event property

An automation element that causes a script to be executed or data to be submitted whenever a particular
event occurs.

The extras property

An enclosure around one or more sets of custom properties. The content of this element may be used by
custom applications.

The font property

A formatting element that describes a font.

The format property

A rendering element that encloses output formatting information such as the picture clause.

The h property

Height for layout purposes. A measurement value for h overrides any growth range allowed by the minH
and maxH attributes. The absolute omission of this attribute or a value specified as an empty string
indicates that the minH and maxH must be respected.

This attribute has no default. Setting this attribute to "-1" is an error.

The id property

A unique identifier that may be used to identify this element as a target.

The items property

An element that supplies a set of values for a choice list or a check button.

The keep property

An element that describes the constraints on keeping content together within a page or content area.

XFA Specification
Chapter 17, Template Specification Template Reference 689

The locale property

A designator that influences the locale used to format the localizable content of this element. Such
localizable content includes currency and time/date. Locale affects the representation of data formatted,
validated, or parsed by picture clauses. Locale is also considered by certain FormCalc functions.

This designator also influences the default direction of text flow within this element. The text layout
engine may override this within portions or all of such text as per the rules in the Unicode Annex 9 [UAX-9]
reference.

The value of this property must be one of the following:

ambient

Causes the ambient locale of the XFA application to be used.

localeName

A valid locale name that conforms to the syntax: language[_country]. Examples of valid locales
are zh for Chinese and en_CA for English specific for Canada. For a complete list of valid locale
values, refer to the IETF RFC 1766 [RFC1766] and ISO 639 [ISO-639-1] / ISO 3166 [ISO-3166-1]
specifications. Note that this is the same set of locale names used by the xml:lang attribute
defined in [XML1.0].

When this property is absent or empty the default behavior is to inherit the parent object's locale. If the
outermost subform does not specify a locale it uses the ambient locale from the operating system. If the
operating system does not supply a locale it falls back onto en_US.

The margin property

A box model element that specifies one or more insets for an object.

The maxH property

Measurement specifying the maximum height for layout purposes. This attribute is relevant only if the
enclosing container element is growable and has an h attribute whose value is null. If an h attribute is
supplied, the container is not vertically growable and this attribute is ignored.

If this attribute is not supplied or has a value of zero, there is no limit. The default is zero.

The maxW property

Measurement specifying the maximum width for layout purposes. This attribute is relevant only if the
enclosing container element is growable and has a w attribute whose value is null. If a w attribute is
supplied, the container is not horizontally growable and this attribute is ignored.

If this attribute is not supplied or has a value of zero, there is no limit. The default is zero.

The minH property

Measurement specifying the minimum height for layout purposes. This attribute is relevant only if the
enclosing container element is growable and has an h attribute whose value is null. If an h attribute is
supplied, the container is not vertically growable and this attribute is ignored.

If this attribute is not supplied or has a value of zero, the minimum width is zero. Note that a minimum
width of zero may have potentially undesireable side-effects such as making the field impossible to select
via the user interface.

XFA Specification
Chapter 17, Template Specification Template Reference 690

The minW property

Measurement specifying the minimum width for layout purposes. This attribute is relevant only if the
enclosing container element is growable and has a w attribute whose value is null. If a w attribute is
supplied, the container is not horzontally growable and this attribute is ignored.

If this attribute is not supplied or has a value of zero, the minimum height is zero. Note that a minimum
height of zero may have potentially undesireable side-effects such as making the field impossible to
select via the user interface.

The name property

An identifier that may be used to identify this element in script expressions.

The para property

A formatting element that specifies default paragraph and alignment properties to be applied to the
content of an enclosing container.

The presence property

Controls the participation of the associated object in different phases of processing. If the object is a
container the contents of the container inherit whatever restrictions this control applies.

visible

Participate in interaction, layout, and rendering. The object is visible and takes up space. If it is
capable it takes part in calculations, validations, and events.

hidden

Participate in interaction but not layout or rendering. The object is not displayed and does not
take up space. However, if it is capable it does participate in calculations, validations, and events.

inactive

Do not participate in interaction, layout, or rendering. The object is not displayed, does not take
up space, and does not take part in calculations, validations, or event processing. (New in XFA 3.0.)

invisible

Participate in interaction and layout but not rendering. The associated object takes up space but is
invisible. If it is capable it takes part in calculations, validations, and events.

This control does not affect the ability of the associated object to hold data or to take part in data binding.

The relevant property

Specifies the views for which the enclosing object is relevant. The views themselves are specified in the
config object.

Views are supplied as a space-separated list of viewnames: relevant="[+|-]viewname
[[+|-]viewname [...]]". A token of the form viewname or +viewname indicates the enclosing
element should be included in that particular view. A token of the form -viewname indicates the element
should be excluded from that particular view.

If a container is excluded, it is not considered in the data binding process.

See also Concealing Containers Depending on View and Config Specification.

XFA Specification
Chapter 17, Template Specification Template Reference 691

The rotate property

Causes the object to be rotated about its anchor point by the specified angle.

The angle is measured in degrees counter-clockwise with respect to the default position. The value must
be a positive or negative multiple of 90. The default is 0. Positive values cause the object to rotate
counter-clockwise, and negative values, clockwise.

Note that the direction of rotation is the same as for positive angles in PostScript, PDF, and PCL but
opposite to that in SVG.

The setProperty property

An element that causes a property of the container to be copied from a value in the XFA Data DOM or
from data returned by a web service.

The traversal property

An element that links its container to other objects in sequence.

The ui property

A user-interface element that encloses the actual user interface widget element.

The use property

At template load time, invokes another object in the same document as a prototype for this object. The
content of this property is either a SOM expression (which cannot start with '#') or a '#' character followed
by an XML ID.

The object used as a prototype does not need to be the child of proto. Any object of the appropriate
class can be used as a prototype.

If both use and usehref are non-empty usehref takes precedence.

The usehref property

At template load time, invokes an external object as a prototype for this object. The content of this
property is an URL, followed by '#', followed by either an XML ID or by som(SOM_expr) where SOM_expr
represents a SOM expression.

The XML ID or SOM expression is resolved in the context of the external document.

If both use and usehref are non-empty usehref takes precedence.

The validate property

A automation element that controls validation of user-supplied data.

The value property

A content element that encloses a single unit of data content.

The w property

Width for layout purposes. A measurement value for w overrides any growth range allowed by the minW
and maxW attributes. The absolute omission of this attribute or a value specified as an empty string
indicates that the minW and maxW must be respected.

XFA Specification
Chapter 17, Template Specification Template Reference 692

This attribute has no default. Setting this attribute to "-1" is an error.

The x property

X coordinate of the container's anchor point relative to the top-left corner of the parent container's
nominal content region when placed with positioned layout. Defaults to 0.

The y property

Y coordinate of the container's anchor point relative to the top-left corner of the parent container's
nominal content region when placed with positioned layout. Defaults to 0.

XFA Specification
Chapter 17, Template Specification Template Reference 693

The fill element
A formatting element that applies a color and optional rendered designs to the region enclosed by an
object.

<fill

Properties:
 id="cdata"
 presence="visible | hidden | inactive | invisible"
 use="cdata"
 usehref="cdata"
>

 <color/> [0..1]
 <extras/> [0..1]
One-of properties:
 <linear/> [0..1]
 <pattern/> [0..1]
 <radial/> [0..1]
 <solid/> [0..1]
 <stipple/> [0..1]
</fill>

The fill element is used within the following other elements:
arc border font proto rectangle

In the absence of a fill element the object is drawn without any fill, except for text which is drawn with a
solid black fill.

The fill element has a child color element that specifies the background orstarting color. If a fill element is
provided but it has no child color element the color defaults to white.

The fill element also has a child fill type element (linear, pattern, radial, solid, stipple) that specifies the type
of fill operation to perform. This uses the color established with the fill's color element, possibly along with
its own color, to achieve the desired effect. If a fill element is provided but it has no child type element the
type defaults to solid.

The color property

An element that describes a color.

The extras property

An enclosure around one or more sets of custom properties. The content of this element may be used by
custom applications.

The id property

A unique identifier that may be used to identify this element as a target.

The linear property

A fill type element that describes a linear gradient fill.

XFA Specification
Chapter 17, Template Specification Template Reference 694

The pattern property

A fill type element that describes a hatching pattern.

The presence property

Visibility control.

This property is ignored when the fill element is the child of a font element. In such cases the effective
value is always visible.

visible

Make it visible.

invisible

Make it transparent. Although invisible it still takes up space.

hidden

Hide it. It is not displayed and does not take up space.

The radial property

A fill type element that describes a radial gradient fill.

The solid property

A fill type element that describes a solid fill.

The stipple property

A fill type element that describes a stippling effect.

The use property

At template load time, invokes another object in the same document as a prototype for this object. The
content of this property is either a SOM expression (which cannot start with '#') or a '#' character followed
by an XML ID.

The object used as a prototype does not need to be the child of proto. Any object of the appropriate
class can be used as a prototype.

If both use and usehref are non-empty usehref takes precedence.

The usehref property

At template load time, invokes an external object as a prototype for this object. The content of this
property is an URL, followed by '#', followed by either an XML ID or by som(SOM_expr) where SOM_expr
represents a SOM expression.

The XML ID or SOM expression is resolved in the context of the external document.

If both use and usehref are non-empty usehref takes precedence.

XFA Specification
Chapter 17, Template Specification Template Reference 695

The filter element
An element that contains the criteria for filtering signing certificates used to generate XML digital
signatures.

<filter

Properties:
 addRevocationInfo="cdata"
 id="cdata"
 name="cdata"
 use="cdata"
 usehref="cdata"
 version="cdata"
>

 <appearanceFilter/> [0..1]
 <certificates/> [0..1]
 <digestMethods/> [0..1]
 <encodings/> [0..1]
 <handler/> [0..1]
 <lockDocument/> [0..1]
 <mdp/> [0..1]
 <reasons/> [0..1]
 <timeStamp/> [0..1]
</filter>

The filter element is used within the following other elements:
proto signData signature

The mdp, reasons and timestamp children are only meaningful if the parent of this element is a
signature element. If they are grandchild of signData they are ignored.

The addRevocationInfo property

Controls whether certificate revocation information is included in the signature manifest.

Note that despite the appearance of the syntax summary above there is no mandated default value for this
attribute. If the attribute is omitted or empty the XFA application may default to whatever value it
considers appropriate.

required

Revocation information is required.

optional

Revocation information is optional.

none

Revocation information is prohibited.

The appearanceFilter property

An element that controls whether the document can be signed with a choice of named signature
appearances.

XFA Specification
Chapter 17, Template Specification Template Reference 696

The certificates property

An element that holds a collection of certificate filters used to identify the signer.

The digestMethods property

An element to hold a list of names of acceptable digest methods for a signature.

The encodings property

An element holding a list of names of acceptable recipes for signature encoding.

The handler property

An element controlling what signature handler is used for a data-signing operation for an XML digital
signature.

The id property

A unique identifier that may be used to identify this element as a target.

The lockDocument property

An element that controls whether the document locks when it is signed.

The mdp property

An element that controls an MDP+ signature.

The name property

An identifier that may be used to identify this element in script expressions.

The reasons property

An element containing a choice of reason strings for including with an XML Digital Signature.

The timeStamp property

An element that controls the time-stamping of a signature.

The use property

At template load time, invokes another object in the same document as a prototype for this object. The
content of this property is either a SOM expression (which cannot start with '#') or a '#' character followed
by an XML ID.

The object used as a prototype does not need to be the child of proto. Any object of the appropriate
class can be used as a prototype.

If both use and usehref are non-empty usehref takes precedence.

The usehref property

At template load time, invokes an external object as a prototype for this object. The content of this
property is an URL, followed by '#', followed by either an XML ID or by som(SOM_expr) where SOM_expr
represents a SOM expression.

The XML ID or SOM expression is resolved in the context of the external document.

XFA Specification
Chapter 17, Template Specification Template Reference 697

If both use and usehref are non-empty usehref takes precedence.

The version property

Specifies compatibility with a particular revision of the PDF signature verification algorithm. See the PDF
manual for the history of changes to this algorithm.

There is no default for this value. It must always be supplied.

1

Compatible with Acrobat 6 or later.

2

Compatible with Acrobat 8 or later.

3

Compatible with Acrobat 9 or later.

4

Compatible with Adobe products that were not publicly released.

5

Compatible with Acrobat 9.1 or later.

Additional values will be defined as needed.

XFA Specification
Chapter 17, Template Specification Template Reference 698

The float element
A content element that describes a single unit of data content representing a floating point value.

<float

Properties:
 id="cdata"
 name="cdata"
 use="cdata"
 usehref="cdata"
>
 ...pcdata...
</float>

The float element is used within the following other elements:
desc exObject extras items proto value variables

Note that the decimal element and the float element differ only in the user interface. They are
interchangeable in every other way.

Content

This element may enclose float-data which is an optional leading minus sign (Unicode character U+002D),
followed by a sequence of decimal digits (Unicode characters U+0030 - U+0039) separated by a single
period (Unicode character U+002E) as a decimal indicator.

To maximize the potential for data interchange, the decimal point is defined as '.' (Unicode character
U+002E). No thousands/grouping separator, or other formatting characters, are permitted in the data.
However, the template may employ a picture clause to generate a more suitable human-readable
presentation of the value.

When no content is present, the content shall be interpreted as representing a null value, irrespective of
the value of the associtated nullType property in the data description.

The id property

A unique identifier that may be used to identify this element as a target.

The name property

An identifier that may be used to identify this element in script expressions.

The use property

At template load time, invokes another object in the same document as a prototype for this object. The
content of this property is either a SOM expression (which cannot start with '#') or a '#' character followed
by an XML ID.

The object used as a prototype does not need to be the child of proto. Any object of the appropriate
class can be used as a prototype.

If both use and usehref are non-empty usehref takes precedence.

XFA Specification
Chapter 17, Template Specification Template Reference 699

The usehref property

At template load time, invokes an external object as a prototype for this object. The content of this
property is an URL, followed by '#', followed by either an XML ID or by som(SOM_expr) where SOM_expr
represents a SOM expression.

The XML ID or SOM expression is resolved in the context of the external document.

If both use and usehref are non-empty usehref takes precedence.

XFA Specification
Chapter 17, Template Specification Template Reference 700

The font element
A formatting element that describes a font.

<font

Properties:
 baselineShift="0in | measurement"
 fontHorizontalScale="cdata"
 fontVerticalScale="cdata"
 id="cdata"
 kerningMode="none | pair"
 letterSpacing="cdata"
 lineThrough="0 | 1 | 2"
 lineThroughPeriod="all | word"
 overline="0 | 1 | 2"
 overlinePeriod="all | word"
 posture="normal | italic"
 size="10pt | measurement"
 typeface="cdata"
 underline="0 | 1 | 2"
 underlinePeriod="all | word"
 use="cdata"
 usehref="cdata"
 weight="normal | bold"
>

 <extras/> [0..1]
 <fill/> [0..1]

The font element is used within the following other elements:
caption draw field proto

The baselineShift property

Specifies a positive or negative measurement value to express that the font should shift up from the
baseline (a positive measurement) or shift down from the baseline (a negative measurement).The default
is 0.

The extras property

An enclosure around one or more sets of custom properties. The content of this element may be used by
custom applications.

The fill property

A formatting element that applies a color and optional rendered designs to the region enclosed by an
object.

The fontHorizontalScale property

This property specifies a horizontal geometric scaling factor to be applied to all glyphs.

XFA Specification
Chapter 17, Template Specification Template Reference 701

The value is a positive number representing a percentage. A number smaller than 100 makes the glyphs
narrower, a number larger than 100 makes the glyphs wider, and exactly 100 retains the original width.
The default value is 100.

The fontVerticalScale property

This property specifies a vertical geometric scaling factor to be applied to all glyphs.

The value is a positive number representing a percentage. A number smaller than 100 makes the glyphs
shorter, a number larger than 100 makes the glyphs taller, and exactly 100 retains the original height. The
default value is 100.

The id property

A unique identifier that may be used to identify this element as a target.

The kerningMode property

This property specifies the type of kerning to be applied.

none

No kerning is applied.

pair

Pair kerning is applied.

The letterSpacing property

This property specifies an adjustment to the spacing that would otherwise be used between successive
grapheme clusters. Interword as well as interletter spacings are affected.

The value is a relative measurement. The value may be negative to decrease spacing or positive to
increase spacing. The default value is 0.

Relative measurements were introduced in XFA 2.8. For more information see Units in Chapter 2.

The lineThrough property

This property specifies the activation of a single or double line extending through the text (also known as
strikethrough).

0

The font is rendered without a line through the text.

1

The font is rendered with a single line through the text.

2

The font is rendered with a double line through the text.

The lineThroughPeriod property

This property controls the appearance of the line extending through the text (also known as
strikethrough).

XFA Specification
Chapter 17, Template Specification Template Reference 702

all

The rendered line extends across word breaks.

word

The rendered line is interrupted at word breaks.

NOTE: This property has no effect in members of the Acrobat family. The line always extends across line
breaks.

The overline property

This property specifies the activation and type of overlining.

0

The font is rendered without overlining.

1

The font is rendered with a single overline.

2

The font is rendered with a double overline.

Note: Adobe products do not support overlining.

The overlinePeriod property

This property controls the appearance of overlining.

all

The rendered line extends across word breaks.

word

The rendered line is interrupted at word breaks.

Note: Adobe products do not support overlining.

The posture property

This property specifies the posture of the font. (Currently, the set of choices has been kept small. It is likely
that the list will grow in future versions of this specification.)

normal

The font has a normal posture.

italic

The font is italicized.

The size property

Specifies the height of the font as a measurement value. The default is 10pt.

The typeface property

This property specifies the name of the typeface. The default is Courier.

XFA Specification
Chapter 17, Template Specification Template Reference 703

The underline property

This property specifies the activation and type of underlining.

0

The font is rendered without underlining.

1

The font is rendered with a single underline.

2

The font is rendered with a double underline.

The underlinePeriod property

This property controls the appearance of underlining.

all

The rendered line extends across word breaks.

word

The rendered line is interrupted at word breaks.

The use property

At template load time, invokes another object in the same document as a prototype for this object. The
content of this property is either a SOM expression (which cannot start with '#') or a '#' character followed
by an XML ID.

The object used as a prototype does not need to be the child of proto. Any object of the appropriate
class can be used as a prototype.

If both use and usehref are non-empty usehref takes precedence.

The usehref property

At template load time, invokes an external object as a prototype for this object. The content of this
property is an URL, followed by '#', followed by either an XML ID or by som(SOM_expr) where SOM_expr
represents a SOM expression.

The XML ID or SOM expression is resolved in the context of the external document.

If both use and usehref are non-empty usehref takes precedence.

The weight property

This property controls the appearance of typeface weight.

bold

The typeface is rendered with a bold weight.

normal

The typeface is rendered at its default weight.

XFA Specification
Chapter 17, Template Specification Template Reference 704

The format element
A rendering element that encloses output formatting information such as the picture clause.

<format

Properties:
 id="cdata"
 use="cdata"
 usehref="cdata"
>

 <extras/> [0..1]
 <picture/> [0..1]
</format>

The format element is used within the following other elements:
field proto

The extras property

An enclosure around one or more sets of custom properties. The content of this element may be used by
custom applications.

The id property

A unique identifier that may be used to identify this element as a target.

The picture property

A rendering element that describes input parsing and output formatting information.

The use property

At template load time, invokes another object in the same document as a prototype for this object. The
content of this property is either a SOM expression (which cannot start with '#') or a '#' character followed
by an XML ID.

The object used as a prototype does not need to be the child of proto. Any object of the appropriate
class can be used as a prototype.

If both use and usehref are non-empty usehref takes precedence.

The usehref property

At template load time, invokes an external object as a prototype for this object. The content of this
property is an URL, followed by '#', followed by either an XML ID or by som(SOM_expr) where SOM_expr
represents a SOM expression.

The XML ID or SOM expression is resolved in the context of the external document.

If both use and usehref are non-empty usehref takes precedence.

XFA Specification
Chapter 17, Template Specification Template Reference 705

The handler element
An element controlling what signature handler is used for a data-signing operation for an XML digital
signature.

<handler

Properties:
 id="cdata"
 type="optional | required"
 use="cdata"
 usehref="cdata"
>
 ...pcdata...
</handler>

The handler element is used within the following other elements:
filter proto

A signature handler is software that creates or authenticates a signature. The signature creation and
authentication may be purely mathematical, such as a public/private-key encrypted document digest, or
it may be a biometric form of identification, such as a handwritten signature, fingerprint, or retinal scan.
The signature handler may be a plug-in or server provided by an agency that specializes in signature
authentication.

Content

The name of the preferred signature handler to use when validating this signature. Example signature
handlers are Adobe.PPKLite, Entrust.PPKEF, CICI.SignIt, and VeriSign.PPKVS.

The id property

A unique identifier that may be used to identify this element as a target.

The type property

Indicates whether the XFA processing application is required to use the specified handler filter.

optional

The handler is optional. That is, the XFA processing application may chose to use another
algorithm rather than the one specified.

required

The handler is required. If it is not available, XFA processing application does not produce the
requested signature. It is suggested the application also provide an error response to inform the
person filling out the form that the signature has not been produced.

The use property

At template load time, invokes another object in the same document as a prototype for this object. The
content of this property is either a SOM expression (which cannot start with '#') or a '#' character followed
by an XML ID.

The object used as a prototype does not need to be the child of proto. Any object of the appropriate
class can be used as a prototype.

XFA Specification
Chapter 17, Template Specification Template Reference 706

If both use and usehref are non-empty usehref takes precedence.

The usehref property

At template load time, invokes an external object as a prototype for this object. The content of this
property is an URL, followed by '#', followed by either an XML ID or by som(SOM_expr) where SOM_expr
represents a SOM expression.

The XML ID or SOM expression is resolved in the context of the external document.

If both use and usehref are non-empty usehref takes precedence.

XFA Specification
Chapter 17, Template Specification Template Reference 707

The hyphenation element
An element that controls auto-hyphenation of text.

<hyphenation

Properties:
 excludeAllCaps="0 | 1"
 excludeInitialCap="0 | 1"
 hyphenate="0 | 1"
 id="cdata"
 pushCharacterCount="3 | integer"
 remainCharacterCount="3 | integer"
 use="cdata"
 usehref="cdata"
 wordCharacterCount="7 | integer"
>
</hyphenation>

The hyphenation element is used within the following other elements:
para proto

The excludeAllCaps property

Disables auto-hyphenation of words that consist entirely of capital letters.

0

Disable auto-hyphenation for words of this class. This is the default.

1

Enable auto-hyphenation for words of this class, provided all other requirements are met.

The excludeInitialCap property

Disables auto-hyphenation of words that start with capital or title case letters.

0

Disable auto-hyphenation for words of this class. This is the default.

1

Enable auto-hyphenation for words of this class, provided all other requirements are met.

The hyphenate property

Disables all auto-hyphenation.

0

Disable auto-hyphenation. This is the default.

1

Enable auto-hyphenation for words which meet all other requirements.

The id property

A unique identifier that may be used to identify this element as a target.

XFA Specification
Chapter 17, Template Specification Template Reference 708

The pushCharacterCount property

Minimum number of grapheme clusters that must flow to the next line for auto-hyphenation to take place.
The grapheme clusters are counted after hyphenation (which may change the word spelling) but exclude
any hyphenation mark. The default is 3.

The remainCharacterCount property

Minimum number of grapheme clusters that must remain on the current line for auto-hyphenation to take
place. The grapheme clusters are counted after hyphenation (which may change the word spelling) but
exclude any hyphenation mark. The default is 3.

The use property

At template load time, invokes another object in the same document as a prototype for this object. The
content of this property is either a SOM expression (which cannot start with '#') or a '#' character followed
by an XML ID.

The object used as a prototype does not need to be the child of proto. Any object of the appropriate
class can be used as a prototype.

If both use and usehref are non-empty usehref takes precedence.

The usehref property

At template load time, invokes an external object as a prototype for this object. The content of this
property is an URL, followed by '#', followed by either an XML ID or by som(SOM_expr) where SOM_expr
represents a SOM expression.

The XML ID or SOM expression is resolved in the context of the external document.

If both use and usehref are non-empty usehref takes precedence.

The wordCharacterCount property

Minimum number of grapheme clusters that must be present in the word for auto-hyphenation to take
place. The grapheme clusters are counted before hyphenation. The default is 7.

XFA Specification
Chapter 17, Template Specification Template Reference 709

The image element
A content element that describes a single image.

<image

Properties:
 aspect="fit | actual | height | none | width"
 contentType="cdata"
 href="cdata"
 id="cdata"
 name="cdata"
 transferEncoding="base64 | none | package"
 use="cdata"
 usehref="cdata"
>
 ...pcdata...
</image>

The image element is used within the following other elements:
desc exObject extras items proto value variables

Content

This element may enclose image-data which is PCDATA representing the actual image data content of the
image, encoded in base64 encoding (see [RFC2045] for more information). If the image element also
specifies external image content via the href property, the external content shall take priority.

When no data content is provided, the data content may be interpreted as representing a null value. This
behavior is dependent upon the context of where the data content is used. For instance, a field may
interpret empty data content as null based upon the associated nullType property in the data
description.

The aspect property

This property specifies how the image is to map to the nominal content region of the image's container.

fit

The processing application must scale the image proportionally to the maximum possible size
such that it fits within the nominal content region of the container.

none

The image shall be scaled such that it occupies the entire nominal content region of the container.
This may result in different scale values being applied to the image's X and Y coordinates.

actual

The image shall be rendered using the dimensions stored in the image content. The extent of the
container's nominal content region plays no role in the sizing of the image.

width

The image shall be scaled proportionally such that its width maps to the width of the container's
nominal content region. The rendered image may not occupy the entire height of the nominal
content region, or it may overflow the height.

XFA Specification
Chapter 17, Template Specification Template Reference 710

height

The image shall be scaled proportionally such that its height maps to the height of the container's
nominal content region. The rendered image may not occupy the entire width of the nominal
content region, or it may overflow the width.

The contentType property

The MIME-type of content in the referenced document. Please see [RFC2046] for more information.

A suitable value must be supplied for this property. However, the application is free to override the
supplied value if upon examining the image data it determines that the image data is of a different type.

The href property

Specifies a reference to an external image.

The transferEncoding property does not apply to external images.

The set of supported URI schemes (e.g., http:, ftp:) is implementation-defined.

The id property

A unique identifier that may be used to identify this element as a target.

The name property

An identifier that may be used to identify this element in script expressions.

The transferEncoding property

The encoding of binary content in the referenced document.

none

The referenced document is not encoded. If the referenced document is specified via a URI then it
will be transferred as a byte stream. If the referenced document is inline it must conform to the
restrictions on PCDATA.

base64

The binary content is encoded in accordance with the base64 transfer encoding s specified in
[RFC2045].

The use property

At template load time, invokes another object in the same document as a prototype for this object. The
content of this property is either a SOM expression (which cannot start with '#') or a '#' character followed
by an XML ID.

The object used as a prototype does not need to be the child of proto. Any object of the appropriate
class can be used as a prototype.

If both use and usehref are non-empty usehref takes precedence.

The usehref property

At template load time, invokes an external object as a prototype for this object. The content of this
property is an URL, followed by '#', followed by either an XML ID or by som(SOM_expr) where SOM_expr
represents a SOM expression.

XFA Specification
Chapter 17, Template Specification Template Reference 711

The XML ID or SOM expression is resolved in the context of the external document.

If both use and usehref are non-empty usehref takes precedence.

XFA Specification
Chapter 17, Template Specification Template Reference 712

The imageEdit element
A user interface element that encloses a widget intended to aid in the manipulation of image content.

<imageEdit

Properties:
 data="link | embed"
 id="cdata"
 use="cdata"
 usehref="cdata"
>

 <border/> [0..1]
 <extras/> [0..1]
 <margin/> [0..1]
</imageEdit>

The imageEdit element is used within the following other elements:
proto ui

The border property

A box model element that describes the border surrounding an object.

The data property

Indicates whether the image provided to the widget should be represented as a reference or should be
embedded. This attribute affects the widget behavior during form fill-in.

link

The image is represented as a URI reference. If the user provides the widget with a URI, the href
attribute of the container's image object is updated to reflect the new URI; and if the image
object was previously loaded with an embedded image, that image is removed from the object.

embed

The image is embedded in the container's image object. If the user provides the widget with a
URI, the image referenced by the URI is embedded as the content of the image object.

The extras property

An enclosure around one or more sets of custom properties. The content of this element may be used by
custom applications.

The id property

A unique identifier that may be used to identify this element as a target.

The margin property

A box model element that specifies one or more insets for an object.

XFA Specification
Chapter 17, Template Specification Template Reference 713

The use property

At template load time, invokes another object in the same document as a prototype for this object. The
content of this property is either a SOM expression (which cannot start with '#') or a '#' character followed
by an XML ID.

The object used as a prototype does not need to be the child of proto. Any object of the appropriate
class can be used as a prototype.

If both use and usehref are non-empty usehref takes precedence.

The usehref property

At template load time, invokes an external object as a prototype for this object. The content of this
property is an URL, followed by '#', followed by either an XML ID or by som(SOM_expr) where SOM_expr
represents a SOM expression.

The XML ID or SOM expression is resolved in the context of the external document.

If both use and usehref are non-empty usehref takes precedence.

XFA Specification
Chapter 17, Template Specification Template Reference 714

The integer element
A content element that describes a single unit of data content representing an integer value.

<integer

Properties:
 id="cdata"
 name="cdata"
 use="cdata"
 usehref="cdata"
>
 ...pcdata...
</integer>

The integer element is used within the following other elements:
desc exObject extras items proto value variables

Content

This element may enclose integer-data which is an optional leading minus sign (Unicode character
U+002D), followed by a sequence of decimal digits (Unicode characters U+0030 - U+0039).

When no content is present, the content shall be interpreted as representing a null value, irrespective of
the value of the associtated nullType property in the data description.

The id property

A unique identifier that may be used to identify this element as a target.

The name property

An identifier that may be used to identify this element in script expressions.

The use property

At template load time, invokes another object in the same document as a prototype for this object. The
content of this property is either a SOM expression (which cannot start with '#') or a '#' character followed
by an XML ID.

The object used as a prototype does not need to be the child of proto. Any object of the appropriate
class can be used as a prototype.

If both use and usehref are non-empty usehref takes precedence.

The usehref property

At template load time, invokes an external object as a prototype for this object. The content of this
property is an URL, followed by '#', followed by either an XML ID or by som(SOM_expr) where SOM_expr
represents a SOM expression.

The XML ID or SOM expression is resolved in the context of the external document.

If both use and usehref are non-empty usehref takes precedence.

XFA Specification
Chapter 17, Template Specification Template Reference 715

The issuers element
A collection of issuer certificates that are acceptable for data signing an XML digital signature.

<issuers

Properties:
 id="cdata"
 type="optional | required"
 use="cdata"
 usehref="cdata"
>
Children:
 <certificate/> [0..n]
</issuers>

The issuers element is used within the following other elements:
certificates proto

If the certificate being used to sign the manifest can be authenticated by any of the issuers (either directly
or indirectly), that certificate is considered acceptable for signing. The issuer certificates specified by this
element may be used in conjunction with the object identifiers specified in the oids element. X.509v3
certificates are described in RFC 3280, Internet X.509 Public Key Infrastructure, Certificate and Certificate
Revocation List (CRL) Profile [RFC3280].

The certificate property

An element that holds a suitable Base64 DER-encoded X.509v3 certificate.

The id property

A unique identifier that may be used to identify this element as a target.

The type property

Specifies whether the values provided in the element should be treated as a restrictive or non-restrictive
set.

optional

The values provided in the element are optional seed values from which the XFA processing
application may choose. The XFA processing application may also supply its own value.

required

The values provided in the element are seed values from which the XFA processing application
must choose.

The use property

At template load time, invokes another object in the same document as a prototype for this object. The
content of this property is either a SOM expression (which cannot start with '#') or a '#' character followed
by an XML ID.

The object used as a prototype does not need to be the child of proto. Any object of the appropriate
class can be used as a prototype.

If both use and usehref are non-empty usehref takes precedence.

XFA Specification
Chapter 17, Template Specification Template Reference 716

The usehref property

At template load time, invokes an external object as a prototype for this object. The content of this
property is an URL, followed by '#', followed by either an XML ID or by som(SOM_expr) where SOM_expr
represents a SOM expression.

The XML ID or SOM expression is resolved in the context of the external document.

If both use and usehref are non-empty usehref takes precedence.

XFA Specification
Chapter 17, Template Specification Template Reference 717

The items element
An element that supplies a set of values for a choice list or a check button.

<items

Properties:
 id="cdata"
 name="cdata"
 presence="visible | hidden | inactive | invisible"
 ref="cdata"
 save="0 | 1"
 use="cdata"
 usehref="cdata"
>
Children:
 <boolean/> [0..n]
 <date/> [0..n]
 <dateTime/> [0..n]
 <decimal/> [0..n]
 <exData/> [0..n]
 <float/> [0..n]
 <image/> [0..n]
 <integer/> [0..n]
 <text/> [0..n]
 <time/> [0..n]
</items>

The items element is used within the following other elements:
field proto

This element has two different meanings depending upon whether is interpreted by a choice list user
interface or a check box / radio button user interface.

The choice list user interface, its containing field element and the set of items elements all participate
together to provide a set of choices and control the value that gets stored in the field.

The choice list presents the user with a set of choices. The object displayed for each choice (for example a
text string) is generated from one content element which is a child of an items element. If there is only
one items element that is a child of the field then the displayed object is copied into the field when the
end-user selects that object.

However there can be two items element within a choice list field. If there are two items elements one
contains the set of objects to be displayed and the other contains the corresponding set of values to be
saved into the field. The items element containing the set of values to be saved must be flagged as such.

The checkButton user interface, its containing field element and the set of items elements all participate
together to provide a single radio button or check box and control the value that gets stored in the field.
(Mutually exclusive sets of check boxes or radio buttons are created by grouping these fields inside an
exclGroup element.)

Usually a check box is presented as a rectangle that contains a check mark when it is selected and is empty
when deselected. However a check box can have three states, often represented by a check mark, a cross,
and emptiness. A radio button can only have two states, which are often presented as a circle that is filled
(or "illuminated") when the button is selected and empty when deselected.

XFA Specification
Chapter 17, Template Specification Template Reference 718

A field with a checkBox user interface can have at most one items child. The items list can have at most
three values. The first value in the list is the "on" value, that is the value taken when the button or box is
selected. If there is a second value, it is the "off" value, that is the value taken when the button or box is
deselected. If there is a third value, it is the "neutral" value, that is the value taken when the check box is
empty. If a third value is provided for a radio button it is ignored. When the second or third value is not
provided it defaults to the null string.

The boolean property

A content element describing single unit of data content representing a Boolean logical value.

The date property

A content element that describes a single unit of data content representing a date.

The dateTime property

A content element that describes a single unit of data content representing a date and time value.

The decimal property

A content type element that describes a single unit of data content representing a number with a fixed
number of digits after the decimal.

The exData property

A content element that describes a single unit of data of a foreign datatype.

The float property

A content element that describes a single unit of data content representing a floating point value.

The id property

A unique identifier that may be used to identify this element as a target.

The image property

A content element that describes a single image.

The integer property

A content element that describes a single unit of data content representing an integer value.

The name property

An identifier that may be used to identify this element in script expressions.

The presence property

Controls the participation of the associated object in different phases of processing. If the object is a
container the contents of the container inherit whatever restrictions this control applies.

visible

Participate in interaction, layout, and rendering. The object is visible and takes up space. If it is
capable it takes part in calculations, validations, and events.

XFA Specification
Chapter 17, Template Specification Template Reference 719

hidden

Participate in interaction but not layout or rendering. The object is not displayed and does not
take up space. However, if it is capable it does participate in calculations, validations, and events.

inactive

Do not participate in interaction, layout, or rendering. The object is not displayed, does not take
up space, and does not take part in calculations, validations, or event processing. (New in XFA 3.0.)

invisible

Participate in interaction and layout but not rendering. The associated object takes up space but is
invisible. If it is capable it takes part in calculations, validations, and events.

This control does not affect the ability of the associated object to hold data or to take part in data binding.

The ref property

A SOM expression pointing to a DOM node. All of the child nodes of the referenced node are incorporated
into the list of items, regardless of the name of the child node.

This is commonly used to present a list held in the dataset.

The save property

This property determines whether this particular column contains values that may be entered into the
corresponding field.

0

The values supplied by this element are for display only.

1

The values supplied by this element may be entered into the field.

At least one column must have save set to 1. If more than one column have this property set, the value in
the first column with it set is saved.

The text property

A content element that describes a single unit of data content representing a plain textual value.

The time property

A content element that describes a single unit of data content representing a time value.

The use property

At template load time, invokes another object in the same document as a prototype for this object. The
content of this property is either a SOM expression (which cannot start with '#') or a '#' character followed
by an XML ID.

The object used as a prototype does not need to be the child of proto. Any object of the appropriate
class can be used as a prototype.

If both use and usehref are non-empty usehref takes precedence.

XFA Specification
Chapter 17, Template Specification Template Reference 720

The usehref property

At template load time, invokes an external object as a prototype for this object. The content of this
property is an URL, followed by '#', followed by either an XML ID or by som(SOM_expr) where SOM_expr
represents a SOM expression.

The XML ID or SOM expression is resolved in the context of the external document.

If both use and usehref are non-empty usehref takes precedence.

XFA Specification
Chapter 17, Template Specification Template Reference 721

The keep element
An element that describes the constraints on keeping content together within a page or content area.

<keep

Properties:
 id="cdata"
 intact="none | contentArea | pageArea"
 next="none | contentArea | pageArea"
 previous="none | contentArea | pageArea"
 use="cdata"
 usehref="cdata"
>

 <extras/> [0..1]
</keep>

The keep element is used within the following other elements:
draw field proto subform

The extras property

An enclosure around one or more sets of custom properties. The content of this element may be used by
custom applications.

The id property

A unique identifier that may be used to identify this element as a target.

The intact property

This property specifies the constraints on keeping content intact within a content area or page.

Note that the default value for this property is not fully depicted in the syntax summary above. There is no
single default; instead it is context-sensitive. When the parent container is a subform and the subform's
layout is flowing or table the default value is none. When the parent subform's layout is positioned or
row the default value is contentArea. However when the parent container is a draw the default is
always contentArea and when the parent is a field the default is always none.

Also note that the default is (re-)computed at the moment the API call to get the value is made or at the
moment the layout operation is invoked.

none

The determination of whether a container will be rendered intact within a content area or page
will be delegated to the processing application. It is possible that the container will be split across
a content area or page. This is the default under some circumstances; see the note above.

contentArea

The container is requested to be rendered intact within a content area. This is the default under
some circumstances; see the note above.

pageArea

The container is requested to be rendered intact within a page. NOTE: Adobe products do not
support this value.

XFA Specification
Chapter 17, Template Specification Template Reference 722

The next property

This property specifies the constraints on keeping a container together with the next container within a
content area or page.

none

The determination of whether a container will be rendered in the same content area or page
together with the next container will be delegated to the processing application. No special keep
constraints will be forced.

contentArea

The container is requested to be rendered in the same content area with the next container.

pageArea

The container is requested to be rendered in the same page with the next container. NOTE: Adobe
products do not support this value.

The previous property

This property specifies the constraints on keeping a container together with the previous container within
a content area or page.

none

The determination of whether a container will be rendered in the same content area or page
together with the previous container will be delegated to the processing application. No special
keep constraints will be forced.

contentArea

The container is requested to be rendered in the same content area with the previous container.

pageArea

The container is requested to be rendered in the same page with the previous container. NOTE:
Adobe products do not support this value.

The use property

At template load time, invokes another object in the same document as a prototype for this object. The
content of this property is either a SOM expression (which cannot start with '#') or a '#' character followed
by an XML ID.

The object used as a prototype does not need to be the child of proto. Any object of the appropriate
class can be used as a prototype.

If both use and usehref are non-empty usehref takes precedence.

The usehref property

At template load time, invokes an external object as a prototype for this object. The content of this
property is an URL, followed by '#', followed by either an XML ID or by som(SOM_expr) where SOM_expr
represents a SOM expression.

The XML ID or SOM expression is resolved in the context of the external document.

If both use and usehref are non-empty usehref takes precedence.

XFA Specification
Chapter 17, Template Specification Template Reference 723

The keyUsage element
An element that specifies the key usage settings required in the signing certificate.

<keyUsage

Properties:
 crlSign="cdata"
 dataEncipherment="cdata"
 decipherOnly="cdata"
 digitalSignature="cdata"
 encipherOnly="cdata"
 id="cdata"
 keyAgreement="cdata"
 keyCertSign="cdata"
 keyEncipherment="cdata"
 nonRepudiation="cdata"
 type="optional | required"
 use="cdata"
 usehref="cdata"
>
</keyUsage>

The keyUsage element is used within the following other elements:
certificates proto

The crlSign property

Controls whether and how the value of the same name in the certificate makes it acceptable or
unacceptable.

yes

The value must be set in the certificate for it to be acceptable.

no

The value must not be set in the certificate for it to be acceptable.

There is no default for this attribute. If it is omitted or empty the corresponding attribute of the certificate
is disregarded.

The dataEncipherment property

Controls whether and how the value of the same name in the certificate makes it acceptable or
unacceptable.

yes

The value must be set in the certificate for it to be acceptable.

no

The value must not be set in the certificate for it to be acceptable.

There is no default for this attribute. If it is omitted or empty the corresponding attribute of the certificate
is disregarded.

XFA Specification
Chapter 17, Template Specification Template Reference 724

The decipherOnly property

Controls whether and how the value of the same name in the certificate makes it acceptable or
unacceptable.

yes

The value must be set in the certificate for it to be acceptable.

no

The value must not be set in the certificate for it to be acceptable.

There is no default for this attribute. If it is omitted or empty the corresponding attribute of the certificate
is disregarded.

The digitalSignature property

Controls whether and how the value of the same name in the certificate makes it acceptable or
unacceptable.

yes

The value must be set in the certificate for it to be acceptable.

no

The value must not be set in the certificate for it to be acceptable.

There is no default for this attribute. If it is omitted or empty the corresponding attribute of the certificate
is disregarded.

The encipherOnly property

Controls whether and how the value of the same name in the certificate makes it acceptable or
unacceptable.

yes

The value must be set in the certificate for it to be acceptable.

no

The value must not be set in the certificate for it to be acceptable.

There is no default for this attribute. If it is omitted or empty the corresponding attribute of the certificate
is disregarded.

The id property

A unique identifier that may be used to identify this element as a target.

The keyAgreement property

Controls whether and how the value of the same name in the certificate makes it acceptable or
unacceptable.

yes

The value must be set in the certificate for it to be acceptable.

XFA Specification
Chapter 17, Template Specification Template Reference 725

no

The value must not be set in the certificate for it to be acceptable.

There is no default for this attribute. If it is omitted or empty the corresponding attribute of the certificate
is disregarded.

The keyCertSign property

Controls whether and how the value of the same name in the certificate makes it acceptable or
unacceptable.

yes

The value must be set in the certificate for it to be acceptable.

no

The value must not be set in the certificate for it to be acceptable.

There is no default for this attribute. If it is omitted or empty the corresponding attribute of the certificate
is disregarded.

The keyEncipherment property

Controls whether and how the value of the same name in the certificate makes it acceptable or
unacceptable.

yes

The value must be set in the certificate for it to be acceptable.

no

The value must not be set in the certificate for it to be acceptable.

There is no default for this attribute. If it is omitted or empty the corresponding attribute of the certificate
is disregarded.

The nonRepudiation property

Controls whether and how the value of the same name in the certificate makes it acceptable or
unacceptable.

yes

The value must be set in the certificate for it to be acceptable.

no

The value must not be set in the certificate for it to be acceptable.

There is no default for this attribute. If it is omitted or empty the corresponding attribute of the certificate
is disregarded.

The type property

Specifies whether the values provided in the element should be treated as a restrictive or non-restrictive
set.

XFA Specification
Chapter 17, Template Specification Template Reference 726

optional

The values provided in the element are optional seed values from which the XFA processing
application may choose. The XFA processing application may also supply its own value. The
application typically allows a person filling out the form to choose from the values provided or to
specify his own value.

required

The values provided in the element are seed values from which the XFA processing application
must choose. The application typically allows a person filling out the form to choose from only
those values provided in the element.

The use property

At template load time, invokes another object in the same document as a prototype for this object. The
content of this property is either a SOM expression (which cannot start with '#') or a '#' character followed
by an XML ID.

The object used as a prototype does not need to be the child of proto. Any object of the appropriate
class can be used as a prototype.

If both use and usehref are non-empty usehref takes precedence.

The usehref property

At template load time, invokes an external object as a prototype for this object. The content of this
property is an URL, followed by '#', followed by either an XML ID or by som(SOM_expr) where SOM_expr
represents a SOM expression.

The XML ID or SOM expression is resolved in the context of the external document.

If both use and usehref are non-empty usehref takes precedence.

XFA Specification
Chapter 17, Template Specification Template Reference 727

The line element
A content element that describes a single rendered line.

<line

Properties:
 hand="even | left | right"
 id="cdata"
 slope="\ | /"
 use="cdata"
 usehref="cdata"
>

 <edge/> [0..1]
</line>

The line element is used within the following other elements:
proto value

The edge property

A formatting element that describes an arc, line, or one side of a border or rectangle.

The hand property

Description of the handedness of a line or edge.

even

Center the displayed line on the underlying vector or arc.

left

Position the displayed line immediately to the left of the underlying vector or arc, when following
that line from its start point to its end point.

right

Position the displayed line immediately to the right of the underlying vector or arc, when
following that line from its start point to its end point.

The id property

A unique identifier that may be used to identify this element as a target.

The slope property

This property specifies the orientation of the line.

\

The line extends from the top-left to the bottom-right.

/

The line extends from the bottom-left to the top-right.

XFA Specification
Chapter 17, Template Specification Template Reference 728

The use property

At template load time, invokes another object in the same document as a prototype for this object. The
content of this property is either a SOM expression (which cannot start with '#') or a '#' character followed
by an XML ID.

The object used as a prototype does not need to be the child of proto. Any object of the appropriate
class can be used as a prototype.

If both use and usehref are non-empty usehref takes precedence.

The usehref property

At template load time, invokes an external object as a prototype for this object. The content of this
property is an URL, followed by '#', followed by either an XML ID or by som(SOM_expr) where SOM_expr
represents a SOM expression.

The XML ID or SOM expression is resolved in the context of the external document.

If both use and usehref are non-empty usehref takes precedence.

XFA Specification
Chapter 17, Template Specification Template Reference 729

The linear element
A fill type element that describes a linear gradient fill.

<linear

Properties:
 id="cdata"
 type="toRight | toBottom | toLeft | toTop"
 use="cdata"
 usehref="cdata"
>

 <color/> [0..1]
 <extras/> [0..1]
</linear>

The linear element is used within the following other elements:
fill proto

A linear gradient fill appears as the start color at one "side" of the object and the end color at the opposite
side. Between those two sides, the color gradually changes from start color to end color.

The color element enclosed by the linear element determines the end color. The color element enclosed
by the parent fill element determines the start color.

The color property

An element that describes a color.

The extras property

An enclosure around one or more sets of custom properties. The content of this element may be used by
custom applications.

The id property

A unique identifier that may be used to identify this element as a target.

The type property

Specifies the direction of the color transition.

toRight

The start color appears at the left side of the object and transitions into the end color at the right
side.

toLeft

The start color appears at the right side of the object and transitions into the end color at the left
side.

toTop

The start color appears at the bottom side of the object and transitions into the end color at the
top side.

XFA Specification
Chapter 17, Template Specification Template Reference 730

toBottom

The start color appears at the top side of the object and transitions into the end color at the
bottom side.

The use property

At template load time, invokes another object in the same document as a prototype for this object. The
content of this property is either a SOM expression (which cannot start with '#') or a '#' character followed
by an XML ID.

The object used as a prototype does not need to be the child of proto. Any object of the appropriate
class can be used as a prototype.

If both use and usehref are non-empty usehref takes precedence.

The usehref property

At template load time, invokes an external object as a prototype for this object. The content of this
property is an URL, followed by '#', followed by either an XML ID or by som(SOM_expr) where SOM_expr
represents a SOM expression.

The XML ID or SOM expression is resolved in the context of the external document.

If both use and usehref are non-empty usehref takes precedence.

XFA Specification
Chapter 17, Template Specification Template Reference 731

The lockDocument element
An element that controls whether the document locks when it is signed.

<lockDocument

Properties:
 id="cdata"
 type="optional | required"
 use="cdata"
 usehref="cdata"
>
 ...pcdata...
</lockDocument>

The lockDocument element is used within the following other elements:
filter proto

This element provides functionality similar to that provided in PDF by the LockDocument entry in the SV
dictionary, as described in table 8.83 of [PDF].

Content

The specified behavior. The content must be one of the following.

auto

Locking behavior is application-defined. This is the default.

0

The document locks when it is signed.

1

The document does not lock when it is signed and remains unlocked afterward.

The id property

A unique identifier that may be used to identify this element as a target.

The type property

Determines whether the user is free to override the specified behavior. The value must be one of the
following.

optional

The user may override the specified behavior. This is the default.

required

The user may not override the specified behavior.

The use property

At template load time, invokes another object in the same document as a prototype for this object. The
content of this property is either a SOM expression (which cannot start with '#') or a '#' character followed
by an XML ID.

XFA Specification
Chapter 17, Template Specification Template Reference 732

The object used as a prototype does not need to be the child of proto. Any object of the appropriate
class can be used as a prototype.

If both use and usehref are non-empty usehref takes precedence.

The usehref property

At template load time, invokes an external object as a prototype for this object. The content of this
property is an URL, followed by '#', followed by either an XML ID or by som(SOM_expr) where SOM_expr
represents a SOM expression.

The XML ID or SOM expression is resolved in the context of the external document.

If both use and usehref are non-empty usehref takes precedence.

XFA Specification
Chapter 17, Template Specification Template Reference 733

The manifest element
An element that contains a list of references to all the nodes that are included in a node collection.

<manifest

Properties:
 action="include | all | exclude"
 id="cdata"
 name="cdata"
 use="cdata"
 usehref="cdata"
>

 <extras/> [0..1]
Children:
 <ref/> [0..n]
</manifest>

The manifest element is used within the following other elements:
proto signData signature variables

Node collections are commonly used for signatures, however they may also be employed in scripts. For
example, a script can call methods on the manifest object to execute calculations or validations on all the
members of the manifest.

The references in the list may include non-unique SOM expressions, such as foo[*]. All nodes referenced by
the expression are included in the list.

The references may overlap or duplicate node references. Multiply-referenced nodes are included in
multiple places in the list.

When this element is the child of a signature element and being used to generate a PDF signature only
nodes which are fields are processed. Other nodes in the node list are ignored. PDF signatures
automatically include all template and other nodes necessary to establish a document of record for the
indicated fields.

The action property

Controls the definition of the node set.

include

The node set consists of those nodes and only those nodes listed.

exclude

The node set consists of all candidate nodes except those nodes listed. This value may only be
used when this element is the child of a signature element.

all

The node set consists of all candidate nodes. No ref children are needed or expected. This value
may only be used when this element is the child of a signature element.

XFA Specification
Chapter 17, Template Specification Template Reference 734

The extras property

An enclosure around one or more sets of custom properties. The content of this element may be used by
custom applications.

The id property

A unique identifier that may be used to identify this element as a target.

The name property

An identifier that may be used to identify this element in script expressions.

The ref property

An element holding an XFA-SOM expression that identifies a node to be included in an XML digital
signature.

The use property

At template load time, invokes another object in the same document as a prototype for this object. The
content of this property is either a SOM expression (which cannot start with '#') or a '#' character followed
by an XML ID.

The object used as a prototype does not need to be the child of proto. Any object of the appropriate
class can be used as a prototype.

If both use and usehref are non-empty usehref takes precedence.

The usehref property

At template load time, invokes an external object as a prototype for this object. The content of this
property is an URL, followed by '#', followed by either an XML ID or by som(SOM_expr) where SOM_expr
represents a SOM expression.

The XML ID or SOM expression is resolved in the context of the external document.

If both use and usehref are non-empty usehref takes precedence.

XFA Specification
Chapter 17, Template Specification Template Reference 735

The margin element
A box model element that specifies one or more insets for an object.

<margin

Properties:
 bottomInset="0in | measurement"
 id="cdata"
 leftInset="0in | measurement"
 rightInset="0in | measurement"
 topInset="0in | measurement"
 use="cdata"
 usehref="cdata"
>

 <extras/> [0..1]
</margin>

The margin element is used within the following other elements:
border caption checkButton choiceList dateTimeEdit draw exclGroup field imageEdit numericEdit
passwordEdit proto signature subform textEdit

The bottomInset property

A measurement specifying the size of the bottom inset. The default is 0.

The extras property

An enclosure around one or more sets of custom properties. The content of this element may be used by
custom applications.

The id property

A unique identifier that may be used to identify this element as a target.

The leftInset property

A measurement specifying the size of the left inset. The default is 0.

The rightInset property

A measurement specifying the size of the right inset. The default is 0.

The topInset property

A measurement specifying the size of the top inset. The default is 0.

The use property

At template load time, invokes another object in the same document as a prototype for this object. The
content of this property is either a SOM expression (which cannot start with '#') or a '#' character followed
by an XML ID.

The object used as a prototype does not need to be the child of proto. Any object of the appropriate
class can be used as a prototype.

If both use and usehref are non-empty usehref takes precedence.

XFA Specification
Chapter 17, Template Specification Template Reference 736

The usehref property

At template load time, invokes an external object as a prototype for this object. The content of this
property is an URL, followed by '#', followed by either an XML ID or by som(SOM_expr) where SOM_expr
represents a SOM expression.

The XML ID or SOM expression is resolved in the context of the external document.

If both use and usehref are non-empty usehref takes precedence.

XFA Specification
Chapter 17, Template Specification Template Reference 737

The mdp element
An element that controls an MDP+ signature.

<mdp

Properties:
 id="cdata"
 permissions="2 | 1 | 3"
 signatureType="filler | author"
 use="cdata"
 usehref="cdata"
>
</mdp>

The mdp element is used within the following other elements:
filter proto

This element is only meaningful when it is the grandchild of a signature element. Otherwise it is
ignored.

The id property

A unique identifier that may be used to identify this element as a target.

The permissions property

An author signature attests to the validity of the whole form or parts of it. This attribute governs what
operations may be performed on the certified form without invalidating the signature. Downstream XFA
applications may enforce these permissions at run time but they don't have to be trusted to do so,
because the signature is a hash of all attested parts of the form and hence is invalidated by any change to
them. This attribute is ignored for filler signatures, which only attest to the data.

1

No changes to the document are permitted; any change to the document invalidates the
signature.

2

Permitted changes are filling in forms, instantiating page templates, and signing; other changes
invalidate the signature.

3

Permitted changes are those allowed by 2, as well as annotation creation, deletion, and
modification; other changes invalidate the signature.

The signatureType property

The role of the person or program that has signed or will sign the form.

filler

A person or program that supplies data to an existing form.

XFA Specification
Chapter 17, Template Specification Template Reference 738

author

A person or program that makes up a new form. Documents with this kind of signature are often
referred to as certified.

The use property

At template load time, invokes another object in the same document as a prototype for this object. The
content of this property is either a SOM expression (which cannot start with '#') or a '#' character followed
by an XML ID.

The object used as a prototype does not need to be the child of proto. Any object of the appropriate
class can be used as a prototype.

If both use and usehref are non-empty usehref takes precedence.

The usehref property

At template load time, invokes an external object as a prototype for this object. The content of this
property is an URL, followed by '#', followed by either an XML ID or by som(SOM_expr) where SOM_expr
represents a SOM expression.

The XML ID or SOM expression is resolved in the context of the external document.

If both use and usehref are non-empty usehref takes precedence.

XFA Specification
Chapter 17, Template Specification Template Reference 739

The medium element
An element that describes a physical medium upon which to render. Some hybrid paper/glass media, such
as PDF, may require both paper and glass properties.

<medium

Properties:
 id="cdata"
 imagingBBox="cdata"
 long="0in | measurement"
 orientation="portrait | landscape"
 short="0in | measurement"
 stock="cdata"
 trayIn="auto | delegate | pageFront"
 trayOut="auto | delegate"
 use="cdata"
 usehref="cdata"
>
</medium>

The medium element is used within the following other elements:
pageArea proto

The id property

A unique identifier that may be used to identify this element as a target.

The imagingBBox property

Region within the paper that is available for rendering with four comma separated measurements
representing the measurements for x, y, width, and height.

none

The entire area of the paper is available for rendering.

x, y, width,height

The rendering area is limited to a rectangle of the given width and height, at a distance of x
from the left edge and y from the top edge. Note that the comma separators are required.

The long property

A measurement specifying the length of the long edge of the medium. The default is 0.The length
specified by long must be greater than the length specified by short.

The orientation property

The orientation of the medium as follows:

portrait

The orientation of the medium places the short edge at the top.

landscape

The orientation of the medium places the long edge at the top.

XFA Specification
Chapter 17, Template Specification Template Reference 740

The short property

A measurement specifying the length of the short edge of the medium. The default is 0. The length
specified by short must be smaller than the length specified by long.

The stock property

The name of a standard paper size. The default is letter.

This name is the key used to find the appropriate section in the XDC file.

The trayIn property

Reserved for future use.

The trayOut property

Reserved for future use.

The use property

At template load time, invokes another object in the same document as a prototype for this object. The
content of this property is either a SOM expression (which cannot start with '#') or a '#' character followed
by an XML ID.

The object used as a prototype does not need to be the child of proto. Any object of the appropriate
class can be used as a prototype.

If both use and usehref are non-empty usehref takes precedence.

The usehref property

At template load time, invokes an external object as a prototype for this object. The content of this
property is an URL, followed by '#', followed by either an XML ID or by som(SOM_expr) where SOM_expr
represents a SOM expression.

The XML ID or SOM expression is resolved in the context of the external document.

If both use and usehref are non-empty usehref takes precedence.

XFA Specification
Chapter 17, Template Specification Template Reference 741

The message element
A automation element that holds one or more sub-elements containing messages used with validations
and calculations.

<message

Properties:
 id="cdata"
 use="cdata"
 usehref="cdata"
>
Children:
 <text/> [0..n]
</message>

The message element is used within the following other elements:
calculate proto validate

If the message element is a child of validate, it may contain multiple text elements, each of which
corresponds with a different type of validation. The name attribute of the text element associates the
message with the type of validation. Specifically, the child text element named scriptTest is used for
script validation, the one named nullTest is used for null validation, and the one formatTest is used
for format validation. It is erroneous to have more than one child element with the same name or with no
name. If the message element contains a single un-named text element, the message it contains is used
for all messages issued by the enclosing validate element.

If the message element is a child of calculate, it contains a single text element, which is displayed as
specified in the calculate element's override attribute.

The id property

A unique identifier that may be used to identify this element as a target.

The text property

A content element that describes a single unit of data content representing a plain textual value.

The use property

At template load time, invokes another object in the same document as a prototype for this object. The
content of this property is either a SOM expression (which cannot start with '#') or a '#' character followed
by an XML ID.

The object used as a prototype does not need to be the child of proto. Any object of the appropriate
class can be used as a prototype.

If both use and usehref are non-empty usehref takes precedence.

The usehref property

At template load time, invokes an external object as a prototype for this object. The content of this
property is an URL, followed by '#', followed by either an XML ID or by som(SOM_expr) where SOM_expr
represents a SOM expression.

The XML ID or SOM expression is resolved in the context of the external document.

XFA Specification
Chapter 17, Template Specification Template Reference 742

If both use and usehref are non-empty usehref takes precedence.

XFA Specification
Chapter 17, Template Specification Template Reference 743

The numericEdit element
A user interface element that describes a widget intended to aid in the manipulation of numeric content.

<numericEdit

Properties:
 hScrollPolicy="auto | off | on"
 id="cdata"
 use="cdata"
 usehref="cdata"
>

 <border/> [0..1]
 <comb/> [0..1]
 <extras/> [0..1]
 <margin/> [0..1]
</numericEdit>

The numericEdit element is used within the following other elements:
proto ui

The border property

A box model element that describes the border surrounding an object.

The comb property

An element that causes a field to be presented with vertical lines between the character positions.

The extras property

An enclosure around one or more sets of custom properties. The content of this element may be used by
custom applications.

The hScrollPolicy property

Controls the scrollability of the field in the horizontal direction.

auto

If the field is single-line it scrolls horizontally. Multi-line fields do not scroll horizontally.

on

A horizontal scroll bar is always displayed whether or not the input overflows the boundaries of
the field. The field is scrollable regardless of whether it is a single-line or multi-line field.

off

The user is not allowed to enter characters beyond what can physically fit in the field width. This
applies to typing and pasting from the clipboard. However data which is merged into the field
from the Data DOM is not restricted. If the data exceeds the field size the user may not be able to
view all of it.

Note that members of the Acrobat family do not implement the value on. If this value is encountered it is
treated as auto.

XFA Specification
Chapter 17, Template Specification Template Reference 744

The id property

A unique identifier that may be used to identify this element as a target.

The margin property

A box model element that specifies one or more insets for an object.

The use property

At template load time, invokes another object in the same document as a prototype for this object. The
content of this property is either a SOM expression (which cannot start with '#') or a '#' character followed
by an XML ID.

The object used as a prototype does not need to be the child of proto. Any object of the appropriate
class can be used as a prototype.

If both use and usehref are non-empty usehref takes precedence.

The usehref property

At template load time, invokes an external object as a prototype for this object. The content of this
property is an URL, followed by '#', followed by either an XML ID or by som(SOM_expr) where SOM_expr
represents a SOM expression.

The XML ID or SOM expression is resolved in the context of the external document.

If both use and usehref are non-empty usehref takes precedence.

XFA Specification
Chapter 17, Template Specification Template Reference 745

The occur element
An element that describes the constraints over the number of allowable instances for its enclosing
container.

<occur

Properties:
 id="cdata"
 initial="1 | integer"
 max="1 | integer"
 min="1 | integer"
 use="cdata"
 usehref="cdata"
>

 <extras/> [0..1]
</occur>

The occur element is used within the following other elements:
pageArea pageSet proto subform subformSet

The extras property

An enclosure around one or more sets of custom properties. The content of this element may be used by
custom applications.

The id property

A unique identifier that may be used to identify this element as a target.

The initial property

Specifies the initial number of occurrences for the enclosing subform element or subformSet element.
The default is 1. This property has no meaning when the container is a pageArea element or a pageSet
element.

The max property

Specifies the maximum number of occurrences for the enclosing container, or -1 to set no upper
boundary for occurrences. This value defaults to the value of the min property. In the absence of a min
property the default value varies depending upon the type of the enclosing container. If the enclosing
container is a subform element or subformSet element the default is 1. However if the enclosing
container is a pageArea element or a pageSet element the default is -1.

The min property

Specifies the minimum number of occurrences for the enclosing container. If the enclosing container is a
subform element or subformSet element the default is 1. However if the enclosing container is a
pageArea element or a pageSet element the default is 0.

The use property

At template load time, invokes another object in the same document as a prototype for this object. The
content of this property is either a SOM expression (which cannot start with '#') or a '#' character followed
by an XML ID.

XFA Specification
Chapter 17, Template Specification Template Reference 746

The object used as a prototype does not need to be the child of proto. Any object of the appropriate
class can be used as a prototype.

If both use and usehref are non-empty usehref takes precedence.

The usehref property

At template load time, invokes an external object as a prototype for this object. The content of this
property is an URL, followed by '#', followed by either an XML ID or by som(SOM_expr) where SOM_expr
represents a SOM expression.

The XML ID or SOM expression is resolved in the context of the external document.

If both use and usehref are non-empty usehref takes precedence.

XFA Specification
Chapter 17, Template Specification Template Reference 747

The oid element
An Object Identifier (OID) of the certificate policies that must be present in the signing certificate.

<oid

Properties:
 id="cdata"
 name="cdata"
 use="cdata"
 usehref="cdata"
>
 ...pcdata...
</oid>

The oid element is used within the following other elements:
oids proto

Content

The Object Identifier string.

The id property

A unique identifier that may be used to identify this element as a target.

The name property

An identifier that may be used to identify this element in script expressions.

The use property

At template load time, invokes another object in the same document as a prototype for this object. The
content of this property is either a SOM expression (which cannot start with '#') or a '#' character followed
by an XML ID.

The object used as a prototype does not need to be the child of proto. Any object of the appropriate
class can be used as a prototype.

If both use and usehref are non-empty usehref takes precedence.

The usehref property

At template load time, invokes an external object as a prototype for this object. The content of this
property is an URL, followed by '#', followed by either an XML ID or by som(SOM_expr) where SOM_expr
represents a SOM expression.

The XML ID or SOM expression is resolved in the context of the external document.

If both use and usehref are non-empty usehref takes precedence.

XFA Specification
Chapter 17, Template Specification Template Reference 748

The oids element
A collection of Object Identifiers (OIDs) which apply to signing data with an XML digital signature.

<oids

Properties:
 id="cdata"
 type="optional | required"
 use="cdata"
 usehref="cdata"
>
Children:
 <oid/> [0..n]
</oids>

The oids element is used within the following other elements:
certificates proto

Values that uniquely identify the issuer certificate. This element is only applicable if it has a sibling issuers
element which is non-empty. The certificate policies extension is described in RFC 3280, Internet X.509
Public Key Infrastructure, Certificate and Certificate Revocation List (CRL) Profile [RFC3280].

The id property

A unique identifier that may be used to identify this element as a target.

The oid property

An Object Identifier (OID) of the certificate policies that must be present in the signing certificate.

The type property

Specifies whether the values provided in the element should be treated as a restrictive or non-restrictive
set.

optional

The values provided in the element are optional seed values from which the XFA processing
application may choose. The XFA processing application may also supply its own value.

required

The values provided in the element are seed values from which the XFA processing application
must choose.

The use property

At template load time, invokes another object in the same document as a prototype for this object. The
content of this property is either a SOM expression (which cannot start with '#') or a '#' character followed
by an XML ID.

The object used as a prototype does not need to be the child of proto. Any object of the appropriate
class can be used as a prototype.

If both use and usehref are non-empty usehref takes precedence.

XFA Specification
Chapter 17, Template Specification Template Reference 749

The usehref property

At template load time, invokes an external object as a prototype for this object. The content of this
property is an URL, followed by '#', followed by either an XML ID or by som(SOM_expr) where SOM_expr
represents a SOM expression.

The XML ID or SOM expression is resolved in the context of the external document.

If both use and usehref are non-empty usehref takes precedence.

XFA Specification
Chapter 17, Template Specification Template Reference 750

The overflow element
An element that controls what happens when the parent subform or subform set overflows the current
layout container.

<overflow

Properties:
 id="cdata"
 leader="cdata"
 target="cdata"
 trailer="cdata"
 use="cdata"
 usehref="cdata"
>
</overflow>

The overflow element is used within the following other elements:
proto subform subformSet

The id property

A unique identifier that may be used to identify this element as a target.

The leader property

The value of this property is either a SOM expression (which can not start with '#') or a '#' followed by an
XML ID. The SOM expression or XML ID points to a subform or subform set to be laid down at the top of
the next layout container. When this property is empty or blank no special action is taken on overflow.

Note that this replaces the overflowLeader attribute on the deprecated break element.

The target property

The value of this property is either a SOM expression (which can not start with '#') or a '#' followed by an
XML ID. The SOM expression or XML ID points to a contentArea or pageArea which becomes the next
layout container. When this property is empty or blank the next layout container is determined by the
properties of the current (overflowing) layout container.

Note that this replaces the overflowTarget attribute on the deprecated break element.

The trailer property

The value of this property is either a SOM expression (which can not start with '#') or a '#' followed by an
XML ID. The SOM expression or XML ID points to a subform or subform set to be laid down at the bottom
of the current (overflowing) layout container. When this property is empty or blank no special action is
taken on overflow.

Note that this replaces the overflowTrailer attribute on the deprecated break element.

The use property

At template load time, invokes another object in the same document as a prototype for this object. The
content of this property is either a SOM expression (which cannot start with '#') or a '#' character followed
by an XML ID.

XFA Specification
Chapter 17, Template Specification Template Reference 751

The object used as a prototype does not need to be the child of proto. Any object of the appropriate
class can be used as a prototype.

If both use and usehref are non-empty usehref takes precedence.

The usehref property

At template load time, invokes an external object as a prototype for this object. The content of this
property is an URL, followed by '#', followed by either an XML ID or by som(SOM_expr) where SOM_expr
represents a SOM expression.

The XML ID or SOM expression is resolved in the context of the external document.

If both use and usehref are non-empty usehref takes precedence.

XFA Specification
Chapter 17, Template Specification Template Reference 752

The pageArea element
An element that describes a rendering surface.

<pageArea

Properties:
 blankOrNotBlank="any | blank | notBlank"
 id="cdata"
 initialNumber="1 | integer"
 name="cdata"
 numbered="1 | integer"
 oddOrEven="any | even | odd"
 pagePosition="any | first | last | only | rest"
 relevant="cdata"
 use="cdata"
 usehref="cdata"
>

 <desc/> [0..1]
 <extras/> [0..1]
 <medium/> [0..1]
 <occur/> [0..1]
Children:
 <area/> [0..n]
 <contentArea/> [0..n]
 <draw/> [0..n]
 <exclGroup/> [0..n]
 <field/> [0..n]
 <subform/> [0..n]
</pageArea>

The pageArea element is used within the following other elements:
pageSet proto

The area property

A container representing a geographical grouping of other containers.

The blankOrNotBlank property

Controls whether the page may appear in contexts where it is explicitly blank.

any

The page may be used in any context.

blank

The page may only be inserted in response to a break-to-even-page while on an even page, or a
break-to-odd-page while on an odd page.

nonBlank

The page may only be inserted to hold content or to meet minimum occurrence rules.

This property is ignored within an orderedOccurrence pageSet.

XFA Specification
Chapter 17, Template Specification Template Reference 753

The contentArea property

An element that describes a region within a page area eligible for receiving content.

The desc property

An element to hold human-readable metadata.

The draw property

A container element that contains non-interactive data content.

The exclGroup property

A container element that describes a mutual exclusion relationship between a set of containers.

The extras property

An enclosure around one or more sets of custom properties. The content of this element may be used by
custom applications.

The field property

A container element that describes a single interactive container capable of capturing and presenting data
content.

The id property

A unique identifier that may be used to identify this element as a target.

The initialNumber property

This property supplies the page number if and only if the page is the first page in the document.
Otherwise numbering is sequential.

The medium property

An element that describes a physical medium upon which to render. Some hybrid paper/glass media, such
as PDF, may require both paper and glass properties.

The name property

An identifier that may be used to identify this element in script expressions.

The numbered property

This property specifies whether the page is considered a numbered page.

Numbered pages contribute to the normal incrementing of page numbers, whereas un-numbered pages
occur without incrementing page numbering.

1

The page area represents a numbered page. Therefore the instantiation of the page area
contributes to the incrementing of the current page number.

0

The page area represents a un-numbered page. Therefore the instantiation of the page area does
not contribute to the incrementing of the current page number.

XFA Specification
Chapter 17, Template Specification Template Reference 754

The occur property

An element that describes the constraints over the number of allowable instances for its enclosing
container.

The oddOrEven property

controls whether the page may be in odd or even positions. Odd or even is determined by physical
surface count, not by the page number. The first page in a document and every second page thereafter is
odd, the other pages are even. When printing in duplex odd pages are on the front surface of a sheet and
even on the back surface of a sheet.

any

This page can be in any position.

even

This page can only be placed in an even position (when printing in duplex, on the back of a sheet).

odd

This page can only be placed in an odd position (when printing in duplex, on the front of a sheet).

This property is ignored within an orderedOccurrence pageSet.

The pagePosition property

Controls in what context the page may be used within a contiguous sequence of pages from the same
pageSet.

any

This page can be used in any context.

first

This page can only be used as the first page in a contiguous sequence.

last

This page can only be used as the last page in a contiguous sequence.

only

This page can only be used as the sole page in a sequence.

rest

This page can be used in any context except first or last in a sequence.

This property is ignored within an orderedOccurrence pageSet.

The relevant property

Specifies the views for which the enclosing object is relevant. The views themselves are specified in the
config object.

Views are supplied as a space-separated list of viewnames: relevant="[+|-]viewname
[[+|-]viewname [...]]". A token of the form viewname or +viewname indicates the enclosing
element should be included in that particular view. A token of the form -viewname indicates the element
should be excluded from that particular view.

XFA Specification
Chapter 17, Template Specification Template Reference 755

The viewnames simplex, duplex, and preprinted are particularly interesting here. By convention
these are used for single-sided printing, double-sided printing, and printing onto preprinted stock,
respectively.

The subform property

A container element that describes a single subform capable of enclosing other containers.

The use property

At template load time, invokes another object in the same document as a prototype for this object. The
content of this property is either a SOM expression (which cannot start with '#') or a '#' character followed
by an XML ID.

The object used as a prototype does not need to be the child of proto. Any object of the appropriate
class can be used as a prototype.

If both use and usehref are non-empty usehref takes precedence.

The usehref property

At template load time, invokes an external object as a prototype for this object. The content of this
property is an URL, followed by '#', followed by either an XML ID or by som(SOM_expr) where SOM_expr
represents a SOM expression.

The XML ID or SOM expression is resolved in the context of the external document.

If both use and usehref are non-empty usehref takes precedence.

XFA Specification
Chapter 17, Template Specification Template Reference 756

The pageSet element
An element that describes a set of related page area objects.

<pageSet

Properties:
 duplexImposition="longEdge | shortEdge"
 id="cdata"
 name="cdata"
 relation="orderedOccurrence | duplexPaginated |
 simplexPaginated"
 relevant="cdata"
 use="cdata"
 usehref="cdata"
>

 <extras/> [0..1]
 <occur/> [0..1]
Children:
 <pageArea/> [0..n]
 <pageSet/> [0..n]
</pageSet>

The pageSet element is used within the following other elements:
pageSet proto subform

The duplexImposition property

This attribute modifies the pagination behavior when the relation attribute is set to
duplexPaginated. Otherwise it is ignored. The value must be one of the following.

longEdge

Successive sheets are joined on the long edge. This is the default.

shortEdge

Successive sheets are joined on the short edge.

The extras property

An enclosure around one or more sets of custom properties. The content of this element may be used by
custom applications.

The id property

A unique identifier that may be used to identify this element as a target.

The name property

An identifier that may be used to identify this element in script expressions.

The occur property

An element that describes the constraints over the number of allowable instances for its enclosing
container.

XFA Specification
Chapter 17, Template Specification Template Reference 757

The pageArea property

An element that describes a rendering surface.

The pageSet property

An element that describes a set of related page area objects.

The relation property

Selects the method used to choose what pageArea to use next.

orderedOccurrence

The pageArea objects are consumed in document order based on their occurrence indicators,
ignoring their oddOrEven, blankOrNotBlank and pagePosition properties. This was the
only method available prior to XFA 2.5.

simplexPaginated

pageArea objects are chosen according to need, ignoring oddOrEven and blankOrNotBlank
properties but taking into account pagePosition.

duplexPaginated

pageArea objects are chosen according to need, taking into account oddOrEven,
blankOrNotBlank and pagePosition properties.

The relevant property

Specifies the views for which the enclosing object is relevant. The views themselves are specified in the
config object.

Views are supplied as a space-separated list of viewnames: relevant="[+|-]viewname
[[+|-]viewname [...]]". A token of the form viewname or +viewname indicates the enclosing
element should be included in that particular view. A token of the form -viewname indicates the element
should be excluded from that particular view.

If a container is excluded, it is not considered in the data binding process.

See also Concealing Containers Depending on View and Config Specification.

The use property

At template load time, invokes another object in the same document as a prototype for this object. The
content of this property is either a SOM expression (which cannot start with '#') or a '#' character followed
by an XML ID.

The object used as a prototype does not need to be the child of proto. Any object of the appropriate
class can be used as a prototype.

If both use and usehref are non-empty usehref takes precedence.

The usehref property

At template load time, invokes an external object as a prototype for this object. The content of this
property is an URL, followed by '#', followed by either an XML ID or by som(SOM_expr) where SOM_expr
represents a SOM expression.

The XML ID or SOM expression is resolved in the context of the external document.

XFA Specification
Chapter 17, Template Specification Template Reference 758

If both use and usehref are non-empty usehref takes precedence.

XFA Specification
Chapter 17, Template Specification Template Reference 759

The para element
A formatting element that specifies default paragraph and alignment properties to be applied to the
content of an enclosing container.

<para

Properties:
 hAlign="left | center | justify | justifyAll | radix |
 right"
 id="cdata"
 lineHeight="0pt | measurement"
 marginLeft="0in | measurement"
 marginRight="0in | measurement"
 orphans="0 | integer"
 preserve="cdata"
 radixOffset="0in | measurement"
 spaceAbove="0in | measurement"
 spaceBelow="0in | measurement"
 tabDefault="cdata"
 tabStops="cdata"
 textIndent="0in | measurement"
 use="cdata"
 usehref="cdata"
 vAlign="top | bottom | middle"
 widows="0 | integer"
>

 <hyphenation/> [0..1]
</para>

The para element is used within the following other elements:
caption draw exclGroup field proto subform

The hAlign property

Horizontal text alignment control.

center

Center horizontally within the available region.

justify

Left-align the last line and spread-justify the rest.

justifyAll

Spread-justify all lines to fill the available region.

left

Align with left edge of the available region.

radix

Align the radix indicator (decimal point or comma, depending upon locale) at the location
specified by the radixOffset property of the para element. If there is no radix indicator, the
last character is assumed to represent the units column.

XFA Specification
Chapter 17, Template Specification Template Reference 760

right

Align with right edge of the available region.

The hyphenation property

An element that controls auto-hyphenation of text.

The id property

A unique identifier that may be used to identify this element as a target.

The lineHeight property

A measurement specifying the line height to be applied to the paragraph content. Absolute omission or
an empty specified value indicates that the font is to be used to determine the line height.

The marginLeft property

A measurement representing the left indentation of the paragraph. The default is zero.

The marginRight property

A measurement representing the right indentation of the paragraph. The default is zero.

The orphans property

Minimum number of lines to allow in an orphan paragraph. The default is zero, which has the same
meaning as one.

The preserve property

(DEPRECATED) This property specifies widow/orphan-style constraints on the overflow behavior of the
content within the enclosing container.

This property has a lower precedence than any keep properties specified on the content within the
enclosing container.

0

The content can be broken across an overflow boundary in an implementation-defined manner.

integer

An integer value greater than zero specifies the minimum quantity of content that must transition
across the overflow boundary. For instance, specifying an integer value of 2 would prevent a
single line of content from being widowed across the overflow boundary; it would result in a
minimum of two lines of content transitioning across the overflow boundary.

all

Each paragraph of content must be kept intact and therefore cannot be broken across an overflow
boundary.

This attribute is now deprecated. For new templates use the widows and orphans attributes instead.

The radixOffset property

A measurement representing the separation between the right margin and the radix point. If omitted, the
value is assumed to be zero. This attribute is meaningful only if hAlign is radix.

XFA Specification
Chapter 17, Template Specification Template Reference 761

The spaceAbove property

A measurement representing the vertical spacing in addition to the maximum font leading of the first line
of the paragraph. The default is zero.

The spaceBelow property

A measurement representing the vertical spacing that appears after a paragraph. The default is zero.

The tabDefault property

A measurement representing the distance between default tab stops. The default is not to set default tab
stops.

For more information see Tab Stops.

Prior to XFA 2.8 the default tab stops were always left-aligned. Since XFA 2.8 the default tab stops have
been left-aligned for left-to-right text and right-aligned for right-to-left text. In Adobe products this
change can be overridden by the v2.7-layout flag.

The tabStops property

A space-separated list of tab stop locations. The meaning of this property varies depending upon the
direction of text flow.

For left-to-right text, within the region from the left margin to the rightmost tab stop in the list, these
replace the default tab stops specified by the tabDefault attribute. To the right of that point the
default tab stops apply.

For right-to-left text the affected region starts at the right margin and extends to the leftmost tab stop in
the list. To the left of that point the default tab stops apply.

Each list entry consists of a keyword specifying the alignment at the tab stop, followed by a space,
followed by the distance of the tab stop from the left margin. The tab stop alignment is one of the
following:

after

Right-aligned when the flow direction is left-to-right, but left-aligned when the flow direction is
right-to-left. (Added in XFA 2.8).

before

Left-aligned when the flow direction is left-to-right, but right-aligned when the flow direction is
right-to-left. (Added in XFA 2.8).

center

Center-aligned tab stop

left

Left-aligned tab stop

right

Right-aligned tab stop

decimal

Tab-stop that aligns content around a radix point

XFA Specification
Chapter 17, Template Specification Template Reference 762

For more information see Tab Stops.

The textIndent property

A measurement representing the horizontal positioning of the first line relative to the remaining lines in
the paragraph. A negative value indicates a hanging indent whereas a positive value indicates first line
indent. The default is zero.

The use property

At template load time, invokes another object in the same document as a prototype for this object. The
content of this property is either a SOM expression (which cannot start with '#') or a '#' character followed
by an XML ID.

The object used as a prototype does not need to be the child of proto. Any object of the appropriate
class can be used as a prototype.

If both use and usehref are non-empty usehref takes precedence.

The usehref property

At template load time, invokes an external object as a prototype for this object. The content of this
property is an URL, followed by '#', followed by either an XML ID or by som(SOM_expr) where SOM_expr
represents a SOM expression.

The XML ID or SOM expression is resolved in the context of the external document.

If both use and usehref are non-empty usehref takes precedence.

The vAlign property

Vertical text alignment control.

top

Align with top of the available region.

middle

Center vertically within the available region.

bottom

Align with bottom of the available region.

tabDefault

Reserved for future use.

tabStops

Reserved for future use.

The widows property

The minimum number of lines allowed in a widow paragraph. The default is zero, which is equivalent to
one.

XFA Specification
Chapter 17, Template Specification Template Reference 763

The passwordEdit element
A user interface element that describes a widget intended to aid in the manipulation of password content.
Typically the user-interface will obscure any visual representation of the content.

<passwordEdit

Properties:
 hScrollPolicy="auto | off | on"
 id="cdata"
 passwordChar="cdata"
 use="cdata"
 usehref="cdata"
>

 <border/> [0..1]
 <extras/> [0..1]
 <margin/> [0..1]
</passwordEdit>

The passwordEdit element is used within the following other elements:
proto ui

The border property

A box model element that describes the border surrounding an object.

The extras property

An enclosure around one or more sets of custom properties. The content of this element may be used by
custom applications.

The hScrollPolicy property

Controls the scrollability of the field in the horizontal direction.

auto

If the field is single-line it scrolls horizontally. Multi-line fields do not scroll horizontally.

on

A horizontal scroll bar is always displayed whether or not the input overflows the boundaries of
the field. The field is scrollable regardless of whether it is a single-line or multi-line field.

off

The user is not allowed to enter characters beyond what can physically fit in the field width. This
applies to typing and pasting from the clipboard. However data which is merged into the field
from the Data DOM is not restricted. If the data exceeds the field size the user may not be able to
view all of it.

Note that members of the Acrobat family do not implement the value on. If this value is encountered it is
treated as auto.

The id property

A unique identifier that may be used to identify this element as a target.

XFA Specification
Chapter 17, Template Specification Template Reference 764

The margin property

A box model element that specifies one or more insets for an object.

The passwordChar property

A single character to be echoed in place of each entered password character. The default is "*" (asterisk).

The use property

At template load time, invokes another object in the same document as a prototype for this object. The
content of this property is either a SOM expression (which cannot start with '#') or a '#' character followed
by an XML ID.

The object used as a prototype does not need to be the child of proto. Any object of the appropriate
class can be used as a prototype.

If both use and usehref are non-empty usehref takes precedence.

The usehref property

At template load time, invokes an external object as a prototype for this object. The content of this
property is an URL, followed by '#', followed by either an XML ID or by som(SOM_expr) where SOM_expr
represents a SOM expression.

The XML ID or SOM expression is resolved in the context of the external document.

If both use and usehref are non-empty usehref takes precedence.

XFA Specification
Chapter 17, Template Specification Template Reference 765

The pattern element
A fill type element that describes a hatching pattern.

<pattern

Properties:
 id="cdata"
 type="crossHatch | crossDiagonal | diagonalLeft |
 diagonalRight | horizontal | vertical"
 use="cdata"
 usehref="cdata"
>

 <color/> [0..1]
 <extras/> [0..1]
</pattern>

The pattern element is used within the following other elements:
fill proto

The pattern is rendered as a series of parallel strokes, drawn at an application-defined interval across the
fill area. Some pattern variations draw a second set of strokes at right angles to the first set.

The strokes are drawn in the foreground color on top of a background that is pre-filled with the background
color. The color element enclosed by the linear element determines the foreground color. The color
element enclosed by the parent fill element determines the background color.

The color property

An element that describes a color.

The extras property

An enclosure around one or more sets of custom properties. The content of this element may be used by
custom applications.

The id property

A unique identifier that may be used to identify this element as a target.

The type property

Specifies the appearance of the pattern.

crossHatch

The pattern appears as a series of intersecting horizontal and vertical lines.

horizontal

The pattern appears as a series of horizontal lines.

vertical

The pattern appears as a series of vertical lines.

XFA Specification
Chapter 17, Template Specification Template Reference 766

diagonalLeft

The pattern appears as a series of diagonal lines proceeding from the top-left to the bottom-right.

diagonalRight

The pattern appears as a series of diagonal lines proceeding from the bottom-left to the top-right.

crossDiagonal

The pattern appears as a series of intersecting diagonal lines.

The use property

At template load time, invokes another object in the same document as a prototype for this object. The
content of this property is either a SOM expression (which cannot start with '#') or a '#' character followed
by an XML ID.

The object used as a prototype does not need to be the child of proto. Any object of the appropriate
class can be used as a prototype.

If both use and usehref are non-empty usehref takes precedence.

The usehref property

At template load time, invokes an external object as a prototype for this object. The content of this
property is an URL, followed by '#', followed by either an XML ID or by som(SOM_expr) where SOM_expr
represents a SOM expression.

The XML ID or SOM expression is resolved in the context of the external document.

If both use and usehref are non-empty usehref takes precedence.

XFA Specification
Chapter 17, Template Specification Template Reference 767

The picture element
A rendering element that describes input parsing and output formatting information.

<picture

Properties:
 id="cdata"
 use="cdata"
 usehref="cdata"
>
 ...pcdata...
</picture>

The picture element is used within the following other elements:
bind connect format proto ui validate

Content

This element encloses picture-data which is a special text format described in Picture Clause Specification.

The id property

A unique identifier that may be used to identify this element as a target.

The use property

At template load time, invokes another object in the same document as a prototype for this object. The
content of this property is either a SOM expression (which cannot start with '#') or a '#' character followed
by an XML ID.

The object used as a prototype does not need to be the child of proto. Any object of the appropriate
class can be used as a prototype.

If both use and usehref are non-empty usehref takes precedence.

The usehref property

At template load time, invokes an external object as a prototype for this object. The content of this
property is an URL, followed by '#', followed by either an XML ID or by som(SOM_expr) where SOM_expr
represents a SOM expression.

The XML ID or SOM expression is resolved in the context of the external document.

If both use and usehref are non-empty usehref takes precedence.

XFA Specification
Chapter 17, Template Specification Template Reference 768

The proto element
An element that describes a set of reusable element definitions, as described in the section Prototypes.

<proto

>
Children:
 <appearanceFilter/> [0..n]
 <arc/> [0..n]
 <area/> [0..n]
 <assist/> [0..n]
 <barcode/> [0..n]
 <bindItems/> [0..n]
 <bookend/> [0..n]
 <boolean/> [0..n]
 <border/> [0..n]
 <break/> [0..n]
 <breakAfter/> [0..n]
 <breakBefore/> [0..n]
 <button/> [0..n]
 <calculate/> [0..n]
 <caption/> [0..n]
 <certificate/> [0..n]
 <certificates/> [0..n]
 <checkButton/> [0..n]
 <choiceList/> [0..n]
 <color/> [0..n]
 <comb/> [0..n]
 <connect/> [0..n]
 <contentArea/> [0..n]
 <corner/> [0..n]
 <date/> [0..n]
 <dateTime/> [0..n]
 <dateTimeEdit/> [0..n]
 <decimal/> [0..n]
 <defaultUi/> [0..n]
 <desc/> [0..n]
 <digestMethod/> [0..n]
 <digestMethods/> [0..n]
 <draw/> [0..n]
 <edge/> [0..n]
 <encoding/> [0..n]
 <encodings/> [0..n]
 <encrypt/> [0..n]
 <event/> [0..n]
 <exData/> [0..n]
 <exObject/> [0..n]
 <exclGroup/> [0..n]
 <execute/> [0..n]
 <extras/> [0..n]
 <field/> [0..n]
 <fill/> [0..n]
 <filter/> [0..n]
 <float/> [0..n]

XFA Specification
Chapter 17, Template Specification Template Reference 769

 [0..n]
 <format/> [0..n]
 <handler/> [0..n]
 <hyphenation/> [0..n]
 <image/> [0..n]
 <imageEdit/> [0..n]
 <integer/> [0..n]
 <issuers/> [0..n]
 <items/> [0..n]
 <keep/> [0..n]
 <keyUsage/> [0..n]
 <line/> [0..n]
 <linear/> [0..n]
 <lockDocument/> [0..n]
 <manifest/> [0..n]
 <margin/> [0..n]
 <mdp/> [0..n]
 <medium/> [0..n]
 <message/> [0..n]
 <numericEdit/> [0..n]
 <occur/> [0..n]
 <oid/> [0..n]
 <oids/> [0..n]
 <overflow/> [0..n]
 <pageArea/> [0..n]
 <pageSet/> [0..n]
 <para/> [0..n]
 <passwordEdit/> [0..n]
 <pattern/> [0..n]
 <picture/> [0..n]
 <radial/> [0..n]
 <reason/> [0..n]
 <reasons/> [0..n]
 <rectangle/> [0..n]
 <ref/> [0..n]
 <script/> [0..n]
 <setProperty/> [0..n]
 <signData/> [0..n]
 <signature/> [0..n]
 <signing/> [0..n]
 <solid/> [0..n]
 <speak/> [0..n]
 <stipple/> [0..n]
 <subform/> [0..n]
 <subformSet/> [0..n]
 <subjectDN/> [0..n]
 <subjectDNs/> [0..n]
 <submit/> [0..n]
 <text/> [0..n]
 <textEdit/> [0..n]
 <time/> [0..n]
 <timeStamp/> [0..n]
 <toolTip/> [0..n]
 <traversal/> [0..n]
 <traverse/> [0..n]

XFA Specification
Chapter 17, Template Specification Template Reference 770

 <ui/> [0..n]
 <validate/> [0..n]
 <value/> [0..n]
 <variables/> [0..n]
</proto>

The proto element is used within the following other elements:
subform

The appearanceFilter property

An element that controls whether the document can be signed with a choice of named signature
appearances.

The arc property

A curve that can be used for describing either an arc or an ellipse.

The area property

A container representing a geographical grouping of other containers.

The assist property

An element that supplies additional information about a container for users of interactive applications.

The barcode property

An element that represents a barcode.

The bindItems property

An element that extracts data into an item list.

The bookend property

An element controlling content that is inserted to "bookend" the contents of the parent object.

The boolean property

A content element describing single unit of data content representing a Boolean logical value.

The border property

A box model element that describes the border surrounding an object.

The break property

(DEPRECATED) An element that describes the constraints on moving to a new page or content area before
or after rendering an object.

The breakAfter property

An element that controls actions to be taken after laying down the contents of the parent object.

The breakBefore property

An element that controls actions to be taken before laying down the contents of the parent object.

XFA Specification
Chapter 17, Template Specification Template Reference 771

The button property

A user interface element that describes a push-button widget.

The calculate property

An automation element that controls the calculation of its container's value.

The caption property

A box model element that describes a descriptive label associated with an object.

The certificate property

An element that holds a suitable Base64 DER-encoded X.509v3 certificate.

The certificates property

An element that holds a collection of certificate filters used to identify the signer.

The checkButton property

A user interface element that describes either a checkbox or radio-button widget.

The choiceList property

A user interface element that describes a widget presenting a list of options. The list of options is specified
by one or more sibling items elements.

The color property

An element that describes a color.

The comb property

An element that causes a field to be presented with vertical lines between the character positions.

The connect property

An element that describes the relationship between its containing object and a connection to a web
service, schema, or data description.

Connections are defined outside the template in a separate packet with its own schema. See the XFA
Connection Set Specification for more information.

The contentArea property

An element that describes a region within a page area eligible for receiving content.

The corner property

A formatting element that describes the appearance of a vertex between two edges

The date property

A content element that describes a single unit of data content representing a date.

The dateTime property

A content element that describes a single unit of data content representing a date and time value.

XFA Specification
Chapter 17, Template Specification Template Reference 772

The dateTimeEdit property

A user interface element describing a widget intended to aid in the selection of date and/or time.

The decimal property

A content type element that describes a single unit of data content representing a number with a fixed
number of digits after the decimal.

The defaultUi property

(DEPRECATED) An element for widgets whose depiction is delegated to the XFA application.

The desc property

An element to hold human-readable metadata.

The digestMethod property

An element to hold the name of an acceptable digest method for a signature.

The digestMethods property

An element to hold a list of names of acceptable digest methods for a signature.

The draw property

A container element that contains non-interactive data content.

The edge property

A formatting element that describes an arc, line, or one side of a border or rectangle.

The encoding property

An element holding the name of an acceptable recipe for signature encoding.

The encodings property

An element holding a list of names of acceptable recipes for signature encoding.

The encrypt property

An element that controls encryption of barcode or submit data.

The event property

An automation element that causes a script to be executed or data to be submitted whenever a particular
event occurs.

The exData property

A content element that describes a single unit of data of a foreign datatype.

The exObject property

An element that describes a single program or implementation-dependent foreign object.

XFA Specification
Chapter 17, Template Specification Template Reference 773

The exclGroup property

A container element that describes a mutual exclusion relationship between a set of containers.

The execute property

An element that causes an event to invoke a WSDL-based web service.

The extras property

An enclosure around one or more sets of custom properties. The content of this element may be used by
custom applications.

The field property

A container element that describes a single interactive container capable of capturing and presenting data
content.

The fill property

A formatting element that applies a color and optional rendered designs to the region enclosed by an
object.

The filter property

An element that contains the criteria for filtering signing certificates used to generate XML digital
signatures.

The float property

A content element that describes a single unit of data content representing a floating point value.

The font property

A formatting element that describes a font.

The format property

A rendering element that encloses output formatting information such as the picture clause.

The handler property

An element controlling what signature handler is used for a data-signing operation for an XML digital
signature.

The hyphenation property

An element that controls auto-hyphenation of text.

The image property

A content element that describes a single image.

The imageEdit property

A user interface element that encloses a widget intended to aid in the manipulation of image content.

The integer property

A content element that describes a single unit of data content representing an integer value.

XFA Specification
Chapter 17, Template Specification Template Reference 774

The issuers property

A collection of issuer certificates that are acceptable for data signing an XML digital signature.

The items property

An element that supplies a set of values for a choice list or a check button.

The keep property

An element that describes the constraints on keeping content together within a page or content area.

The keyUsage property

An element that specifies the key usage settings required in the signing certificate.

The line property

A content element that describes a single rendered line.

The linear property

A fill type element that describes a linear gradient fill.

The lockDocument property

An element that controls whether the document locks when it is signed.

The manifest property

An element that contains a list of references to all the nodes that are included in a node collection.

The margin property

A box model element that specifies one or more insets for an object.

The mdp property

An element that controls an MDP+ signature.

The medium property

An element that describes a physical medium upon which to render. Some hybrid paper/glass media, such
as PDF, may require both paper and glass properties.

The message property

A automation element that holds one or more sub-elements containing messages used with validations
and calculations.

The numericEdit property

A user interface element that describes a widget intended to aid in the manipulation of numeric content.

The occur property

An element that describes the constraints over the number of allowable instances for its enclosing
container.

XFA Specification
Chapter 17, Template Specification Template Reference 775

The oid property

An Object Identifier (OID) of the certificate policies that must be present in the signing certificate.

The oids property

A collection of Object Identifiers (OIDs) which apply to signing data with an XML digital signature.

The overflow property

An element that controls what happens when the parent subform or subform set overflows the current
layout container.

The pageArea property

An element that describes a rendering surface.

The pageSet property

An element that describes a set of related page area objects.

The para property

A formatting element that specifies default paragraph and alignment properties to be applied to the
content of an enclosing container.

The passwordEdit property

A user interface element that describes a widget intended to aid in the manipulation of password content.
Typically the user-interface will obscure any visual representation of the content.

The pattern property

A fill type element that describes a hatching pattern.

The picture property

A rendering element that describes input parsing and output formatting information.

The radial property

A fill type element that describes a radial gradient fill.

The reason property

An element containing a candidate reason string for inclusion in an XML digital signature.

The reasons property

An element containing a choice of reason strings for including with an XML Digital Signature.

The rectangle property

A content element that describes a single rendered rectangle.

The ref property

An element holding an XFA-SOM expression that identifies a node to be included in an XML digital
signature.

XFA Specification
Chapter 17, Template Specification Template Reference 776

The script property

An automation element that contains a script.

The setProperty property

An element that causes a property of the container to be copied from a value in the XFA Data DOM or
from data returned by a web service.

The signData property

An element controlling an XML digital signature.

The signature property

A user interface element that describes a widget intended to allow a user to sign a completed form,
making it a document of record.

The signing property

A collection of signing certificates that are acceptable for use in affixing an XML digital signature.

The solid property

A fill type element that describes a solid fill.

The speak property

An audible prompt describing the contents of a container. This element is ignored by non-interactive
applications.

The stipple property

A fill type element that describes a stippling effect.

The subform property

A container element that describes a single subform capable of enclosing other containers.

The subformSet property

An element that describes a set of related subform objects.

The subjectDN property

An element that contains a key-value pair used to specify the Subject Distinguished Name (DN) that must
be present within the certificate for it to be acceptable for signing.

The subjectDNs property

An element that contains the collection of key-value pairs used to specify the Subject Distinguished Name
(DN) that must be present within the certificate for it to be acceptable for signing.

The submit property

An element that describes how to submit data to a host, using an HTTP POST operation.

The text property

A content element that describes a single unit of data content representing a plain textual value.

XFA Specification
Chapter 17, Template Specification Template Reference 777

The textEdit property

A user interface element that encloses a widget intended to aid in the manipulation of textual content.

The time property

A content element that describes a single unit of data content representing a time value.

The timeStamp property

An element that controls the time-stamping of a signature.

The toolTip property

An element that supplies text for a tool tip. This element is ignored by non-interactive applications.

The traversal property

An element that links its container to other objects in sequence.

The traverse property

An element that declares a single link from its container to another object in a unidirectional chain of links.

The ui property

A user-interface element that encloses the actual user interface widget element.

The validate property

A automation element that controls validation of user-supplied data.

The value property

A content element that encloses a single unit of data content.

The variables property

An element to hold document variables.

XFA Specification
Chapter 17, Template Specification Template Reference 778

The radial element
A fill type element that describes a radial gradient fill.

<radial

Properties:
 id="cdata"
 type="toEdge | toCenter"
 use="cdata"
 usehref="cdata"
>

 <color/> [0..1]
 <extras/> [0..1]
</radial>

The radial element is used within the following other elements:
fill proto

A radial gradient fill appears as the start color at the center of the fill area, and the end color at the outer
edges. Between those two extremes, the color gradually changes from start color to end color. Alternately,
the roles of the start and end colors may be reversed.

The color element enclosed by the radial element determines the end color. The color element enclosed
by the parent fill element determines the start color.

The color property

An element that describes a color.

The extras property

An enclosure around one or more sets of custom properties. The content of this element may be used by
custom applications.

The id property

A unique identifier that may be used to identify this element as a target.

The type property

Specifies the direction of the color transition.

toEdge

The start color appears at the center of the object and transitions into the end color at the outer
edge.

toCenter

The start color appears at the outer edge of the object and transitions into the end color at the
center.

XFA Specification
Chapter 17, Template Specification Template Reference 779

The use property

At template load time, invokes another object in the same document as a prototype for this object. The
content of this property is either a SOM expression (which cannot start with '#') or a '#' character followed
by an XML ID.

The object used as a prototype does not need to be the child of proto. Any object of the appropriate
class can be used as a prototype.

If both use and usehref are non-empty usehref takes precedence.

The usehref property

At template load time, invokes an external object as a prototype for this object. The content of this
property is an URL, followed by '#', followed by either an XML ID or by som(SOM_expr) where SOM_expr
represents a SOM expression.

The XML ID or SOM expression is resolved in the context of the external document.

If both use and usehref are non-empty usehref takes precedence.

XFA Specification
Chapter 17, Template Specification Template Reference 780

The reason element
An element containing a candidate reason string for inclusion in an XML digital signature.

<reason

Properties:
 id="cdata"
 name="cdata"
 use="cdata"
 usehref="cdata"
>
 ...pcdata...
</reason>

The reason element is used within the following other elements:
proto reasons

Content

An acceptable reason.

The id property

A unique identifier that may be used to identify this element as a target.

The name property

An identifier that may be used to identify this element in script expressions.

The use property

At template load time, invokes another object in the same document as a prototype for this object. The
content of this property is either a SOM expression (which cannot start with '#') or a '#' character followed
by an XML ID.

The object used as a prototype does not need to be the child of proto. Any object of the appropriate
class can be used as a prototype.

If both use and usehref are non-empty usehref takes precedence.

The usehref property

At template load time, invokes an external object as a prototype for this object. The content of this
property is an URL, followed by '#', followed by either an XML ID or by som(SOM_expr) where SOM_expr
represents a SOM expression.

The XML ID or SOM expression is resolved in the context of the external document.

If both use and usehref are non-empty usehref takes precedence.

XFA Specification
Chapter 17, Template Specification Template Reference 781

The reasons element
An element containing a choice of reason strings for including with an XML Digital Signature.

<reasons

Properties:
 id="cdata"
 type="optional | required"
 use="cdata"
 usehref="cdata"
>
Children:
 <reason/> [0..n]
</reasons>

The reasons element is used within the following other elements:
filter proto

The id property

A unique identifier that may be used to identify this element as a target.

The reason property

An element containing a candidate reason string for inclusion in an XML digital signature.

The type property

Specifies whether it is mandatory to include a reason string or not.

optional

A reason is not required.

required

A reason is required.

The use property

At template load time, invokes another object in the same document as a prototype for this object. The
content of this property is either a SOM expression (which cannot start with '#') or a '#' character followed
by an XML ID.

The object used as a prototype does not need to be the child of proto. Any object of the appropriate
class can be used as a prototype.

If both use and usehref are non-empty usehref takes precedence.

The usehref property

At template load time, invokes an external object as a prototype for this object. The content of this
property is an URL, followed by '#', followed by either an XML ID or by som(SOM_expr) where SOM_expr
represents a SOM expression.

The XML ID or SOM expression is resolved in the context of the external document.

If both use and usehref are non-empty usehref takes precedence.

XFA Specification
Chapter 17, Template Specification Template Reference 782

The rectangle element
A content element that describes a single rendered rectangle.

<rectangle

Properties:
 hand="even | left | right"
 id="cdata"
 use="cdata"
 usehref="cdata"
>

 <corner/> [0..4]
 <edge/> [0..4]
 <fill/> [0..1]
</rectangle>

The rectangle element is used within the following other elements:
proto value

The edges of a rectangle are rendered in a clockwise fashion, starting from the top left corner. This has
implications for the rectangle's handedness. In particular, a left-handed stroke will appear immediately
outside the rectangle's edge, while a right-handed edge will appear immediately inside. Such behavior is
consistent with borders, but not arcs.

The corner property

A formatting element that describes the appearance of a vertex between two edges

The edge property

A formatting element that describes an arc, line, or one side of a border or rectangle.

The fill property

A formatting element that applies a color and optional rendered designs to the region enclosed by an
object.

The hand property

Description of the handedness of a line or edge.

even

Center the displayed line on the underlying vector or arc.

left

Position the displayed line immediately to the left of the underlying vector or arc, when following
that line from its start point to its end point.

right

Position the displayed line immediately to the right of the underlying vector or arc, when
following that line from its start point to its end point.

XFA Specification
Chapter 17, Template Specification Template Reference 783

The id property

A unique identifier that may be used to identify this element as a target.

The use property

At template load time, invokes another object in the same document as a prototype for this object. The
content of this property is either a SOM expression (which cannot start with '#') or a '#' character followed
by an XML ID.

The object used as a prototype does not need to be the child of proto. Any object of the appropriate
class can be used as a prototype.

If both use and usehref are non-empty usehref takes precedence.

The usehref property

At template load time, invokes an external object as a prototype for this object. The content of this
property is an URL, followed by '#', followed by either an XML ID or by som(SOM_expr) where SOM_expr
represents a SOM expression.

The XML ID or SOM expression is resolved in the context of the external document.

If both use and usehref are non-empty usehref takes precedence.

XFA Specification
Chapter 17, Template Specification Template Reference 784

The ref element
An element holding an XFA-SOM expression that identifies a node to be included in an XML digital
signature.

<ref

Properties:
 id="cdata"
 use="cdata"
 usehref="cdata"
>
 ...pcdata...
</ref>

The ref element is used within the following other elements:
manifest proto

The reference must be to a node that is written out to XML when the form is saved. The reference is stored
in the XML digital signature manifest as an XPath expression pointing to the corresponding element in the
XML document. The computed signature includes that element and all of its children.

If the value of this element includes the destination of the signature, the signature handler automatically
excludes the signature from the signature value it calculates.

Examples of SOM expressions used as the value of this element are foo[*] and mySubform..myField

Content

The XFA-SOM expression.

The id property

A unique identifier that may be used to identify this element as a target.

The use property

At template load time, invokes another object in the same document as a prototype for this object. The
content of this property is either a SOM expression (which cannot start with '#') or a '#' character followed
by an XML ID.

The object used as a prototype does not need to be the child of proto. Any object of the appropriate
class can be used as a prototype.

If both use and usehref are non-empty usehref takes precedence.

The usehref property

At template load time, invokes an external object as a prototype for this object. The content of this
property is an URL, followed by '#', followed by either an XML ID or by som(SOM_expr) where SOM_expr
represents a SOM expression.

The XML ID or SOM expression is resolved in the context of the external document.

If both use and usehref are non-empty usehref takes precedence.

XFA Specification
Chapter 17, Template Specification Template Reference 785

The script element
An automation element that contains a script.

<script

Properties:
 binding="cdata"
 contentType="cdata"
 id="cdata"
 name="cdata"
 runAt="client | both | server"
 use="cdata"
 usehref="cdata"
>
 ...pcdata...
</script>

The script element is used within the following other elements:
breakAfter breakBefore calculate event proto traverse validate variables

Content

This element contains a script in the scripting language specified by the contentType property.

The binding property

Identifies the type of application to which the script is directed.

XFA

The script is to be applied by standard XFA applications.

cdata

Any value other than XFA signifies that the script may be ignored by standard XFA applications.

The contentType property

The type of content in the enclosed script.

The following values are allowed:

application/x-formcalc

A FormCalc script, as defined in FormCalc Specification.

cdata

Support for other script types, such as application/javascript is implementation-defined.

The id property

A unique identifier that may be used to identify this element as a target.

The name property

An identifier that may be used to identify this element in script expressions.

XFA Specification
Chapter 17, Template Specification Template Reference 786

The runAt property

Specifies where the script is allowed to run.

This restrictions also applies when this script is called by another script. Hence a script marked to run only
on one side can only be called on that side.

The value must be one of the following:

client

The script runs only on the client.

server

The script runs only on the server.

both

The script runs on both client and server.

There are important security considerations when using scripts that may run on the server. See "Discarding
Unexpected Submitted Packets" for a full discussion of security issues.

The use property

At template load time, invokes another object in the same document as a prototype for this object. The
content of this property is either a SOM expression (which cannot start with '#') or a '#' character followed
by an XML ID.

The object used as a prototype does not need to be the child of proto. Any object of the appropriate
class can be used as a prototype.

If both use and usehref are non-empty usehref takes precedence.

The usehref property

At template load time, invokes an external object as a prototype for this object. The content of this
property is an URL, followed by '#', followed by either an XML ID or by som(SOM_expr) where SOM_expr
represents a SOM expression.

The XML ID or SOM expression is resolved in the context of the external document.

If both use and usehref are non-empty usehref takes precedence.

XFA Specification
Chapter 17, Template Specification Template Reference 787

The setProperty element
An element that causes a property of the container to be copied from a value in the XFA Data DOM or
from data returned by a web service.

<setProperty

Properties:
 connection="cdata"
 ref="cdata"
 target="cdata"
>
</setProperty>

The setProperty element is used within the following other elements:
draw exclGroup field proto subform

The connection property

Optionally supplies the name of an associated connection to a web service. When this is supplied and
non-empty the ref property is interpreted differently.

The ref property

Supplies a pointer to the data to be copied. This is a SOM expression with the restriction that it cannot
contain the string "..". It may be a relative SOM expression. If there is no associated web service then the
expression is interpreted relative to the enclosing container. If there is an associated web service then it is
interpreted relative to the nearest ancestor that asserts a fully-qualified SOM expression as its value of ref
for the same connection.

The target property

A SOM expression identifying the property to be set. The expression is evaluated relative to the container.
The target must be a property or subproperty of the container.

Almost any property of the container can be the target of this element. However the copying is done near
the end of the data merge process. For some properties it is too late because the property has already had
its effect. Also it is not recommended to use this element to set the value property of a field or exclusion
group; use an explicit data reference instead.

XFA Specification
Chapter 17, Template Specification Template Reference 788

The signData element
An element controlling an XML digital signature.

<signData

Properties:
 id="cdata"
 operation="sign | clear | verify"
 ref="cdata"
 target="cdata"
 use="cdata"
 usehref="cdata"
>

 <filter/> [0..1]
 <manifest/> [0..1]
</signData>

The signData element is used within the following other elements:
event proto submit

The filter property

An element that contains the criteria for filtering signing certificates used to generate XML digital
signatures.

The id property

A unique identifier that may be used to identify this element as a target.

The manifest property

An element that contains a list of references to all the nodes that are included in a node collection.

The operation property

The operation to be performed.

sign

Create a digital signature.

verify

Verify that the portion of the document included in the signature manifest matches the signature.

clear

Remove the signature, if any.

The ref property

A SOM expression controlling where the signature is placed during a sign operation. During signature
validate and remove operations, ref specifies the location of the signature that should be validated or
removed.

XFA Specification
Chapter 17, Template Specification Template Reference 789

The target property

The XML ID for the XML digital signature.

The use property

At template load time, invokes another object in the same document as a prototype for this object. The
content of this property is either a SOM expression (which cannot start with '#') or a '#' character followed
by an XML ID.

The object used as a prototype does not need to be the child of proto. Any object of the appropriate
class can be used as a prototype.

If both use and usehref are non-empty usehref takes precedence.

The usehref property

At template load time, invokes an external object as a prototype for this object. The content of this
property is an URL, followed by '#', followed by either an XML ID or by som(SOM_expr) where SOM_expr
represents a SOM expression.

The XML ID or SOM expression is resolved in the context of the external document.

If both use and usehref are non-empty usehref takes precedence.

XFA Specification
Chapter 17, Template Specification Template Reference 790

The signature element
A user interface element that describes a widget intended to allow a user to sign a completed form,
making it a document of record.

<signature

Properties:
 id="cdata"
 type="PDF1.3 | PDF1.6"
 use="cdata"
 usehref="cdata"
>

 <border/> [0..1]
 <extras/> [0..1]
 <filter/> [0..1]
 <manifest/> [0..1]
 <margin/> [0..1]
</signature>

The signature element is used within the following other elements:
proto ui

Note that this element is not used for an XML digital signature. This is used for PDF signatures only. The
presence of a manifest child further indicates that this is an MDP+ signature.

The border property

A box model element that describes the border surrounding an object.

The extras property

An enclosure around one or more sets of custom properties. The content of this element may be used by
custom applications.

The filter property

An element that contains the criteria for filtering signing certificates used to generate XML digital
signatures.

The id property

A unique identifier that may be used to identify this element as a target.

The manifest property

An element that contains a list of references to all the nodes that are included in a node collection.

The margin property

A box model element that specifies one or more insets for an object.

The type property

Controls the signature algorithm used. The default is PDF1.3 which is the signature algorithm used in
Acrobat 4, 5, and 6. The value PDF1.6 signifies the algorithm used in Acrobat 7 and 8. These algorithms
are described in the PDF manual.

XFA Specification
Chapter 17, Template Specification Template Reference 791

The manifest and filter properties are only valid if the signature type is PDF1.6.

The use property

At template load time, invokes another object in the same document as a prototype for this object. The
content of this property is either a SOM expression (which cannot start with '#') or a '#' character followed
by an XML ID.

The object used as a prototype does not need to be the child of proto. Any object of the appropriate
class can be used as a prototype.

If both use and usehref are non-empty usehref takes precedence.

The usehref property

At template load time, invokes an external object as a prototype for this object. The content of this
property is an URL, followed by '#', followed by either an XML ID or by som(SOM_expr) where SOM_expr
represents a SOM expression.

The XML ID or SOM expression is resolved in the context of the external document.

If both use and usehref are non-empty usehref takes precedence.

XFA Specification
Chapter 17, Template Specification Template Reference 792

The signing element
A collection of signing certificates that are acceptable for use in affixing an XML digital signature.

<signing

Properties:
 id="cdata"
 type="optional | required"
 use="cdata"
 usehref="cdata"
>
Children:
 <certificate/> [0..n]
</signing>

The signing element is used within the following other elements:
certificates proto

The handler uses the certificates in this element to populate the default list certificates from which the
signor can choose.

The certificate property

An element that holds a suitable Base64 DER-encoded X.509v3 certificate.

The id property

A unique identifier that may be used to identify this element as a target.

The type property

Specifies whether the values provided in the element should be treated as a restrictive or non-restrictive
set.

optional

The values provided in the element are optional seed values from which the XFA processing
application may choose. The XFA processing application may also supply its own value. The
application typically allows a person filling out the form to choose from the values provided or to
specify his own value.

required

The values provided in the element are seed values from which the XFA processing application
must choose. The application typically allows a person filling out the form to choose from only
those values provided in the element.

The use property

At template load time, invokes another object in the same document as a prototype for this object. The
content of this property is either a SOM expression (which cannot start with '#') or a '#' character followed
by an XML ID.

The object used as a prototype does not need to be the child of proto. Any object of the appropriate
class can be used as a prototype.

If both use and usehref are non-empty usehref takes precedence.

XFA Specification
Chapter 17, Template Specification Template Reference 793

The usehref property

At template load time, invokes an external object as a prototype for this object. The content of this
property is an URL, followed by '#', followed by either an XML ID or by som(SOM_expr) where SOM_expr
represents a SOM expression.

The XML ID or SOM expression is resolved in the context of the external document.

If both use and usehref are non-empty usehref takes precedence.

XFA Specification
Chapter 17, Template Specification Template Reference 794

The solid element
A fill type element that describes a solid fill.

<solid

Properties:
 id="cdata"
 use="cdata"
 usehref="cdata"
>

 <extras/> [0..1]
</solid>

The solid element is used within the following other elements:
fill proto

The color element enclosed by the parent fill element determines the solid fill color.

The extras property

An enclosure around one or more sets of custom properties. The content of this element may be used by
custom applications.

The id property

A unique identifier that may be used to identify this element as a target.

The use property

At template load time, invokes another object in the same document as a prototype for this object. The
content of this property is either a SOM expression (which cannot start with '#') or a '#' character followed
by an XML ID.

The object used as a prototype does not need to be the child of proto. Any object of the appropriate
class can be used as a prototype.

If both use and usehref are non-empty usehref takes precedence.

The usehref property

At template load time, invokes an external object as a prototype for this object. The content of this
property is an URL, followed by '#', followed by either an XML ID or by som(SOM_expr) where SOM_expr
represents a SOM expression.

The XML ID or SOM expression is resolved in the context of the external document.

If both use and usehref are non-empty usehref takes precedence.

XFA Specification
Chapter 17, Template Specification Template Reference 795

The speak element
An audible prompt describing the contents of a container. This element is ignored by non-interactive
applications.

<speak

Properties:
 disable="0 | 1"
 id="cdata"
 priority="custom | caption | name | toolTip"
 rid="cdata"
 use="cdata"
 usehref="cdata"
>
 ...pcdata...
</speak>

The speak element is used within the following other elements:
assist proto

Content

This property may supply text to be enunciated as an audible prompt.

This property may be empty or not supplied. When an interactive application prepares to issue an audible
prompt, it searches for text in a search path that includes the speak element, the associated toolTip
element, the associated caption element, and the container's name. The order of the search path is
determined by the priority property.

The disable property

Inhibits the audible prompt.

0

There will not be an audible prompt. This is the default.

1

An audible prompt will be produced if the field is not hidden or invisible.

The id property

A unique identifier that may be used to identify this element as a target.

The priority property

Alters the search path for text to speak. Whichever element is named in this attribute moves to the front of
the search path. The other elements retain their relative order. The default order is the order in which the
values are shown below.

The value must be one of:

custom

The search order is speak, tooltip, caption, the container's name.

XFA Specification
Chapter 17, Template Specification Template Reference 796

caption

The search order is caption, speak, tooltip, the container's name.

name

The search order is the container's name, speak, tooltip, caption.

tooltip

The search order is tooltip, speak, caption, the container's name.

The rid property

This is a placeholder attribute. It reserves the name in the XFA template namespace to prevent confusion
with the xliff:rid attribute. The xliff:rid attribute uses the namespace
"urn:oasis:names:tc:xliff:document:1.1".

The use property

At template load time, invokes another object in the same document as a prototype for this object. The
content of this property is either a SOM expression (which cannot start with '#') or a '#' character followed
by an XML ID.

The object used as a prototype does not need to be the child of proto. Any object of the appropriate
class can be used as a prototype.

If both use and usehref are non-empty usehref takes precedence.

The usehref property

At template load time, invokes an external object as a prototype for this object. The content of this
property is an URL, followed by '#', followed by either an XML ID or by som(SOM_expr) where SOM_expr
represents a SOM expression.

The XML ID or SOM expression is resolved in the context of the external document.

If both use and usehref are non-empty usehref takes precedence.

XFA Specification
Chapter 17, Template Specification Template Reference 797

The stipple element
A fill type element that describes a stippling effect.

<stipple

Properties:
 id="cdata"
 rate="50 | integer"
 use="cdata"
 usehref="cdata"
>

 <color/> [0..1]
 <extras/> [0..1]
</stipple>

The stipple element is used within the following other elements:
fill proto

A stipple fill appears as the stippling of a stipple color on top of a solid background color

The color element enclosed by the stipple element determines the stipple color. The color element
enclosed by the parent fill element determines the background color.

The color property

An element that describes a color.

The extras property

An enclosure around one or more sets of custom properties. The content of this element may be used by
custom applications.

The id property

A unique identifier that may be used to identify this element as a target.

The rate property

This property specifies the percentage of stipple color that is stippled over the background color. The
background color is not specified by this element.

The stipple-rate is an integer between 0 and 100 inclusive where 0 results in no visible stippling drawn
over the background color and 100 results in a complete obscuring of the background color by filling the
area completely with stipple color. Any stipple rate between 0 and 100 results in a varying blend of
background color and an overlaid stipple color. For instance, a stipple rate of 50 results in an equal blend of
background color and stipple color.

NOTE: Adobe products do not fully implement this attribute. The values 25, 50, and 75 produce blended
colors. Other values (including 0) are treated as 100, that is, they produce pure stipple color. Furthermore,
the specified background color is not used. Instead the foreground color is blended with white.

XFA Specification
Chapter 17, Template Specification Template Reference 798

The use property

At template load time, invokes another object in the same document as a prototype for this object. The
content of this property is either a SOM expression (which cannot start with '#') or a '#' character followed
by an XML ID.

The object used as a prototype does not need to be the child of proto. Any object of the appropriate
class can be used as a prototype.

If both use and usehref are non-empty usehref takes precedence.

The usehref property

At template load time, invokes an external object as a prototype for this object. The content of this
property is an URL, followed by '#', followed by either an XML ID or by som(SOM_expr) where SOM_expr
represents a SOM expression.

The XML ID or SOM expression is resolved in the context of the external document.

If both use and usehref are non-empty usehref takes precedence.

XFA Specification
Chapter 17, Template Specification Template Reference 799

The subform element
A container element that describes a single subform capable of enclosing other containers.

<subform

Properties:
 access="open | nonInteractive | protected | readOnly"
 allowMacro="0 | 1"
 anchorType="topLeft | bottomCenter | bottomLeft |
 bottomRight | middleCenter | middleLeft |
 middleRight | topCenter | topRight"
 colSpan="1 | integer"
 columnWidths="cdata"
 h="0in | measurement"
 id="cdata"
 layout="position | lr-tb | rl-tb | row | table | tb"
 locale="cdata"
 maxH="0in | measurement"
 maxW="0in | measurement"
 mergeMode="consumeData | matchTemplate"
 minH="0in | measurement"
 minW="0in | measurement"
 name="cdata"
 presence="visible | hidden | inactive | invisible"
 relevant="cdata"
 restoreState="manual | auto"
 scope="name | none"
 use="cdata"
 usehref="cdata"
 w="0in | measurement"
 x="0in | measurement"
 y="0in | measurement"
>

 <assist/> [0..1]
 <bind/> [0..1]
 <bookend/> [0..1]
 <border/> [0..1]
 <break/> [0..1]
 <calculate/> [0..1]
 <desc/> [0..1]
 <extras/> [0..1]
 <keep/> [0..1]
 <margin/> [0..1]
 <occur/> [0..1]
 <overflow/> [0..1]
 <pageSet/> [0..1]
 <para/> [0..1]
 <traversal/> [0..1]
 <validate/> [0..1]
 <variables/> [0..1]
Children:
 <area/> [0..n]
 <breakAfter/> [0..n]

XFA Specification
Chapter 17, Template Specification Template Reference 800

 <breakBefore/> [0..n]
 <connect/> [0..n]
 <draw/> [0..n]
 <event/> [0..n]
 <exObject/> [0..n]
 <exclGroup/> [0..n]
 <field/> [0..n]
 <proto/> [0..n]
 <setProperty/> [0..n]
 <subform/> [0..n]
 <subformSet/> [0..n]
</subform>

The subform element is used within the following other elements:
area pageArea proto subform subformSet template

The access property

Controls user access to the contents.

nonInteractive

Allow the content to be loaded from the data document, but not updated interactively. The
effect is to behave (for this container) as though rendering to paper regardless of whether or not
the context is interactive. Calculations are performed as usual and the content can be modified by
scripts or web service invocations.

open

Allow update without restriction. The interactive user may modify the container's content, and tab
or otherwise navigate into it. The container will produce events.

protected

The processing application must prevent the user from making any direct changes to the
container's content. Indirect changes (e.g., via calculations) may occur. The container will not
participate in the tabbing sequence, though an application may allow the selection of text for
clipboard copying. A protected container will not generate any events.

readOnly

The processing application must not allow the user to make direct changes to the container's
content. Indirect changes (e.g., via calculations) may occur. The container shall participate in the
tabbing sequence and must allow the user to view its content, possibly scrolling through that
content if required. The user must be able to select the container's content for clipboard copying.
The container shall also generate a subset of events (those not associated with the user making
direct changes to the content).

Prior to XFA 2.8 this property existed only on fields and exclusion groups. Since XFA 2.8 this property has
extended to subforms. When used on a subform the property supplies default behavior to the objects
within that subform. However any such object can override the inherited default by asserting its own
more-restricted access. In this evaluation the order of precedence, from highest to lowest, is
nonInteractive, protected, readOnly, and finally open.

XFA Specification
Chapter 17, Template Specification Template Reference 801

The allowMacro property

This property specifies whether to permit the processing application to optimize output by generating a
printer macro for all of the subform's draw content. The use of macros may have an impact on the z-order
of objects.

1

The processing application is permitted to utilize a printer macro for this subform.

0

The processing application is forbidden from utilizing a printer macro for this subform.

The anchorType property

Location of the container's anchor point when placed with positioned layout strategy.

topLeft

Top left corner of the nominal extent.

topCenter

Center of the top edge of the nominal extent.

topRight

Top right corner of the nominal extent.

middleLeft

Middle of the left edge of the nominal extent.

middleCenter

Middle of the nominal extent.

middleRight

Middle of the right edge of the nominal extent.

bottomLeft

Bottom left corner of the nominal extent.

bottomCenter

Center of the bottom edge of the nominal extent.

bottomRight

Bottom right corner of the nominal extent.

The area property

A container representing a geographical grouping of other containers.

The assist property

An element that supplies additional information about a container for users of interactive applications.

The bind property

An element that controls the behavior during merge operations of its enclosing element.

XFA Specification
Chapter 17, Template Specification Template Reference 802

The bookend property

An element controlling content that is inserted to "bookend" the contents of the parent object.

The border property

A box model element that describes the border surrounding an object.

The break property

(DEPRECATED) An element that describes the constraints on moving to a new page or content area before
or after rendering an object.

The breakAfter property

An element that controls actions to be taken after laying down the contents of the parent object.

The breakBefore property

An element that controls actions to be taken before laying down the contents of the parent object.

The calculate property

An automation element that controls the calculation of its container's value.

The colSpan property

Number of columns spanned by this object, when used inside a subform with a layout type of row.
Defaults to 1.

The columnWidths property

Widths for columns of a table. Ignored unless the layout property is set to table.

The value of this property is a set of space-separated tokens. Each token must be a measurement or "-1".
The presence of a measurement causes the corresponding column to be set to that width. The presence of
"-1" causes the corresponding column to grow to the width of the widest content for that column across all
rows of the table.

The connect property

An element that describes the relationship between its containing object and a connection to a web
service, schema, or data description.

Connections are defined outside the template in a separate packet with its own schema. See the XFA
Connection Set Specification for more information.

The desc property

An element to hold human-readable metadata.

The draw property

A container element that contains non-interactive data content.

The event property

An automation element that causes a script to be executed or data to be submitted whenever a particular
event occurs.

XFA Specification
Chapter 17, Template Specification Template Reference 803

The exObject property

An element that describes a single program or implementation-dependent foreign object.

The exclGroup property

A container element that describes a mutual exclusion relationship between a set of containers.

The extras property

An enclosure around one or more sets of custom properties. The content of this element may be used by
custom applications.

The field property

A container element that describes a single interactive container capable of capturing and presenting data
content.

The h property

Height for layout purposes. A measurement value for h overrides any growth range allowed by the minH
and maxH attributes. The absolute omission of this attribute or a value specified as an empty string
indicates that the minH and maxH must be respected.

This attribute has no default. Setting this attribute to "-1" is an error.

The id property

A unique identifier that may be used to identify this element as a target.

The keep property

An element that describes the constraints on keeping content together within a page or content area.

The layout property

Layout strategy to be used within this element.

position

The content of the element is positioned according to the to the location information expressed
on the content elements.

lr-tb

The content of the element is flowed in a direction proceeding from left to right and top to
bottom.

rl-tb

The content of the element is flowed in a direction proceeding from right to left and top to
bottom.

row

This is an inner element of a table, representing one or more rows. The objects contained in this
element are cells of the table and their height and width attributes, if any, are ignored. The cells
are laid out from right to left and each one is adjusted to the height of the row and the width of
one or more contiguous columns.

XFA Specification
Chapter 17, Template Specification Template Reference 804

table

This is the outer element of a table. Each of its child subforms or exclusion groups must have its
layout property set to row. The rows of the table are laid out from top to bottom.

tb

The content of the element is flowed in a direction proceeding from top to bottom.

The locale property

A designator that influences the locale used to format the localizable content of this element. Such
localizable content includes currency and time/date. Locale affects the representation of data formatted,
validated, or parsed by picture clauses. Locale is also considered by certain FormCalc functions.

This designator also influences the default direction of text flow within this element. The text layout
engine may override this within portions or all of such text as per the rules in the Unicode Annex 9 [UAX-9]
reference.

The value of this property must be one of the following:

ambient

Causes the ambient locale of the XFA application to be used.

localeName

A valid locale name that conforms to the syntax: language[_country]. Examples of valid locales
are zh for Chinese and en_CA for English specific for Canada. For a complete list of valid locale
values, refer to the IETF RFC 1766 [RFC1766] and ISO 639 [ISO-639-1] / ISO 3166 [ISO-3166-1]
specifications. Note that this is the same set of locale names used by the xml:lang attribute
defined in [XML1.0].

When this property is absent or empty the default behavior is to inherit the parent object's locale. If the
outermost subform does not specify a locale it uses the ambient locale from the operating system. If the
operating system does not supply a locale it falls back onto en_US.

The margin property

A box model element that specifies one or more insets for an object.

The maxH property

Measurement specifying the maximum height for layout purposes. This attribute is relevant only if the
enclosing container element is growable and has an h attribute whose value is null. If an h attribute is
supplied, the container is not vertically growable and this attribute is ignored.

If this attribute is not supplied or has a value of zero, there is no limit. The default is zero.

The maxW property

Measurement specifying the maximum width for layout purposes. This attribute is relevant only if the
enclosing container element is growable and has a w attribute whose value is null. If a w attribute is
supplied, the container is not horizontally growable and this attribute is ignored.

If this attribute is not supplied or has a value of zero, there is no limit. The default is zero.

XFA Specification
Chapter 17, Template Specification Template Reference 805

The mergeMode property

When present on the root subform, controls whether the merge process can bring in more than one
subform or subform set in response to a single data value.

The value of this attribute must be one of the following.

consumeData

A single data element can only cause the creation of a single subform or subform set. This is
suitable for flat data such as a list of invoices to be printed. This is the default.

matchTemplate

A single data element can generate a single instance of multiple subforms or subform sets. This is
suitable for data generated by a query of a relational database.

The minH property

Measurement specifying the minimum height for layout purposes. This attribute is relevant only if the
enclosing container element is growable and has an h attribute whose value is null. If an h attribute is
supplied, the container is not vertically growable and this attribute is ignored.

If this attribute is not supplied or has a value of zero, the minimum width is zero. Note that a minimum
width of zero may have potentially undesireable side-effects such as making the field impossible to select
via the user interface.

The minW property

Measurement specifying the minimum width for layout purposes. This attribute is relevant only if the
enclosing container element is growable and has a w attribute whose value is null. If a w attribute is
supplied, the container is not horzontally growable and this attribute is ignored.

If this attribute is not supplied or has a value of zero, the minimum height is zero. Note that a minimum
height of zero may have potentially undesireable side-effects such as making the field impossible to
select via the user interface.

The name property

An identifier that may be used to identify this element in script expressions.

The occur property

An element that describes the constraints over the number of allowable instances for its enclosing
container.

The overflow property

An element that controls what happens when the parent subform or subform set overflows the current
layout container.

The pageSet property

An element that describes a set of related page area objects.

The para property

A formatting element that specifies default paragraph and alignment properties to be applied to the
content of an enclosing container.

XFA Specification
Chapter 17, Template Specification Template Reference 806

The presence property

Controls the participation of the associated object in different phases of processing. If the object is a
container the contents of the container inherit whatever restrictions this control applies.

visible

Participate in interaction, layout, and rendering. The object is visible and takes up space. If it is
capable it takes part in calculations, validations, and events.

hidden

Participate in interaction but not layout or rendering. The object is not displayed and does not
take up space. However, if it is capable it does participate in calculations, validations, and events.

inactive

Do not participate in interaction, layout, or rendering. The object is not displayed, does not take
up space, and does not take part in calculations, validations, or event processing. (New in XFA 3.0.)

invisible

Participate in interaction and layout but not rendering. The associated object takes up space but is
invisible. If it is capable it takes part in calculations, validations, and events.

This control does not affect the ability of the associated object to hold data or to take part in data binding.

The proto property

An element that describes a set of reusable element definitions, as described in the section Prototypes.

The relevant property

Specifies the views for which the enclosing object is relevant. The views themselves are specified in the
config object.

Views are supplied as a space-separated list of viewnames: relevant="[+|-]viewname
[[+|-]viewname [...]]". A token of the form viewname or +viewname indicates the enclosing
element should be included in that particular view. A token of the form -viewname indicates the element
should be excluded from that particular view.

If a container is excluded, it is not considered in the data binding process.

See also Concealing Containers Depending on View and Config Specification.

The restoreState property

Controls whether the form state is automatically saved when closed and restored on reopening.

manual

Script may restore specific properties but nothing happens automatically. This setting is required
for certified documents.

auto

The whole state of the document is saved at closing and restored automatically upon re-opening.
This includes data which was manually entered to override calculations, and data which was
retained despite generating a validation warning. As far as possible it is as though the original
session was never interrupted. This setting can not be used for certified documents.

XFA Specification
Chapter 17, Template Specification Template Reference 807

This property is only meaningful on the root subform.

The scope property

Controls participation of the subform in data binding and SOM expressions.

By default a named subform takes part in data binding and can be referenced using a SOM expression.
This property allows a subform to be given a name but remain transparent to data binding and SOM
expressions. The value of this property must be one of:

name

If the subform has a name it takes part in data binding and SOM expressions. Otherwise it does
not.

none

The subform does not take part in data binding and SOM expressions, even if it has a name.

The setProperty property

An element that causes a property of the container to be copied from a value in the XFA Data DOM or
from data returned by a web service.

The subform property

A container element that describes a single subform capable of enclosing other containers.

The subformSet property

An element that describes a set of related subform objects.

The traversal property

An element that links its container to other objects in sequence.

The use property

At template load time, invokes another object in the same document as a prototype for this object. The
content of this property is either a SOM expression (which cannot start with '#') or a '#' character followed
by an XML ID.

The object used as a prototype does not need to be the child of proto. Any object of the appropriate
class can be used as a prototype.

If both use and usehref are non-empty usehref takes precedence.

The usehref property

At template load time, invokes an external object as a prototype for this object. The content of this
property is an URL, followed by '#', followed by either an XML ID or by som(SOM_expr) where SOM_expr
represents a SOM expression.

The XML ID or SOM expression is resolved in the context of the external document.

If both use and usehref are non-empty usehref takes precedence.

XFA Specification
Chapter 17, Template Specification Template Reference 808

The validate property

A automation element that controls validation of user-supplied data.

The variables property

An element to hold document variables.

The w property

Width for layout purposes. A measurement value for w overrides any growth range allowed by the minW
and maxW attributes. The absolute omission of this attribute or a value specified as an empty string
indicates that the minW and maxW must be respected.

This attribute has no default. Setting this attribute to "-1" is an error.

The x property

X coordinate of the container's anchor point relative to the top-left corner of the parent container's
nominal content region when placed with positioned layout. Defaults to 0.

The y property

Y coordinate of the container's anchor point relative to the top-left corner of the parent container's
nominal content region when placed with positioned layout. Defaults to 0.

XFA Specification
Chapter 17, Template Specification Template Reference 809

The subformSet element
An element that describes a set of related subform objects.

<subformSet

Properties:
 id="cdata"
 name="cdata"
 relation="ordered | choice | unordered"
 relevant="cdata"
 use="cdata"
 usehref="cdata"
>

 <bookend/> [0..1]
 <break/> [0..1]
 <desc/> [0..1]
 <extras/> [0..1]
 <occur/> [0..1]
 <overflow/> [0..1]
Children:
 <breakAfter/> [0..n]
 <breakBefore/> [0..n]
 <subform/> [0..n]
 <subformSet/> [0..n]
</subformSet>

The subformSet element is used within the following other elements:
area proto subform subformSet

The bookend property

An element controlling content that is inserted to "bookend" the contents of the parent object.

The break property

(DEPRECATED) An element that describes the constraints on moving to a new page or content area before
or after rendering an object.

The breakAfter property

An element that controls actions to be taken after laying down the contents of the parent object.

The breakBefore property

An element that controls actions to be taken before laying down the contents of the parent object.

The desc property

An element to hold human-readable metadata.

The extras property

An enclosure around one or more sets of custom properties. The content of this element may be used by
custom applications.

XFA Specification
Chapter 17, Template Specification Template Reference 810

The id property

A unique identifier that may be used to identify this element as a target.

The name property

An identifier that may be used to identify this element in script expressions.

The occur property

An element that describes the constraints over the number of allowable instances for its enclosing
container.

The overflow property

An element that controls what happens when the parent subform or subform set overflows the current
layout container.

The relation property

This property specifies the relationship among the members of the set.

ordered

The members are to be instantiated in the order in which they are declared in the template. This
has the effect of potentially re-ordering the content to satisfy the document order of the template.

unordered

The members are to be instantiated in data order regardless of the order in which they are
declared. This has the effect of potentially re-ordering the set to satisfy the ordering of the
content.

choice

The members are exclusive of each other, and only one member may be instantiated.The
determination of which member to instantiate is based upon the data.

The relevant property

Specifies the views for which the enclosing object is relevant. The views themselves are specified in the
config object.

Views are supplied as a space-separated list of viewnames: relevant="[+|-]viewname
[[+|-]viewname [...]]". A token of the form viewname or +viewname indicates the enclosing
element should be included in that particular view. A token of the form -viewname indicates the element
should be excluded from that particular view.

If a container is excluded, it is not considered in the data binding process.

See also Concealing Containers Depending on View and Config Specification.

The subform property

A container element that describes a single subform capable of enclosing other containers.

The subformSet property

An element that describes a set of related subform objects.

XFA Specification
Chapter 17, Template Specification Template Reference 811

The use property

At template load time, invokes another object in the same document as a prototype for this object. The
content of this property is either a SOM expression (which cannot start with '#') or a '#' character followed
by an XML ID.

The object used as a prototype does not need to be the child of proto. Any object of the appropriate
class can be used as a prototype.

If both use and usehref are non-empty usehref takes precedence.

The usehref property

At template load time, invokes an external object as a prototype for this object. The content of this
property is an URL, followed by '#', followed by either an XML ID or by som(SOM_expr) where SOM_expr
represents a SOM expression.

The XML ID or SOM expression is resolved in the context of the external document.

If both use and usehref are non-empty usehref takes precedence.

XFA Specification
Chapter 17, Template Specification Template Reference 812

The subjectDN element
An element that contains a key-value pair used to specify the Subject Distinguished Name (DN) that must
be present within the certificate for it to be acceptable for signing.

<subjectDN

Properties:
 delimiter="cdata"
 id="cdata"
 name="cdata"
 use="cdata"
 usehref="cdata"
>
 ...pcdata...
</subjectDN>

The subjectDN element is used within the following other elements:
proto subjectDNs

Content

Sets of key-value pairs separated by the delimiter character. Each key-value pair consists of optional
whitespace, followed by a key string, followed by an equals sign (=), followed by the value (which may
include whitespace). All but the last key-value pair must be delimited by the specified delimiter character.

The order of key-value pairs is not significant.

The delimiter property

The delimiter character used to separate key-value pairs. If the attribute is omitted or empty the delimiter
defaults to comma (,).

The id property

A unique identifier that may be used to identify this element as a target.

The name property

An identifier that may be used to identify this element in script expressions.

The use property

At template load time, invokes another object in the same document as a prototype for this object. The
content of this property is either a SOM expression (which cannot start with '#') or a '#' character followed
by an XML ID.

The object used as a prototype does not need to be the child of proto. Any object of the appropriate
class can be used as a prototype.

If both use and usehref are non-empty usehref takes precedence.

The usehref property

At template load time, invokes an external object as a prototype for this object. The content of this
property is an URL, followed by '#', followed by either an XML ID or by som(SOM_expr) where SOM_expr
represents a SOM expression.

XFA Specification
Chapter 17, Template Specification Template Reference 813

The XML ID or SOM expression is resolved in the context of the external document.

If both use and usehref are non-empty usehref takes precedence.

XFA Specification
Chapter 17, Template Specification Template Reference 814

The subjectDNs element
An element that contains the collection of key-value pairs used to specify the Subject Distinguished Name
(DN) that must be present within the certificate for it to be acceptable for signing.

<subjectDNs

Properties:
 id="cdata"
 type="optional | required"
 use="cdata"
 usehref="cdata"
>
Children:
 <subjectDN/> [0..n]
</subjectDNs>

The subjectDNs element is used within the following other elements:
certificates proto

The certificate must contain all the attributes specified in the dictionary. It may also contain additional
attributes.

The id property

A unique identifier that may be used to identify this element as a target.

The subjectDN property

An element that contains a key-value pair used to specify the Subject Distinguished Name (DN) that must
be present within the certificate for it to be acceptable for signing.

The type property

Specifies whether the values provided in the element should be treated as a restrictive or non-restrictive
set.

optional

The values provided in the element are optional seed values from which the XFA processing
application may choose. The XFA processing application may also supply its own value.

required

The values provided in the element are seed values from which the XFA processing application
must choose.

The use property

At template load time, invokes another object in the same document as a prototype for this object. The
content of this property is either a SOM expression (which cannot start with '#') or a '#' character followed
by an XML ID.

The object used as a prototype does not need to be the child of proto. Any object of the appropriate
class can be used as a prototype.

If both use and usehref are non-empty usehref takes precedence.

XFA Specification
Chapter 17, Template Specification Template Reference 815

The usehref property

At template load time, invokes an external object as a prototype for this object. The content of this
property is an URL, followed by '#', followed by either an XML ID or by som(SOM_expr) where SOM_expr
represents a SOM expression.

The XML ID or SOM expression is resolved in the context of the external document.

If both use and usehref are non-empty usehref takes precedence.

XFA Specification
Chapter 17, Template Specification Template Reference 816

The submit element
An element that describes how to submit data to a host, using an HTTP POST operation.

<submit

Properties:
 embedPDF="0 | 1"
 format="xdp | formdata | pdf | urlencoded | xfd | xml"
 id="cdata"
 target="cdata"
 textEncoding="cdata"
 use="cdata"
 usehref="cdata"
 xdpContent="cdata"
>

 <encrypt/> [0..1]
Children:
 <signData/> [0..n]
</submit>

The submit element is used within the following other elements:
event proto

When an event containing a submit element is triggered, several factors influence whether the submission
occurs, as described in "Submitting Data and Other Form Content to a Server".

The embedPDF property

 embedPDF specifies whether PDF is embedded in the submitted content or is represented as an external
reference. This property is relevant only in following circumstances:

● Submitting event is part of a form included in or containing a PDF file.

● Format used to organize the data is XDP, as determined by the format property.

● XDP content being submitted includes PDF and/or XFDF, as determined by the xdpContent property.

0

The associated PDF document is not embedded in the XDP PDF packet; rather, a URI is optionally
provided. The URI must resolve to a PDF resource of MIME type pdf. The URI is the value of the
href attribute in the XDP PDF packet. The URI may be obtained from the XFDF F-key path, which
is relative to the system on which the original PDF file was created. If the URI is unavailable, neither
the PDF itself nor a URI is included in the PDF packet in the submitted XDP.

1

A copy of the associated PDF document is embedded in the submitted XDP. If the XFA application
is capable of updating the PDF (for example, by adding annotations), the updated PDF is included
in the PDF packet in the submitted XDP.

The encrypt property

An element that controls encryption of barcode or submit data.

XFA Specification
Chapter 17, Template Specification Template Reference 817

The format property

Determines the format in which the data will be submitted.

xdp

The data is packaged in XDP format, as described in XDP Specification.

formdata

The data is translated and packaged into an URL-encoded format which emulates certain legacy
software. The use of this format is deprecated; use urlencoded for new applications.

pdf

The data is packaged in PDF format as described in the PDF Reference [PDF].

urlencoded

The data is packaged in URL-encoded format as described in Uniform Resource Locators (URL)
[RFC1738]. However contrary to the recommendation of that specification, the textEncoding
property is used to determine how the text is expressed before it is URL-encoded.

xfd

The data is packaged in XFD format, as described in [XFDF].

xml

The data is packaged in XML format as described in the XML Specification version 1.0 [XML1.0]. The
schema is determined according to the same rules used for data unloading, as described in
Unload Processing.

The id property

A unique identifier that may be used to identify this element as a target.

The signData property

An element controlling an XML digital signature.

The target property

The URL to which the data will be submitted. Omission of this attribute implies the XFA processing
application obtains the URI using a product specific technique, such as accessing product-specific
information in the config object.

The textEncoding property

The encoding of text content in the referenced document.

Note that the value of this property is case-insensitive. For that reason it is defined in the schema as cdata
rather than as a list of XML keywords. The list of supported encodings is implementation-dependent.
However patterns are defined for a number of text encodings so that, if implemented, a value that
matches a pattern in a case-insensitive manner has the specified meaning.

none

No special encoding is specified. The characters are encoded using the ambient encoding for the
operating system.

XFA Specification
Chapter 17, Template Specification Template Reference 818

Big-Five

The characters are encoded using Traditional Chinese (Big-Five). Note: there is no official standard
for Big-Five and several variants are in use. XFA uses the variant implemented by Microsoft as code
page 950, [Code-Page-950].

fontSpecific

The characters are encoded in a font-specific way. Each character is represented by one 8-bit byte.
The font referred to is the default font of the enclosing field or draw. This value cannot be used
when the container is a subform.

GBK

The characters are encoded using the GBK extension to GB-2312. This was originally defined by
the Chinese IT Standardization Technical Committee in 1995, but was not published outside
China. For this encoding XFA adopts as a reference Microsoft's Code Page 936, [Code-Page-936].

GB-18030

The characters are encoded using Simplified Chinese [GB18030].

GB-2312

The characters are encoded using Simplified Chinese [GB2312].

ISO-8859-NN

The characters are encoded as specified by ISO-8859 [ISO-8859] part NN.

KSC-5601

The characters are encoded using the Code for Information Interchange (Hangul and Hanja)
[KSC5601].

Shift-JIS

The characters are encoded using JIS X 0208, more commonly known as Shift-JIS [Shift-JIS].

UCS-2

The characters are encoded using Unicode code points as defined by [Unicode-3.2], and UCS-2
serialization as defined by ISO/IEC 10646 [ISO-10646].

UTF-16

The characters are encoded using Unicode code points as defined by [Unicode-3.2], and UTF-16
serialization as defined by ISO/IEC 10646 [ISO-10646].

UTF-8

The characters are encoded using Unicode code points as defined by [Unicode-3.2], and UTF-8
serialization as defined by ISO/IEC 10646 [ISO-10646].

The use property

At template load time, invokes another object in the same document as a prototype for this object. The
content of this property is either a SOM expression (which cannot start with '#') or a '#' character followed
by an XML ID.

The object used as a prototype does not need to be the child of proto. Any object of the appropriate
class can be used as a prototype.

XFA Specification
Chapter 17, Template Specification Template Reference 819

If both use and usehref are non-empty usehref takes precedence.

The usehref property

At template load time, invokes an external object as a prototype for this object. The content of this
property is an URL, followed by '#', followed by either an XML ID or by som(SOM_expr) where SOM_expr
represents a SOM expression.

The XML ID or SOM expression is resolved in the context of the external document.

If both use and usehref are non-empty usehref takes precedence.

The xdpContent property

Controls what subset of the data is submitted. This property is used only when the format property is
xdp.

datasets pdf xfdf

Elements with the tags datasets, pdf, and xfdf are submitted to the host.

tag1tag2 ... tagN

Elements with tags matching any of the specified tags are submitted to the host.

*

All data elements are submitted to the host.

XFA Specification
Chapter 17, Template Specification Template Reference 820

The template element
An element that describes a template. One such element exists for each template and all other elements
described in this specification are descendants of the template element.

<template

Properties:
 baseProfile="full | interactiveForms"
>

 <extras/> [0..1]
Children:
 <subform/> [0..n]
</template>

This element may contain an originalXFAVersion processing instruction. See Processing instruction
for backward compatability for more information.

The baseProfile property

Starting with XFA 2.5 subsets of the XFA grammar may be defined for particular special purposes. This
attribute, if present, identifies the subset of the XFA template grammar for which the template was
created. Programs that edit templates use this attribute to tell them what portion of the template
grammar they are allowed to use.

full

The full XFA template grammar is allowed.

interactiveForms

The template grammar is restricted to the XFAF (XFA Foreground) subset.

The extras property

An enclosure around one or more sets of custom properties. The content of this element may be used by
custom applications.

The subform property

A container element that describes a single subform capable of enclosing other containers.

XFA Specification
Chapter 17, Template Specification Template Reference 821

The text element
A content element that describes a single unit of data content representing a plain textual value.

<text

Properties:
 id="cdata"
 maxChars="0 | integer"
 name="cdata"
 rid="cdata"
 use="cdata"
 usehref="cdata"
>
 ...pcdata...
</text>

The text element is used within the following other elements:
desc exObject extras items message proto value variables

Content

This element may contain text data which is simple XML PCDATA or it may contain rich text. It may also be
empty.

If the content is rich text it must be contained in an aggregating element such as body. The aggregating
element, as well as its content, must belong to the XHTML namespace. Only a subset of XHTML markup is
supported. The mechanism and its limitations are fully described in Rich Text Reference.

When no data content is provided, the data content may be interpreted as representing a null value. This
behavior is dependent upon the context of where the data content is used. For instance, a field may
interpret empty data content as null based upon the associated nullType property in the data
description.

The id property

A unique identifier that may be used to identify this element as a target.

The maxChars property

This property specifies the maximum string length that this text value is permitted to occupy. The length is
calculated by expressing the value as a string of [Unicode 3.2] code points packaged in the UTF-32 format,
as defined by [UAX-19]. The absolute omission of this property, or a value specified as an empty string
indicates that there is no maximum.

The name property

An identifier that may be used to identify this element in script expressions.

The rid property

This is a placeholder attribute. It reserves the name in the XFA template namespace to prevent confusion
with the xliff:rid attribute. The xliff:rid attribute uses the namespace
"urn:oasis:names:tc:xliff:document:1.1".

XFA Specification
Chapter 17, Template Specification Template Reference 822

The use property

At template load time, invokes another object in the same document as a prototype for this object. The
content of this property is either a SOM expression (which cannot start with '#') or a '#' character followed
by an XML ID.

The object used as a prototype does not need to be the child of proto. Any object of the appropriate
class can be used as a prototype.

If both use and usehref are non-empty usehref takes precedence.

The usehref property

At template load time, invokes an external object as a prototype for this object. The content of this
property is an URL, followed by '#', followed by either an XML ID or by som(SOM_expr) where SOM_expr
represents a SOM expression.

The XML ID or SOM expression is resolved in the context of the external document.

If both use and usehref are non-empty usehref takes precedence.

XFA Specification
Chapter 17, Template Specification Template Reference 823

The textEdit element
A user interface element that encloses a widget intended to aid in the manipulation of textual content.

<textEdit

Properties:
 allowRichText="0 | 1"
 hScrollPolicy="auto | off | on"
 id="cdata"
 multiLine="1 | 0"
 use="cdata"
 usehref="cdata"
 vScrollPolicy="auto | off | on"
>

 <border/> [0..1]
 <comb/> [0..1]
 <extras/> [0..1]
 <margin/> [0..1]
</textEdit>

The textEdit element is used within the following other elements:
proto ui

The allowRichText property

Specifies whether the text may include styling (also known as rich text). The supported types of styling are
described in the narrative section RichText.

Note: the allowRichText attribute informs the XFA application whether or not to present styling controls in
the UI; it does not limit the user's ability to type plain text which might be interpreted by some
down-stream application as styling. For instance, the user could type hello regardless of the
setting of the property.

The value of this property must be one of the following:

0

Text styling is not allowed. This is the default when the textEdit element does not contain an
exData element.

1

Text styling is allowed. This is the default when the textEdit element does contain an exData
element.

The border property

A box model element that describes the border surrounding an object.

The comb property

An element that causes a field to be presented with vertical lines between the character positions.

XFA Specification
Chapter 17, Template Specification Template Reference 824

The extras property

An enclosure around one or more sets of custom properties. The content of this element may be used by
custom applications.

The hScrollPolicy property

Controls the scrollability of the field in the horizontal direction.

auto

If the field is single-line it scrolls horizontally. Multi-line fields do not scroll horizontally.

on

A horizontal scroll bar is always displayed whether or not the input overflows the boundaries of
the field. The field is scrollable regardless of whether it is a single-line or multi-line field.

off

The user is not allowed to enter characters beyond what can physically fit in the field width. This
applies to typing and pasting from the clipboard. However data which is merged into the field
from the Data DOM is not restricted. If the data exceeds the field size the user may not be able to
view all of it.

Note that members of the Acrobat family do not implement the value on. If this value is encountered it is
treated as auto.

The id property

A unique identifier that may be used to identify this element as a target.

The margin property

A box model element that specifies one or more insets for an object.

The multiLine property

Specifies whether the text may span multiple lines.

1

The text may span multiple lines. This is the default when the textEdit element is contained within
a draw element.

0

The text is limited to a single line. This is the default when the textEdit element is contained
within a field element.

This property is provided for the benefit of clients (such as HTML browsers) that have two types of text
edit widgets.

The use property

At template load time, invokes another object in the same document as a prototype for this object. The
content of this property is either a SOM expression (which cannot start with '#') or a '#' character followed
by an XML ID.

The object used as a prototype does not need to be the child of proto. Any object of the appropriate
class can be used as a prototype.

XFA Specification
Chapter 17, Template Specification Template Reference 825

If both use and usehref are non-empty usehref takes precedence.

The usehref property

At template load time, invokes an external object as a prototype for this object. The content of this
property is an URL, followed by '#', followed by either an XML ID or by som(SOM_expr) where SOM_expr
represents a SOM expression.

The XML ID or SOM expression is resolved in the context of the external document.

If both use and usehref are non-empty usehref takes precedence.

The vScrollPolicy property

Controls the scrollability of the field in the vertical direction.

auto

If the field is multi-line it scrolls vertically, displaying a vertical scroll bar when necessary.
Single-line fields do not scroll vertically.

on

A vertical scroll bar is always displayed whether or not the input overflows the boundaries of the
field. The field is scrollable regardless of whether it is a single-line or multi-line field.

off

The user is not allowed to enter characters beyond what can physically fit in the field height. This
applies to typing and pasting from the clipboard. However data which is merged into the field
from the Data DOM is not restricted. If the data exceeds the field size the user may not be able to
view all of it.

XFA Specification
Chapter 17, Template Specification Template Reference 826

The time element
A content element that describes a single unit of data content representing a time value.

<time

Properties:
 id="cdata"
 name="cdata"
 use="cdata"
 usehref="cdata"
>
 ...pcdata...
</time>

The time element is used within the following other elements:
desc exObject extras items proto value variables

XFA time values conform to a subset of [ISO-8601]. This element is intended to hold only the time portion
of an ISO-8601 date/time value, and any date information will be truncated. For instance, a time element
enclosing the value 20010326T0630, meaning 6:30am on March 26th 2001, will truncate the date and
hold the value of 0630, resulting in a value of 6:30am.

Content

This element may enclose time data which is a subset of [ISO-8601] as specified in Canonical Format
Reference.

When no content is present, the content shall be interpreted as representing a null value, irrespective of
the value of the associtated nullType property in the data description.

The id property

A unique identifier that may be used to identify this element as a target.

The name property

An identifier that may be used to identify this element in script expressions.

The use property

At template load time, invokes another object in the same document as a prototype for this object. The
content of this property is either a SOM expression (which cannot start with '#') or a '#' character followed
by an XML ID.

The object used as a prototype does not need to be the child of proto. Any object of the appropriate
class can be used as a prototype.

If both use and usehref are non-empty usehref takes precedence.

The usehref property

At template load time, invokes an external object as a prototype for this object. The content of this
property is an URL, followed by '#', followed by either an XML ID or by som(SOM_expr) where SOM_expr
represents a SOM expression.

The XML ID or SOM expression is resolved in the context of the external document.

XFA Specification
Chapter 17, Template Specification Template Reference 827

If both use and usehref are non-empty usehref takes precedence.

XFA Specification
Chapter 17, Template Specification Template Reference 828

The timeStamp element
An element that controls the time-stamping of a signature.

<timeStamp

Properties:
 id="cdata"
 server="cdata"
 type="optional | required"
 use="cdata"
 usehref="cdata"
>
</timeStamp>

The timeStamp element is used within the following other elements:
filter proto

This element is only meaningful when it is the child of a signature element. Otherwise it is ignored.

The id property

A unique identifier that may be used to identify this element as a target.

The server property

The URI of a server providing a time stamp that is compliant with [RFC 3161].

The type property

Indicates whether the time stamp is required or not.

optional

The time stamp is optional.

required

The signature must have a time stamp.

The use property

At template load time, invokes another object in the same document as a prototype for this object. The
content of this property is either a SOM expression (which cannot start with '#') or a '#' character followed
by an XML ID.

The object used as a prototype does not need to be the child of proto. Any object of the appropriate
class can be used as a prototype.

If both use and usehref are non-empty usehref takes precedence.

The usehref property

At template load time, invokes an external object as a prototype for this object. The content of this
property is an URL, followed by '#', followed by either an XML ID or by som(SOM_expr) where SOM_expr
represents a SOM expression.

The XML ID or SOM expression is resolved in the context of the external document.

XFA Specification
Chapter 17, Template Specification Template Reference 829

If both use and usehref are non-empty usehref takes precedence.

XFA Specification
Chapter 17, Template Specification Template Reference 830

The toolTip element
An element that supplies text for a tool tip. This element is ignored by non-interactive applications.

<toolTip

Properties:
 id="cdata"
 rid="cdata"
 use="cdata"
 usehref="cdata"
>
 ...pcdata...
</toolTip>

The toolTip element is used within the following other elements:
assist proto

Content

This property supplies text that is intended to be displayed by an interactive application when the cursor
hovers over the associated field.

The id property

A unique identifier that may be used to identify this element as a target.

The rid property

This is a placeholder attribute. It reserves the name in the XFA template namespace to prevent confusion
with the xliff:rid attribute. The xliff:rid attribute uses the namespace
"urn:oasis:names:tc:xliff:document:1.1".

The use property

At template load time, invokes another object in the same document as a prototype for this object. The
content of this property is either a SOM expression (which cannot start with '#') or a '#' character followed
by an XML ID.

The object used as a prototype does not need to be the child of proto. Any object of the appropriate
class can be used as a prototype.

If both use and usehref are non-empty usehref takes precedence.

The usehref property

At template load time, invokes an external object as a prototype for this object. The content of this
property is an URL, followed by '#', followed by either an XML ID or by som(SOM_expr) where SOM_expr
represents a SOM expression.

The XML ID or SOM expression is resolved in the context of the external document.

If both use and usehref are non-empty usehref takes precedence.

XFA Specification
Chapter 17, Template Specification Template Reference 831

The traversal element
An element that links its container to other objects in sequence.

<traversal

Properties:
 id="cdata"
 use="cdata"
 usehref="cdata"
>

 <extras/> [0..1]
Children:
 <traverse/> [0..n]
</traversal>

The traversal element is used within the following other elements:
draw exclGroup field proto subform

The extras property

An enclosure around one or more sets of custom properties. The content of this element may be used by
custom applications.

The id property

A unique identifier that may be used to identify this element as a target.

The traverse property

An element that declares a single link from its container to another object in a unidirectional chain of links.

The use property

At template load time, invokes another object in the same document as a prototype for this object. The
content of this property is either a SOM expression (which cannot start with '#') or a '#' character followed
by an XML ID.

The object used as a prototype does not need to be the child of proto. Any object of the appropriate
class can be used as a prototype.

If both use and usehref are non-empty usehref takes precedence.

The usehref property

At template load time, invokes an external object as a prototype for this object. The content of this
property is an URL, followed by '#', followed by either an XML ID or by som(SOM_expr) where SOM_expr
represents a SOM expression.

The XML ID or SOM expression is resolved in the context of the external document.

If both use and usehref are non-empty usehref takes precedence.

XFA Specification
Chapter 17, Template Specification Template Reference 832

The traverse element
An element that declares a single link from its container to another object in a unidirectional chain of links.

<traverse

Properties:
 id="cdata"
 operation="next | back | down | first | left | right |
 up"
 ref="cdata"
 use="cdata"
 usehref="cdata"
>

 <extras/> [0..1]
 <script/> [0..1]
</traverse>

The traverse element is used within the following other elements:
proto traversal

The chain of links is not constrained to contain only one-to-one links. There may be many-to-one links,
that is, traverse elements in multiple containers may point to the same destination. For this reason
traversal chains may not be reversible, unless specifically designed to be so.

When any traversal is not specified, it defaults to geographical order, where the forward direction is
defined as left-to-right top-to-bottom. This definition of forward direction is used regardless of the
language component of the locale.

The extras property

An enclosure around one or more sets of custom properties. The content of this element may be used by
custom applications.

The id property

A unique identifier that may be used to identify this element as a target.

The operation property

This property specifies the key-strokes or other situations that cause focus to switch to the container
indicated by this element's script element or ref attribute.

next

Destination in any of the following circumstances:

● User presses the Tab key.

● User enters the final character in a fixed-width field.

● Speech tool finishes enunciating text for the container.

Defaults to left-to-right top-to-bottom order.

In order to serve the speech tool, the chain of next links may include boilerplate objects. Such
objects cannot accept input focus. Therefore, when advancing focus to the next input widget,
the XFA application continues traversing the chain until it reaches an object that does accept

XFA Specification
Chapter 17, Template Specification Template Reference 833

input focus. It is up to the template creator to ensure that the template does not present the XFA
application with a non-terminating loop.

back

Destination when the user presses Shift-Tab on a PC, or the corresponding key on other platforms.
Defaults to right-to-left bottom-to-top order.

Note: members of the Acrobat family do not support this value.

down

Destination when the user presses the down-arrow key. Defaults to top-to-bottom order.

Note: Members of the Acrobat family do not support this value.

first

This property is applicable only when the container is a subform or subform set. The link points to
the child container that gains focus when the container is entered. In effect, the container
delegates focus via this link. If the container does not specify a "first" child container, the top left
child container becomes by default the first to be traversed.

left

Destination when the user presses the left-arrow key. Defaults to right-to-left order.

Note: Members of the Acrobat family do not support this value.

right

Destination when the user presses the right-arrow key. Defaults to left-to-right order.

Note: Members of the Acrobat family do not support this value.

up

Destination when the user presses the up-arrow key. Defaults to bottom-to-top order.

Note: Members of the Acrobat family do not support this value.

The ref property

A SOM expression identifying the destination object. The expression must resolve to a valid layout node. If
the script property is provided, this property is ignored.

The script property

An automation element that contains a script.

The use property

At template load time, invokes another object in the same document as a prototype for this object. The
content of this property is either a SOM expression (which cannot start with '#') or a '#' character followed
by an XML ID.

The object used as a prototype does not need to be the child of proto. Any object of the appropriate
class can be used as a prototype.

XFA Specification
Chapter 17, Template Specification Template Reference 834

If both use and usehref are non-empty usehref takes precedence.

The usehref property

At template load time, invokes an external object as a prototype for this object. The content of this
property is an URL, followed by '#', followed by either an XML ID or by som(SOM_expr) where SOM_expr
represents a SOM expression.

The XML ID or SOM expression is resolved in the context of the external document.

If both use and usehref are non-empty usehref takes precedence.

XFA Specification
Chapter 17, Template Specification Template Reference 835

The ui element
A user-interface element that encloses the actual user interface widget element.

<ui

Properties:
 id="cdata"
 use="cdata"
 usehref="cdata"
>

 <extras/> [0..1]
 <picture/> [0..1]
One-of properties:
 <barcode/> [0..1]
 <button/> [0..1]
 <checkButton/> [0..1]
 <choiceList/> [0..1]
 <dateTimeEdit/> [0..1]
 <defaultUi/> [0..1]
 <imageEdit/> [0..1]
 <numericEdit/> [0..1]
 <passwordEdit/> [0..1]
 <signature/> [0..1]
 <textEdit/> [0..1]
</ui>

The ui element is used within the following other elements:
draw field proto

This element has a set of one-of properties. The choice of one-of property determines the type of widget
displayed. For example, if the button property is included the content will be displayed as a button
widget. This determines both the appearance of the content and the interaction with it. Including the
defaultUi property delegates the decision about what widget to use to the XFA application.

Note that the presence of this element does not imply that its container accepts input from the user. The
container could be a draw element, or it could be a field element with its access property set to
nonInteractive. In either of these cases the ui element merely controls the manner in which the
content is presented.

The barcode property

An element that represents a barcode.

The button property

A user interface element that describes a push-button widget.

The checkButton property

A user interface element that describes either a checkbox or radio-button widget.

The choiceList property

A user interface element that describes a widget presenting a list of options. The list of options is specified
by one or more sibling items elements.

XFA Specification
Chapter 17, Template Specification Template Reference 836

The dateTimeEdit property

A user interface element describing a widget intended to aid in the selection of date and/or time.

The defaultUi property

(DEPRECATED) An element for widgets whose depiction is delegated to the XFA application.

The extras property

An enclosure around one or more sets of custom properties. The content of this element may be used by
custom applications.

The id property

A unique identifier that may be used to identify this element as a target.

The imageEdit property

A user interface element that encloses a widget intended to aid in the manipulation of image content.

The numericEdit property

A user interface element that describes a widget intended to aid in the manipulation of numeric content.

The passwordEdit property

A user interface element that describes a widget intended to aid in the manipulation of password content.
Typically the user-interface will obscure any visual representation of the content.

The picture property

A rendering element that describes input parsing and output formatting information.

The signature property

A user interface element that describes a widget intended to allow a user to sign a completed form,
making it a document of record.

The textEdit property

A user interface element that encloses a widget intended to aid in the manipulation of textual content.

The use property

At template load time, invokes another object in the same document as a prototype for this object. The
content of this property is either a SOM expression (which cannot start with '#') or a '#' character followed
by an XML ID.

The object used as a prototype does not need to be the child of proto. Any object of the appropriate
class can be used as a prototype.

If both use and usehref are non-empty usehref takes precedence.

The usehref property

At template load time, invokes an external object as a prototype for this object. The content of this
property is an URL, followed by '#', followed by either an XML ID or by som(SOM_expr) where SOM_expr
represents a SOM expression.

XFA Specification
Chapter 17, Template Specification Template Reference 837

The XML ID or SOM expression is resolved in the context of the external document.

If both use and usehref are non-empty usehref takes precedence.

XFA Specification
Chapter 17, Template Specification Template Reference 838

The validate element
A automation element that controls validation of user-supplied data.

<validate

Properties:
 formatTest="warning | disabled | error"
 id="cdata"
 nullTest="disabled | error | warning"
 scriptTest="error | disabled | warning"
 use="cdata"
 usehref="cdata"
>

 <extras/> [0..1]
 <message/> [0..1]
 <picture/> [0..1]
 <script/> [0..1]
</validate>

The validate element is used within the following other elements:
exclGroup field proto subform

The extras property

An enclosure around one or more sets of custom properties. The content of this element may be used by
custom applications.

The formatTest property

Controls validation against the UI picture clause.

warning

Emit a message if the data cannot be coerced to fit the picture clause, but allow the user to
proceed to the next field (default).

disabled

Do not perform this test.

error

Emit a message and refuse to accept data that cannot be coerced to fit the picture clause.

The id property

A unique identifier that may be used to identify this element as a target.

The message property

A automation element that holds one or more sub-elements containing messages used with validations
and calculations.

The nullTest property

Controls whether the field can be left empty.

XFA Specification
Chapter 17, Template Specification Template Reference 839

disabled

Do not perform this test (default). An empty field is perfectly acceptable.

error

Emit a message and refuse to accept an empty field.

warning

Emit a message if the field is empty, but allow the user to proceed to the next field.

The picture property

A rendering element that describes input parsing and output formatting information.

The script property

An automation element that contains a script.

The scriptTest property

Controls validation by the enclosed script.

error

Emit a message and refuse to accept data that the script reports is erroneous (default).

disabled

Do not perform this test.

warning

Emit a message if the script reports the data is erroneous, but allow the user to proceed to the
next field.

The use property

At template load time, invokes another object in the same document as a prototype for this object. The
content of this property is either a SOM expression (which cannot start with '#') or a '#' character followed
by an XML ID.

The object used as a prototype does not need to be the child of proto. Any object of the appropriate
class can be used as a prototype.

If both use and usehref are non-empty usehref takes precedence.

The usehref property

At template load time, invokes an external object as a prototype for this object. The content of this
property is an URL, followed by '#', followed by either an XML ID or by som(SOM_expr) where SOM_expr
represents a SOM expression.

The XML ID or SOM expression is resolved in the context of the external document.

If both use and usehref are non-empty usehref takes precedence.

XFA Specification
Chapter 17, Template Specification Template Reference 840

The value element
A content element that encloses a single unit of data content.

<value

Properties:
 id="cdata"
 override="0 | 1"
 relevant="cdata"
 use="cdata"
 usehref="cdata"
>
One-of properties:
 <arc/> [0..1]
 <boolean/> [0..1]
 <date/> [0..1]
 <dateTime/> [0..1]
 <decimal/> [0..1]
 <exData/> [0..1]
 <float/> [0..1]
 <image/> [0..1]
 <integer/> [0..1]
 <line/> [0..1]
 <rectangle/> [0..1]
 <text/> [0..1]
 <time/> [0..1]
</value>

The value element is used within the following other elements:
caption draw field proto

The arc property

A curve that can be used for describing either an arc or an ellipse.

The boolean property

A content element describing single unit of data content representing a Boolean logical value.

The date property

A content element that describes a single unit of data content representing a date.

The dateTime property

A content element that describes a single unit of data content representing a date and time value.

The decimal property

A content type element that describes a single unit of data content representing a number with a fixed
number of digits after the decimal.

The exData property

A content element that describes a single unit of data of a foreign datatype.

XFA Specification
Chapter 17, Template Specification Template Reference 841

The float property

A content element that describes a single unit of data content representing a floating point value.

The id property

A unique identifier that may be used to identify this element as a target.

The image property

A content element that describes a single image.

The integer property

A content element that describes a single unit of data content representing an integer value.

The line property

A content element that describes a single rendered line.

The override property

This property specifies whether the value resulted from an override to a calculation or validation.

0

The value does not represent a value supplied as an override to a calculation or validation
constraint on the value.

1

The value does represent a value supplied as an override to a calculation or validation constraint
on the value.

The rectangle property

A content element that describes a single rendered rectangle.

The relevant property

Specifies the views for which the enclosing object is relevant. The views themselves are specified in the
config object.

Views are supplied as a space-separated list of viewnames: relevant="[+|-]viewname
[[+|-]viewname [...]]". A token of the form viewname or +viewname indicates the enclosing
element should be included in that particular view. A token of the form -viewname indicates the element
should be excluded from that particular view.

If a container is excluded, it is not considered in the data binding process.

See also Concealing Containers Depending on View and Config Specification.

The text property

A content element that describes a single unit of data content representing a plain textual value.

The time property

A content element that describes a single unit of data content representing a time value.

XFA Specification
Chapter 17, Template Specification Template Reference 842

The use property

At template load time, invokes another object in the same document as a prototype for this object. The
content of this property is either a SOM expression (which cannot start with '#') or a '#' character followed
by an XML ID.

The object used as a prototype does not need to be the child of proto. Any object of the appropriate
class can be used as a prototype.

If both use and usehref are non-empty usehref takes precedence.

The usehref property

At template load time, invokes an external object as a prototype for this object. The content of this
property is an URL, followed by '#', followed by either an XML ID or by som(SOM_expr) where SOM_expr
represents a SOM expression.

The XML ID or SOM expression is resolved in the context of the external document.

If both use and usehref are non-empty usehref takes precedence.

XFA Specification
Chapter 17, Template Specification Template Reference 843

The variables element
An element to hold document variables.

<variables

Properties:
 id="cdata"
 use="cdata"
 usehref="cdata"
>
Children:
 <boolean/> [0..n]
 <date/> [0..n]
 <dateTime/> [0..n]
 <decimal/> [0..n]
 <exData/> [0..n]
 <float/> [0..n]
 <image/> [0..n]
 <integer/> [0..n]
 <manifest/> [0..n]
 <script/> [0..n]
 <text/> [0..n]
 <time/> [0..n]
</variables>

The variables element is used within the following other elements:
proto subform

Document variables are used to hold boilerplate which may be inserted conditionally under control of a
script, for example terms and conditions of a purchase agreement. Placing the boilerplate content into a
variables element makes it accessible to scripts via the usual mechanism of SOM expressions.

The variables element can hold any number of separate data items. The data items can be any kind of
data. Each data item bears its own name attribute so they are individually addressable by scripts. In SOM
expressions, data items are directly under the subform. For example, if a subform is declared as:

<subform name="w">
 <subform name="x">
 <variables>
 <integer name="foo">1234</integer>
 <float name="bar">1.234</float>
 </variables>
 <field name="y">...</field>
 </subform>
</subform>

then in the context of the subform named w, the variables are addressed by the SOM expressions x.foo
and x.bar, while the field is addressed as x.y.

It is conventional to place a single variables element in the root subform to hold all document
variables, but this is only a convention. Any subform can hold a variable element.

XFA Specification
Chapter 17, Template Specification Template Reference 844

The boolean property

A content element describing single unit of data content representing a Boolean logical value.

The date property

A content element that describes a single unit of data content representing a date.

The dateTime property

A content element that describes a single unit of data content representing a date and time value.

The decimal property

A content type element that describes a single unit of data content representing a number with a fixed
number of digits after the decimal.

The exData property

A content element that describes a single unit of data of a foreign datatype.

The float property

A content element that describes a single unit of data content representing a floating point value.

The id property

A unique identifier that may be used to identify this element as a target.

The image property

A content element that describes a single image.

The integer property

A content element that describes a single unit of data content representing an integer value.

The manifest property

An element that contains a list of references to all the nodes that are included in a node collection.

The script property

An automation element that contains a script.

The text property

A content element that describes a single unit of data content representing a plain textual value.

The time property

A content element that describes a single unit of data content representing a time value.

The use property

At template load time, invokes another object in the same document as a prototype for this object. The
content of this property is either a SOM expression (which cannot start with '#') or a '#' character followed
by an XML ID.

XFA Specification
Chapter 17, Template Specification Template Reference 845

The object used as a prototype does not need to be the child of proto. Any object of the appropriate
class can be used as a prototype.

If both use and usehref are non-empty usehref takes precedence.

The usehref property

At template load time, invokes an external object as a prototype for this object. The content of this
property is an URL, followed by '#', followed by either an XML ID or by som(SOM_expr) where SOM_expr
represents a SOM expression.

The XML ID or SOM expression is resolved in the context of the external document.

If both use and usehref are non-empty usehref takes precedence.

 846

18 Config Common Specification

The Configuration Data Object Model (DOM) provides a centralized mechanism for specifying
configuration options for XFA applications. The configuration information may be specified in XML format
and passively loaded at the start of processing. However the Configuration DOM also supports a scripting
interface which allows user-supplied scripts to examine and modify the configuration settings.

An XML document containing XFA configuration options is referred to in this specification as an “XFA
configuration document”. A file containing such a document is often referred to as an “XCI file”. “XCI”
stands for XFA Configuration Information. Often the filename suffix “.xci” is used for XCI files, but this is
merely a convention.

This chapter describes the overall syntax of the configuration grammar. It also describes in detail the
common section of the configuration grammar which is required to be implemented by all XFA processors.
In addition individual XFA processors may implement implementation-dependent configuration options.

Adobe’s particular implementation of the configuration grammar is described separately in other
chapters. The implementation of those portions common to all Adobe products (including the outermost
containers) is described in “Adobe Config General Syntax Reference” on page 1211. The subtree specific to
the Acrobat family of products is described in “Adobe Config for Acrobat Syntax Reference” on page 1242.
The subtree specific to the LiveCycle ES2 products is described in “Adobe Config for LiveCycle ES2
Reference” on page 1293.

Background
In order to use the configuration options it is necessary to understand where and when each option has its
effect. Typically XFA applications pass through a number of stages. For example, an interactive form-filling
application passes through the following stages:

1. Load the configuration options into the Configuration DOM.

2. Load the template into the Template DOM.

3. Obtain existing user data from the host in the form of an XML document.

4. Preprocess existing user data via an XSLT interpreter.

5. Load the preprocessed data into the XML Data DOM.

6. Load the data from the XML Data DOM into the XFA Data DOM.

7. Merge the existing data with the template.

8. Layout the merged template plus data onto pages.

9. Present the laid-out pages to the user.

10. Accept and validate input from the user, updating the XFA Data DOM.

11. Unload the updated user data from the XFA Data DOM to the XML Data DOM.

XFA Specification
Chapter 18, Config Common Specification The Configuration Data Object Model 847

12. Create a new XML document containing the updated user data.

13. Postprocess the new XML document via an XSLT interpreter.

14. Send the postprocessed XML document to the host.

Notionally, a separate processor handles each phase, however all of the processors rely on the
Configuration DOM to supply them with configuration information. This centralized mechanism makes it
possible to keep all of the configuration information in a single XML document for easy maintenance, and
to supply a uniform scripting interface for all configuration options.

The actual location of the configuration document (or documents) is variable. XFA provides a convenient
mechanism for packaging XML data (“XDP Specification” on page 989), which might be used to bundle
configuration options with the template and other relevant material. However, XFA applications are free to
use other mechanisms, such as environment variables and command-line parameters, instead of or in
addition to XDP. This specification is limited to the setting of configuration options via XML documents
and scripts.

The Configuration Data Object Model
The Configuration Data Object Model (Configuration DOM) encapsulates the XFA configuration
information and provides standard interfaces to it. The Configuration DOM contains data objects
organized in a tree structure. The configuration tree is itself a branch within a larger XFA tree.

When the configuration DOM is serialized as XML the outermost element is a config element. This
element may contain any number of agent elements as well as custom elements. Each agent element
supplies options for a particular XFA processor such as Acrobat or LiveCycle Form Server. Each agent
element contains one common element, as well as custom elements which are agent-specific. The
following skeleton summarizes these relationships.

<config xmlns="http://www.xfa.org/schema/xci/3.1/">
<agent name="agent-name">

<common>
…

</common>
<custom …>…</custom>
…

</agent>
<agent name="agent-name">

…
</agent>
…
<custom …>…</custom>
…

</config>

This chapter specifies the syntax of the common element and its content. The common element includes
options that all XFA processors are required to support.

The common element and its standard content belong to the namespace
http://www.xfa.org/schema/xci/3.1/ which is known as the XCI namespace. The config and
agent elements also belong to this namespace. Custom elements may belong to the XCI namespace but
are not required to.

XFA Specification
Chapter 18, Config Common Specification The Configuration Data Object Model 848

Defaults
Conceptually the Configuration DOM exists before any configuration document is loaded. The
Configuration DOM initializes all option values to their default values at startup. Options that require a
keyword value are initialized to their default values. Options that do not require keyword values are
initialized to the empty string.

When the XFA application loads the configuration DOM from a configuration document, if a particular
element is not present in the configuration document, the associated option must retain its preexisting
value.

Most of the default values cause the associated option to adopt safe behavior. The only exceptions are the
uri elements which supply the locations for the data and template documents; the XFA application may
declare a fatal error if either or both of these options is set to the empty string when the time comes to
load the associated document. As an alternative it may fall back on some other mechanism to locate the
required document.

Scripting Interface
The Configuration DOM is part of a larger tree that holds all exposed XFA objects. The single large tree
makes it possible to refer to XFA objects using a unified format known as a Scripting Object Model (SOM)
expression. The grammar of SOM expressions is described in “Scripting Object Model” on page 86. Briefly,
an expression consists of a sequence of node names separated by periods (“.” characters). Starting from
some point in the XFA tree, each successive name identifies which child of the current node to descend to.
The root of the Configuration DOM must be a child of the root xfa node. Hence, the config node itself is
xfa.config. Assuming the application name is “myapp”, the node representing the attributes
element would be referenced by the SOM expression
xfa.config.myapp.common.data.attributes.

In addition, SOM expressions must recognize the short-form “$config” as equivalent to xfa.config. Thus
for example the “attributes” element mentioned in the preceding paragraph could be referenced as
$config.myapp.data.attributes.

Caution: The scripting interface makes it possible for user-supplied scripts to inspect and modify the
contents of the Configuration DOM. However, it is not responsible for guaranteeing that
modifying the value of a particular option will have any effect. In particular, many options have
an effect only during a particular phase of processing. If a script changes the value of an option
after the option has already had its effect the change will, at best, accomplish nothing. The script
writer must ensure that each assignment is done before the phase(s) to which the option
applies. It is recommended that XFA applications and scripts set any required non-default option
values in the Configuration DOM as early in the processing cycle as possible.

Some options have effects during more than one phase of processing. This specification does
not guarantee that it is safe to alter a value in the Configuration DOM during or after the
processing phase in which the value is first used. When and under what circumstances it is safe
to alter the value of an option is implementation-defined. It is recommended that XFA
applications and scripts refrain from altering the value of each option in the Configuration DOM
once it has been set.

XFA Specification
Chapter 18, Config Common Specification Config Common Element Reference 849

Config Common Element Reference

The adjustData element
This option controls whether the XFA application re-normalizes the data after merging.

<adjustData

Properties:
 desc="cdata"
 lock="0 | 1"
>
 ...pcdata...
</adjustData>

The adjustData element is used within the following other elements:
data

Re-normalizing is coercing the data in the XML Data DOM to fit the structure of the template. The coercion
is carried out near the end of the data binding phase.

Content

The content must be one of the following:

1

Coercion of the data is required. This is the default.

0

Coercion of the data is forbidden.

When the value of adjustData is 1, the XFA application rearranges the XML Data DOM to fit the
hierarchical structure of the template. When the value is 0, the XFA application does not alter the XML Data
DOM except to introduce nodes that the template explicitly references. This option takes effect during
data binding. See Re-Normalization.

The desc property

An attribute to hold human-readable metadata.

The lock property

A permission flag for allowing or blocking attempted changes to the element.

0

Allow changes to properties and content.

1

Block changes to properties and content.

XFA Specification
Chapter 18, Config Common Specification Config Common Element Reference 850

The attributes element
This option controls whether the data-loader loads attributes from the XML Data DOM into the XFA Data
DOM.

<attributes

Properties:
 desc="cdata"
 lock="0 | 1"
>
 ...pcdata...
</attributes>

The attributes element is used within the following other elements:
data

This option takes effect during the data-load phase. If this option prevents attributes from being loaded
into the XFA Data DOM, then during the data-unload phase the XFA application obtains the attributes and
their values from the XML Data DOM and inserts them into the output XML document. See the Basic Data
Binding to Produce the XFA Form DOM for more detailed information about the algorithms used.

For more information about this element, see Extended Mapping Rules.

Content

The content must be one of the following:

preserve

The XFA application loads attributes from the XML Data DOM into the XFA Data DOM as described
in Basic Data Binding to Produce the XFA Form DOM. This is the default.

delegate

The XFA application determines whether or not to load attributes.

ignore

The XFA application does not load attributes into the XFA Data DOM.

The desc property

An attribute to hold human-readable metadata.

The lock property

A permission flag for allowing or blocking attempted changes to the element.

0

Allow changes to properties and content.

1

Block changes to properties and content.

XFA Specification
Chapter 18, Config Common Specification Config Common Element Reference 851

The base element
This option supplies a base location for URIs in the template. When this element is absent or empty the
location of the template is used as the base.

<base

Properties:
 desc="cdata"
 lock="0 | 1"
>
 ...pcdata...
</base>

The base element is used within the following other elements:
template

Content

The value of this element, when supplied, is interpreted as a URI Reference as defined in RFC 2396
[RFC2396], after processing according to Section 3.1. In ordinary language this means that it must be a
fully qualified path pointing to the location of include files.

This option supplies a facility very similar to the xml:base attribute specified in XML Base [XMLBASE].
However it provides an additional level of flexibility because it can be set by a separate document (or even
a script) external to the template.

This option affects processing during all phases.

Note that XFA processors should not allow untrusted forms to change this option.

The desc property

An attribute to hold human-readable metadata.

The lock property

A permission flag for allowing or blocking attempted changes to the element.

0

Allow changes to properties and content.

1

Block changes to properties and content.

XFA Specification
Chapter 18, Config Common Specification Config Common Element Reference 852

The common element
This element is a container for options used by many or all XFA applications.

<common

Properties:
 desc="cdata"
 lock="0 | 1"
>

 <data/> [0..1]
 <locale/> [0..1]
 <localeSet/> [0..1]
 <messaging/> [0..1]
 <suppressBanner/> [0..1]
 <template/> [0..1]
 <validationMessaging/> [0..1]
 <versionControl/> [0..1]
Children:
 <log/> [0..n]
</common>

The data property

This element is a container for those options which control the handling of user data (as opposed to
templates or other XFA documents).

The desc property

An attribute to hold human-readable metadata.

The locale property

This option specifies a default locale.

The localeSet property

This option supplies the location of an alternate set of locale definitions that are used when a locale is not
fully defined in the form itself.

The lock property

A permission flag for allowing or blocking attempted changes to the element.

0

Allow changes to properties and content.

1

Block changes to properties and content.

The log property

This option controls the generation of a log file by the XFA processor.

XFA Specification
Chapter 18, Config Common Specification Config Common Element Reference 853

The messaging property

This element is a container for message elements.

The suppressBanner property

This option controls whether the application displays a banner on standard output at startup.

The template property

This option controls the location of the template file.

The validationMessaging property

This option controls the reporting of validation errors to the user.

The versionControl property

Controls what happens when the XFA version of the form is different from that of the processing software.

XFA Specification
Chapter 18, Config Common Specification Config Common Element Reference 854

The data element
This element is a container for those options which control the handling of user data (as opposed to
templates or other XFA documents).

<data

Properties:
 desc="cdata"
 lock="0 | 1"
>

 <adjustData/> [0..1]
 <attributes/> [0..1]
 <incrementalLoad/> [0..1]
 <outputXSL/> [0..1]
 <range/> [0..1]
 <record/> [0..1]
 <startNode/> [0..1]
 <uri/> [0..1]
 <window/> [0..1]
 <xsl/> [0..1]
Children:
 <excludeNS/> [0..n]
 <transform/> [0..n]
</data>

The data element is used within the following other elements:
common

The adjustData property

This option controls whether the XFA application re-normalizes the data after merging.

The attributes property

This option controls whether the data-loader loads attributes from the XML Data DOM into the XFA Data
DOM.

The desc property

An attribute to hold human-readable metadata.

The excludeNS property

This option controls the exclusion of data in particular namespaces from the XFA Data DOM.

The incrementalLoad property

This option determines whether the data is loaded into a moving window or all at once.

The lock property

A permission flag for allowing or blocking attempted changes to the element.

0

Allow changes to properties and content.

XFA Specification
Chapter 18, Config Common Specification Config Common Element Reference 855

1

Block changes to properties and content.

The outputXSL property

This element contains the elements that govern the postprocessing of the output XML document by an
XSLT interpreter.

The range property

This option controls which records are processed.

The record property

This option controls the division of the document into records.

The startNode property

This option controls the subtree of the input document which is processed by the XFA application.

The transform property

This element nominates a set of input data elements to which its contained set of transformations apply.

The uri property

This element is used to hold a URI.

The window property

This option specifies the window size to use when performing incremental loads.

The xsl property

This option controls the preprocessing of user data, of the template, or of the device control information
via an XSLT interpreter.

XFA Specification
Chapter 18, Config Common Specification Config Common Element Reference 856

The debug element
This option controls whether the XFA application saves a copy of a preprocessed document after the XSLT
interpreter has created it. It is intended for use in debugging the XSLT script.

<debug

Properties:
 desc="cdata"
 lock="0 | 1"
>

 <uri/> [0..1]
</debug>

The debug element is used within the following other elements:
xsl

If the uri element contained within the debug element is empty or absent the XFA application must not
save the preprocessed document. Hence the temp file containing the preprocessed document, if any,
must be deleted. However if the uri element contained with the debug element is non-empty the XFA
application must, upon exiting, leave behind an XML document at the specified URI containing the output
of the preprocess phase.

This option takes effect during the data-load phase if it is contained in data, in the template-load phase if
it is contained in template, and in the rendering phase if it is contained in xdc.

For more information about this element, see XSLT Transformations.

The desc property

An attribute to hold human-readable metadata.

The lock property

A permission flag for allowing or blocking attempted changes to the element.

0

Allow changes to properties and content.

1

Block changes to properties and content.

The uri property

This element is used to hold a URI.

XFA Specification
Chapter 18, Config Common Specification Config Common Element Reference 857

The excludeNS element
This option controls the exclusion of data in particular namespaces from the XFA Data DOM.

<excludeNS

Properties:
 desc="cdata"
 lock="0 | 1"
>
 ...pcdata...
</excludeNS>

The excludeNS element is used within the following other elements:
data

Elements and attributes with the specified namespace are not loaded from the XML Data DOM into the
XFA Data DOM. The schema allows any number of excludeNS elements so any number of namespaces
can be excluded. In addition namespaces associated with XML and XFA are always excluded. Namespace
exclusion is described in detail in the section Extended Mapping Rules.

When an excludeNS element is present but empty it must have no effect.

This option takes effect during the data-load phase.

For more information about this element, see Extended Mapping Rules.

Content

The full URI (not the prefix) of a namespace to be excluded.

The desc property

An attribute to hold human-readable metadata.

The lock property

A permission flag for allowing or blocking attempted changes to the element.

0

Allow changes to properties and content.

1

Block changes to properties and content.

XFA Specification
Chapter 18, Config Common Specification Config Common Element Reference 858

The groupParent element
This option controls grouping of a set of related elements under a parent element.

<groupParent

Properties:
 desc="cdata"
 lock="0 | 1"
>
 ...pcdata...
</groupParent>

The groupParent element is used within the following other elements:
transform

Sometimes XML data documents do not express the full structure of the data in markup. This option
provides a way to restore structure to XML data documents in which the hierarchy has been flattened. It
causes a contiguous group of related elements to be placed under a parent group node in the XFA Data
DOM.

This option applies only to elements that are named in the ref attribute of the enclosing transform
element.

There are a number of subtleties involved in the use of this option. See Extended Mapping Rules for more
information.

Content

The name of the parent group node to insert.

The desc property

An attribute to hold human-readable metadata.

The lock property

A permission flag for allowing or blocking attempted changes to the element.

0

Allow changes to properties and content.

1

Block changes to properties and content.

XFA Specification
Chapter 18, Config Common Specification Config Common Element Reference 859

The ifEmpty element
This option controls the representation of empty elements in the XFA Data DOM.

<ifEmpty

Properties:
 desc="cdata"
 lock="0 | 1"
>
 ...pcdata...
</ifEmpty>

The ifEmpty element is used within the following other elements:
transform

This option applies only to empty elements with tags that match the value of the ref attribute of its
enclosing transform element.

This option takes effect during the data-load phase. When the content is ignore it also causes data from
the XML Data DOM to be blended with data from the XFA Data DOM during the data-unload phase.

For more information about this element see Extended Mapping Rules.

Content

The content must be one of the following:

dataValue

The empty element is represented in the XFA Data DOM by a dataValue node. This is the default.

dataGroup

The empty element is represented in the XFA Data DOM by a dataGroup node.

ignore

The empty element is omitted from the XFA Data DOM.

remove

The empty element is omitted from the XFA Data DOM and removed from the XML Data DOM.
When the updated data is written out during the data-unload phase, the empty element will be
omitted from the new XML document.

DataValue and dataGroup nodes are discussed in Extended Mapping Rules.

The desc property

An attribute to hold human-readable metadata.

The lock property

A permission flag for allowing or blocking attempted changes to the element.

0

Allow changes to properties and content.

XFA Specification
Chapter 18, Config Common Specification Config Common Element Reference 860

1

Block changes to properties and content.

XFA Specification
Chapter 18, Config Common Specification Config Common Element Reference 861

The incrementalLoad element
This option determines whether the data is loaded into a moving window or all at once.

<incrementalLoad

Properties:
 desc="cdata"
 lock="0 | 1"
>
 ...pcdata...
</incrementalLoad>

The incrementalLoad element is used within the following other elements:
data

When loading incrementally the window size is set by the peer window element.

Content

The content must be one of the following:

none

Load the data all at once. This is the default.

forwardOnly

Load a sliding window of records that starts at the beginning and only moves forward.

The desc property

An attribute to hold human-readable metadata.

The lock property

A permission flag for allowing or blocking attempted changes to the element.

0

Allow changes to properties and content.

1

Block changes to properties and content.

XFA Specification
Chapter 18, Config Common Specification Config Common Element Reference 862

The locale element
This option specifies a default locale.

<locale

Properties:
 desc="cdata"
 lock="0 | 1"
>
 ...pcdata...
</locale>

The locale element is used within the following other elements:
common

Locale determines the currency symbol, the radix symbol, calendar, day and month names, and other
information which is culture- or location-specific. This option supplies an ambient locale, overriding the
ambient locale supplied by the host operating system (if any). Each individual subforms may assert its
own locale, inherit an asserted locale from its parent, or use the ambient locale.

Content

The content must be locale code as defined in About Locale Names.

When this element is omitted or empty the locale supplied by the host operating system is used as the
ambient locale. If the host operating system does not supply a locale or the supplied locale is not
recognized then en_US (or equivalently en-US) is used.

XFA applications are not expected to support all possible locale values, especially as new country codes
are issued from time to time. If the supplied code is anything other than en_US and it is not contained in
the locale set packet, then it is implementation-defined whether the locale is supported or not. All XFA
applications are required to support en_US.

The desc property

An attribute to hold human-readable metadata.

The lock property

A permission flag for allowing or blocking attempted changes to the element.

0

Allow changes to properties and content.

1

Block changes to properties and content.

XFA Specification
Chapter 18, Config Common Specification Config Common Element Reference 863

The localeSet element
This option supplies the location of an alternate set of locale definitions that are used when a locale is not
fully defined in the form itself.

<localeSet

Properties:
 desc="cdata"
 lock="0 | 1"
>
 ...pcdata...
</localeSet>

The localeSet element is used within the following other elements:
common

Content

The content, if non-null, is a URI. The URI points to an XDP document which contains a localeSet packet.

When this element is omitted or empty there is no alternate source of locale definitions. Only the ones in
the form and built-in defaults are available.

Note: not all XFA processors should or do honor this option. In some environments it would present a
security vulnerability.

The desc property

An attribute to hold human-readable metadata.

The lock property

A permission flag for allowing or blocking attempted changes to the element.

0

Allow changes to properties and content.

1

Block changes to properties and content.

XFA Specification
Chapter 18, Config Common Specification Config Common Element Reference 864

The log element
This option controls the generation of a log file by the XFA processor.

<log

Properties:
 desc="cdata"
 lock="0 | 1"
>

 <mode/> [0..1]
 <threshold/> [0..1]
 <to/> [0..1]
 <uri/> [0..1]
</log>

The log element is used within the following other elements:
common

The desc property

An attribute to hold human-readable metadata.

The lock property

A permission flag for allowing or blocking attempted changes to the element.

0

Allow changes to properties and content.

1

Block changes to properties and content.

The mode property

This option specifies the file access mode for the log file.

The threshold property

This option controls what classes of messages are logged.

The to property

This option controls the location where either Presentation Agent will place either the log data or its
output data.

The uri property

This element is used to hold a URI.

XFA Specification
Chapter 18, Config Common Specification Config Common Element Reference 865

The message element
This option contains elements that override the severity of a particular message.

<message

Properties:
 desc="cdata"
 lock="0 | 1"
>

 <msgId/> [0..1]
 <severity/> [0..1]
</message>

The message element is used within the following other elements:
messaging

Each message that may be generated by the application has a default severity. The elements contained by
this element override the default severity for a particular message, or suppress the message entirely. For a
list of severity classes see the descripion of the threshold element.

The desc property

An attribute to hold human-readable metadata.

The lock property

A permission flag for allowing or blocking attempted changes to the element.

0

Allow changes to properties and content.

1

Block changes to properties and content.

The msgId property

This option specifies the numeric message identifier to which its sibling severity element applies.

The severity property

This option overrides the default severity for the message identified by its sibling msgId element.

XFA Specification
Chapter 18, Config Common Specification Config Common Element Reference 866

The messaging element
This element is a container for message elements.

<messaging

Properties:
 desc="cdata"
 lock="0 | 1"
>
Children:
 <message/> [0..n]
</messaging>

The messaging element is used within the following other elements:
common

The desc property

An attribute to hold human-readable metadata.

The lock property

A permission flag for allowing or blocking attempted changes to the element.

0

Allow changes to properties and content.

1

Block changes to properties and content.

The message property

This option contains elements that override the severity of a particular message.

XFA Specification
Chapter 18, Config Common Specification Config Common Element Reference 867

The mode element
This option specifies the file access mode for the log file.

<mode

Properties:
 desc="cdata"
 lock="0 | 1"
>
 ...pcdata...
</mode>

The mode element is used within the following other elements:
log

This option is ignored unless the content of to is uri.

Content

The content must be one of the following:

append

If the log file already exists, the log data is appended to the end of the existing file. If the log file
does not exist a new file is created. This is the default.

overwrite

If the log file exists it is truncated to zero length before the new log data is written to it. If the log
file does not exist a new file is created.

The desc property

An attribute to hold human-readable metadata.

The lock property

A permission flag for allowing or blocking attempted changes to the element.

0

Allow changes to properties and content.

1

Block changes to properties and content.

XFA Specification
Chapter 18, Config Common Specification Config Common Element Reference 868

The msgId element
This option specifies the numeric message identifier to which its sibling severity element applies.

<msgId

Properties:
 desc="cdata"
 lock="0 | 1"
>
 ...pcdata...
</msgId>

The msgId element is used within the following other elements:
message

Message identifiers are implementation-defined, however they are always positive integers. Message
identifiers can be identified from error messages in the log or obtained from the application publisher.

Content

The content must be a positive integer. The value must be unique, that is, there must not be multiple
msgId elements referring to the same message.

The desc property

An attribute to hold human-readable metadata.

The lock property

A permission flag for allowing or blocking attempted changes to the element.

0

Allow changes to properties and content.

1

Block changes to properties and content.

XFA Specification
Chapter 18, Config Common Specification Config Common Element Reference 869

The nameAttr element
This option controls the renaming of nodes in the XFA Data DOM based upon the value of an attribute.

<nameAttr

Properties:
 desc="cdata"
 lock="0 | 1"
>
 ...pcdata...
</nameAttr>

The nameAttr element is used within the following other elements:
transform

This option applies only to nodes corresponding to elements with tags that match the value of the ref
attribute of its enclosing transform element.

This option takes effect during the data-load phase.

For more information about this element see the narrative description of this element at Extended
Mapping Rules.

Content

The value of nameAttr is the name of an attribute. If the element in the XML document has an attribute
with this name and the attribute's value is not the empty string (""), the XFA application renames the
corresponding node in the XFA Data DOM as the value of the attribute. For example, if the configuration
document contains the fragment

<transform ref="foo"> <nameAttr>bar</nameAttr> </transform>

and the following element is present in the input XML document

<foo bar="blort">some text</foo>

then the XFA application renames the corresponding node in the XFA Data DOM from "foo" to "blort".

The desc property

An attribute to hold human-readable metadata.

The lock property

A permission flag for allowing or blocking attempted changes to the element.

0

Allow changes to properties and content.

1

Block changes to properties and content.

XFA Specification
Chapter 18, Config Common Specification Config Common Element Reference 870

The outputXSL element
This element contains the elements that govern the postprocessing of the output XML document by an
XSLT interpreter.

<outputXSL

Properties:
 desc="cdata"
 lock="0 | 1"
>

 <uri/> [0..1]
</outputXSL>

The outputXSL element is used within the following other elements:
data

The outputXSL element can contain a uri element. If the uri element is present and non-empty the
output XML document is passed through an XSLT interpreter, otherwise the output XML document is left
alone. The URI which is the content of the uri element supplies the location of the XSLT stylesheet.

XSLT is defined by XML Transformations (XSLT) Version 1.0 [XSLT].

For more information about this element see XSLT Transformations.

The desc property

An attribute to hold human-readable metadata.

The lock property

A permission flag for allowing or blocking attempted changes to the element.

0

Allow changes to properties and content.

1

Block changes to properties and content.

The uri property

This element is used to hold a URI.

XFA Specification
Chapter 18, Config Common Specification Config Common Element Reference 871

The picture element
This option controls the formatting of updated data.

<picture

Properties:
 desc="cdata"
 lock="0 | 1"
>
 ...pcdata...
</picture>

The picture element is used within the following other elements:
transform

This option applies only to nodes corresponding to elements with tags that match the value of the ref
attribute of its enclosing transform element.

When the XFA Data DOM is updated, the new data for the node is validated against, and if it matches
formatted in accordance with, the picture clause. This is in addition to any validation or calculation
supplied by other means.

This option takes effect during the data update phase.

For more information about this element see Extended Mapping Rules.

Content

The content must be a picture clause. The format of the picture clause is defined in the chapter Picture
Clause Specification.

The desc property

An attribute to hold human-readable metadata.

The lock property

A permission flag for allowing or blocking attempted changes to the element.

0

Allow changes to properties and content.

1

Block changes to properties and content.

XFA Specification
Chapter 18, Config Common Specification Config Common Element Reference 872

The presence element
This option controls the inclusion of nodes in the XFA Data DOM.

<presence

Properties:
 desc="cdata"
 lock="0 | 1"
>
 ...pcdata...
</presence>

The presence element is used within the following other elements:
transform

This option applies only to nodes corresponding to elements with tags that match the value of the ref
attribute of its enclosing transform element.

This option takes effect during the data-load phase. When the content is ignore it also causes data from
the XML Data DOM to be blended with data from the XFA Data DOM during the data-unload phase.

For more information about this element see Concealing Content Depending on View and Extended
Mapping Rules.

Content

The content must be one of the following:

preserve

The node is included in the XFA Data DOM. This is the default.

dissolve

The node itself is excluded from the XFA Data DOM but its children are promoted to become
children of the dissolved node's parent.

dissolveStructure

The node itself is included, but its children and their descendents are excluded from the XFA Data
DOM.

ignore

The node is excluded from the XFA Data DOM along with all of its descendents (that is, nodes
corresponding to content of the element to which the node corresponds). However during the
data-unload phase (when writing out a new XML document) the affected content is copied out
from the XML Data DOM into the new document.

remove

The node and is descendents are excluded from the XFA Data DOM and in addition the
corresponding nodes are removed from the XML Data DOM. The result of this is that during the
data-unloading phase a new XML document is produced which lacks the removed data.

The desc property

An attribute to hold human-readable metadata.

XFA Specification
Chapter 18, Config Common Specification Config Common Element Reference 873

The lock property

A permission flag for allowing or blocking attempted changes to the element.

0

Allow changes to properties and content.

1

Block changes to properties and content.

XFA Specification
Chapter 18, Config Common Specification Config Common Element Reference 874

The range element
This option controls which records are processed.

<range

Properties:
 desc="cdata"
 lock="0 | 1"
>
 ...pcdata...
</range>

The range element is used within the following other elements:
data

When range has non-null content the XFA application loads only those records indicated into the XFA
Data DOM. During the data-unload phase the skipped records are restored to the output XML document
by copying them from the XML Data DOM. When the content of range is the null string, or the range
element is omitted, the range defaults to the entire document. Note that this is the reverse of the usual
default behavior - the range element names the records which are to be processed, yet when no records
are named the result is not to exclude all records but to include all records.

This option affects processing during data load and data unload.

For more information about this element see Extended Mapping Rules.

Content

When it is not the null string, the value of range is a comma-separated list of one or more record numbers
and/or record number ranges. A record number is a non-negative decimal integer, where 0 (zero) indicates
the first record. A record number range is a record number, followed by a - character, followed by another
record number which is numerically equal to or greater than the other record number. Record number
ranges and record numbers are allowed to overlap.

For example, the following

<range>3-5,9,4,5-6</range>

causes records 3, 4, 5, 6 and 9 to be processed and all other records to be ignored.

The desc property

An attribute to hold human-readable metadata.

The lock property

A permission flag for allowing or blocking attempted changes to the element.

0

Allow changes to properties and content.

1

Block changes to properties and content.

XFA Specification
Chapter 18, Config Common Specification Config Common Element Reference 875

The record element
This option controls the division of the document into records.

<record

Properties:
 desc="cdata"
 lock="0 | 1"
>
 ...pcdata...
</record>

The record element is used within the following other elements:
data

Records are processed sequentially, almost as separate documents. For example, in a form-printing
application, the cycle of operations for each record is:

● preprocess the record via an XSLT interpreter

● load the preprocessed record into the XML Data DOM

● load the record data from the XML Data DOM into the XFA Data DOM

● merge the record data with the template

● lay out the merged template and record data upon the page

● render the layed-out template and record data into printer language

● send the rendering to the printer

A consequence of this cyclical processing is that a new merge operation and a new layout operation are
performed for each new record. Because of this, the resulting printed document starts each record at the
top of a new page, even though nothing in the template specifies that this should happen.

Data that is outside any record is still available via SOM expression in scripts and in data references
(dataRef elements). See Basic Data Handling for more information about records. See XFA Template
Specification for more information about dataRef elements.

This option affects processing during every phase.

For more information about this element see Extended Mapping Rules.

Content

The value of record determines the granularity at which the document is divided into records. The value
can be empty or a non-negative decimal integer or a tag name.

If the record element is absent or empty the entire document is treated as a single record.

If the value of record is an integer, it specifies the level in the tree at which the XFA application treats
each node as the root of a record. 0 represents the root of the whole XML Data DOM. For example, if the
value is 2, each element which is two levels in from the outermost element is considered as enclosing a
record. Content that is at a higher level is considered as outside any record.

If the value of record is not an integer, it is interpreted as a tag name. The first element in the XML data
document with a tag matching the value of record determines the level of a record within the tree. The
XFA application treats nodes in the XFA Data DOM that correspond to the same level and have a name

XFA Specification
Chapter 18, Config Common Specification Config Common Element Reference 876

matching the value of record as root nodes of records. All data that is not descended from such a node
are treated as outside any record.

The desc property

An attribute to hold human-readable metadata.

The lock property

A permission flag for allowing or blocking attempted changes to the element.

0

Allow changes to properties and content.

1

Block changes to properties and content.

XFA Specification
Chapter 18, Config Common Specification Config Common Element Reference 877

The relevant element
This option specifies what views of the template are to be included.

<relevant

Properties:
 desc="cdata"
 lock="0 | 1"
>
 ...pcdata...
</relevant>

The relevant element is used within the following other elements:
template

Various elements within the template may have relevant attributes. When present on a template
element this attribute means that the element is to be loaded only in some views and ignored in others.
This option names the active view or views. For example if the value of this element is invoice then any
portion of the template marked with a relevant attribute which includes the token invoice is loaded.

Content

The content may be a single token or a space-separated list of tokens. Each token names a view that is
active simultaneously with the others in the list. Note that unlike the relevant attribute there is no
support for a - prefix; views can only be included by this element, not excluded.

The desc property

An attribute to hold human-readable metadata.

The lock property

A permission flag for allowing or blocking attempted changes to the element.

0

Allow changes to properties and content.

1

Block changes to properties and content.

XFA Specification
Chapter 18, Config Common Specification Config Common Element Reference 878

The rename element
This option controls the renaming of nodes in the XFA Data DOM.

<rename

Properties:
 desc="cdata"
 lock="0 | 1"
>
 ...pcdata...
</rename>

The rename element is used within the following other elements:
transform

This option applies only to nodes corresponding to elements with tags that match the value of the ref
attribute of its enclosing transform element.

If the rename element is absent or empty the name of the node in the XFA Data DOM is taken from the tag
name. If the value is non-empty the node in the XFA Data DOM corresponding to the element is renamed
to the value of the rename element. For example, an XFA configuration document includes the fragment

<transform ref="foo"> <rename>bar</rename> </transform>

and as a result for each node in the XFA Data DOM corresponding to an element named "foo", the XFA
application renames the node to "bar". This does not affect the XML Data DOM.

This option takes effect during the data-load phase.

For more information, see Extended Mapping Rules.

Content

The contents must be a valid XFA node name. See XFA Names for a discussion of XFA node names.

The desc property

An attribute to hold human-readable metadata.

The lock property

A permission flag for allowing or blocking attempted changes to the element.

0

Allow changes to properties and content.

1

Block changes to properties and content.

XFA Specification
Chapter 18, Config Common Specification Config Common Element Reference 879

The severity element
This option overrides the default severity for the message identified by its sibling msgId element.

<severity

Properties:
 desc="cdata"
 lock="0 | 1"
>
 ...pcdata...
</severity>

The severity element is used within the following other elements:
message

The message may be suppressed entirely or set to a different severity class. For a list of severity classes see
the description of the threshold element.

Changing the severity of a message does not change the application's response to the situation that
caused the message to be issued. For example, upgrading a warning message to the error class does not
cause the application to exit when the message is issued. Similarly downgrading an error message does
not cause the application to attempt to recover gracefully. However changing the severity class does
potentially affect whether the message is logged (as controlled by the threshold element) and may
affect how it is highlighted in the log.

Content

The content must be one of the following:

ignore

Suppresses the message entirely. This is the default.

error

Causes the message to be logged as an error message.

information

Causes the message to be logged as a notification message.

trace

Causes the message to be logged as a trace message.

warning

Causes the message to be logged as a warning message.

The desc property

An attribute to hold human-readable metadata.

The lock property

A permission flag for allowing or blocking attempted changes to the element.

0

XFA Specification
Chapter 18, Config Common Specification Config Common Element Reference 880

Allow changes to properties and content.

1

Block changes to properties and content.

XFA Specification
Chapter 18, Config Common Specification Config Common Element Reference 881

The startNode element
This option controls the subtree of the input document which is processed by the XFA application.

<startNode

Properties:
 desc="cdata"
 lock="0 | 1"
>
 ...pcdata...
</startNode>

The startNode element is used within the following other elements:
data

When the startNode element is absent or empty the entire XML data document is processed. When it is
non-empty it supplies an expression which identifies the root of the subtree that is processed, and the XFA
application does not process any data outside the subtree.

This option affects processing during every phase.

For more information about this element, see Extended Mapping Rules.

Content

The form of the expression is "xfasom(somExpr)" where somExpr is a restricted XFA-SOM expression.
The general syntax of SOM expressions is defined in the XFA Scripting Object Model 2.0 Specification
Scripting Object Model. The expression in the startNode element is restricted to a fully-qualified path of
element types (tag names) starting with the root of the XML-data-document and referring to a single
element. The Extended Mapping Rulesgives an example of startNode usage.

The desc property

An attribute to hold human-readable metadata.

The lock property

A permission flag for allowing or blocking attempted changes to the element.

0

Allow changes to properties and content.

1

Block changes to properties and content.

XFA Specification
Chapter 18, Config Common Specification Config Common Element Reference 882

The startPage element
This option specifies the page number to be applied to the first page.

<startPage

Properties:
 desc="cdata"
 lock="0 | 1"
>
 ...pcdata...
</startPage>

The startPage element is used within the following other elements:
template

Content

The content must be an integer.

The desc property

An attribute to hold human-readable metadata.

The lock property

A permission flag for allowing or blocking attempted changes to the element.

0

Allow changes to properties and content.

1

Block changes to properties and content.

XFA Specification
Chapter 18, Config Common Specification Config Common Element Reference 883

The suppressBanner element
This option controls whether the application displays a banner on standard output at startup.

<suppressBanner

Properties:
 desc="cdata"
 lock="0 | 1"
>
 ...pcdata...
</suppressBanner>

The suppressBanner element is used within the following other elements:
common

This option is most commonly used inside scripts which run the application in background and log to
standard output. Its purpose is to ensure that a clean log is produced. However if there is no standard
output, or if the banner is not on standard output (for example a splash screen in a GUI) then this option
may be ignored.

Content

The content must be one of the following:

0

Allows the banner to be displayed. This is the default.

1

Prevents the banner from being displayed.

The desc property

An attribute to hold human-readable metadata.

The lock property

A permission flag for allowing or blocking attempted changes to the element.

0

Allow changes to properties and content.

1

Block changes to properties and content.

XFA Specification
Chapter 18, Config Common Specification Config Common Element Reference 884

The template element
This option controls the location of the template file.

<template

Properties:
 desc="cdata"
 lock="0 | 1"
>

 <base/> [0..1]
 <relevant/> [0..1]
 <startPage/> [0..1]
 <uri/> [0..1]
 <xsl/> [0..1]
</template>

The template element is used within the following other elements:
common

The template elementmust enclose a non-empty uri element. The XFA applicationmust obtain the
template using the URI specified by the content of the uri element.

This option takes effect during the template-load phase.

The base property

This option supplies a base location for URIs in the template. When this element is absent or empty the
location of the template is used as the base.

The desc property

An attribute to hold human-readable metadata.

The lock property

A permission flag for allowing or blocking attempted changes to the element.

0

Allow changes to properties and content.

1

Block changes to properties and content.

The relevant property

This option specifies what views of the template are to be included.

The startPage property

This option specifies the page number to be applied to the first page.

The uri property

This element is used to hold a URI.

XFA Specification
Chapter 18, Config Common Specification Config Common Element Reference 885

The xsl property

This option controls the preprocessing of user data, of the template, or of the device control information
via an XSLT interpreter.

XFA Specification
Chapter 18, Config Common Specification Config Common Element Reference 886

The threshold element
This option controls what classes of messages are logged.

<threshold

Properties:
 desc="cdata"
 lock="0 | 1"
>
 ...pcdata...
</threshold>

The threshold element is used within the following other elements:
log

Messages are logged if and only if they are as severe as the threshold or more severe. The severity
categories, in order from least severe to most severe, are defined as:

trace

Messages displaying internal states. These are used mostly during debugging.

information

Advisory messages. An event has occurred which is worthy of note but there is not necessarily
anything wrong.

warning

Warning messages. Something has gone wrong but the application can cope with it.

error

Error messages. A severe error has occurred from which the application can not gracefully recover.

Content

The content must be one of the following:

trace

Log all messages that are generated. Note that trace messages are only generated when enabled
by an area option. This is the default.

error

Log only severe error messages.

information

Log advisory messages, warning messages, and severe error messages.

warning

Log warning and error messages.

The desc property

An attribute to hold human-readable metadata.

XFA Specification
Chapter 18, Config Common Specification Config Common Element Reference 887

The lock property

A permission flag for allowing or blocking attempted changes to the element.

0

Allow changes to properties and content.

1

Block changes to properties and content.

XFA Specification
Chapter 18, Config Common Specification Config Common Element Reference 888

The to element
This option controls the location where either Presentation Agent will place either the log data or its
output data.

<to

Properties:
 desc="cdata"
 lock="0 | 1"
>
 ...pcdata...
</to>

The to element is used within the following other elements:
log

When contained within a log element this element controls where Presentation Agent places the log
data. When contained within a output this element controls where Presentation Agent will place the
generated output data.

Content

The content must be one of the following. In addition, when contained within an output element, the
value stderr is prohibited.

null

No log or output data is written, but all other processing is performed. This is the default.

memory

The log or output data is written to system memory. This is used internally by LiveCycle to avoid
unnecessary disk I/O.

stderr

The log data is written to standard error. This option is not available for output data, only for log
data.

stdout

The log or output data is written to standard output.

system

The log or output data is written via the system log message handler.

uri

The log or output data is directed to the URI specified by this element's sibling uri element.

The desc property

An attribute to hold human-readable metadata.

The lock property

A permission flag for allowing or blocking attempted changes to the element.

XFA Specification
Chapter 18, Config Common Specification Config Common Element Reference 889

0

Allow changes to properties and content.

1

Block changes to properties and content.

XFA Specification
Chapter 18, Config Common Specification Config Common Element Reference 890

The transform element
This element nominates a set of input data elements to which its contained set of transformations apply.

<transform

Properties:
 desc="cdata"
 lock="0 | 1"
 ref="cdata"
>

 <groupParent/> [0..1]
 <ifEmpty/> [0..1]
 <nameAttr/> [0..1]
 <picture/> [0..1]
 <presence/> [0..1]
 <rename/> [0..1]
 <whitespace/> [0..1]
</transform>

The transform element is used within the following other elements:
data

Multiple transform elements can overlap in their effects. This happens when multiple transform
elements have the same value for "ref". It also happens when one transform causes a node to be
renamed, whereupon the new name matches the value of the ref attribute of another transform. The
effect of such overlaps is sensitive to the order of the transform elements in the configuration
document. The interaction of transform elements is described at length in Extended Mapping Rules.
Note that, as specified in Extended Mapping Rules, it is not recommended to configure multiple
transform elements with the same value for "ref".

This option takes effect during the data-load phase. Some option settings also affect the data-unload
phase.

The desc property

An attribute to hold human-readable metadata.

The groupParent property

This option controls grouping of a set of related elements under a parent element.

The ifEmpty property

This option controls the representation of empty elements in the XFA Data DOM.

The lock property

A permission flag for allowing or blocking attempted changes to the element.

0

Allow changes to properties and content.

1

Block changes to properties and content.

XFA Specification
Chapter 18, Config Common Specification Config Common Element Reference 891

The nameAttr property

This option controls the renaming of nodes in the XFA Data DOM based upon the value of an attribute.

The picture property

This option controls the formatting of updated data.

The presence property

This option controls the inclusion of nodes in the XFA Data DOM.

The ref property

The ref attribute controls to which elements in the XML data document the transform applies.

If the ref attribute is absent the XFA application ignores the transform element and its content. If the
value of the ref attribute is the empty string ("") or * the XFA application applies the transform element
and its content to all data. If the ref attribute is present and its value is not an empty string it must be a set
of element tags separated by white space. The XFA application applies the transform element and its
content to those data elements and only those data elements with a tag matching (case-sensitive) one of
the tokens in the ref attribute.

The rename property

This option controls the renaming of nodes in the XFA Data DOM.

The whitespace property

This option controls the processing of whitespace in character data in the XFA Data DOM.

XFA Specification
Chapter 18, Config Common Specification Config Common Element Reference 892

The uri element
This element is used to hold a URI.

<uri

Properties:
 desc="cdata"
 lock="0 | 1"
>
 ...pcdata...
</uri>

The uri element is used within the following other elements:
data debug log outputXSL template xsl

This option takes effect during a phase that depends on its context. It merely supplies additional
information to the element which encloses it, hence takes effect during the same phase as its enclosing
element.

Content

The content of this element may be empty in some contexts. In contexts where it may be empty,
emptiness indicates that the action governed by the enclosing element is not to be performed. For
example, when the uri element inside outputXSL is empty, its emptiness signifies that no output XSLT
processing is to be done. The uri element may be empty when it is inside a debug, outputXSL, or xsl
element. The uri element must not be empty when its immediate container is a data element, a
template element, or a xdc element.

When the uri element is not empty, its content must be either a filename in animplementation-defined
format or a URI in accordance with RFC 2396 [RFC2396]. The set of supported schemes ("http:", "ftp:", "file:",
etc.) isimplementation-defined.

The desc property

An attribute to hold human-readable metadata.

The lock property

A permission flag for allowing or blocking attempted changes to the element.

0

Allow changes to properties and content.

1

Block changes to properties and content.

XFA Specification
Chapter 18, Config Common Specification Config Common Element Reference 893

The validationMessaging element
This option controls the reporting of validation errors to the user.

<validationMessaging

Properties:
 desc="cdata"
 lock="0 | 1"
>
 ...pcdata...
</validationMessaging>

The validationMessaging element is used within the following other elements:
common

This option does not affect the programmatic effect of validations. It only affects the user experience when
there are validation failures.

Content

The content, if not omitted, must be one of the following keywords.

allMessagesIndividually

Each validation message is displayed individually. This is the default.

allMessagesTogether

All validation messages are combined in a single dialog.

firstMessageOnly

Only the first validation message is displayed. The messages for the remaining validation failures
are suppressed, however the content of those fields is still invalid.

noMessages

All validation failure messages are suppressed, however invalid field content is still invalid.

The desc property

An attribute to hold human-readable metadata.

The lock property

A permission flag for allowing or blocking attempted changes to the element.

0

Allow changes to properties and content.

1

Block changes to properties and content.

XFA Specification
Chapter 18, Config Common Specification Config Common Element Reference 894

The versionControl element
Controls what happens when the XFA version of the form is different from that of the processing software.

<versionControl

Properties:
 lock="0 | 1"
 outputBelow="warn | error | update"
 sourceAbove="warn | error"
 sourceBelow="update | maintain"
>
</versionControl>

The versionControl element is used within the following other elements:
common

The lock property

A permission flag for allowing or blocking attempted changes to the element.

0

Allow changes to properties and content.

1

Block changes to properties and content.

The outputBelow property

What to do if the XFA processor is a newer version than the target for the form being saved.

warn

Issue a warning and save with the target version. Functionality may be lost.

update

Issue a warning and save the form with the newer version.

error

Report an error and refuse to save the form.

The sourceAbove property

What to do if the version of the form being loaded is above (newer than) the XFA processor.

warn

Issue a warning and proceed. This is the default.

error

Report an error and refuse to process the form.

The sourceBelow property

What to do if the version of the form being loaded is below (older than) the XFA processor.

update

XFA Specification
Chapter 18, Config Common Specification Config Common Element Reference 895

Update the form to the version of the XFA processor. This is the default.

maintain

If possible process the document using the logic for the version in the form. If this is not possible
report an error and refuse to process the form.

XFA Specification
Chapter 18, Config Common Specification Config Common Element Reference 896

The whitespace element
This option controls the processing of whitespace in character data in the XFA Data DOM.

<whitespace

Properties:
 desc="cdata"
 lock="0 | 1"
>
 ...pcdata...
</whitespace>

The whitespace element is used within the following other elements:
transform

This option applies only to nodes corresponding to elements with tags that match the value of the ref
attribute of its enclosing transform element.

This option takes effect during the data-load phase.

For more information about this element, see Extended Mapping Rules.

Content

The content must be one of the following:

preserve

All white space characters are preserved. This is the default.

ltrim

Contiguous white space characters at the start (left) end of the character data are deleted.

normalize

Contiguous white space characters at both ends are trimmed as for trim, but in addition internal
contiguous groups of white space characters are replaced by single space characters.

rtrim

Contiguous white space characters at the end (right) of the character data are deleted.

trim

Contiguous white space characters at both ends of the character data are deleted, equivalent to a
combination of ltrim and rtrim.

White space characters in this context include space (U0020), tab (U0009), carriage return (U000D), and
line feed (U000A). This is the set of white space characters defined by [XML1.0].

The desc property

An attribute to hold human-readable metadata.

The lock property

A permission flag for allowing or blocking attempted changes to the element.

XFA Specification
Chapter 18, Config Common Specification Config Common Element Reference 897

0

Allow changes to properties and content.

1

Block changes to properties and content.

XFA Specification
Chapter 18, Config Common Specification Config Common Element Reference 898

The window element
This option specifies the window size to use when performing incremental loads.

<window

Properties:
 desc="cdata"
 lock="0 | 1"
>
 ...pcdata...
</window>

The window element is used within the following other elements:
data

The window size is in records. There are two separate settings. The first setting is the number of records
before the current record that are retained in memory. These are records earlier than the current record in
document order and have already been processed. The second setting is the number of records after the
current record that are pre-loaded into memory. These are records that are later than the current record in
document order and have not yet been processed.

Content

The content must be either a single non-negative integer or a pair of non-negative integers separated by
a comma. If only one number is supplied then it is used for both settings. If two numbers are supplied the
first one controls the before window and the second one controls the after window. For example, a value
of 1 causes the XFA processor to hold the previous record, the current record, and the next record in
memory. By contrast a value of 0,1 causes the XFA processor to hold only the current record and the next
record in memory.

The desc property

An attribute to hold human-readable metadata.

The lock property

A permission flag for allowing or blocking attempted changes to the element.

0

Allow changes to properties and content.

1

Block changes to properties and content.

XFA Specification
Chapter 18, Config Common Specification Config Common Element Reference 899

The xsl element
This option controls the preprocessing of user data, of the template, or of the device control information
via an XSLT interpreter.

<xsl

Properties:
 desc="cdata"
 lock="0 | 1"
>

 <debug/> [0..1]
 <uri/> [0..1]
</xsl>

The xsl element is used within the following other elements:
data template

When this element is contained by a data element it controls the preprocessing of data from the XML
data document before loading into the XML Data DOM. When it is contained by a template element it
controls the preprocessing of the template definition from the template document before loading into the
Template DOM. When it is contained by an xdc element it controls the preprocessing of the device control
information.

If xsl is empty or if it contains a uri element which is empty preprocessing does not take place - instead
the XFA application loads directly from the supplied document into the target DOM. However if xsl
contains a non-empty uri element the XFA application gets an XSLT script from the URI which is the
content of uri and invokes an XSLT interpreter to preprocess the supplied XML document. The XFA
application then loads the preprocessed document into the target DOM.

XSLT is defined by XML Transformations (XSLT) Version 1.0 [XSLT].

This option takes effect during the data-load phase if it is contained in data or in the template-load phase
if it is contained in template.

For more information about this element, see XSLT Transformations.

The debug property

This option controls whether the XFA application saves a copy of a preprocessed document after the XSLT
interpreter has created it. It is intended for use in debugging the XSLT script.

The desc property

An attribute to hold human-readable metadata.

The lock property

A permission flag for allowing or blocking attempted changes to the element.

0

Allow changes to properties and content.

1

Block changes to properties and content.

XFA Specification
Chapter 18, Config Common Specification Config Common Element Reference 900

The uri property

This element is used to hold a URI.

 901

19 Locale Set Specification

The Locale Set contains locale-specific data used in localization and canonicalization. Such data includes
picture clauses for representing dates, times, numbers, and currencies. It also contains the localized names
of items that appear in dates, times and currencies, such as the names of months and the names of the
days of the week. It also contains mapping rules that allow picture clauses to be converted into a localized
string that can be used in UI captions and prompts.

All of the elements and attributes described in this specification must belong to the following namespace:

http://www.xfa.org/schema/xfa-locale-set/2.7/

Note: The trailing “/” is required.

The calendarSymbols element
An element to describe the symbols of the calendar.

<calendarSymbols

Properties:
name="gregorian"

>
<dayNames> [0..2]
<eraNames> [0..1]
<meridiemNames> [0..1]
<monthNames> [0..2]

</calendarSymbols>

The calendarSymbols element is used within the following other elements:

“The locale element”

The name property

Specifies the name of the calendar.

gregorian

The Gregorian calendar -- the only one supported. This is also the default.

The dayNames property

Each instance of this property describes the (abbreviated) names of the days of the week. There may be
two such elements: one for the abbreviated names and another for the unabbreviated names.

The eraNames property

Describes the names of the eras of the calendar.

The meridiemNames property

Describes the names of the meridiems.

XFA Specification
Chapter 19, Locale Set Specification 902

The monthNames property

Each instance of this property describes the names of the months of the year. There may be two such
elements: one for the abbreviated names and another for the unabbreviated names.

XFA Specification
Chapter 19, Locale Set Specification 903

The currencySymbol element
An element to describe currency symbols.

<currencySymbol

Properties:
name="symbol | isoname| decimal"

>
...pcdata...

</currencySymbol>

The currencySymbol element is used within the following other elements:

“The currencySymbols element”

Content

The data-content is interpreted as the name of currency symbol. Each locale has three different currency
symbols. The element's name property (described next) specifies which currency symbol this is.

The name property

Specifies which currency symbol is supplied by this element.

symbol

The currency glyph, such as the dollar sign. This is the default.

isoname

The 3-letter [ISO 4217] currency name.

decimal

The currency decimal point.

XFA Specification
Chapter 19, Locale Set Specification 904

The currencySymbols element
An element to describe currency symbols.

<currencySymbols>

Properties:
<currencySymbol/> [0..3]

</currencySymbols>

The currencySymbols element is used within the following other elements:

“The locale element”

The currencySymbol property

Each instance of this property describes a name of one of three currency symbols.

XFA Specification
Chapter 19, Locale Set Specification 905

The datePattern element
An element to describe the format of a standard date pattern.

<datePattern

Properties:
name="full | long | med | short"

>
...pcdata...

</datePattern>

The datePattern element is used within the following other elements:

“The datePatterns element”

Content

The data-content is interpreted as one format of a date pattern. Each locale can have multiple date
pattern; the element's name property (described below) indicates which date pattern this is.

The name property

Specifies which format of date pattern is supplied by this element.

full

The full date format.

long

The long date format.

med

The medium date format. This is the default.

short

The short date format.

XFA Specification
Chapter 19, Locale Set Specification 906

The datePatterns element
An element to describe the locale's standard date patterns.

<datePatterns>

Properties:
<datePattern/> [0..4]

</datePatterns>

The datePatterns element is used within the following other elements:

“The locale element”

The datePattern property

Each instance of this property describes the format of one of four date patterns.

XFA Specification
Chapter 19, Locale Set Specification 907

The dateTimeSymbols element
An element to define the localized date and time pattern symbols.

<dateTimeSymbols>
...pcdata...

</dateTimeSymbols>

The dateTimeSymbols element is used within the following other elements:

“The locale element”

Content

The data-content is interpreted as a fixed-position array of localized date and time pattern symbols.

XFA Specification
Chapter 19, Locale Set Specification 908

The day element
An element to describe the name of one of the days of the week.

<day>
...pcdata...

</day>

The day element is used within the following other elements:

“The dayNames element”

Content

The data-content is interpreted as the name of the week. Specifically, the first occurrence of this element
specifies the name of the first day of the week (Sunday).The second occurrence of this element specifies
the name of the second day of the week (Monday), etc...The seventh and last occurrence of this element
specifies the name of the seventh day of the week (Saturday).

XFA Specification
Chapter 19, Locale Set Specification 909

The dayNames element
An element to describe the names of the days of the week.

<dayNames

Properties:
abbr="0 | 1"

>
<day/> [0..7]

</dayNames>

The dayNames element is used within the following other elements:

“The calendarSymbols element”

The abbr property

Specifies whether the element supplies abbreviated or unabbreviated day-names.

0

This element supplies abbreviated day names. This is the default.

1

This element supplies non-abbreviated day names.

The day property

Each instance of this property supplies the name of one day of the week.

XFA Specification
Chapter 19, Locale Set Specification 910

The era element
An element to describe the name of one of the eras of the calendar.

<era>
...pcdata...

</era>

The era element is used within the following other elements:

“The eraNames element”

Content

The data-content is interpreted as the name of the era. Specifically, the first occurrence of this element
specifies the name of the first era of the calendar (BC).The second and last occurrence of this element
specifies the name of the second era of the calendar (AD).

XFA Specification
Chapter 19, Locale Set Specification 911

The eraNames element
An element to describe the names of the eras of the calendar.

<eraNames>

Properties:
<era/> [0..2]

</eraNames>

The eraNames element is used within the following other elements:

“The calendarSymbols element”

The era property

Each instance of this property describes the name of one era of the calendar.

XFA Specification
Chapter 19, Locale Set Specification 912

The locale element
An element to describe the symbols of the locale. All symbols are localized.

<locale

Properties:
desc="cdata"
name="isoname"

>
<calendarSymbols/> [0..1]
<currencySymbols/> [0..1]
<datePatterns/> [0..1]
<dateTimeSymbols/> [0..1]
<numberPatterns/> [0..1]
<numberSymbols/> [0..1]
<timePatterns/> [0..1]
<typeFaces/> [0..1]

</locale>

The locale element is used within the following other elements:

“The localeSet element”

The desc property

Specifies the description of the locale. If this attribute is omitted the description is the null string.

The name property

Specifies the [RFC 1766] name of the locale. This value must be supplied.

The calendarSymbols property

Describes the locale's calendric symbols.

The currencySymbols property

Describes the locale's currency symbols.

The datePatterns property

Describes the locale's standard date patterns. Date patterns (date pictures) are described in “Picture
Clauses and Localization” on page 409.

The dateTimeSymbols property

Describes the locale's date time symbols.

The numberPatterns property

Describes the locale's standard number patterns. Number patterns (numeric pictures) are also described in
“Picture Clauses and Localization” on page 409.

The numberSymbols property

Describes the locale's numeric symbols.

XFA Specification
Chapter 19, Locale Set Specification 913

The timePatterns property

Describes the locale's standard time patterns. Time patterns (time pictures) are described in “Picture
Clauses and Localization” on page 409.

The typeFaces property

Names fallback fonts for the locale. This was added in XFA 2.5.

XFA Specification
Chapter 19, Locale Set Specification 914

The localeSet element
An element to describe the symbols of the locale.

<localeSet>

Children:
<locale/> [0..n]

</localeSet>

The locale child

Each child describes a locale's symbols.

XFA Specification
Chapter 19, Locale Set Specification 915

The meridiem element
An element to describe the name of one of the aspects of the meridiem.

<meridiem>
...pcdata...

</meridiem>

The meridiem element is used within the following other elements:

“The meridiemNames element”

Content

The data-content is interpreted as the name of the aspect of the meridiem. Specifically, the first occurrence
of this element specifies the name of the ante-meridiem (AM).The second and last occurrence of this
element specifies the name of the post-meridiem (PM).

XFA Specification
Chapter 19, Locale Set Specification 916

The meridiemNames element
An element to describe the names of the meridiem.

<meridiemNames>

Properties:
<meridiem/> [0..2]

</meridiemNames>

The meridiemNames element is used within the following other elements:

“The calendarSymbols element”

The meridiem property

Each instance of this property describes the name of one aspect of the meridiem.

XFA Specification
Chapter 19, Locale Set Specification 917

The month element
An element to describe the name of one of the months of the year.

<month>
...pcdata...

</month>

The month element is used within the following other elements:

“The monthNames element”

Content

The data-content is interpreted as the name of the month. Specifically, the first occurrence of this element
specifies the name of the first month of the year (January).The second occurrence of this element specifies
the name of the second month of the year (February), etc...The twelfth and last occurrence of this element
specifies the name of the twelfth month of the year (December).

XFA Specification
Chapter 19, Locale Set Specification 918

The monthNames element
An element to describe the names of the months of the year.

<monthNames

Properties:
abbr="0 | 1"

>
<month/> [0..12]

</monthNames>

The monthNames element is used within the following other elements:

“The calendarSymbols element”

The abbr property

Specifies whether this element supplies abbreviated or unabbreviated month-names.

0

The names of the months are not abbreviated. This is the default.

1

The names of the months are abbreviated.

The month property

Each instance of this property supplies the name of a month of the year.

XFA Specification
Chapter 19, Locale Set Specification 919

The numberPattern Element
An element to describe the format of a standard number pattern.

<numberPattern

Properties:
name="full | long | med | short"

>
...pcdata...

</numberPattern>

The numberPattern element is used within the following other elements:

“The numberPatterns Element”

Content

The data-content is interpreted as the format of a number pattern. A locale has four different number
patterns. The element's name property (described below) determines which of the number patterns is
supplied by this element.

The name property

Specifies which number pattern is supplied by this element.

full

The full number format.

long

The long number format.

med

The medium number format. This is the default.

short

The short number format.

XFA Specification
Chapter 19, Locale Set Specification 920

The numberPatterns Element
An element to describe the locale's standard number patterns.

<numberPatterns>

Properties:
<numberPattern/> [0..4]

</numberPatterns>

The numberPatterns element is used within the following other elements:

“The locale element”

The numberPattern property

Each instance of this property describes the format of one of four number patterns.

XFA Specification
Chapter 19, Locale Set Specification 921

The numberSymbol element
An element to describe a number symbol.

<numberSymbol

Properties:
name="decimal | grouping | percent | minus | zero"

>
...pcdata...

</numberSymbol>

The numberSymbol element is used within the following other elements:

“The numberSymbols element”

Content

The data-content is interpreted as a number symbol. There are five kinds of number symbol. The element's
name property (described below) determines which kind is supplied by this element.

The name property

Specifies which kind of the number symbol is supplied by this element.

decimal

The decimal radix symbol. This is the default.

grouping

The grouping separator symbol.

percent

The percent symbol.

minus

The minus symbol.

zero

The zero symbol. The remaining 1-9 digits' values are assumed to follow this symbol's Unicode
value.

XFA Specification
Chapter 19, Locale Set Specification 922

The numberSymbols element
An element to describe number symbols.

<numberSymbols>

Properties:
<numberSymbol/> [0..5]

</numberSymbols>

The numberSymbols element is used within the following other elements:

“The locale element”

The numberSymbol property

Each child describes one of five kinds of number symbol.

XFA Specification
Chapter 19, Locale Set Specification 923

The timePattern element
An element to describe the format of a standard time pattern.

<timePattern

Properties:
name="full | long | med | short"

>
...pcdata...

</timePattern>

The timePattern element is used within the following other elements:

“The timePatterns element”

Content

The data-content is interpreted as the format of a time pattern. A locale has four time patterns. The
element's name property (described below) specifies which time pattern is supplied by this element.

The name property

Specifies which time pattern is supplied by this element.

full

The full time format.

long

The long time format.

med

The medium time format. This is the default.

short

The short time format.

XFA Specification
Chapter 19, Locale Set Specification 924

The timePatterns element
An element to describe the locale's standard time patterns.

<timePatterns>

Properties:
<timePattern/> [0..4]

</timePatterns>

The timePatterns element is used within the following other elements:

“The locale element”

The timePattern property

Each instance of this property describes the format of one of four time patterns.

XFA Specification
Chapter 19, Locale Set Specification 925

The typeFace element
An element to name a fallback font for the locale.

<typeFace

Properties:
name="typefacename"

>
</typeFace>

The typeFace element is used within the following other elements:

“The typeFaces element”

The name property

The value is the name of a typeface or font family. For example, a Japanese-language locale might specify
“Kozuka Mincho Pro VI-R”.

XFA Specification
Chapter 19, Locale Set Specification 926

The typeFaces element
An element to contain fallback fonts for the locale.

<typeFaces>

Children:
<typeFace/> [0..n]

</typeFaces>

The typeFaces element is used within the following other elements:

“The locale element”

The typeFace child

Each child names a fallback font.

 927

20 Connection Set Specification

About the Connection Set Grammar
In XFA terminology a connection is a link between a subset of the data in the Form DOM and some external
entity. An XDP can potentially have many data descriptions and potentially many connections for each
data description.

The set of connections is contained within the XDP inside a connectionSet packet. There can be at most
one connectionSet packet per XDP. Within the connectionSet packet there can be any number of
wsdlConnection elements, but at most one element that is either an xmlConnection or an
xsdConnection. The order of multiple wsdlConnection elements is not significant, but they must
each have a unique name attribute.

An xmlConnection element associates a data description with sample XML data. An xsdConnection
element associates a data description with an external schema in [XMLSchema] format. Both
xmlConnection and xsdConnection are used for data which is to be exported as and/or imported
from a standalone XML document. By contrast a wsdlConnection element describes how the form
interacts with a WSDL-based service using SOAP doc-literal operations.

Any subform, field, or exclusion group in the Form DOM can be associated with a connection by a connect
element. This causes the content of the subform, field, or exclusion group to be included in the data
transferred by that connection. A given subform, field, or exclusion group can be associated with any
number of different connections.

An event element in the template controls the invocation of a connection. This element can only be used
with a connection defined by a wsdlConnection element. Invoking the connection causes the web
service to be invoked using the sequence of operations listed under “Using Web Services” on page 449.

All of the elements and attributes described in this section must belong to the following namespace:

http://www.xfa.org/schema/xfa-connection-set/2.8/

Note: The trailing “/” is required.

The “2.8” represents the most recent version of this specification in which the connection set schema was
revised. XFA applications written to this specification are expected to accept namespaces with larger
version numbers and silently ignore elements and attributes that are not part of this specification. On the
other hand when a future XFA application written for a later version of this specification sees the “2.8” it
will know that it may have to make fixups to bring the connection set up to date with the later
specification.

The following skeleton summarizes the structure of the connectionSet element and its descendants:

<connectionSet
xmlns="http://www.xfa.org/schema/xfa-connection-set/2.8/">
<!-- zero or more of...-->
<wsdlConnection dataDescription="ddName" name="cxnName">

<operation input="inputElementName"
output="outputElementName"
>wsdlOperationName</operation>

<soapAction>actionURI</soapAction>

XFA Specification
Chapter 20, Connection Set Specification About the Connection Set Grammar 928

<soapAddress>endpointURI</soapAddress>
<wsdlAddress>wsdlURI</wsdlAddress>

</wsdlConnection>
<!-- at most one of eitherthis... -->
<xmlConnection dataDescription="ddName" name="cxnName">

<uri>sampleDataURI</uri>
</xmlConnection>
<!-- ...or this... -->
<xsdConnection dataDescription="ddName" name="cxnName">

<rootElement>elementName</rootElement>
<uri>schemaURI</uri>

</xsdConnection>
</connectionSet>

A reference to the XML Schema is available at [XMLSchema].

XFA Specification
Chapter 20, Connection Set Specification Connection Set Element Reference 929

Connection Set Element Reference

The connectionSet element

This element is the container for the set of connections.

<connectionSet

>
Children:
 <wsdlConnection/> [0..n]
 <xmlConnection/> [0..n]
 <xsdConnection/> [0..n]
</connectionSet>

This is the container for all information related to the connection set. There must be at most one
connectionSet element in an XDP.

This element may contain number of wsdlConnection elements and at most one of either
xmlConnection or xsdConnection elements.

The wsdlConnection property

This element represents one connection to a web service.

The xmlConnection property

This element represents a connection to sample data.

The xsdConnection property

This element represents a connection to a schema.

XFA Specification
Chapter 20, Connection Set Specification Connection Set Element Reference 930

The effectiveInputPolicy element
This element is the container for the authentication policy for the input operation.

<effectiveInputPolicy

Properties:
 id="cdata"
 name="cdata"
 use="cdata"
 usehref="cdata"
>
</effectiveInputPolicy>

The effectiveInputPolicy element is used within the following other elements:
wsdlConnection

The contained authentication policy is not shown in this reference because it uses the WS-Policy grammar,
which employs a different namespace. For information about the WS-Policy grammar see [WS-Policy].
Note that WS-Policy is a general-purpose grammar. Which portions of it are supported by the XFA
processor is application-defined.

The id property

An identifier which may be used to identify this element in URIs.

The name property

An identifier that may be used to identify this element in script expressions.

The use property

Invokes another object in the same document as a prototype for this object. The content of this property
is either a SOM expression (which cannot start with '#') or a '#' character followed by an XML ID.

The object used as a prototype does not need to be the child of proto. Any object of the appropriate
class can be used as a prototype.

If both use and usehref are non-empty usehref takes precedence.

The usehref property

Invokes an external object as a prototype for this object. The content of this property is an URL, followed
by '#', followed by either an XML ID or by som(SOM_expr) where SOM_expr represents a SOM expression.

The XML ID or SOM expression is resolved in the context of the external document.

If both use and usehref are non-empty usehref takes precedence.

XFA Specification
Chapter 20, Connection Set Specification Connection Set Element Reference 931

The effectiveOutputPolicy element
This element is the container for the authentication policy for the output operation.

<effectiveOutputPolicy

Properties:
 id="cdata"
 name="cdata"
 use="cdata"
 usehref="cdata"
>
</effectiveOutputPolicy>

The effectiveOutputPolicy element is used within the following other elements:
wsdlConnection

The contained authentication policy is not shown in this reference because it uses the WS-Policy grammar,
which employs a different namespace. For information about the WS-Policy grammar see [WS-Policy].
Note that WS-Policy is a general-purpose grammar. Which portions of it are supported by the XFA
processor is application-defined.

The id property

An identifier which may be used to identify this element in URIs.

The name property

An identifier that may be used to identify this element in script expressions.

The use property

Invokes another object in the same document as a prototype for this object. The content of this property
is either a SOM expression (which cannot start with '#') or a '#' character followed by an XML ID.

The object used as a prototype does not need to be the child of proto. Any object of the appropriate
class can be used as a prototype.

If both use and usehref are non-empty usehref takes precedence.

The usehref property

Invokes an external object as a prototype for this object. The content of this property is an URL, followed
by '#', followed by either an XML ID or by som(SOM_expr) where SOM_expr represents a SOM expression.

The XML ID or SOM expression is resolved in the context of the external document.

If both use and usehref are non-empty usehref takes precedence.

XFA Specification
Chapter 20, Connection Set Specification Connection Set Element Reference 932

The operation element
This element declares the SOAP operation that is associated with its parent.

<operation

Properties:
 id="cdata"
 input="cdata"
 name="cdata"
 output="cdata"
 use="cdata"
 usehref="cdata"
>
 ...pcdata...
</operation>

The operation element is used within the following other elements:
wsdlConnection

SOAP allows multiple operations to share the same name. When this happens the input and output
attributes are used to disambiguate.

Note that the SOAP operation must use the document style and literal encoding. See [SOAP1.1] for more
information about doc-literal operations.

Content

The name of the selected operation.

The id property

An identifier which may be used to identify this element in URIs.

The input property

The name of the operation's input element. If this attribute is not supplied the operation takes the default
input name as specified in the WSDL specification [WSDL1.1] section 2.4.5.

The name property

An identifier that may be used to identify this element in script expressions.

The output property

The name of the operation's output element. If this attribute is not supplied the operation takes the
default output name as specified in the WSDL specification [WSDL1.1] section 2.4.5.

The use property

Invokes another object in the same document as a prototype for this object. The content of this property
is either a SOM expression (which cannot start with '#') or a '#' character followed by an XML ID.

The object used as a prototype does not need to be the child of proto. Any object of the appropriate
class can be used as a prototype.

If both use and usehref are non-empty usehref takes precedence.

XFA Specification
Chapter 20, Connection Set Specification Connection Set Element Reference 933

The usehref property

Invokes an external object as a prototype for this object. The content of this property is an URL, followed
by '#', followed by either an XML ID or by som(SOM_expr) where SOM_expr represents a SOM expression.

The XML ID or SOM expression is resolved in the context of the external document.

If both use and usehref are non-empty usehref takes precedence.

XFA Specification
Chapter 20, Connection Set Specification Connection Set Element Reference 934

The rootElement element
This element declares the starting point (root) within the associated schema.

<rootElement

Properties:
 id="cdata"
 name="cdata"
 use="cdata"
 usehref="cdata"
>
 ...pcdata...
</rootElement>

The rootElement element is used within the following other elements:
xsdConnection

Content

The name of the outermost element that was used when generating the data description from the
associated W3C [XMLSchema] schema.

The id property

An identifier which may be used to identify this element in URIs.

The name property

An identifier that may be used to identify this element in script expressions.

The use property

Invokes another object in the same document as a prototype for this object. The content of this property
is either a SOM expression (which cannot start with '#') or a '#' character followed by an XML ID.

The object used as a prototype does not need to be the child of proto. Any object of the appropriate
class can be used as a prototype.

If both use and usehref are non-empty usehref takes precedence.

The usehref property

Invokes an external object as a prototype for this object. The content of this property is an URL, followed
by '#', followed by either an XML ID or by som(SOM_expr) where SOM_expr represents a SOM expression.

The XML ID or SOM expression is resolved in the context of the external document.

If both use and usehref are non-empty usehref takes precedence.

XFA Specification
Chapter 20, Connection Set Specification Connection Set Element Reference 935

The soapAction element
This element declares the SOAP action for its parent.

<soapAction

Properties:
 id="cdata"
 name="cdata"
 use="cdata"
 usehref="cdata"
>
 ...pcdata...
</soapAction>

The soapAction element is used within the following other elements:
wsdlConnection

Content

The URI for the SOAP action. When the request is sent to the server, this is the value of the soapAction
attribute of the soap:operation element. The soap:operation element is specified in [WSDL1.1].

The id property

An identifier which may be used to identify this element in URIs.

The name property

An identifier that may be used to identify this element in script expressions.

The use property

Invokes another object in the same document as a prototype for this object. The content of this property
is either a SOM expression (which cannot start with '#') or a '#' character followed by an XML ID.

The object used as a prototype does not need to be the child of proto. Any object of the appropriate
class can be used as a prototype.

If both use and usehref are non-empty usehref takes precedence.

The usehref property

Invokes an external object as a prototype for this object. The content of this property is an URL, followed
by '#', followed by either an XML ID or by som(SOM_expr) where SOM_expr represents a SOM expression.

The XML ID or SOM expression is resolved in the context of the external document.

If both use and usehref are non-empty usehref takes precedence.

XFA Specification
Chapter 20, Connection Set Specification Connection Set Element Reference 936

The soapAddress element
This element declares the host location for its parent.

<soapAddress

Properties:
 id="cdata"
 name="cdata"
 use="cdata"
 usehref="cdata"
>
 ...pcdata...
</soapAddress>

The soapAddress element is used within the following other elements:
wsdlConnection

Content

The address of the SOAP end point. A SOAP end point consists of a protocol and a data format bound to a
network address. When the request is sent to the server, this is the value of the location attribute of the
soap:address element. The value must be a URI in the format specified by [RFC2396]. The soap:address
element is specified in [WSDL1.1].

The id property

An identifier which may be used to identify this element in URIs.

The name property

An identifier that may be used to identify this element in script expressions.

The use property

Invokes another object in the same document as a prototype for this object. The content of this property
is either a SOM expression (which cannot start with '#') or a '#' character followed by an XML ID.

The object used as a prototype does not need to be the child of proto. Any object of the appropriate
class can be used as a prototype.

If both use and usehref are non-empty usehref takes precedence.

The usehref property

Invokes an external object as a prototype for this object. The content of this property is an URL, followed
by '#', followed by either an XML ID or by som(SOM_expr) where SOM_expr represents a SOM expression.

The XML ID or SOM expression is resolved in the context of the external document.

If both use and usehref are non-empty usehref takes precedence.

XFA Specification
Chapter 20, Connection Set Specification Connection Set Element Reference 937

The uri element
This element declares the location of the sample document or schema for its parent.

<uri

Properties:
 id="cdata"
 name="cdata"
 use="cdata"
 usehref="cdata"
>
 ...pcdata...
</uri>

The uri element is used within the following other elements:
xmlConnection xsdConnection

For security reasons this URI should not be honoured if it points outside the enclosing XDP or PDF
package, unless the entire package is trusted.

Content

The URI for the sample document or schema.

The id property

An identifier which may be used to identify this element in URIs.

The name property

An identifier that may be used to identify this element in script expressions.

The use property

Invokes another object in the same document as a prototype for this object. The content of this property
is either a SOM expression (which cannot start with '#') or a '#' character followed by an XML ID.

The object used as a prototype does not need to be the child of proto. Any object of the appropriate
class can be used as a prototype.

If both use and usehref are non-empty usehref takes precedence.

The usehref property

Invokes an external object as a prototype for this object. The content of this property is an URL, followed
by '#', followed by either an XML ID or by som(SOM_expr) where SOM_expr represents a SOM expression.

The XML ID or SOM expression is resolved in the context of the external document.

If both use and usehref are non-empty usehref takes precedence.

XFA Specification
Chapter 20, Connection Set Specification Connection Set Element Reference 938

The wsdlAddress element
This element identifies the location of the service description to which its parent corresponds.

<wsdlAddress

Properties:
 id="cdata"
 name="cdata"
 use="cdata"
 usehref="cdata"
>
 ...pcdata...
</wsdlAddress>

The wsdlAddress element is used within the following other elements:
wsdlConnection

Content

The URI for the service description.

The id property

An identifier which may be used to identify this element in URIs.

The name property

An identifier that may be used to identify this element in script expressions.

The use property

Invokes another object in the same document as a prototype for this object. The content of this property
is either a SOM expression (which cannot start with '#') or a '#' character followed by an XML ID.

The object used as a prototype does not need to be the child of proto. Any object of the appropriate
class can be used as a prototype.

If both use and usehref are non-empty usehref takes precedence.

The usehref property

Invokes an external object as a prototype for this object. The content of this property is an URL, followed
by '#', followed by either an XML ID or by som(SOM_expr) where SOM_expr represents a SOM expression.

The XML ID or SOM expression is resolved in the context of the external document.

If both use and usehref are non-empty usehref takes precedence.

XFA Specification
Chapter 20, Connection Set Specification Connection Set Element Reference 939

The wsdlConnection element
This element represents one connection to a web service.

<wsdlConnection

Properties:
 dataDescription="cdata"
 name="cdata"
>

 <effectiveInputPolicy/> [0..1]
 <effectiveOutputPolicy/> [0..1]
 <operation/> [0..1]
 <soapAction/> [0..1]
 <soapAddress/> [0..1]
 <wsdlAddress/> [0..1]
</wsdlConnection>

The wsdlConnection element is used within the following other elements:
connectionSet

 This connection corresponds to a particular action requested from a particular service with data going in
a particular direction or directions.

The dataDescription property

The name of the associated data description. If this attribute is not supplied the value defaults to the
name of the root subform in the template. The data description does not include the SOAP envelope.

The effectiveInputPolicy property

This element is the container for the authentication policy for the input operation.

The effectiveOutputPolicy property

This element is the container for the authentication policy for the output operation.

The name property

The name of the connection. The name must be unique among connections.

A WSDL connection may be invoked by any XFA event handler in the template. Hence the name specified
by this attribute may appear as the value of the connection attribute of the execute element in the
template.

The operation property

This element declares the SOAP operation that is associated with its parent.

The soapAction property

This element declares the SOAP action for its parent.

The soapAddress property

This element declares the host location for its parent.

XFA Specification
Chapter 20, Connection Set Specification Connection Set Element Reference 940

The wsdlAddress property

This element identifies the location of the service description to which its parent corresponds.

XFA Specification
Chapter 20, Connection Set Specification Connection Set Element Reference 941

The xmlConnection element
This element represents a connection to sample data.

<xmlConnection

Properties:
 dataDescription="cdata"
 name="cdata"
>

 <uri/> [0..1]
</xmlConnection>

The xmlConnection element is used within the following other elements:
connectionSet

 This connection encapsulates the information that a data description was derived from a particular
sample document. This information is not needed by consumers of the form but may be useful for
applications that modify the form template or the associated data description.

The dataDescription property

The name of the associated data description. If this attribute is not supplied the value defaults to the
name of the root subform in the template.

The name property

The name of the connection. The name must be unique among connections.

The uri property

This element declares the location of the sample document or schema for its parent.

XFA Specification
Chapter 20, Connection Set Specification Connection Set Element Reference 942

The xsdConnection element
This element represents a connection to a schema.

<xsdConnection

Properties:
 dataDescription="cdata"
 name="cdata"
>

 <rootElement/> [0..1]
 <uri/> [0..1]
</xsdConnection>

The xsdConnection element is used within the following other elements:
connectionSet

This connection encapsulates the information that a data description was derived from a particular W3C
[XMLSchema] schema. This information is not needed by consumers of the form but may be useful for
applications that modify the form template or the associated data description.

The dataDescription property

The name of the associated data description. If this attribute is not supplied the value defaults to the
name of the root subform in the template.

The name property

The name of the connection. The name must be unique among connections.

The rootElement property

This element declares the starting point (root) within the associated schema.

The uri property

This element declares the location of the sample document or schema for its parent.

 943

21 Data Description Specification

This chapter describes the data description grammar and provides a reference that specifies that data
description syntax.

“Using Web Services” on page 449 provides more specific information on using the data description
grammar in the context of a web services

About the Data Description Grammar
The XFA data description grammar describes the structure of data in a data document. It can specify a
single, optional, default data description and any number of optional, context-specific data descriptions. A
data description element is separate from the data document.

The XFA data description grammar is useful in the following situations:

● Multiple views. A data description in XFA is analogous to a “view” in a relational database. There may be
multiple views for the same data because different web service operations require different subsets of
the data, organized in different ways. The output document, if there is one, may require yet another
organization. Hence, a single view expressed by a schema bound to the data with a schema declaration
is not enough.

● Support for a range of data. XFA processing applications can accept existing data instance documents
without alteration, despite the inconsistency of schema declarations in XML documents.

● Relational data. The data description can be used to tell the XFA processor that certain data values link
to other data values.

The XFA data description syntax is more concise and readable than XML Schema [XMLSchema] but does
not do as much. XFA data descriptions do not include defaults and do not support validation of text
content. They do, however, fully describe the namespaces, element names, attribute names, and the
hierarchy which joins them. Data descriptions are described in the “Data Description Grammar” on
page 944 and “Data Description Element Reference” on page 951 sections of this specification.

In keeping with the general principle that XFA is tolerant when importing data, data descriptions are not
used to validate data coming into the XFA application. Indeed, most of any given data description is only
used during output from the XFA application. (The sole part used on input is the dd:nullType attribute,
which affects both input and output.) This means that data descriptions are not required for most
processing, so XFA continues to support ad hoc datasets. Of course, validation of data is still possible using
scripts contained in “validate” elements in the template. See “Template Specification” on page 565 for
more information about validation scripts.

XFA applications produce XML output in several different contexts. The XML output document may be the
final product of the XFA application. It may be sent to an HTTP host via the SUBMIT action. Or it may be
sent to a web service. In the last case the XFA application will probably receive a reply, itself in XML format.
Each of these contexts is known as a “connection”. Connections are described in the “Connection Set
Specification” on page 927. Web Services are described in “Using Web Services” on page 449. Submission
via HTTP is described in “Submitting Data and Other Form Content via HTTP” on page 443.

XFA Specification
Chapter 21, Data Description Specification Data Description Grammar 944

Data Description Grammar
Data descriptions are contained in an XDP inside the dataSets packet (“XDP Specification” on page 989).
Each data description is enclosed within a dataDescription element. The order of the
dataDescription elements is not significant. dataDescription elements and their content must use
the following namespace:

http://ns.adobe.com/data-description/

Note: The trailing “/” is required.

It is conventional to represent this namespace with the prefix dd but this is only a convention. Any prefix
may be used as long as it maps to the namespace given above. Within this specification dd: is used as
shorthand for “a namespace prefix mapped to the data description namespace”. Similarly xsi: is used as
shorthand for “a namespace prefix mapped to the XML Schema Instance namespace
(http://www.w3.org/2001/XMLSchema-instance) “. The XML Schema Instance namespace is
defined in [XMLSchema].

Each dataDescription element has a name attribute. The value of the name attribute must be unique.
One dataDescription element may have a name equal to the name attribute of the template's root
subform. This data description is the default.

A basic data description (i.e. the content of the dataDescription element) is a picture of the data
structure, without content but with optional namespace markup. For example, consider the following
sample data.

Example 21.1 Sample data

<po:order xmlns:po="http://www.example.com/order">
<po:orderid>A314</po:orderid>
<po:customer custid="9375">

<po:lastname>Coyote</po:lastname>
<po:firstname>Wile</po:firstname>

</po:customer>
<po:item>

<po:desc>super magnet</po:desc>
<po:qty>1</po:qty>

</po:item>
</po:order>

The simplest data description for this document is generated simply by stripping out the text content from
the sample data, as follows.

Example 21.2 Basic data description

<dd:dataDescription
xmlns:dd="http://ns.adobe.com/data-description/"
name="order">
<po:order xmlns:po="http://www.example.com/order">

<po:orderid/>
<po:customer custid="">

<po:lastname/>
<po:firstname/>

</po:customer>
<po:item>

<po:desc/>

XFA Specification
Chapter 21, Data Description Specification Data Description Grammar 945

<po:qty/>
</po:item>

</po:order>
</dd:dataDescription>

The simple data description shown above requires that the data document have exactly the same element
hierarchy as the description. However, attributes may be omitted from the data document.

Namespaced markup provides a way to specify alternate structure and repeated or optional elements. It
corresponds to a subset of W3C XML Schema [XMLSchema]. Most of the markup is dd: attributes applied
to non-dd: elements. In addition a dd:group element, which does not correspond to an element in the
data document, is provided for more complicated cases.

For example, the following data description relaxes the previous data description using added dd:
markup (highlighted in bold).

Example 21.3 Data description augmented with markup

<dd:dataDescription
xmlns:dd="http://ns.adobe.com/data-description/"
name="order">

<po:order xmlns:po="http://www.example.com/order">
<po:orderid/>
<po:customer>

<po:lastname/>
<po:firstname dd:minOccur="0">

</po:customer>
<po:item dd:maxOccur="-1">

<po:desc/>
<po:qty/>

</po:item>
</po:order>

</dd:dataDescription>

This data description still matches the original sample data, but the markup makes it more flexible. For
example, it also matches the following data which has no po:firstname element and has multiple
po:item elements.

Example 21.4 Data which also matches the augmented data description

<po:order xmlns:po="http://www.example.com/order">
<po:orderid>A314</po:orderid>
<po:customer>

<po:lastname>Coyote</po:lastname>
</po:customer>
<po:item>

<po:desc>super magnet</po:desc>
<po:qty>1</po:qty>

</po:item>
<po:item>

<po:desc>steel ball bearing</po:desc>
<po:qty>1000</po:qty>

</po:item>
<po:item>

<po:desc>mallet (large)</po:desc>
<po:qty>1</po:qty>

XFA Specification
Chapter 21, Data Description Specification Data Description Grammar 946

</po:item>
</po:order>

Labelling injected data

Starting with XFA 3.1 the data description grammar is expanded so that it can be used to declare that
particular data nodes were not present in the original sample data. This is commonly used to label custom
data that has been injected into an industry-standard schema. The use of this new grammar allows form
creation tools such as LiveCycle Designer ES2 to keep track of which data came from the sample data or
schema and which data was injected.

The injected data may occupy a namespace that is different from the rest of the sample data, but that is
not required.

For example, the following data description specifies custom nodes in addition to the original sample
data.

Example 21.5 Data description with additional custom nodes

<dd:dataDescription
xmlns:dd="http://ns.adobe.com/data-description/"
name="order">
<po:order xmlns:po="http://www.example.com/order">

<po:orderid/>
<po:customer custid="">

<po:honorific dd:additions="$template(po:honorific)"
<po:lastname/>
<po:firstname/>

</po:customer>
<po:item>

<po:desc catnum="" dd:additions="$template(@catnum)"/>
<po:qty/>
<po:price discount="" dd:additions="$template(po:price @discount)"/>

</po:item>
</po:order>

</dd:dataDescription>

The above data description has four pieces of injected data. The whole po:honorific element is
injected. The po:desc element is not injected but its catalog number (catnum) attribute is. The
po:price element is injected and it has an attribute which is necessarily also injected.

Note: It is required to explicitly declare injected attributes even when they belong to an injected element.

Since the injected nodes are actually present in the data description they are treated the usual way by XFA
processors, including older processors, on both clients and servers. This ensures backwards compatibility.
The difference between injected and non-injected nodes is only manifest at form design time.

Labelling relational data

Starting with XFA 3.1 the data description can signify that some data points to other data. This is used to
resolve references between tables in relational data.

XFA Specification
Chapter 21, Data Description Specification Data Description Grammar 947

Caution: In this version of the XFA grammar all forms using relations must be static. In addition once
loaded the relations between rows may not change. Only data which is not primary or foreign
keys may be altered.

Example 21.6 Data declaration for relational data

Suppose that a club has a membership database. The membership database records the registration and
address information in separate tables, because multiple members could reside at the same mailing
address. A query (LastName ="Spratt") of the membership table yields the following data

The corresponding rows of the address table are as follows.

When the database is queried via a web service, the resulting XML data document does not include the
address data for Jack and Betty Spratt twice. Instead the relationship is implied by ID matches.

<membership>
<members>

<member memberID="14">
<first>Jack</first>
<last>Spratt</last>
<addressID>137</addressID>

</member>
<member memberID="15">

<first>Betty</first>
<last>Spratt</last>
<addressID>137</addressID>

</member>
<member memberID="196">

<first>Peter</first>
<last>Spratt</last>
<addressID>142</addressID>

</member>
<members/>
<addresses>

<address addressID="137">
<street>99 Candlestick Lane</street>
<city>London</city>
<country>UK</country>
<postalcode>SW1A 2AA</postalcode>

</address>

MemberID LastName FirstName AddressID

14 Spratt Jack 137

15 Spratt Betty 137

196 Spratt Peter 142

AddressID Apt Street City Country PostalCode

137 99 Candlestick
Lane

London UK SW1A 2AA

142 7 52 Reginald
Street

London UK WC2N 5

XFA Specification
Chapter 21, Data Description Specification Data Description Grammar 948

<address addressID="142">
<apt>7</apt>
<street>52 Reginald Street</street>
<city>London</city>
<country>UK</country>
<postalcode>WC2N 5</postalcode>

</address>
</addresses>

</membership>

The data description for this example would be as follows.

<membership>
<members>

<member dd:maxOccur="-1" memberID="" dd:primaryKey="@memberID">
<dd:association dd:name="addressInfo" dd:target="address"

dd:key="@addressID" />
<first/>
<last/>
<address/>

</member>
</members>
<addresses>

<address dd:maxOccur="-1" addressID="" dd:primaryKey="@addressID">
<apt/>
<street/>
<city/>
<country/>
<postalcode/>

</address>
</addresses>

</membership>

In the example there are two notations using dd:primaryKey. These tell the XFA processor that
particular values are primary keys, meaning that the value of each instance is unique across all elements
with the same name. Hence the value of the memberID attribute of each member element is promised to
be unique, compared to other member elements, across the data document. Likewise the value of the
addressID attribute of each address element is promised to be unique, compared to other address
elements, across the data document. This is equivalent to saying that the data base enforces uniqueness in
these columns of these tables. In both cases the names are prefixed with "@" characters to indicate that
they are attribute values, in the style of XPath expressions.

Also in the example there is a single dd:association element. This is always the first child of its
enclosing element. It tells the XFA processor the relationship between the row represented by this
element and the data value identified as a primary key elsewhere. Within dd:association, dd:name
names a pseudo-property which can be used to identify the matching row. Here the value is
addressInfo, which means that any member’s address row can be referred to in SOM expressions via
the pseudo-property member.addressInfo. This is what makes it possible for the form to treat the data
as though the address data was fully resolved within each member’s data.

In addition the dd:association element declares that the dd:target - the row containing the foreign
key - is address. Note that it is not addresses, the name of the containing data group, but address,
the name of the element enclosing the referenced row of data. That is because the XFA processor will
search all data groups with matching names to find the referenced row.

XFA Specification
Chapter 21, Data Description Specification Data Description Grammar 949

Finally, dd:association declares dd:key as @addressID. This identifies the value under address
which is the primary key to reference. (There can be multiple primary keys in one table.) The name is
prefixed with an @ symbol to indicate that it is an attribute name, in the style of XPath expressions.

In this example no use is made of the fact that the memberID attribute is a primary key. However it does
not hurt to declare that it is.

Given these declarations, scripts in the template can also use SOM expressions that incorporate
addressInfo. For example, assuming xfa.form.registration[0] holds the membership data for
Jack Spratt, then the SOM expression xfa.form.registration[0].addressInfo.street yields
the street address 99 Candlestick Lane.

Relational data can also bind to fields automatically. There are two more things required to make this work.
First, fields that need to bind to associated data using a key must supply data references that invoke the
appropriate pseudo-property. Second, the root subform in the template must indicate that, when merging
data with the template to populate the Form DOM, it wants data to be reused when possible rather than
discarded after one use. This latter step makes it possible for the merge process to reuse the same address
data for Betty Spratt after it has already been used for Jack Spratt. The indication is given by placing a
mergeMode attribute on the root (outermost) subform with the value matchTemplate, as shown below.
This attribute is ignored on other subforms.

<template …>
…
<subform name="registration" mergeMode="matchTemplate" …>

<occur min="3" max="3"/>
<field name="first" …>… </field>
<field name="last" …> … </field>
<field name="apt" …>

<bind match="dataRef" ref="addressInfo.apt"/>
…

</field>
<field name="street" …>

<bind match="dataRef" ref="addressInfo.street"/>
…

</field>
<field name="city"…>

<bind match="dataRef" ref="addressInfo.city"/>
…

</field>
<field name="country"…>

<bind match="dataRef" ref="addressInfo.country"/>
…

</field>
<field name="postalcode"…>

<bind match="dataRef" ref="addressInfo.postalCode"/>
…

</field>
</subform>

</template>

Finally, it is possible to specify a pseudo-property which implements a mapped-by association. This is the
inverse of a foreign-key association. That is, it yields a list of all nodes in another table that have foreign
keys linking to this row of this table. This cannot be used in binding but may be useful in scripting.

XFA Specification
Chapter 21, Data Description Specification Data Description Grammar 950

Example 21.7 Data description for a mapped-by association

Assuming the same tables as the previous Example 21.6, we can declare a mapped-by association on the
address table as follows.

<membership>
<members>

<member>
<dd:association dd:name="addressInfo" dd:target="address"

dd:key="@addressID" />
<first/>
<last/>
<address/>

</members>
<addresses>

<address dd:maxOccur="-1" addressID="" dd:primaryKey="@addressID">
<dd:association dd:name="memberList" dd:target="addressInfo"/>
<apt/>
<street/>
<city/>
<country/>
<postalcode/>

</address>
</addresses>

</membership>

Given this data description and the same data as before, the data group
xfa.data.membership.addresses[0] yields the row of the address table for 99 Candlestick Lane.
The SOM expression xfa.data.membership.addresses.address[0].memberList yields a list
containing two nodes. The nodes are, in order, xfa.data.members[0] (representing Jack Spratt) and
xfa.data.members[1] (representing Betty Spratt).

XFA Specification
Chapter 21, Data Description Specification Data Description Element Reference 951

Data Description Element Reference
All of the elements and attributes described in this section must belong to the following namespace:

http://ns.adobe.com/data-description/

Note that the trailing “/” is required.

By contrast those elements and attributes contained in the data description which represent elements and
attributes in the data document use whatever namespace they use in the data document.

dd:additions Attribute

This attribute is used to label its associated element and/or other attributes of its element as injected data,
not present in the original sample data. It has no effect on form processing either in a client or a server. It is
used only by form creation tools such as LiveCycle Designer ES2.

The value of this attribute must be an expression of the form

$template(list)

where list is a whitespace-separated list of one or more element or attribute designators.

The format of an element designator is

[prefix:]name

where prefix, if present, and name must match the prefix and name of the element to which the
dd:additions attribute belongs.

The format of an attribute designator is

[prefix:]@name

where prefix, if present, and name must match the prefix and name of a sibling attribute of the element
to which the dd:additions attribute belongs.

Note that the $template(…) syntax is necessary even though at the moment it does not provide any
additional information. It is there to allow for expanded functionality in future.

See also the example on page 946.

dd:association Element

This element is used to represent a link between data in different tables. The parent element represents a
row in a database. This element may indicate that the parent is linked by a foreign key to a row in a
different table (a foreign key relationship), or that another table contains a key linking back to this table (a
mapped-by relationship).

Unlike all other elements in the XFA Data Description grammar, this element is self-contained; it must not
contain any content. It takes the following attributes.

dd:key

When present, this attribute identifies the attribute or child element which supplies the foreign key (the
row identifier) that is used for the relation. If it is an attribute the attribute’s name is here prefixed with an

XFA Specification
Chapter 21, Data Description Specification Data Description Element Reference 952

"@" character, as in an XPath expression. If it is an element the element tag is not prefixed. There is no
default value. If this attribute is supplied dd:mappedBy must be omitted.

dd:name

Supplies a name for the pseudo-property which will expose the relation. In effect this is a name for the
dd:association object itself. SOM expressions can use this pseudo-property to reach through the
relation from this row of data to the linked row of data. There is no default value.

dd:mappedBy

When present, this attribute supplies the name of another dd:association element which is defined
on the target element. If this attribute is supplied dd:key must be omitted.

dd:target

Identifies the element representing the table to which the relation links. There is no default value.

In every case the value supplied as the key must match a primary key value in some row of the target table.
(This rule may have to be relaxed in future to support dynamic update of relational data, but this version of
XFA’s relational data support is limited to read-only data.) The target table can nominate more than one
column to be a primary key; in that case the XFA processor searches all primary key columns for the given
value. For more information about the use of relational data see “Labelling relational data” on page 946.

dd:dataDescription Element

This element is the container for a data description. More than one dataDescription element may
reside in a dataset element. Multiple dataDescription elements are distinguished by the values of
their name attributes.

name attribute

This attribute supplies a name for the data description. The attribute must be supplied and the name (“XFA
Names” on page 75) must be unique across dataDescription elements. If the name is the same as the
name of the template's root subform, this data description is the default data description.

content

The content is an element with the same name and namespace as the root element of the data document.
This in turn contains whatever other data structure is required. For more information see “Data Description
Grammar” on page 944.

dd:group Element

This element groups together its child elements, but without there being a corresponding element in the
data document. For example, the location element in a data document contains either an x element
followed by a y element, or an r element followed by a theta element. Hence the following is a valid
fragment:

<location>
<x>1.234</x>
<y>5.678</y>

</location>

But the following is also valid:

XFA Specification
Chapter 21, Data Description Specification Data Description Element Reference 953

<location>
<r>5.432</r>
<theta>31.97</theta>

</location>

This can be declared in a data description as follows:

<location dd:model="choice">
<dd:group>

<x/>
<y/>

</dd:group>
<dd:group>

<r/>
<theta/>

</dd:group>
</location>

Another use of dd:group is to provide a way to apply dd: attributes to groups of elements, again without
any corresponding element appearing in the data document. For example, the polyline element always
contains sets of coordinates. Each coordinate consists of an x element followed by a y element. There
must be at least two coordinates, but there is no maximum number. This can be declared in a data
description as follows:

<polyline>
<dd:group dd:minOccur="2" dd:maxOccur="-1">

<x/>
<y/>

</dd:group>
</polyline>

This matches the following sample data:

<polyline>
<x>1</x>
<y>1</y>
<x>1</x>
<y>6</y>
<x>20</x>
<y>15</y>

</polyline>

Note that the white space in the data description differs from the white space in the above sample data.
Nonetheless the sample data matches the data description. This is a consequence of the fact that white
space in data groups is not significant, as explained in “White Space Handling” on page 145.

dd:maxOccur Attribute

This attribute sets the maximum number of times the element or dd:group may occur in a contiguous
sequence. The default is 1, that is, by default no more than one occurrence is allowed. The special value -1
means that there is no limit to the number of times the element or dd:group may repeat. If the value is
not -1 it must be a positive integer.

The dd:maxOccur attribute corresponds in function to the XML Schema xsd:maxOccurs attribute.
Note however that the attribute name differs (no final “s” on dd:maxOccur) and that xsd:maxOccurs
uses the value unbounded rather than -1.

XFA Specification
Chapter 21, Data Description Specification Data Description Element Reference 954

Note that when an element or dd:group has dd:model set to unordered, its direct children must not
have dd:maxOccur set to anything larger than 1. This is the same restriction that applies in [XMLSchema]
to the children of the analogous element xsd:all.

For example, the following fragment declares that it is acceptable for the po:item element to repeat
without limit. Hence a single purchase order can list any number of purchased items.

<po:item dd:maxOccur="-1">
<po:desc/>
<po:qty/>

</po:item>

The following fragment declares that the number of attendee elements inside the meeting element is
limited to twelve (perhaps the capacity of the room):

<meeting>
<attendee dd:maxOccur="12">

</meeting>

 dd:minOccur Attribute

This attribute sets the minimum number of times the element or dd:group must occur in a contiguous
sequence. The default is 1, that is, by default at least one occurrence is required. The value0 means that the
element or dd:group is optional. If the value is not 0 it must be a positive integer.

The dd:minOccur attribute corresponds in function to the XML Schema xsd:minOccurs attribute.
Note however that the attribute name differs (no final “s” on dd:minOccur).

Note that when an element has dd:nullType set to exclude it must also have dd:minOccur set to0.

The following fragment declares that firstname is not required in the purchase order. Without the
dd:minOccur attribute the value of firstname could be the empty string but the element could not be
omitted entirely. On the other hand lastname continues to be mandatory.

<po:customer>
<po:lastname/>
<po:firstname dd:minOccur="0"/>

</po:customer>

Hence the following fragment of data is valid:

<po:customer>
<po:lastname>Smith</po:lastname>

</po:customer>

The following fragment declares that a meeting must be attended by at least two people:

<meeting>
<attendee dd:minOccur="2"/>

</meeting>

dd:model Attribute

This attribute controls the way in which the children of the element or dd:group are related. The value of
dd:model must be one of the following:

XFA Specification
Chapter 21, Data Description Specification Data Description Element Reference 955

choice

The data must have a child element or elements corresponding to just one of the children of this
element or dd:group. This corresponds to the xsd:choice element in [XMLSchema].

ordered

The data must have child elements corresponding to each of the children of this element or
dd:group (except for children with dd:minOccur equal to 0, which are optional). The children
must occur in the same order that they are declared here. This corresponds to the xsd:sequence
element in [XMLSchema]. This is the default.

unordered

The data must have child elements corresponding to each of the children of this element or
dd:group (except for children with dd:minOccur equal to 0, which are optional). The children
may occur in any order. This corresponds to the xsd:all element in XML Schema.

Note: When an element has dd:model set to unordered, its direct children must not have dd:maxOccur
set to anything larger than1. This is the same restriction imposed by [XMLSchema] upon the
children of the analogous element xsd:all.

The following fragment illustrates a simple use of dd:model with a value of choice:

<payment dd:model="choice">
<cash/>
<visa/>
<amex/>

</payment>

The following fragment has been cooked up to illustrate what happens when a child element governed by
choice has a dd:maxOccur greater than one. In the example, a pizza order can be the house special or it
can have à la carte toppings. If the pizza is à la carte, multiple toppings may be specified. On the other
hand if the house special is chosen toppings must not be specified. The dd:model attribute with a value
of choice makes “houseSpecial” and “topping” mutually exclusive:

<pizza dd:model="choice">
<houseSpecial/>
<topping dd:maxOccur="-1">

<pizza/>

Hence the following fragment of data is valid:

<pizza>
<houseSpecial>

</pizza>

But the following is also valid:

<pizza>
<topping>pepperoni</topping>
<topping>green peppers</topping>
<topping>onions</topping>

</pizza>

The following fragment illustrates a simple use of dd:model with a value of ordered. The fragment
declares that the address in the data must have each of the child elements in the exact order given. Any
child element may be empty but it must be present.

<address dd:model="ordered">

XFA Specification
Chapter 21, Data Description Specification Data Description Element Reference 956

<streetNumber/>
<streetName/>
<city/>
<postalCode/>

</address>

Hence the following fragment of data is valid:

<address>
<streetNumber>47</streetNumber>
<streetName>Main Street</streetName>
<city/>
<postalCode/>

</address>

Since ordered is the default, the same result would be obtained by omitting the dd:model attribute
entirely.

The following fragment illustrates a simple use of dd:model with a value of unordered. It is the same as
the previous example except for the value of dd:model.

<address dd:model="unordered">
<streetNumber/>
<streetName/>
<city/>
<postalCode/>

</address>

The result is almost the same as the previous example using ordered, but more forgiving. Any data
document that matches the previous example will also match this data description. In addition, this data
description also matches data documents in which the order of the streetNumber, streetName, city,
and postalCode elements is switched around. However they are all still required to be present. Hence
the following fragment of data is valid:

<address>
<city/>
<streetName>Main Street</streetName>
<postalCode/>
<streetNumber>47</streetNumber>

</address>

The following fragment illustrates the effect of combining unordered with one or more children having
dd:minOccur set to a value of 0. Any element with dd:minOccur set to a value of 0 is optional. Consider
the following fragment:

<address dd:model="unordered">
<streetNumber/>
<streetName/>
<city dd:minOccurs="0"/>
<postalCode dd:minOccurs="0"/>

</address>

Given the above data declaration fragment, the following data fragment is valid:

<address>
<streetName>Main Street</streetName>
<streetNumber>47</streetNumber>
</address>

XFA Specification
Chapter 21, Data Description Specification Data Description Element Reference 957

 dd:nullType Attribute

This attribute controls the mapping between data elements and null nodes in a DOM. A null node is
distinct from a node with content of the empty string. A null node has no value at all – it is null in the
database sense. The base XML 1.0 standard [XML1.0] does not provide a standard way to represent null
nodes. Sometimes an empty element is represented internally as a null node, but other times it is
represented as a normal node with a value of the empty string. XML Schema [XMLSchema] defines a
syntax using the namespaced attribute xsi:nil. The dd:nullType attribute specifies which method is
used for this element and, unless overridden, inherited by its descendants.

Note: This applies only to elements. Attributes with the value of empty string are governed by the
dd:reqAttrs attribute.

The value of the attribute must be one of the following:

empty

On output null nodes are represented by empty elements. On input empty elements are mapped
to null nodes, as are elements marked as null using xsi:nil="true". This is the default.

exclude

On output null nodes are excluded from the XML document. On input elements marked as null
using xsi:nil="true"are mapped to null nodes. Elements that are empty but not marked
using xsi:nil="true" are mapped to regular nodes with values of the empty string.

Note: When the element has dd:nullType set to exclude it must also have a dd:minOccur attribute
set to 0. Failure to uphold this rule would lead to a schema violation when the node was null
because dd:nullType would require that the element be omitted and at the same time
dd:minOccur would require that it be included.

xsi

On output null nodes are represented by empty elements with the attribute xsi:nil equal to
true, as defined in XML Schema [XMLSchema]. On input any element (empty or not) with
xsi:nil="true" is mapped to a null node, while empty elements that do not have
xsi:nil="true" are mapped to regular nodes with values of the empty string.

dd:primaryKey Attribute

This attribute lists attributes and/or child elements of the element which are primary keys. The names in
the list are separated by white space. The order of the names is not significant. Names for attributes are
prefixed with an "@" character in the style of XPath expressions. Names for child elements are not prefixed.

In relational database terms, a primary key is an identifier for a row in a table. Each such identifier must be
unique within the table. In other tables the value of the primary key is cited, using dd:association to
link that value back to a primary key in this table. For more information about the use of relational data see
“Labelling relational data” on page 946.

dd:reqAttrs Attribute

This attribute lists the names of mandatory attributes for the element. The names in the list are separated
by white space. The order of the names is not significant. Each name in the list must match the name
(including namespace) of an attribute on the element. If an attribute name in the list has no namespace

XFA Specification
Chapter 21, Data Description Specification Data Description Element Reference 958

prefix it is imputed to inherit the namespace of the element, just as it does when used in the instance
document.

On input an attribute with the value of empty string is treated the same way as any other attribute. On
output, when an attribute is mandatory but the attribute is not present in the DOM, the XFA application
generates an attribute with the value of the empty string. By contrast when the attribute is not mandatory
and it is not present in the DOM it is omitted from the XML document.

For example, the following fragment declares that in the shirt element the attributes color and size
are mandatory, but supplier is optional. All of the attributes inherit the namespace of their element.

<t:shirt color="" supplier="" size="" dd:reqattrs="size color"/>

The following example declares two mandatory attributes. The element is in the default namespace. One
of its mandatory attributes is also in the default namespace, but the other is in a different namespace.

<animal name="" vet:species=""
dd:reqattrs="name vet:species"/>

 959

22 Source Set Specification

The Source Set Data Object Model (DOM) provides a centralized mechanism for specifying connections
between XFA applications and Microsoft® ActiveX® Data Objects (ADO) acting as data sources and/or sinks.
Most of the time ADO is used to connect to databases, although in principle it can be used for other things.
The connection information may be specified in XML format and passively loaded at the start of
processing. However the Source Set DOM also supports a scripting interface which allows user-supplied
scripts to initiate and control ADO transactions.

In order to use the Source Set DOM it is necessary to understand the Microsoft® ADO model. XFA supports
version 2.6 of the ADO Application Programming Interface (API). There is a close correlation between the
ADO API and the structure of the Source Set DOM. The ADO API is defined in [ADO].

The actual location of the source set document is variable. XFA provides a convenient mechanism for
packaging XML data (“XDP Specification” on page 989), which might be used to bundle source set
information with the template and other relevant material. However, XFA applications are free to use
scripting instead of or in addition to XDP.

Support for ADO is optional for XFA processors. This is necessarily so because ADO is platform-dependent
while XFA is a platform-independent standard.

The names used for nodes in the Source Set DOM are taken directly from the ADO API, as defined in [ADO].

The Source Set Data Object Model
The Source Set Data Object Model (Source Set DOM) encapsulates the XFA source set information and
provides standard interfaces to it. The Source Set DOM contains data objects organized in a tree structure.
The source set tree is itself a branch within a larger XFA tree.

The sourceSet element and the standard contents shown below must belong to the namespace
http://www.xfa.org/schema/xfa-source-set/2.8/ which is known as the source set
namespace. Custom elements may belong to the source set namespace but are not required to.

Defaults
Many of the elements and attributes in the source set DOM have default values defined. When the
application loads the source set document, where an element or attribute has been omitted, the
application inserts the default value. The defaults appear as nodes in the source set DOM, just as though
they had been loaded from the source set document.

Scripting Interface
The Source Set DOM is part of a larger tree that holds all exposed XFA objects. The single large tree makes
it possible to refer to XFA objects using a unified format known as a Scripting Object Model (SOM)
expression. The grammar of SOM expressions is described in “Scripting Object Model” on page 86. Briefly,
an expression consists of a sequence of node names separated by periods (“.” characters). Starting from
some point in the XFA tree, each successive name identifies which child of the current node to descend to.
The root of the Source Set DOM is a child of the root xfa node. Hence, the sourceSet node itself is

XFA Specification
Chapter 22, Source Set Specification The Source Set Data Object Model 960

xfa.sourceSet. The timeout value for the connection used by the first source would be referenced by
the SOM expression xfa.sourceSet.source.connection.timeout.

In addition SOM expressions recognize the short-form “$sourceSet” as equivalent to xfa.sourceSet.
Thus for example the timeout value mentioned in the preceding paragraph could be referenced as
$sourceSet.source.connection.timeout.

The scripting interface makes it possible for user-supplied scripts to inspect and modify the contents of
the Source Set DOM. Some of these objects make available methods that allow scripts to exert detailed
control over the database transaction.

XFA Specification
Chapter 22, Source Set Specification Source Set Element Reference 961

Source Set Element Reference

The bind element
Associates an item of data from the database with a node in the Data DOM

<bind

Properties:
 contentType="cdata"
 id="cdata"
 name="cdata"
 ref="cdata"
 transferEncoding="none | base64 | package"
 use="cdata"
 usehref="cdata"
>
</bind>

The bind element is used within the following other elements:
source

The contentType property

The type of data retrieved from and/or inserted into the database, expressed as a MIME type. For more
information, please see [RFC2046].

The following values are allowed for textual data:

text/plain

Unadorned text. The XFA application may accept content that does not conform strictly to the
requirements of the MIME type.

pcdata

Support for other text types, such as text/html is implementation-defined.

When the data is an image, a suitable MIME-type must be supplied for this property to tell the application
that the content is an image. However, the application is free to override the supplied value if upon
examining the image data it determines that the image data is of a different type. Which image types are
supported is implementation-defined.

The id property

A unique identifier that may be used to identify this element as a target.

The name property

An identifier that may be used to identify this element in script expressions.

The ref property

An XFA-SOM expression pointing to a node in an XFA DOM. Normally this is a node in the Data DOM or
Form DOM. This expression must be fully-qualified.

XFA Specification
Chapter 22, Source Set Specification Source Set Element Reference 962

The transferEncoding property

The encoding of binary content in the referenced document.

none

The referenced document is not encoded. If the referenced document is specified via a URI then it
will be transferred as a byte stream. If the referenced document is inline it must conform to the
restrictions on PCDATA.

base64

The binary content is encoded in accordance with the base64 transfer encoding s specified in
[RFC2045].

The use property

Invokes another object in the same document as a prototype for this object. The content of this property
is either a SOM expression (which cannot start with '#') or a '#' character followed by an XML ID.

The object used as a prototype does not need to be the child of proto. Any object of the appropriate
class can be used as a prototype.

If both use and usehref are non-empty usehref takes precedence.

The usehref property

Invokes an external object as a prototype for this object. The content of this property is an URL, followed
by '#', followed by either an XML ID or by som(SOM_expr) where SOM_expr represents a SOM
expression.

The XML ID or SOM expression is resolved in the context of the external document.

If both use and usehref are non-empty usehref takes precedence.

XFA Specification
Chapter 22, Source Set Specification Source Set Element Reference 963

The boolean element
Encloses custom data that is represented as a Boolean value.

<boolean

Properties:
 id="cdata"
 name="cdata"
 use="cdata"
 usehref="cdata"
>
 ...pcdata...
</boolean>

The boolean element is used within the following other elements:
extras

Content

The be empty or contain one of the following:

0

The content represents a logical value of false.

1

The content represents a logical value of true.

The id property

A unique identifier that may be used to identify this element as a target.

The name property

An identifier that may be used to identify this element in script expressions.

The use property

Invokes another object in the same document as a prototype for this object. The content of this property
is either a SOM expression (which cannot start with '#') or a '#' character followed by an XML ID.

The object used as a prototype does not need to be the child of proto. Any object of the appropriate
class can be used as a prototype.

If both use and usehref are non-empty usehref takes precedence.

The usehref property

Invokes an external object as a prototype for this object. The content of this property is an URL, followed
by '#', followed by either an XML ID or by som(SOM_expr) where SOM_expr represents a SOM
expression.

The XML ID or SOM expression is resolved in the context of the external document.

If both use and usehref are non-empty usehref takes precedence.

XFA Specification
Chapter 22, Source Set Specification Source Set Element Reference 964

The command element
A command to the database.

<command

Properties:
 id="cdata"
 name="cdata"
 timeout="30 | integer"
 use="cdata"
 usehref="cdata"
>

 <delete/> [0..1]
 <insert/> [0..1]
 <query/> [0..1]
 <update/> [0..1]
</command>

The command element is used within the following other elements:
source

When a database operation is invoked the set of sibling command elements is executed sequentially in
document order. The operations can not nest, that is, each command must terminate before the next one
starts.

The delete property

A SQL command to perform a simple delete operation.

The id property

A unique identifier that may be used to identify this element as a target.

The insert property

A SQL command to perform a simple insert operation.

The name property

An identifier that may be used to identify this element in script expressions.

The query property

Controls a cursor and associated record set.

The timeout property

Time in seconds to wait before giving up on the operation. The default value is 30 seconds.

The value of this attribute must be a non-negative integer. A value of 0 means no timeout.

The update property

A SQL command to perform a simple update.

XFA Specification
Chapter 22, Source Set Specification Source Set Element Reference 965

The use property

Invokes another object in the same document as a prototype for this object. The content of this property
is either a SOM expression (which cannot start with '#') or a '#' character followed by an XML ID.

The object used as a prototype does not need to be the child of proto. Any object of the appropriate
class can be used as a prototype.

If both use and usehref are non-empty usehref takes precedence.

The usehref property

Invokes an external object as a prototype for this object. The content of this property is an URL, followed
by '#', followed by either an XML ID or by som(SOM_expr) where SOM_expr represents a SOM
expression.

The XML ID or SOM expression is resolved in the context of the external document.

If both use and usehref are non-empty usehref takes precedence.

XFA Specification
Chapter 22, Source Set Specification Source Set Element Reference 966

The connect element
This element controls a connection to a database.

<connect

Properties:
 delayedOpen="cdata"
 id="cdata"
 name="cdata"
 timeout="15 | integer"
 use="cdata"
 usehref="cdata"
>

 <connectString/> [0..1]
 <password/> [0..1]
 <user/> [0..1]
Children:
 <extras/> [0..n]
</connect>

The connect element is used within the following other elements:
source

The connectString property

A string identifying a data source.

The delayedOpen property

Controls how and when the connection is opened. The value must be one of the following:

0

Automatically opens the connection on first use.

1

Does not automatically open the connection. The connection must be opened by script, using
the db object, before it can be used.

The extras property

An enclosure around one or more sets of custom properties. The content of this element may be used by
custom applications.

The id property

A unique identifier that may be used to identify this element as a target.

The name property

An identifier that may be used to identify this element in script expressions.

The password property

The password used to connect to the database.

XFA Specification
Chapter 22, Source Set Specification Source Set Element Reference 967

The timeout property

The number of seconds to wait for the connection to open before timing out. The default value is 15
seconds.

The value of this attribute must be a non-negative integer. A value of 0 means no timeout.

The use property

Invokes another object in the same document as a prototype for this object. The content of this property
is either a SOM expression (which cannot start with '#') or a '#' character followed by an XML ID.

The object used as a prototype does not need to be the child of proto. Any object of the appropriate
class can be used as a prototype.

If both use and usehref are non-empty usehref takes precedence.

The usehref property

Invokes an external object as a prototype for this object. The content of this property is an URL, followed
by '#', followed by either an XML ID or by som(SOM_expr) where SOM_expr represents a SOM
expression.

The XML ID or SOM expression is resolved in the context of the external document.

If both use and usehref are non-empty usehref takes precedence.

The user property

Username to be used when connecting to the database.

XFA Specification
Chapter 22, Source Set Specification Source Set Element Reference 968

The connectString element
A string identifying a data source.

<connectString

Properties:
 id="cdata"
 name="cdata"
 use="cdata"
 usehref="cdata"
>
 ...pcdata...
</connectString>

The connectString element is used within the following other elements:
connect

Content

The content of this element corresponds to the "connectString" parameter supplied to the "Create"
method described in the ADOX API Reference [ADO].

The id property

A unique identifier that may be used to identify this element as a target.

The name property

An identifier that may be used to identify this element in script expressions.

The use property

Invokes another object in the same document as a prototype for this object. The content of this property
is either a SOM expression (which cannot start with '#') or a '#' character followed by an XML ID.

The object used as a prototype does not need to be the child of proto. Any object of the appropriate
class can be used as a prototype.

If both use and usehref are non-empty usehref takes precedence.

The usehref property

Invokes an external object as a prototype for this object. The content of this property is an URL, followed
by '#', followed by either an XML ID or by som(SOM_expr) where SOM_expr represents a SOM
expression.

The XML ID or SOM expression is resolved in the context of the external document.

If both use and usehref are non-empty usehref takes precedence.

XFA Specification
Chapter 22, Source Set Specification Source Set Element Reference 969

The delete element
A SQL command to perform a simple delete operation.

<delete

Properties:
 id="cdata"
 name="cdata"
 use="cdata"
 usehref="cdata"
>
 ...pcdata...
</delete>

The delete element is used within the following other elements:
command

The query element can be used to delete record(s) using a cursor and record set. By contrast this element
does not use a cursor or record set. Instead it performs a one-time operation with no persistent context.

Content

The SQL command to send to the database. Operation suspends until the database reports that the
operation is complete.

The id property

A unique identifier that may be used to identify this element as a target.

The name property

An identifier that may be used to identify this element in script expressions.

The use property

Invokes another object in the same document as a prototype for this object. The content of this property
is either a SOM expression (which cannot start with '#') or a '#' character followed by an XML ID.

The object used as a prototype does not need to be the child of proto. Any object of the appropriate
class can be used as a prototype.

If both use and usehref are non-empty usehref takes precedence.

The usehref property

Invokes an external object as a prototype for this object. The content of this property is an URL, followed
by '#', followed by either an XML ID or by som(SOM_expr) where SOM_expr represents a SOM
expression.

The XML ID or SOM expression is resolved in the context of the external document.

If both use and usehref are non-empty usehref takes precedence.

XFA Specification
Chapter 22, Source Set Specification Source Set Element Reference 970

The extras element
An enclosure around one or more sets of custom properties. The content of this element may be used by
custom applications.

<extras

Properties:
 id="cdata"
 name="cdata"
 use="cdata"
 usehref="cdata"
>
Children:
 <boolean/> [0..n]
 <extras/> [0..n]
 <integer/> [0..n]
 <text/> [0..n]
</extras>

The extras element is used within the following other elements:
connect extras recordSet

The boolean property

Encloses custom data that is represented as a Boolean value.

The extras property

An enclosure around one or more sets of custom properties. The content of this element may be used by
custom applications.

The id property

A unique identifier that may be used to identify this element as a target.

The integer property

Encloses custom data that is represented as an integer.

The name property

An identifier that may be used to identify this element in script expressions.

The text property

Encloses a custom property which is represented as text.

The use property

Invokes another object in the same document as a prototype for this object. The content of this property
is either a SOM expression (which cannot start with '#') or a '#' character followed by an XML ID.

The object used as a prototype does not need to be the child of proto. Any object of the appropriate
class can be used as a prototype.

If both use and usehref are non-empty usehref takes precedence.

XFA Specification
Chapter 22, Source Set Specification Source Set Element Reference 971

The usehref property

Invokes an external object as a prototype for this object. The content of this property is an URL, followed
by '#', followed by either an XML ID or by som(SOM_expr) where SOM_expr represents a SOM
expression.

The XML ID or SOM expression is resolved in the context of the external document.

If both use and usehref are non-empty usehref takes precedence.

XFA Specification
Chapter 22, Source Set Specification Source Set Element Reference 972

The insert element
A SQL command to perform a simple insert operation.

<insert

Properties:
 id="cdata"
 name="cdata"
 use="cdata"
 usehref="cdata"
>
 ...pcdata...
</insert>

The insert element is used within the following other elements:
command

The query element can be used to insert record(s) using a cursor and record set. By contrast this element
does not use a cursor or record set. Instead it performs a one-time operation with no persistent context.

Content

The SQL command to send to the database. Operation suspends until the database reports that the
operation is complete.

The id property

A unique identifier that may be used to identify this element as a target.

The name property

An identifier that may be used to identify this element in script expressions.

The use property

Invokes another object in the same document as a prototype for this object. The content of this property
is either a SOM expression (which cannot start with '#') or a '#' character followed by an XML ID.

The object used as a prototype does not need to be the child of proto. Any object of the appropriate
class can be used as a prototype.

If both use and usehref are non-empty usehref takes precedence.

The usehref property

Invokes an external object as a prototype for this object. The content of this property is an URL, followed
by '#', followed by either an XML ID or by som(SOM_expr) where SOM_expr represents a SOM
expression.

The XML ID or SOM expression is resolved in the context of the external document.

If both use and usehref are non-empty usehref takes precedence.

XFA Specification
Chapter 22, Source Set Specification Source Set Element Reference 973

The integer element
Encloses custom data that is represented as an integer.

<integer

Properties:
 id="cdata"
 name="cdata"
 use="cdata"
 usehref="cdata"
>
 ...pcdata...
</integer>

The integer element is used within the following other elements:
extras

Content

This element may enclose integer-data which is an optional leading minus sign (Unicode character
U+002D), followed by a sequence of decimal digits (Unicode characters U+0030 - U+0039). Alternatively it
may be empty.

The id property

A unique identifier that may be used to identify this element as a target.

The name property

An identifier that may be used to identify this element in script expressions.

The use property

Invokes another object in the same document as a prototype for this object. The content of this property
is either a SOM expression (which cannot start with '#') or a '#' character followed by an XML ID.

The object used as a prototype does not need to be the child of proto. Any object of the appropriate
class can be used as a prototype.

If both use and usehref are non-empty usehref takes precedence.

The usehref property

Invokes an external object as a prototype for this object. The content of this property is an URL, followed
by '#', followed by either an XML ID or by som(SOM_expr) where SOM_expr represents a SOM
expression.

The XML ID or SOM expression is resolved in the context of the external document.

If both use and usehref are non-empty usehref takes precedence.

XFA Specification
Chapter 22, Source Set Specification Source Set Element Reference 974

The map element
Maps a database column to a bind element descended from the same source element.

<map

Properties:
 bind="cdata"
 from="cdata"
 id="cdata"
 name="cdata"
 use="cdata"
 usehref="cdata"
>
</map>

The map element is used within the following other elements:
query

The bind property

Name of the bind element to use for this column.

The from property

Name of the database column controlled by this element.

The id property

A unique identifier that may be used to identify this element as a target.

The name property

An identifier that may be used to identify this element in script expressions.

The use property

Invokes another object in the same document as a prototype for this object. The content of this property
is either a SOM expression (which cannot start with '#') or a '#' character followed by an XML ID.

The object used as a prototype does not need to be the child of proto. Any object of the appropriate
class can be used as a prototype.

If both use and usehref are non-empty usehref takes precedence.

The usehref property

Invokes an external object as a prototype for this object. The content of this property is an URL, followed
by '#', followed by either an XML ID or by som(SOM_expr) where SOM_expr represents a SOM
expression.

The XML ID or SOM expression is resolved in the context of the external document.

If both use and usehref are non-empty usehref takes precedence.

XFA Specification
Chapter 22, Source Set Specification Source Set Element Reference 975

The password element
The password used to connect to the database.

<password

Properties:
 id="cdata"
 name="cdata"
 use="cdata"
 usehref="cdata"
>
 ...pcdata...
</password>

The password element is used within the following other elements:
connect

Content

The password to be sent at connect time. This element may be omitted or empty. In interactive contexts
when authorization is required but the element is omitted or empty the XFA processor prompts for the
password. In non-interactive contexts when authorization is required the password must be supplied
here.

Communicating any password in clear text is risky. If the password is supplied, steps should be taken to
ensure that the form's distribution is limited.

The id property

A unique identifier that may be used to identify this element as a target.

The name property

An identifier that may be used to identify this element in script expressions.

The use property

Invokes another object in the same document as a prototype for this object. The content of this property
is either a SOM expression (which cannot start with '#') or a '#' character followed by an XML ID.

The object used as a prototype does not need to be the child of proto. Any object of the appropriate
class can be used as a prototype.

If both use and usehref are non-empty usehref takes precedence.

The usehref property

Invokes an external object as a prototype for this object. The content of this property is an URL, followed
by '#', followed by either an XML ID or by som(SOM_expr) where SOM_expr represents a SOM
expression.

The XML ID or SOM expression is resolved in the context of the external document.

If both use and usehref are non-empty usehref takes precedence.

XFA Specification
Chapter 22, Source Set Specification Source Set Element Reference 976

The query element
Controls a cursor and associated record set.

<query

Properties:
 commandType="unknown | storedProc | table | text"
 id="cdata"
 name="cdata"
 use="cdata"
 usehref="cdata"
>

 <recordSet/> [0..1]
 <select/> [0..1]
Children:
 <map/> [0..n]
</query>

The query element is used within the following other elements:
command

Despite the name, this element can also be used to delete, insert, and update records.

The commandType property

The type of select string in the child select element. This has the same function as "CommandTypeEnum"
defined in the ADO API Reference [ADO], but it has a more restricted range of values. The value must be
one of the following:

unknown

Indicates that the type of select string is not known. The XFA application or database is required
to parse the string to find out.

text

Indicates that the select string is a SQL command or textual stored procedure call.

table

Indicates that the select string is the name of a table. All of the columns in the table are returned
by the query.

storedProc

Indicates that the select string is the name of a stored procedure.

The id property

A unique identifier that may be used to identify this element as a target.

The map property

Maps a database column to a bind element descended from the same source element.

XFA Specification
Chapter 22, Source Set Specification Source Set Element Reference 977

The name property

An identifier that may be used to identify this element in script expressions.

The recordSet property

Controls the type and behavior of the cursor for the record set.

The select property

String identifying the records in the record set.

The use property

Invokes another object in the same document as a prototype for this object. The content of this property
is either a SOM expression (which cannot start with '#') or a '#' character followed by an XML ID.

The object used as a prototype does not need to be the child of proto. Any object of the appropriate
class can be used as a prototype.

If both use and usehref are non-empty usehref takes precedence.

The usehref property

Invokes an external object as a prototype for this object. The content of this property is an URL, followed
by '#', followed by either an XML ID or by som(SOM_expr) where SOM_expr represents a SOM
expression.

The XML ID or SOM expression is resolved in the context of the external document.

If both use and usehref are non-empty usehref takes precedence.

XFA Specification
Chapter 22, Source Set Specification Source Set Element Reference 978

The recordSet element
Controls the type and behavior of the cursor for the record set.

<recordSet

Properties:
 bofAction="moveFirst | stayBOF"
 cursorLocation="client | server"
 cursorType="forwardOnly | dynamic | keyset | static |
 unspecified"
 eofAction="moveLast | addNew | stayEOF"
 id="cdata"
 lockType="readOnly | batchOptimistic | optimistic |
 pessimistic | unspecified"
 max="0 | integer"
 name="cdata"
 use="cdata"
 usehref="cdata"
>
Children:
 <extras/> [0..n]
</recordSet>

The recordSet element is used within the following other elements:
query

The bofAction property

Controls what happens when the cursor reaches a position in front of the first record in the record set.

moveFirst

Move forward to the first record in the set.

stayBOF

Stay at the beginning. If an insert is performed the new record will be placed in front of the record
that is currently the first in the set.

The cursorLocation property

Controls where the cursor is held. Note that this choice has side-effects. See the section "The Significance
of Cursor Location" in Chapter 8 of the ADO Programmer's Guide for more information [ADO].

client

The cursor is held on the client.

server

The cursor is held on the server.

The cursorType property

Controls what type of cursor is used. The text within quotation marks for each value below is taken
directly from the ADO 2.6 API Reference [ADO], under the entry for "CursorTypeEnum".

forwardOnly

XFA Specification
Chapter 22, Source Set Specification Source Set Element Reference 979

"Default. Uses a forward-only cursor. Identical to a static cursor, except that you can only scroll
forward through records. This improves performance when you need to make only one pass
through a Recordset."

unspecified

"Does not specify the type of cursor." The database or XFA processor decides on the type of
cursor. XFA does not provide a way to determine what type of cursor was chosen, so the form
creator must make pessimistic assumptions.

keyset

"Uses a keyset cursor. Like a dynamic cursor, except that you can't see records that other users
add, although records that other users delete are inaccessible from your Recordset. Data changes
by other users are still visible."

dynamic

"Uses a dynamic cursor. Additions, changes, and deletions by other users are visible, and all types
of movement through the Recordset are allowed, except for bookmarks, if the provider doesn't
support them."

static

"Uses a static cursor. A static copy of a set of records that you can use to find data or generate
reports. Additions, changes, or deletions by other users are not visible."

The eofAction property

Controls what happens when the cursor reaches a position past the last record in the record set.

moveLast

Notionally reposition to the last record in the set. When using a forwardOnly cursor the effect is
to stay at the last record rather than advancing to EOF.

stayEOF

Stay at the end. If an attempt is made to fetch another record in the forward direction the request
will return a null.

addNew

Insert a new record at the end.

The extras property

An enclosure around one or more sets of custom properties. The content of this element may be used by
custom applications.

The id property

A unique identifier that may be used to identify this element as a target.

The lockType property

Controls what type of lock to apply against other users and/or processors. The text within quotation marks
below is taken from the section "Types of Locks" in Chapter 8 of the ADO Programmer's Guide [ADO].

readOnly

XFA Specification
Chapter 22, Source Set Specification Source Set Element Reference 980

"Indicates read-only records. You cannot alter the data. A read-only lock is the 'fastest' type of lock
because it does not require the server to maintain a lock on the records."

unspecified

"Does not specify a type of lock." The lock type is determined by the database and/or XFA
application. XFA does not provide a way to find out what type of lock was chosen, so the form
creator must make pessimistic assumptions.

pessimistic

"Indicates pessimistic locking, record by record. The provider does what is necessary to ensure
successful editing of the records, usually by locking records at the data source immediately before
editing. Of course, this means that the records are unavailable to other users once you begin to
edit, until you release the lock by calling Update. Use this type of lock in a system where you
cannot afford to have concurrent changes to data, such as in a reservation system."

optimistic

"Indicates that the provider uses optimistic locking - locking records only when you call the
Update method. This means that there is a chance that the data may be changed by another user
between the time you edit the record and when you call Update, which creates conflicts. Use this
lock type in situations where the chances of a collision are low or where collisions can be readily
resolved."

batchOptimistic

"Indicates optimistic batch updates. Required for batch update mode.
Many applications fetch a number of rows at once and then need to make coordinated updates
that include the entire set of rows to be inserted, updated, or deleted. With batch cursors, only
one round trip to the server is needed, thus improving update performance and decreasing
network traffic. Using a batch cursor library, you can create a static cursor and then disconnect
from the data source. At this point you can make changes to the rows and subsequently
reconnect and post the changes to the data source in a batch." XFA does not provide a way to
control disconnecting and reconnecting. Whether or not this optimization is performed is
implementation-defined.

The max property

The maximum number of records to return. This corresponds to the "MaxRecords" property of the
Recordset ADO object. The value of this attribute must be a non-negative integer.

The special value 0 means there is no limit. This is the default.

The name property

An identifier that may be used to identify this element in script expressions.

The use property

Invokes another object in the same document as a prototype for this object. The content of this property
is either a SOM expression (which cannot start with '#') or a '#' character followed by an XML ID.

The object used as a prototype does not need to be the child of proto. Any object of the appropriate
class can be used as a prototype.

If both use and usehref are non-empty usehref takes precedence.

XFA Specification
Chapter 22, Source Set Specification Source Set Element Reference 981

The usehref property

Invokes an external object as a prototype for this object. The content of this property is an URL, followed
by '#', followed by either an XML ID or by som(SOM_expr) where SOM_expr represents a SOM
expression.

The XML ID or SOM expression is resolved in the context of the external document.

If both use and usehref are non-empty usehref takes precedence.

XFA Specification
Chapter 22, Source Set Specification Source Set Element Reference 982

The select element
String identifying the records in the record set.

<select

Properties:
 id="cdata"
 name="cdata"
 use="cdata"
 usehref="cdata"
>
 ...pcdata...
</select>

The select element is used within the following other elements:
query

Content

Depending on the value of commandType in the parent query element, this string is a SQL select
command, the name of a table, the name of a stored procedure, or a textual procedure call.

The id property

A unique identifier that may be used to identify this element as a target.

The name property

An identifier that may be used to identify this element in script expressions.

The use property

Invokes another object in the same document as a prototype for this object. The content of this property
is either a SOM expression (which cannot start with '#') or a '#' character followed by an XML ID.

The object used as a prototype does not need to be the child of proto. Any object of the appropriate
class can be used as a prototype.

If both use and usehref are non-empty usehref takes precedence.

The usehref property

Invokes an external object as a prototype for this object. The content of this property is an URL, followed
by '#', followed by either an XML ID or by som(SOM_expr) where SOM_expr represents a SOM
expression.

The XML ID or SOM expression is resolved in the context of the external document.

If both use and usehref are non-empty usehref takes precedence.

XFA Specification
Chapter 22, Source Set Specification Source Set Element Reference 983

The source element
This element describes a database or some other external data source/sink.

<source

Properties:
 id="cdata"
 name="cdata"
 use="cdata"
 usehref="cdata"
>

 <connect/> [0..1]
Children:
 <bind/> [0..n]
 <command/> [0..n]
</source>

The source element is used within the following other elements:
sourceSet

The bind property

Associates an item of data from the database with a node in the Data DOM

The command property

A command to the database.

The connect property

This element controls a connection to a database.

The id property

A unique identifier that may be used to identify this element as a target.

The name property

An identifier that may be used to identify this element in script expressions.

The use property

Invokes another object in the same document as a prototype for this object. The content of this property
is either a SOM expression (which cannot start with '#') or a '#' character followed by an XML ID.

The object used as a prototype does not need to be the child of proto. Any object of the appropriate
class can be used as a prototype.

If both use and usehref are non-empty usehref takes precedence.

The usehref property

Invokes an external object as a prototype for this object. The content of this property is an URL, followed
by '#', followed by either an XML ID or by som(SOM_expr) where SOM_expr represents a SOM
expression.

XFA Specification
Chapter 22, Source Set Specification Source Set Element Reference 984

The XML ID or SOM expression is resolved in the context of the external document.

If both use and usehref are non-empty usehref takes precedence.

XFA Specification
Chapter 22, Source Set Specification Source Set Element Reference 985

The sourceSet element
This element contains the set of source descriptions.

<sourceSet

Properties:
 id="cdata"
 name="cdata"
 use="cdata"
 usehref="cdata"
>
Children:
 <source/> [0..n]
</sourceSet>

The id property

A unique identifier that may be used to identify this element as a target.

The name property

An identifier that may be used to identify this element in script expressions.

The source property

This element describes a database or some other external data source/sink.

The use property

Invokes another object in the same document as a prototype for this object. The content of this property
is either a SOM expression (which cannot start with '#') or a '#' character followed by an XML ID.

The object used as a prototype does not need to be the child of proto. Any object of the appropriate
class can be used as a prototype.

If both use and usehref are non-empty usehref takes precedence.

The usehref property

Invokes an external object as a prototype for this object. The content of this property is an URL, followed
by '#', followed by either an XML ID or by som(SOM_expr) where SOM_expr represents a SOM
expression.

The XML ID or SOM expression is resolved in the context of the external document.

If both use and usehref are non-empty usehref takes precedence.

XFA Specification
Chapter 22, Source Set Specification Source Set Element Reference 986

The text element
Encloses a custom property which is represented as text.

<text

Properties:
 id="cdata"
 name="cdata"
 use="cdata"
 usehref="cdata"
>
 ...pcdata...
</text>

The text element is used within the following other elements:
extras

Content

This element may contain text data which is simple XML PCDATA. It may also be empty.

The id property

A unique identifier that may be used to identify this element as a target.

The name property

An identifier that may be used to identify this element in script expressions.

The use property

Invokes another object in the same document as a prototype for this object. The content of this property
is either a SOM expression (which cannot start with '#') or a '#' character followed by an XML ID.

The object used as a prototype does not need to be the child of proto. Any object of the appropriate
class can be used as a prototype.

If both use and usehref are non-empty usehref takes precedence.

The usehref property

Invokes an external object as a prototype for this object. The content of this property is an URL, followed
by '#', followed by either an XML ID or by som(SOM_expr) where SOM_expr represents a SOM
expression.

The XML ID or SOM expression is resolved in the context of the external document.

If both use and usehref are non-empty usehref takes precedence.

XFA Specification
Chapter 22, Source Set Specification Source Set Element Reference 987

The update element
A SQL command to perform a simple update.

<update

Properties:
 id="cdata"
 name="cdata"
 use="cdata"
 usehref="cdata"
>
 ...pcdata...
</update>

The update element is used within the following other elements:
command

The query element can be used to update record(s) using a cursor and record set. By contrast this element
does not use a cursor or record set. Instead it performs a one-time operation with no persistent context.

Content

The SQL command to send to the database. Operation suspends until the database reports that the
operation is complete.

The id property

A unique identifier that may be used to identify this element as a target.

The name property

An identifier that may be used to identify this element in script expressions.

The use property

Invokes another object in the same document as a prototype for this object. The content of this property
is either a SOM expression (which cannot start with '#') or a '#' character followed by an XML ID.

The object used as a prototype does not need to be the child of proto. Any object of the appropriate
class can be used as a prototype.

If both use and usehref are non-empty usehref takes precedence.

The usehref property

Invokes an external object as a prototype for this object. The content of this property is an URL, followed
by '#', followed by either an XML ID or by som(SOM_expr) where SOM_expr represents a SOM
expression.

The XML ID or SOM expression is resolved in the context of the external document.

If both use and usehref are non-empty usehref takes precedence.

XFA Specification
Chapter 22, Source Set Specification Source Set Element Reference 988

The user element
Username to be used when connecting to the database.

<user

Properties:
 id="cdata"
 name="cdata"
 use="cdata"
 usehref="cdata"
>
 ...pcdata...
</user>

The user element is used within the following other elements:
connect

Content

Username sent when connecting to the database. If authorization is not needed this element may be
omitted or empty.

The id property

A unique identifier that may be used to identify this element as a target.

The name property

An identifier that may be used to identify this element in script expressions.

The use property

Invokes another object in the same document as a prototype for this object. The content of this property
is either a SOM expression (which cannot start with '#') or a '#' character followed by an XML ID.

The object used as a prototype does not need to be the child of proto. Any object of the appropriate
class can be used as a prototype.

If both use and usehref are non-empty usehref takes precedence.

The usehref property

Invokes an external object as a prototype for this object. The content of this property is an URL, followed
by '#', followed by either an XML ID or by som(SOM_expr) where SOM_expr represents a SOM
expression.

The XML ID or SOM expression is resolved in the context of the external document.

If both use and usehref are non-empty usehref takes precedence.

 989

23 XDP Specification

This chapter contains a narrative description of the XML Data Packaging (XDP) grammar (“About the XDP
Grammar”) and a reference for the XDP root element and XDP packets (“XDP Element Language Syntax”).

About the XDP Grammar
XDP is an XML grammar that provides a mechanism for packaging XFA components within a surrounding
XML container. Such XFA components may include a PDF document, PDF subassemblies (annots and
data), XFA form data, and custom XFA components. Packaging XFA components within an XML container
may be important for XML-based applications that support XFA.

Role of XDP
The XFA components come from various sources, each corresponding to a different type of XML grammar,
language (PDF), or language subassembly (annots and PDF data). In some cases, the XFA components are
serialized from a DOM representation (datasets). In other cases, the XFA components come from file-based
representations (templates). The source of a particular XFA component depends on whether the
in-memory representation may have changed during a session.

When an XFA processing application is requested to submit or export XFA components, it packages those
components as an XDP document (below left) or as a single PDF document (below right). XDP and PDF can
represent the same XFA form component; however, they differ in their root nodes and in the compliance
with XML. That is, XDP is XML-compliant, while PDF is not.

XFA Specification
Chapter 23, XDP Specification About the XDP Grammar 990

Packaging of XFA form components into XDP or PDF

The most common use of XDP is to submit data to a server that expects to process XML.
Such a data-only XDP document is shown at right.

The types of XFA components packaged within XDP is discretionary. It can be used to
submit any combination of packages containing XFA components. Packages may
include custom XFA components, provided those components comply with the
guidelines described later in this section.

Overview of Packaging a PDF Document in XDP Format
While the PDF format may be most recognized as a visual representation of a document, PDF is also a
packaging format that encloses many different types and ranges of content. Each of these units of content
is referred to as a subassembly by this document. For example, a PDF document representing an
interactive form may enclose an XML fragment representing the form-data subassembly of the document.

Consider an XML processing application that wishes to process the XML form-data subassembly of a PDF
form. Such an application could not directly consume this XML-based subassembly of the PDF because it is
enclosed within a non-XML format: PDF.

datasets template
Other
XFA-related
packages

PDF

data

XML

XFA

XDP

datasets template
Other
XFA-derived
packages

PDF

data

PDF

XML form data template
Other
objects

FDF (annots)

Data

Submit or export as XDP Submit, export, or save as PDF

An XML document

XFA form components

XDP

data

datasets

XFA Specification
Chapter 23, XDP Specification About the XDP Grammar 991

While extending such an application to interpret the PDF and navigate to the XML data content contained
within may be straightforward, this cannot occur by solely employing commonly available XML tools such
as an XML parser.

The XDP format provides an alternate means of expressing the PDF document in which the outer
packaging is described with an XML-based syntax, rather than a PDF-based syntax. Instances of, typically
XML, subassemblies are copied from the original PDF document and expressed as a package within an
XDP document. The subassemblies in the original PDF document remain unchanged. The PDF Reference
[PDF] states that content in XFA packages take precedence over their counterparts embedded within the
PDF package. This rules resolves the potential conflict over which content (XDP package or embedded
PDF subassembly) an XDP importer should use.

XDP packages the PDF document to comply with XML conventions. The PDF document is enclosed within
the XDP as a region of character-encoded content because of the inability for XML to directly enclose
binary content. As a result, the XDP contains all of the information that was formerly enclosed within the
PDF, though some of the information may now be expressed in XML. All of the information survives the
transformation process. Therefore, a PDF document can be transformed into an XDP and subsequently
transformed back into a PDF document without loss of information.

A benefit of the XDP format is that PDF documents can now successfully operate directly within XML
workflows because the XDP format provides a means for selectively expressing a PDF document in an XML

PDF

XFA

2. Carlos submits form as XDP

1. Carlos opens PDF file and fill in data

3. Fred modifies data, using an XFA app
that does not modify the PDF sub-
assembly.

Carlos Fred

XDP

PDF

XFA

datasets

data from Carlos

data from Carlos

4. Fred submits form as XDP

XDP

PDF

XFA

datasets

data from Fred

data from Carlos

XFA Specification
Chapter 23, XDP Specification XDP Element Language Syntax 992

compatible manner without loss of information. Because the transformations are lossless, document
workflows can choose arbitrarily when to process documents in a PDF format vs. when to process the
same document in an XML-based format.

Extensibility of XDP and PDF
In addition to providing a format for expressing one or more subassemblies of a PDF document, the XDP
format has the capability to host arbitrary XFA components. This capability to host arbitrary content is also
a feature of PDF. In particular, XDP is an XML-based format with an open content model; the format itself
does not prescribe a closed set of components and can therefore be arbitrarily extended.

XDP Element Language Syntax
This chapter provides a reference for the XDP element. XDP provides a mechanism for packaging units of
XFA components within a surrounding XML container.

Note: This document describes the XDP format, but does not describe the transformation mechanism
between XDP and PDF nor between XDP any other format.

The XDP format is comprised of a single optional processing instruction (“The xfa Processing Instruction”
on page 992) and a single element, known as the xdp element (“The xdp Element” on page 999).

The xfa Processing Instruction
The xfa processing instruction may be used to hold meta-data about the XDP document. By convention
this processing instruction is placed near the beginning of the document, ahead of the xdp element.

There are two parameters used within the xfa processing instruction. They may occur in any order.

generator="name"

The name identifies the program and version of that program that generated the document.

APIVersion="version"

The version identifies the version of the scripting API for which the contained scripts were
generated. The XFA 3.1 scripting API corresponds to version 3.1.9078.0.

For example, the following fragment comes from an XDP generated by Adobe LiveCycle Designer ES 8.0.

Example 23.1 XDP with generator tag

<?xml version="1.0" encoding="UTF-8" ?>
<?xfa generator="AdobeLiveCycleDesignerES_V8.0" APIVersion="2.5.6290.0"?>
<xdp:xdp ...>

...
</xdp:xdp>

XDP Namespace
The xdp element must belong to the namespace of http://ns.adobe.com/xdp/, which is known as
the XDP namespace.

XFA Specification
Chapter 23, XDP Specification XDP Element Language Syntax 993

The xdp element should make use of explicitly prefixed namespace notation rather than declaring the
XDP namespace as a default namespace. If the xdp element declared the XDP namespace as the default
namespace it would have the unfortunate side effect of placing any packet that lacks namespace
information into the XDP namespace itself.

The following example demonstrates the proper way to declare the XDP namespace.

Example 23.2 XDP with properly declared namespace

<xdp:xdp xmlns:xdp="http://ns.adobe.com/xdp/">
<xfa:datasets xmlns:xfa="http://www.xfa.org/schema/xfa-data/1.0/">

<xfa:data>
<book>

<ISBN>15536455</ISBN>
<title>Introduction to XML</title>
<author>

<firstname>Charles</firstname>
<lastname>Porter</lastname>

</author>
</book>

</xfa:data>
</xfa:datasets>

</xdp:xdp>

In the above example the namespace declaration on the xdp element does not impact the default
namespace and therefore the "book" fragment does not inadvertently inherit the XDP namespace.

The following example illustrates the discouraged practice of an XDP that expresses the XDP namespace as
the default namespace.

Example 23.3 XDP with namespace declared using a discouraged method

<!-- Declaring the XDP namespace as the default namespace is discouraged --!>
<xdp xmlns="http://ns.adobe.com/xdp/">

<xfa:datasets xmlns:xfa="http://www.xfa.org/schema/xfa-data/1.0/">
<xfa:data>

<book>
<ISBN>15536455</ISBN>
<title>Introduction to XML</title>
<author>

<firstname>Charles</firstname>
<lastname>Porter</lastname>

</author>
</book>

</xfa:data>
</xfa:datasets>

</xdp>

Important. In the above example, the xdp element is not prefixed and declares its namespace via the
namespace attribute syntax of xmlns="http://ns.adobe.com/xdp/". The impact of this approach is
that any descendant packet that does not declare a namespace is at risk of inheriting the XDP namespace.
Concretely, in this example, the result is that the "book" fragment resides in the XDP namespace, which is
problematic because such an element is certainly not a valid element of the XDP format, and downstream
XML processors intending to interpret this element may no longer recognize the fragment because it has
inadvertently been namespaced.

XFA Specification
Chapter 23, XDP Specification XDP Element Language Syntax 994

XDP Packets
The role of an XDP packet is to encapsulate an XFA component.

All child elements of the xdp element are considered to be XDP packets. Conversely, an XDP packet must
be located as a child element of the xdp element. An XDP packet must not belong to the XDP namespace.
The application of the XDP namespace on child elements of the xdp element is reserved for future use.

This section will describe the particular packets supported by the Acrobat 9.1 family of products. However,
the XDP format is also able to enclose packets that are implementation-defined to a particular processing
application. Members of the Acrobat family and other processing applications may ignore such packets.

Consider the following example XDP.

Example 23.4 XDP containing several packets

<xdp:xdp xmlns:xdp="http://ns.adobe.com/xdp/"
uuid="…"
timeStamp="1994-11-05T13:15:30Z">
<xfa:datasets xmlns:xfa="http://www.xfa.org/schema/xfa-data/1.0/">

<xfa:data>
<book>

<ISBN>15536455</ISBN>
<title>Introduction to XML</title>
<author>

<firstname>Charles</firstname>
<lastname>Porter</lastname>

</author>
</book>

</xfa:data>
</xfa:datasets>
<pdf xmlns="http://ns.adobe.com/xdp/pdf/">

<document>
<chunk> JVBERi0xLjMKJeTjz9IKNSAwIG9iago8PC9MZW5...

ZQo+PgpzdHJlYW0KeJylWEtv3DYQvutX8FKgPZj...
Z/iUBGstoTDg9cfVfPPgcPjJDxUnDH7wt3GCtPv...

</chunk>
</document>

</pdf>
<my:example xmlns:my="http://www.example.com/">

<my:message>This packet does not represent a PDF subassembly</my:message>
</my:example>

</xdp:xdp>

The above example XDP encloses the following XDP packets:

● datasets. The first packet is represented by the xfa:datasets element that encloses the XML
form-data subassembly of a PDF form.

● pdf. The second packet is represented by the pdf element that encloses an encoded PDF form. The PDF
object still retains the form-data presented in the first packet; however, the XDP packet version of the
form-data takes precedence over the form-data embedded in the PDF object.

● my:example. The third packet is represented by the my:example element that encloses an XFA
component meaningful to the creator of the XDP but does not represent a subassembly of the PDF
form.

XFA Specification
Chapter 23, XDP Specification XDP Element Language Syntax 995

The above example XDP also uniquely identifies the template (uuid) and indicates when the template
was last modified (timeStamp).

XFA Specification
Chapter 23, XDP Specification XDP Reference 996

XDP Reference

The config Element (an XDP Packet)
This packet encloses the configuration settings (“Config Common Specification” on page 846).

The following shows the format of a config packet:

<xfa:config
xmlns:xfa="http://www.xfa.org/schema/xci/3.1/">
XFA and application-specific configuration elements

</xfa:config>

Portions of the config packet are defined elsewhere in this specification and other portions are
application-defined. The config MIME-type is text/xml.

The connectionSet Element (an XDP Packet)
The connectionSet packet describes the connections used to initiate or conduct web services. Such a
set defines connections for web services (WSDL), sample data (XML), and schema files (XSD) (“Connection
Set Specification” on page 927).

The following shows the format of a connectionSet packet:

<connectionSet
xmlns="http://www.xfa.org/schema/xfa-connection-set/2.8/">
XFA connection set elements

</connectionSet> </xfd>

The connectionSet MIME-type is text/xml.

The datasets Element (an XDP Packet)
The datasets element encloses XML data content that may have originated from an XFA form and/or
may be intended to be consumed by an XFA form (“Data Description Specification” on page 943). The
datasets element may also include XML digital signatures, as described “XML Digital Signatures” on
page 552.

The following shows the format of a datasets packet:

<xfa:datasets
xmlns:xfa="http://www.xfa.org/schema/xfa-data/1.0/">
<xfa:data>

arbitrary XML data content
</xfa:data>
<Signature xmlns="http://www.w3.org/2000/09/xmldsig#">

XMLDSIG digital signature
</Signature>

</xfa:datasets>

The datasets MIME Type is text/xml.

XFA Specification
Chapter 23, XDP Specification XDP Reference 997

The localeSet Element (an XDP Packet)
The localeSet packet encloses information about locales. A locale set includes predefined set of
conventions for representing dates, times, numbers, and currency. For more information, see “Localization
and Canonicalization” on page 152 and “Locale Set Specification” on page 901.

<xdp xmlns="http://ns.adobe.com/xdp/">
<localeSet

xmlns="http://www.xfa.org/schema/xfa-locale-set/2.7/">
XML locale set content

</localeSet>
</xdp>

The localeSet MIME-type is text/xml.

The pdf Element (an XDP Packet)
An XDF pdf element encloses a PDF packet (MIME-type application/pdf).

The PDF packet has the following format:

<pdf xmlns="http://ns.adobe.com/xdp/pdf/">
<document>

<chunk>
base64 encoded PDF content

</chunk>
</document>

</pdf>

XML is a text format, and is not designed to host binary content. PDF files are binary and therefore must be
encoded into a text format before they can be enclosed within an XML format such as XDP. The most
common method for encoding binary resources into a text format, and the method used by the PDF
packet, is base64 encoding [RFC2045].

chunk element

The chunk element must enclose a single base64 encoded PDF document. PDF content cannot be broken
into smaller chunks; however, the packet may contain processing instructions that explain how to process
the embedded PDF.

href

The PDF packet may contain a reference to an external file, as shown in the following example. The value
of href is a URI to the original copy of the PDF document. The processing application obtains this value
from the XFDF F-key path. The F-key path is relative to the system on which the PDF document was
created.

Example 23.5 pdf packet making reference to an external file

<pdf
href="pathname/filename.pdf"
xmlns="http://ns.adobe.com/xdp/pdf/"

/pdf>

Note: For security reasons an XFA processor may refuse to process a reference to an external file. Whether
it does or not is application and configuration dependent.

XFA Specification
Chapter 23, XDP Specification XDP Reference 998

The pdf MIME-type is application/pdf.

The signature Element (an XDP Packet)
The signature packet encloses a detached digital signature. Such a signature may be used to establish
the integrity of part or all of the data in the XFA Data DOM and to support signer authentication. This XDP
packet is not used to save digital signatures that are enveloped in the in the dataset. See “XML Digital
Signatures” on page 552.

The signature packet has the following format:

<signature xmlns="http://www.w3.org/2000/09/xmldsig#">
XMLDSIG signature content

</signature>

The sourceSet Element (an XDP Packet)
The sourceSet packet contains ADO database queries, used to describe data binding to ADO data
sources. The ADO grammar is defined in the ADO API Reference [ADO].

The sourceSet packet has the following format:

<sourceSet
xmlns="http://www.xfa.org/schema/xfa-source-set/2.8/">
XFA source set content

</sourceSet>

The sourceSet MIME-type is text/xml.

The stylesheet Element (an XDP Packet)
The stylesheet packet encloses a single XSLT stylesheet. The XSLT packet is expressed with an
appropriately namespaced stylesheet element, as defined by the W3C "XSL Transformations"
specification [XSLT].

The XDP format may enclose multiple stylesheet packets. Each stylesheet packet should be labelled with
an XML ID attribute so that the configuration packet can refer to it individually. For more information see
“XSLT Transformations” on page 538.

The following shows the format of a stylesheet packet:

<xsl:stylesheet version="1.0"
xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
id="identifier">
XSL stylesheet elements

</xsl:stylesheet>

The stylesheet MIME-type is text/css.

The template Element (an XDP Packet)
This packet contains the form template, as defined by “Template Specification” on page 565.

The following shows the format of a template packet:

XFA Specification
Chapter 23, XDP Specification XDP Reference 999

<xfa:template
xmlns:xfa="http://www.xfa.org/schema/xfa-template/3.1/">
XFA template elements

</xfa:template>

The template MIME-type is application/x-xfa-template.

The xdc Element (an XDP Packet)
The xdc packet encloses application-specific XFA driver configuration instructions. The format of an xdc
packet does not have a formal grammar. That is, each implementation of an XDC grammar may be unique.

<xsl:xdc
xmlns:xdc="http://www.xfa.org/schema/xdc/1.0/">
application-defined XDC elements

</xsl:xdc>

There is no standard MIME-type for the xdc packet because it is application-specific.

The xdp Element
The xdp element is the root of an XDP document. It encapsulates any number of XFA components, which
are packaged as XDP packets.

The format is as follows. The notation [0..1] means the packet can occur no more than once. The
notation [0..n]means the packet can occur any number of times. The packets can occur in any order and
in the case of multiply occurring packets can interleave with other packets.

<xdp:xdp
xmlns:xdp="http://ns.adobe.com/xdp/"
uuid="cdata"
timeStamp="cdata">
<config/> [0..1]
<connectionSet/> [0..1]
<datasets/> [0..1]
<localeSet/> [0..1]
<pdf/> [0..1]
<sourceSet/> [0..1]
<stylesheet/> [0..n]
<template/> [0..1]
<xdc/> [0..1]
<xfdf/> [0..1]
<xmpmeta/> [0..1]
<element containing custom packet/> [0..n]

</xdp:xdp>

The xdp element encloses zero or more occurrences of XFA components, each represented as an XDP
packet, that is described in “XDP Packets” on page 994. Because the XDP format itself is comprised only of
the xdp element, the functionality and behavior imparted by an XDP is wholly derived from the packets
within the XDP document. It is the packets within the xdp element that is of real significance, not the xdp
element itself. The xdp element may also contain any number of custom packets, distinguished from XFA
packets by name and namespace.

The registered xdp MIME-type is vnd.adobe.xdp+xml. This MIME-type was registered in May 2007 and
is endorsed by this specification since XFA 2.6. However, for backward compatibility all XFA processors

XFA Specification
Chapter 23, XDP Specification XDP Reference 1000

must also accept text/xml. This dual requirement will continue in future versions of this specification. It
is expected that form creators will continue using text/xml for some time in order to remain compatible
with older XFA processors.

xmlns:xdp

See “XDP Namespace” on page 992.

uuid

A Universally Unique Identifier (UUID), which is assigned by the template designing application and is
retained by all applications that subsequently serialize (write-out) the template. The template designing
application uses a product-specific algorithm to create the uuid value. See “Tracking and Controlling
Templates Through Unique Identifiers” on page 541..

The uuid attribute inherits the namespace of its container, which in this case is xdp.

If the XDP does not contain a template packet, the uuid attribute is meaningless.

timeStamp

A date-time value that follows the ISO8601 convention: YYYY-MM-DDTHH:MM:SS z. The value of
timeStamp specifies when the XFA template was last modified, as described in “Tracking and Controlling
Templates Through Unique Identifiers” on page 541.

where:

● The capital letter "T" separates the date and time

● "z" represents the time zone designator (Z or +hh:mm or -hh:mm) - following UTC or using local time.
For example: 1994-11-05T08:15:30-05:00 corresponds to November 5, 1994, 8:15:30 am, US Eastern
Standard Time. Extending this example, 1994-11-05T13:15:30Z corresponds to the same instant.

The timeStamp attribute inherits the namespace of its container, which in this case is xdp.

If the XDP does not contain a template packet, the timeStamp attribute is meaningless.

The xfdf Element (an XDP Packet)
The xfdf (annotations) packet encloses collaboration annotations placed upon a PDF document. PDF
annotations are converted into XFDF following the rules described in the Adobe XFDF format specification
[XFDF].

The format of an xfdf packet is as follows:

<xfdf xmlns="http://ns.adobe.com/xfdf/"
xml:space="preserve">
XFDF elements

</xfdf>

The xfdf MIME-type is application/vnd.adobe.xfdf.

XFA Specification
Chapter 23, XDP Specification XDP Reference 1001

The xmpmeta Element (an XDP Packet)
An XMP packet contains XML representation of PDF metadata. Such metadata includes information about
the document and its contents, such as the author's name and keywords, that can be used by search
utilities. The schema for XMP is described in the XMP Specification [XMPMeta].

The format of an xmpmeta packet is as follows:

<xmpmeta
xmlns="http://ns.adobe.com/xmpmeta/"
xml:space="preserve">
xmpmeta elements

</xmpmeta>

The xmpmeta MIME-type is application/rdf+xml.

For information about the specific metadata inserted into the XMP packet by Adobe LiveCycle Designer
ES2, see “XMP packet” on page 1198.

 1002

Part 3: Other XFA-Related References

Each chapter in this part contains reference material for non-XML expressions used with XFA. Although the
standards described in these chapters are an important part of XFA processing, they are not considered
XFA grammars.

 1003

24 Canonical Format Reference

This reference describes the canonical format used to represent certain values. Canonical format is a
locale-agnostic, standardized way to represent date, time, numbers, and currencies.

This appendix describes the set of ISO-8601 date and time forms supported by XFA. It is a a profile of Data
elements and interchange forms — Information interchange — Representation of dates and times [ISO-8601].
ISO-8601 is the International Standard for the representation of dates and times. ISO-8601 describes a
large number of date/time formats.

This specification does not imply any presentation behaviors (such as display or print formatting) of dates
or times — it only specifies how the data content should be represented within a document object model
(DOM), such as the XFA Data DOM and the XFA Form DOM.

The International Standard for the representation of dates and times is ISO-8601. A Summary of the
International Date and Time Notation, by Markus Kuhn, provides an introduction to this standard. This
document is available at http://www.cl.cam.ac.uk/~mgk25/iso-time.html.

The following sections present the acceptable formats for dates, times, date-times, numbers, and text.

The syntax of each canonical format is described using the following conventions:

● Letters are placeholders for a numeric value.

● Square brackets enclose an optional portion of the format.

● All other characters should be assumed to be literal characters.

Date
Dates must be expressed in any of the following forms:

YYYY[MM[DD]]
YYYY[-MM[-DD]]

The above symbols echo the date picture-clause symbols; however, they serve only to describe (to the
reader) expected values.

Example 24.1 Date picture clauses

19970716
199707
1997
1997-07-16
1997-07
1997

Symbol Meaning

YYYY Zero-padded 4-digit year.

MM Zero-padded 2 digit (01-12) month of the year.

DD Zero-padded 2 digit (01-31) day of the month.

http://www.cl.cam.ac.uk/~mgk25/iso-time.html

XFA Specification
Chapter 24, Canonical Format Reference Time 1004

Notes
● The only punctuation character that is acceptable between date components is the hyphen character

(Unicode character U+002D.

● Not all of these formats constitute a date to the precision of an actual day, hence it is up to the
application to determine whether "1997-07" is an acceptable date, i.e. is the application looking for a
particular day, in which case 1997-07 is not precise enough because it doesn't specify a day.

Time
Time must be expressed in any of the following forms:

HH[MM[SS[.FFF][z]]]

HH[MM[SS[.FFF][+HH[MM]]]]

HH[MM[SS[.FFF][-HH[MM]]]]

HH[:MM[:SS[.FFF][z]]]

HH[:MM[:SS[.FFF][-HH[:MM]]]]

HH[:MM[:SS[.FFF][+HH[:MM]]]]

Where the symbols have the following meaning:

The symbols in the above table echo the time picture-clause symbols; however, they serve only to
describe (to the reader) expected values.

Symbol Meaning

HH Zero-padded 2 digit (00-23) hour of the day, expressed as a 24-hour clock. (The
meridiem symbols AM and PM are not supported.)

MM 2-digit (00-59) minute of the hour.

SS 2-digit (00-59) second of the minute.

FFF Decimal fraction of a second. Any fraction of a second is always preceded by a dot
(Unicode character U+002E) and must include exactly 3 digits.

z [ISO-8601] time-zone format: Z, +HH[MM], or -HH[MM]. In the examples on page 1005,
H is a placeholder for an hour digit, and the M is a placeholder for a minute digit. The
value for z may have the following values:

● Omitted. If time zone is omitted, states a local time with an unknown time zone.
Omitting the time zone information may cause a time data value to be useless to
applications that operate within other timezones. Producing time data that omit
timezone designators is discouraged.

● Z. A time zone of 'Z' (Unicode character U+005A) indicates the time zone is 'zero
meridian', or 'Zulu Time'. The [ISO-8601] section titled Universal Time Coordinated
describes a method of defining time absolutely. Another helpful document is A Few
Facts Concerning GMT, UT, and the RGO, by R. Langley, 20 January 1999, which is
available at http://www.apparent-wind.com/gmt-explained.html.

● +HH[MM] or -HH[MM]. A time zone expressed as an offset of plus or minus states
that the offset can be added to the time to indicate that the local time zone is HH
hours and MM minutes ahead or behind GMT. The plus or minus sign must be
included.

http://www.apparent-wind.com/gmt-explained.html

XFA Specification
Chapter 24, Canonical Format Reference Date-Time 1005

Example 24.2 Time picture clauses

202045.321Z
192045.321-0100
192045.321-01
192045.321
19:20:45
1920
19

Notes
● The only punctuation character that is acceptable between the hours, minutes, and seconds

components is the colon character (Unicode character u003a).

Date-Time
A date and time specified according to the previous sections can be combined into a single date-time
value by concatenating the values together, separated by a 'T' (Unicode character U+0054). The
requirement for the 'T' character is a particularly annoying and controversial part of the [ISO-8601]
specification; but that's the way it is. If the 'T' is deemed confusing to human users, then the software
should take care of transforming the 'T' in and out of existence during read/writes of data.

Example 24.3 Date-time picture clause

1997-07-16T20:20:45.4321Z

Number
A number literal is a sequence of mostly digits consisting of an integral part, a decimal point, a fractional
part, an e (or E) and an optionally signed exponent part.

(['+'|'-'])['0'-'9']*('.')(['e'|'E']('+'|'-')['0'-'9']*)
(['+'|'-'])(['0'-'9']*)'.'['0'-'9']*(['e'|'E']('+'|'-')['0'-'9']*)

where the symbols in the above expressions are described in “Notational Conventions” on page 1011.

Examples of canonical numbers appear below:

1
+1

1234
-1234

1E100
1234e-4

-1.e-3
1234.E+10

2.1
+.1234
-.12e2

It is important to distinguish canonical format from issues related to the conversion of a canonical number
into a representation specific for a number type, such as integer, float, decimal, and boolean. Such
conversion reflects the container’s value properties and application-dependent issues such as precision.

XFA Specification
Chapter 24, Canonical Format Reference Text 1006

Text
The canonical format for text is any sequence of Unicode characters. Note that there is no Unicode
character assigned to code point U+0000 and this code point is forbidden in XFA.

 1007

25 FormCalc Specification

This document, as part of a family of specifications referred to as the XML Forms Architecture, describes an
XML based language, XFA-Template, for modeling electronic form templates. XFA provides for the specific
needs of electronic forms and the applications that use them. XFA addresses the needs of organizations to
securely capture, present, move, process, output and print information associated with electronic forms.
This document specifically describes a simple calculation language optimized for creating e-form centric
logic and calculations.

Grammar and Syntax
This section describes the building blocks that compose FormCalc expressions and how those building
blocks can be assembled into such expressions.

Language Overview
FormCalc is a simple calculation language whose roots lie in electronic form software from Adobe, and
common spreadsheet software. It is an expression-based language. It is also a type less language, where
values of type string or type number can be promoted to strings, numbers or booleans to suit the context.

FormCalc is tailored to the skills of the non-programmer who is comfortable with spreadsheet-class
application software. This user can, with the addition of a few expressions, validate user input and/or
unburden the form user from the spreadsheet-like calculations.

To that aim, the language provides a large set of built-in functions to perform arithmetic, and financial
tasks. Locale-sensitive date and time functions are provided, as are string manipulation functions.

To better illustrate the capabilities of the FormCalc language, we present a simple purchase order
application, and focus on those spreadsheet like calculations and validations typically required of such
forms.

XFA Specification
Chapter 25, FormCalc Specification Grammar and Syntax 1008

Purchase Order Form — A form with calculations

Down-pointing call-outs indicate all the field names on this form. In the tabular area of the form are four
fields called Item, four fields called Quantity, four fields called UnitPrice, and four fields called
Amount. We will focus on these shortly.

Green up-pointing call-outs indicate fields with embedded calculations, and the red up-pointing call-outs
indicate fields with embedded validations and property calculations.

A subset of the XFA template syntax used to define this purchase order form might be as follows.

Example 25.1 Purchase order form using calculations and validations

<template name="FormCalc Example" …>
<subform name="PO">

<subform name="Table">
<field name="Item"> … </field>
<field name="Quantity">

<validate>
<script>Within($, 0, 19)</script>

</validate>
</field>
<field name="UnitPrice" …>

<validate>

�������	
���	�

����������	�
���������

��
������
����
���
�����
��

���������
��������

���
����
�����	���
�� ��
!��"�
�#

��������
��������

������

�������

�����

�������

���������

$��������
$����� � %&%% %&%%

'������
'����� � ��&%% �(&%)

�)&%))&%)

� %)&%%

�*�&%*

���� �������� ���������� ������

��+��+�,��
������� ����� *

�����������

%)&%%%

������������

))

������������������������

%

��

�����������

))

�����������

%%

�����������

%

��

���

�

�����������

����

��

!

�������

����

�

������

���

��

�������

�����

�

������

-���"
-�./�

$���"
$���"����"

��������������������������������

��

��������

�

��������

�

��������

�������������

��

���

���������

%

��

���������

�

%

�

���������

%

�

�

&

�

�

%&

���������

&

�

���������

�

�

���

��

������

�

������

�

������

�

���������������

������������������������������

XFA Specification
Chapter 25, FormCalc Specification Grammar and Syntax 1009

<script>$ >= 0</script>
</validate>

</field>
<field name="Amount">

<calculate>
<script>Quantity * UnitPrice</script>

</calculate>
</field>
<field name="Item"> … </field>
<field name="Quantity">

<validate>
<script>Within($, 0, 19)</script>

</validate>
</field>
<field name="UnitPrice" …>

<validate>
<script>$ >= 0</script>

</validate>
</field>
<field name="Amount">

<calculate>
<script>Quantity * UnitPrice</script>

</calculate>
</field>
<field name="Item"> … </field>
<field name="Quantity">

<validate>
<script>Within($, 0, 19)</script>

</validate>
</field>
<field name="UnitPrice" …>

<validate>
<script>$ >= 0</script>

</validate>
</field>
<field name="Amount">

<calculate>
<script>Quantity * UnitPrice</script>

</calculate>
</field>
<field name="Item"> … </field>
<field name="Quantity">

<validate>
<script>Within($, 0, 19)</script>

</validate>
</field>
<field name="UnitPrice" …>

<validate>
<script>$ >= 0</script>

</validate>
</field>
<field name="Amount">

<calculate>
<script>Quantity * UnitPrice</script>

</calculate>

XFA Specification
Chapter 25, FormCalc Specification Grammar and Syntax 1010

</field>
</subform>
<subform Name="Summary" …>

<field name="ShipDate">
<calculate>

<script>Num2Date(Date() + 2, DateFmt())</script>
</calculate>

</field>
<field name="Total">

<calculate>
<script>Str(Sum(Amount[*]), 10, 2)</script>

</calculate>
</field>

</subform>
</subform>

</template>

Focusing our attention on the contents of the <script> elements, we see text such as the following, all of
which are real-world examples of form calculations.

Some of these expressions are continually being re-executed as the user interacts with the form and enters
new data.

On each of the four Quantity fields is the validation:

Within($, 0, 19)

This is used to limit the user's input to between 0 and 19 items. Any other value entered in these fields will
cause a validation error, requiring the user to modify his input. The symbol $ is an identifier that refers to
the value of the particular Quantity field to which this form calculation is bound. The Within()
function is a built-in FormCalc function.

On each of the four UnitPrice fields is the validation:

$ >= 0

This is used to limit the user’s input to a non-negative value. As before, any other value entered in these
fields will cause a validation error, requiring the user to modify his input. The symbol $ is an identifier that
refers to the value of the particular UnitPrice field to which this form calculation is bound.

Script What it does (further explanation follows)

Within($, 0, 19) Ensures that the entered quantity is within the
range of 0 through 19

$ >= 0 Ensures that the entered price is 0 or greater.

Quantity * UnitPrice Computes the product of an entered quantity and
an entered price.

Num2Date(Date() + 2, DateFmt()) Displays a date that is two days hence from the
current date

Str(Sum(Amount[*]), 10, 2) Sums all occurrences of the field Amount, formats
the resulting number to have a precision of two
decimal places in a string, and then adds spaces to
make the number 10 characters wide

XFA Specification
Chapter 25, FormCalc Specification Grammar and Syntax 1011

On each of the four Amount fields is the calculation:

Quantity * UnitPrice

which multiplies the value of the Quantity field by the value of the UnitPrice field on that row, and stores
the resulting product in the Amount field. Whenever the user changes any of the quantity fields, this
calculation is re-executed and the new value is displayed in the corresponding Amount field.

Below the column of Amount fields is the Total field. It contains the calculation:

Str(Sum(Amount[*]), 10, 2)

This sums all occurrences of the field Amount, and formats the resulting number to two decimal places in a
string, 10 characters wide. Whenever any of the amount fields change, this calculation is re-executed and a
new value is displayed in the Total field.

Finally, the field named ShipDate also contains a calculation, specifically, a date calculation

Num2Date(Date() + 2, DateFmt())

This calculation gets the value of the current date (in days), adds 2 days to it and then formats this date
value into a locale-sensitive date string. Were that user to be in the United States, in the year 2000, and on
the ides of March, the result that would be displayed in the ShipDate field, is:

Mar 17, 2000

A user in Germany, on that same day, would see the following value displayed in the same field.

17.03.2000

The above is an illustration of the built-in internationalization capabilities of FormCalc's date and time
functions.

Admittedly, this is a very simple application. A real-world purchase order form would be significantly more
complex, with perhaps several dozen calculations and validations. Hopefully this example will suffice to
introduce some of the capabilities of the FormCalc language.

We will now proceed to formalize the definition of this language. More complex language examples will
be presented throughout.

Grammar

The FormCalc language is defined in terms of a context-free grammar. This is a specification of the lexical
and syntactic structure of FormCalc calculations.

A context-free grammar is defined as a number of productions. Each production has an abstract symbol
called a nonterminal as its left-hand side, and a sequence of one or more nonterminal and terminal
symbols as its right-hand side. The grammar specifies the set of possible sequences of terminal symbols
that can result from repeatedly replacing any nonterminal in the sequence with a right-hand side of a
production in which the nonterminal is the left-hand side.

Notational Conventions

The following convention in notation is used to describe the grammar of FormCalc:

XFA Specification
Chapter 25, FormCalc Specification Grammar and Syntax 1012

The nonterminal symbols of the grammar are always in normal print, often sub scripted by a production
key, e.g., ProductionName[ProductionKey], as in LogicalAndExpression70. The terminal symbols of the
grammar are always enclosed in single quotes, as in '=' and 'then'.

Lexical Grammar
This section describes the lexical grammar of the FormCalc language. It defines a set of productions,
starting from the nonterminal symbol Input1, to describe how sequences of Unicode characters are
translated into a sequence of input elements.

The grammar has as its terminal symbols the characters of the Basic Multilingual Plane (BMP) of the
[Unicode-2.1] character set; this limitation allows us to hold onto the "one character = one storage unit"
paradigm the original Unicode standard promised, a bit longer.

Input elements other than white spaces, line terminators and comments form the terminal symbols for the
syntactic grammar of FormCalc, and are called tokens. These tokens are the literals, identifiers, keywords,
separators and operators of the FormCalc language.

1 Input ::= WhiteSpace | LineTerminator | Comment | Token

The source text for a FormCalc calculation is a sequence of characters using the Unicode character
encoding. These Unicode characters are scanned from left to right, repeatedly taking the longest possible
sequence of characters as the next input element.

2 Character ::= [#x9-#xD] | [#x20-#xD7FF] | [#xE000-#xFFFD]

Metasymbol Description Syntax example

::= Start of the definition of a
nonterminal symbol.

FormCalculation ::= ExpressionList
defines the production FormCalculation as an
ExpressionList symbol.

| symbol Alternative symbol. '+' | '-' allows alternate additive operator
symbols.

[symbol] One from the set of enclosed
symbol(s).

['E' 'e'] allows one symbol from the set 'E',
'e' of symbols.

[symbol –symbol] Range of symbols. ['0'–'9'] allows one symbol from the
consecutive set '0', '1', ..., '9' of symbols.

symbol \–symbol Set difference of symbols.
Character \– LineTerminator allows one
symbol from the set of Characters that is not a
LineTerminator symbol.

(symbol) One occurrence of the enclosed
symbol(s).

('+' | '-') allows for one occurrence of
either alternative symbol.

(symbol)* Zero or more occurrences of the
enclosed symbol(s).

(',' SimpleExpression)* allows for zero
or more occurrence of the ',' symbol followed by a
SimpleExpression symbol.

(symbol)? At most one occurrence of the
enclosed symbol(s).

(ArgumentList)? allows for zero or one
occurrence of the ArgumentList symbol.

XFA Specification
Chapter 25, FormCalc Specification Grammar and Syntax 1013

Note: Not all FormCalc hosting environments recognize these characters, e.g., XML does not allow the
vertical tab (#xB) and form feed (#xC) characters as input.

White Space

White space characters are used to separate tokens from each other and improve readability but are
otherwise insignificant.

3 WhiteSpace ::= #x9 | #xB | #xC | #x20

These are the horizontal tab (#x9), vertical tab (#xB), form feed (#xC), and space (#x20) characters.

Line Terminators

Line terminators, like white spaces are used to separate tokens and improve readability but are otherwise
insignificant.

4 LineTerminator ::= #xA | #xD

These are the linefeed (#xA), and carriage return (#xD) characters.

Comments

Comments are used to improve readability but are otherwise insignificant.

A comment is introduced with a semi-colon (;) character, or a pair of slash (/) characters, and continues
until a line terminator is encountered.

5 Comment ::= ';' (Character \– LineTerminator)* |
'/' '/' (Character \– LineTerminator)*

Note: “Notational Conventions” on page 1011 explains the significance of the * and ? symbols.

String Literals

A string literal is a sequence of Unicode characters enclosed within double quote characters, e.g., "the cat
jumped over the fence." The string literal "" defines an empty sequence of text characters called the empty
string.

To embed a double quote within a string literal, specify two double quote characters, as in "He said ""She
said.""". Moreover within string literals, any Unicode character may be expressed as a Unicode escape
sequence of 6 characters consisting of \u followed by four hexadecimal digits, e.g.,

 "\u0047\u006f \u0066\u0069\u0073\u0068\u0021"

To embed a control character with a string literal, specify its Unicode escape sequence, e.g., specify \u000d
for a carriage return, and \u000a for a newline character.

6 HexDigit ::= ['0'-'9'] | ['m'-'f'] | ['A'-'F']
7 EscapedCharacter ::= '"' '"' |

'\' 'U' HexDigit HexDigit HexDigit HexDigit |
'\' 'U' HexDigit HexDigit HexDigit HexDigit HexDigit HexDigit HexDigit HexDigit

8 StringLiteral ::= '"' (Character \– ['"'] | EscapedCharacter)* '"'

Note: “Notational Conventions” on page 1011 explains the significance of the * and ? symbols.

XFA Specification
Chapter 25, FormCalc Specification Grammar and Syntax 1014

Number Literals

A number literal is a sequence of mostly digits consisting of an integral part, a decimal point, a fractional
part, an e (or E) and an optionally signed exponent part. Either the integral part or the fractional part may
be missing, but not both. In the fractional part, either the decimal point or the e and exponent part may be
missing, but not both.

9 Integer ::= ['0'-'9']+ (['0'-'9'])*

10 Exponent ::= ['E' 'e'] ['+' '-']? Integer
11 NumberLiteral ::= Integer '.' ['0'-'9']* Exponent? | '.' Integer Exponent? |
Integer Exponent? | 'nan' | 'inf'

Note: “Notational Conventions” on page 1011 explains the significance of the * and ? symbols.

Examples of number literals include 12, 1.2345, .12, 1e-2, and 1.2E+3.

All number literals are internally converted to [IEEE754] 64-bit binary values. However, IEEE 754 values can
only represent a finite quantity of numbers.Just as some numbers, such as 1/3, are not representable
precisely as decimal fractions, other numbers are not precisely representable as binary fractions.
Specifically, but not limited to, number literals having more than 16 significant digits in the non-exponent
part will be the rounded to the nearest representable IEEE 754 64-bit value using a round-to-nearest
mechanism. The following table provides examples of such rounding imprecision, all of which are
conformant to the IEEE 754 standard.

Such rounding behavior behaviour can sometimes lead to surprising results. FormCalc provides a
function, Round(), which returns a given number rounded to a given number of decimal places. When
the given number is exactly halfway between two representable numbers, it is rounded away from zero;
up if positive, and down if negative.

Example 25.2 Rounding down

round(.124, 2)

This example returns 0.12.

Example 25.3 Rounding up

round(.125, 2)

This example returns 0.13.

Example 25.4 Unexpected rounding

Given this convention, one might expect then that

round(0.045, 2)

returns 0.05. It doesn't. 0.045 cannot be exactly represented in a finite number of bits. IEEE 754 dictates
that the number literal

 0.045

Input number Is rounded to …

123456789.012345678 123456789.01234567

99999999999999999 100000000000000000

XFA Specification
Chapter 25, FormCalc Specification Grammar and Syntax 1015

be approximated to

 0.0449999999999999

This approximation is closer to 0.04 than to 0.05, so

Round(0.045, 2)

returns 0.04. This too is conformant to the IEEE 754 standard.

IEEE 754 64-bit values also support representations like NaN (not a number), +Inf (positive infinity), and -Inf
(negative infinity). FormCalc does not support these; currently, any intermediate expression that
evaluates to NaN, +Inf, or -Inf results in an error exception which is propagated in the remainder of the
expression. This behaviour may change in future.

Literals (General)
12 NullLiteral ::= 'null'
13 Literal ::= StringLiteral | NumberLiteral| NullLiteral

The NullLiteral equates to the null value

Identifiers

An identifier is a sequence of characters of unlimited length but always beginning with an alphabetic
character, or an underscore (_) character, or a dollar sign ($) character, or an exclamation mark (!) character.

FormCalc identifiers are case sensitive, i.e., identifiers whose characters only differ in case, are considered
distinct. Case sensitivity is mandated by FormCalc's hosting environments.

14 Identifier ::= (AlphabeticCharacter | '_' | '$' | '!') (
AlphaNumericCharacter1 | '_' | '$')

Keywords

Keywords in FormCalc are reserved words and are case insensitive. Of these, the 'if', 'then', 'elseif', 'else',
'endif' keywords delimit the parts of an If Expressions.The 'nan' and 'inf' keywords denote special number
literals, whereas the 'null' keyword denotes the null literal. The 'this' keyword denotes a specific
accessor.The remaining keywords are keyword operators.

The following are keywords and may not be used as identifiers:

15 Keyword ::= 'if' | 'then' | 'elseif' | 'else' | 'endif' | 'or' | 'and' |
'not' | 'eq' | 'ne' | 'le' | 'ge' | 'lt' | 'gt' | 'this' | 'null' | 'nan' |
'infinity'

16 ReservedKeyword ::= | 'while' | 'do' | 'endwhile' | 'end' | 'for' | 'upto' |
'downto' | 'step' | 'endfor' | 'foreach | 'in' | 'break' | 'continue' | 'var' |
'func' | 'endfunc' | 'throw' | 'return' | 'exit'

1. An alphabetic character is any Unicode character classified as a letter in the Basic Multilingual Plane (BMP). An
alphanumeric character is any Unicode character classified as either a letter or digit in the BMP.

XFA Specification
Chapter 25, FormCalc Specification Grammar and Syntax 1016

Operators

FormCalc defines a number of operators; they include unary operators, multiplicative operators, additive
operators, relational operators, equality operators, logical operators, and the assignment operator.

FormCalc operators are symbols common to most other scripting languages:

17 Operator ::= '=' | '|' | '&' | '==' | '<>' | '<=' | '>=' | '<' | '>' | '+' |
'-' | '*' | '/'

Several of the FormCalc operators have an equivalent mnemonic operator keyword. These keyword
operators are useful whenever FormCalc expressions are embedded in HTML and XML source text, where
symbols <, >, and & have predefined meanings and must be escaped. Here's an enumeration of all
FormCalc operators, illustrating the symbolic and mnemonic forms of various operators.

18 LogicalOrOperator ::= '|' | 'or'
19 LogicalAndOperator ::= '&' | 'and'
20 EqualityOperator ::= '==' | '<>' | 'eq' | 'ne'
21 RelationalOperator ::= '<=' | '>=' | '<' | '>' | 'le' | 'ge' | 'lt' | 'gt'
22 AdditiveOperator ::= '+' | '-'
23 MultiplicativeOperator ::= '*' | '/'
24 UnaryOperator ::= '-' | '+' | 'not'

Tokens
25 Separator ::= '(' | ')' | '[' | ']' | ',' | '.' | '..' | '.#' | '.*'
26 Token ::= Literal | Keyword | Identifier | Operator | Separator

Syntactic Grammar
The syntactic grammar for FormCalc has the tokens defined in the preceding lexical grammar as its
terminal symbols. It defines the set of productions, starting from the nonterminal symbol FormCalculation,
to describe how sequences of tokens can form a syntactically valid calculation.

The following subsections describe the expressions in this syntactic grammar.

27 FormCalculation ::= ExpressionList

28 ExpressionList ::= Expression | ExpressionList Expression

29 Expression ::= IfExpression |
WhileExpression |
ForExpression |
ForEachExpression |
AssignmentExpression |
DeclarationExpression |
SimpleExpression

30 SimpleExpression ::= LogicalOrExpression

31 LogicalOrExpression ::= LogicalAndExpression |
LogicalOrExpression LogicalOrOperator LogicalAndExpression

32 LogicalAndExpression ::= EqualityExpression |
LogicalAndExpression LogicalAndOperator EqualityExpression

XFA Specification
Chapter 25, FormCalc Specification Grammar and Syntax 1017

33 EqualityExpression ::= RelationalExpression |
EqualityExpression EqualityOperator RelationalExpression

34 RelationalExpression ::= AdditiveExpression |
RelationalExpression RelationalOperator AdditiveExpression

35 AdditiveExpression ::= MultiplicativeExpression |
AdditiveExpression AdditiveOperator MultiplicativeExpression

36 MultiplicativeExpression ::= UnaryExpression |
MultiplicativeExpression MultiplicativeOperator UnaryExpression

37 UnaryExpression ::= PrimaryExpression | UnaryOperator UnaryExpression

38 LogicalOrOperator ::= '|' | 'or'

39 LogicalAndOperator ::= '&' | 'and'

40 EqualityOperator ::= '==' | '<>' | 'eq' | 'ne'

41 RelationalOperator ::= '<=' | '>=' | '<' | '>' | 'le' | 'ge' | 'lt' | 'gt'

42 AdditiveOperator ::= '+' | '-'

43 MultiplicativeOperator ::= '*' | '/'

44 UnaryOperator ::= '-' | '+' | 'not'

45 PrimaryExpression ::= Literal |
FunctionCall |
Accessor ('.*')? |
'(' SimpleExpression ')'

46 IfExpression ::= 'if' '(' SimpleExpression ')' 'then' ExpressionList
('elseif' '(' SimpleExpression ')' 'then' ExpressionList)*
('else' ExpressionList)?

'endif'

47 WhileExpression ::=
'while' '(' SimpleExpression ')' 'do' ExpressionList 'endwhile'

48 ForExpression ::=
'for' Assignment 'upto' Accessor ('step' SimpleExpression)?

'do' ExpressionList 'endfor' |
'for' Assignment 'downto' Accessor ('step' SimpleExpression)?

'do' ExpressionList 'endfor'

49 ForeachExpression ::=
'foreach' Identifier 'in' '(' ArgumentList ')'
'do' ExpressionList 'endfor'

50 BlockExpression ::= 'do' ExpressionList 'end'

51 ContinueExpression ::= 'continue'

XFA Specification
Chapter 25, FormCalc Specification Grammar and Syntax 1018

52 BreakExpression ::= 'break'

53 ParameterList

54 DeclarationExpression ::=
'var' Variable |
'var' Variable '=' SimpleExpression |
'Func' Identifier '(' ParameterList ')' do ExpressionList 'EndFunc'

55 AssignmentExpression ::= Accessor '=' SimpleExpression

56 FunctionCall ::= Function '(' (ArgumentList)? ')'

57 Function ::= Identifier

58 Accessor ::= Container | Accessor ['.' '..' '.#'] Container

59 Container ::= Identifier | Identifier ' [' '*' ']'
| Identifier '[' SimpleExpression ']'
| MethodCall

60 ContainerList ::= Container (',' Container)*

61 MethodCall ::= Method '(' (ArgumentList)? ')'

62 Method ::= Identifier

63 ArgumentList ::= SimpleExpression (',' SimpleExpression)*

Basic Expressions

Expressions Lists
64 FormCalculation ::= ExpressionList
65 ExpressionList ::= Expression | ExpressionList Expression

A FormCalculation64 is a list of expressions. Under normal circumstances, each Expression66 evaluates to a
value, and the value of an ExpressionsList65 is the value of the last expression in the list.

Example 25.5 An expression list containing three expressions

The following FormCalculation evaluates to 50.

5 + Abs(UnitPrice) "Hello World" 10 * 3 + 5 * 4

Assuming the example is the calculation for a field, after the above expression list is evaluated the value of
the associated field is 50.

Simple Expressions
66 Expression ::= SimpleExpression | ...
67 SimpleExpression ::= LogicalOrExpression

The above grammar for a SimpleExpression67 is common to conventional languages.

XFA Specification
Chapter 25, FormCalc Specification Grammar and Syntax 1019

Operator Precedence

Operator precedence rules behave as expected. Enumerating all the FormCalc operators in order, from
high precedence to lowest precedence yields:
= (unary) - + not * / + - < <= > >= lt le gt ge == <> eq ne & and | or

Example 25.6 Operator precedence affects expression evaluation

Numeric operations on non-numeric operands

When performing numeric operations involving non-numeric operands, the non-numeric operands are
first promoted to numbers; if the non-numeric operand can be fully converted to a numeric value then
that is its value; otherwise its value is zero (0). When promoting null-valued operands to numbers, their
value is always zero.

Example 25.7 Operand conversions affect expression evaluation

Boolean operations on non-Boolean operands

When performing boolean operations on non-boolean operands, the non-boolean operands are first
promoted to booleans; if the non-boolean operand can be fully converted to a nonzero value then its
value is true (1); otherwise its value is false (0). Null-valued operands are converted to false (0).

Example 25.8 Non-Boolean operands evaluated as Booleans

String operations on non-string operands

When performing string operations on non-string operands, the non-string operands are first promoted to
strings by using their value as a string. When promoting null-valued operands to strings, their value is
always the empty string. For example, the following expression evaluates to "The total is 2
dollars and 57 cents."

Simple expression Evaluates to …

10 * 3 + 5 * 4 50

0 and 1 or 2 > 1 1

Simple expression Evaluates to … Explanation

(5 - "abc") * 3 15 "abc" converts to 0

"100" / 10 1 "100" converts to 100

5 + null + 3 8 null converts to 0

Simple expression Evaluates to … Explanation

"abc" | 2 true (1) "abc" converts to false, and 2 converts
to true.

false | true = true true (1)

if ("abc") then 10 else 20 endif 20 "abc" converts to false.

XFA Specification
Chapter 25, FormCalc Specification Grammar and Syntax 1020

Example 25.9 Non-string operands promoted to strings

 concat("The total is ", 2, " dollars and ", 57, " cents.")

All the intermediate results of numeric expressions are evaluated as double precision IEEE 754 64 bit
values. The final result is displayed with up to 11 fractional digits of precision. Should an intermediate
expression yield an NaN, +Inf or -Inf,FormCalc will currently generate an error exception and propagate
that error for the remainder of that expression, and the expression's value will always be zero.

Example 25.10 Illegal expression (divide by zero)

 3 / 0 + 1

FormCalc terminates when an exception is raised.

Logical Or Expressions
68 LogicalOrExpression ::= LogicalAndExpression |

LogicalOrExpression LogicalOrOperator LogicalAndExpression
69 LogicalOrOperator ::= '|' | 'or'

A LogicalOrExpression68returns the result of a logical disjunction of its operands, or null if both operands
are null. If not both null, the operands are promoted to numeric values, and a numeric operation is
performed.

The LogicalOrOperators '|' and 'or', represent the same logical-or operator. The logical-or operator returns
the boolean result true, represented by the numeric value 1, whenever either operand is not 0 and returns
the boolean result false, represented by the numeric value 0, otherwise.

Logical And Expressions
70 LogicalAndExpression ::= EqualityExpression |

LogicalAndExpression LogicalAndOperator EqualityExpression
71 LogicalAndOperator ::= '&' | 'and'

A LogicalAndExpression70returns the result of a logical conjunction of its operands, or null if both
operands are null. If not both null, the operands are promoted to numeric values, and a numeric operation
is performed.

The LogicalAndOperators '&' and 'and', both represent the same logical-and operator. The logical-and
operator returns the boolean result true, represented by the numeric value 1, whenever both operands are
not 0 and returns the boolean result false, represented by the numeric value 0, otherwise.

Equality Expressions
72 EqualityExpression ::= RelationalExpression |

EqualityExpression EqualityOperator RelationalExpression
73 EqualityOperator ::= '==' | '<>' | 'eq' | 'ne'

An EqualityExpression72returns the result of an equality comparison of its operands.

If either operand is null, then a null comparison is performed. Null valued operands compare identically
whenever both operands are null, and compare differently whenever one operand is not null.

XFA Specification
Chapter 25, FormCalc Specification Grammar and Syntax 1021

If both operands are references (“References” on page 1026), then both operands compare identically
when they both refer to the same object, and compare differently when they don't refer to the same
object.

If both operands are string valued, then a locale-sensitive lexicographic string comparison is performed on
the operands. Otherwise, if not both null, the operands are promoted to numeric values, and a numeric
comparison is performed.

The EqualityOperators '==' and 'eq', both denote the equality operator. The equality operator returns the
boolean result true, represented by the numeric value 1, whenever both operands compare identically
and returns the boolean result false, represented by the numeric value 0, otherwise.

The EqualityOperators '<>' and 'ne', both denote the inequality operator. The inequality operator returns
the boolean result true, represented by the numeric value 1, whenever both operands compare differently
and returns the boolean result false, represented by the numeric value 0, otherwise.

Relational Expressions
74 RelationalExpression ::= AdditiveExpression |

RelationalExpression RelationalOperator AdditiveExpression
75 RelationalOperator ::= '<=' | '>=' | '<' | '>' | 'le' | 'ge' | 'lt' | 'gt'

A RelationalExpression74returns the result of a relational comparison of its operands.

If either operand is null valued, then a null comparison is performed. Null valued operands compare
identically whenever both operands are null and the relational operator is less-than-or-equal or
greater-than-or-equal, and compare differently otherwise.

If both operands are string valued, then a locale-sensitive lexicographic string comparison is performed on
the operands. Otherwise, if not both null, the operands are promoted to numeric values, and a numeric
comparison is performed.

The RelationalOperators '<' and 'lt', both denote the same less-than operator. The less-than-or-equal
relational operator returns the boolean result true, represented by the numeric value 1, whenever the first
operand is less than the second operand, and returns the boolean result false, represented by the numeric
value 0, otherwise.

The RelationalOperators '<=' and 'le', both denote the less-than-or-equal operator. The less-than-or-equal
relational operator returns the boolean result true, represented by the numeric value 1, whenever the first
operand is less than or equal to the second operand, and returns the boolean result false, represented by
the numeric value 0, otherwise.

The RelationalOperators '>' and 'gt', both denote the same greater-than operator. The greater-than
relational operator returns the boolean result true, represented by the numeric value 1, whenever the first
operand is greater than the second operand, and returns the boolean result false, represented by the
numeric value 0, otherwise.

The RelationalOperators '>=' and 'ge', both denote the greater-than-or-equal operator. The
greater-than-or-equal relational operator returns the boolean result true, represented by the numeric
value 1, whenever the first operand is greater than or equal to the second operand, and returns the
boolean result false, represented by the numeric value 0, otherwise.

XFA Specification
Chapter 25, FormCalc Specification Grammar and Syntax 1022

Additive Expressions
76 AdditiveExpression ::= MultiplicativeExpression |

AdditiveExpression AdditiveOperator MultiplicativeExpression
77 AdditiveOperator ::= '+' | '-'

An AdditiveExpression76returns the result of an addition (or subtraction) of its operands, or null if both
operands are null. If not both null, the operands are promoted to numeric values, and a numeric operation
is performed.

The AdditiveOperator '+', is the addition operator; it returns the sum of its operands.

The AdditiveOperator '-', is the subtraction operator; it returns the difference of its operands.

Multiplicative Expressions
78 MultiplicativeExpression ::= UnaryExpression |

MultiplicativeExpression MultiplicativeOperator UnaryExpression
79 MultiplicativeOperator ::= '*' | '/'

A MultiplicativeExpression78returns the result of a multiplication (or division) of its operands, or null if both
operands are null. If not both null, the operands are promoted to numeric values, and a numeric operation
is performed.

The MultiplicativeOperator '*', is the multiplication operator; it returns the product of its operands.

The MultiplicativeOperator '/', is the division operator; it returns the quotient of its operands.

Unary Expressions
80 UnaryExpression ::= PrimaryExpression | UnaryOperator UnaryExpression
81 UnaryOperator ::= '-' | '+' | 'not'

A UnaryExpression80 returns the result of a unary operation of its operand.

The UnaryOperator '-' denotes the unary minus operator; it returns the arithmetic negation of its operand,
or null if its operand is null. If its operand is not null, it is promoted to a numeric value, and the unary minus
operation is performed.

The UnaryOperator '+' denotes the unary plus operator; it returns the arithmetic value of its operand, or
null if its operand is null. If its operand is not null, it is promoted to a numeric value, and the unary plus
operation is performed.

The UnaryOperator 'not' denotes the logical negation operator. it returns the logical negation of its
operand. Its operand is promoted to a boolean value, and the logical operation is performed.

The logical negation operation returns the boolean result true, represented by the numeric value 1,
whenever its operand is 0, and returns the boolean result false, represented by the numeric value 0,
otherwise.

Note: The arithmetic negation of a null operand yields the result null, whereas the logical negation of a
null operand yields the boolean result true. This is justified by the common sense statement: If null
means nothing then "not nothing" should be something.

XFA Specification
Chapter 25, FormCalc Specification Grammar and Syntax 1023

Primary Expressions
82 PrimaryExpression ::=

Literal | Accessor | MethodCall | '(' SimpleExpression ')'

A PrimaryExpression82 is the building block of all simple expressions. It consists of literals, variables,
accessors, function calls, and parenthesized simple expressions.

The value of the PrimaryExpression is the value of its constituent Literal13, Accessor90, SimpleExpression67.

Declaration Expressions: Variables and User-Defined Functions
83 Expression ::= DeclarationExpression | ...
84 DeclarationExpression ::=

'var' Variable |
'var' Variable '=' SimpleExpression |
'Func' Identifier '(' ParameterList ')' do ExpressionList 'EndFunc'

85 AssignmentExpression ::= Variable '=' Variable | SimpleExpression

Assignment Expressions are described on page 1024.

Variables and user-defined functions are objects that reside in FormCalc storage, as opposed to objects
that reside in the processing application's object model. Each variable or function has a scope, which is
that region of a FormCalculation where the variable is known. The scope of a variable begins at its
declaration and persists to the end of a block. See “Block Expressions, Explicit and Implied” on page 1032.

Variables

One kind of DeclarationExpression83defines a FormCalc variable identified by the Variable identifier
and assigns it the value of the SimpleExpression67 if included, or the empty string value if the
SimpleExpression is omitted. The value of this kind of DeclarationExpression is the value assigned to the
variable.

In the following example, the variable comes into existence and is given the empty string value, before the
SimpleExpression is ever evaluated.

Example 25.11 Variable is created and initialized before assignment is performed

When used on the left-hand side of an AssignmentExpression85, the storage contents of the variable
identified are modified, and when used in a SimpleExpression67, the storage contents of the variable
identified are retrieved.

The names of FormCalc variables are case sensitive. Thus, in the following valid example, variables A and a
coexist.

Example 25.12 Variable names are case-sensitive

var A = 1; declare variable A and assign it the value 1.
var a = 2; declare variable a and assign it the value 2.

Declaration Is semantically equivalent to the expression list …

var Variable = SimpleExpression var Variable Variable = SimpleExpression

XFA Specification
Chapter 25, FormCalc Specification Grammar and Syntax 1024

User-Defined Functions

Another kind of DeclarationExpression83defines a FormCalc user-defined function. Such a declaration is
identified by the func identifier. It also allocates memory for passing parameters to the function and for
the expressions bracketed by the do and endfunc expressions.

The value returned from the function is the last value calculated by the function. That is, there is not return
statement, as with C-language functions.

If FormCalc provides a built-in function with the same name as a user-defined function, FormCalc invokes
the built-in function.

The following example shows a function being declared and that same function being called.

Example 25.13 Function declared and invoked

func MyFunction(param1) do param1*param1 endfunc // Declares a function
MyFunction(3) //Invokes the function, which returns 9

Assignment Expressions
86 Expression ::= AssignmentExpression | ...
87 AssignmentExpression ::= Accessor '=' SimpleExpression

An AssignmentExpression[87 sets the property identified by the Accessor90 to the value of the
SimpleExpression67.

The value of the AssignmentExpression87 is the value of the SimpleExpression67.

Accessors
88 PrimaryExpression ::= Accessor ('.*')? | ...
89 AssignmentExpression ::= Accessor '=' SimpleExpression
| ...
90 Accessor ::= Container | Accessor ['.' '..' '.#'] Container
91 Container ::= Identifier | Identifier '[' '*' ']' |
Identifier '[' SimpleExpression ']' | MethodCall

FormCalc provides access to object properties and values, which are all described in “Scripting Object
Model” on page 86. An Accessor90is the syntactic element through which object values and properties are
assigned, when used on the left-hand side of an AssignmentExpression89, or retrieved, when used in a
SimpleExpression67.

Example 25.14 Expression using accessors

 Invoice.VAT = Invoice.Total * (8 / 100)

Accessors may consist of a fully qualified hierarchy of objects, as in:

$form.subform.subform.field[10].UnitPrice = "255.99"

and optionally followed by an object property, as in:

Invoice.border.edge[1].color.#value = "255,9,9"

The object property is indicated by the use of the '.#' separator.

XFA Specification
Chapter 25, FormCalc Specification Grammar and Syntax 1025

Accessors may equally consist of a partially qualified hierarchy of objects, again optionally followed by an
object property, as in:

 Invoice..edge[1].color.#value = "255,9,9"

The hierarchy is indicated by the use of the '..' separator.

When terminated with the '.*' separator, instead, what is referred to is the collection of sub-objects of the
object identified by the accessor.

A container is simply the name of an object or object property.

A hierarchy of objects presupposes the architectural model described in “Scripting Object Model” on
page 86. Such a model is important because there can be multiple instances of objects with the same
name on a form, each instance gets assigned an occurrence number, starting from zero. To refer to a
specific instance of an object which bears the same ambiguous name as other objects, it is required that
the name be qualified by an occurrence number corresponding to the desired ordinal instance of the
object.

Aside from a referral to the absolute occurrence of an object, there also exists the need to refer to the
relative occurrence of an object, and to all occurrences of an object. To that end, FormCalc uses the
notation:

Thus, Identifier[0] refers to the first occurrence of the identified object, and by
convention,Identifier[+0] and Identifier[-0] refer to the object whose occurrence number is
the same as the referencing object.

The notation Identifier [SimpleExpression]involves an indexing operation, which must yield
a numeric result. If the SimpleExpression67 operand is non-numeric, then it will be promoted to a number
using the rule for a SimpleExpression; if the non-numeric indexing operand can be fully converted to a
numeric value then that is its value; otherwise its value is zero (0), and, when promoting a null-valued
indexing operand to a number, its value is always zero.

Some accessor expressions can often evaluate to a set of values, and some built-in functions, such as the
following, are designed to accept a set of values.

Avg(), Count(), Max(), Min(), Sum(), and Concat()

Notation Refers to …

Identifier An occurrence of the object that bears the same
ordinal occurrence number as the referencing
object.

Identifier[SimpleExpression] The occurrence of the object identifiedby the
runtime value of the expression.

Identifier[+ (SimpleExpression)] N'th succeeding occurrence of the object identified
by the runtime value of the expression, relative to
the referencing object's occurrence number.

Identifier[- (SimpleExpression)] N'th preceding occurrence of the object identified
by the runtime value of the expression, relative to
the referencing object's occurrence number.

Identifier[*] Every occurrence of the identified object.

XFA Specification
Chapter 25, FormCalc Specification Grammar and Syntax 1026

However, it is not always possible to determine the exact number of arguments passed to a function at
time of compilation. For example, consider the following form calculation Max(UnitPrice[*]). If there
are no occurrences of object UnitPrice, then the function Max() will generate an error exception. If
there is a single occurrence of object UnitPrice, then the function Max() will return the value of that
object occurrence. If there are multiple occurrences of object UnitPrice, then the function Max() will
return the maximum value of all those object occurrences.

For all occurrences of a given object to be included in a calculation, the object must be specified using the
[*]-style of accessor referral.

Example 25.15 Legal use of [*]

In most other built-in functions, the description of the formal arguments stipulates that it must be a single
value, but it may be that the passed argument evaluates to a set of values. In such circumstances, the
function will generate an error exception. This rule applies to all binary and unary operands involving
accessors that use the [*]-style of referral.

Example 25.16 Illegal use of [*]

As noted earlier, the dollar sign ($) character is a valid character in Identifier names (“Identifiers”). However,
this specification recommends that processing applications forbid including the dollar sign ($) character in
the names of objects and properties — object names and properties containing this character can thus be
reserved for special application-defined tasks.

References
In the processing application's model hierarchy, not all objects simply have values. Many only contain
sub-objects. It is often useful to manipulate objects indirectly, rather than through explicitly named
accessors, particularly if such objects are difficult and/or expensive to locate. The mechanism for indirectly
manipulating an object in FormCalc is called a reference.

Simply stated, references are handles to existing model objects.

When a reference is:

● assigned to variable,

● passed as an argument to a method or function,

● returned from a method or function,

● compared for equality and inequality, or

Expression Result

Sum(UnitPrice[*]) Sums all occurrences of object UnitPrice

Sum(UnitPrice) Sums a single occurrence of object UnitPrice

Expression Result

Abs(Quantity[*]) Generates an error exception, irrespective of the
number of occurrences of object Quantity

Quantity[*] + 10 Generates an error exception, respectively of the
number of occurrences of object Quantity

XFA Specification
Chapter 25, FormCalc Specification Grammar and Syntax 1027

● further qualified by an accessor or method,

some special rules apply. In all other contexts where a reference is used, it simply refers to the value of the
object it's handling at the time.

Assignment of References

For variable V, expression e and object O, the assignment var V = e is evaluated as follows:

● If expression e is a reference, variable V becomes a reference to the same object referred to by e;
otherwise, if e is a null reference, V becomes a variable with the value null;

● If expression e is not a reference, and variable V is a reference, then the value of the object referred to
by variable V becomes the value e;

● Otherwise, variable V becomes the value e.

The following table illustrates the evaluation of var V = e, given different combinations of referencing.
The symbol & designates a reference to an object, and ❑ designates the de-referencing of an object then
we have the following table:

The denote variables that result in references, whereas, the denote variables
that result in values.

To summarize then, when a variable is been assigned a valid reference, the variable becomes a reference. It
stays a reference until its assigned the null-reference, or goes out of scope. This principle is illustrated in
the following sequence.

Example 25.17 Code fragment using assignments of references

var q = 5 // variable q is assigned the value 5.
…
q = Ref(ShipDate) // q is now a reference to object ShipDate.
…
q = 5 // object ShipDate is assigned the value 5.
q = null // object ShipDate is assigned the value null.
…
q = Ref(null) // q is now a null-reference.
…
q = 5 // variable q is assigned the value 5.

Variable V Variable e contains var V = e evaluates as …

Reference Reference to an object V = &O

Null value V = null

Non-null value ❑V = e

Non-reference Reference to an object V = &O

Null value V = null

Non-null value V = e

light grey cells yellow cells

XFA Specification
Chapter 25, FormCalc Specification Grammar and Syntax 1028

Passing References to Functions

Passing references as arguments to built-in functions involves the pair-wise assignment of the function's
actual arguments to its formal arguments, in which case, the above assignment rules apply.

Example 25.18 Expressions using references as arguments to functions

var p = Ref(UnitPrice)
var q = Ref(p)
WalkTheDOM(p)

Passing References to Methods

Passing references as arguments to methods again involves the pair-wise assignment of the method's
actual arguments to its formal arguments, in which case, the above assignment rules apply equally.

Methods are normally defined to take arguments of a given type, but FormCalc references are all untyped,
so the user must ensure that references passed as arguments to methods are of the correct type; runtime
exceptions will ensue if the user does otherwise.

Example 25.19 Expressions using references to methods

var p = Ref(UnitPrice)
$.Clone(p)

Returning References from Methods and Functions

Returning references from methods and functions either involve the assignment of the return value to a
variable or the passing of the return value to another function or method. Both cases are described by the
rules above.

Example 25.20 Expressions returning references

Ref(Quantity)
FindMySiblings(Ref(Quantity))

Comparing References for Equality and Inequality

Comparing references for equality and inequality involves comparing the handles of the referred-to
objects, and not their values. It's an object comparison.

Example 25.21 Code fragment using comparison of references

var p = Ref(UnitPrice)
var q = p
// If UnitPrice is a valid object then the above
// references will both refer to the same object.
// if (p == q) then ... endif

Qualifying References by an Accessor or Method

References may be further qualified by an accessor or method as in the following examples.

Example 25.22 Expressions using references qualified by an accessor or method

var p = Ref(UnitPrice)
p.Parent
p.getParent()

XFA Specification
Chapter 25, FormCalc Specification Grammar and Syntax 1029

In addition references may be qualified by an index as follows.

Example 25.23 Expression using a reference qualified by an index

var q = Ref(UnitPrice[1])

The following assignment expressions each set the value of field UnitPrice[1] to the value of field
UnitPrice[2].

Example 25.24 Expressions performing the same assignment

q = UnitPrice[2]
q.#value = UnitPrice[2]
q..setValue(UnitPrice[2])

Other Reference Uses

In all other contexts, a reference simply refers to the value of the object it refers to. This further implies that
for most built-in functions, passing a reference argument is equivalent to passing the value of the object
the reference refers to. For example, the following expressions both return the absolute value of object
Total.

Example 25.25 Expressions resolving to the same value

Abs(Ref(Total))
Abs(Total)

Control Expressions

Break Expressions
92 BreakExpression ::= 'break'

A break expression causes an immediate exit from the innermost enclosing while, for, or foreach
expression loop. Control passes to the expression following the terminated loop.

Example 25.26 Code fragment that sums the receipts up to a maximum value, using continue and
break expressions

var total = 0.0
foreach receipt in (travel_receipt[*], parking_receipt[*]) do

if (receipt lt 5) then
continue // Causes a jump to the next iteration of the foreach loop.

endif
total = total + receipt
if (total gt 1000) then

total = 1000
break // Causes execution to drop out of the foreach loop.

endif
endfor

The value of the break expression is always the value zero (0).

Continue Expression
93 ContinueExpression = 'continue'

XFA Specification
Chapter 25, FormCalc Specification Grammar and Syntax 1030

A continue expression causes the next iteration of the innermost enclosing while, for, or foreach loop.
When used in a while expression, control is passed to the while condition. When used in a for
expression, control is passed to the step expression.

The value of the continue expression is always the value zero (0). See Example 25.26.

If Expressions
94 IfExpression ::= 'if' '(' SimpleExpression ')' 'then'
ExpressionList ('elseif' '(' SimpleExpression ')' 'then'
ExpressionList)* ('else' ExpressionList)? 'endif'

An If Expressions is a conditional expression, which, depending upon the value of the SimpleExpression67
in the if-part, will either evaluate and return the value of the ExpressionList65 in its then-part or, if present,
evaluate and return the value of the ExpressionList in its elseif-part or else-part. See “Code blocks
determine span of declarations” on page 1033.

Syntax
foreach variable in(argument list)do expression list endfor

Return

The value of the SimpleExpression67 in the if-part is promoted to a boolean value and a logical boolean
operation is performed. If this boolean operation evaluates to true (1), the value of the ExpressionList65 in
the then-part is returned. Otherwise, if there's an elseif-part present, and the value of the
SimpleExpression in the elseif-part evaluates to true (1), then the value of its ExpressionList is returned.If
there are several elseif-parts, the SimpleExpression of each elseif-part, is evaluated, in order, and if true(1),
then the value of its corresponding ExpressionList is returned. Otherwise, the value of the ExpressionList in
the else-part is returned; if there is no else-part, the value 0 is returned. In any circumstance, only one of
the expression lists is ever evaluated.

For Expressions
95 'for' Assignment 'upto' Accessor ('step' SimpleExpression)?

'do' ExpressionList 'endfor' |
'for' Assignment 'downto' Accessor ('step' SimpleExpression)?

'do' ExpressionList 'endfor'

A For Expression is a conditionally iterative statement or loop.

The for condition declares and defines a FormCalc variable as the value of the start expression. In the upto
variant, the value of the loop variable will iterate from the start expression to the end expression in step
expression increments. If you omit the step expression, the step increment defaults to 1. In the downto
variant, the value of the loop variable iterates from the start expression to the end expression in step
expression decrements. If the step expression is omitted, the step decrements defaults to -1.

Iterations of the loop are controlled by the end expression value. Before each iteration, the end expression
is evaluated and compared to the loop variable. If the value is true (1), the expression list is evaluated. After
each evaluation, the step expression is evaluated and added to the loop variable. Before each iteration, the
end expression is evaluated and compared to the loop variable. In addition, after each evaluation of the do
condition, the step expression is evaluated and subtracted from the loop variable.

A for loop terminates when the start expression has surpassed the end expression. This can be both in an
upwards direction, if you use upto, or in a downward direction, if you use downto.

XFA Specification
Chapter 25, FormCalc Specification Grammar and Syntax 1031

Example 25.27 Code fragment calculating X to the power Y using a for loop

The following example calculates of the mathematical value of a number raised to the power of another
number.

var y = 1
for var x = 1 upto power do

y = y * base
endfor
total=y

where power, base, and total are fields in the same subform as the script.

The following example uses the step feature to calculate the sum of all even numbers between 1 and 100.

Example 25.28 Code fragment calculating sum of a series using a for loop

var x var evensum=0
for x=2 upto 100 step 2 do evensum=evensum+x endfor

For Each Expressions
96 ForeachExpression ::=

'foreach' Identifier 'in' '(' ArgumentList ')'
'do' ExpressionList 'endfor'

A For Each expression iterates over the expression list for each value in its argument list.

The in condition, which is executed only once (after the loop variable has been declared) controls the
iteration of loop. Before each iteration, the loop variable is assigned successive values from the argument
list. The argument list cannot be empty.

Note: Use a comma (,) to separate more than one simple expression in the argurment list.

Return

The value of the last expression list that was evaluated, or zero(0), if the loop was never entered.

Example 25.29 Code fragment calculating sum of columns using a foreach loop

The following example calculates travelling expenses:

var total = 0.0
foreach expense in (travel_exp[*], living_exp[*],parking_exp[*]) do

total = total + expense
endfor

While Expression
97 WhileExpression ::=

'while' '(' SimpleExpression ')' 'do' ExpressionList 'endwhile'

A While Expression is an iterative statement or loop that evaluates a given simple expression. If the result
of the evaluation is true (1), FormCalc repeatedly examines the do condition and returns the results of the
expression lists. If the result is false (0), then control passes to the next statement.

XFA Specification
Chapter 25, FormCalc Specification Grammar and Syntax 1032

A While Expression is particularly well suited to situations in which conditional repetition is needed.
Conversely, situations in which unconditional repetition is needed is often best dealt with using a for
expression.

Return

The result of the list of expressions associated with the do condition.

Example 25.30 Code fragment computing Pi using a while-do-endwhile loop

The following example shows pi being computed (in an inefficient way) to two decimal places.

var i = 0.0
while (Cos(i) gt Sin(i)) do

i = i + .1
endwhile
while (Cos(i) lt Sin(i)) do

i = i - .01
endwhile
i * 4

Block Expressions, Explicit and Implied
In FormCalc, the regions of a script where variables can be declared constitute a block. All but one of these
expressions are implicit, which means that the block is a side-affect of another expression. The syntax of
the explicit block expression is described in “Block Expression” on page 1033

The entire script constitutes one block, but other expressions declare the beginnings and endings of a
block, which means that blocks can be nested. The following expressions define blocks.

This all leads to the following rule regarding variables, and their scope:

● A variable declared within block A is only valid within its scope in block A.

● If block B is nested within block A, then a variable valid in block A is also valid in block B except in a
scope of block B where that variable has been redeclared.

Expressions that define blocks

Expression Beginning End

Block Expression do end

If Expressions then else | endif (whichever comes first)

elseif elseif | else | endif (whichever comes first)

else endif (whichever comes first)

For Expressions do endfor

For Each Expressions do endfor

While Expression do endwhile

User-Defined Functions do end

XFA Specification
Chapter 25, FormCalc Specification Grammar and Syntax 1033

Consider the following annotated FormCalculation as a valid, though contrived example of the concepts
defined above.

Example 25.31 Code blocks determine span of declarations

D = 0; assign object D the value 0.
var A = 1; declare variable A (scope 1) and assign it the value 1.
var B = 2; declare variable B (scope 1) and assign it the value 2.
var C = 3; declare variable C (scope 1) and assign it the value 3.
func MyFunction(param1) do param1*param1 endfunc ; declare a function
if (D < A) then

var A = -1; re-declare variable A (scope 2)and assign it the value -1.
func MyFunction(param1) do param1/2 endfunc ; re-declare a function
MyFunction(A) ; invoke second user-defined function
if (A < B) then

var A = B + 2;re-declare variable A (scope 3) and assign it the value 4.
D = D + A; assign object D the value 4 (= 0 + 4).

endif
var B = -2; re-declare variable B (scope 2) and assign it -the value 2.
C = A - B; assign variable C in scope 1, the value 1 (= -1 - -2).
if (A > B) then

var B = A + 2;re-declare variable B (scope 4) and assign it the value 1.
D = D + B; assign object D the value 5 (= 4 + 1).

endif
var C = A + B; re-declare variable C (scope 2) and assign it the value -3.
D = D + C; assign object D the value 2.

endif
A + B + C + D; the sum is 6 (= 1 + 2 + 1 + 2).
MyFunction(A) ; invoke original user-defined function

Block Expression
98 BlockExpression ::= 'do' ExpressionList 'end'

The block expression defines the scope for an expression list. A scope specifies the lifetime of variables
that it defines. For example, the following expression returns “3”.

var xxx=3 do var xxx=1 end xxx

Function and Method Calls

Function Calls
99 Expression ::= FunctionCall | ...
100 FunctionCall ::= Function '(' (ArgumentList)? ')'
101 Function ::= Identifier
102 ArgumentList ::= SimpleExpression (',' SimpleExpression)*

FormCalc supports a large set of built-in functions to do arithmetic, financial, logic, date, time, and string
operations. It also allows you to define your own functions.

Here's a summary of the key properties of built-in functions:

● Function names are case-insensitive.

XFA Specification
Chapter 25, FormCalc Specification Grammar and Syntax 1034

● Built-in functions are predefined, but their names are not reserved words: this means that the built-in
function Max() will never conflict with an object, object property, or object method named Max.

● Many of the built-in functions have a mandatory number of arguments which can be followed by a
optional number of arguments.

● Some built-in functions, accept an indefinite number of arguments. Examples of such functions
include: Avg(), Count(), Max(), Min(), Sum(), and Concat().

● Built-in functions take precedence over user-defined functions. That is, if the user defines a function
with the same name as a built-in function, the built-in function is executed.

Note: If you write a function that has the same name (ignoring case) as one of the built-in functions, your
function is NOT invoked. Rather, the built-in function is invoked. FormCalc provides several
undocumented built-in functions: acos, asin, atan, cos, deg2rad, exp, log, pi, pow, rad2deg, sin, sqrt,
and tan.

Method Calls
103 MethodCall ::= Method '(' (ArgumentList)? ')'
104 Method ::= Identifier
105 ArgumentList ::= SimpleExpression (',' SimpleExpression)*

FormCalc also provides access to object methods, not just objects and object properties. The syntax for
Accessors90 permits this.Object methods are all described in LiveCycle Designer ES2 Scripting Reference
[LC-Scripting-Reference].

Methods are application-defined operators that act upon objects and their properties; these operators are
invoked like a function call, in that arguments may be passed to methods exactly like function calls. The
number and type of arguments in each method are prescribed by each object type. Objects of different
types will support different methods.

Example 25.32 Code fragment showing method calls

v = $.getValue(); // retrieve this referencing object's value.
$host.MessageBox(1, v); // display it in this host's dialog box.

Case Sensitivity

The names of functions and methods are case insensitive, but are not reserved. This means that
calculations on forms with objects whose names coincide with the names of functions do not conflict; any
object method or function can be called equally.

Argument List

All functions and methods take an ArgumentList105, although that list may be empty. The number and
type of arguments varies with each function. Some, such as Date() and Time() take no arguments.
Others, such as Num2Date() take multiple arguments, the first argument being a number, with the
remaining arguments being strings. Many functions accept a variable number of arguments. Leading
arguments are mandatory, and trailing arguments are often optional. This maintains the complexity of
most functions at a low level. Increased functionality is provided to those users who need it by requiring
them to supply the additional arguments.

All arguments in an ArgumentList105 are evaluated in order, leading arguments first. If the number of
mandatory arguments passed to a function is less than the number required, the function generates an
error exception.

XFA Specification
Chapter 25, FormCalc Specification FormCalc Support for Locale 1035

Many functions require numeric arguments. If any of the passed arguments are non-numeric, they are
promoted to numbers. Some function arguments only require integral values; in such cases, the passed
arguments are always promoted to integers by truncating the fractional part.

FormCalc Support for Locale
A number of built-in date and time functions are provided, to allow the form designer to do the following:

● Select locale-specific date formats (DateFmt() and LocalDateFmt())

● Parse strings into numbers according to locale-specific date formats (Date2Num())

● Get the current date (Date())

● Do basic arithmetic on dates

● Format numbers into strings, according to locale-specific date picture clauses (Num2Date()).

● Select locale-specific time formats (TimeFmt() and LocalTimeFmt()),

● Parse strings into numbers according, to locale-specific time picture clauses (Time2Num()),

● Get the current time (Time())

● Do basic arithmetic on times

● Format numbers into strings according to locale-specific time formats (Num2Time()).

● Parse ISO-8601 date strings and time strings into numbers (IsoDate2Num() and IsoTime2Num()).

To properly parse and format a date or time, we need to do the following:

● Prompt the user for dates and times, choosing from a set of conventional styles (date/time format style)
and using symbols appropriate for the users locale to represent the chosen style (localized date/time
format). For example, the conventional date styles include short, medium, long, and full. Further, the
English-language short-style localized date format is “MM/DD/YY”.

● Provide the input parser with a picture clause to use for interpreting user-entered values. Picture
clauses serve as a template for converting between user-entered data and canonical data.

● Provide an output formatter with a picture clause to use in formatting data for output.

● Provide the input parser with a locale identifier to us in the above parsing.

Locales
When developing internationalized applications, a locale is the standard term used to identify a particular
nation (language and/or country). A locale defines (but is not limited to) the format of dates, times,
numeric and currency punctuation that are culturally relevant to a specific nation. A properly
internationalized application will always rely on the locale to supply it with the format of dates, and times.
This way, users operating in their locale will always be presented with the date and time formats they are
accustomed to.

“Localization and Canonicalization” on page 152 in the chapter “Exchanging Data Between an External
Application and a Basic XFA Form” provides additional information about localization.

Specifying a Locale (Locale Identifier String)

A locale identifier string is a unique string representing a locale, as described in “Convention for Explicitly
Naming Locale” on page 1112 in the “Picture Clause Specification”.

XFA Specification
Chapter 25, FormCalc Specification FormCalc Support for Locale 1036

Determining Which Locale to Use

FormCalc functions that are influenced by locale consider several sources for locale information. Such
functions accept an optional stand-alone locale identifier string. If such an argument is not supplied,
FormCalc functions determine the locale to use (called the prevailing locale), by examining the following:

1. Locale identifier string enclosed in the picture clause argument (“Locale-Specific Picture Clauses” on
page 1116)

2. Template field or subform declarations, using the locale property.

3. Ambient locale. Ambient locale is the system locale declared by the application or in effect at the time
the XFA processing application is started. In the event the application is operating on a system or
within an environment where a locale is not present, the ambient locale defaults to English United
States (en_US).

Date Format Styles
FormCalc functions support date format styles. A date format style is a locale-independent style of
representing date. Supported date styles include short, medium, long, and full. One date style is
designated the default. The date/time format styles may be defined in the localeSet element, described
in “The localeSet Element” on page 166.

The format of dates is governed by an ISO standards body whereby each nation gets to specify the form of
its default, short, medium, long, and full date formats. Specifically, the locale (as described in the localeSet
element) is responsible for identifying the format of dates that conform to the standards of that nation.

Properly internationalized applications then, will always query the locale for a date format. The form
designer has the option of choosing from either the default, short, medium, long or full formats, and will
never present to the user a hand-crafted date format. Except for the need of a common format for data
interchange, use of hand-crafted date formats are best avoided.

Date Picture Clauses

A date picture clause specifies the format for a date. It consists of punctuations, literals, and pattern
symbols, e.g., "D/M/YY" is a date picture clause.

For a specification of how to construct date picture clauses, refer to “Date Picture Clauses” on page 1125
within the “Picture Clause Specification”.

Style Appearance example (en_US) Description

short 10/2/70 Short date format styles tend to be purely numeric

medium 10-Feb-70 Medium date format styles specify use of abbreviated
month names

The medium date style tends to be the default style.

long February 10, 1970

full Thursday, February 10, 1970 Full date format styles tend to include the weekday
name

XFA Specification
Chapter 25, FormCalc Specification FormCalc Support for Locale 1037

Example 25.33 Date picture clauses

MM/DD/YY
MM/DD/YY
DD.MM.YYYY
DD MMM YYYY
MMMM DD, YYYY
EEEE,' le 'D MMMM, YYYY

Specifically, in the default en_US locale, the default date picture clause is the following:

MMM D, YYYY

Date picture clauses are used to format and parse date strings, using the built-in functions Num2Date()
and Date2Num(). All formatting and parsing is strict; when formatting, all literals and punctuations are
included, and when parsing, all literals and punctuations must be matched exactly. If the date picture
clause is meaningless, no formatting nor parsing is attempted.

Localized Date Formats

Properly internationalized e-forms prompt the user with characters appropriate for the locale. Such
localized prompts specify the format in which the user must supply the date, a format that must reflect the
picture clause used for input parsing.

The following table provides examples of the prompts used for various locales, depending on the picture
clause used to parse the user-provided value.

Note: The prompts used by any locale may change over time. The prompts presented in the following
table are currently typical; however, they may change in future years.

FormCalc provides several functions that return or process localized date formats. For example,
LocalDateFmt() returns a localized date format that might be used to prompt a user to enter a date.
The resulting localized date format uses the date symbols specific for the locale.

Time Format Styles
FormCalc functions support time format styles, which are a locale-independent style of representing time.
Supported date and time styles include short, medium, long, and full. One time style is designated the
default. The time format styles may be defined in the localeSet element, described in “The localeSet
Element” on page 166.

In much the same way that date format styles are governed by an ISO standards body, so are time formats.
Again, each nation gets to specify the form of its default, short, medium, long, and full time formats. The
locale is responsible for identifying the format of times that conform to the standards of that nation.

Examples of localized date prompts

Picture clause used for input
parsing

Localized date format (a localized prompt)

English
French as used in
Canada

German as used in
Switzerland

"YY/MM/DD" YY/MM/DD aa-MM-jj jj/MM/tt

"EEEE, D. MMMM YYYY" n/a EEEE, j. MMMM aaaa EEEE, t. MMMM jjjj

XFA Specification
Chapter 25, FormCalc Specification FormCalc Support for Locale 1038

The default time format tends to coincide with the medium time format.

Time Picture Clauses

Specifically, in the default en_US locale, the default time picture clause is the following:

h:MM:SS A

Just as with a date format styles, a time picture clause is a shorthand specification to format a time. It
consists of punctuations, literals, and pattern symbols, e.g., "HH:MM:SS" is a time picture clause.

For a specification of how to construct time picture clauses, refer to “Time Pictures” on page 1131 in the
“Picture Clause Specification”.

Example 25.34 Time picture clauses

h:MM A
HH:MM:SS
HH:MM:SS 'o''clock' A Z

Any time picture clause containing incorrectly specified picture clause symbols, e.g., HHH are invalid.
When parsing, time picture clauses with multiple instances of the same pattern symbols, e.g., HH:MM:HH
are invalid, as are time picture clauses with conflicting pattern symbols, e.g., h:HH:MM:SS. Time picture
clauses with adjacent one letter pattern symbols, e.g., HMS, are inherently ambiguous and should be
avoided.

Localized Time Formats

As with localized date formats, properly internationalized e-forms prompt the user with characters
appropriate for the locale. Such localized prompts specify the format in which the user must supply the
time, a format which must correspond to the picture clause used for input parsing.

Date and Time Values
To do basic arithmetic on dates and times, we introduce the concept of date values and time values. Both
of these are of numeric type, but their actual numeric value is implementation defined and thus
meaningless in any context other than a date or time function. In other words, a form calculation obtains a
date value from a date function, performs some arithmetic on that date value, and only passes that value
to another date function. These same rules apply to time values.

Both date values and time values have an associated origin or epoch — a moment in time when things
began. Any date value prior to its epoch is invalid, as is, any time value prior to its epoch.

The unit of value for all date function is the number of days since the epoch. The unit of value for all time
functions is the number of milliseconds since the epoch.

The reference implementation defines the epoch for all date functions such that day 1 is Jan 1, 1900, and
defines the epoch for all time functions such that millisecond 1 is midnight, 00:00:00, GMT. This means
negative time values may be returned to users in timezones east of Greenwich Mean Time.

XFA Specification
Chapter 25, FormCalc Specification Arithmetic Built-in Functions 1039

Arithmetic Built-in Functions

Abs()
This function returns the absolute value of a given number.

Syntax
Abs(n1)

Parameters

n1

is the number to evaluate.

Returns

The absolute value or null if its parameter is null.

Example 25.35 Expressions using Abs()

 Abs(1.03)

returns 1.03.

 Abs(-1.03)

returns 1.03.

 Abs(0)

returns 0.

XFA Specification
Chapter 25, FormCalc Specification Arithmetic Built-in Functions 1040

Avg()
This function returns the average of the non-null elements of a given set of numbers.

Syntax
Avg(n1 [, n2...])

Parameters

n1

is the first number in the set.

n2, ...

are optional additional numbers in the set.

Returns

The average of its non-null parameters, or null if its parameter are all null.

Example 25.36 Expressions using Avg()

Calling Avg() as follows … Returns

Avg(UnitPrice[0],
UnitPrice[1],
UnitPrice[2],
UnitPrice[3])

 9 if UnitPrice[0] has a value of 8, UnitPrice[1] has value 10, and
UnitPrice[2] and UnitPrice[3] are null

Avg(Quantity[*]) 9 if Quantity has two occurrences with values of 8 and 10

Avg(Quantity[*]) null if all occurrences of Quantity are null

XFA Specification
Chapter 25, FormCalc Specification Arithmetic Built-in Functions 1041

Ceil()
This function returns the whole number greater than or equal to a given number.

Syntax
Ceil(n1)

Parameters

n1

is the number to evaluate.

Returns

The ceiling or null if its parameter is null.

Example 25.37 Expressions using Ceil()

 Ceil(1.9)

returns 2.

 Ceil(-1.9)

returns -1.

 Ceil(A)

is 100 if the value A is 99.999

XFA Specification
Chapter 25, FormCalc Specification Arithmetic Built-in Functions 1042

Count()
This function returns the count of the non-null elements of a given set of numbers.

Syntax
Count(n1 [, n2...])

Parameters

n1

is the first argument to count.

n2, ...

are optional additional arguments in the set.

Returns

The count.

Example 25.38 Expressions using Count()

 Count(5, "ABCD", "", null)

returns 3.

 Count(Quantity[*])

returns the number of occurrences of Quantity that are non-null, and returns 0 if all of occurrences of
Quantity are null.

XFA Specification
Chapter 25, FormCalc Specification Arithmetic Built-in Functions 1043

Floor()
This function returns the largest whole number that is less than or equal to a given value.

Syntax
Floor(n1)

Parameters

n1

is the number to evaluate.

Returns

The floor or null if its parameter is null.

Example 25.39 Expressions using Floor()

 Floor(6.5)

returns 6.

 Floor(7.0)

returns 7.

 Floor(UnitPrice)

returns 99 if the value of UnitPrice is 99.999.

XFA Specification
Chapter 25, FormCalc Specification Arithmetic Built-in Functions 1044

Max()
This function returns the maximum value of the non-null elements of a given set of numbers.

Syntax
Max(n1 [, n2...])

Parameters

n1

is the first number in the set.

n2, ...

are optional additional numbers in the set.

Returns

The maximum of its non-null parameters, or null if all its parameters are null.

Example 25.40 Expressions using Max()

Calling Max() as follows … Returns

Max(UnitPrice[*], 100) The maximum value of all occurrences of the object UnitPrice or
100, whichever is greater

Max(7, 10, null, -4, 6) 10

Max(null) null

XFA Specification
Chapter 25, FormCalc Specification Arithmetic Built-in Functions 1045

Min()
This function returns the minimum value of the non-null elements of a given set of numbers.

Syntax
Min(n1 [, n2...])

Parameters

n1

is the first number in the set.

n2, ...

are optional additional numbers in the set.

Returns

The minimum of its non-null parameters, or null if all its parameters are null.

Example 25.41 Expressions using Min()

Calling Min() as follows … Returns

Min(7, 10, null, -4, 6) -4

Min(UnitPrice[*], 100) The minimum value of all occurrences of the object UnitPrice or
100, whichever is less

Min(null) null

XFA Specification
Chapter 25, FormCalc Specification Arithmetic Built-in Functions 1046

Mod()
This function returns the modulus of one number divided by another.

Syntax
Mod(n1, n2)

Parameters

n1

is the dividend number.

n2

is the divisor number.

Returns

The modulus or null if any of its parameter are null.

The modulus is the remainder of the implied division of the dividend and the divisor. The sign of the
remainder always equals the sign of the dividend.

For integral operands, this is simple enough. For floating point operands, the floating point remainder r of
Mod(n1, n2) is defined as r = n1 - (n2 * q) where q is an integer whose sign is negative when
n1 / n2 is negative, and positive when n1 / n2 is positive, and whose magnitude is the largest integer
less than the quotient n1 / n2.

If the divisor is zero, the function generates an error exception.

Example 25.42 Expressions using Mod()

Calling Mod() as follows … Returns

Mod(64, 2) 0.

Mod(-13, 3) -1

Mod(13, -3) 1

Mod(-13.6, 2.2) -0.4

XFA Specification
Chapter 25, FormCalc Specification Arithmetic Built-in Functions 1047

Round()
This function returns a number rounded to a given number of decimal places.

Syntax
Round(n1 [, n2])

Parameters

n1

is the number to be evaluated.

n2

is the number of decimal places.

If n2 is omitted, 0 is used as the default.

If n2 is greater than 12, 12 is used as the maximal precision.

Returns

The rounded value or null if any of its parameters are null.

Example 25.43 Expressions using Round()

Calling Round() as follows … Yields

Round(33.2345, 3) 33.235

Round(20/3, 2) 6.67

Round(-1.3) -1

Round(UnitPrice, 2) 2.33 if the value of the object UnitPrice is
2.3333

XFA Specification
Chapter 25, FormCalc Specification Arithmetic Built-in Functions 1048

Sum()
This function returns the sum of the non-null elements of a given set of numbers.

Syntax
Sum(n1 [, n2...])

Parameters

n1

is the first number to sum.

n2, ...

are optional additional numbers in the set.

Returns

The sum of its non-null parameters, or null if all of its parameters are null.

Example 25.44 Expressions using Sum()

Calling Sum() as follows … Returns

Sum(1, 2, 3, 4) 10

Sum(Amount[*]) The sum of all occurrences of the object Amount

Sum(Amount[2], Amount[3]) The sum of two occurrences of the object Amount

XFA Specification
Chapter 25, FormCalc Specification Date And Time Built-in Functions 1049

Date And Time Built-in Functions

Date()
This function returns the current system date as the number of days since the epoch.

Syntax
Date()

Returns

The number of days for the current date.

Example 25.45 Expressions using Date()

 Date()

returns 35733 on Oct 31 1998.

XFA Specification
Chapter 25, FormCalc Specification Date And Time Built-in Functions 1050

Date2Num()
This function returns the number of days since the epoch, given a date string.

Syntax
Date2Num(d1[, f1[, k1]])

Parameters

d1

is a date string in the format given by f1, governed by the locale given by k1.

f1

is a date picture clause. If f1 is omitted, the default picture clause is used.

k1

is a locale identifier string, as described in “Specifying a Locale (Locale Identifier String)” on
page 1035. If k1 is omitted, the prevailing locale is used.

Returns

The days since the epoch or null if any of its parameters are null.

If the given date is not in the format given, or the picture clause is invalid, or the locale is invalid, the
function returns 0.

Sufficient information must be provided to determine a unique day since the epoch: if any of the day of
the year and year of the era are missing, or any of the day of the month, month of the year and year of the
era are missing, the function returns 0.

Example 25.46 Expressions using Date2Num()

See Also

Num2Date() and DateFmt()

Calling Date2Num as follows … Returns

Date2Num("Mar 15, 1996") 35138

Date2Num("1/1/1900", "D/M/YYYY") 1

Date2Num("03/15/96", "MM/DD/YY") 35138

Date2Num("Aug 1,1996", "MMM D,YYYY") 35277

Date2Num("31-ago-96", "DD-MMM-YY", "es_ES") 35307

Date2Num
("1/3/00", "D/M/YY") - Date2Num("1/2/00", "D/M/YY")

 29, year 2000 being a leap year!

XFA Specification
Chapter 25, FormCalc Specification Date And Time Built-in Functions 1051

DateFmt()
This function returns a date picture clause, given a date format style.

Syntax
DateFmt([n1[, k1]]])

Parameters

n1

An integer identifying the date format style, whose value has the following meaning:

k1

is a locale identifier string, as described in “Specifying a Locale (Locale Identifier String)” on
page 1035. If k1 is omitted, the prevailing locale is used.

Returns

The date picture clause or null if any of its mandatory parameters are null.

If the given date format style is invalid, the function returns default-style date picture clause.

Example 25.47 Expressions using DateFmt()

See Also

Num2Date(), Date2Num(), and LocalDateFmt()

Value supplied in first argument Requests the locale-specific style …

0 (default) Default style

1 Short style

2 Medium style

3 Long style

4 Full style

Calling DateFmt() as follows … Returns

DateFmt() "MMM D, YYYY", which is the default date picture clause

DateFmt(1) "M/D/YY"

DateFmt(2, "fr_CA") "YY-MM-DD"

DateFmt(3, "de_DE") "D. MMMM YYYY"

DateFmt(4, "es_ES") "EEEE D' de 'MMMM' de 'YYYY"

XFA Specification
Chapter 25, FormCalc Specification Date And Time Built-in Functions 1052

IsoDate2Num()
This function returns the number of days since the epoch, given an [ISO-8601] date string.

Syntax
IsoDate2Num(d1)

Parameters

d1

is a canonical date string in one of the following two formats:

YYYY[MM[DD]]

YYYY[-MM[-DD]]

or, is an ISO-8601 date-time string — the concatenation of an ISO-8601 date string with an
ISO-8601 time string, separated by the character T, as in:

1997-07-16T20:20:20

Returns

The days from the epoch or null if its parameter is null.

If the given date is not in one of the accepted formats, the function returns 0.

Example 25.48 Expressions using IsoDate2Num()

See Also

IsoTime2Num() and Num2Date()

Calling IsoDate2Num() as follows Returns

IsoDate2Num("1900") 1

IsoDate2Num("1900-01") 1

IsoDate2Num("1900-01-01") 1

IsoDate2Num("19960315T20:20:20") 35138

IsoDate2Num("2000-03-01") - IsoDate2Num("20000201") 29

XFA Specification
Chapter 25, FormCalc Specification Date And Time Built-in Functions 1053

IsoTime2Num()
This function returns the number of milliseconds since the epoch, given an [ISO-8601] time string.

Syntax
IsoTime2Num(d1)

Parameters

d1

is a canonical time string in one of the following formats:

HH[MM[SS[.FFF][z]]]

HH[MM[SS[.FFF][+HH[MM]]]]

HH[MM[SS[.FFF][-HH[MM]]]]

HH[:MM[:SS[.FFF][z]]]

HH[:MM[:SS[.FFF][-HH[:MM]]]]

HH[:MM[:SS[.FFF][+HH[:MM]]]]

or, is an ISO-8601 date-time string — the concatenation of an ISO-8601 date string with an ISO-8601 time
string, separated by the character T, as in:

1997-07-16T20:20:20

Returns

The number of milliseconds from the epoch or null if its parameter is null.

If the time string does not include a timezone, the current timezone is used.

If the given time is not in a valid format, the function returns 0.

Example 25.49 Expressions using IsoTime2Num()

See Also

IsoDate2Num() and Num2Time()

Calling IsoTime2Num() as follows … Returns

IsoTime2Num("00:00:00Z") 1

IsoTime2Num("13") 64800001 to a user in Boston

IsoTime2Num("13:13:13") 76393001 to a user in California

IsoTime2Num("19111111T131313+01") 43993001

XFA Specification
Chapter 25, FormCalc Specification Date And Time Built-in Functions 1054

LocalDateFmt()
This function returns a string containing a localized date format, given a date format style.

Syntax
LocalDateFmt([n1[, k1]])

Parameters

n1

is an integer identifying the date format style. The following table describes the possible values for
n1.

k1

is a locale identifier string, as described in “Specifying a Locale (Locale Identifier String)” on
page 1035.

If k1 is omitted, the prevailing locale is used.

Returns

The localized date format or null if any of its parameters are null.

If the given format style is invalid, the function returns default-style localized date format.

The date picture clauses returned by this function are not usable in the functions Date2Num() and
Num2Date().

Example 25.50 Expressions using LocaleDateFmt()

See Also

DateFmt()

n1 Style requested for the localized date format

0 Locale-specific default style

1 Locale-specific short style

2 Locale-specific medium style

3 Locale-specific long style

4 Locale-specific full style

Calling LocaleDateFmt() as follows … Returns

LocalDateFmt(1, "de_DE") "tt.MM.jj"

LocalDateFmt(2, "fr_CA") "aa-MM-jj"

LocalDateFmt(3, "de_CH") "t. MMMM uuuu"

LocalDateFmt(4, "es_ES") "EEEE t de MMMM de uuuu"

XFA Specification
Chapter 25, FormCalc Specification Date And Time Built-in Functions 1055

LocalTimeFmt()
This function returns a localized time format, given a time format style.

Syntax
LocalTimeFmt([n1[, k1]])

Parameters

n1

is an integer identifying the time format style as follows:

If n1 is omitted, the default style value 0 is used.

k1

is a locale identifier string, as described in “Specifying a Locale (Locale Identifier String)” on
page 1035.

If k1 is omitted, the prevailing locale is used.

Returns

The localized time format or null if any of its parameters are null.

If the given format style is invalid, the function returns default-style localized time format.

The time picture clauses returned by this function are not usable in the functions Time2Num() and
Num2Time().

Example 25.51 Expressions using LocalTimeFmt()

See Also

TimeFmt()

n1 Style requested for the localized time format

0 Locale-specific default style

1 Locale-specific short style

2 Locale-specific medium style

3 Locale-specific long style

4 Locale-specific full style

Calling LocalTimeFmt() as follows … Returns

LocalTimeFmt(1, "de_DE") "HH:mm"

LocalTimeFmt(2, "fr_CA") "HH:mm:ss"

LocalTimeFmt(3, "de_DE") "HH:mm:ss z"

LocalTimeFmt(4, "es_ES") "hhHmm'ss" z".

XFA Specification
Chapter 25, FormCalc Specification Date And Time Built-in Functions 1056

Num2Date()
This function returns a date string, given a number of days since the epoch.

Syntax
Num2Date(n1 [,f1 [, k1]])

Parameters

n1

is the number of days.

f1

is a date picture clause.

If f1 is omitted, the default picture clause is used.

k1

is a locale identifier string, as described in “Specifying a Locale (Locale Identifier String)” on page 1035.

If k1 is omitted, the prevailing locale is used.

Returns

The date string or null if any of its parameters are null.

The formatted date is in the format given in f1, governed by the locale given in k1.

If the given date is invalid, the function returns an empty string.

Example 25.52 Expressions using Num2Date()

 Num2Date(1, "DD/MM/YYYY")

returns "01/01/1900".

 Num2Date(35139, "DD-MMM-YYYY", "de_CH")

returns "16-Mrz-1996".

 Num2Date(
Date2Num("31-ago-98",

"DD-MMM-YY", "es_ES") - 31, "D' de 'MMMM' de 'YYYY", "pt_BR")

returns "31 de Julho de 1998".

See Also

Date2Num(), DateFmt() and Date()

XFA Specification
Chapter 25, FormCalc Specification Date And Time Built-in Functions 1057

Num2GMTime()
This function returns a GMT time string, given a number of milliseconds from the epoch.

Syntax
Num2GMTime(n1 [,f1 [, k1]])

Parameters

n1

is the number of milliseconds.

f1

is a time picture clause, as defined above.

If f1 is omitted, the default time picture clause is used.

k1

is a locale identifier string, as described in “Specifying a Locale (Locale Identifier String)” on page 1035.

If k1 is omitted, the prevailing locale is used.

Returns

The GMT time string or null if any of its parameters are null.

The formatted time is in the format given in f1, governed by the locale given in k1.

The locale is used to format any timezone names.

If the given time is invalid, the function returns an empty string.

Example 25.53 Expressions using Num2GMTime()

 Num2GMTime(1, "HH:MM:SS")

returns "00:00:00".

 Num2GMTime(65593001, "HH:MM:SS Z")

returns "18:13:13 GMT".

 Num2GMTime(43993001, TimeFmt(4, "de_CH"), "de_CH")

returns "12.13 Uhr GMT".

See Also

Num2Time()

XFA Specification
Chapter 25, FormCalc Specification Date And Time Built-in Functions 1058

Num2Time()
This function returns a time string, given a number of milliseconds from the epoch.

Syntax
Num2Time(n1 [,f1 [, k1]])

Parameters

n1

is the number of milliseconds.

f1

is a time picture clause, as defined above.

If f1 is omitted, the default time picture clause is used.

k1

is a locale identifier string, as described in “Specifying a Locale (Locale Identifier String)” on
page 1035.

If k1 is omitted, the prevailing locale is used.

Returns

The time string or null if any of its parameters are null.

The formatted time is in the format given in f1, governed by the locale given in k1.

The locale is used to format any timezone names.

If the given time is invalid, the function returns an empty string.

Example 25.54 Expressions using Num2Time()

See Also

Date2Num(), DateFmt() and Date()

Calling Num2Time() as follows … Returns

Num2Time(1, "HH:MM:SS") "00:00:00" in Greenwich, England and "09:00:00" in
Tokyo

Num2Time(65593001, "HH:MM:SS Z") "13:13:13 EST" in Boston

Num2Time(65593001,
"HH:MM:SS Z", "de_CH")

"13:13:13 GMT-05:00" to a German Swiss user in Boston

Num2Time(43993001,
TimeFmt(4, "de_CH"), "de_CH")

 "13.13 Uhr GMT+01:00" to a user in Zurich

Num2Time(43993001, "HH:MM:SSzz") "13:13+01:00" to that same user in Zurich

XFA Specification
Chapter 25, FormCalc Specification Date And Time Built-in Functions 1059

Time()
This function returns the current system time as the number of milliseconds since the epoch.

Syntax
Time()

Returns

The number of milliseconds for the current time.

Example 25.55 Expressions using Time()

 Time()

returns 61200001 at precisely noon to a user in Boston.

XFA Specification
Chapter 25, FormCalc Specification Date And Time Built-in Functions 1060

Time2Num()
This function returns the number of milliseconds since the epoch, given a time string.

Syntax
Time2Num(d1[, f1[, k1]])

Parameters

d1

is a time string in the format given by f1, governed by the locale given by k1.

f1

is a time picture clause, as defined above.

If f1 is omitted, the default time picture clause is used.

k1

is a locale identifier string, as described in “Specifying a Locale (Locale Identifier String)” on page 1035.

If k1 is omitted, the prevailing locale is used.

Returns

The milliseconds from the epoch or null if any of its parameters are null.

If the time string does not include a timezone, the current timezone is used.

The locale is used to parse any timezone names.

If the given time is not in the format given, or the format is invalid, or the locale is invalid, the function
returns 0.

Sufficient information must be provided to determine a second since the epoch: if any of the hour of the
meridiem, minute of the hour, second of the minute, and meridiem are missing, or any of the hour of the
day, minute of the hour, and second of the minute are missing, the function returns 0.

Example 25.56 Expressions using Time2Num()

Time2Num("00:00:00 GMT", "HH:MM:SS Z")

returns 1.

Time2Num("1:13:13 PM")

returns 76393001 to a user in California on Standard Time, and 76033001 when that same user is on
Daylight Savings Time.

(Time2Num("13:13:13", "HH:MM:SS") - Time2Num("13:13:13 GMT", "HH:MM:SS Z")) / (60 * 60 * 1000)

returns 8 to a user in Vancouver and returns 5 to a user in Ottawa when on Standard Time. On Daylight
Savings Time, the returned values are returns 7 and 4, respectively.

Time2Num("1.13.13 dC GMT+01:00", "h.MM.SS A Z", "it_IT")

returns 43993001.

XFA Specification
Chapter 25, FormCalc Specification Date And Time Built-in Functions 1061

See Also

Num2Time(), andTimeFmt().

XFA Specification
Chapter 25, FormCalc Specification Date And Time Built-in Functions 1062

TimeFmt()
This function returns a time format given a time format style.

Syntax
TimeFmt([n1[, k1]]])

Parameters

n1

is an integer identifying the time format style, whose value has the following meaning:

If n1 is omitted, the default style value 0 is used.

k1

is a locale identifier string, as described in “Specifying a Locale (Locale Identifier String)” on
page 1035.

If k1 is omitted, the prevailing locale is used.

Returns

The time format or null if any of its parameters are null.

If the given format style is invalid, the function returns default-style time format.

Example 25.57 Expressions using TimeFmt()

See Also

Time().

n1 Style requested for the localized time format

0 Locale-specific default style

1 Locale-specific short style

2 Locale-specific medium style

3 Locale-specific long style

4 Locale-specific full style

Calling TimeFmt() as follows … Returns

TimeFmt() "h:MM:SS A"

TimeFmt(1) "h:MM A"

TimeFmt(2, "fr_CA") "HH:MM:SS"

TimeFmt(4, "de_DE") "H.MM' Uhr 'Z"

XFA Specification
Chapter 25, FormCalc Specification Financial Built-in Functions 1063

Financial Built-in Functions
Note: The value of the results in the examples of this section may vary slightly from platform to platform.

The numbers shown here have all been rounded for presentation purposes. A number followed by a
superscript asterisk (*) indicates a rounded return value.

Apr()
This function returns the annual percentage rate for a loan.

Syntax
Apr(n1, n2, n3)

Parameters

n1

is the principal amount of the loan.

n2

is the payment on the loan.

n3

is the number of periods.

Returns

The annual percentage rate or null if any of its parameters are null.

If any of n1, n2, or n3 are non-positive, the function generates an error exception.

Example 25.58 Expressions using Apr()

 Apr(35000, 269.50, 30 * 12)

returns 0.085* (8.5%) which is the annual interest rate on a loan of $35,000 being repaid at $269.50 per
month over 30 years.

XFA Specification
Chapter 25, FormCalc Specification Financial Built-in Functions 1064

CTerm()
This function returns the number of periods needed for an investment earning a fixed, but compounded,
interest rate to grow to a future value.

Syntax
CTerm(n1, n2, n3)

Parameters

n1

is the interest rate per period.

n2

is the future value of the investment.

n3

is the amount of the initial investment.

Returns

The number of periods or null if any of its parameters are null.

If any of n1, n2, or n3 are non-positive, the function generates an error exception.

Example 25.59 Expressions using CTerm()

 CTerm(.02, 200, 100)

returns 35.00*, which is the required period for $100 invested at 2% to grow to $200.

XFA Specification
Chapter 25, FormCalc Specification Financial Built-in Functions 1065

FV()
This function returns the future value of periodic constant payments at a constant interest rate.

Syntax
FV(n1, n2, n3)

Parameters

n1

is the amount of each equal payment.

n2

is the interest rate per period.

n3

is the total number of periods.

Returns

The future value or null if any of its parameters are null.

If n1 or n3 are non-positive, or if n2 is negative, the function generates an error exception.

If n2 is 0, the function returns the product of n1 and n3, i.e., the payment amount multiplied by the
number of payments.

Example 25.60 Expressions using FV()

 FV(100, .075 / 12, 10 * 12)

returns 17793.03*, which is the amount present after paying $100 a month for 10 years in an account
bearing an annual interest of 7.5%.

 FV(1000, 0.01, 12)

returns 12682.50*.

XFA Specification
Chapter 25, FormCalc Specification Financial Built-in Functions 1066

IPmt()
This function returns the amount of interest paid on a loan over a period of time.

Syntax
IPmt(n1, n2, n3, n4, n5)

Parameters

n1

is the principal amount of the loan.

n2

is the annual interest rate.

n3

is the monthly payment.

n4

is the first month of the computation.

n5

is the number of months to be computed.

Returns

The interest amount or null if any of its parameters are null.

If any of n1, n2, or n3 are non-positive, the function generates an error exception.

If n4 or n5 are negative, the function generates an error exception.

If the payment is less than the monthly interest load, the function returns 0.

Example 25.61 Expressions using IPmt()

 IPmt(30000, .085, 295.50, 7, 3)

returns 624.88* which is the amount of interest paid starting in July (month 7) for 3 months on a loan of
$30,000.00 at an annual interest rate of 8.5% being repaid at a rate of $295.50 per month.

XFA Specification
Chapter 25, FormCalc Specification Financial Built-in Functions 1067

NPV()
This function returns the net present value of an investment based on a discount rate, and a series of
periodic future cash flows.

Syntax
NPV(n1, n2 [, ...])

Parameters

n1

is the discount rate over one period.

n2, ...

are the cash flow values which must be equally spaced in time and occur at the end of each
period.

Returns

The net present value rate or null if any of its parameters are null.

The function uses the order of the values n2, ... to interpret the order of the cash flows. Ensure payments
and incomes are specified in the correct sequence.

If n1 is non-positive, the function generates an error exception.

Example 25.62 Expressions using NPV()

 NPV(0.15, 100000, 120000, 130000, 140000, 50000)

returns 368075.16* which is the net present value of an investment projected to generate $100,000,
$120,000, $130,000, $140,000 and $50,000 over each of the next five years and the rate is 15% per annum.

 NPV(0.10, -10000, 3000, 4200, 6800)

returns 1188.44*.

 NPV(0.08, 8000, 9200, 10000, 12000, 14500)

returns 41922.06*.

XFA Specification
Chapter 25, FormCalc Specification Financial Built-in Functions 1068

Pmt()
This function returns the payment for a loan based on constant payments and a constant interest rate.

Syntax
Pmt(n1, n2, n3)

Parameters

n1

is the principal amount of the loan.

n2

is the interest rate per period.

n3

is the number of payment periods.

Returns

The loan payment or null if any of its parameters are null.

If any of n1, n2, or n3 are non-positive, the function generates an error exception.

Example 25.63 Expressions using Pmt()

 Pmt(30000.00, .085 / 12, 12 * 12)

returns 333.01*, which is the monthly payment for a loan of a $30,000, borrowed at a yearly interest rate of
8.5%, repayable over 12 years (144 months).

 Pmt(10000, .08 / 12, 10)

returns 1037.03*, which is the monthly payment for a loan of a $10,000 loan, borrowed at a yearly interest
rate of 8.0%, repayable over 10 months.

XFA Specification
Chapter 25, FormCalc Specification Financial Built-in Functions 1069

PPmt()
This function returns the amount of principal paid on a loan over a period of time.

Syntax
PPmt(n1, n2, n3, n4, n5)

Parameters

n1

is the principal amount of the loan.

n2

is the annual interest rate.

n3

is the monthly payment.

n4

is the first month of the computation.

n5

is the number of months to be computed

Returns

The principal paid or null if any of its parameters are null.

If any of n1 , n2 , or n3 are non-positive, the function generates an error exception.

If n4 or n5 are negative, the function generates an error exception.

If payment is less than the monthly interest load, the function generates an error exception.

Example 25.64 Expressions using PPmt()

 PPmt(30000, .085, 295.50, 7, 3)

returns 261.62*, which is the amount of principal paid starting in July (month 7) for 3 months on a loan of
$30,000 at an annual interest rate of 8.5%, being repaid at $295.50 per month. The annual interest rate is
used in the function because of the need to calculate a range within the entire year.

XFA Specification
Chapter 25, FormCalc Specification Financial Built-in Functions 1070

PV()
This function returns the present value of an investment of periodic constant payments at a constant
interest rate.

Syntax
PV(n1, n2, n3)

Parameters

n1

is the amount of each equal payment.

n2

is the interest rate per period.

n3

is the total number of periods.

Returns

The present value or null if any of its parameters are null.

If any of n1 and n3 are non-positive, the function generates an error exception.

Example 25.65 Expressions using PV()

 PV(1000, .08 / 12, 5 * 12)

returns 49318.43* which is the present value of $1000.00 invested at 8%per annum for 5 years.

 PV(500, .08 / 12, 20 * 12)

returns 59777.15*.

XFA Specification
Chapter 25, FormCalc Specification Financial Built-in Functions 1071

Rate()
This function returns the compound interest rate per period required for an investment to grow from
present to future value in a given period.

Syntax
Rate(n1, n2, n3)

Parameters

n1

is the future value.

n2

is the present value.

n3

is the total number of periods.

Returns

The compound rate or null if any of its parameters are null.

If any of n1, n2 , or n3 are non-positive, the function generates an error exception.

Example 25.66 Expressions using Rate()

 Rate(110, 100, 1)

returns 0.10 which is what the rate of interest must be for and investment of $100 to grow to $110 if
invested for 1 term.

XFA Specification
Chapter 25, FormCalc Specification Financial Built-in Functions 1072

Term()
This function returns the number of periods needed to reach a given future value from periodic constant
payments into an interest bearing account.

Syntax
Term(n1, n2, n3)

Parameters

n1

is the payment amount made at the end of each period.

n2

is the interest rate per period.

n3

is the future value.

Returns

The number of periods or null if any of its parameters are null.

If any of n1, n2, or n3 are non-positive, the function generates an error exception.

Example 25.67 Expressions using Term()

 Term(475, .05, 1500)

returns 3.00* which is the number of periods for an investment of $475, deposited at the end of each
period into an account bearing 5% compound interest, to grow to $1500.00.

XFA Specification
Chapter 25, FormCalc Specification Logical Built-in Functions 1073

Logical Built-in Functions
Most of these logical functions return the boolean results true or false, represented by the numeric values
of 1 and 0, respectively.

Some of the following built-in function examples make use of the identifier $ to mean a reference to the
value of the object to which the form calculation is bound; this object is typically called the referencing
object.

Choose()
This function selects a value from a given set of parameters.

Syntax
Choose(n1, s1 [, s2...])

Parameters

n1

is the n'th value to select from the set.

s1

is the first value of the set.

s2, ...

are optional additional value of the set.

Returns

The selected argument or null if its first parameter is null.

If n1 is less than 1 or greater than the number of arguments in the set, the function returns an empty
string.

Example 25.68 Expressions using Choose()

 Choose(3, "Accounting", "Administration", "Personnel", "Purchasing")

returns "Personnel".

 Choose(Quantity, "A", "B", "C")

returns B if the value in Quantity is 2.

XFA Specification
Chapter 25, FormCalc Specification Logical Built-in Functions 1074

Exists()
Determines if the given parameter is an accessor to an existing object.

Syntax
Exists(v1)

Parameters

v1

is the accessor.

Returns

True (1) if the given parameter is an accessor to (a property of) an object that exists, and false (0), if it does
not.

If the given parameter is not an accessor, the function returns false (0).

Example 25.69 Expressions using Exists()

 Exists(Item)

returns true (1) if the object Item exists, false (0) otherwise.

 Exists("hello world")

returns false (0) — the string is not an accessor.

 Exists(Invoice.Border.Edge[1].Color)

returns true (1) if the object Invoice exists and has a Border property, which in turn, has at least one
Edge property, which in turn, has a Color property. Otherwise, it returns false (0).

XFA Specification
Chapter 25, FormCalc Specification Logical Built-in Functions 1075

HasValue()
Determines if the given parameter is an accessor with a non-null, non-empty, non-blank value.

Syntax
HasValue(v1)

Parameters

v1

is the accessor.

Returns

True (1) if the given parameter is an accessor with a non-null, non-empty, non-blank value. A non-blank
value will contain characters other than white spaces.

If the given parameter is not an accessor, the function returns true (1), if its a non-null, non-empty,
non-blank value.

Example 25.70 Expressions using HasValue()

 HasValue(Item)

returns true (1), if the object Item exists, and has a non-null, non-empty, non-blank value. Otherwise, it
returns false (0).

 HasValue(" ")

returns false (0).

 HasValue(0)

returns true (1).

XFA Specification
Chapter 25, FormCalc Specification Logical Built-in Functions 1076

Oneof()
This logical function returns true if a value is in a given set.

Syntax
Oneof(s1, s2 [, s3...])

Parameters

s1

is the value to match.

s2

is the first value in the set.

s3, ...

are optional additional values in the set.

Returns

True (1) if the first parameter is in the set, false (0) if it is not in the set.

Example 25.71 Expressions using Oneof()

 Oneof($, 4, 13, 24)

returns true (1) if the current object has a value of 4, 13 or 24; otherwise it returns false (0).

 Oneof(Item, null, "A", "B", "C")

returns true (1) if the value in the object Item is null, "A", "B" or "C"; otherwise it returns false (0).

XFA Specification
Chapter 25, FormCalc Specification Logical Built-in Functions 1077

Within()
This logical function returns true if a value is within a given range.

Syntax
Within(s1, s2, s3)

Parameters

s1

is the value to test.

s2

is the lower bound of the range.

s3

is the upper bound of the range.

Returns

True (1) if the first parameter is within range, false (0) if it is not in range, or null if the first parameter is null.

If the first value is numeric then the ordering comparison is numeric.

If the first value is non-numeric then the ordering comparison uses the collating sequence for the current
locale.

Example 25.72 Expressions using Within()

 Within("C", "A", "D")

returns true (1).

 Within(1.5, 0, 2)

returns true (1).

 Within(-1, 0, 2)

returns false (0).

 Within($, 1, 10)

returns true (1) if the value of the current object is between 1 and 10.

XFA Specification
Chapter 25, FormCalc Specification String Built-in Functions 1078

String Built-in Functions
FormCalc provides a large number of functions to operate on the content of strings, including the ability
to:

● retrieve parts of a string

● insert parts of a string

● delete parts of a string

Many of these functions require a numeric position argument. All strings are indexed starting at character
position one; i.e., character position 1 is the first character of the array. The last character position coincides
with the length of the string.

Any character position less than one refers to the first character string, and any character position greater
than the length of the string refers to the last character of the string.

At()
This function locates the starting character position of string s2 within string s1.

Syntax
At(s1, s2)

Parameters

s1

is the source string.

s2

is the string to search for.

Returns

The character position of the start of s2 within s1 or null if any of its parameters are null.

If string s2 is not in s1, the function returns 0.

If string s2 is empty, the function returns 1.

Example 25.73 Expressions using At()

 At("ABC", "AB")

returns 1.

 At("ABCDE", "DE")

returns 4.

 At("WXYZ", "YZ")

returns 3.

 At("123999456", "999")

XFA Specification
Chapter 25, FormCalc Specification String Built-in Functions 1079

returns 4.

XFA Specification
Chapter 25, FormCalc Specification String Built-in Functions 1080

Concat()
This function returns the string concatenation of a given set of strings.

Syntax
Concat(s1 [, s2...])

Parameters

s1

is the first string in the set.

s2,...

are additional strings to append from the set.

Returns

The concatenated string or null if all of its parameters are null.

Example 25.74 Expressions using Concat()

 Concat("ABC", "CDE")

returns "ABCCDE".

 Concat("XX", Item, "-01")

returns "XXABC-01" if the value of Item is "ABC".

XFA Specification
Chapter 25, FormCalc Specification String Built-in Functions 1081

Decode()
This function returns the decoded version of a given string.

Syntax
Decode(s1 [, s2])

Parameters

s1

is the string to be decoded.

s2

is a string identifying the type of decoding to perform:

- if the value is "url", the string will be URL decoded.

- if the value is "html", the string will be HTML decoded.

- if the value is "xml", the string will be XML decoded.

If s2 is omitted, the string will be URL decoded.

Returns

The decoded string.

Example 25.75 Expressions using Decode()

 Decode("%ABhello,%20world!%BB", "url")

returns "«hello, world!»".

 Decode("ÆÁÂÁÂ", "html")

returns "ÆÁÂÁÂ".

 Decode("~!@#$%^&*()_+|`{"}[]<>?,./;':", "xml")

returns "~!@#$%^&*()_+|`{""}[]<>?,./;':".

See Also

Encode().

XFA Specification
Chapter 25, FormCalc Specification String Built-in Functions 1082

Encode()
This function returns the encoded version of a given string.

Syntax
Encode(s1 [, s2])

Parameters

s1

is the string to be encoded.

s2

is a string identifying the type of encoding to perform:

- if the value is "url", the string will be URL encoded.

- if the value is "html", the string will be HTML encoded.

- if the value is "xml", the string will be XML encoded.

If s2 is omitted, the string will be URL encoded.

Returns

The encoded string.

Example 25.76 Expressions using Encode()

 Encode("""hello, world!""", "url")

returns "%22hello,%20world!%22".

 Encode("ÁÂÃÄÅÆ", "html")

returns the HTML encoding "ÁÂÃÄÅÆ".

See Also

Decode().

XFA Specification
Chapter 25, FormCalc Specification String Built-in Functions 1083

Format()
This function formats the given data according to the given picture clause.

Syntax
Format(s1, s2[, s3...])

Parameters

s1

is the picture clause, which may be a locale-sensitive picture clause. See “Picture Clause
Specification” on page 1108..

s2

is the source data being formatted.

s3, ...

is any additional source data being formatted.

For date picture clauses, the source data must be an ISO date string in one of two formats:

YYYY[MM[DD]]

YYYY[-MM[-DD]]

or, be an ISO date-time string.

For time picture clauses, the source data must be an ISO time string in one of the following formats:

HH[MM[SS[.FFF][z]]]

HH[MM[SS[.FFF][+HH[MM]]]]

HH[MM[SS[.FFF][-HH[MM]]]]

HH[:MM[:SS[.FFF][z]]]

HH[:MM[:SS[.FFF][-HH[:MM]]]]

HH[:MM[:SS[.FFF][+HH[:MM]]]]

or, be an ISO date-time string.

For date-time picture clauses, the source data must be an ISO date-time string.

For numeric picture clauses, the source data must be numeric.

For text picture clauses, the source data must be textual.

For compound picture clauses, the number of source data arguments must match the number of sub
elements in the picture.

Returns

The formatted data as a string, or an empty string if unable to format the data.

Example 25.77 Expressions using Format()

 Format("MMM D, YYYY", "20020901")

XFA Specification
Chapter 25, FormCalc Specification String Built-in Functions 1084

returns Sep 1, 2002.

 Format("$Z,ZZZ,ZZ9.99", 1234567.89)

returns "$1,234,567.89" in the US and "€1 234 567,89" in France.

See Also

IsoDate2Num(),

IsoTime2Num(), and

Parse().

XFA Specification
Chapter 25, FormCalc Specification String Built-in Functions 1085

Left()
This function extracts a number of characters from a given string, starting with the first character on the
left.

Syntax
Left(s1, n1)

Parameters

s1

is the string to extract from.

n1

is the number of characters to extract.

Returns

The extracted string or null if any of its parameters are null.

If the number of characters to extract is greater than the length of the string, the function returns the
whole string.

If the number of characters to extract is 0 or less, the function returns the empty string.

Example 25.78 Expressions using Left()

 Left("ABCD", 2)

returns "AB".

 Left("ABCD", 10)

returns "ABCD".

 Left("XYZ-3031", 3)

returns "XYZ".

XFA Specification
Chapter 25, FormCalc Specification String Built-in Functions 1086

Len()
This function returns the number of characters in a given string.

Syntax
Len(s1)

Parameters

s1

is the string to be evaluated.

Returns

The length or null if its parameter is null.

Example 25.79 Expressions using Len()

 Len("ABC")

returns 3.

 Len("ABCDEFG")

returns 7.

XFA Specification
Chapter 25, FormCalc Specification String Built-in Functions 1087

Lower()
This function returns a string where all given uppercase characters are converted to lowercase.

Syntax
Lower(s1[, k1])

Parameters

s1

is the string to be converted.

k1

is a locale identifier string, as described in “Specifying a Locale (Locale Identifier String)” on page 1035.

If k1 is omitted, the prevailing locale is used.

Returns

The lowercased string or null if any of its mandatory parameters are null.

In some locales, there are alphabetic characters that do not have an lowercase equivalent.

Bugs

The current Acrobat implementation limits the operation of this function to ASCII, Latin1, and full-width
subranges of the Unicode 2.1 character set. Characters outside these subranges are never converted.

Example 25.80 Expressions using Lower()

 Lower("Abc123X")

returns "abc123x".

 Lower("ÀBÇDÉ")

returns "àbçdé".

XFA Specification
Chapter 25, FormCalc Specification String Built-in Functions 1088

Ltrim()
This function returns a string with all leading white space characters removed.

Syntax
Ltrim(s1)

Parameters

s1

is the string to be trimmed.

Returns

The trimmed string or null if its parameter is null.

White space characters includes the ASCII space, horizontal tab, line feed, vertical tab, form feed and
carriage return, as well as, the Unicode space characters (Unicode category Zs).

Example 25.81 Expressions using Ltrim()

 Ltrim(" ABC")

returns "ABC".

 Ltrim(" XY ABC")

returns "XY ABC".

XFA Specification
Chapter 25, FormCalc Specification String Built-in Functions 1089

Parse()
This function parses the given data according to the given picture clause.

Syntax
Parse(s1, s2)

Parameters

s1

is a picture clause. See “Picture Clause Specification” on page 1108..

s2

is the string data being parsed.

Returns

The parsed data as a string, or the empty string if unable to parse the data. The data is formatted in
canonical format, as described in the chapter “Canonical Format Reference” on page 1003.

A successfully parsed date is returned as an ISO date string of the form YYYY-MM-DD.

A successfully parsed time is returned as an ISO time string of the form: HH:MM:SS.

A successfully parsed date-time is returned as an ISO date-time string of the form:
YYYY-MM-DDTHH:MM:SS.

A successfully parsed numeric picture clause is returned as a number.

A successfully parsed text pictures is format returned as text.

Example 25.82 Expressions using Parse()

 Parse("MMM D, YYYY", "Sep 1, 2002")

returns 2002-09-01.

 Parse("$Z,ZZZ,ZZ9.99", "$1,234,567.89")

returns 1234567.89 in the US.

See Also

Format().

XFA Specification
Chapter 25, FormCalc Specification String Built-in Functions 1090

Replace()
This function replaces all occurrences of one string with another within a given string.

Syntax
Replace(s1, s2[, s3])

Parameters

s1

is the source string.

s2

is the string to be replaced.

s3

is the replacement string.

If s3 is omitted or null, the empty string is used.

Returns

The replaced string or null if any of its mandatory parameters are null.

Example 25.83 Expressions using Replace()

 Replace("it's a dog's life", "dog", "cat")

returns the string "it's a cat's life".

 Replace("it's a dog's life", "dog's ")

returns the string "it's a life".

XFA Specification
Chapter 25, FormCalc Specification String Built-in Functions 1091

Right()
This function extracts a number of characters from a given string, beginning with the last character on the
right.

Syntax
Right(s1, n1)

Parameters

s1

is the string to be extract from.

n1

is the number of characters to extract.

Returns

The extracted string or null if any of its parameters are null.

If the number of characters to extract is greater than the length of the string, the function returns the
whole string.

If the number of characters to extract is 0 or less, the function returns the empty string.

Example 25.84 Expressions using Right()

 Right("ABC", 2)

returns "BC".

 Right("ABC", 10)

returns "ABC".

 Right("XYZ-3031", 4)

returns "3031".

XFA Specification
Chapter 25, FormCalc Specification String Built-in Functions 1092

Rtrim()
This function returns a string with all trailing white space characters removed.

Syntax
Rtrim(s1)

Parameters

s1

is the string to be trimmed.

Returns

The trimmed string or null if any of its parameters are null.

White space characters includes the ASCII space, horizontal tab, line feed, vertical tab, form feed, and
carriage return, as well as, the Unicode space characters (Unicode category Zs).

Example 25.85 Expressions using Rtrim()

 Rtrim("ABC ")

returns "ABC".

 Rtrim("XYZ ABC ")

returns "XYZ ABC".

XFA Specification
Chapter 25, FormCalc Specification String Built-in Functions 1093

Space()
This function returns a string consisting of a given number of blank spaces.

Syntax
Space(n1)

Parameters

n1

is the number of spaces to generate.

Returns

The blank string or null if its parameter is null.

Example 25.86 Expressions using Concat()

 Concat("Hello ", null, "world.")

returns "Hello world.".

 Concat(FIRST, Space(1), LAST)

returns "Gerry Pearl" when the value of the object FIRST is "Gerry", and the value of the object LAST is
"Pearl".

XFA Specification
Chapter 25, FormCalc Specification String Built-in Functions 1094

Str()
This function converts a number to a character string.

Syntax
Str(n1 [, n2 [, n3]])

Parameters

n1

is the number to convert.

n2

is the maximal width of the string; if omitted, a value of 10 is used as the default width.

n3

is the precision — the number of digits to appear after the decimal point; if omitted, or negative, 0
is used as the default precision.

Returns

The formatted number or null if any of its mandatory parameters are null.

The number is formatted to the specified width and rounded to the specified precision; the number may
have been zero-padded on the left of the decimal to the specified precision. The decimal radix character
used is the dot (.) character; it is always independent of the prevailing locale .

If the resulting string is longer than the maximal width of the string, as defined by n2, then the function
returns a string of '*' (asterisk) characters of the specified width.

Example 25.87 Expressions using Str()

Str(2.456)

returns " 2".

Str(4.532, 6, 4)

returns "4.5320".

Str(31.2345, 4, 2)

returns "****".

See Also

Format().

XFA Specification
Chapter 25, FormCalc Specification String Built-in Functions 1095

Stuff()
This function inserts a string into another string.

Syntax
Stuff(s1, n1, n2[, s2])

Parameters

s1

is the source string.

n1

is the character position in string s1 to start stuffing.

If n1 is less than one, the first character position is assumed.

If n1 is greater than then length of s1, the last character position is assumed

n2

is the number of characters to delete from string s1, starting at character position n1.

If n2 is less than or equal to 0, 0 characters are assumed.

s2

is the string to insert into s1.

If s2 is omitted or null, the empty string is used.

Returns

The stuffed string or null if any of its mandatory parameters are null.

Example 25.88 Expressions using Stuff()

 Stuff("ABCDE", 3, 2, "XYZ")

returns "ABXYZE".

 Stuff("abcde", 4, 1, "wxyz")

returns "abcwxyze".

 Stuff("ABCDE", 2, 0, "XYZ")

returns "AXYZBCDE".

 Stuff("ABCDE", 2, 3)

returns "AE".

XFA Specification
Chapter 25, FormCalc Specification String Built-in Functions 1096

Substr()
This function extracts a portion of a given string.

Syntax
Substr(s1, n1, n2)

Parameters

s1

is the string to be evaluated.

n1

is the character position in string s1 to start extracting.

If n1 is less than one, the first character position is assumed.

If n1 is greater than then length of s1, the last character position is assumed

n2

is the number of characters to extract.

If n2 is less than or equal to 0, 0 characters are assumed.

Returns

The sub string or null if any of its parameters are null.

If n1 + n2 is greater than the length of s1 then the function returns the sub string starting a position n1 to
the end of s1 .

Example 25.89 Expressions using Substr()

 Substr("ABCDEFG", 3, 4)

returns "CDEF".

 Substr("abcdefghi", 5, 3)

returns "efg".

XFA Specification
Chapter 25, FormCalc Specification String Built-in Functions 1097

Uuid()
This function returns a Universally Unique Identifier (UUID) string which is guaranteed (or at least
extremely likely) to be different from all other UUIDs generated until the year 3400 A.D.

Syntax
Uuid([n1])

Parameters

n1

identifies the format of UUID string requested:

- if the value is 0, the returned UUID string will only contain hex octets.

- if the value is 1, the returned UUID string will contain dash characters separating the sequences of hex
octets, at fixed positions.

If n1 is omitted, the default value of 0 will be used.

Returns

The string representation of a UUID, which is an optionally dash-separated sequence of 16 hex octets.

Bugs

When used in in the XML Forms Plugin environment, the current implementation of this function does not
return anything useful.

Example 25.90 Expressions using Uuid()

 Uuid()

returns "3c3400001037be8996c400a0c9c86dd5" on some system at some point in time.

 Uuid(1)

returns "1a3ac000-3dde-f352-96c4-00a0c9c86dd5" on that same system at some other point in time.

XFA Specification
Chapter 25, FormCalc Specification String Built-in Functions 1098

Upper()
This function returns a string with all given lowercase characters converted to uppercase.

Syntax
Upper(s1[, k1])

Parameters

s1

is the string to convert.

k1

is a locale identifier string, as described in “Specifying a Locale (Locale Identifier String)” on page 1035.

If k1 is omitted, the prevailing locale is used.

Returns

The uppercased string or null if any of its mandatory parameters are null.

In some locales, there are alphabetic characters that do not have a lowercase equivalent.

Bugs

The current Acrobat implementation limits the operation of this function to the ASCII, Latin1, and
full-width subranges of the Unicode 2.1 character set. Characters outside these subranges are never
converted.

Example 25.91 Expressions using Upper()

 Upper("abc")

returns "ABC".

 Upper("àbCdé")

returns "ÀBCDÉ".

XFA Specification
Chapter 25, FormCalc Specification String Built-in Functions 1099

WordNum()
This function returns the English text equivalent of a given number.

Syntax
WordNum(n1 [, n2 [, k1]])

Parameters

n1

is the number to be converted.

n2

identifies the format option as one of the following:

- if the value is 0, the number is converted into text representing the simple number.

- if the value is 1, the number is converted into text representing the monetary value with no fractional
digits.

- if the value is 2, the number is converted into text representing the monetary value with fractional digits.

If n2 is omitted, the default value of 0 will be used.

k1

is a locale identifier string, as described in “Specifying a Locale (Locale Identifier String)” on page 1035.

If k1 is omitted, the default en_US locale is used.

Note: This argument is currently ignored in Acrobat. WordNum() can be used only in English-speaking
locales.

Returns

The English text, or null if any of its parameters are null.

If n1 is not numeric or the integral value of n1 is negative or greater than 922,337,203,685,477,550 the
function returns "*" (asterisk) characters to indicate an error condition.

Bugs

By specifying a locale identifier other than the default, it should be possible to have this function return
something other than English text. However the language rules used to implement this function are
inherently English. Thus, for now, the locale identifier is ignored.

Example 25.92 Expressions using WordNum()

 WordNum(123.54)

returns "One Hundred Twenty-three".

 WordNum(1011.54, 1)

returns "One Thousand Eleven Dollars".

 WordNum(73.54, 2)

XFA Specification
Chapter 25, FormCalc Specification String Built-in Functions 1100

returns "Seventy-three Dollars And Fifty-four Cents".

XFA Specification
Chapter 25, FormCalc Specification URL Built-in Functions 1101

URL Built-in Functions
FormCalc provides a number of functions to manipulate the content of URLs, including the ability to:

● download data from a URL,

● upload data to a URL, and

● post data to a URL

These functions are only operational when a protocol host has been provided to the FormCalc engine.
The list of supported URL protocols (http, https, ftp, file) may thus vary with each protocol hosting
environment.

Get()
This function downloads the contents of the given URL.

Syntax
Get(s1)

Parameters

s1

is the URL being downloaded.

Returns

The downloaded data as a string, or an error exception if unable to download the URL's contents.

Example 25.93 Expressions using Get()

 Get("http://www.w3.org/TR/REC-xml-names/")

returns the Namespaces in XML standard from the World Wide Web Consortium.

 Get("ftp://ftp.gnu.org/gnu/GPL")

returns a document our Legal Department studies carefully.

Get("http://example.com?sql=SELECT+*+FROM+projects+FOR+XML+AUTO,+ELEMENTS")

returns the result of an SQL query as an XML document.

See Also

Post() and Put()

XFA Specification
Chapter 25, FormCalc Specification URL Built-in Functions 1102

Post()
This function posts the given data to the given URL.

Syntax
Post(s1, s2[, s3[, s4[, s5]]])

Parameters

s1

is the URL being posted.

s2

is the data being posted.

s3

is an optional string containing the name of the content type of the data being posted. Valid
content types include:

If s3 is omitted, the content type defaults to "application/octet-stream". Note that the application
is responsible for ensuring that the posted data is formatted according to the given content type.

s4

is an optional string containing the name of the code page that was used to encode the data
being posted. Valid code page names include:

If s4 is omitted, the code page defaults to "UTF-8". Note that the application is responsible for
ensuring that the posted data is encoded according to the given code page.

s5

is an optional string containing any additional HTTP headers to be included in the post. If s5 is
omitted, no additional HTTP header is included in the post. Note that when posting to SOAP
servers, a "SOAPAction" header is usually required.

text/html

text/xml

text/plain

multipart/form-data

application/x-www-form-urlencoded

application/octet-stream

any valid MIME type

UTF-8

UTF-16

ISO8859-1

Any recognized [IANA] character encoding

XFA Specification
Chapter 25, FormCalc Specification URL Built-in Functions 1103

Returns

The post response as a string, or an error exception if unable to post the data. The response string will be
decoded according to the response's content type. For example, if the server indicates the response is
UTF-8 encoded, then this function will UTF-8 decode the response data before returning to the
application.

Example 25.94 Expressions using Post()

Post("http://tools_build/scripts/jfecho.cgi",
"user=joe&passwd=xxxxx&date=27/08/2002",
"application/x-www-form-urlencoded")

posts some urlencoded login data to a server and returns that server's acknowledgement page.

Req = "<?xml version='1.0' encoding='UTF-8'?>"
Req = concat(Req, "<soap:Envelope>")
Req = concat(Req, " <soap:Body>")
Req = concat(Req, " <getLocalTime/>")
Req = concat(Req, " </soap:Body>")
Req = concat(Req, "</soap:Envelope>")
Head = "SOAPAction: ""http://www.Nanonull.com/TimeService/getLocalTime"""
Url = "http://www.nanonull.com/TimeService/TimeService.asmx/getLocalTime"
Resp = post(Url, Req, "text/xml", "utf-8", Head)

posts a SOAP request for the local time to some server, expecting an XML response back.

See Also

Get() and Put()

XFA Specification
Chapter 25, FormCalc Specification URL Built-in Functions 1104

Put()
This function uploads the given data into the given URL.

Syntax
Put(s1, s2[, s3])

Parameters

s1

is the URL being uploaded.

s2

is the data being uploaded.

s3

is an optional string containing the name of the code page that is to be used to encode the data before
uploading it. Valid code page names include:

- UTF-8,

- UTF-16,

- ISO8859-1, or

- any recognized [IANA] character encoding.

If s3 is omitted, the code page defaults to "UTF-8".

Returns

The empty string, or an error exception if unable to upload the data.

Example 25.95 Expressions using Put()

Put("ftp://www.example.com/pub/fubu.xml",
"<?xml version='1.0' encoding='UTF-8'?><msg>hello world!</msg>")

returns nothing if the ftp server permits the user to upload some xml data to the file pub/fubu.xml.

Get() and Post()

XFA Specification
Chapter 25, FormCalc Specification Miscellaneous Built-in Functions 1105

Miscellaneous Built-in Functions

Ref()
Returns a reference to an existing object.

Syntax
Ref(v1)

Parameters

v1

is an accessor, reference, method, function or value.

Returns

A reference (or "handle") to an existing object if the given parameter is an accessor referring to an existing
object, or an existing reference, or a method that returns an object, or, a function that evaluates to an
object.

If the given parameter is null, the function returns the null reference. For all other given parameters, the
function returns the value given.

Example 25.96 Expressions using Ref()

 Ref(Invoice.Border.Edge[4].Color)

might return a handle to a color object.

 Ref("hello")

returns "hello".

See Also

Exists()

XFA Specification
Chapter 25, FormCalc Specification Miscellaneous Built-in Functions 1106

UnitValue()
Returns the value of a unitspan after an optional unit conversion. A unitspan string consist of a number
immediately followed by a unit name. Recognized unit names include:

Syntax
UnitValue(s1 [, s2])

Parameters

s1

is a unitspan string.

s2

is an optional string containing a unit name. The unitspan's value will be converted to the given
units. If s2 is omitted, the unitspan's units are used.

Returns

The unitspan's value.

Example 25.97 Expressions using UnitValue()

 UnitValue("1in", "cm")

returns 2.54.

 UnitValue("72pt", "in")

returns 1.

Unit Name Meaning

in
inches

inches (2.54 cm)

mm
millimeters

millimeters

cm
centimeters

centimeters

pt
points

points (1/72 inch)

mp
millipoints

millipoints (1/72000 inch)a

a.Millipoints are retained for backwards compatibility with
very early versions of XFA, however the use of millipoints is
deprecated.

XFA Specification
Chapter 25, FormCalc Specification Miscellaneous Built-in Functions 1107

UnitType()
Returns the units of a unitspan.

Syntax
UnitType(s1)

Parameters

s1

is a unitspan string.

Returns

The unitspan's units. Unit names are canonized as follows.

Note: Millipoints are retained for backwards compatibility with very early versions of XFA. However the
use of millipoints is deprecated.

Example 25.98 Expressions using UnitType()

 UnitType("36in")

returns "in".

 UnitValue("2.54centimeters")

returns "cm".

Input unit
name

Canonical unit
name

in
inches

in

mm
millimeters

mm

cm
centimeters

cm

pt
points

pt

mp
millipoints

mp

 1108

26 Picture Clause Specification

This reference describes picture clauses and the syntax used to express them. It provides guidance to
template designers who wish to create picture clauses that specify the format of dates, times, numbers
and text. Such picture clauses are used in the following contexts:

● Data output formatting and input parsing, as described in “Localization and Canonicalization” on
page 152

● Data conversion performed by some FormCalc functions, as described in “FormCalc Specification” on
page 1007

About
Picture clauses are a sequence of symbols (characters) that specify the rules for formatting and parsing
textual data, such as dates, times, numbers and text. Each symbol is a place-holder that typically represents
one or more characters that occur in the data. Picture clauses support the BMP (Basic Multilingual Plane)
characters described in [Unicode-2.1].Often the terms pattern and picture format are used as synonyms for
the term picture clause.

A picture clause can be used equally for output formatting of data and input parsing of data. Output
formatting is the process of transforming a raw value into a formatted value, under the direction of a
picture clause. Input parsing is the process of transforming a formatted input value into a raw elemental
value, again under the direction of a picture clause. The raw elemental values that result from input
parsing are represented in the canonical formats described in “Canonical Format Reference” on
page 1003.

Picture clauses can passively use the template-declared locale or the ambient locale, or they can specify a
particular locale (language alone or a country and language). Additionally, date and time picture clauses
can specify certain characteristics used in East Asian locales, including ideographs and full-width
characters, Asian numeric system, era years, and era styles. (“Asian Date, Time and Number
Considerations” on page 1118)

How Picture Clauses Are Used
Picture clauses are used as properties in XFA templates and as arguments in FormCalc, as described in the
“FormCalc Specification” on page 1007. An XFA processing application uses the picture clause properties
to determine how to perform localized output formatting and input parsing, as described in “Localization
and Canonicalization” on page 152.

The following table summarizes the role of picture clauses in FormCalc functions.

Picture clause
parent element

(Alternate name)
Output
formatting

Input
parsing Role of picture clause

format() ✔ Specifies the formatting to be applied to a date, which is
supplied in canonical format

parse() ✔ Specifies the formatting expected in a date

XFA Specification
Chapter 26, Picture Clause Specification Picture-Clause Building Blocks 1109

How Picture Clauses Evolved
Java's text API includes a DateFormat class which has evolved along similar principles; its meta-symbol
specifications is more intuitive than its Unix predecessors. Java's designers extended these concepts to
format and parse numeric data, again, in a locale-sensitive matter.

Java has substantially influenced picture clauses. There's almost a one-to-one correspondence between
our date and time picture clauses and the Java SimpleDateFormat class pattern strings. The need to
better accommodate legacy applications accounts for some of the differences — picture clauses were
initially described as part of FormCalc's date and time functions — functions that were modeled from
another legacy script language.

Picture-Clause Building Blocks
Picture clauses are expressed using a combination of symbols and literals. The symbols are either
context-specific (apply only in certain contexts, such as dates or times) or global.

Context-Specific Picture-Clause Symbols
The following example illustrates the result of applying a picture clause to two sample data values; the
picture clause is designed to format the numeric data values into a result with two fractional digits,
suppressing leading zeros, and adding a grouping separator.

Example 26.1 Numeric output formatted using a picture clause

The next example illustrates the result of applying the same picture clause to two input data values. The
picture clause is designed to parse numeric values having up to seven significant digits, the three least
significant digits being mandatory, with two of them being fractional digits; six and seven digit numbers
must include a grouping separator.

Example 26.2 Numeric input parsed using the same picture clause

Due to the varying types of data that can benefit from the application of picture clauses, it is useful to
divide the picture clause symbols into categories that correspond to a type of data. This permits us to
reuse individual picture clause symbols across categories. For instance, the date picture clause D/M/YYYY
makes use of the symbol M to represent the month portion of a date; however, it is equally useful to permit
the symbol M to represent the minute portion of a time in the picture clause H:M:S.

Note: Picture clause symbols are case-sensitive and must correspond exactly to this specification.

Picture clause Input value Formatted result

zz,zz9.99 2157.5 2,157.5

50.6 50.60

Picture clause Input value Parsed result

zz,zz9.99 2,157.50 2157.5

50.60 50.60

XFA Specification
Chapter 26, Picture Clause Specification Picture-Clause Building Blocks 1110

Global Picture-Clause Symbols
There are some symbols that are used in all categories of picture clauses. These global picture cause
symbols are described in the following table:

Picture Clause Literals
 A picture clause may contain any combination of picture symbols and literal text, as illustrated in the
following examples. The outputs have been quoted, so that one can see the significant spaces — the
quotes are not actually part of the output.

Picture clause literals may be standard separators or text enclosed in matched single quotes. The
separators include the standard and full-width comma (,), dash (-), colon (:), slash (/), period (.) and
space ().

To embed a quote within a literal, specify two quote characters.

Output Formatting

When output formatting, literals are formatted verbatim into the output text. the following numeric
picture clause examples include several literals (single-quoted and default). The following examples use
double-underline to identify literals. The double underlines are not part of the picture clause expression.

Example 26.3 Output formatted using literals

Input Parsing

When input parsing, literals must match the input data verbatim, but never contribute to the resulting
text, as illustrated in the following examples.

Symbol Affect on output formatting and input parsing

? ● Input parsing: Match any one character, as in a wild-card

● Output formatting: Format as a space

* ● Input parsing: Match zero or more whitespace charactersa

● Output formatting: Format as a space

a.The term whitespace characters means any [UNICODE] character classified as a break space. When input
parsing, any whitespace character is accepted, and when output formatting, a single space character is
emitted.

+ ● Input parsing. Match one or more whitespace charactersa

● Output formatting: Format as a space

Picture clause Input value Formatted result

'You owe' zz,zz9.99'!' 2157.5 "You owe 2,157.50!"

50.6 "You owe 50.60!"

XFA Specification
Chapter 26, Picture Clause Specification Picture-Clause Building Blocks 1111

Example 26.4 Input parsed using literals

Note: Any alphabetic or punctuation character appearing within a picture clause that is not specified by
this document as a valid picture symbol and is not enclosed within quotes as a literal, is reserved for
future use as a potential picture symbol and should be considered a user error irrespective of the
current implementation behavior.

Locale Identifier Strings
Locale influences date, time, and number picture clause processing. For example, the format used for full
date presentations differs between English-language (October 25, 2002) and French-language locales
(25 octobre, 2002). This section describes what a locale is, how the locale is determined and how locales
are identified in picture clauses.

What a Locale Is

When developing internationalized applications, a locale is the standard term used to identify a particular
cultural context (language and/or country). A locale defines (but is not limited to) the format of dates,
times, numeric and currency punctuation that are culturally relevant to a specific cultural context. A
properly internationalized application will always rely on the locale to supply it with the format of dates
and times. This way, users operating in their locale will always be presented with the date and time formats
they are accustomed to.

A locale is identified by a code consisting of a language code, optionally followed by a (4-letter) script
code, optionally followed by a country code, optionally followed by a variant code.

Determining the Prevailing Locale

There are several sources for locale information. For example, the hosting operating system may provide
an XFA processing application with a locale to use and the picture clause may provide a locale. The
prevailing locale is the locale that should be used for input parsing or output formatting.

An XFA processing application determines prevailing locale by examining the following, in order:

1. Explicit declaration in the picture clause (“Convention for Explicitly Naming Locale”).

2. Template field or subform declarations, using the locale property.

3. Ambient locale. Ambient locale is the system locale declared by the application or in effect at the time
the XFA processing application is started. In the event the application is operating on a system or
within an environment where a locale is not present or the locale is not recongnized, the ambient
locale defaults to English United States (en_US).

“Localization and Canonicalization” on page 152 in the chapter “Exchanging Data Between an External
Application and a Basic XFA Form” provides additional information about localization.

Picture clause Input value Formatted result

'You owe' zz,zz9.99'!' You owe 2,157.50! 2157.50

You owe 50.60! 50.60

XFA Specification
Chapter 26, Picture Clause Specification Picture-Clause Building Blocks 1112

Convention for Explicitly Naming Locale

Picture clauses may include locale identifier strings. XFA supports a subset of the locale string syntax
defined in [UTS35]. The subset is described in “About Locale Names” on page 154.

“Locale-Specific Picture Clauses” on page 1116 explains how to explicitly declare locale in a picture clause.

XFA forms may redefine the meaning of a locale code by supplying a locale definition for the code. The
same mechanism can also be used to define a custom locale with its own unique code. See “Rules for
Localizing Data” on page 162.

XFA Specification
Chapter 26, Picture Clause Specification Complex Picture-Clause Expressions 1113

Complex Picture-Clause Expressions
Picture clauses are structured to support increasing complex string sequences. A simple picture clause can
format a date, time, number, or text. These simple picture clauses may be assembled into more complex
structures that reflect locale and that provide picture clause choices. The following table summarizes the
levels of structure that can be applied to picture clauses. The square brackets enclose optional, repeating
items.

Predefined Picture Clauses
There is a set of predefined picture clauses that can be used in picture processing. The advantage of using
one of these predefined picture clauses is that it is already defined across all locales. The template can
invoke a predefined picture clause and automatically work across locales.

Within a template a predefined picture clause is invoked with the following syntax:

 category-name.subcategory-name{}

where category-name is one of the keywords date, time, num, or text, and subcategory-name depends
on category-name as shown in the following table. Note that the example data in the table may change
over time as locale standards evolve.

Structure Expression

Simple picture clauses (described
earlier in this chapter)

picture-clause

“Predefined Picture Clauses” category.subcategory{}

“Compound Picture Clauses” category{picture-clause}category{picture-clause}
[category{picture-clause}]a

a.Square brackets represent optional, repeating parts of a picture clause expression. They are not part of the picture
clause.

“Locale-Specific Picture Clauses” (locale){picture-clause}

“Locale-Specific, Compound Picture
Clauses”

category(locale){picture-clause}category(locale)
{picture-clause}

“Alternate Picture Clauses” picture-clause|picture-clause[|picture-clause...]a

“Alternate Locale-Specific Picture
Clauses”

category(locale){picture-clause}|
category(locale){picture-clause}
[|category(locale){picture-clause}]a

Category
name

Subcategory
name

Example 26.5 Example data in
en_US locale

Example 26.6 Same data in fr_FR
locale

date short 7/1/06 01/07/06

medium Jul 1, 2006 1 juil. 2006

long July 1, 2006 1 juillet 2006

full Saturday, July 1, 2006 samedi 1 juillet 2006

default Jul 1, 2006 1 juil. 2006

XFA Specification
Chapter 26, Picture Clause Specification Complex Picture-Clause Expressions 1114

The picture name default delegates to the XFA processor the selection of a predefined picture clause.
Which one it picks is implementation defined. For example, members of the Acrobat family of products
select medium when default is specified. There is no default option for the num category.

The predefined picture clauses for date, time and num are carried in the localeSet packet of the XDP
and can be redefined by the form creator. See “Locale Set Specification” on page 901 for more information
about the locale set packet. In contrast the datetime predefined picture is not exposed in the
localeSet packet and cannot be redefined. For most locales it is the corresponding date picture,
followed by a space (U+0020) character, followed by the corresponding time picture, however for some
locales the order of date and time is reversed and for some locales the separator is not a space or there is
no separator.

Within the localeSet packet there are only three numeric picture clauses. The picture clause named
numeric does double-duty. The integer part of it is used for num.integer formatting and the whole
picture clause is used for num.decimal formatting.

Compound Picture Clauses
In some circumstances it is necessary to construct a picture clause which is compounded from other
picture clauses. Each of the picture clauses operates on the same data but may format it differently.

Consider the following example of a value formatted with a compound picture clause. Results have been
quoted, so that one can see where spaces would appear in the formatted value. The quotation marks are
not actually part of the result.

time short 5:23 PM 17:23

medium 5:23:52 PM 17:23:52

long 5:23:52 PM EDT 17:23:52 CEST

full 5:23:52 PM EDT 17 h 23 CEST

default 5:23:52 PM 17:23:52

datetime short 7/1/06 5:23 PM 01/07/06 17:23

medium Jul 1, 2006 5:23:52 PM 1 juil. 2006 17:23:52

long July 1, 2006 5:23:52 PM EDT 1 juillet 2006 17:23:52 CEST

full Saturday, July 1, 2006
5:23:52 PM EDT

samedi 1 juillet 2006 17 h
23 CEST

default Jul 1, 2006 5:23:52 PM 1 juil. 2006 17:23:52

num integer 1,234 1.235

decimal 1,234.56 1.234,56

currency $1,234.56 €1.234,56

percent 1,234% 1.234%

Category
name

Subcategory
name

Example 26.5 Example data in
en_US locale

Example 26.6 Same data in fr_FR
locale

XFA Specification
Chapter 26, Picture Clause Specification Complex Picture-Clause Expressions 1115

Example 26.7 Date formatted two different ways using compound picture clauses

In the above example the data value represents a date. The same date is formatted and displayed in two
different ways.

Usually all of the picture clauses which are compounded together must be of the same category. This is
because each category of picture clause expects a value formatted in a particular way. However date and
time picture clauses, although they are different categories, may be compounded together when the
value is a date-time string. Date-time strings are described in “Date-Time” on page 1005.

In the following example the date picture clause extracts and formats the date information from the
date-time value, while the time picture clause extracts and formats the time information from the same
date-time value.

Example 26.8 Date and time formatted separately using compound picture clauses

The syntax for compound picture clauses is:

 category-name{picture-symbols}

where category-name is one of the keywords date, time, datetime, num, text, zero, or null, and
picture-symbols corresponds to one or more picture symbols from a particular picture category. The
characters enclosed within the curly braces are interpreted as part of the picture clause.

Explicitly stating the category-name is not required for picture clauses that contain picture symbols from
only one category; the processing application must attempt to infer the category based upon the symbols
found in the picture clause. If the symbols are ambiguous or too complex to automatically identify to a
category, then it is an error. Explicitly stating the category within the compound picture clause shall always
take precedence over any other interpretation of the picture clause by the processing application.

Brace characters are reserved for delineating compound picture clauses. Brace characters may be included
as literals in picture clauses by enclosing them in quotation marks.

Note that the quoted literals in the previous example could have appeared inside or outside of the braces
with equal results. Therefore the following compound picture clauses are all equivalent.

Example 26.9 Equivalent compound picture clauses

 'At' time{HH:MM Z} 'on' date{MMM DD, YYYY}
 time{'At' HH:MM Z} date{'on' MMM DD, YYYY}
 time{'At 'HH:MM Z}date{' on 'MMM DD, YYYY}

Picture clause Input value Formatted result

date{DD/MM/YY} '('date{MMM DD,
YYYY}')'

1999-07-16 "16/07/99 (Jul 16, 1999)"

Picture clause Input value Formatted result

'At' time{HH:MM Z} 'on' date{MMM DD,
YYYY}

1999-07-16T10:30Z "At 10:30 GMT on Jul 16,
1999"

XFA Specification
Chapter 26, Picture Clause Specification Complex Picture-Clause Expressions 1116

Locale-Specific Picture Clauses
Picture clauses can specify the prevailing locale to use for picture processing. This ability is useful when
formatting or parsing locale-specific data (such as dates, times or currencies) for a locale that differs from
any template-declared locales or from the ambient locale. (See also “Determining the Prevailing Locale”
on page 1111)

Note: Starting with XFA 2.4 this standard fully supports locales where the ordinary flow of text is right to
left, as well as the left to right locales previously supported. However, regardless of the locale,
picture clauses are always processed from left to right (i.e. document order). In circumstances where
the flow of text is also left to right this means the picture clause more or less resembles the data to
be put out or taken in. However when the flow of text is right to left the picture clause resembles a
mirror image of the data. This is not an error. The picture clause itself must be parsed in a
locale-independent way.

The syntax for specifying a locale-specific picture clause is:

 category-name(locale-name){picture-symbols}

or

 category-name.subcategory-name(locale-name){}

where category-name and picture-symbols are as before, and locale-name is the name of a locale
conformant to the locale naming standards defined above.

Example 26.10 Output formatted using locale-specific picture clauses

Locale-Specific, Compound Picture Clauses
Picture clauses may be assembled into a series of locale-specific picture clauses, using the following
syntax:

 category(locale){picture-clause} category(locale){picture-clause}

Locale-specific compound picture clauses are supported; however, their usefulness is limited since most
individual data items pertain to a single locale.

Alternate Picture Clauses
There are circumstances when raw data may be in one of many formats, yet the formatting capabilities of
picture clauses are still desired. For example, if inputting phone numbers, the user might prefer omitting
the area code of local numbers, so the processing application might be required to parse ten digit
numbers and seven digit numbers, both being equally valid. To that end, we provide alternative picture
clauses. These are simply a series of picture clauses separated by a vertical bar (|) character. Everything to

Picture clause Input value Formatted result

date(fr){DD MMMM, YYYY} 2002-10-25 25 octobre, 2002

date(es){EEEE, D 'de' MMMM 'de' YYYY} 2002-10-25 viernes, 25 de octubre de 2002

date.long(fr)() 2002-20-25 25 octobre, 2002

XFA Specification
Chapter 26, Picture Clause Specification Complex Picture-Clause Expressions 1117

the right of the vertical bar character up to another vertical bar or the end of the picture clause is one
picture clause alternative.

The syntax for alternate picture clauses is:

 picture-clause|picture-clause[|picture-clause...]

where picture-clause is as defined above, and the square brackets and ellipses denote optional, repeated,
alternate picture clauses. Thus, the vertical bar character is reserved for delimiting alternate picture
clauses, and therefore, must always be quoted within a picture clause to obtain the vertical bar literal
character.

During input parsing and output formatting against a set of alternate picture clauses, the XFA processing
application chooses the picture clause to use, by sequentially matching the data against each picture
clause in the expression, stopping when a match is found. The picture clauses are examined in order from
left to right.

The following table presents examples of input parsing with alternate picture clauses. The parsed result is
the canonical format of the data. Picture clauses used for input parsing are relevant only when the picture
clause appears in a ui, bind, or connect element.

Example 26.11 Input parsed using alternate picture clauses

The following table presents examples of output formatting with alternate picture clauses.

Example 26.12 Output formatted using alternate picture clauses

Picture clause Input value Parsed result

null{'No data'}
| null{}
| text{999*9999}
| text{999*999*9999}

"555 1212" 5551212

"613 555 1212" 6135551212

""

(Zero Length string)

Null

"No data" Null

"Hello" Helloa

a.The input value does not match any of the picture clauses, so is left as-is. That is, additional processing or validation
checks may be required before the data can be assumed to be in canonical format.

Picture clause Input data Formatted result

null{'No data'}
| null{}
| text{999*9999}
| text{999*999*9999}

5551212 "555 1212"

6135551212 "613 555 1212"

Null "No data"

Hello "Hello"a

a.The data does not match any of the picture clauses, so it is passed through unchanged.

XFA Specification
Chapter 26, Picture Clause Specification Calendars and Locale 1118

Alternate Locale-Specific Picture Clauses
Picture clauses may be constructed as a set of alternate picture clauses, with each part containing a locale
identifier string. As with “Alternate Picture Clauses”, the alternate picture clauses are used only for input
parsing.

category(locale){picture-clause}|category(locale){picture-clause}
[|category(locale){picture-clause}]

The following table presents examples of input parsing with alternate picture clauses.

Example 26.13 Input parsed using alternate picture clauses

Calendars and Locale
The Gregorian calendar is an official calendar (but not necessarily the only official calendar) in every locale
in the world. Although the months and days of the week have different names in different locales, all users
of the Gregorian calendar agree upon the numbering of the day, of the month, and of the year.

The architecture and grammar of XFA support the entry and display of dates in other calendars. However
so far the only non-Gregorian calendars that have been specified are calendars that use Gregorian months
and days but calculate the year differently. For example, the Gregorian year 2007 is the Korean year 4340.
For more information about the Korean calendar see “Korean Date Time Rules” on page 1122. The Thai
calendar also has its own rules for calculating the year and the date upon which the year changes. See
“Thai Date Time Rules” on page 1123.

In addition calendars that calculate the year differently split up historic time into different eras. The
Gregorian calendar splits up time into the BC and AD eras. By contrast Chinese and Japanese calendars
split up historical time into eras corresponding to ruling dynasties. For more information about Chinese
calendars see “Chinese (Taiwan) Date Time Rules” on page 1123 and “Chinese (China) Date Time Rules” on
page 1123. For more information about Japanese calendars see “Japanese Date Time Rules” on page 1122.

When the particular locale in effect has an calendar which uses Gregorian months and days but an
alternate year and era calculation, the XFA processor uses the alternate year and era calculation by default.
Otherwise it defaults to the Gregorian year and era.

A future version of this specification will deal with additional calendars that do not use Gregorian months
and days, such as lunar calendars.

Asian Date, Time and Number Considerations
This section describes special considerations for describing East Asian eras in date and time picture
clauses.

Picture clause Input value Parsed result

num(ar_SA){$z,zz9.zzs}|num(en_GB){$z,zz9.99} €100.00 100

100

text(th_TH){999*9999}|text(th_TH_TH){999*9999} 555-1212 5551212

5551212

,. .

XFA Specification
Chapter 26, Picture Clause Specification Asian Date, Time and Number Considerations 1119

Note: Henceforth, this section uses the term Asian to denote East Asian locales.

Asian date representations may differ from Western ones in several respects:

● Characters/ideographs. Asian dates may use full-width characters or ideographs rather than Latin
numbers. (“Using Full-Width Characters and Ideographs in Date and Time Data” on page 1119)

● Numeric systems. Asian dates may use either the standard Arabic numeric system or another system,
described in this document as the tens rule. (“Tens Rule Numeric System” on page 1121)

● Eras. Date picture clauses allow years to be represented in terms of the Gregorian calendar or in terms
of imperial eras. (“Imperial (Alternate) Eras and Alternate Era Styles” on page 1121)

● Era name symbol styles. Some Asian locales use multiple character and ideographic styles for an era
name. (“Imperial (Alternate) Eras and Alternate Era Styles” on page 1121)

Using Full-Width Characters and Ideographs in Date and Time Data
In Asian prevailing locales, date and time picture clauses can specify the appearance of the data as any one
of the following:

● ASCII digits 0-9 (U+30 to U+39)

● Unicode full-width digits 0-9 (U+FF10 - U+FF19)

● Ideographic numbers specific for the locale.

The following table illustrates such ideographic numbers.

Universal Examples of Asian Ideographic Digits

Latin
digits

Full-width
digits Kanji Hangul Hanja

0 0

(U+FF10)

(U+3007) (U+C601) (U+96F6)

1 1

(U+FF11)

(U+4E00) (U+C77C)

(U+4E00)

2 2

(U+FF12) (U+4E8C) (U+C774) (U+4E8C)

3 3

(U+FF13) (U+4E09) (U+C0BC) (U+4E09)

4 4

(U+FF14) (U+56DB) (U+C0AC) (U+56DB)

5 5

(U+FF15) (U+4E94) (U+C624) (U+4E94)

6 6

(U+FF16) (U+516D) (U+C721) (U+516D)

7 7

(U+FF17) (U+4E03) (U+CE60) (U+4E03)

8 8

(U+FF18) (U+516B) (U+D314) (U+516B)

XFA Specification
Chapter 26, Picture Clause Specification Asian Date, Time and Number Considerations 1120

9 9

(U+FF19) (U+4E5D) (U+AD6C) (U+4E5D)

10 10

(U+5341) (U+C2ED) (U+5341)

100 100

(U+767E) (U+BC31) (U+767E)

1000 1000

(U+5343) (U+CC9C) (U+5343)

Latin
digits

Examples of Asian Ideographic Digits

Japanese
Korean
Hangul Korean Hanja

Simplified
Chinese
(jiantizi)

Traditional
Chinese
(fantizi)

0
(U+3007) (U+C601) (U+F9B2)

(U+3007) (U+F9B2)

1
(U+4E00) (U+C77C)

(U+4E00)

(U+4E00)

(U+4E00)

2
(U+4E8C) (U+C774) (U+4E8C) (U+4E8C) (U+4E8C)

3
(U+4E09) (U+C0BC) (U+4E09) (U+4E09) (U+4E09)

4
(U+56DB) (U+C0AC) (U+56DB) (U+56DB) (U+56DB)

5
(U+4E94) (U+C624) (U+4E94) (U+4E94) (U+4E94)

6
(U+516D) (U+C721) (U+516D) (U+516D) (U+516D)

7
(U+4E03) (U+CE60) (U+4E03) (U+4E03) (U+4E03)

8
(U+516B) (U+D314) (U+516B) (U+516B) (U+516B)

9
(U+4E5D) (U+AD6C) (U+4E5D) (U+4E5D) (U+4E5D)

10
(U+5341) (U+C2ED) (U+5341) (U+5341) (U+5341)

Universal Examples of Asian Ideographic Digits

Latin
digits

Full-width
digits Kanji Hangul Hanja

XFA Specification
Chapter 26, Picture Clause Specification Asian Date, Time and Number Considerations 1121

Using Full-Width Characters in Number Data
In Asian prevailing locales, number picture clauses can specify the appearance of data as standard ASCII
characters or full-width characters.

Tens Rule Numeric System
Asian numbers may be assembled using either Arabic number format or Tens Rule.

● Arabic numeral system. In this system, numbers are, representing increasing orders of magnitude for
every digit to the left of the (imaginary) decimal point. In this convention, the ideographic characters
are simply concatenated together. For example, using Kanji digits, 10 () is character 1 ()
and 0 () together, 11 () is two occurrences of the character 1 (), while 32 () is
character 3 () and 2 () together.

● Tens rule. When using the tens rule to symbolically display a numeric value, the number of tens's ()
and singletons are combined together. Thus, again using Kanji digits, 20 () is 2 () tens
(), and 32 () is 3 tens () plus 2 (). As with all rules, there's an exception: 10
is represented using one ideograph () and not ().

The tens rule naturally extends to values in the hundreds () and in the thousands (). Only Korean
years have values in the thousands. Future Taiwanese eras may have year values in the hundreds. Most
other CKJ numeric values are in the tens.

Imperial (Alternate) Eras and Alternate Era Styles
This section describes the representation of imperial eras in Asian locales.

Asian locales identify the start and end of a year according to the Gregorian calendar; however, such
locales may use multiple eras, where an era is a convention for assigning an origin to the number of years:

● Gregorian calendar era. The origin of a year is relative to the birth and death of Christ. This convention
uses the era names BC and AD. In date picture clauses, the Gregorian calendar era is the primary or
default era.

● Imperial era. The origin of a year is the beginning of an emperor’s reign. In this convention, an era
identifier precedes the year. The era identifier does not necessarily include the emperor’s name. In date
picture clauses, the imperial era is called the alternate era.

An Asian locale may use multiple era styles for imperial era identifiers, with each style using a different
method for representing an imperial era. The following section describe era styles for the supported
Asian locales.

100
(U+767E) (U+BC31) (U+767E) (U+767E) (U+767E)

1000
(U+5343) (U+CC9C) (U+5343) (U+5343) (U+5343)

Latin
digits

Examples of Asian Ideographic Digits

Japanese
Korean
Hangul Korean Hanja

Simplified
Chinese
(jiantizi)

Traditional
Chinese
(fantizi)

XFA Specification
Chapter 26, Picture Clause Specification Asian Date, Time and Number Considerations 1122

Japanese Date Time Rules

The following rules apply exclusively to the locales ja (Japanese) and ja_JP (Japanese - Japan).

The last century spanned the reign of four Japanese emperors:

An alternate era may be represented in several styles. For example, the following table shows the different
era styles for the Heisei era.

Korean Date Time Rules

The following rules apply exclusively to the locales ko (Korean language) and ko_KR (Korean language for
the Republic of Korea).

The Tangun era began 2333 BC. To convert the current year (2004) into its Tangun era counterpart, the
value 2333 must be added.

Korean date and times values use a single alternate era style; however, Korea uses two different sets of
ideographs, depending on the script of the prevailing locale (“Determining the Prevailing Locale” on
page 1111). The following table shows the Tangun era ideographs represented using the supported
scripts.

Note: For the Tangun era, the value 2333 must be added to the current year. For example, the year 2004 is
represented as 4337.

Note: Korean numbers always use tens rule.

Imperial era Dates relative to the Gregorian calendar

Meiji 1868/09/08 to 1912/07/29

Taisho 1912/07/30 to 1926/12/24

Showa 1926/12/25 to 1989/01/07

Heisei 1989/01/08 to present

Style
number

Date
picture
symbol

Example 26.14 Representation of the
Heisei era

Character/Ideograph Unicode

1 g H U+48

2 gg U+5E73

3 ggg U+5E73 U+6210

5 gga

a.This picture symbol is expressed as full-width characters.

U+337B

Korean Script Ideograph Unicode

Hangul U+B2E8 U+AE30

Hanja U+6A80 U+7D00

XFA Specification
Chapter 26, Picture Clause Specification Asian Date, Time and Number Considerations 1123

Chinese (Taiwan) Date Time Rules

These rules apply exclusively to the locale zh_TW (Chinese - Taiwan).

The last century spanned three eras, as described in the following table.

Chinese (Taiwan) dates and times always use the tens rule, with the following exception. When
represented without the Chinese era, the year is represented using Arabic number format. For example,
2004 is represented as .

Chinese (China) Date Time Rules

These rules apply equally to the locales zh_CN (Chinese - China), zh_HK (Chinese - Hong Kong), and
zh_MO (Chinese - Macau).

The last century spanned 4 eras:

For dates from October 1, 1949, to present, there is no symbol for the Chinese imperial era.

Numeric date and time values are always represented symbolically, using the tens rule, with the following
exception. When represented without the Chinese era, the year is represented using the Arabic numeral
system. For example, when unaccompanied with the era, the 2004 is represented .

The symbols used to represent Chinese eras vary with locale. China represents eras using Simplified
Chinese characters; whereas, Hong Kong and Macau use Traditional Chinese characters.

Thai Date Time Rules

The Thai solar calendar is based upon the Gregorian calendar. However the year numbering and year start
dates are as indicated by the following table. Previous to 1888 a lunar calendar was used.

Imperial era Dates relative to the Gregorian calendar

GuangXu 1875/01/01 to 1908/12/31

XuanTong 1909/01/01 to 1911/12/31

MinGuo 912/01/01

Imperial era Dates relative to the Gregorian calendar

GuangXu 1875/01/01 to 1908/12/31

XuanTong 1909/01/01 to 1911/12/31

MinGuo 1912/01/01 to 1949/09/30

unnamed 1949/10/01 to present

Era

Start of Year 1
relative to the
Gregorian
calendar Dates relative to the Gregorian calendar

Ratana Kosindra April 6, 1782 AD April 6, 1888 through March 31, 1912

XFA Specification
Chapter 26, Picture Clause Specification Asian Date, Time and Number Considerations 1124

Phuttasakarat April 1, 543 BC April 1, 1912 through December 31, 1940

Kritsakarat January 1, 543 BC January 1, 1941 to present

Era

Start of Year 1
relative to the
Gregorian
calendar Dates relative to the Gregorian calendar

XFA Specification
Chapter 26, Picture Clause Specification Picture Clause Reference 1125

Picture Clause Reference
The following sections describe the categories of picture clauses:

● “Date Picture Clauses”

● “Time Pictures”

● “”

● “Text Pictures”

Conventions
This reference uses the following font faces to differentiate picture clause symbols:

Date Picture Clauses
Symbols used for date picture clauses apply to all locales (“Standard Date Picture Symbols”) or apply
primarily to Asian environments (“Asian Date Symbols”). The category of such picture clauses is identified
as date.

Standard Date Picture Symbols

The standard date picture clause symbols are described in the following table. All of these symbols are
ASCII characters.

sss and SSS Regular symbols

hhh and HHH Full-width symbols

Symbol Is the picture symbol for …

D 1- or 2-digit (1-31) day of the month.

DD Zero-padded 2 digit (01-31) day of the month.

J 1-, 2- or 3-digit (1-366) day of the year.

JJJ Zero-padded 3 digit (001-366) day of the year.

M 1- or 2-digit (1-12) month of the year.

MM Zero-padded 2 digit (01-12) month of the year.

MMM Abbreviated month name of the prevailing locale.

MMMM Full month name of the prevailing locale.

E 1-digit (1-7) day of the week, where 1 = Sunday.

EEE Abbreviated weekday name of the prevailing locale.

EEEE Full weekday name of the prevailing locale.

XFA Specification
Chapter 26, Picture Clause Specification Picture Clause Reference 1126

The comma (,), dash (-), colon (:), slash (/), period (.) and space () are treated as literals.

e 1 digit (1-7) day of the week, where 1 = Monday. This symbol is used in the context of
the ISO Week Date format, where weeks start on Mondays rather than Sundays.

Note: Expressions of the form eee and eeee are not supported because they duplicate
the capability of the date picture symbols EEE and EEEE.

G Christian era name (BC or AD).

YY 2-digit year, where 00 = 2000, 29 = 2029, 30 = 1930, and 99 = 1999.

YYYY 4-digit year.

w 1-digit (0-5) week of the month. Week 1 of a month is the earliest set of four contiguous
days in that month that ends on a Saturday.

WW 2-digit (01-53) ISO-8601 week of the year. Week 01 of a year is the week containing
January 4.

?
*
+

See also “Global Picture-Clause Symbols” on page 1110, which describes the symbols
"?", "*", and "+".

Symbol Is the picture symbol for …

July 2004 Week number

Su Mo Tu We Th Fr Sa

1 2 3 0

4 5 6 7 8 9 10 1

11 12 13 14 15 16 17 2

18 19 20 21 22 23 24 3

25 26 27 28 29 30 31 4

XFA Specification
Chapter 26, Picture Clause Specification Picture Clause Reference 1127

Asian Date Symbols

The following two tables describe date symbols used primarily in Asian locales. The first table shows Asian
date symbols using ASCII characters. The second shows Asian date symbols using double-width
characters.

Symbol using
ASCII character Is the picture symbol for …

g Alternate-era name of the prevailing locale, represented using
alternate-era style 1. This symbol is meaningful only in Asian locales. In
all other locales, the symbol specifies Christian era (BC/AD). See
“Imperial (Alternate) Eras and Alternate Era Styles” on page 1121. See
also the description for the full-width symbols “g (U+FF47)” and “gg”
on page 1127.

gg Alternate-era name of the prevailing locale, represented using
alternate-era style 2. This symbol is meaningful only in Asian locales. In
all other locales, the symbol specifies Christian era (BC/AD).See
“Imperial (Alternate) Eras and Alternate Era Styles” on page 1121. See
also the description for the full-width symbols“g (U+FF47)” and “gg”
on page 1127.

ggg Alternate-era name of the prevailing locale represented using
alternate-era style 3. This symbol is meaningful only in Asian locales. In
all other locales, the symbol specifies Christian era (BC/AD). See
“Imperial (Alternate) Eras and Alternate Era Styles” on page 1121. See
also the description for the full-width symbols “g (U+FF47)” and “gg”
on page 1127.

Symbol using
full-width
character

Full-width
(FW) or
ideographic
(I) Is the picture symbol for …

DDD I Prevailing-locale ideographic numeric value for the day of the month.

DDDD I, tens rule Tens rule prevailing-locale ideographic numeric value for the day of the
month.

MMM I Prevailing-locale ideographic numeric- value for the month of the year

MMMM I, tens rule Tens rule prevailing-locale ideographic numeric value for the month of
the year.

E (U+FF25) I 1-digit (1-7) prevailing-locale’s ideographic numeric value for the day of
the week, where 1 = Sunday.

e (U+FF45) I 1 digit (1-7) prevailing-locale’s ideographic numeric value for the day of
the week, where 1 = Monday. This symbol is used in the context of the
ISO Week Date format, where weeks start on Mondays rather than
Sundays.

XFA Specification
Chapter 26, Picture Clause Specification Picture Clause Reference 1128

The full-width comma (U+FF0C), dash (U+FF0D), colon (U+FF1A), slash (U+FF0F), and period (U+FF0E) are
treated as literals.

Requirements for Acceptable Date Picture Clauses

This section provides guidelines for writing acceptable date picture clauses. Please note that a picture
clauses used for input parsing have stricter guidelines than those used for output formatting.

Avoid Ambiguity in Date Picture Clauses Used for Input Parsing

Date picture clauses must be reasonably unambiguous; however, there are certain ambiguous date inputs
that can reasonably resolved into unambiguous expressions.

Example 26.15 Un-ambiguous date picture clauses

MM/DD/YY
MM-DD-YY
DD.MM.YYYY
DD MMM YYYY
MMMM DD, YYYY
EEEE,' le 'D MMMM, YYYY

gg I Alternate-era name of the prevailing locale represented using
alternate-era style 5. This symbol is meaningful only in Asian locales. In
all other locales, the symbol specifies Christian era (BC/AD). See
“Imperial (Alternate) Eras and Alternate Era Styles” on page 1121.

Y Standard
Latin digits

1- or 2-digit year.

If any of the year symbols (Y, Y, YY, YYY, YYYY, or YYYYY) are
preceded by an imperial era symbol (g, gg, etc), the year is given in
terms of that era. Further, the first year of any era is always represented
using the ideograph (U+5143) rather than the full-width 1 or the
full-width 01.

If this symbol is not preceded by an alternate-era symbol, the year is
given according to the Gregorian calendar.

Note: The symbols Y and Y should be used only in the context of an
imperial era, where the year has a reasonable single-digit
representation.

YYY I Prevailing-locale ideographic numeric value for year. (See description
for “Y”.)

YYYYY I, tens rule Tens rule prevailing-locale ideographic numeric value for year. (See
description for “Y”.)

Symbol using
full-width
character

Full-width
(FW) or
ideographic
(I) Is the picture symbol for …

XFA Specification
Chapter 26, Picture Clause Specification Picture Clause Reference 1129

Example 26.16 Unacceptably ambiguous date picture clauses
Example

Example 26.17 Acceptably ambiguous date picture clauses

Avoid Multiple Occurrences of the Same Types of Symbols in Input Parsing

Date picture clauses used for input parsing must avoid multiple occurrences of symbols used for the same
type of data. The following table provides examples of such unacceptable multiple occurrences.

Example 26.18 Picture clauses with multiple symbols that are unacceptable for parsing input

When output formatting, date picture clauses with multiple instances of the same symbols are acceptable,
as are date formats with conflicting symbols.

Examples of Output Formatting

As examples of output formatting date values, consider the following: results have been quoted, so that
one can see where spaces would appear in the formatted value. The quotes are not actually part of the
result.

Unacceptably
ambiguous date picture
clause Explanation

YYY The year cannot be reasonably deduced with the information provided.

YYMD Date picture clauses with adjacent one letter picture symbols are ambiguous.
With a picture clause of YYMD, an input of "99121" can be evaluated as either
"Jan 21, 1999" or "Dec 1, 1999".

Acceptably ambiguous
date picture clause Explanation

MMDDYY As a concession to present day realities, the two-digit years 00 to 29 are
interpreted as the years 2000 to 2029, while the two-digit years 30 to 99 are
interpreted as the years 1930 to 1999. This is known as the century split
option, and the century split year is set by default to 30; it is expected that
applications using picture clauses would be able to reconfigure the century
split year.

Important: It is strongly recommended that applications interchange data
with fully specified years.

Unacceptable multiple
sets of symbols Explanation

DD/MM/DD The DD symbol appears twice.

JJJ-DD-MMM-YY The JJJ and DD symbols both format days.

XFA Specification
Chapter 26, Picture Clause Specification Picture Clause Reference 1130

Example 26.19 Output formatted using date picture clauses

Examples of Input Parsing

Example 26.20 Input parsed using date picture clauses

Examples of Asian Output Formatting and Input Parsing

Japanese Locale

The following table shows formatted results when the prevailing locale is Japanese. The same result is
achieved by enclosing the picture close with a localization designator in the format
date(ja){picture clause}. (“Locale-Specific Picture Clauses” on page 1116)

Example 26.21 Input and output using picture clauses in the Japanese locale

Picture clause Input value Formatted result

MMMM DD, YYYY 2002-10-25 "October 25, 2002"

'Week of the month is' w 20040722 "Week of the month is 5"

e 'days after Sunday' 20040722 4 days after Sunday

YYYY-'W'WW-e 20040722 2004-W30-4

Note: This is the ISO Week Date format.

E 'days after Saturday' 20040722 5 days after Saturday

EEEE, 'the' D 'of' MMMM, YYYY 2000-01-01 "Saturday, the 1 of January, 2000"

Picture clause Input value Parsed result

MM/D/YY 12/2/99 1999-12-02

MMM D, YYYY Jan 10, 1999 1999-01-10

Picture clause Input value Formatted result Explanation

gY/M/D 2003-11-03 H15/11/3 Alternate-era style
#1

ggY-M-D 1989-01-08 Alternate-era style
#2

ggYY/MM/DD 1989-11-03 Alternate-era style
#5

XFA Specification
Chapter 26, Picture Clause Specification Picture Clause Reference 1131

Time Pictures
Symbols used for time picture clauses apply to all locales (“Standard Symbols”) or apply primarily to Asian
locales (“Asian Time Picture Symbols”). The category of such picture clauses is identified as time.

Standard Symbols

The standard picture clause symbols for time are:

gggYYY' 'MMM ' 'DDD' ' 1989-01-08 Alternate-era style
3, ideographic year.
The pictograph
represents the first
year in the Heisei
impereal era.

YYY' 'MMM' 'DDD' ' 1998-12-10 Gregorian calendar
year

Picture clause Input value Formatted result Explanation

Symbol Is the picture symbol for …

h 1 or 2 digit (1-12) hour of the meridiem (AM/PM), expressed as a 12-hour clock.

hh 2 digit (01-12) hour of the meridiem (AM/PM)), expressed as a 12-hour clock.

h 1- or 2-digit (1-12) hour of the meridiem (AM/PM).

hh 2-digit (01-12) hour of the meridiem (AM/PM).

k 1- or 2-digit (0-11) hour of the meridiem (AM/PM).

kk 2-digit (00-11) hour of the meridiem (AM/PM).

H 1- or 2-digit (0-23) hour of the day, expressed as a 24-hour clock.

HH Zero-padded 2 digit (00-23) hour of the day, expressed as a 24-hour clock.

K 1- or 2-digit (1-24) hour of the day.

KK Zero-padded 2 digit (01-24) hour of the day.

M 1- or 2-digit (0-59) minute of the hour.

MM 2-digit (00-59) minute of the hour.

S 1- or 2-digit (0-59) second of the minute.

SS 2-digit (00-59) second of the minute.

FFF 3-digit (000-999) thousandth of the second.

A Meridiem name (AM or PM) of the prevailing locale.

Z Abbreviated time-zone name (GMT, EST, GMT-00:30) of the prevailing locale.

XFA Specification
Chapter 26, Picture Clause Specification Picture Clause Reference 1132

The standard and full-width comma (,), dash (-), colon (:), slash (/), period (.) and space () are treated as
literals.

Asian Time Picture Symbols

The following table lists the Asian picture clause symbols for time.

z ISO-8601 time-zone format: Z, +HH[MM], or -HH[MM]. In the examples at left, HH is a
placeholder for a zero-padded 2-digit hour of the day, and the MM is a placeholder for a
zero-padded 2-digit minute of the hour. The acceptable values for z are further
described below:

● Z. A time zone of 'Z' (Unicode character U+005A) indicates the time zone is 'zero
meridian', or 'Zulu Time'. The [ISO-8601] section titled Universal Time Coordinated
describes a method of defining time absolutely. Another helpful document is A Few
Facts Concerning GMT, UT, and the RGO, by R. Langley, 20 January 1999, which is
available at http://www.apparent-wind.com/gmt-explained.html.

● +HH[MM] or -HH[MM]. A time zone expressed as an offset of plus or minus states
that the offset can be added to the time to indicate that the local time zone is HH
hours and MM minutes ahead or behind. The plus or minus sign must be included.

zz Alternate ISO-8601 time-zone format: Z, +HH[:MM], or -HH[:MM]. The z and zz
formats differ only in their use of the colon as a separator.

See also “Global Picture-Clause Symbols” on page 1110, which describes the symbols
"?", "*", and "+".

Symbol Is the picture symbol for …

Symbol

Full-width
(FW) or
ideographic
(I) Is the picture symbol for …

hhh I Prevailing locale's ideographic numeric value (1-12) for the hour of the
meridiem.

hhhh I, tens rule Prevailing locale's tens rule ideographic numeric value (1-12) for the
hour of the meridiem.

kkk I Prevailing locale's ideographic numeric value (0-11) for the hour of the
meridiem.

kkkk I, tens rule Prevailing locale's tens rule ideographic numeric value (0-11) for the
hour of the meridiem.

HHH I Prevailing locale's ideographic numeric value (0-23) for the hour of the
day.

HHHH I, tens rule Prevailing locale's tens rule ideographic numeric value (0-23) for the
hour of the day.

KKK I Prevailing locale's ideographic numeric value for the (1-24) hour of the
day.

http://www.apparent-wind.com/gmt-explained.html

XFA Specification
Chapter 26, Picture Clause Specification Picture Clause Reference 1133

The standard and full-width comma (,), dash (-), colon (:), slash (/), period (.) and space () are treated as
literals.

Requirements for Acceptable Time Picture Clauses

When input parsing, time picture clauses containing hour of the meridiem symbols (h or k) without the
meridiem symbol are invalid.

Examples of Output Formatting

The following examples illustrate the process of output formatting with time picture clauses. Results have
been quoted, so that one can see where spaces would appear in the formatted value. The quotes are not
actually part of the result.

Example 26.22 Output formatted using time picture clauses

When input parsing with time picture clauses, a successfully parsed input value is returned as an ISO local
time string of the form

HH[MM[SS[.FFF][z]]]

HH[MM[SS[.FFF][+HH[MM]]]]

HH[MM[SS[.FFF][-HH[MM]]]]

KKKK I, tens rule Prevailing locale's tens rule ideographic numeric value for the (1-24)
hour of the day

MMM FW Prevailing locale's ideographic numeric value (0-59) for the minute of
the hour.

MMMM I, tens rule Prevailing locale's tens rule ideographic numeric value (0-59) for the
minute of the hour

SSS I Prevailing locale's ideographic numeric value (0-59) for the second of
the minute.

SSSS I, tens rule Prevailing locale's tens rule ideographic numeric value (0-59) for the
second of the minute.

See also “Global Picture-Clause Symbols” on page 1110, which
describes the symbols "?", "*", and "+".

Symbol

Full-width
(FW) or
ideographic
(I) Is the picture symbol for …

Picture clause Input value Formatted result

h:MM A 11:11:11 "11:11 AM"

HH:MM:SS 'o''clock' A Z 11:11:11 "11:11:11 o'clock AM EDT"

h:MM A 14:30:59 "2:30 PM"

HH:MM:SS A Z 14:30:59 "14:30:59 PM EDT"

XFA Specification
Chapter 26, Picture Clause Specification Picture Clause Reference 1134

HH[:MM[:SS[.FFF][z]]]

HH[:MM[:SS[.FFF][-HH[:MM]]]]

HH[:MM[:SS[.FFF][+HH[:MM]]]]

Square brackets denote optional elements.

Examples of Input Parsing

As examples of input parsing time values, consider the following examples.

Example 26.23 Input parsed using time picture clauses

Note: The return value in the last example will vary with the platform's timezone at the time the platform
was parsing the input; the displayed result comes from a platform running on EDT.

Examples of Asian Output Formatting and Input Parsing

The following examples illustrate the process of input parsing with time picture clauses in a Asian locale.

Example 26.24 Input parsed using time picture clauses in Asian locales

Picture clause Input value Parsed result

HH:MM 18:00 18

H.MM 'Uhr' 12.59 Uhr 12:59

h:MM:SS A Z 1:05:10 PM PST 17:05:10

Picture clause Input value Parsed result

time(ja){Ahh' 'MM' 'DD' '} 17:02:03

time(ko){KKK' 'MMM' 'SSS' '}

This example specifies ideographic hours (24-hour clock),
minutes and seconds. Although the picture symbols do not
specify tens-rule, the numbers use it because all Korean
ideographic numbers use tens rule.

12:35:46

time(ja){Ahhhh' 'MMMM' 'SSSS' '}

This example specifies tens-rule ideographic hours, minutes
and seconds. The hours are meridiem.

12:01:02

HH:MM zz 13:30 +01 13:30:00+01a

a.The parsed result reflects the current time zone. This result indicates the user resides in the Central European
Time timezone. If the user resided elsewhere, the parsed result would differ.

XFA Specification
Chapter 26, Picture Clause Specification Picture Clause Reference 1135

Numeric Pictures
The following table describes the standard ASCII and full-width numeric picture clause symbols. The
category of such picture clauses is identified as num.

Full-width symbols can be used in Asian locales to specify full-width data.

Symbol

Is the picture symbol for …
Standard
ASCII Full-width

8 8 (U+FF18) Output formatting: specifies highest level of precision in the fractional
value. Every "8" picture clause symbol to the right of the radix separator
(decimal point) specifies formatting for the value of the corresponding
fraction. For each fractional position formatted with an "8", formatting is
done as follows:

● A fractional digit (0-9) results in the digit appearing in the output.

● An omitted fractional digit results in no digit (or space) appearing in the
output.

● No fractional digits results in the omission of the radix separator and
any fractional digits

Input parsing: Same as output formatting.

9 9 (U+FF19) Output formatting: a single digit, or for the zero digit if the input data is
empty or a space in the corresponding position.

Input parsing: a single digit.

8 8 (U+FF18) Output formatting: a single digit, or for nothing if the input data has
nothing in the corresponding position. For more information see “Effect of
the 8 Picture Symbol” on page 1138.

Input parsing: a single digit or nothing.

z z (U+FF5A) Output formatting: a single digit, or for nothing if the input data is empty, a
space, or the zero digit in the corresponding position. For more
information see “Uppercase Picture Symbols versus Lowercase Picture
Symbols” on page 1137.

Input parsing: a single digit or nothing.

Z Z (U+FF3A) Output formatting: a single digit, or for a space if the input data is empty, a
space, or the zero digit in the corresponding position. For more
information see “Uppercase Picture Symbols versus Lowercase Picture
Symbols” on page 1137.

Input parsing: a single digit or a space.

S S (U+FF33) Output formatting: a minus sign if the number is negative, and a space
otherwise.

Input parsing: a minus sign if the number is negative and a plus sign if the
number is positive.

XFA Specification
Chapter 26, Picture Clause Specification Picture Clause Reference 1136

s s (U+FF53) Output formatting: a minus sign if the number is negative, and nothing
otherwise.

Input parsing, it is also the picture symbol for a plus sign if the number is
positive.

E E (U+FF25) Output formatting: the exponent part of a floating point number,
consisting of the exponential symbol (E), followed by an optional plus or
minus sign, followed by the exponent value.

Input parsing: Same as for output formatting.

$ $ (U+FF04) Currency symbol of the prevailing locale. In cases where the symbol may
be ambiguous, please use the $$ symbol. For example, the dollar symbol
applies equally to the Canadian dollar and the U.S. dollar.

$$ $$ International currency name of the prevailing locale, as described in
[ISO-4217].

CR Credit symbol (CR) if the number is negative, or spaces otherwise.

Note: CR and DB are English-language accounting practices and may not
be meaningful in other locales.

cr Credit symbol (CR) if the number is negative, or nothing otherwise.

Note: CR and DB are English-language accounting practices and may not
be meaningful in other locales.

DB Debit symbol (DB) if the number is negative, or spaces otherwise.

Note: CR and DB are English-language accounting practices and may not
be meaningful in other locales.

db Debit symbol (DB) if the number is negative, or nothing otherwise.

Note: CR and DB are English-language accounting practices and may not
be meaningful in other locales.

(((U+FF08) Left parenthesis if the number is negative, or a space otherwise.

)) (U+FF09) Right parenthesis if the number is negative, or a space otherwise.

. (period) . (U+FF0E) Decimal radix of the prevailing locale. See also “Uppercase Picture Symbols
versus Lowercase Picture Symbols” on page 1137.

V V (U+FF36) Decimal radix of the prevailing locale, allowing the decimal radix to be
implied when input parsing.

v v (U+FF56) Decimal radix of the prevailing locale, allowing the decimal radix to be
implied when input parsing and output formatting.

, (comma) , (U+FF0C) Grouping separator of the prevailing locale

Symbol

Is the picture symbol for …
Standard
ASCII Full-width

XFA Specification
Chapter 26, Picture Clause Specification Picture Clause Reference 1137

The standard and full-width dash (-), colon (:), slash (/), and space () are treated as literals. Unlike the
other categories of picture clauses, the comma is omitted as a literal because it is used as the symbol for
grouping separators.

Uppercase Picture Symbols versus Lowercase Picture Symbols

There are two differences between the uppercase Z picture symbol and the lowercase z picture symbol.
The differences do not affect the parsing of input, only the formatting of output.

1. Lowercase z to the left of the . (period) picture symbol omits leading zeros, whereas uppercase Z in this
position displays leading zeros as space characters. This also applies if the picture clause does not
contain a . (period) picture symbol.

2. Lowercase z to the right of the . (period) picture symbol omits the radix point when the input number
does not have it, whereas uppercase Z in this position always inserts the radix point.

Similar differences apply to uppercase Z (U+FF3A) and lowercase z (U+FF5A).

1. Lowercase z (U+FF5A) to the left of the . (U+FF0E) picture symbol omits leading zeros, whereas
uppercase Z (U+FF3A) in this position displays leading zeros as space characters. This also applies if the
picture clause does not contain a . (U+FF0E) picture symbol.

2. Lowercase z (U+FF5A) to the right of the . (U+FF0E) picture symbol omits the radix point when the
input number does not have it, whereas uppercase Z (U+FF3A) in this position always inserts the radix
point.

The following table shows differences in the formatting of output strings when Z is used in place of z in a
picture clause. The output strings are shown within quotation marks to make the string boundaries
apparent, however the quotation marks would not be included in the formatted output.

% Percent symbol of the prevailing locale. For more information see “Effect of
the % Picture Symbol” on page 1138.

See also “Global Picture-Clause Symbols” on page 1110, which describes
the symbols "?", "*", and "+".

Symbol

Is the picture symbol for …
Standard
ASCII Full-width

XFA Specification
Chapter 26, Picture Clause Specification Picture Clause Reference 1138

Example 26.25 Differences between z and Z picture symbols in output

Effect of the 8 Picture Symbol

The 8 picture symbol is used to retain the expressed precision of supplied data after the decimal radix. For
example, suppose the picture clause is being used for output. The following table shows the output for
various picture clauses and input strings:

Example 26.26 Input parsed using numeric pictures containing the '8' symbol

Note that, as for the lower-case z picture symbol, when the input number is an exact integer the decimal
radix is removed from the formatted result.

Effect of the % Picture Symbol

The % picture symbol indicates that the input data is a percentage and ends in the percentage symbol of
the prevailing locale. On input the percentage symbol is stripped out and the numeric value is converted

Input value Output formatted by zz9.zzz Output formatted by ZZ9.ZZZ

1.234 "1.234" " 1.234"

12.345 "12.345" " 12.345"

123.456 "123.456" "123.456"

123 "123" "123."

123. "123." "123."

123.0 "123.0" "123.0"

123.000 "123.000" "123.000"

zzz,zz9.88888888 12345.67 12,345.67

12345.0000 12,345.0000

zzz,zz9.8 12345.6789 12,345.6789

12345. 12,345

Picture clause Input value Formatted result

zzz,zz9.8888 123456.000 123,456.000

123456.0 123,456.0

123456 123,456

zzz,zz9.88 123456 123,456

zzz,zz9.88888888 12345.67 12,345.67

12345.0000 12,345.0000

zzz,zz9.8 12345.6789 12,345.6789

12345. 12,345

XFA Specification
Chapter 26, Picture Clause Specification Picture Clause Reference 1139

to canonical form by multiplying it by 100. On output the canonical value is divided by 100 and the
percentage symbol of the prevailing locale is appended.

Example 26.27 Input and output using numeric picture clauses containing the '%' symbol

Requirements for Acceptable Number Picture Clauses

When the parentheses picture symbols are used in a numeric picture clause, they must be paired, left with
right, and must enclose all occurrences of 9, z, and Z picture symbols.

When the E picture symbol is used in a numeric picture clause, it must follow all occurrences of the 9, z,
and Z picture symbols.

When the 8 picture symbol is used in a numeric picture clause, it must not be intermixed to the right of the
. picture symbol with either 9 or Z picture symbols.

When the % picture symbol is used in a numeric picture clause, it must follow all occurrences of the 9, z,
and Z picture symbols.

Also, the meaning of an 8 picture symbol to the left of a . picture symbol is not defined in this specification.

Example of Output Formatting

The application of picture clauses to numeric data can produce results such as numeric or monetary
values. Consider the following examples. Results have been quoted, so that one can see where spaces
would appear in the formatted value. The quotes are not actually part of the result.

Example 26.28 Output formatted using numeric picture clauses

Picture clause Input value
Internal (canonical)
value Output value

zz9% 12% 0.12 12%

zzz,zz9.99% 1,234.5% 12.345 1,234.50%

Picture clause Input value Formatted results

S999v99 -1.23 "-00123"

S999V99 1.23 " 001.23"

123 " 123.00"

SZZ9.99 12.3 " 12.30"

-12.3 "- 12.30"

szz9.99 123 "123.00"

-123 "-123.00"

$ZZ,ZZ9.99CR 1234 "$ 1,234.00 "

-1234 "$ 1,234.00CR"

XFA Specification
Chapter 26, Picture Clause Specification Picture Clause Reference 1140

Examples of Input Parsing

Conversely, the application of picture clauses to numeric or monetary values can be used to produce
numeric data results, as in the following example.

Example 26.29 Input parsed using numeric picture clauses

If the distinction between various numeric picture symbols appears subtle, it's to provide the flexibility
normally required when strict parsing and formatting rules are in place. For instance, a number value of
150 should be accepted given the picture clause z999; the addition of a leading zero to the value does not
change the value from 150, i.e., the values 0150 and 150 are equivalent.

Similarly the picture clause S9999 would accept the value -5000 or +5000 or 5000.

 Examples of Picture Clauses Using Full-Width Digits

Full-width digits are normally used in Asian locales so that the digits fit into the same column width as
ideographic characters. However picture clauses specifying full-width digits can be used in any locale.

Example 26.30 Output formatted using numeric picture clauses with full-width characters

In the examples below results have been quoted, so that one can see where spaces would appear in the
formatted value. The quotes are not actually part of the result.

$z,zz9.99DB 1234 "$1,234.00"

-1234 "$1,234.00DB"

99.999E 12345 12.345E+3

.12345 12.345E-3

Picture clause Input value Formatted results

Picture clause Input value Parsed results

99V99 1050 10.50

3125 31.25

99.999E 12.345E3 12345

12.345E-2 .12345

z999 150 150

0150 150

z,zz9.99 10.50 10.50

3,125.00 3125.00

$z,zz9.99DB $1,234.00 1234.00

$1,234.00DB -1234.00

XFA Specification
Chapter 26, Picture Clause Specification Picture Clause Reference 1141

Text Pictures
The following table describes the text picture clause symbols. The category of such picture clauses is
identified as text.

The standard and full-width comma (,), dash (-), colon (:), slash (/), period (.) and space () are treated as
literals.

Examples of Output Formatting

Example 26.31 Output formatted using text picture clauses

Results have been quoted, so that one can see where spaces would appear in the formatted value. The
quotes are not actually part of the result.

Examples of Input Parsing

Example 26.32 Input parsed using text picture clauses

In this example we have serial number data that requires the input to be of the form: three alphabetic
characters, followed by four digits, followed by a single character of any type. A suitable text picture clause
would therefore be:

 AAA-9999-X

The following table shows the result of applying this picture clause as an input mask against various input
strings. Results have been quoted, so that one can see where spaces would appear in the formatted value.
The quotes are not actually part of the result.

Symbol Is the picture symbol for …

A Single alphabetic character.

X Single character.

O (upper-case alphabetic character) Single alphanumeric character.

Ø (zero) Single alphanumeric character.

9 Single digit.

See also “Global Picture-Clause Symbols” on
page 1110, which describes the symbols "?", "*",
and "+".

Picture clause Input value Formatted result

A9A 9A9 K1S5K2 "K1S 5K2"

'+1 ('999') '999-9999 6135551212 "+1 (613) 555-1212"

999.999.9999 6135551212 "613.555.1212"

XFA Specification
Chapter 26, Picture Clause Specification Picture Clause Reference 1142

Null-Category Picture Clauses
Null-category picture clauses specify output formatting for null values associated with non-image content
types. They are always expressed with the "null" category designator and may use any of the symbols
defined for numeric picture clauses.

null{numeric picture clause symbols}

See also “Compound Picture Clauses” on page 1114 and “” on page 1143.

Null-category picture clauses are typically used in alternate picture clause expressions, such as the
following.

Example 26.33 Null-category picture clause used as an alternate picture clause

null{'n/a'} | num{$z,zz9.99}

See also “Alternate Picture Clauses” on page 1116.

Example 26.34 Null-category picture clause used to differentiate null and non-null data

Null-category picture clauses are especially useful when there is a
difference between null-data and non-null data. In the example at right,
the field labeled "Tax withheld" remains blank until the person filling out
the form supplies a value.

The illustrated behavior is specified by the picture clause
null{}|num{$z,zz9.99}.

Zero-Category Picture Clauses
Zero-category picture clauses specify output formatting for zero values associated with non-image
content types. They are always expressed with the "zero" category designator and may use any of the
symbols defined for numeric picture clauses.

zero{numeric picture clause symbols}

See also “Compound Picture Clauses” on page 1114 and “” on page 1143.

As with null-category picture clauses, zero-category picture clauses are typically used in alternate picture
clause expressions, such as the following.

Picture clause Input value Formatted result

AAA-9999-X ABC-1234-5 "ABC12345"

ABC-1234-D "ABC1234D"

123-4567-8a

a.Note that the input data 123-4567-8 did not satisfy the input mask, and the resulting parsed value was an empty
string.

""a

XFA Specification
Chapter 26, Picture Clause Specification Picture Clause Reference 1143

Example 26.35 Zero-category picture clause used as an alternate picture clause

zero{9} | num{$z,zz9.99}

See also “Alternate Picture Clauses” on page 1116.

Examples of Input Parsing Against Null- and Zero-Category Picture Clauses

The following table illustrates the affect of input parsing against a set of alternate picture clauses that
include null-category and zero-category picture clauses. Results have been quoted, so that one can see
where spaces would appear in the formatted value. The quotes are not actually part of the result. The word
null without quotation marks represents null data.

Example 26.36 Input parsed against null- and zero-category alternate picture clauses

Note: Order is important in expressions that use alternative picture clauses. If the picture clause
num{z,zz9.9} is the first picture clause in the expression, the zero{9} picture clause is never
considered.

Examples of Output Formatting Against Null- and Zero-Category Picture
Clauses

The following table illustrates the affect of output formatting against a set of alternate picture clauses that
include null-category and zero-category picture clauses.

Example 26.37 Output formatted by null- and zero-category alternate picture clauses

Note: Order is important in expressions that use alternative picture clauses. If the picture clause
num{z,zz9.9} is the first picture clause in the expression, the zero{9} picture clause is never
considered.

Picture clause Input value Parsed result

null{'n/a'} |
zero {9} |
num{z,zz9.9}

"" null

"n/a" null

"0" "0"

"0.0" "0"

"1,234.5" "1234.5"

Picture clause Input value Formatted output

null{'n/a'} |
zero {9} |
num{z,zz9.9}

"" "n/a"

"0" "0"

"1234.5" "1,234.5"

 1144

27 Rich Text Reference

Rich Text is expressed in XFA via the use of [XHTML] markup augmented with a restricted set of Cascading
Style Sheet attributes [CSS2], and a number of style attributes and values that are currently not part of the
Cascading Style Sheet standard, but are proposed extensions. In addition there are several XFA-specific
attributes, but these use an XFA namespace so that the content incorporating them is still valid
XHTML/CSS.

The following sections describe the specific elements and style attributes of [XHTML] and [CSS2] that are
supported. The accompanying descriptions and examples, however, are meant to be informative only.
Please consult the [XHTML] and [CSS2] specifications as the normative reference for more detail on the
capabilities and permissible values for the elements and style attributes.

XFA processors may implement a larger subset, or the entirety, of XHTML and CSS2 if desired, barring only
markup that is deprecated in [XHTML] or [CSS2]. This specification sets out a minimum set that must be
supported.

XFA processors ignore any markup in rich text that they do not understand. For example, XFA processors
do not support the head element of [XHTML]. When an XFA processor encounters an unrecognized
element such as this, it ignores the entire content of the element.

Summary of Supported XHTML and CSS Attributes
XFA processors support the following [XHTML] elements:

Element name Where described

a “Hyperlink Support” on page 1146

b “Bold” on page 1156

br “Line Break” on page 1148

body “Body Element” on page 1146

html “HTML Element” on page 1146

i “Italic” on page 1160

p “Paragraph” on page 1151

span “Span” on page 1161

sub “Subscript” on page 1161

sup “Superscript” on page 1162

XFA Specification
Chapter 27, Rich Text Reference Summary of Supported XHTML and CSS Attributes 1145

XFA processors support the following [CSS2] style attributes on the above-listed [XHTML] elements:

In addition this specification supports the following XFA-specific style attributes on the above-listed
XHTML elements:

Attribute name Where described

color “Color” on page 1157

font “Font” on page 1157

font-family

font-size

font-stretch

font-style

font-weight

margin “Set Margins” on page 1152

margin-bottom “Space After Paragraph” on page 1153

margin-left “Left Margin” on page 1148

margin-right “Right Margin” on page 1151

margin-top “Space Before Paragraph” on page 1153

letter-spacing “Letter Spacing” on page 1161

line-height “Line Spacing” on page 1148

orphans “Orphan Control” on page 1149

page-break-after “Page Break Control” on page 1150

page-break-before

page-break-inside

tab-interval “Tab Stops” on page 1162

tab-stop

text-decoration “Underline and Strikethrough” on page 1165

text-indent “First Line Indent” on page 1147

vertical-align “Vertical Alignment” on page 1154

widows “Orphan Control” on page 1149

Attribute name Where described

kerning-mode “Kerning” on page 1160

XFA Specification
Chapter 27, Rich Text Reference Supported Container Elements 1146

Note: kerning-mode was present in an early draft of CSS3 but was subsequently dropped. The XFA
Language Committee assumes that it will reappear eventually in CSS.

Supported Container Elements
XFA supports the optional use of XHTML container elements to enclose rich text. In addition, because
unrecognized elements are suppressed, rich text used in XFA can take the form of a complete XHTML
document including a head element, albeit a document restricted to a subset of XHTML and CSS2.

HTML Element
The outer element for HTML documents is an html element, as specified in [XHTML]. In XFA rich text may
be enclosed in an html element, although this is not required. The html element is merely a container
and does not appear in the output.

Body Element
The displayable content of an HTML document is contained in a body element, as specified in [XHTML]. In
XFA rich text may be enclosed in a body element, although this is not required. It may also be enclosed in
a body element that is itself within an html element. The body element is merely a container and does
not appear in the output.

Hyperlink Support
In XFA 2.8 support was added for outbound hyperlinks. The HTML a (anchor) element supplies the
hyperlink and encloses the text which is highlighted and clickable.

Example 27.1 Outbound hyperlink

<p>
For more information see this
web site.

</p>

Produces:

In interactive enironments the XFA processor highlights the link text in an implementation-dependent
manner. The style shown in the example above - blue text with a single blue underscore - is
recommended. When the user clicks on the link the XFA processor passes the link destination to the host
operating system to resolve it. Therefore the target document can be any type recognized by the host
operating system. In the example the operating system brings up an HTML browser (for example FireFox)
in its own window to display the document.

xfa-font-horizontal-scale “Font Scale” on page 1159

xfa-font-vertical-scale

xfa-tab-stops “Tab Stops” on page 1162

For more information see this web site.

http://www.example.com/

XFA Specification
Chapter 27, Rich Text Reference Supported Paragraph Formatting 1147

In non-interactive environments the XFA processor may visually highlight a hyperlink, but it never follows
the link.

In HTML the a element can take a name attribute to signify a target for hyperlinking. If any such attribute is
present the XFA processor ignores it. XFA supports outbound hyperlinks but not inbound hyperlinks or
within-document hyperlinks. The Committee appreciates that this limitation is not desireable, but
inbound hyperlinks present design issues that need additional consideration.

Note that XFAF forms are not as limited. In XFAF forms boilerplate is coded as PDF. PDF includes a
hyperlink annotation facility. Hence XFAF forms provide full support for hyperlinks in boilerplate (draws)
but not in fields.

There are potential security risks associated with this feature. For more information see “Respecting
External References in Image Data and Rich Text” on page 543.

Supported Paragraph Formatting

First Line Indent
A paragraph of text may be indented on the first line (temporarily adjusting the left margin) via the use of
the [CSS2] text-indent style attribute with a measurement.

Example 27.2 Paragraph with first-line indent

<p style="text-indent:0.5in">
The first line of this paragraph is indented a half-inch.

Successive lines are not indented.

This is the last line of the paragraph.

</p>

Produces:

At the container level similar functionality is provided by the textIndent subproperty of the para
property, as described in “Text Layout in the Horizontal Direction” on page 58.

Horizontal Alignment
A paragraph of text may be aligned horizontally via the use of the [CSS2] text-align style attribute.

The supported alignments are limited to left, center, right, justify, and justify-all. justify-all is a
non-standard extension to [CSS2] expressing that all lines of the paragraph including the last line shall be
justified.

Example 27.3 Paragraph with right text alignment

<p style="text-align:right">
 This is the first line of the paragraph.

 This is the second line of the paragraph.

 This is the last line of the paragraph.

</p>

The first line of this paragraph is indented a half-inch.
Successive lines are not indented.
This is the last line of the paragraph.

XFA Specification
Chapter 27, Rich Text Reference Supported Paragraph Formatting 1148

Produces:

At the container level similar functionality is provided by the hAlign subproperty of the para property,
as described in “Text Layout in the Horizontal Direction” on page 58.

Left Margin
A paragraph of text may be indented on the left (adjusting the left margin) via the use of the [CSS2]
margin-left style attribute with a measurement.

Example 27.4 Paragraph with left text alignment

<p style="margin-left:0.5in">
 This text is left-indented a half-inch.
</p>

Produces:

At the container level similar functionality is provided by the marginLeft subproperty of the para
property, as described in “Text Layout in the Horizontal Direction” on page 58.

Line Break
Within a paragraph, br elements may be used to force line breaks as defined in [XHTML].

Example:

<p>This is a paragraph of text.
This is some more text.</p>

Produces:

Line Spacing
A paragraph of text may have the line-spacing of its text set via the use of the [CSS2] line-height style
attribute with a measurement. By default, line-spacing is derived from the tallest object on any given line.

Example 27.5 Paragraph with line spacing

<body>
<p style="line-height:0.5in">

This is the first line of the paragraph.

This is the second line of the paragraph.

This is the first line of the paragraph.
This is the second line of the paragraph.

This is the last line of the paragraph.

This text is left-indented a half-inch.

This is a paragraph of text.
This is some more text.

XFA Specification
Chapter 27, Rich Text Reference Supported Paragraph Formatting 1149

This is the last line of the paragraph.

</p>

</body>

Produces:

At the container level similar functionality is provided by the lineHeight subproperty of the para
property, as described in “Text Layout in the Vertical Direction” on page 60.

Orphan Control
When text flows from one content region to another a paragraph may split between the two regions. It is
not always desireable for the paragraph to split. A constraint may be placed such that the paragraph will
only split if the resulting orphan paragraph (left behind in the first content region) is at least the specified
number of lines long. This constraint is placed using the [CSS2] orphans style attribute.

Example 27.6 Orphan control markup

<p style="orphans:2;widows:1">This text long enough that it wraps when placed
into the content area. Here is some more text to make it even longer.</p>

Note: The widows control here is set to 1 to disable it. Also note the semicolon separating the two
declarations. This is the syntax required by CSS.

When the above content is supplied and the current content region is only tall enough for a single line of
text, the result is as follows.

In the above example the field is narrow enough that the paragraph wraps into four lines. This would leave
a single-line orphan in the first content region, but the orphan constraint forbids that. Instead the XFA
processor places the paragraph in the the second content region.

Since XFA 2.8 the XFA processor has overriden the orphans constraint and the content region size if the
combination of these things would result in leaving both the current and the next content regions empty.

This is the first line of the paragraph.

This is the second line of the paragraph.

This is the last line of the paragraph.

This text is long enough that it
wraps when placed into the content
area. Here is some more text to
make it even longer.

XFA Specification
Chapter 27, Rich Text Reference Supported Paragraph Formatting 1150

This acts as a safety-valve to prevent a large unsplittable layout object from causing the ejection of page
after page of blank form. See “Overriding ContentArea Boundaries” on page 289.

Note: Adobe products can be instructed to retain the pre-2.8 behavior using the v2.7-layout legacy
flag. See “The v2.7-layout flag” on page 1208.

Example 27.7 XFA processor overrides constraints

In this example the same data is supplied but both the current content region and the next are only one
line high. The XFA processor overrides the size limit of the current content region.

This text is long enough that it
wraps when placed into the content
area. Here is some more text to
make it even longer.

At the container level similar functionality is provided by the orphans subproperty of the para property,
as described in “Text Overflow” on page 67.

Page Break Control
Page breaks may be controlled using [CSS2] page break markup. There are three positions at which a page
break may occur: before the first line in a paragraph, inside a paragraph, or after the last line of a
paragraph. There is a style attribute to control page breaks at each of these positions, as shown in the
following table.

Supported values for these style attributes in XFA are described in the following table.

name value default description

page-break-after auto | always | avoid auto Controls page breaking after the
paragraph.

page-break-before auto | always | avoid auto Controls page breaking before the
paragraph.

page-break-inside auto | avoid auto Controls page breaking between
lines within the paragraph.

value meaning

auto A page break may be inserted, but only if the paragraph doesn’t fit and
the current content area is the last one on the current page. This is
traditional XFA layout processing.

always Always insert a page break. Content areas on the current page may be
left empty.

avoid No page break may be inserted except in an emergency breakinga
situation. Instead the paragraph is pushed back to the next page.

a.Emergency breaking arises when it is impossible to obey the specified page breaking constraints
while placing the text on the next page. For example the constraints may indicate that 60 lines of
text must be kept together but the next page may only have room for 50 lines. In such a case the
XFA processor may insert a page break where it deems appropriate.

XFA Specification
Chapter 27, Rich Text Reference Supported Paragraph Formatting 1151

[CSS2] defines some additional values for these style attributes which are not currently part of the XFA
grammar. However it is expected that rich text will often be pasted into XFA templates from pre-existing
non-XFA documents. Therefore XFA processors must handle the additional values gracefully. The
unsupported value left should be treated as always, right should be treated as always, and
inherit should be treated as auto.

It is possible for a paragraph to have a page-break-after property specified and the next paragraph to
have the page-break-before property specified. If one of the values is always and the other is avoid
then the two directives are in conflict. In such cases the XFA processor gives priority to the always setting,
that is, it inserts a page break between the paragraphs.

Example 27.8 Page break control

<p>This appears on the current page.</p>
<p style="page-break-before:always">This appears on a new page.</p>

Produces:

Note that the current page might have additional content areas, for example to designate another column
to the right of the current column. If any such areas exist they are skipped. Page breaks specified in rich
text always go to the next physical page.

Paragraph
A paragraph of text is expressed using the [XHTML] paragraph p element. By default text contained within
the p element flows from left-to-right, word-wrapping as necessary to fit within the left and right margins.
By default consecutive white space characters are compressed to a single space character. p elements
cannot nest, nor can they hold html or body elements.

Example 27.9 Paragraph markup

<p>This is a paragraph of text. This is some more text.</p>

Produces:

The paragraph element may have attributes that format the paragraph, as described in the following
subsections. The left-to-right flow may be interrupted by a br element, as described in “Line Break” on
page 1148.

Right Margin
A paragraph of text may be indented on the right (adjusting the right margin) via the use of the [CSS2]
margin-right style attribute with a measurement. This is most commonly used in concert with a right
text alignment, as described in Horizontal Alignment.

 This appears on the current page.

This appears on a new page.

This is a paragraph of text. This is some more text.

XFA Specification
Chapter 27, Rich Text Reference Supported Paragraph Formatting 1152

Example 27.10 Paragraph with a right margin

<p style="margin-right:0.5in;
 text-align:right">
 This text is right-aligned and right-indented a half-inch.
</p>

Produces:

At the container level similar functionality is provided by the marginRight subproperty of the para
property, as described in “Text Layout in the Horizontal Direction” on page 58.

Set Margins
One or more margins may be adjusted, affecting paragraph spacing and indenting, through the use of the
[CSS2] margin style attribute which accepts a variable number of arguments affecting the top, bottom,
left, and right margins. Use of this attribute provides no additional features beyond the individually
addressable features described in sections “Space Before Paragraph”, “Space After Paragraph”, “Line
Spacing”, “Left Margin”, “Right Margin”, and “First Line Indent”. The syntax of the margin style attribute is
explained in the following excerpt from the [CSS2] specification:

If there is only one value, it applies to all sides. If there are two values, the top and bottom margins are set to
the first value and the right and left margins are set to the second. If there are three values, the top is set to
the first value, the left and right are set to the second, and the bottom is set to the third. If there are four
values, they apply to the top, right, bottom, and left, respectively.

Example 27.11 Paragraph setting a margin all around

<body>
<p>

This is the first paragraph.
</p>
<p style="margin:0.5in">

This second paragraph has a half-inch margin on all sides.
</p>
<p>

This is the third paragraph.
</p>

</body>

Produces:

This text is right-aligned and right-indented a half-inch.

This is the first paragraph.

This second paragraph has a half-inch margin on all sides.

This is the third paragraph.

XFA Specification
Chapter 27, Rich Text Reference Supported Paragraph Formatting 1153

Space After Paragraph
A paragraph of text may have additional succeeding vertical space via the use of the [CSS2]
margin-bottom style attribute with a measurement.

Example 27.12 Paragraph setting a bottom margin

<body>
<p style="margin-bottom:0.5in">

This paragraph is spaced a half-inch away from the next paragraph.
</p>
<p>This is a paragraph of text.</p>

</body>

Produces:

At the container level similar functionality is provided by the spaceBelow subproperty of the para
property, as described in “Text Layout in the Vertical Direction” on page 60.

Space Before Paragraph
A paragraph of text may have additional preceding vertical space via the use of the [CSS2] margin-top
style attribute with a measurement.

Example 27.13 Paragraph setting a top margin

<body>
<p>This is a paragraph of text.</p>
<p style="margin-top:0.5in">

This paragraph is spaced a half-inch away from the previous
paragraph.

</p>
</body>

Produces:

At the container level similar functionality is provided by the spaceAbove subproperty of the para
property, as described in “Text Layout in the Vertical Direction” on page 60.

This paragraph is spaced a half-inch away from the next paragraph.

This is a paragraph of text.

This is a paragraph of text.

This paragraph is spaced a half-inch away from the previous paragraph.

XFA Specification
Chapter 27, Rich Text Reference Supported Paragraph Formatting 1154

Vertical Alignment
A paragraph of text may be aligned vertically via the use of a text-valign style attribute which is a
non-standard extension to [CSS2].

The supported alignments are limited to top, middle, and bottom.

Example 27.14 Paragraph setting a vertical alignment

<p style="text-valign:middle">
This is the first line of the paragraph.

This is the second line of the paragraph.

This is the last line of the paragraph.

</p>

Produces:

At the container level similar functionality is provided by the vAlign subproperty of the para property,
as described in “Alignment and Justification” on page 44.

Widow Control
When text flows from one content region to another a paragraph may split between the two regions. It is
not always desireable for the paragraph to split. A constraint may be placed such that the paragraph will
only split if the resulting widow paragraph (the portion that flows into the next content region) is at least
the specified number of lines long. This constraint is placed using the [CSS2] widows style attribute.

Example 27.15 Widow control markup

<p style="orphans:1;widows:2">This text is long enough that it wraps when
placed
into the content area. Here is some more text to make it even longer.</p>

Note: The orphans control here is set to 1 to disable it. Also note the semicolon separating the two
declarations. This is the same syntax required by CSS.

When the above content is supplied and the current content region is not tall enough to contain the
whole paragraph, the result is as follows.

This is the first line of the paragraph.
This is the second line of the paragraph.
This is the last line of the paragraph.

 This text is long enough that it
wraps when placed into the content

area. Here is some more text to
make it even longer.

XFA Specification
Chapter 27, Rich Text Reference Supported Character Formatting 1155

In the above example the field is narrow enough that the paragraph wraps into four lines. The first content
region is only three lines high, so the paragraph flows into the second content region. However placing
only the one remaining line in the second content region would violate the widow condition. Instead the
third line of text is deferred to the second content region so that the second content region has two lines
in it.

The XFA processor will override the orphans constraint and the content region size if the combination of
these things would lead to skipping more than one sequential content region. This acts as a safety-valve to
prevent a piece of rogue data with a very large typeface size from causing the ejection of page after page
of blank form.

Example 27.16 XFA processor overrides constraints

In this example the same data is supplied but both the current content region and the next are only one
line high. The XFA processor overrides the size limit of the current content region.

This text is long enough that it
wraps when placed into the content
area. Here is some more text to
make it even longer.

At the container level similar functionality is provided by the widows subproperty of the para property,
as described in “Text Overflow” on page 67.

Supported Character Formatting
The following sections describe the various formatting elements that may be applied to paragraph
content. In addition it describes attributes that may be applied to modify the effect of the elements. Each
character formatting element encloses a section of text and supplies formatting attributes to that text.

Character formatting elements are low-level objects. They must not enclose higher-level elements that
are recognized by XFA. Hence they must not enclose html, body, or p elements.

Character formatting attributes may be applied to p elements, in which case they affect all of the text in
the paragraph. Character formatting attributes may also be applied to span elements, in which case they
apply to the text enclosed by the span element. Enclosed markup must not conflict with enclosing
markup. For example, it is not permissible to set a baseline on a paragraph and a different baseline on a
span within the paragraph. Instead the markup must be flattened so that each section is enclosed in its
own span element and marked up separately.

Baseline Adjustment
A region of text may have its baseline position raised or lowered within a line of text via the use of the
[CSS2] vertical-align style attribute. The font size of the text is not affected.

XFA rich text includes a restricted set of [CSS2] vertical-align formats, hence, this attribute is defined as:

vertical-align:vAlignValue

where vAlignValue is either the keyword baseline or a measurement.

XFA Specification
Chapter 27, Rich Text Reference Supported Character Formatting 1156

If vAlignValue is baseline, the region of text will have its baseline situated on the calculated baseline
for the surrounding line of text. Note that this behavior differs from [CSS2] where the region of text has its
baseline situated on the calculated baseline for the surrounding parent span element rather than the
surrounding line.

If vAlignValue is a measurement, the region of text will have its baseline raised for a positive
measurement or lowered for a negative measurement in relation to the calculated baseline for the
surrounding line of text. A measurement of zero (0) produces the same result as
vertical-align:baseline.

Example 27.17 Paragraph including raised and lowered spans of text

<p>This sentence contains
lowered text
on a line.

 Most
of this sentence is lowered but this
word
appears on the line's baseline.

 This sentence contains

raised text on a line.

</p>

Produces:

 Superscripts and subscripts can be implemented using a combination of a baseline adjustment and font
size adjustment. However, vertical alignment can also be adjusted using sub (subscript) and sup
(superscript) elements.

At the container level similar functionality is provided by the baselineShift subproperty of the font
property, as described in “Selection and Modification of the Font” on page 57.

Bold
A region of text may be in bold type via the use of the [CSS2] font-weight style attribute or the b
[XHTML] element.

Example 27.18 Paragraph including bolded spans of text

<p>The second and
 fourth
words are bold.
</p>

This sentence contains lowered text on a line.

 Most of this sentence is lowered but this word appears on the line's baseline.

This sentence contains raised text on a line.

XFA Specification
Chapter 27, Rich Text Reference Supported Character Formatting 1157

Produces:

At the container level similar functionality is provided by the weight subproperty of the font property,
as described in “Selection and Modification of the Font” on page 57.

Color
A color may be specified for a region of text via the [CSS2] color style attribute. Color rendition is device-
and implementation-specific so the text may be rendered in a color other than the specified color.
Conforming implementations are merely required to make their best effort to render the requested color.
For example, when printing with a monochrome printer, colors other than black and white are usually
rendered as grey.

This specification supports a restricted set of [CSS2] color-value formats, defined as:

color:colorValue

colorValue values are described in the following table.

The value is an RGB value specified in the sRGB color space [SRGB].

Example 27.19 Colored paragraph including a differently-colored span

<p style="color:#0000ff">All of this text is blue except for
this green
word.</p>

Produces:

Font
A region of text may be in a specific font via the use of one or more of the [CSS2] font style attributes; the
deprecated font HTML element is not supported.

The second and fourth words are bold.

"colorValue" value Specifies color’s RGB value as …

#rrggbb Hexadecimal notation with a two-digit non-negative hexadecimal value each for
red, green, and blue. A value of 00 means the color is absent (zero-intensity)
whereas ff means it is at full intensity. Digits a through f may be upper or lower
case.

rgb(r,g,b) Separate non-negative integer decimal values for red, green, and blue. A value of
0 means the color is absent (zero-intensity) whereas 255 means it is at full
intensity.

All of this text is blue except for this green word.

XFA Specification
Chapter 27, Rich Text Reference Supported Character Formatting 1158

The [CSS2] specification provides several style attributes that affect the current font.

Font style attribute Description

line-height:lineHeight lineHeight is a measurement giving the distance between
baselines of adjacent lines

font-family:fontFamilyName fontFamilyName is a list of one or more typeface names. The
list constitutes a search path such that the glyph for any
particular character is taken from the first font on the list which
contains a glyph for that character. If a typeface name contains
white space, it must be enclosed either within single quote (')
characters or within double quote (") characters. Such
punctuation allows the font name to be parsed as a single
parameter.

Note: Adobe products do not support multiple typeface names.

font-size:characterHeight characterHeight is a measurement giving the height of a
full-height capital letter

font-stretch:stretchName stretchName is one of the following, in order from narrowest to
widest:

● ultra-condensed

● extra-condensed

● condensed

● semi-condensed

● normal, the default

● semi-expanded

● expanded

● extra-expanded

● ultra-expanded

Note: Adobe products do not support this attribute.

font-style:styleName styleName is one of:

● normal, the text appearance will be normal (Roman)

● italic, the text appearance will be oblique or slanted

font-weight:weightName weightName is one of the following:

● normal, the text appearance will be at the font's normal
(default) weight

● bold, the text appearance will be in a bold type

● 100, 200, 300, 400, 500, 600, 700, 800, or 900, the text
appearance will approximate as closely as possible a weight
corresponding to the number, using a scale upon which
normal is equivalent to 400 and bold is equivalent to 700

Note: Adobe products do not support numeric weights.

XFA Specification
Chapter 27, Rich Text Reference Supported Character Formatting 1159

Alternatively, multiple font properties may be defined at once using the following syntax:

font:[styleName] [weightName] characterHeight [/ lineHeight] fontFamilyName

or

font:[weightName] [styleName] characterHeight [/ lineHeight] fontFamilyName

where styleName, weightName, characterHeight, lineHeight, and fontFamilyName are as
defined above. The character "/" (U002F) preceding lineHeight is a literal. The styleName and
weightName parameters, if present, can be specified in either order. When an optional parameter is
omitted, the result is to set the corresponding property to its default. This syntax is a subset of the
corresponding [CSS2] syntax.

Example 27.20 Paragraph declaring a font with spans in different fonts

<p style='font:italic bold 16pt/0.5in "Minion Pro"'>
 The base font for this text is Minion Pro italic bold 16pt
 with a line-spacing of a half-inch.

 The second sentence switches to a Courier Std typeface.

 The last sentence switches to a 12-point font.

</p>

Produces:

At the container level similar functionality is provided by the font property, as described in “Selection and
Modification of the Font” on page 57.

Font Scale
In XFA 2.8 two style attributes were introduced for horizontal and vertical scaling of glyphs. These style
attributes are not part of CSS. The xfa-font-horizontal-scale attribute supplies a horizontal
scaling factor. The xfa-font-vertical-scale attribute supplies a vertical scale factor. Both of these
are percentages are expressed in CSS style, that is, they must end with a percent (%) character. The default
in both cases is 100%.

Example 27.21 Paragraph with some text using scaled glyphs

<p style='font:italic bold 16pt/0.5in "Minion Pro"'>
 The base font for this text is Minion Pro italic bold 16pt

The base font for this text is Minion Pro italic bold 16pt with a

line-spacing of a half-inch. The second sentence switches

to a Courier Std typeface. The last sentence switches

to a 12-point font.

XFA Specification
Chapter 27, Rich Text Reference Supported Character Formatting 1160

 with a line-spacing of a half-inch.

 The second sentence widens the glyphs.

 The last sentence shortens the glyphs vertically.

</p>

Produces:

At the container level similar functionality is provided by the fontHorizontalScale and
fontVerticalScale subproperties of the font property, as described in “Selection and Modification of
the Font” on page 57.

Italic
A region of text may be italicized via the use of the [CSS2] font-style style attribute or the i [XHTML]
element.

Example 27.22 Paragraph including italicized text

<p>The<i> second </i>and
 fourth
words are italicized.
</p>

Produces:

At the container level similar functionality is provided by the posture subproperty of the font property,
as described in “Selection and Modification of the Font” on page 57.

Kerning
Since XFA 2.8 it has been possible to enable kerning for a region of text via the kerning-mode style
attribute. This style attribute was introduced in an early draft of the text module for the CSS3 standard but
was subsequently removed. The XFA comittee assumes that it will be reintroduced to CSS in the future.

The base font for this text is Minion Pro italic bold 16pt with a

line-spacing of a half-inch. The second sentence widens

the glyphs. The last sentence shortens the glyphs vertically.

The second and fourth words are italicized.

XFA Specification
Chapter 27, Rich Text Reference Supported Character Formatting 1161

In XFA this attribute must have one of the values defined in the following table. There are more types of
kerning, so more values may be added in future, but only these values are currently defined.

At the container level similar functionality is provided through the kerningMode subproperty of the
font property, as described in “Selection and Modification of the Font” on page 57.

Letter Spacing
Since XFA 2.8 it has been possible to adjust letter spacing for a region of text via the [CSS2]
letter-spacing style attribute. This style attribute adjusts the normal spacing between successive
grapheme clusters. This applies within words and also to spaces between words. It may be a positive value
to increase the spacing or a negative value to decrease the spacing. The default value is 0.

The value of this style attribute is a relative measurement, as defined in “Measurements” on page 36.

Note: CSS also allows the value "normal" and unit types "ex" and "px". XFA does not allow these.

Example 27.23 Paragraph including increased letter spacing

<p>The
second through fourth
words have 0.25em additional letter spacing.</p>

Produces:

At the container level similar functionality is provided through the letterSpacing subproperty of the
font property, as described on “Selection and Modification of the Font” on page 57.

Span
The span element has no formatting effect of its own, but it accepts formatting attributes and applies
those attributes to whatever it encloses, as defined by the [CSS2] and [XHTML] specifications. However
XFA imposes an additional restriction, namely that span elements can not nest.

Subscript
A region of text may have its baseline position lowered within a line of text via the use of the [XHTML] sub
element. The effect is to lower the baseline by 15% of the current font height, and to set a new font height
which is 66% of the current font height.

Example 27.24 Paragraph including a subscripted span of text

<p>This sentence contains
_{lowered text}

value meaning

none No kerning is applied. This is the default.

pair Pair kerning is applied.

The s e c o n d t h r o u g h f o u r t h words have 0.25em additional letter
spacing.

XFA Specification
Chapter 27, Rich Text Reference Supported Character Formatting 1162

on a line.
</p>

Produces:

Subscripts with other baseline and height parameters can be achieved using a combination of the
vertical-align and line-height (or xfa-font-vertical-scale) style attributes.

sub elements must not contain sub or sup elements. In addition they must not contain span elements
that assert vertical-align or font-size.

Superscript
A region of text may have its baseline position raised within a line of text via the use of the [XHTML] sup
element. The effect is to raise the baseline by 31% the current font height, and to set a new font height
which is 66% of the current font height.

Example 27.25 Paragraph including a superscripted span of text

<p>This sentence contains
^{raised text}
on a line.

</p>

Produces:

Superscripts with other baseline and height parameters can be achieved using a combination of the
vertical-align and line-height (or xfa-font-vertical-scale) style attributes.

sup elements must not contain sub or sup elements. In addition they must not contain span elements
that assert vertical-align or font-size.

Tab Stops
Tab stops are not a feature provided by [CSS2] or the [XHTML] specification, however, the following
extensions are provided for setting tab-stops at either a repeating interval or at specific locations. For
compatibility with [XHTML], tabs are invoked using an element with a style attribute. The ASCII tab
character (U0009) is ordinary white space that does not advance to the next tab-stop.

Default tab stops may be set at a repeating interval via the use of a nonstandard [CSS2] style attribute
tab-interval. The default tab stops occur at every multiple of the specified measurement value. However,
these tab stops are in effect only beyond the positions specified by the nonstandard [CSS2] style attribute
tab-stops described below. As a consequence, if no tab stops were defined with the tab stops attribute
then all of the default tab stop positions will be in effect.

Prior to XFA 2.8 default tab stops were always left-aligned, that is, after advancing to the tab stop
subsequent text was left-aligned with the tab stop. Since XFA 2.8 default tab stops have been left-aligned
when the text flows left-to-right and right-aligned when the text flows right-to-left. For Adobe products
the v2.7-layout flag can be used to force the older behavior, as described in “The v2.7-layout flag” on
page 1208.

This sentence contains lowered text on a line.

This sentence contains raised text on a line.

XFA Specification
Chapter 27, Rich Text Reference Supported Character Formatting 1163

This attribute is defined as:

tab-interval:size

where size is a non-zero measurement

Corresponding functionality at the container level is provided by the tabDefault subproperty of the
para property, as described in “Tab Stops” on page 61.

A span element with a style attribute of xfa-tab-count may be used to advance by a specific number
of tab-stops relative to the current position. The span element is recommended to be empty, as any text
or markup that is contained within the span may be discarded by an XFA processing application.

xfa-tab-count:count

where count is a non-negative integer representing the number of tabs-stops to advance

When count is zero the xfa-tab-count attribute has no effect.

Example 27.26 Paragraph using regular tab stops

<p style="tab-interval:0.5in">A
B
C</p>

Produces:

Tab-stops may be set at specific locations via the use of a nonstandard [CSS2] style attribute tab-stops
or, since XFA 2.8, another nonstandard style attribute xfa-tab-stops. Similar functionality is provided at
the container level through the tabStops subproperty of the para property, as described in “Tab Stops”
on page 61.

The new attribute xfa-tab-stops has much greater functionality than tab-stops. However the syntax
for tab-stops is based upon a CSS working draft. The XFA Committee felt that since it was extending the
syntax it should change the name of the attribute as well. Otherwise there would have been a danger of
the old CSS proposal being revived and clashing with the XFA usage. So, tab-stops is restricted to the
old syntax while xfa-tab-stops has the new, extended syntax. The new syntax is a superset of the old
syntax.

Old Syntax for tab-stops (previous to XFA 2.8)

This attribute is defined as:

tab-stops:align measurement[align measurement]...

where align values are described in the following table.

"align" value Effect

 center Center-aligned tab stop

 left Left-aligned tab stop

A B C

XFA Specification
Chapter 27, Rich Text Reference Supported Character Formatting 1164

A center-aligned tab stop causes the text following the tab to be centered on the tab stop position. A
left-aligned tab stop causes the text following the tab to be left-aligned with the tab stop position. A
right-aligned tab stop causes the text following the tab to be right-aligned with the tab stop position. A
radix-aligned tab stop is used with numeric data. It causes the text following the tab to be aligned with its
radix character (for example, in English-speaking locales) left-aligned with the tab stop position. If the text
has no radix character the text is right-aligned with the tab stop position. The determination of the
appropriate radix character for the locale is implementation-defined.

The cursor position starts at the left margin and the tab index starts at zero upon entry to the element that
declares the tab-stops. Within a p element that declares tab-stops, a br element restarts the cursor
position at the left margin and the tab index at zero.

Example 27.27 Paragraph using left and right tab stops

<p style="tab-stops:left 0.5in left 2in">
Charles
Porter

Alice
Crawford
</p>

Produces:

Example 27.28 Paragraph using decimal tab stops

<p style="font-family:courier;tab-stops:decimal 0.5in">
1.2345

99

-.033

$ 17.60 plus tax
</p>

Produces:

Current syntax for xfa-tab-stops

Using xfa-tab-stops it is possible to specify tab stops that have tab leader patterns. Tab leader
patterns are used to fill the otherwise unused space before or after the text aligned at the tab stop. For
example, if a left-aligning tab has a leader pattern specified as repeated dots then the unused space to the
left of the tab stop will be filled by dots.

 right Right-aligned tab stop

 decimal Tab-stop that aligns content around a radix point

"align" value Effect

Charles Porter
Alice Crawford

 1.2345
99
-.033

$ 17.70 plus tax

XFA Specification
Chapter 27, Rich Text Reference Supported Character Formatting 1165

The syntax for the value of xfa-tab-stops is the same as the syntax for the tabStops attribute of the
para element, which is described in “Tab Leader Pattern” on page 63.

As with tabStops, alignment in the vertical direction occurs at the text baseline. Leader text will normally
have the same baseline as the text that precedes and follows it. Rules are centred on the baseline. However
rich text can specify a baseline offset for the leader to move this alignment position.

Underline and Strikethrough
A region of text may be underlined or struck through using the [CSS2] text-decoration style attribute.
The deprecated u and s HTML elements must not be supported by XFA applications.

The [CSS2] text-decoration style attribute only provides for a single-continuous underline. This
specification allows for several nonstandard extensions to the [CSS2] text-decoration style attribute,
to allow for combinations of single and double continuous and word-broken underlines.

Underlining is rendered on the baseline in the same color as the associated text.

This attribute is defined as:

text-decoration:decorationStyle [line-through]

or

text-decoration: line-through [decorationStyle]

The following table describes the decorationStyle values.

Note that double word has whitespace between the words, not a hyphen.

Example 27.29 Paragraph using underline

<p>The
second and
fourth
words are underlined.
</p>

Produces:

Example 27.30 Paragraph using line-through and underline

<p>The
second

"decorationStyle" value Produces …

underline Single continuous underline

word Single underline that breaks at word boundaries

double Double continuous underline

double word Double underline that breaks at word boundaries

The second and fourth words are underlined.

XFA Specification
Chapter 27, Rich Text Reference Retaining Consecutive Spaces (xfa-spacerun:yes) 1166

and fourth
words appear with strikethrough.
</p>

Produces:

The above example also demonstrates that a region of text may have both an underline and strikethrough
by applying the [CSS2] text-decoration style attribute with multiple values.

At the container level similar functionality is provided by the underline, underlinePeriod,
lineThrough, and lineThroughPeriod subproperties of the font property, as described in
“Selection and Modification of the Font” on page 57.

Retaining Consecutive Spaces (xfa-spacerun:yes)
Normally, an XFA processing application removes consecutive spaces, as described in “White Space
Handling” on page 145; however, this behavior can be overridden in rich text.

A run of consecutive normal spaces may be represented via the use of a span element in conjunction with
a nonstandard [CSS2] style attribute xfa-spacerun. An XFA processing application that supports this
feature must interpret each non-breaking-space character within the span as representing a normal space
character (character 32).

In order to allow this span element to produce an approximate visual rendering, when processed by a
browser or other [XHTML] processing application, the span element may contain a mixture of
non-breaking-space and normal space characters. While the application that supports this
xfa-spacerun style must interpret each non-breaking-space character within the span as representing a
normal space character (character 32), the browser or other [XHTML] processing application will likely
ignore the xfa-spacerun style and provide a rendering that may be visually similar.

Example 27.31 Paragraph using space runs

<p style="font-family:Courier">
Two spaces here:
and three spaces here:
 before the next word.</p>

Note: The entity is a non-breaking space.

Produces:

The same result as above is produced by an application that supports this feature regardless of whether
the span element contains non-breaking-space or normal-space characters.

Example 27.32 Same result as preceding using normal spaces

<p style="font-family:Courier">Two spaces here:

The second and fourth words appear with strikethrough.

Two spaces here: ; and three spaces here: before the next word.

XFA Specification
Chapter 27, Rich Text Reference Retaining Consecutive Spaces (xfa-spacerun:yes) 1167

and three spaces here:
 before the next word.</p>

Produces:

An application that supports this feature must process any character other than a non-breaking-space or
normal-space character as normal text content.

Example 27.33 xfa:spacerun is ignored for non-space characters

<p style="font-family:Courier">All of
this is ordinary text.</p>

Produces:

Two spaces here: and three spaces here: before the next word.

All of this is ordinary text.

XFA Specification
Chapter 27, Rich Text Reference Embedded Object Specifications 1168

Embedded Object Specifications
The span elements within rich text may contain attributes that reference external plain-text or rich-text
objects. Such external references are resolved during the rendering process and the referenced data is
inserted at the point where the external reference appears. See “Rich Text That Contains External Objects”
on page 221.

<span

xmlns:xfa="http://www.xfa.org/schema/xfa-data/1.0/"
xfa:embedType="uri | som"
xfa:embed=”<SOM expr> | <uri>”
xfa:embedMode=”raw | formatted”

/>

xfa:embedType
An attribute that specifies the type of reference in xfa:embed.

som

The value of xfa:embed is a SOM expression.

uri

The value of xfa:embed is a URI.

xfa:embed
An attribute that provides a SOM or URI reference to the text being embedded.

xfa:embedMode
An attribute that specifes whether styling markup specification in the imported text should be respected.

formatted

Inserts the object with text styling preserved.

raw

Inserts the object, ignoring text styling.

Version Specification
When rich text is contained in the form template, the rich text grammar normally matches that specified
by the version of the XFA specification matching the rest of the template. However it is possible for
fragments of rich text to be supplied to an XFA processor as data. Such fragments may conform to an older
version of the specification. In support of such fragments, the XFA rich text grammar includes extra
markup that may be used to specify the version of rich text supported and the version of the API used to
produce the rich text. The extra information is expressed as a pair of namespaced attributes on the HTML
body element.

XFA Specification
Chapter 27, Rich Text Reference Version Specification 1169

Example 27.34 Rich text using version declarations

<body xfa:APIVersion="1.3.1253.0"
xfa:spec="2.0.2"
xmlns="http://www.w3.org/1999/xhtml"
xmlns:xfa="http://www.xfa.org/schema/xfa-data/1.0/">
<p>This is a paragraph of text.</p>

</body>

The intent of these attributes is to provide a way for:

● Correlating updates to this specification with the software that processes the rich text

● Allowing future revisions of the software to apply special processing to the rich text that was produced
by earlier releases of the software

Both attributes take version identifiers as values.

xfa:APIVersion
A concatenation of numeric fields that specify the version of the software used to produce the enclosing
rich text. Numeric fields are separated from one another with periods, and each numeric field contains a
whole number. The larger the number, the more recent the version. The further left the field, the more
significant it is.

When comparing two version identifiers, if one identifier has fewer fields than the other, the one with
fewer fields must be extended by padding it on the right with fields containing “0”.

The syntax of xfa:APIVersion is

xfa:APIVersion=releaseID

where releaseID is a version identifier representing the version of the software that produced the
document.

If the xfa:APIVersion attribute is omitted from rich text, it should be assumed that the application
producing the rich text has used markup attributes that correspond to the latest revision of this
specification (XFA Specification).

The features described by this specification are supported by Adobe XFA rich text processing software
bearing an xfa:APIVersion attribute of 2.7.8021.0 or later.

Note: LiveCycle Designer ES2 writes out an xfa:APIVersion value of 3.1.9078.0, even though this
specification has not defined any changes to rich-text since XFA 2.7. The Adobe rich-text code may,
however, have subsequently been altered to fix bugs.

xfa:spec
The version of the XFA specification to which the rich text string complies.

spec=revisionID

 1170

Part 4: Adobe Implementation

Each chapter in this part contains reference material pertaining to the Adobe implemetation of XFA. This
material is provided to assist in using, understanding, and interoperating with Adobe products. However, it
is not considered part of the XFA grammars.

 1171

28 Adobe Implementation

This appendix discusses details of the Adobe XFA implementation. This information is of interest both to
those who wish to create XFA forms and those who wish to create an XFA processor.

The Adobe implementation described here corresponds to the following products:

● LiveCycle ES2

● Adobe LiveCycle Designer ES2 9

Note: There was no release of LiveCycle or LiveCycle Designer ES2 for XFA 3.0. The releases listed above
handle both XFA 3.1 and XFA 3.0. On the other hand, there is no release of Acrobat or Adobe Reader
for XFA 3.1.

Although these products were created to implement the XFA 3.1 specification, Adobe’s implementation
does not conform in every way to this specification. The section “Non-conformance” on page 1172 lists
ways in which Adobe’s implementation is known to be non-conforming.

This specification allows certain choices to be made by the implementer of the XFA processor. The section
“Implementation-specific behavior” on page 1177 lists particular choices made by Adobe. Anyone who
creates XFA forms should be aware that non-Adobe XFA processors may make different choices.

Finally, an XFA template may contain a processing instruction which provides hints toXFA processors to
maximize backward compatibility. Some keywords for this processing instruction are applicable to XFA
processors generally, and are formally part of the XFA standard. However Adobe also defines some
implementation-specific keywords which will probably be ignored by non-AdobeXFA processors.
Non-Adobe XFA processors may in turn define their own implementation-specific keywords. The complete
set of keywords defined by this standard and/or used by Adobe products is described in “Processing
instruction for backward compatibility” on page 1204.

XFA Specification

Non-conformance 1172

Chapter 28, Adobe Implementation

Non-conformance
This section lists behaviors of Adobe products that deviate from the XFA specification.

Incorrect default values for moduleWidth and moduleHeight in barcodes

In most circumstances module width and height are controlled by the dimensions of the field containing
the barcode. In the alternative (when the field is growable) the module width and/or height may be
specified explicitly via attributes on the barcode element. However when the field is growable in width
and the module width is not specified, the module width is supposed to default to 0.25 mm. Likewise
when the field is growable in height and the module height is not specified, the module height is
supposed to default to 2.5 mm. The Adobe implementation does not default these values as specified. It
effectively defaults module width and height to 0, with the side-effect of making the barcode invisible.

Use of "$" in JavaScript expressions

In the Acrobat family of products the JavaScript implementation understands "$" as a synonym for the
keyword this. Thus in Acrobat the following script works, even though the script does not conform to the
XFA specification.

<script contentType="application/x-javascript">
myFont = $.font; // non-conformant, Acrobat only

</script>

Caution: This syntax is not supported by other Acrobat products, including LiveCycle, nor by third-party
implementations of XFA. In particular, if LiveCycle attempts to run the same script on the server
the attempt fails.

Adobe recommends that form creators avoid the use of "$" in JavaScript expressions. The above example
should be rewritten as follows.

<script contentType="application/x-javascript">
myFont = this.font; // portable

</script>

Note that this does not affect expressions evaluated by the resolveNode() or resolveNodes()
methods, which always use "$" regardless of the scripting language. Thus the following is perfectly
correct and portable.

<script contentType="application/x-javascript">
myFont = xfa.resolveNode("$.font"); // portable

</script>

Rich text processing

Adobe products have had bugs affecting the appearance of rich text. Form authors may have adjusted
their rich text to compensate for those bugs. Adobe products reproduce the old, buggy, behavior when
processing older forms in order to preserve the exact appearance of rich text. This behavior can be
overridden by markup within the rich text itself or by processing flags in the template. For more
information see “Backwards compatibility when processing rich text” on page 1188.

XFA Specification

Non-conformance 1173

Chapter 28, Adobe Implementation

Traverse operations restricted to a subset

Adobe products only support the values next and first for the operation attribute of a traverse
element. Any traverse element with another value for operation is ignored. This restriction was not
documented prior to XFA 2.8 but has been in effect since the beginning.

Overline not implemented

Adobe products ignore the overline attribute on the font element. The text is rendered without an
overline.

Locale set typefaces element

The typefaces element and its content were added to the XFA locale set specification in version 2.5,
however Adobe products did not respect this content until the XFA 2.7 release. To ensure processing of
this content use the namespace http://www.xfa.org/schema/xfa-locale-set/2.7/(or a later
version) for the locale set packet. See “Font Mapping in LiveCycle Forms ES2” on page 1189.

Pagination override in LiveCycle Forms ES2

LiveCycle Forms ES2 allows the pagination of the form to be overridden using a setting in its configuration
packet. Since XFA 2.7 (LiveCycle ES 8.2) the old pagination element has been deprecated in favor of a
new paginationOverride element. The content of the paginationOverride element is defined as
follows:

none

Honors the pagination specified in the form. This is the default. For forms in which the pageSet
has a relation property of orderedOccurrence this results in simplex printing.

forceDuplex

Prints the document two-sided regardless of the design of the form. The imposition (long edge or
short edge) is as specified by the form.

forceDuplexLongEdge

Prints the document two-sided with the pages flipped over the long edge.

forceDuplexShortEdge

Prints the document two-sided with the pages flipped over the short edge.

forceSimplex

Prints the document single-sided.

XFA Specification

Non-conformance 1174

Chapter 28, Adobe Implementation

The setting of paginationOverride affects certain system views which can be referenced by
relevant properties, as described in “Combining multiple pagination strategies” on page 302. The
mapping is described by the following table.

Non-numeric strings in numeric fields

All Adobe products evaluate a non-numeric string in a numeric field as zero. This conforms to version 2.6
and later of the XFA specification but deviates from prior versions. See “About Picture Clauses” on
page 156.

Captions in XFAF forms

Members of the Acrobat family of products do not support captions on button and barcode fields for XFAF
forms (page 32).

Font metrics

Many Adobe products use a common text engine (AXTE) for laying out text. Starting with the XFA 2.2
generation (corresponding to Acrobat 7) Adobe products adopted this engine for laying out rich text from
XFA forms. This engine includes heuristics based upon Adobe’s long experience with fonts in the field. For
example, the line gap value in many installed fonts is unreliable, so the text engine ignores the
font-supplied line gap and instead uses 20% of the font height. The behavior of the text engine, as it
relates to XFA, is described in “AXTE Line Positioning” on page 1463.

Font lineThroughPeriod property

Adobe products ignore the value of the lineThroughPeriod property of font. When strikethrough is
displayed the line crosses word boundaries.

Font-family in rich text

The font-family attribute in rich text can legally specify multiple family names. Adobe products
processing XFA rich text ignore all but the first name. See “Font” on page 1157.

Font-stretch in rich text

The font-stretch attribute in rich text is not implemented by Adobe products when processing XFA
rich text. See “Font” on page 1157.

value of paginationOverride system view

none no system view

forceSimplex simplex

forceDuplex duplex

forceDuplexLongEdge duplex

forceDuplexShortEdge duplex

XFA Specification

Non-conformance 1175

Chapter 28, Adobe Implementation

Font-weight in rich text

The font-weight attribute in rich text can legally specify numeric weights. This is not implemented by
Adobe products when processing XFA rich text. See “Font” on page 1157.

HAlign and vAlign on container elements

XFA defines hAlign and vAlign properties on container elements, which are redundant given that the
same properties are specified on the para element. Since XFA 2.4 these properties have been deprecated
on containers. Adobe products have always ignored these properties on containers. See “Template
Syntax” on page 1494.

HScrollPolicy value "on"

Adobe products do not support the value on for the hScrollPolicy attribute of textEdit,
passwordEdit, numericEdit, and dateTimeEdit elements. If this value is supplied the application
takes the default (auto) behavior.

Keep intact, next, and previous pageArea

Adobe products do not support the value pageArea for the intact, next, or previous properties of
keep. If the value pageArea is specified they take the default behavior. (Prior to XFA 2.8 this note said
only that pageArea was not supported for intact but in fact it has never been supported for any of the
keep properties.)

Rate on stipple element

Adobe products do not fully implement the rate attribute on the stipple element. The values 25, 50,
and 75 produce blended colors. Other values (including 0) are treated as 100, that is, they produce pure
stipple color.

Also, the specified background color is not used. Instead of blending the foreground color with the
background color, Adobe products blend the foreground color with white. This behavior has been
consistent across all releases.

Submitting data via e-mail

When submitting data via e-mail members of the Acrobat family of products do not support the use of
XML encryption or an XML wrapper. See “Submitting Data and Other Form Content via HTTP” on
page 443.

Stateless property on the script element

XFA defines a stateless property on the script element. Since XFA 2.4 this property has been
deprecated. Adobe products have always ignored this property. See “Template Syntax” on page 1494.

XFA Specification

Non-conformance 1176

Chapter 28, Adobe Implementation

Lower() and Upper() functions in FormCalc

The Lower() and Upper() functions in FormCalc only work for character codes in the ASCII, Latin1, and
full-width subranges of the Unicode 2.1 character set. Characters outside these subranges are never
converted. See “Lower()” on page 1087 and “Upper()” on page 1098.

WordNum() function in FormCalc

The WordNum() function in FormCalc ignores the locale identifier parameter. The function always returns
an English word number. See “WordNum()” on page 1099.

XFA Specification

Implementation-specific behavior 1177

Chapter 28, Adobe Implementation

Implementation-specific behavior
This section lists behaviors of Adobe products that are allowed by the XFA specification but may differ
from other conforming implementations.

Order of event processing

This specification dictates some aspects of the order in which events execute, but does not dictate all the
details. Specifically, it does not dictate the order of execution when multiple event objects are activated by
the same trigger. This section describes the current Adobe implementation of this processing. This
implementation is not considered to be ideal and may change in future, but if it does Adobe will
implement a compatibility flag (see “Processing instruction for backward compatibility” on page 1204) for
those who rely on this behavior.

There are two steps to consider, registration and execution.

Registration order

The Adobe implementation registers event objects defined in the template as they occur in document
order (depth-first in the Form DOM). This is not necessarily the same as the order of the containers,
because event children can precede or follow other children of the container.

Example 28.1 Event registration order

<subform name="root" …>
<pageSet …/>
<event name="A" activity="ready" ref="$form" …/>
<subform …>

<event name="B" activity="ready" ref="$form" …>
<field …>

<event name="C" activity="ready" ref="$form" …>
</field>
<event name="D" activity="ready" ref="$form" …>
<field …>

<event name="E" activity="ready" ref="$form" …>
</field>
<event name="F" activity="ready" ref="$form" …>

</subform>
<event name="G" activity="ready" ref="$form" …>

</subform>

In this example the order of registration is A, B, C, D, E, F, G. Note that A and G are siblings (both children of
the same subform) but because there are other events declared in between they are not registered
together. The same can be said of B and F.

Execution order

As they are registered, events are enqueued according to the following algorithm.

1. If the list is empty, make the event the first (and only) on the list.

2. If the list is not empty, insert the event after the first event on the list (i.e. in the second position).

XFA Specification

Implementation-specific behavior 1178

Chapter 28, Adobe Implementation

Then the individual event objects are executed in order from the head of the list to the tail.

Continuing Example 28.1, the queue starts empty and grows as follows:

1. A

2. A B

3. A C B

4. A D C B

5. A E D C B

6. A F E D C B

7. A G F E D C B

So when the ready event on $form triggers, the order of execution is A G F E D C B.

Form DOM is sparse

Within the Form DOM (but not other DOMs) nodes are only instantiated as needed. This can be visible to
scripts. See “The Form DOM” on page 81 for more information.

Rich text in data not enclosed within an element

It is possible to supply an XFA processor with data containing rich-text which is not enclosed properly
within a single element. See “Illegal rich-text data with no outer element” on page 219 for an example. It is
up to the XFA processor how to react when supplied with such improper data. Adobe XFA processors
process the rich-text properly despite the lack of an enclosing element.

Multiselect choicelist data containing invalid entries

When Acrobat loads data and merges it into a multiselect field, and the data contains values that are not
on the list of allowed values, it initially preserves those values even though it does not display them.
However if the user makes any change to the field the unlisted values are silently discarded. For more
information see “Field using a multivalued choice list” on page 198.

Controlling print scaling in Acrobat

Acrobat defaults to scaling printed documents to fit the physical printer page. This is usually not
permissible when printing a bar code. The user can use the print dialog to turn off scaling, however users
generally don’t know that they should do this or how to do it.

Acrobat 9.1 supports an Adobe extension to [PDF] which allows the PDF document to change the default
print scaling behavior for the document from scaling to non-scaling, and another that allows the PDF
document to prevent the user from overriding the default scaling behavior. In combination these settings
can be used to ensure that when the bar code is printed it is printed at the intended scale. However
versions of Acrobat older than 9.1 ignore the new settings.

XFA Specification

Implementation-specific behavior 1179

Chapter 28, Adobe Implementation

In XFA 3.0 the configuration packet for LiveCycle was extended with printScaling and enforce
options which cause LiveCycle to generate PDF documents containing these settings.

Adhering objects that are too big for the content area

When adjacent adhering objects are too big for the current content area, the implementor has the choice
of clipping them to fit or allowing the content to run outside the area. Adobe products allow the content
to run outside the content area. For more information see “Adhesion” on page 305.

Barcode text encodings

All Adobe XFA processors implement the following text encodings (as specified by the charEncoding
attribute) for barcodes that allow a choice of text encodings:

Big-Five, GB18030, GBK, KSC-5601, ISO-8859-1 through ISO-8859-9, ISO-8859-13,
ISO-8859-15, Shift-JIS, UCS2, UTF-8, UTF-16

New variables dataset

Since XFA 2.8 Adobe products have created a custom dataset called variables. This is used for holding
state variables pertaining to the client-server relationship. Such data can be altered, and new variables
added, at run time on the client without breaking certification of the form. If a variable is called x then it is
accessible using the SOM expression xfa.datasets.variables.x or $datasets.variables.x.
For more information see “Adobe Variables Set Specification” on page 1449.

Multiple default submit URLs

The submit element in the template can specify a target URL. But what happens when it does not is up to
the implementation. The Acrobat family of products looks for a default submit URL in the LiveCycle ES2
Config DOM.

Since XFA 2.8 (Acrobat 9) this feature has been extended to allow the specification of an ordered list of
submit URLs. In addition a variable called submitUrlIndex is provided in the variables dataset. The
submitUrlIndex variable controls which of the supplied submit URLs is used as the default.

For more information see “Adobe Variables Set Specification” on page 1449. See also the description of the
submitURL element in “Adobe Config for LiveCycle ES2 Reference” on page 1293.

Submit text encodings

The Acrobat family of products implements the following text encodings for a submit operation:

Big-Five, GB18030, GBK, KSC-5601, Shift-JIS, UTF-8, UTF-16

The LiveCycle ES2 family of products implements all of the above plus the following for submit operations:

ISO-8859-1 through ISO-8859-9, ISO-8859-13, ISO-8859-15, UCS2

LangRef.ConfigPresent.fm:element-printscaling
LangRef.ConfigPresent.fm:element-enforce

XFA Specification

Implementation-specific behavior 1180

Chapter 28, Adobe Implementation

Support for multiple signature appearances

Since XFA 2.8 the grammar has supported the use of multiple signature appearances by a single user.
However support for this functionality in XFA processors is optional. The Acrobat family of products does
support this functionality. The same mechanism is used for the XFA feature as is used for the similar PDF
feature (in Adobe Extensions Level 3), so the same set of signatures is available both to PDF and XFA forms.

For more information about the PDF grammar see table 8.83 in [PDF].

Handling of lockDocument auto

In XFA 2.8 a new lockDocument element was added to the template grammar. This element controls the
locking of the whole document when an XML digital signature is applied. When this element is omitted or
its value is auto the behavior is delegated to the application.

When the behavior is delegated, the Acrobat family of products employs a heuristic. If the form contains
any hidden fields locking is not permitted. Otherwise the user is prompted with a choice to lock or not to
lock. In either case the required attribute of lockDocument is ignored.

Note that this heuristic allows the new locking facility to be used even with older forms using versions of
XFA prior to 2.8. However the heuristic test - no hidden fields - is intended to exclude forms with fields
which are unknown to the user but that will subsequently be updated with the result of a calculation or
with data from a web service. Locking would prevent the field from updating, but since the field is hidden
the user has no way to know that locking would be a bad idea. The same heuristic also excludes forms
imported from FormFlow 99. This is good because those forms cannot tolerate being locked either.

For more information about the use of lockDocument see “Respecting the Signed State of a Form” on
page 554.

Image formats

Images are used in several different contexts. The supported set of image types differs slightly depending
upon the context, but in all image contexts Adobe products handle formats defined by the [JPEG], [PNG],
[TIFF], [GIF] and [BMP]standards.

In addition, LiveCycle Designer ES2 can accept [EPS] format images for inclusion in boilerplate. When
incorporating an EPS image, LiveCycle Designer ES2 rasterizes the image, encodes the rasterized image in
JPEG, and stores the JPEG data inline within the image element. Members of the Acrobat family do not
support EPS as data in image fields. LiveCycle Form Server does support EPS format in this context. When
Form Server renders the form as a PostScript file for printing the EPS image is passed through in its original
vector form. In other contexts it is rasterized.

Shell PDF generation and use

The XFA configuration DOM contains options which together control the generation of these types of
documents.

dynamicRender

XFA Specification

Implementation-specific behavior 1181

Chapter 28, Adobe Implementation

This was first supported in the Adobe implementation of XFA Version 2.2, corresponding to
Designer 7, LiveCycle 7 and Acrobat 7.0. The syntax is as follows:

<config>
 <acrobat>
 <acrobat7>
 <dynamicRender>forbidden|required</dynamicRender>
 </acrobat7>
 </acrobat>
</config>

renderPolicy

This was first supported in the Adobe implementation of XFA Version 2.4, corresponding to
Designer 7.1 and Acrobat/Reader 7.0.5. The syntax is as follows:

<config>
 <present>
 <pdf>
 <renderPolicy>server|client<renderPolicy>
 </pdf>
 </present>
</config>

XFA Specification

Implementation-specific behavior 1182

Chapter 28, Adobe Implementation

The following table describes the behavior of these two options together.

Note: When renderPolicy is set to client, LiveCycle sets the needsRendering key (in the
AcroForms dictionary) to true. This is used internally to manage the render-once scenario
described above.

The following table shows what kind of form LiveCycle Designer ES2 generates under different
circumstances.

dynamicRender
value renderPolicy set to client renderPolicy set to server

required LiveCycle generates a shell PDF
containing a dynamic XFA form but
only a stub in place of the PDF page
content. The form is not useable
with Acrobat 6 or Acrobat 7.0.
Acrobat/Reader 7.0.5 and newer
versions of the Acrobat family
render the boilerplate on open and
re-render it whenever necessary as
subforms are added and removed.

LiveCycle generates a full PDF containing a
dynamic XFA form and a rendering of the
page content in PDF. The form is not
useable in Acrobat 6, which does not
support dynamic forms. Newer members of
the Acrobat family re-render the form on
open and again whenever necessary as
subforms are added and removed.

Note: As this mode wastes cycles on the
server without any benefit to the
client, it is not used in a default
LiveCycle ES 8 installation. It is only
available by hand-modifying the
configuration.

forbidden LiveCycle generates shell PDF
containing a static XFA form. The
form is not usable with Acrobat 6 or
7.0. Acrobat/Reader 7.0.5 and
newer versions of the Acrobat
family render the boilerplate from
the XFA template on open.
However, when they save the form
they convert it into a full PDF file by
inserting the PDF page content and
removing the NeedsRendering key.
On subsequent re-opens they
redraw the boilerplate using the
PDF page content, hence the form
is rendered only once.

LiveCycle generates full PDF containing a
static XFA form. The form is usable with
Acrobat 6 and with all newer members of
the Acrobat family. When the application
draws the boilerplate it uses the PDF page
content.

Target
Acrobat
version Target PDF version Type of PDF

renderPolicy
value

dynamicRender
value

Acrobat 9.1 1.7 with Adobe
Extensions Level 6

Shell PDF client required

Acrobat 9 1.7 with Adobe
Extensions Level 3

Shell PDF client required

XFA Specification

Implementation-specific behavior 1183

Chapter 28, Adobe Implementation

Note: Acrobat 9.1 corresponds to XFA 3.0. There was no release of LiveCycle Designer for XFA 3.0.
LiveCycle Designer ES2 handles both XFA 3.1 and XFA 3.0.

LiveCycle has a forms option called RenderAtClient which can be true, false, or auto. In addition
the forms options can specify either a target version of Acrobat or a target version of PDF.

The following table shows what kind of form LiveCycle generates for different targets when
RenderAtClient is true. The forms being used may be static or dynamic forms.

Note: Acrobat 9.1 corrresponds to XFA 3.0. There was no release of LiveCycle for XFA 3.0. LiveCycle ES2
handles both XFA 3.1 and XFA 3.0.

Acrobat 8.1 1.7 with Adobe
Extensions Level 1

Shell PDF client required

Acrobat 8 1.7 Shell PDF client required

Acrobat 7.0.5 1.6 with XFA 2.4 Full PDF N/A required

Acrobat 7.0 1.6 with XFA 2.2 Full PDF N/A required

Acrobat 6 1.5 Full static PDF or XFAF N/A N/A

Target
Acrobat
version Target PDF version Type of PDF

renderPolicy
value

dynamicRender
value

Acrobat 9.1 1.7 with Adobe
Extensions Level 6

Shell PDF client required

Acrobat 9 1.7 with Adobe
Extensions Level 3

Shell PDF client required

Acrobat 8.1 1.7 with Adobe
Extensions Level 1

Shell PDF client required

Acrobat 8 1.7 Shell PDF client required

Acrobat 7.0.5 1.6 with XFA 2.4
(a.k.a. "PDF 1.6.5")

Full PDF client required

Acrobat 7.0 1.6 with XFA 2.2 Full PDF server required

Acrobat 6 1.5 This combination is not permitted.

Target
Acrobat
version Target PDF version Type of PDF

renderPolicy
value

dynamicRender
value

XFA Specification

Implementation-specific behavior 1184

Chapter 28, Adobe Implementation

When RenderAtClient is false the effect is as shown in the following table. Only static forms can be
used in this case.

Note: Acrobat 9.1 corrresponds to XFA 3.0. There was no release of LiveCycle for XFA 3.0. LiveCycle ES2
handles both XFA 3.1 and XFA 3.0.

When RenderAtClient is not specified or is equal to auto, LiveCycle uses the following logic to decide
what value to use internally for RenderAtClient.

1. Look for a defaultPDFRenderFormat processing instruction inside the XDP. If its value contains the
substring dynamic (for example acrobat7.0.5dynamic) then set RenderAtClient to true;
otherwise set it to false.

2. If defaultPDFRenderFormat is not specified, search for a dynamicRender element in the XDP. If its
value is set to required then set RenderAtClient to true; otherwise set it to false.

3. If none of the above is specified then set RenderAtClient to false.

Version of PDF and XFA generated by LiveCycle

LiveCycle has a render API option called PDFVersion to specify the target version of PDF. When
PDFVersion is not supplied or has the value auto, LiveCycle uses the following logic to calculate the
target PDF version.

1. If AcrobatVersion is specified as a render API option, map the Acrobat version to a PDF version
using the table “Mapping of Acrobat Version Code to PDF Version Number” on page 1185.

2. If neither is specified, look for the defaultPDFRenderFormat processing instruction inside the XDP.
Map the Acrobat version to a PDF version using the table “Mapping of Acrobat Version Code to PDF
Version Number” on page 1185. If the processing instruction is present but it does not match any row
in the table use PDF version 1.7 with Adobe Extensions Level 1.

Target
Acrobat
version Target PDF version Type of PDF

renderPolicy
value

dynamicRender
value

Acrobat 9.1 1.7 with Adobe
Extensions Level 6

Full PDF or XFAF server forbidden

Acrobat 9 1.7 with Adobe
Extensions Level 3

Full PDF or XFAF server forbidden

Acrobat 8.1 1.7 with Adobe
Extensions Level 1

Full PDF or XFAF server forbidden

Acrobat 8 1.7 Full PDF or XFAF server forbidden

Acrobat 7.0.5 1.6 with XFA 2.4
(a.k.a. "PDF 1.6.5")

Full PDF or XFAF server forbidden

Acrobat 7.0 1.6 with XFA 2.2 Full PDF or XFAF server forbidden

Acrobat 6 1.5 Full PDF or XFAF server forbidden

XFA Specification

Implementation-specific behavior 1185

Chapter 28, Adobe Implementation

3. If defaultPDFRenderFormat is not specified, look for the XFA generator processing instruction.
Map the generator name to a PDF version using the table “Mapping of XFA Generator Code to PDF
Version Number” on page 1185.

4. If none of the above is specified, use PDF version 1.7 with Adobe Extensions Level 1.

Mapping of Acrobat Version Code to PDF Version Number

Note: There was no release of the Acrobat family corresponding to PDF Version 1.7 with Adobe
Extensions Level 2. Both Acrobat/Reader 8.1 and Acrobat/Reader 8.1.1 correspond to PDF
Version 1.7 with Adobe Extensions Level 1.

Mapping of XFA Generator Code to PDF Version Number

Note: There is no generator code corresponding to XFA 3.0 because there was no release of Designer for
XFA 3.0.

Support for authentication during client-server interchange

Since XFA 2.8 the Connection Set packet has been able to carry policy descriptions for input and output
documents using the grammar defined in [WS-Policy]. This is a generalized facility which can describe

Acrobat version code PDF version

acrobat91 1.7 with Adobe Extensions Level 6

acrobat90 1.7 with Adobe Extensions Level 3

acrobat811 1.7 with Adobe Extensions Level 1
(see note)

acrobat81 1.7 with Adobe Extensions Level 1

acrobat80 1.7

acrobat705 1.6 with XFA 2.4

acrobat7 1.6 with XFA 2.2

acrobat6 1.5

XFA generator code PDF version

AdobeLiveCycleDesignerES_V9.0 1.7 with Adobe Extensions Level 6

AdobeLiveCycleDesignerES_V8.2 1.7 with Adobe Extensions Level 3

AdobeLiveCycleDesignerES_V8.1.2 1.7 with Adobe Extensions Level 2

AdobeLiveCycleDesignerES_V8.1 1.7 with Adobe Extensions Level 1

AdobeLiveCycleDesigner_V8.0 1.7

AdobeDesigner_V7.1 1.6 with XFA 2.4

AdobeDesigner_V7.0 1.6 with XFA 2.2

AdobeDesigner_V6.0 1.5

XFA Specification

Implementation-specific behavior 1186

Chapter 28, Adobe Implementation

policies for a wide range of authentication methods. Note that the actual authentication is carried out by
the server. The policy description merely tells the client what kind(s) of authentication to ask for.

In this release Adobe products only support the password authentication method. This method is
supported at both the transport (HTTPS) and SOAP levels. The supported subset of WS-Policy is described
by the following skeleton.

<wsp:Policy xmlns:wsp="http://schemas.xmlsoap.org/ws/2004/09/policy"
 xmlns:sp="http://schemas.xmlsoap.org/ws/2005/07/securitypolicy">
 <sp:TransportBinding> <!-- transport-layer authentication -->
 <wsp:Policy>
 <sp:TransportToken>
 <wsp:Policy>
 <sp:HttpsToken>
 <wsp:Policy>
 <wsp:ExactlyOne> <!-- only included if multiple children -->
 <sp:HttpBasicAuthentication/>
 <sp:HttpDigestAuthentication/>
 <sp:RequireClientCertificate/>
 </wsp:ExactlyOne>
 </wsp:Policy>
 </sp:HttpsToken>
 </wsp:Policy>
 </sp:TransportToken>
 </wsp:Policy>
 </sp:TransportBinding>
 <sp:SupportingTokens> <!-- SOAP-layer authentication -->
 <wsp:Policy>
 <wsp:ExactlyOne> <!-- only included if multiple children -->
 <sp:UsernameToken/>
 <sp:UsernameToken>
 <wsp:Policy>
 <sp:HashPassword/>
 </wsp:Policy>
 </sp:UsernameToken>
 </wsp:ExactlyOne>
 </wsp:Policy>
 </sp:SupportingTokens>
</wsp:Policy>

LiveCycle Designer ES2 may need to supply credentials when challenged by a protected WSDL (web
service) access. It searches the Windows certificate store and its own Designer digital ID store for a
matching credential. If this fails it prompts the form author for the credential.

When a member of the Acrobat family attempts to use a protected WSDL access it tries to satisfy the
demand with already established credentials before prompting the user. First the application searches for
credentials already established in the session context. If that fails in most cases it calls upon the operating
system’s credentials store. The exception is that when running as a FireFox plug-in it calls upon FireFox’s
cross-platform credentials store. Either way if the credentials store cannot supply the needed credential
the credentials store prompts the user through its own UI.

Note that both the Windows and FireFox credentials stores can automatically select a credential from
among those in the store when possible. However in both cases the default behavior is to make the user
select a certificate manually. The option to select a certificate automatically is enabled as follows:

XFA Specification

Implementation-specific behavior 1187

Chapter 28, Adobe Implementation

● In Windows XP the option is controlled via the Internet Options dialog, which is accessible either
through the Tools > Internet Option... menu item in Internet Explorer or through the Windows Control
Panel. In the Security pane select the Custom Level... button and scroll down to the preference in the
Miscellaneous group labelled "Don’t prompt for client certificate selection when no certificates or only
one certificate exists". Set this by clicking on Enable.

● In FireFox 3, use the Tools > Options... menu item to bring up the Options dialog. In the Advanced
section there is an Encryption panel. In the Encryption panel, find the Certificates group. Within that
group find the radio buttons labelled "When a server requests my personal certificate:" and click on
"Select one automatically".

Since Adobe currently only supports password authentication the credentials store can obtain new
credentials merely by prompting for name and password strings. Adobe does not place restrictions upon
the characters in the strings, except that the strings must not contain embedded NUL (U+0000) characters.
However the credentials store may impose additional restrictions. For example its UI may not support
complex scripts such as Thai, or it may exclude metacharacters such as Backspace (U+0008).

These authentications, of the client to the server, are controlled by the policy contained in the
effectiveInputPolicy element. Authentications in the other direction (of the server to the client) are
supposed to be controlled by the contents of the effectiveOutputPolicy element. However, Adobe
products currently do not support authentication in that direction.

Adobe products also do not currently support features of WS-Policy for message integrity checking or
enhanced privacy protection.

When a member of the Acrobat family is running standalone (i.e. not as a browser plug-in) it restricts the
use of client SSL certificates to trusted documents. This is to prevent untrusted documents from
authenticating arbitrary network requests. When running as a plug-in this is not necessary because the
security framework of the browser restricts network requests to the server which supplied the document.
By contrast when running standalone the document is in a file which could have come from anywhere.

Members of the Acrobat family of products apply their standard security model at the transport (HTTPS)
layer, including restrictions upon cross-domain access. For more information see [Acrobat-Security].

Compression of XFA forms packaged inside PDF

PDF supports compression at several levels. When generating a PDF document containing an XFA form
LiveCycle Form Server ES2 can optionally make use of PDF compression. (The compression referred to here
is compression of various parts of the PDF markup. The native XFA portion of the form, which is expressed
in XML, is always compressed.)

Versions prior to 8.2 supported general PDF compression controlled by
$config.present.pdf.compress.level and compression of logical structure controlled by
$config.present.pdf.compress.compressLogicalStructure. Version 8.2 adds a control for
compression of tagging data via $config.present.pdf.compress.compressObjectStream.

The default value for compressObjectStream disables object-stream compression. This conflicts with
the behavior of previous versions of LiveCycle Form Server, which would apply object-stream compression
to dynamic forms (but not static forms) as long as the compression level was greater than 0. However this
difference has little effect because dynamic forms are packaged as a thin PDF shell around an XFA core.
Such forms have little PDF content to compress.

XFA Specification

Implementation-specific behavior 1188

Chapter 28, Adobe Implementation

Backwards compatibility when processing rich text

There is a history of bug fixes and enhancements to the Adobe rich-text processing engine. Backwards
compatibility has been maintained but in a somewhat inconsistent manner.

In XFA 2.2, the Adobe text engine’s layout behaviour changed slightly as part of the addition of complex
script (e.g., Arabic, Thai) support. The originalXFAVersion processing instruction allowed Adobe
processors to respect the old behaviour if required by a user.

In XFA 2.5, the handling of vertical spacing in XHTML was brought more in line with the XHTML standard.
Because this was an XHTML-only issue, the xfa:APIVersion number already written to each XHTML
fragment was used to determine which behaviour to use.

Since XFA 2.8 backwards compatibility for rich text has relied only on the originalXFAVersion
processing instruction. This has brought it in line with all other aspects of processing.

The old rich-text versioning system

Under the pre-2.8 system an Adobe XFA processor generating XHTML wrote its version number into the
xfa:APIVersion attribute on the body element. When an Adobe XFA processor reads these XHTML
fragments it uses the version number in the fragment to determine what, if any, of the following legacy
processing to apply.

If the value of the xfa:APIVersion attribute is less than 2.5, the processor interprets the XHTML as
having pre-2.5 vertical spacing. Handling of vertical spacing around div and br elements changed in the
XFA 2.5 version of the engine.

When the value of xfa:APIVersion is 1.0 this means the XHTML was generated by the very old
FormFlow99 application, which treated all white space as significant (as opposed to standard HTML
processing of collapsing white space).

The earliest versions of FormFlow99 also treated whitespace this way, but they did not write any version
attribute to XHTML. A heuristic is applied to determine whether the XHTML fragment was generated by
FormFlow99. If there is no version but the first style attribute contains all of the following properties, then
the XHTML fragment is assumed to be for FormFlow99:

● line-height

● margin-bottom

● margin-left

● margin-right

● margin-top

● tab-interval

● text-align

● text-indent

● vertical-align

Note: there is also an xfa:spec attribute written to the body element by Acrobat forms. This is
apparently not used by any Adobe processor.

Using the xfa:APIVersion attribute, older XHTML fragments would exhibit old behaviour, but newer
ones could leverage the new behaviours (in a newer application).

XFA Specification

Implementation-specific behavior 1189

Chapter 28, Adobe Implementation

There are a number of problems with this approach:

1. It can lead to unexpected inconsistencies in a single form, when different XHTML snippets have
different XFA version numbers.

2. It is XHTML-specific; it doesn't allow for control of these features in XFA template syntax or in content
imported from non-XHTML sources.

3. When importing XHTML into a form, that XHTML has to be constructed with the correct XFA version
number to get the desired features.

4. When an older form is rendered by a newer application, the newer application may understand and
respond to markup that was ignored by older applications. This behavior arises because Adobe
rich-text processors ignore any markup they don’t understand.

Since XFA 2.8, Adobe processors have still responded to the old xfa:APIVersion attribute on the body
element, but only if the new v2.7-XHTMLVersionProcessing flag has the value 1. This flag has a value
of 1 by default when the template version is 2.7 or less. However, it defaults to 0 when the template version
is 2.8 or greater. The v2.7-XHTMLVersionProcessing flag can be set or cleared explicitly by specifying
its value using the originalXFAVersion processing instruction.

The new rich-text versioning system

New changes in rich-text processing will be controlled exclusively by flags in the originalXFAVersion
processing instruction. These flags are global in scope so it is not possible to mix XHTML fragments with
different legacy processing requirements using these flags. These flags are independent of the
v2.7-XHTMLVersionProcessing flag.

In addition, new processing features will not be enabled for older template versions. Hence, if applications
contemporaneous with the form ignored some of the XHTML markup, newer ones will also.

Since version 2.2, there has been a bug in the vertical positioning of middle- and bottom-aligned text
when a line spacing override reduces the amount of space available for each line. The text gets positioned
too low. In the case of bottom-aligned text, it may draw partially outside its nominal extent. The
v2.7-layout flag, besides its other effects, specifies legacy behavior for vertical positioning. For the
other effects of this flag see “The v2.7-layout flag” on page 1208.

Extra scripting objects and DOMs

Adobe XFA processors implement extra scripting objects and DOMs in addition to the ones required by
this specification. For a full listing of objects and DOMs in Adobe products see the LiveCycle ES2 Scripting
Reference [LC-Scripting-Reference].

Font Mapping in LiveCycle Forms ES2

In an ideal world LiveCycle Form Server ES2 would always render a form using the fonts specified by the
template and rich text. We do not live in an ideal world. The specified font may not exist on the computer,
or it may not be licensed for downloading to the target client or printer. In this case LiveCycle Forms ES2
picks an alternate font to use for all glyphs in the specified font. This process is called font substitution. Or, a
font may exist and be useable but the font may not contain a glyph for the particular character being
processed. For example, many fonts do not contain Asian characters. In this case LiveCycle Forms ES2 picks
an alternate font to use for that particular glyph. This process is called font fallback. Fortunately font

XFA Specification

Implementation-specific behavior 1190

Chapter 28, Adobe Implementation

substitution and font fallback share a great deal of logic. In both cases there are likely to be multiple
alternate fonts to choose between. The difficult part is making the best choice between alternate fonts.

Starting with LiveCycle ES 8.2 a new set of rules was introduced for picking alternate fonts. These new rules
were part of the XFA 2.7 grammar.

Note: The preceding release, LiveCycle ES 8.1, implemented XFA 2.6. LiveCycle ES 8.2 implements features
introduced in both XFA 2.7 and XFA 2.8.

These rules make use of markup introduced in XFA 2.7 which supplies additional information about fonts.
In addition XFA 2.7 added new markup in the locale packet to supply default fallback fonts. Finally, there
were new configuration options to control the font-mapping process. Note, however, that the font
mapping mechanism does not necessarily preserve the original text layout. The substitute glyph may not
be the same height or width as the one used when the form was designed.

Note: This mechanism applies only to LiveCycle Forms ES and LiveCycle Forms ES2. Members of the
Acrobat family of products do not use this mechanism.

Font mapping is controlled by markup in the present configuration packet. This markup consists of
equate and equateRange elements.

The equate elements control font substitution. Each equate element specifies a substitution of one font
for another. The syntax is as follows.

<equate from=font_name to=font_name />

where font_name is a string.

The equateRange elements control font fallback. Each equateRange element specifies a substitution of
one font for another within a specified subset of Unicode code points. The syntax is as follows.

<equateRange from=font_name to=font_name unicodeRange=coderange_list/>

where font_name is astring and coderange_list is a comma-separated list of Unicode code points or code
point ranges. Each code point or range starts with "U+", which is followed by a hexadecimal code point
number. For a range this number is followed by "-" and another hexadecimal code point number. There
may also be whitespace before or after a comma. For example,

<equateRange
from="Arial" to="Minion Pro"
unicodeRange="U+20-37E, U+0400-43F, U+1F00-1FFF" />

Usually a font name includes a typeface name, a weight, and a style. However this is not encoded in a
standardized way. It is impossible to reliably parse out information from the font name. Moreover, this
information is not enough to evaluate how well one typeface may substitute for another. Font mapping
relies upon font elements inside the present configuration packet to supply supplementary
information about the fonts. The syntax is as follows.

<psMap>
<font

psName=font_name
typeface=typeface_name
weight="normal | bold"
posture="normal | italic"
genericFamily="serif | sansSerif | cursive | fantasy | monospace"

/> [0..n]
</psMap>

XFA Specification

Implementation-specific behavior 1191

Chapter 28, Adobe Implementation

The genericFamily attribute values are defined by [CSS2]. The meaning of the values is as follows.

sansSerif

Absence of serifs from characters. This sentence is rendered in a font with no serifs. This is the
default.

serif

Presence of serifs on characters. This sentence is rendered in a font with serifs.

cursive

Presence of joining strokes resulting in a handwritten look.

fantasy

Decorative but still containing character representations such as A, B, etc. This sentence is
rendered in a fantasy font.

For example, a configuration packet might contain the following.

<psMap>
<font

psName="Courier Std"
typeface="Courier"
genericFamily="monospace" />

<font
psName="Courier Bold Italic"
typeface="Courier"
weight="bold"
posture="italic"
genericFamily="monospace" />

…
</psMap>

Since XFA 2.7 the locale packet has been able to supply default fonts for each locale. The syntax is as
follows.

<locale name=locale_name … >
<typefaces>

<typeface name=font_name /> [0..n]
</typefaces>

</locale>

The order of typeface elements is significant. When picking a default typeface to use the XFA processor
is required to examine the typeface elements in document order and use the first suitable font.

Default typeface information is inherited by locales derived from other locales. For example, the locale
en_UK inherits default typefaces from en. Default typefaces defined at a lower level (in a more specific
locale) have higher priority than default typefaces defined in at a higher level. Any default typefaces
defined at the root level are available to all locales.

In LiveCycle Forms ES2 the root locale defines the following default typefaces, in the following order:
Myriad Pro, Minion Pro, Courier Std, Adobe Pi Std, Kozuka Mincho Pro VI, Kozuka Gothic Pro VI, Adobe Ming
Standard, Adobe Song Standard, Adobe Arabic, Adobe Hebrew, and Adobe Thai. These fonts were selected
because they are free from licensing issues for Adobe customers.

XFA Specification

Implementation-specific behavior 1192

Chapter 28, Adobe Implementation

Font substitution is applied whenever the specified typeface does not exist. The algorithm for font
substitution is as follows.

1. Examine all equate elements in the configuration packet for a direct mapping based on typeface
name. If such a mapping exists, substitute the specified typeface.

2. If that fails, ignore the weight and posture attributes of the specified font and use any available font
that matches. It is not defined which font is picked if more than one matches.

3. If that fails, check the configuration packet for deprecated markup using a defaultTypeface
element with a matching writingScript attribute. This is for backwards compatibility. The
assumption is that if the element has been specified it should be respected, whereas if it was omitted
the new markup in the locale packet should predominate.

4. If that fails, check the locale packet for an assertion of a default typeface for this locale. This check
matches the weight and posture attributes so the locale can have separate bold, italic, bold-italic,
and regular default fonts. If a match is found use it.

5. If that fails, examine the set of fallback fonts for the locale, giving preference to any font that matches
the genericFamily attribute of the missing font. Once a font is chosen apply any direct typeface
mapping specified by an equate element in the configuration packet.

Font fallback is applied after font substitution when the chosen font does not contain a glyph for the
current character. The algorithm for font fallback is as follows.

1. Examine all equate elements in the configuration packet for a direct mapping based on typeface
name. If such a mapping exists, substitute the specified typeface.

2. If that fails, look for an equateRange element in the configuration packet that specifies a mapping for
the typeface, and for which the code point is included in the associated Unicode subset. If such a
mapping exists use it.

3. If that fails, ignore the weight and posture attributes of the specified font and use any available font
that matches. It is not defined which font is picked if more than one matches.

4. If that fails, check the configuration packet for deprecated markup using a defaultTypeface
element with a matching writingScript attribute. This is for backwards compatibility. The
assumption is that if the element has been specified it should be respected, whereas if it was omitted
the new markup in the locale packet should predominate.

5. If that fails, check the locale packet for an assertion of a default typeface for this locale. This check
matches the weight and posture attributes so the locale can have separate bold, italic, bold-italic,
and regular default fonts. If a match is found use it.

6. If that fails, examine the set of fallback fonts for the locale, giving preference to any font that matches
the genericFamily attribute of the missing font.

Generator Tag

Applications that generate XFA forms may insert a generator identifier in an XML processing instruction
(PI). For more information see “The xfa Processing Instruction” on page 992. LiveCycle Designer ES2 inserts
a generator identifier of AdobeLiveCycleDesignerES_VM.N where M.N represents the version
number.

XFA Specification

Implementation-specific behavior 1193

Chapter 28, Adobe Implementation

Image URIs

To protect the user, members of the Acrobat family of producs requires any images that are supplied with
a form to be included in the XDP or PDF that contains the form. Image references are resolved based on
the images in the package. If a reference cannot be resolved in the package the image is not displayed.
However image fields (fields with an image-picker UI type) allow the user to pick an image from some
other place, for example from a file on disk. In this case the application saves a copy of the image by value
so it is rendered correctly. See “Respecting External References in Image Data and Rich Text” on page 543.

JavaScript

Support for scripts written in FormCalc is required by this specification. Adobe products also support
scripts written in JavaScript. See “Selecting a Script Language” on page 405.

Locale

Members of the Acrobat family of products ignore the locale property in the common portion of the
Acrobat section of the Config DOM (page 158). This is by design because it makes no sense for the server
to override the client’s locale.

LocaleSet

Members of the Acrobat family of products ignore the localeSet property in the common portion of the
Acrobat section of the Config DOM (page 158). This is by design to prevent a possible avenue of attack
using the application to fetch private data by taking advantage of the user’s access privileges. The locale
definition must be satisfied by a combination of the information included with the form (including any
locale set packets) and the knowledge of locales built into the application. See “Resolving Locale
Properties” on page 153.

Interpretation of default in a locale set

For Adobe products the default picture clause format inside a localeSet is equivalent to medium. See
page 1114.

Marking the Adobe Extensions Level in PDF

The ISO 32000 part 1 standard [ISO-32000-1] is an ISO-approved rewritten version of the PDF 1.7 Reference
[PDF]. XFA 3.1 is not part of ISO 32000. Instead it is part of a vendor-specific extension called Adobe
Extensions Level 6.

The ISO 32000 part 1 standard specifies how to indicate what set(s) of vendor extensions are required. The
syntax is as follows. The vendor extension is indicated by an entry in a catalog called Extensions. For
Adobe the entry is a key called ADBE. The value associated with this key is itself a dictionary. Inside this
dictionary are two entries. One defines the key BaseVersion and the other defines the key
ExtensionLevel. The PDF markup for XFA 3.1 is as follows.

%PDF1.7
<</Type /Catalog

/Extensions
<</ADBE

XFA Specification

Implementation-specific behavior 1194

Chapter 28, Adobe Implementation

<< /BaseVersion /1.7
/ExtensionLevel 6

>>
>>

>>

PDF Link Annotation Permission Not Carried Over to XFA

There is a PDF permission bit which can be used to prevent creation and modification of link annotations.
This can be used by the creator of the PDF document to prevent script inside the document from
modifying target URLs for hyperlinks. Members of the Acrobat family of products do not carry this
permission bit over to the XFA domain. When an XFA form is carried within a PDF document, the XFA
scripts can create or alter hyperlink targets within the XFA markup regardless of this PDF permission bit.
For more information see “Respecting External References in Image Data and Rich Text” on page 543.

Schemes in URIs

For properties which take URIs in their values, such as href and usehref, Adobe products pass the URI
through to the OS and/or browser. Hence the set of supported schemes varies depending upon the
platform.

Signature encoding

The encoding element in the template grammar specifies the type of signature encoding. The signature
code inside this element is vendor-defined. For a list of the codes defined by Adobe see the description of
the encoding element in the template syntax reference.

XFA processing instruction

When writing out an XDP file LiveCycle Designer ES2 always inserts an XFA processing instruction near the
beginning of the file, just after the XML processing instruction. For version 8.1.2 the beginning of the file
reads as follows.

<?xml version="1.0" encoding="UTF-8"?>
<?xfa generator="AdobeLiveCycleDesignerES_V8.1_SAP" APIVersion="2.7.8021.0"?>
<xdp:xdp xmlns:xdp="http://ns.adobe.com/xdp/" …>

The syntax of the XFA processing instruction is described in “The xfa Processing Instruction” on page 992.

#LangRef.Template.fm:element-encoding
#LangRef.Template.fm:element-encoding

XFA Specification

Implementation-specific behavior 1195

Chapter 28, Adobe Implementation

XLIFF Use
Some XFA processors need to localize the form by inserting translated strings. LiveCycle Designer ES2
supports the use of XLIFF (XML Localization Interchange File Format) 1.1 [XLIFF] for this purpose. Adobe
recommends that third parties accomplish localization as described below.

The assumption behind XLIFF is that each message has been pre-localized to all desired locales and that all
the localized versions are available in a database somewhere. XLIFF also provides markup which we use to
indicate places in the template where pre-translated messages should be substituted. The XLIFF markup
uses the XLIFF namespace, which is distinct from the XFA namespace, so the XLIFF markup is entirely
separable. After substitution by LiveCycle Forms ES2 the substituted message is in the XFA namespace.
Once substitution is complete the XLIFF markup has all been removed. The result is a standard XFA
template which may be served to clients that are not aware of XLIFF.

The XLIFF namespace, as defined by [XLIFF], is "urn:oasis:names:tc:xliff:document:1.1". Any
namespace prefix could map to this namespace, but for purposes of illustration this specification uses the
prefix "xliff:".

The XLIFF standard defines an xliff:rid attribute. LiveCycle Designer ES2 can place this attribute on a
text, exData, toolTip, or speak element and associate a value with it. The presence of such an
attribute on one of these elements indicates to a localization script that the associated localized string
should be retrieved and substituted for the existing content of the element. The substitution can be done
at run time or it can be done in advance by iterating across all required locales.\

Note: Adobe does not supply the localization script.

Example 28.2 A simple substitution

<template
xmlns="http://www.xfa.org/schema/xfa-template/3.1/"
xmlns:xliff="urn:oasis:names:tc:xliff:document:1.1">
…

<text xliff:rid="…">This text is to be localized.</text>
…

</template>

The value of the xliff:rid attribute identifies the set of localized strings from which to select the string.
Each xliff:rid value must be unique within the template. The localization script looks within that set
for a string that matches the current locale.

If the substitution fails the localization script should try sequentially less specific substitutions. For
example if there is no fr_CA localization for the string then it should search for an fr localization. This is in
keeping with the normal hierarchy of inheritance between locales.

If the localization script cannot find any matching localization then it should retain the existing content of
the element. It is expected that in some cases no localization will be necessary, so this should not be
considered an error condition. However it may be prudent to log a warning message.

XFA Specification

Implementation-specific behavior 1196

Chapter 28, Adobe Implementation

The XLIFF standard also specifies a syntax for expressing the database of localized resources in XML.
Adobe recommends the use of the resource type (restype) for various template objects as shown in the
following table.

Example 28.3 An XLIFF file containing translated resources

<xliff version="1.1" xmlns="urn:oasis:names:tc:xliff:document:1.1">
<file source-language="en" file="source.xdp" datatype="x-xfa-template">

<body>
<group>

<trans-unit id="N84-1" restype="label">
<source>English</source>
<target xml:lang="fr">French</target>
<target xml:lang="de">German</target>

</trans-unit>
</group>
<group>

<trans-unit id="N84-2" datatype="xhtml" restype="caption">
<source>

<body xmlns="http://www.w3.org/1999/xhtml">
<p>First Name</p>

</body>
</source>
<target xml:lang="fr">

<body xmlns="http://www.w3.org/1999/xhtml">
<p>prénom</p>

</body>
</target>
<target xml:lang="de">

<body xmlns="http://www.w3.org/1999/xhtml">
<p>Vorname</p>

XFA Content (in XFA-SOM syntax) Resource Type (as defined by [XLIFF])

caption.value.text button, caption, checkbox, combobox, radio

caption.value.exData button, caption, checkbox, combobox, radio

draw.value.text label

draw.value.exData label

field.items.text listitem

field.items.exData listitem

message.text message

assist.tooltip tooltip

assist.speak x-speaktext

variables.text string

variables.exData string

desc.text string

desc.exData string

XFA Specification

Implementation-specific behavior 1197

Chapter 28, Adobe Implementation

</body>
</target>

</trans-unit>
</group>

</body>
</file>

</xliff>

Example 28.4 XFA template using the above XLIFF file

<xdp:xdp xmlns:xdp="http://ns.adobe.com/xdp/">
<template xmlns="http://www.xfa.org/schema/xfa-template/3.1/"

xmlns:xliff="urn:oasis:names:tc:xliff:document:1.1">
…
<draw>

<value>
<text xliff:rid="N84-1">default</text>

</value>
</draw>
<field>

<caption>
<value>

<exData contentType="text/html" xliff:rid="N84-2">
<body xmlns="http://www.w3.org/1999/xhtml">

<p>First Name</p>
</body>

</exData>
</value>

</caption>
</field>
…

</template>
</xdp:xdp>

XML 1.1

Adobe products do not implement XML 1.1. In consequence not all Unicode code points are supported.
See “Unicode Support” on page 409.

XFA Specification

Implementation-specific behavior 1198

Chapter 28, Adobe Implementation

XMP packet
This standard permits XDP files to contain an XMP [XMPMeta] packet. XMP is used to hold data about the
document which is not part of the document itself (also known as metadata). The XMP packet is not
required and XFA processors do not rely upon its presence. On the other hand XMP is a standard format for
metadata so programs that do not know anything about the XFA schema can read and use information in
the XMP packet.

LiveCycle Designer ES2 puts an XMP packet into the XDP. The main payload of this XMP packet is
identification information which is described in “Creation tool identification” on page 1199, “Author
identification” on page 1199, and “Document identification” on page 1200. In addition the XMP packet
may optionally carry a fragment catalog which is described in “Fragment catalog” on page 1200.

The example below shows an XDP file created by Designer version 8.1. The file has been stripped down to
just the XMP packet and those other parts of the file to which the XMP packet makes reference or from
which it copies data. It does not include a fragment catalog.

Example 28.5 XMP packet and related information as emitted by Designer 8.1

<?xfa generator="AdobeLiveCycleDesignerES_V8.1" APIVersion="2.6.7185.0"?>
<xdp:xdp xmlns:xdp="http://ns.adobe.com/xdp/"

timeStamp="2007-07-20T21:05:10Z"
uuid="5c302b76-3043-456d-a8ef-6c571387782c">
<template xmlns="http://www.xfa.org/schema/xfa-template/2.6/">

<subform …>
…
<desc>

<text name="version">8.1.1.2188.1.406459.359820</text>
<text name="contact">Joseph M. Fiddlehead</text>
<text name="department">Department of Deportment</text>
…

</desc>
</subform>

</template>
<xmp:xmpmeta

xmlns:xmp="adobe:ns:meta/"
xmp:xmptk="Adobe XMP Core 4.0-c319 44.281645, Sun Mar 25 2007 16:17:34">
<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#">

<rdf:Description xmlns:xap="http://ns.adobe.com/xap/1.0/"
 rdf:about="">
<xap:MetadataDate>2007-07-20T20:22:36Z</xap:MetadataDate>
<xap:CreatorTool>Adobe LiveCycle Designer ES 8.1</xap:CreatorTool>

</rdf:Description>
<rdf:Description xmlns:pdf="http://ns.adobe.com/pdf/1.3/"

rdf:about="">
<pdf:Producer>Adobe LiveCycle Designer ES 8.1</pdf:Producer>

</rdf:Description>
<rdf:Description xmlns:xapMM="http://ns.adobe.com/xap/1.0/mm/"

rdf:about="">
<xapMM:DocumentID>

uuid:27364638-70c3-44e2-8df4-206026612a01
</xapMM:DocumentID>

</rdf:Description>
<rdf:Description xmlns:desc="http://ns.adobe.com/xfa/promoted-desc/"

rdf:about="">

XFA Specification

Implementation-specific behavior 1199

Chapter 28, Adobe Implementation

<desc:version rdf:parseType="Resource">
<rdf:value>8.0.1291.1.339988.308172</rdf:value>
<desc:ref>/template/subform[1]</desc:ref>

</desc:version>
</rdf:Description>
<desc:contact rdf:parseType="Resource">

<rdf:value>Joseph M. Fiddlehead</rdf:value>
<desc:ref>/template/subform[1]</desc:ref>

</desc:contact>
<desc:department rdf:parseType="Resource">

<rdf:value>Department of Deportment</rdf:value>
<desc:ref>/template/subform[1]</desc:ref>

</desc:department>
</rdf:RDF>

</xmp:xmpmeta>
</xdp:xdp>

Creation tool identification

As shown in “XMP packet and related information as emitted by Designer 8.1” on page 1198, LiveCycle
Designer ES2 records its product name and its version in both the xap:CreatorTool field and the
pdf:Producer field. These fields always have the same content. When the form is packed in an XDP file
the same string is recorded in an xfa processing instruction as the value of the generator tag. The xfa
processing instruction is outside of and preceding the xdp element.

In Dublin Core style the xap:CreatorTool field is defined as follows.

http://ns.adobe.com/xap/1.0/ xap: (0x80000000 : schema)
xap:CreatorTool = "..."

In Dublin Core style the pdf:Producer field is defined as follows:

http://ns.adobe.com/pdf/1.3/ pdf: (0x80000000 : schema)
pdf:Producer = "..."

It also records a build identifier in the desc:version field. For backwards compatibility it also copies the
same information into a desc element inside the template. In Dublin Core style the desc:version field
is defined as follows:

http://ns.adobe.com/xfa/promoted-desc/ desc: (0x80000000 : schema)
desc:version = "..."

In addition to the value LiveCycle Designer ES2 also includes a desc:ref field which contains an [XPATH]
expression pointing to the parent of the associated desc element in the template.

Author identification

As shown in “XMP packet and related information as emitted by Designer 8.1” on page 1198, LiveCycle
Designer ES2 records the author’s name in the desc:contact field. For backwards compatibility It also
copies this information into a desc element which is a child of the template element that encloses the
template packet.

Similarly LiveCycle Designer ES2 records the author’s department in the desc:department field. For
backwards compatibility It also copies this information into a desc element inside the template.

In Dublin Core style these fields are defined as follows.

XFA Specification

Implementation-specific behavior 1200

Chapter 28, Adobe Implementation

http://ns.adobe.com/xfa/promoted-desc/ desc: (0x80000000 : schema)
desc:contact = "..."
desc:department = "..."

For each of these fields, in addition to the value LiveCycle Designer ES2 also includes a desc:ref field
which contains an [XPATH] expression pointing to the parent of the associated desc element in the
template.

Document identification

XFA forms packaged as XDP files have a Universally Unique Identifier (UUID) as the value of the uuid
attribute on the XDP root element. As shown in “XMP packet and related information as emitted by
Designer 8.1” on page 1198, LiveCycle Designer ES2 prepends the string uuid: and copies the result into
the xapMM:DocumentID field. If the XFA form is packaged as a PDF file then the copy in the XMP packet is
the only copy of the UUID.

In Dublin Core style this field is defined as follows.

http://ns.adobe.com/xap/1.0/mm/ xmpMM: (0x80000000 : schema)
xmpMM:DocumentID = "..."

LiveCycle Designer ES2 records the time and date at which the form was created in the
xap:MetadataDate field in [ISO-8601] format. This is the same value it records in the timeStamp
attribute of the XDP element. In Dublin Core style this field is defines as follows.

http://ns.adobe.com/xap/1.0/ xap: (0x80000000 : schema)
xap:MetadataDate = "..."

If a form is subsequently loaded into LiveCycle Designer ES2 and updated these document identification
strings do not change.

Fragment catalog

XFA templates residing in XDP files can import fragments by reference from other templates. (This is not
allowed for XFA templates inside PDF files because PDF files are required to be self-contained.) XFA does
not require that fragments be specially marked or declared. However, it is often convenient for form
authors to be able to nominate fragments that are intended for incorporation elsewhere. The fragment
catalog provides a place to catalog such fragments. Because the catalog is XMP-based it can easily be read
and used by multiple applications.

Because the fragment catalog is metadata, form design tools may not rely upon either its presence or its
correctness. In particular it is not guaranteed to be in sync with the template. It may lists fragments that no
longer exist.

The fragment catalog is expressed as a property named fragmentCatalog. This property is defined in
the namespace “http://ns.adobe.com/livecycle/designer/”. A prefix of lcd is suggested for
representing this namespace.

XFA Specification

Implementation-specific behavior 1201

Chapter 28, Adobe Implementation

The fragmentCatalog property describes an array of fragments defined in the XFA template packet.
The order of entities in the array is significant. For each defined fragment, there is an entry in the ordered
array.

Each entry in the array is a structure which stores information about the fragment definition. The
information about the fragment definition is stored as a set of fields.

Some fields use the Dublin Core namespace http://purl.org/dc/element/1.1/ while others use
the LiveCycle Designer ES2 namespace http://ns.adobe.com/livecycle/designer/. The
preferred field namespace abbreviation is dc for Dublin Core and lcd for LiveCycle Designer ES2.

A portion of an XMP packet containing a fragment catalogue is shown below. For brevity only
English-language dc:title and dc:description fields are shown, but there could be many such
fields for each fragment defining titles and descriptions in other languages.

Example 28.6 Fragment catalogue inside an XMP packet

<x:xmpmeta xmlns:x="adobe:ns:meta/">
<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#">

<rdf:Description
xmlns:lcd="http://ns.adobe.com/livecycle/designer/"
xmlns:dc="http://purl.org/dc/elements/1.1/" rdf:about="">

<lcd:fragmentCatalog>
<rdf:Seq>

<rdf:li rdf:parseType="Resource">
<dc:title>

<rdf:Alt>
<rdf:li xml:lang="x-default">My Header Fragment</rdf:li>

</rdf:Alt>
</dc:title>
<dc:description>

<rdf:Alt>

Definition for lcd:fragmentCatalog

Property Value Type Category Description

lcd:fragmentCatalog seq
fragment

Internal An ordered arrayof fragments which are
defined within the template.

Definition for fragment

FieldName Value Type Description

dc:title Lang Alt The fragment’s UI name (distinct from any XFA name).

dc:description Lang Alt The fragment’s UI description. This is used to communicate
intented use of the fragment to anyone referencing the
fragment.

dc:identifier Text A fully-qualified XFA-SOM expression identifying the
fragment within the template.

lcd:fragmentRole closed
Choice

A keword identifying the context in which the fragment is
intended to be used. One of Subform, ScriptObject,
Table, TableBodyRow, TableHeader, or TableFooter.

XFA Specification

Implementation-specific behavior 1202

Chapter 28, Adobe Implementation

<rdf:li xml:lang="x-default">Fragment used to create a
standard header.</rdf:li>

</rdf:Alt>
</dc:description>
<dc:identifier>

$template.#subform.MyHeaderFragment
</dc:identifier>
<lcd:fragmentRole>Subform</lcd:fragmentRole>

</rdf:li>
<rdf:li rdf:parseType="Resource">

<dc:title>
<rdf:Alt>

<rdf:li xml:lang="x-default">My Footer Fragment</rdf:li>
</rdf:Alt>

</dc:title>
<dc:description>

<rdf:Alt>
<rdf:li xml:lang="x-default">Fragment used to create a
standard footer.</rdf:li>

</rdf:Alt>
</dc:description>
<dc:identifier>

$template.#subform.MyFooterFragment
</dc:identifier
<lcd:fragmentRole>Subform</lcd:fragmentRole>

</rdf:li>
…

</rdf:Seq>
</lcd:fragmentCatalog>

</rdf:Description>
…

</rdf:RDF>
</x:xmpmeta>

If the form author has nominated form fragments for the catalog, LiveCycle Designer ES2 includes a
fragment catalog in the form. It does so regardless of whether the form is packaged in an XDP file or in a
PDF file. The fragment catalog has no immediate use inside a PDF file but the information is preserved in
case the form is later converted from PDF format to XDP format.

XFA Specification

Implementation-specific behavior 1203

Chapter 28, Adobe Implementation

Config packet
The Adobe-specific portion of the config grammar is documented in “Adobe Config General Syntax
Reference” on page 1211, in “Adobe Config for Acrobat Syntax Reference” on page 1242, and in “Adobe
Config for LiveCycle ES2 Reference” on page 1293.

XFA Specification

Processing instruction for backward compatibility 1204

Chapter 28, Adobe Implementation

Processing instruction for backward compatibility
One of the problems presented by a public standard such as XFA is that even while the standard evolves
there remains a legacy of templates created on the basis of earlier implementations and earlier versions of
the standard. A newer form authoring tool can update the template version stamp along with the formal
schema, however it cannot automatically update all aspects of the form logic. Scripts are a particular
problem.

XFA provides a processing instruction for use by authoring tools which are updating older forms. The
processing instruction provides additional hints to XFA processors that some aspects of the form behavior
should follow earlier practices. The earlier practice could be any of:

● specified by earlier versions of the specification and since changed;

● left unspecified or ambiguous by earlier versions of the specification and since clarified;

● defective behavior (contrary to the specification) exhibited by a particular earlier XFA processor and
since corrected;

● legal behavior by a particular XFA processor that has changed but is nonetheless still legal.

The processing instruction, if present, is a child of the template element which contains the packet. It is
recommended that it be the first child in document order. The processing instruction has the following
syntax:

<?originalXFAVersion http://www.xfa.org/schema/xfa-template/2.x/ [flags] ?>

where 2.x identifies the version of the XFA specification for which the template was originally created.

flags represents one or more parameters in the form name:value. When more than one flag is present
they must be separated by whitespace. Any flags not recognized by the XFA processor are ignored. The
flags listed below are understood by some versions of the Adobe XFA processor.

Caution: Contrary to the usual practice for XFA names, some flag names use upper case for the first
character.

Overriding compatibility flags via the Configuration DOM

LiveCycle provides another mechanism for forcing compatibility flag settings in the product-specific
portion of the Configuration DOM. The following syntax can be used:

<config>
<present>

<behaviorOverride>name:value[name:value]…</behaviorOverride>
</present>

</config>

where name represents the name of any compatibility flag and value represents 0 or 1.

When a value is provided for a compatibility flag this way it overrides any value that may be specified in
the originalXFAVersion processing instruction. This allows for installation-wide invocation or
cancellation of compatibility flags without modifying the templates. For example,

<behaviorOverride>v2.8-layout:0 v2.7-scripting:1</behaviorOverride>

causes LiveCycle to clear the v2.8-layout flag and set the v2.7-scripting flag for all templates,
regardless of the settings in their originalXFAVersion processing directives.

XFA Specification

Processing instruction for backward compatibility 1205

Chapter 28, Adobe Implementation

Note: This does not remove any of the restrictions built into the flags themselves. For example, the
v2.7-scripting flag will still not have any effect when the template version is 2.7 or less.

The LegacyCalcOverride flag

This flag controls the persistence of calculation overrides. The template may allow a user to replace
calculated field content with manually entered field content. However in older members of the Acrobat
family, when the user closed the form and then reopened it, the application wiped out the manually
entered content by performing an automatic recalculation. Acrobat 8 and newer versions prevent this
using a custom packet to keep track of calculation overrides.

When the value of originalXFAVersion signifies XFA-Template version 2.1 through 2.4, and this flag is
absent or given as LegacyCalcOverride:1, calculation override persistence is inhibited. If the original
XFA-Template version is 2.5 or greater, or the flag is given as LegacyCalcOverride:0, persistence is
enabled.

The LegacyEventModel flag

The XFA event model was changed between versions 2.3 and 2.4 of this specification. This may affect the
behavior of scripts.

When originalXFAVersion signifies an XFA-Template version of 2.3 or earlier, and this flag is absent or
given as LegacyEventModel:1, then the XFA processor uses the old pre-2.4 event model. When the
original XFA-Template version is 2.4 or later, or if this flag is given as LegacyEventModel:0, the XFA
processor uses the newer event model.

The LegacyPlusPrint flag

This flag enables or disables the relevant attribute for all template objects other than buttons. There
was a defect in versions of the Adobe form authoring tool prior to version 8. When forms were imported
from FormFlow 99 into Form Designer 6 or Form Designer 7.1 relevant attributes were incorrectly set on
some non-button objects. This was corrected in LiveCycle Designer ES version 8.0.

When orignalXFAVersion signifies an XFA-Template version from 2.1 through 2.4, and this flag is
absent or given as LegacyPlusPrint:1, the relevant attribute is ignored except for button objects;
all non-button objects are loaded into the Template DOM. When the original XFA-Template version is 2.5 or
greater, or if this flag is given as LegacyPlusPrint:0, the relevant attribute is respected for all
objects.

The LegacyPositioning flag

This flag controls the use of rich-text positioning algorithms used in Acrobat 6 and LiveCycle 6. These
algorithms were corrected and made consistent with other Adobe products in Acrobat 7 and LiveCycle 7.

When originalXFAVersion signifies XFA-Template version 2.1, the absence of this flag or the value
LegacyPositioning:1 selects the old positioning algorithms. This ensures the correct layout of forms
that were hand-tuned to yield the correct appearance with the old algorithms. LegacyPositioning:0
or any other original version of XFA-Template selects the new positioning algorithms.

The issues in Acrobat 6 and LiveCycle 6 that affected vertical text placement were as follows, roughly in
order of severity:

XFA Specification

Processing instruction for backward compatibility 1206

Chapter 28, Adobe Implementation

● Leading was applied to the first (or only) line of all text blocks, causing top-aligned text to appear
pushed down from the top border.

● Font metrics were used to determine leading, resulting in text lines too close together or too spread
out, depending on the font. (This occurred only with fonts that reported incorrect metrics, but fonts
often do.)

● Hidden borders influenced text positioning, generally causing text to shift away from the bounding
box of its container.

● Line spacing did not allow for different ascent/descent ratios on font changes, typically resulting in text
being pushed up when the line contained a font change.

● Fonts with an ascent/descent combination greater than the font height were not handled properly,
causing text to be pushed up when such a font was encountered. (This occurred only with fonts
reporting incorrect metrics.)

● The wrong font was sometimes used at a paragraph break, typically causing the last line of the
paragraph to be pushed down.

● Baseline shifts could lead to unnecessary space being added after a line with a down-shift. Also, there
were slight differences in handling of metrics for up-shifts.

● With some fonts, upper-case accented letters could spill out of the top of the text area. (This occurred
only with fonts reporting incorrect metrics.)

● Vertical font metric values were truncated to a more limited accuracy, causing imperceptible printing
differences but confusing automated differencing tools.

● Line-spacing could change at the span level, leading to unpredictable spacing in word-wrapped lines.
Span elements are no longer allowed to change the line spacing in the middle of a paragraph.

In addition there were a number of horizontal text placement issues:

● Inaccurate use of character widths could lead to underestimated line widths and possibly result in
wrapping errors.

● Justified text leading up to a forced line break was not properly justified.

● Line breaking opportunities were missed. Now [UAX-14] line breaking rules are used.

● A line break took place prematurely after a tab to the end of line. Now the line break only takes place if
non-blank text follows the tab.

● Unresolved characters appeared as 10 point spaces. Now they appear as question marks.

For any text object using the old text positioning algorithms, a combination of these issues could apply,
either compounding the effect, or canceling each other out.

The LegacyRendering flag

Prior to Acrobat 8.1, members of the Acrobat family first rendered XFA forms into PDF and then displayed
the PDF. Starting with Acrobat 8.1 XFA forms are by default rendered directly without going through an
intermediate representation as PDF. This greatly speeds up the rendering of XFA forms, especially dynamic
forms. Although the new method of rendering worked properly with an extensive set of test forms, Adobe
created this flag to provide an escape in case an existing form rendered properly via the old mechanism
but not the new one.

When this flag is given as LegacyRendering:1 the old (slow) rendering method is used. When this flag
is absent or given as LegacyRendering:0 the new (fast) method is used.

XFA Specification

Processing instruction for backward compatibility 1207

Chapter 28, Adobe Implementation

Note that this flag has a reversed default compared to the other flags. When not specified it defaults to 0,
that is, to enabling the new functionality. Also it is not sensitive to the value of originalXFAVersion.
These characteristics allow existing forms to benefit from the faster rendering by default.

The LegacyXFAPermissions flag

In members of the Acrobat 8 family the rules for script permission checking were tightened to prevent
signatures from being invalidated by scripts modifying signed content. For example, in Acrobat 7 a script
could freely modify the Template DOM. If the form was certified this would automatically cancel the
certification because the template is among the items signed by the certificate. Starting with Acrobat 8 the
script’s attempt to modify the Template DOM is denied rather than allowing the certification to be
cancelled. The same restriction applies to XML signatures.

When originalXFAVersion signifies an XFA-Template version from 2.1 through 2.4, and this flag is
absent or given as LegacyXFAPermissions:1, strict checking is disabled; scripts are allowed to take
actions that cancel signatures. When the original XFA-Template version is 2.5 or greater, or if this flag is
given as LegacyXFAPermissions:0, strict checking is applied.

The v2.7-eventModel flag

Since XFA 2.8 clients have been required to always run validations before sending data to the server. Prior
to XFA 2.8 these validations were run for some types of client-server interactions but not for all. In addition
XFA 2.8 added a post-submit event that did not exist before.

Another difference is that prior to XFA 2.8 a pre-execute event was not always matched to a post-execute
event. If a pre-execute script cancelled the transaction then the post-execute did not take place. Since XFA
2.8 pre- and post- events always pair up. If there is a preExecute then there is a postExecute. If there is
a preSubmit then there is a postSubmit. The differences are shown by the following tables.

XFA Specification

Processing instruction for backward compatibility 1208

Chapter 28, Adobe Implementation

Pre-2.8 submit behavior

Current submit behavior.

The flag v2.7-eventModel, when set to 1, causes events to be fired and validations to be executed in
accordance with XFA versions prior to 2.8. When the flag is absent or set to 0 events are fired and
validations executed in accordance with the model established by XFA 2.8.

The v2.7-layout flag

When this flag is set to 1 or the original XFA version is 2.7 or less, layout follows the rules for XFA version 2.7.
There are two major differences and a host of minor ones.

Prior to XFA 2.8 the default tab stops were always left-aligned. Since XFA 2.8 the default tab stops have
been left-aligned for left-to-right text but right-aligned for right-to-left text. See “Tab Stops” on page 1162
for more information.

Since version 2.2, the Adobe rich text engine has had a bug in the vertical positioning of middle- and
bottom-aligned text when a line spacing override reduces the amount of space available for each line. The
text gets positioned too low. In the case of bottom-aligned text, it may draw partially outside its nominal
extent. Starting with XFA 2.8 this was fixed. See “Backwards compatibility when processing rich text” on
page 1188.

transaction preSubmit validation postSubmit
post- pairs
with pre-

submit via e-mail doesn’t fire fires doesn’t fire N/A

submit via HTTP POST fires (client and
server)

fires doesn’t fire N/A

SOAP doc-literal web service doesn’t fire
(preExecute
fires instead)

doesn’t fire doesn’t fire
(postExecute
fires instead)

no

SOAP RawPost N/A N/A N/A N/A

Doc.submitForm doesn’t fire doesn’t fire doesn’t fire N/A

transaction preSubmit validation postSubmit
post- pairs
with pre-

submit via e-mail fires (client only) fires fires (client only) yes

submit via HTTP POST fires (client and
server)

fires fires (client and
server)

yes

SOAP doc-literal web service doesn’t fire
(preExecute
fires instead)

doesn’t fire doesn’t fire
(postExecute
fires instead)

yes

SOAP RawPost fires (client only) fires fires (client only) yes

Doc.submitForm fires (client and
server)

fires fires (client and
server)

yes

XFA Specification

Processing instruction for backward compatibility 1209

Chapter 28, Adobe Implementation

Prior to XFA 2.8 the layout processor was liable to eject pages of boilerplate, with no variable data, if it
encountered a layout object that it was unable to fit into any content area. For example, if the form
contained only content areas less than 3 inches high and the data contained rich text with a character 48
points high, the layout processor would eject page after page of boilerplate while it searched for a content
area in which to place the character. Starting with XFA 2.8 this behavior was fixed as described in
“Overriding ContentArea Boundaries” on page 289.

The minor differences are bug fixes that are too many (and too obscure) to list here.

The v2.7-scripting flag

When this flag is set to 1 or the original XFA version is 2.7 or less, scripts are executed in accordance with
the Adobe implementation of XFA versions prior to 2.8. When the flag is absent or set to 0 and the original
XFA version is at least 2.8, changes to scripting introduced in XFA 2.8 are enabled.

The affected changes are as follows.

● SOM expressions can now easily select one from a group of sibling traverse objects by operation,
without the use of a predicate. See “Explicitly Named Objects” on page 93. The old method using a
predicate still works.

● Scripts are no longer allowed to alter the use property of any object in the Form DOM. This property is
set internally by Adobe code to indicate prototyping relationships arising either from an explicit
prototype reference in the template or from a merge operation. It was never intended that scripts
would be able to alter this property, and it was never safe for them to do so.

● In response to a validation warning users are given a choice of dismissing or overriding the validation.
See “The User Experience of Validation” on page 499.

When the user overrides a validation, members of the Acrobat family of products record the override in
the Form DOM by setting a property disableAll on the validate object. When the property has
the value 0 (the default) validation failures are reported to the user. When the value is 1 (after a
validation override) the validation message is disabled and, although validation processing is still
performed, validation failures are ignored.

Note that disableAll is not part of the XML template grammar and does not appear in the Template
DOM. Hence if it appears in the XML markup for a template it is treated as spurious. However, when
saving a form that has been filled or partly filled, Adobe products write out some content of the Form
DOM along with the complete Template and Data DOMs. The saved Form DOM content includes any
disableAll properties that are non-zero. When an Adobe product subsequently reopens the file it
recreates the Form DOM using a merge operation. Then it reads the saved Form DOM content and
updates the Form DOM, including the disableAll properties. Thus the saved session resumes with
the same validation overrides in place.

The v2.7-traversalOrder flag

When this flag is set to 1 or the original XFA version is 2.7 or less, traversals are carried out in accordance
with the rules for XFA versions prior to 2.8. When the flag is absent or set to 0 and the original XFA version
is at least 2.8, changes to traversals introduced in XFA 2.8 are enabled.

The principal change is that the traversal next target may be inherited from ancestral containers. Prior to
the 2.8 release there was no inheritance. As a side effect, starting with XFA 2.8 it became meaningful to
specify traversal next on a subform. Previously, since subforms cannot have focus, only traversal first
was meaningful on a subform.

XFA Specification

Processing instruction for backward compatibility 1210

Chapter 28, Adobe Implementation

For more information about these XFA 2.8 changes see “Resolving Prototypes with Traversals” on
page 232.

The v2.7-XHTMLVersionProcessing flag

This flag enables legacy processing using the xfa:APIVersion attribute on the body element of rich
text. This flag is 1 by default if the template version is 2.7 or less. However if the template version is 2.8 or
greater the flag defaults to 0. This affects two changes in the behavior of the rich text engine, one applying
to FormFlow99 forms and the other to XFA forms generated prior to XFA 2.5. See “Backwards compatibility
when processing rich text” on page 1188.

 1211

29 Adobe Config General Syntax Reference

This chapter describes the language used by all Adobe products for implementation-specific sections of
the configuration packet.

The config syntax reference is broken up into four sections. This one describes portions of the Adobe
config grammar that are used by all Adobe products. This includes the outermost container elements.
“Adobe Config for Acrobat Syntax Reference” on page 1242 describes a subtree that is specific to
members of the Acrobat family of products. “Adobe Config for LiveCycle ES2 Reference” on page 1293
describes a subtree that is specific to LiveCycle, including LiveCycle Presentation Agent.

In addition, all Adobe applications implement the mandatory XFA common configuration section. That
section is a core XFA grammar (required by the XFA specification) so it is not repeated here. It is fully
described in “Config Common Specification” on page 846.

Guide to the Adobe Config General Syntax Reference
For information about how to read this syntax reference see “How to Read an Element Specification” on
page 565.

All elements and attributes described in this specification, unless otherwise indicated, belong to the
following namespace:

http://www.xfa.org/schema/xfa-config/3.1/

Note: The trailing “/” is required.

XFA Specification
Chapter 29, Adobe Config General Syntax Reference Config General Element Reference 1212

Config General Element Reference
This section describes those portions of the Adobe config grammar that are not specific to any particular
application. It includes only the container elements for those portions specific to an application.

The acrobat element
Container for the configuration subset used by the Acrobat family of products.

<acrobat

Properties:
 desc="cdata"
 lock="0 | 1"
>
Children:
 <submitUrl/> [0..n]
</acrobat>

The acrobat element is used within the following other elements:
config

For more information, see The acrobat element in the Adobe Config for Acrobat Syntax Reference.

The submitUrl property

This option specifies an URL to which form data may be submitted.

XFA Specification
Chapter 29, Adobe Config General Syntax Reference Config General Element Reference 1213

The agent element
This element is a container for all options for one particular XFA application.

<agent

Properties:
 desc="cdata"
 lock="0 | 1"
 name="cdata"
>
</agent>

The agent element is used within the following other elements:
config

This element may contain anything. The contents are implementation-defined. However, if this element
has a child common element in the XFA config namespace, the common element and its content must
conform to the syntax specified in the XFA Config Common Subset Syntax Reference. For more
information see The common element.

The desc property

An attribute to hold human-readable metadata.

The lock property

A permission flag for allowing or blocking attempted changes to the element.

0

Allow changes to properties and content.

1

Block changes to properties and content.

The name property

The value for this attribute, hence the name of the node in the Configuration DOM, is
implementation-defined. This allows for multiple applications to share a configuration document
without interfering with each other. To ensure that there are no name collisions the value used should be a
unique URI based on a registered domain. Such URIs may contain characters that are not supported in
names within XFA-SOM expressions, hence the application may have to carry out additional processing,
such as searching through all sibling agent nodes, to find its own configuration information.

XFA Specification
Chapter 29, Adobe Config General Syntax Reference Config General Element Reference 1214

The alwaysEmbed element
This option specifies a font which is to be embedded in the output document, whenever possible.

<alwaysEmbed

Properties:
 desc="cdata"
 lock="0 | 1"
>
 ...pcdata...
</alwaysEmbed>

The alwaysEmbed element is used within the following other elements:
fontInfo

This option overrides the embed element for the font it names, forcing it to be embedded in the output
document whenever possible. One use of this is for a specialized font that is not likely to be present in the
client. Another use is for a font containing only the Euro symbol, which is not included in many fonts that
were defined before the Euro was introduced.

It is not always possible to embed a font in the document. Particular fonts may have license restrictions
which bar embedding.

As with all the font embedding options, this option applies only when creating or updating a PDF file
which holds an XFA form intended for distribution. It is not used when printing because the application
can query the printer to find out what fonts the printer needs.

Although this option is in the present section of config, it also affects the behavior of Designer and,
when saving form state, of Acrobat.

Content

The content must be a font name. Any whitespace in the element content is presumed to be part of the
font name, including leading and trailing whitespace. No normalization is performed, so for example a
space character is not equivalent to a tab character and upper-case letters are distinct from lower-case
letters.

The desc property

An attribute to hold human-readable metadata.

The lock property

A permission flag for allowing or blocking attempted changes to the element.

0

Allow changes to properties and content.

1

Block changes to properties and content.

XFA Specification
Chapter 29, Adobe Config General Syntax Reference Config General Element Reference 1215

The area element
This option controls whether trace messages are issued and the verbosity of the messages for a particular
subsection of the application.

<area

Properties:
 level="0 | integer"
 lock="0 | 1"
 name="cdata"
>
</area>

The area element is used within the following other elements:
trace

NOTE: Trace messages are intended for use internally by Adobe. They are not localized and are not
generally comprehensible without access to the source code. This option is documented here in order to
assist customers who are in contact with Adobe support.

The level property

The trace verbosity level. The value must be one of the following:

0

Do not generate any trace messages for this subsection. This is the default for all subsections, so if
there is no area element supplied for a particular subsection it does not generate any trace
messages.

1

Generate only high-level trace messages for this subsection.

2

Generate medium- and high-level trace messages for this subsection.

3

Generate all trace messages, no matter how trivial, for this subsection.

The lock property

A permission flag for allowing or blocking attempted changes to the element.

0

Allow changes to properties and content.

1

Block changes to properties and content.

The name property

The name of the subsection to which this option applies. There is no default for this property. The value
must be one of the following:

XFA Specification
Chapter 29, Adobe Config General Syntax Reference Config General Element Reference 1216

barcode

Traces barcode start codes, code sets, checksums, etc.

coreinit

Traces the initialization of the core libraries.

deviceDriver

Traces the rendering of form objects by the device driver.

font

Traces the process of resolving fonts.

general

Traces overall process flow in LiveCycle products. Members of the Acrobat family do not generate
these messages.

layout

Traces the layout process.

merge

Traces the merge process.

script

Traces script handling.

signature

Traces the creation and verification of digital signatures.

sourceSet

Traces the process of connecting to and retrieving database objects.

templateCache

Traces template caching.

XFA Specification
Chapter 29, Adobe Config General Syntax Reference Config General Element Reference 1217

The batchOutput element
This option specifies if the processing is required to be done in batch mode.

<batchOutput

Properties:
 desc="cdata"
 format="none | concat | zip | zipCompress"
 lock="0 | 1"
>
</batchOutput>

The batchOutput element is used within the following other elements:
labelPrinter

Normally an XFA processor produces a single output document containing all of the data which it has
merged into the form. However in batch mode it produces a separate document for each input record.
The collection of separate documents is packaged within a single output file.

The desc property

An attribute to hold human-readable metadata.

The format property

This attribute controls the format of the batch output file.

none

Batching mode is disabled. The output is a single document. This is the default.

zip

Batching is enabled. Each record generates a separate document. The collection of documents is
packaged as a standard zip file (without any compression).

zipCompress

Batching is enabled. Each record generates a separate document. The collection of documents is
packaged as a compressed zip file.

The lock property

A permission flag for allowing or blocking attempted changes to the element.

0

Allow changes to properties and content.

1

Block changes to properties and content.

XFA Specification
Chapter 29, Adobe Config General Syntax Reference Config General Element Reference 1218

The config element
Outermost element for the configuration information.

<config

Properties:
 desc="cdata"
 lock="0 | 1"
>

 <acrobat/> [0..1]
 <present/> [0..1]
 <trace/> [0..1]
Children:
 <agent/> [0..n]
</config>

The acrobat property

Container for the configuration subset used by the Acrobat family of products.

The agent property

This element is a container for all options for one particular XFA application.

The desc property

An attribute to hold human-readable metadata.

The lock property

A permission flag for allowing or blocking attempted changes to the element.

0

Allow changes to properties and content.

1

Block changes to properties and content.

The present property

Container for the configuration subset used by LiveCycle.

The trace property

This element contains options pertaining to run-time display of trace information.

XFA Specification
Chapter 29, Adobe Config General Syntax Reference Config General Element Reference 1219

The debug element
Part of the common configuration subset.

<debug

Properties:
 desc="cdata"
 lock="0 | 1"
>

 <uri/> [0..1]
</debug>

The debug element is used within the following other elements:
xsl

For more information, see The debug element in the Config Common Element Reference.

The uri property

Part of the common configuration subset.

XFA Specification
Chapter 29, Adobe Config General Syntax Reference Config General Element Reference 1220

The defaultTypeface element
DEPRECATED. Specifies a fallback font to use when the font specified by the template is not available.

<defaultTypeface

Properties:
 desc="cdata"
 lock="0 | 1"
 writingScript="* | Arabic | Cyrillic | EastEuropeanRoman |
 Greek | Hebrew | Japanese | Korean |
 Roman | SimplifiedChinese | Thai |
 TraditionalChinese | Vietnamese"
>
 ...pcdata...
</defaultTypeface>

The defaultTypeface element is used within the following other elements:
fontInfo

Different installations have different fonts available. Different platforms have different fallback policies.
This option specifies a uniform fallback font across all platforms and installations.

This element is deprecated. Newer implementations should use the content of the typefaces element
in the locale set.

Content

The content is the typeface name for the font. Any whitespace in the element content is presumed to be
part of the typeface name, including leading and trailing whitespace. No normalization is performed, so
for example a space character is not equivalent to a tab character and upper-case letters are distinct from
lower-case letters.

When there is no defaultTypeface element supplied, or there is none that applies to the current locale,
the application falls back onto "Courier Std". This font ships with LiveCycle ES2.

The desc property

An attribute to hold human-readable metadata.

The lock property

A permission flag for allowing or blocking attempted changes to the element.

0

Allow changes to properties and content.

1

Block changes to properties and content.

The writingScript property

Typically each font includes only a subset of the glyphs included in Unicode. To handle this you can
specify multiple defaultTypeface options with each one asserting a unique value for
writingScript. This property determines which locales fall back to this font.

XFA Specification
Chapter 29, Adobe Config General Syntax Reference Config General Element Reference 1221

This property must have one of the following values:

*

Use the font as the default for locales which are not explicitly matched by any other
defaultTypeface element.

Arabic

Use the font as the default for Arabic locales.

Cyrillic

Use the font as the default for Cyrillic locales.

EastEuropeanRoman

Use the font as the default for Eastern European locales.

Greek

Use the font as the default for Greek locales.

Hebrew

Use the font as the default for Hebrew locales.

Japanese

Use the font as the default for Japanese locales.

Korean

Use the font as the default for Korean locales.

Roman

Use the font as the default for Western European locales.

SimplifiedChinese

Use the font as the default for simplified Chinese locales.

Thai

Use the font as the default for Thai locales.

TraditionalChinese

Use the font as the default for traditional Chinese locales.

Vietnamese

Use the font as the default for Vietnamese locales.

XFA Specification
Chapter 29, Adobe Config General Syntax Reference Config General Element Reference 1222

The embed element
This option controls the embedding of fonts in the output document.

<embed

Properties:
 desc="cdata"
 lock="0 | 1"
>
 ...pcdata...
</embed>

The embed element is used within the following other elements:
fontInfo

This option controls whether fonts used in the document are embedded in the document, when possible.
If the fonts are not embedded the client computer may not be able to reproduce the text properly. On the
other hand fonts take a relatively large amount of data.

It is not always possible to embed a font in the document. Particular fonts may have license restrictions
which bar embedding.

When this option is set to disable embedding of fonts, it may be overriden for specific fonts by the
alwaysEmbed element.

As with all the font embedding options, this option applies only when creating or updating a PDF file
which holds an XFA form intended for distribution. It is not used when printing because the application
can query the printer to find out what fonts the printer needs.

Although this option is in the present section of config, it also affects the behavior of Designer and,
when saving form state, of Acrobat.

Content

The content must be one of the following:

0

Do not embed the fonts in the output document, except where overridden by the alwaysEmbed
element. This is the default.

1

Embed whatever fonts can be embedded in the output document.

The desc property

An attribute to hold human-readable metadata.

The lock property

A permission flag for allowing or blocking attempted changes to the element.

0

Allow changes to properties and content.

XFA Specification
Chapter 29, Adobe Config General Syntax Reference Config General Element Reference 1223

1

Block changes to properties and content.

XFA Specification
Chapter 29, Adobe Config General Syntax Reference Config General Element Reference 1224

The equate element
This option specifies a mapping from a specified typeface to a replacement typeface.

<equate

Properties:
 desc="cdata"
 force="cdata"
 from="cdata"
 lock="0 | 1"
 to="cdata"
>
</equate>

The equate element is used within the following other elements:
map

This option is commonly used to deal with typefaces specified in the device control information that are
not available on the printer or display device. For example, the following syntax:

<equate from="Arial_normal_normal" to="Arial_bold_italic">

changes the font for text that is specified as plain Arial to bold italicized Arial in the generated output.

The desc property

An attribute to hold human-readable metadata.

The force property

This attribute determines the circumstances under which the substitution is done. The value must be one
of the following:

1

Perform the substitution for all characters.

0

Perform the substitution only for characters that are missing from the from font.

The from property

This attribute supplies the name of the typeface as specified in the device control information.

The lock property

A permission flag for allowing or blocking attempted changes to the element.

0

Allow changes to properties and content.

1

Block changes to properties and content.

XFA Specification
Chapter 29, Adobe Config General Syntax Reference Config General Element Reference 1225

The to property

This attribute supplies the name of the substitute typeface.

XFA Specification
Chapter 29, Adobe Config General Syntax Reference Config General Element Reference 1226

The equateRange element
This option specifies a mapping from a specified typeface to a replacement typeface for a subset of
Unicode code points.

<equateRange

Properties:
 desc="cdata"
 from="cdata"
 lock="0 | 1"
 to="cdata"
 unicodeRange="cdata"
>
</equateRange>

The equateRange element is used within the following other elements:
map

This option is commonly used to deal with glyphs that are used in the form but are not included in the
specified font on the printer or display device. For example, the following syntax:

<equateRange from="Arial" to="Courier" unicodeRange="U+20AC">

instructs the XFA processor to use the Euro glyph from the Courier font in place of the Euro glyph that is
missing from the Arial font. However if the XFA processor knows the the glyph to actually be present in
the Arial font on the target display or printer the XFA processor ignores this directive.

The desc property

An attribute to hold human-readable metadata.

The from property

This attribute supplies the name of the typeface as specified in the device control information.

The lock property

A permission flag for allowing or blocking attempted changes to the element.

0

Allow changes to properties and content.

1

Block changes to properties and content.

The to property

This attribute supplies the name of the substitute typeface.

The unicodeRange property

This attribute limits the substitution to a subset of Unicode characters based on the code point.

The values are expressed using uppercase hexadecimal numbers prefixed by "U+", corresponding to
character code positions in ISO 10646 [ISO-10646]. A range may be specified by separating the starting

XFA Specification
Chapter 29, Adobe Config General Syntax Reference Config General Element Reference 1227

and ending range values with a hyphen (-) character. Multiple discontinuous ranges can be specified,
separated by commas. Any whitespace before or after a comma is ignored.

For example, "U+20-7E, U+80, U+3A0-1F00" covers the range U+0020 through U+007E inclusive, the
U+0080 character and the range U+03A0 through U+1F00 inclusive.

XFA Specification
Chapter 29, Adobe Config General Syntax Reference Config General Element Reference 1228

The flipLabel element
This element determines whether or not the label will be printed flipped.

<flipLabel

Properties:
 desc="cdata"
 lock="0 | 1"
>
 ...pcdata...
</flipLabel>

The flipLabel element is used within the following other elements:
labelPrinter

To flip a label is to print its content rotated by 180 degrees around the geometric center of the label.

Content

The content must be one of the following:

usePrinterSetting

This value causes the printer setting to be honored. This is the default.

on

This value causes the label content to rotate 180 degrees, regardless of the printer setting.

off

This value causes the label content to print without rotation, regardless of the printer setting.

The desc property

An attribute to hold human-readable metadata.

The lock property

A permission flag for allowing or blocking attempted changes to the element.

0

Allow changes to properties and content.

1

Block changes to properties and content.

XFA Specification
Chapter 29, Adobe Config General Syntax Reference Config General Element Reference 1229

The fontInfo element
This element holds options pertaining to fonts.

<fontInfo

Properties:
 desc="cdata"
 lock="0 | 1"
>

 <embed/> [0..1]
 <map/> [0..1]
 <subsetBelow/> [0..1]
Children:
 <alwaysEmbed/> [0..n]
 <defaultTypeface/> [0..n]
 <neverEmbed/> [0..n]
</fontInfo>

The fontInfo element is used within the following other elements:
labelPrinter

The alwaysEmbed property

This option specifies a font which is to be embedded in the output document, whenever possible.

The defaultTypeface property

DEPRECATED. Specifies a fallback font to use when the font specified by the template is not available.

The desc property

An attribute to hold human-readable metadata.

The embed property

This option controls the embedding of fonts in the output document.

The lock property

A permission flag for allowing or blocking attempted changes to the element.

0

Allow changes to properties and content.

1

Block changes to properties and content.

The map property

This option encloses one or more equate elements that supply mappings from a specified resource to
another during the rendering of an output document.

The neverEmbed property

This option specifies a font which is never to be embedded in the output document.

XFA Specification
Chapter 29, Adobe Config General Syntax Reference Config General Element Reference 1230

The subsetBelow property

This option specifies a usage threshold below which an embedded font is reduced to the subset of
symbols that are actually used.

XFA Specification
Chapter 29, Adobe Config General Syntax Reference Config General Element Reference 1231

The labelPrinter element
Supplies options for one category of label printer.

<labelPrinter

Properties:
 desc="cdata"
 lock="0 | 1"
 name="cdata"
>

 <batchOutput/> [0..1]
 <flipLabel/> [0..1]
 <fontInfo/> [0..1]
 <xdc/> [0..1]
</labelPrinter>

The labelPrinter element is used within the following other elements:
present

The destination element controls the output format. Some of the allowed output formats are used to
drive label printers. An instance of this element supplies additional options for one particular format of
label printer.

For label printers using ZPL this element replaces the deprecated zpl element. However when the output
format is ZPL, and there is no labelPrinter element provided for ZPL, then the XFA processor looks for
a zpl element to fall back on.

The batchOutput property

This option specifies if the processing is required to be done in batch mode.

The desc property

An attribute to hold human-readable metadata.

The flipLabel property

This element determines whether or not the label will be printed flipped.

The fontInfo property

This element holds options pertaining to fonts.

The lock property

A permission flag for allowing or blocking attempted changes to the element.

0

Allow changes to properties and content.

1

Block changes to properties and content.

XFA Specification
Chapter 29, Adobe Config General Syntax Reference Config General Element Reference 1232

The name property

This attribute specifies which label printer format is controlled by this particular element. The value must
be one of the following:

zpl

This element contains options for printers using ZPL (Zebra Programming Language). This is the
default.

dpl

This element contains options for printers using DPL (Datamax Printer Language).

ipl

This element contains options for printers using IPL (Intermec Printer Language).

tcpl

This element contains options for printers using TCPL (Tally Compressed Printer Language).

The xdc property

This option contains elements which specify how to obtain the device control (XDC) information.

XFA Specification
Chapter 29, Adobe Config General Syntax Reference Config General Element Reference 1233

The map element
This option encloses one or more equate elements that supply mappings from a specified resource to
another during the rendering of an output document.

<map

Properties:
 desc="cdata"
 lock="0 | 1"
>
Children:
 <equate/> [0..n]
 <equateRange/> [0..n]
</map>

The map element is used within the following other elements:
fontInfo

This option is commonly used to deal with typefaces or output media specifications in the device control
information that are not available on the printer or display device.

The desc property

An attribute to hold human-readable metadata.

The equate property

This option specifies a mapping from a specified typeface to a replacement typeface.

The equateRange property

This option specifies a mapping from a specified typeface to a replacement typeface for a subset of
Unicode code points.

The lock property

A permission flag for allowing or blocking attempted changes to the element.

0

Allow changes to properties and content.

1

Block changes to properties and content.

XFA Specification
Chapter 29, Adobe Config General Syntax Reference Config General Element Reference 1234

The neverEmbed element
This option specifies a font which is never to be embedded in the output document.

<neverEmbed

Properties:
 desc="cdata"
 lock="0 | 1"
>
 ...pcdata...
</neverEmbed>

The neverEmbed element is used within the following other elements:
fontInfo

This option overrides the embed element for the font it names, forcing it not to be embedded in the
output document. This is used for a font that is known to be present in the client.

As with all the font embedding options, this option applies only when creating or updating a PDF file
which holds an XFA form intended for distribution. It is not used when printing because the application
can query the printer to find out what fonts the printer needs.

Although this option is in the present section of config, it also affects the behavior of Designer and,
when saving form state, of Acrobat.

Content

The content must be a font name. Any whitespace in the element content is presumed to be part of the
font name, including leading and trailing whitespace. No normalization is performed, so for example a
space character is not equivalent to a tab character and upper-case letters are distinct from lower-case
letters.

The desc property

An attribute to hold human-readable metadata.

The lock property

A permission flag for allowing or blocking attempted changes to the element.

0

Allow changes to properties and content.

1

Block changes to properties and content.

XFA Specification
Chapter 29, Adobe Config General Syntax Reference Config General Element Reference 1235

The present element
Container for the configuration subset used by LiveCycle.

<present

Properties:
 desc="cdata"
 lock="0 | 1"
>
Children:
 <labelPrinter/> [0..n]
</present>

The present element is used within the following other elements:
config

For more information, see The present element in the Adobe Config for LiveCycle Syntax Reference.

The labelPrinter property

Supplies options for one category of label printer.

XFA Specification
Chapter 29, Adobe Config General Syntax Reference Config General Element Reference 1236

The submitUrl element
This option specifies an URL to which form data may be submitted.

<submitUrl

Properties:
 desc="cdata"
 lock="0 | 1"
>
 ...pcdata...
</submitUrl>

The submitUrl element is used within the following other elements:
acrobat

The default submit URL is the target for running a script on the server when required by the script's runAt
property. It is also a target used by template submit elements that do not specify a target.

This element may occur singly or as any number of siblings. When a set of siblings is present they form an
ordered array.

If there is a submitUrlIndex variable in the variables dataset, the value of submitUrlIndex
supplies an integer index which selects one of the submit URLs from the array to use as the default submit
URL. If there is no submitUrlIndex variable then the first occurrence of this element is used.

Content

The content must be a valid URL to which the eventual client may submit the script request and/or the
form data.

The desc property

An attribute to hold human-readable metadata.

The lock property

A permission flag for allowing or blocking attempted changes to the element.

0

Allow changes to properties and content.

1

Block changes to properties and content.

XFA Specification
Chapter 29, Adobe Config General Syntax Reference Config General Element Reference 1237

The subsetBelow element
This option specifies a usage threshold below which an embedded font is reduced to the subset of
symbols that are actually used.

<subsetBelow

Properties:
 desc="cdata"
 lock="0 | 1"
>
 ...pcdata...
</subsetBelow>

The subsetBelow element is used within the following other elements:
fontInfo

Sometimes a font is used only for a few characters in a document. It is wasteful to embed the entire font if
only a portion of it is used. This options sets a usage threshold below which only the used subset is to be
embedded. Above the threshold the entire font is to be embedded, if possible.

This option does not apply to fonts that are not embedded. Embedding is controlled by the embed and
alwaysEmbed elements.

This option has no effect for fonts that are used in data-entry fields. If the font is embedded at all, it is
embedded in its entirety.

As with all the font embedding options, this option applies only when creating or updating a PDF file
which holds an XFA form intended for distribution. It is not used when printing because the application
can query the printer to find out what fonts the printer needs.

Although this option is in the present section of config, it also affects the behavior of Designer and,
when saving form state, of Acrobat.

Content

The content must be a positive integer from 0 to 100, inclusive. The default value for this option is 100,
which causes all embedded fonts that are not used in data-entry fields to be subsetted.

The desc property

An attribute to hold human-readable metadata.

The lock property

A permission flag for allowing or blocking attempted changes to the element.

0

Allow changes to properties and content.

1

Block changes to properties and content.

XFA Specification
Chapter 29, Adobe Config General Syntax Reference Config General Element Reference 1238

The trace element
This element contains options pertaining to run-time display of trace information.

<trace

Properties:
 desc="cdata"
 lock="0 | 1"
>
Children:
 <area/> [0..n]
</trace>

The trace element is used within the following other elements:
config

The area property

This option controls whether trace messages are issued and the verbosity of the messages for a particular
subsection of the application.

The desc property

An attribute to hold human-readable metadata.

The lock property

A permission flag for allowing or blocking attempted changes to the element.

0

Allow changes to properties and content.

1

Block changes to properties and content.

XFA Specification
Chapter 29, Adobe Config General Syntax Reference Config General Element Reference 1239

The uri element
Part of the common configuration subset.

<uri

Properties:
 desc="cdata"
 lock="0 | 1"
>
 ...pcdata...
</uri>

The uri element is used within the following other elements:
debug xdc xsl

For more information, see The uri element in the Config Common Element Reference.

XFA Specification
Chapter 29, Adobe Config General Syntax Reference Config General Element Reference 1240

The xdc element
This option contains elements which specify how to obtain the device control (XDC) information.

<xdc

Properties:
 desc="cdata"
 lock="0 | 1"
>

 <uri/> [0..1]
 <xsl/> [0..1]
</xdc>

The xdc element is used within the following other elements:
labelPrinter

The device control information is used by the driver for the particular printer or language. For example, it
contains information about the available fonts.

The desc property

An attribute to hold human-readable metadata.

The lock property

A permission flag for allowing or blocking attempted changes to the element.

0

Allow changes to properties and content.

1

Block changes to properties and content.

The uri property

Part of the common configuration subset.

The xsl property

Part of the common configuration subset.

XFA Specification
Chapter 29, Adobe Config General Syntax Reference Config General Element Reference 1241

The xsl element
Part of the common configuration subset.

<xsl

Properties:
 desc="cdata"
 lock="0 | 1"
>

 <debug/> [0..1]
 <uri/> [0..1]
</xsl>

The xsl element is used within the following other elements:
xdc

For more information, see The xsl element in the Config Common Element Reference.

The debug property

Part of the common configuration subset.

The uri property

Part of the common configuration subset.

 1242

30 Adobe Config for Acrobat Syntax Reference

This chapter describes the language used by the Acrobat family of products for implementation-specific
sections of the configuration packet.

The config syntax reference is broken up into four chapters. “Adobe Config General Syntax Reference” on
page 1211 describes portions of the Adobe config grammar that are used by all Adobe products, including
the outermost container elements. This chapter describes a subtree that is specific to members of the
Acrobat family of products. “Adobe Config for LiveCycle ES2 Reference” on page 1293 describes a subtree
that is specific to LiveCycle ES2.

In addition, all Adobe applications implement the mandatory XFA common configuration section. That
section is a core XFA grammar (required by the XFA specification) so it is not repeated here. It is fully
described in “Config Common Specification” on page 846.

Guide to the Config for Acrobat Syntax Reference
For information about how to read this syntax reference see “How to Read an Element Specification” on
page 565.

All elements and attributes described in this specification, unless otherwise indicated, belong to the
following namespace:

http://www.xfa.org/schema/xfa-config/3.1/

Note: The trailing “/” is required.

XFA Specification
Chapter 30, Adobe Config for Acrobat Syntax Reference Config for Acrobat Syntax Reference 1243

Config for Acrobat Syntax Reference
This section describes the subtree of the Adobe config grammar that is specific to the Adobe family of
products.

The acrobat element
This element is a container for configuration information for members of the Acrobat family.

<acrobat

Properties:
 desc="cdata"
 lock="0 | 1"
>

 <acrobat7/> [0..1]
 <common/> [0..1]
 <validate/> [0..1]
 <validateApprovalSignatures/> [0..1]
Children:
 <submitUrl/> [0..n]
</acrobat>

Acrobat 6 retrieved its configuration settings from an agent element with a name attribute carrying the
value acrobat. Newer members of the Acrobat family use an acrobat element instead. For backwards
compatability if this element is missing the application falls back on the old agent syntax.

The acrobat7 property

This element holds legacy flags introduced in Acrobat 7.

The common property

Part of the common configuration subset.

The desc property

An attribute to hold human-readable metadata.

The lock property

A permission flag for allowing or blocking attempted changes to the element.

0

Allow changes to properties and content.

1

Block changes to properties and content.

The submitUrl property

This option specifies an URL to which form data may be submitted.

XFA Specification
Chapter 30, Adobe Config for Acrobat Syntax Reference Config for Acrobat Syntax Reference 1244

The validate property

This option causes validations to be automatically run before specified activities.

The validateApprovalSignatures property

This option controls when validations are performed for approval signatures.

XFA Specification
Chapter 30, Adobe Config for Acrobat Syntax Reference Config for Acrobat Syntax Reference 1245

The acrobat7 element
This element holds legacy flags introduced in Acrobat 7.

<acrobat7

Properties:
 desc="cdata"
 lock="0 | 1"
>

 <dynamicRender/> [0..1]
</acrobat7>

The acrobat7 element is used within the following other elements:
acrobat

The legacy flags within this element force Acrobat version 7 and later members of the Acrobat family to
continue behaving like Acrobat 6 in certain ways.

Note that a new syntax for declaring legacy flags was introduced in a later version of XFA. Newer legacy
flags are expressed within the template (not config) using the originalXFAVersion processing
instruction. However, the flags defined under acrobat7 are still part of the config grammar and are still
supported by members of the Acrobat family.

The desc property

An attribute to hold human-readable metadata.

The dynamicRender property

This flag controls whether or not the pdf will re-render itself during the session to show or hide objects,
instantiate pages, and so on.

The lock property

A permission flag for allowing or blocking attempted changes to the element.

0

Allow changes to properties and content.

1

Block changes to properties and content.

XFA Specification
Chapter 30, Adobe Config for Acrobat Syntax Reference Config for Acrobat Syntax Reference 1246

The adjustData element
Part of the common configuration subset.

<adjustData

Properties:
 desc="cdata"
 lock="0 | 1"
>
 ...pcdata...
</adjustData>

The adjustData element is used within the following other elements:
data

For more information, see The adjustData element in the Config Common Element Reference.

XFA Specification
Chapter 30, Adobe Config for Acrobat Syntax Reference Config for Acrobat Syntax Reference 1247

The attributes element
Part of the common configuration subset.

<attributes

Properties:
 desc="cdata"
 lock="0 | 1"
>
 ...pcdata...
</attributes>

The attributes element is used within the following other elements:
data

For more information, see The attribute element in the Config Common Element Reference.

XFA Specification
Chapter 30, Adobe Config for Acrobat Syntax Reference Config for Acrobat Syntax Reference 1248

The base element
Part of the common configuration subset.

<base

Properties:
 desc="cdata"
 lock="0 | 1"
>
 ...pcdata...
</base>

The base element is used within the following other elements:
template

For more information, see The base element in the Config Common Element Reference.

XFA Specification
Chapter 30, Adobe Config for Acrobat Syntax Reference Config for Acrobat Syntax Reference 1249

The common element
Part of the common configuration subset.

<common

Properties:
 desc="cdata"
 lock="0 | 1"
>

 <data/> [0..1]
 <locale/> [0..1]
 <localeSet/> [0..1]
 <messaging/> [0..1]
 <suppressBanner/> [0..1]
 <template/> [0..1]
 <validationMessaging/> [0..1]
 <versionControl/> [0..1]
Children:
 <log/> [0..n]
</common>

The common element is used within the following other elements:
acrobat

For more information, see The common element in the Config Common Element Reference.

The data property

Part of the common configuration subset.

The locale property

Part of the common configuration subset.

The localeSet property

Part of the common configuration subset.

The log property

Part of the common configuration subset.

The messaging property

Part of the common configuration subset.

The suppressBanner property

Part of the common configuration subset.

The template property

Part of the common configuration subset.

XFA Specification
Chapter 30, Adobe Config for Acrobat Syntax Reference Config for Acrobat Syntax Reference 1250

The validationMessaging property

Part of the common configuration subset.

The versionControl property

Part of the common configuration subset.

XFA Specification
Chapter 30, Adobe Config for Acrobat Syntax Reference Config for Acrobat Syntax Reference 1251

The data element
Part of the common configuration subset.

<data

Properties:
 desc="cdata"
 lock="0 | 1"
>

 <adjustData/> [0..1]
 <attributes/> [0..1]
 <incrementalLoad/> [0..1]
 <outputXSL/> [0..1]
 <range/> [0..1]
 <record/> [0..1]
 <startNode/> [0..1]
 <uri/> [0..1]
 <window/> [0..1]
 <xsl/> [0..1]
Children:
 <excludeNS/> [0..n]
 <transform/> [0..n]
</data>

The data element is used within the following other elements:
common

For more information, see The data element in the Config Common Element Reference.

The adjustData property

Part of the common configuration subset.

The attributes property

Part of the common configuration subset.

The excludeNS property

Part of the common configuration subset.

The incrementalLoad property

Part of the common configuration subset.

The outputXSL property

Part of the common configuration subset.

The range property

Part of the common configuration subset.

The record property

Part of the common configuration subset.

XFA Specification
Chapter 30, Adobe Config for Acrobat Syntax Reference Config for Acrobat Syntax Reference 1252

The startNode property

Part of the common configuration subset.

The transform property

Part of the common configuration subset.

The uri property

Part of the common configuration subset.

The window property

Part of the common configuration subset.

The xsl property

Part of the common configuration subset.

XFA Specification
Chapter 30, Adobe Config for Acrobat Syntax Reference Config for Acrobat Syntax Reference 1253

The debug element
Part of the common configuration subset.

<debug

Properties:
 desc="cdata"
 lock="0 | 1"
>

 <uri/> [0..1]
</debug>

The debug element is used within the following other elements:
xsl

For more information, see The debug element in the Config Common Element Reference.

The uri property

Part of the common configuration subset.

XFA Specification
Chapter 30, Adobe Config for Acrobat Syntax Reference Config for Acrobat Syntax Reference 1254

The dynamicRender element
This flag controls whether or not the pdf will re-render itself during the session to show or hide objects,
instantiate pages, and so on.

<dynamicRender

Properties:
 desc="cdata"
 lock="0 | 1"
>
 ...pcdata...
</dynamicRender>

The dynamicRender element is used within the following other elements:
acrobat7

Acrobat 6 could update the content of fields as they were modified but it could not resize a field, add new
pages or fields, show content which had been hidden or hide content which had been shown. This flag
forces newer members of the Acrobat family to behave the same way as Acrobat 6.

Content

The content must be one of the following:

forbidden

Do not re-render. This setting is appropriate for XFAF forms. It is also appropriate for old-style
static forms. This is the default.

required

Perform re-rendering whenever necessary. Note that this is not the default so dynamic forms
must explicitly set this flag in order to work properly. Setting this flag introduces some additional
processing overhead even when re-rendering does not take place.

The desc property

An attribute to hold human-readable metadata.

The lock property

A permission flag for allowing or blocking attempted changes to the element.

0

Allow changes to properties and content.

1

Block changes to properties and content.

XFA Specification
Chapter 30, Adobe Config for Acrobat Syntax Reference Config for Acrobat Syntax Reference 1255

The excludeNS element
Part of the common configuration subset.

<excludeNS

Properties:
 desc="cdata"
 lock="0 | 1"
>
 ...pcdata...
</excludeNS>

The excludeNS element is used within the following other elements:
data

For more information, see The excludeNS element in the Config Common Element Reference.

XFA Specification
Chapter 30, Adobe Config for Acrobat Syntax Reference Config for Acrobat Syntax Reference 1256

The groupParent element
Part of the common configuration subset.

<groupParent

Properties:
 desc="cdata"
 lock="0 | 1"
>
 ...pcdata...
</groupParent>

The groupParent element is used within the following other elements:
transform

For more information, see The groupParent element in the Config Common Element Reference.

XFA Specification
Chapter 30, Adobe Config for Acrobat Syntax Reference Config for Acrobat Syntax Reference 1257

The ifEmpty element
Part of the common configuration subset.

<ifEmpty

Properties:
 desc="cdata"
 lock="0 | 1"
>
 ...pcdata...
</ifEmpty>

The ifEmpty element is used within the following other elements:
transform

For more information, see The ifEmpty element in the Config Common Element Reference.

XFA Specification
Chapter 30, Adobe Config for Acrobat Syntax Reference Config for Acrobat Syntax Reference 1258

The incrementalLoad element
Part of the common configuration subset.

<incrementalLoad

Properties:
 desc="cdata"
 lock="0 | 1"
>
 ...pcdata...
</incrementalLoad>

The incrementalLoad element is used within the following other elements:
data

For more information, see The incrementalLoad element in the Config Common Element Reference.

XFA Specification
Chapter 30, Adobe Config for Acrobat Syntax Reference Config for Acrobat Syntax Reference 1259

The locale element
Part of the common configuration subset.

<locale

Properties:
 desc="cdata"
 lock="0 | 1"
>
 ...pcdata...
</locale>

The locale element is used within the following other elements:
common

For more information, see The locale element in the Config Common Element Reference.

XFA Specification
Chapter 30, Adobe Config for Acrobat Syntax Reference Config for Acrobat Syntax Reference 1260

The localeSet element
Part of the common configuration subset.

<localeSet

Properties:
 desc="cdata"
 lock="0 | 1"
>
 ...pcdata...
</localeSet>

The localeSet element is used within the following other elements:
common

For more information, see The localeSet element in the Config Common Element Reference.

XFA Specification
Chapter 30, Adobe Config for Acrobat Syntax Reference Config for Acrobat Syntax Reference 1261

The log element
Part of the common configuration subset.

<log

Properties:
 desc="cdata"
 lock="0 | 1"
>

 <mode/> [0..1]
 <threshold/> [0..1]
 <to/> [0..1]
 <uri/> [0..1]
</log>

The log element is used within the following other elements:
common

For more information, see The log element in the Config Common Element Reference.

The mode property

Part of the common configuration subset.

The threshold property

Part of the common configuration subset.

The to property

Part of the common configuration subset.

The uri property

Part of the common configuration subset.

XFA Specification
Chapter 30, Adobe Config for Acrobat Syntax Reference Config for Acrobat Syntax Reference 1262

The message element
Part of the common configuration subset.

<message

Properties:
 desc="cdata"
 lock="0 | 1"
>

 <msgId/> [0..1]
 <severity/> [0..1]
</message>

The message element is used within the following other elements:
messaging

For more information, see The message element in the Config Common Element Reference.

The msgId property

Part of the common configuration subset.

The severity property

Part of the common configuration subset.

XFA Specification
Chapter 30, Adobe Config for Acrobat Syntax Reference Config for Acrobat Syntax Reference 1263

The messaging element
Part of the common configuration subset.

<messaging

Properties:
 desc="cdata"
 lock="0 | 1"
>
Children:
 <message/> [0..n]
</messaging>

The messaging element is used within the following other elements:
common

For more information, see The messaging element in the Config Common Element Reference.

The message property

Part of the common configuration subset.

XFA Specification
Chapter 30, Adobe Config for Acrobat Syntax Reference Config for Acrobat Syntax Reference 1264

The mode element
Part of the common configuration subset.

<mode

Properties:
 desc="cdata"
 lock="0 | 1"
>
 ...pcdata...
</mode>

The mode element is used within the following other elements:
log

For more information, see The Mode element in the Config Common Element Reference.

XFA Specification
Chapter 30, Adobe Config for Acrobat Syntax Reference Config for Acrobat Syntax Reference 1265

The msgId element
Part of the common configuration subset.

<msgId

Properties:
 desc="cdata"
 lock="0 | 1"
>
 ...pcdata...
</msgId>

The msgId element is used within the following other elements:
message

For more information, see The msgId element in the Config Common Element Reference.

XFA Specification
Chapter 30, Adobe Config for Acrobat Syntax Reference Config for Acrobat Syntax Reference 1266

The nameAttr element
Part of the common configuration subset.

<nameAttr

Properties:
 desc="cdata"
 lock="0 | 1"
>
 ...pcdata...
</nameAttr>

The nameAttr element is used within the following other elements:
transform

For more information, see The nameAttr element in the Config Common Element Reference.

XFA Specification
Chapter 30, Adobe Config for Acrobat Syntax Reference Config for Acrobat Syntax Reference 1267

The outputXSL element
Part of the common configuration subset.

<outputXSL

Properties:
 desc="cdata"
 lock="0 | 1"
>

 <uri/> [0..1]
</outputXSL>

The outputXSL element is used within the following other elements:
data

For more information, see The outputXSL element in the Config Common Element Reference.

The uri property

Part of the common configuration subset.

XFA Specification
Chapter 30, Adobe Config for Acrobat Syntax Reference Config for Acrobat Syntax Reference 1268

The picture element
Part of the common configuration subset.

<picture

Properties:
 desc="cdata"
 lock="0 | 1"
>
 ...pcdata...
</picture>

The picture element is used within the following other elements:
transform

For more information, see The picture element in the Config Common Element Reference.

XFA Specification
Chapter 30, Adobe Config for Acrobat Syntax Reference Config for Acrobat Syntax Reference 1269

The presence element
Part of the common configuration subset.

<presence

Properties:
 desc="cdata"
 lock="0 | 1"
>
 ...pcdata...
</presence>

The presence element is used within the following other elements:
transform

For more information, see The presence element in the Config Common Element Reference.

XFA Specification
Chapter 30, Adobe Config for Acrobat Syntax Reference Config for Acrobat Syntax Reference 1270

The range element
Part of the common configuration subset.

<range

Properties:
 desc="cdata"
 lock="0 | 1"
>
 ...pcdata...
</range>

The range element is used within the following other elements:
data

For more information, see The range element in the Config Common Element Reference.

XFA Specification
Chapter 30, Adobe Config for Acrobat Syntax Reference Config for Acrobat Syntax Reference 1271

The record element
Part of the common configuration subset.

<record

Properties:
 desc="cdata"
 lock="0 | 1"
>
 ...pcdata...
</record>

The record element is used within the following other elements:
data

For more information, see The record element in the Config Common Element Reference.

XFA Specification
Chapter 30, Adobe Config for Acrobat Syntax Reference Config for Acrobat Syntax Reference 1272

The relevant element
Part of the common configuration subset.

<relevant

Properties:
 desc="cdata"
 lock="0 | 1"
>
 ...pcdata...
</relevant>

The relevant element is used within the following other elements:
template

For more information, see The relevant element in the Config Common Element Reference.

XFA Specification
Chapter 30, Adobe Config for Acrobat Syntax Reference Config for Acrobat Syntax Reference 1273

The rename element
Part of the common configuration subset.

<rename

Properties:
 desc="cdata"
 lock="0 | 1"
>
 ...pcdata...
</rename>

The rename element is used within the following other elements:
transform

For more information, see The rename element in the Config Common Element Reference.

XFA Specification
Chapter 30, Adobe Config for Acrobat Syntax Reference Config for Acrobat Syntax Reference 1274

The severity element
Part of the common configuration subset.

<severity

Properties:
 desc="cdata"
 lock="0 | 1"
>
 ...pcdata...
</severity>

The severity element is used within the following other elements:
message

For more information, see The severity element in the Config Common Element Reference.

XFA Specification
Chapter 30, Adobe Config for Acrobat Syntax Reference Config for Acrobat Syntax Reference 1275

The startNode element
Part of the common configuration subset.

<startNode

Properties:
 desc="cdata"
 lock="0 | 1"
>
 ...pcdata...
</startNode>

The startNode element is used within the following other elements:
data

For more information, see The startNode element in the Config Common Element Reference.

XFA Specification
Chapter 30, Adobe Config for Acrobat Syntax Reference Config for Acrobat Syntax Reference 1276

The startPage element
Part of the common configuration subset.

<startPage

Properties:
 desc="cdata"
 lock="0 | 1"
>
 ...pcdata...
</startPage>

The startPage element is used within the following other elements:
template

For more information, see The startPage element in the Config Common Element Reference.

XFA Specification
Chapter 30, Adobe Config for Acrobat Syntax Reference Config for Acrobat Syntax Reference 1277

The submitUrl element
This option specifies an URL to which form data may be submitted.

<submitUrl

Properties:
 desc="cdata"
 lock="0 | 1"
>
 ...pcdata...
</submitUrl>

The submitUrl element is used within the following other elements:
acrobat

The default submit URL is the target for running a script on the server when required by the script's runAt
property. It is also a target used by template submit elements that do not specify a target.

This element may occur singly or as any number of siblings. When a set of siblings is present they form an
ordered array.

If there is a submitUrlIndex variable in the variables dataset, the value of submitUrlIndex
supplies an integer index which selects one of the submit URLs from the array to use as the default submit
URL. If there is no submitUrlIndex variable then the first occurrence of this element is used.

Content

The content must be a valid URL to which the eventual client may submit the script request and/or the
form data.

The desc property

An attribute to hold human-readable metadata.

The lock property

A permission flag for allowing or blocking attempted changes to the element.

0

Allow changes to properties and content.

1

Block changes to properties and content.

XFA Specification
Chapter 30, Adobe Config for Acrobat Syntax Reference Config for Acrobat Syntax Reference 1278

The suppressBanner element
Part of the common configuration subset.

<suppressBanner

Properties:
 desc="cdata"
 lock="0 | 1"
>
 ...pcdata...
</suppressBanner>

The suppressBanner element is used within the following other elements:
common

For more information, see The suppressBanner element in the Config Common Element Reference.

XFA Specification
Chapter 30, Adobe Config for Acrobat Syntax Reference Config for Acrobat Syntax Reference 1279

The template element
Part of the common configuration subset.

<template

Properties:
 desc="cdata"
 lock="0 | 1"
>

 <base/> [0..1]
 <relevant/> [0..1]
 <startPage/> [0..1]
 <uri/> [0..1]
 <xsl/> [0..1]
</template>

The template element is used within the following other elements:
common

For more information, see The template element in the Config Common Element Reference.

The base property

Part of the common configuration subset.

The relevant property

Part of the common configuration subset.

The startPage property

Part of the common configuration subset.

The uri property

Part of the common configuration subset.

The xsl property

Part of the common configuration subset.

XFA Specification
Chapter 30, Adobe Config for Acrobat Syntax Reference Config for Acrobat Syntax Reference 1280

The threshold element
Part of the common configuration subset.

<threshold

Properties:
 desc="cdata"
 lock="0 | 1"
>
 ...pcdata...
</threshold>

The threshold element is used within the following other elements:
log

For more information, see The threshold element in the Config Common Element Reference.

XFA Specification
Chapter 30, Adobe Config for Acrobat Syntax Reference Config for Acrobat Syntax Reference 1281

The to element
Part of the common configuration subset.

<to

Properties:
 desc="cdata"
 lock="0 | 1"
>
 ...pcdata...
</to>

The to element is used within the following other elements:
log

For more information, see The to element in the Config Common Element Reference.

XFA Specification
Chapter 30, Adobe Config for Acrobat Syntax Reference Config for Acrobat Syntax Reference 1282

The transform element
Part of the common configuration subset.

<transform

Properties:
 desc="cdata"
 lock="0 | 1"
 ref="cdata"
>

 <groupParent/> [0..1]
 <ifEmpty/> [0..1]
 <nameAttr/> [0..1]
 <picture/> [0..1]
 <presence/> [0..1]
 <rename/> [0..1]
 <whitespace/> [0..1]
</transform>

The transform element is used within the following other elements:
data

For more information, see The transform element in the Config Common Element Reference.

The groupParent property

Part of the common configuration subset.

The ifEmpty property

Part of the common configuration subset.

The nameAttr property

Part of the common configuration subset.

The picture property

Part of the common configuration subset.

The presence property

Part of the common configuration subset.

The rename property

Part of the common configuration subset.

The whitespace property

Part of the common configuration subset.

XFA Specification
Chapter 30, Adobe Config for Acrobat Syntax Reference Config for Acrobat Syntax Reference 1283

The uri element
Part of the common configuration subset.

<uri

Properties:
 desc="cdata"
 lock="0 | 1"
>
 ...pcdata...
</uri>

The uri element is used within the following other elements:
data debug log outputXSL template xsl

For more information, see The uri element in the Config Common Element Reference.

XFA Specification
Chapter 30, Adobe Config for Acrobat Syntax Reference Config for Acrobat Syntax Reference 1284

The validate element
This option causes validations to be automatically run before specified activities.

<validate

Properties:
 desc="cdata"
 lock="0 | 1"
>
 ...pcdata...
</validate>

The validate element is used within the following other elements:
acrobat

For all activities except saving the form to a file, when the validation fails with an error the pending action
is cancelled. However when validation generates a warning, or when validation succeeds, the pending
action goes ahead.

When saving the form to a file the XFA processor does not care whether validation succeeds or fails; it
saves the file regardless. This is the only reasonable behavior for a non-interactive application. However
the warning and error messages logged during validation may still be useful.

NOTE: Since XFA 2.8 this element has been a child of either the acrobat element or the present
element. However, for backwards compatibility, when members of the Acrobat family do not find this
element under the acrobat element they fall back to looking under the present element.

Content

The content is a space-separated list of zero or more activity names. The activity names must be drawn
from the following list:

preSubmit

Validate before submitting the form to an HTTP server. This is the default.

prePrint

Validate before printing the form.

preExecute

Validate before executing a request to a WSDL-based web service.

preSave

Validate before saving the form to a file.

The default behavior is to validate only before submitting. To prevent even this validation supply this
element but leave it empty.

The desc property

An attribute to hold human-readable metadata.

The lock property

A permission flag for allowing or blocking attempted changes to the element.

XFA Specification
Chapter 30, Adobe Config for Acrobat Syntax Reference Config for Acrobat Syntax Reference 1285

0

Allow changes to properties and content.

1

Block changes to properties and content.

XFA Specification
Chapter 30, Adobe Config for Acrobat Syntax Reference Config for Acrobat Syntax Reference 1286

The validateApprovalSignatures element
This option controls when validations are performed for approval signatures.

<validateApprovalSignatures

Properties:
 desc="cdata"
 lock="0 | 1"
>
 ...pcdata...
</validateApprovalSignatures>

The validateApprovalSignatures element is used within the following other elements:
acrobat

Validating an approval signature consists of checking the document to ensure that it has not changed
since the signature was applied. For large XFA forms this can be a slow operation (over a minute).

Earlier releases of the Acrobat family of products always performed this operation for each signature on
document open and also whenever a new signature was added. Since XFA 2.8 the form creator has been
able to use this element to control when signature validation is performed for XFA forms.

When a signature has not been validated the user interface shows the status of the signature as unknown.

There is also a user preference setting to control whether signatures are validated on open. When this
element is present in the document it takes precedence over the user preference.

Content

The content is a space-separated list of zero or more activity names. The activity names must be drawn
from the following list:

docReady

Validate upon opening the document.

postSign

Validate upon adding a signature.

When this element is present but empty no validations are done. However when this element is omitted
entirely postSign validations are always done and docReady validations are done when allowed by the
user preference, thereby reproducing the behavior of releases prior to XFA 2.8.

The desc property

An attribute to hold human-readable metadata.

The lock property

A permission flag for allowing or blocking attempted changes to the element.

0

Allow changes to properties and content.

XFA Specification
Chapter 30, Adobe Config for Acrobat Syntax Reference Config for Acrobat Syntax Reference 1287

1

Block changes to properties and content.

XFA Specification
Chapter 30, Adobe Config for Acrobat Syntax Reference Config for Acrobat Syntax Reference 1288

The validationMessaging element
Part of the common configuration subset.

<validationMessaging

Properties:
 desc="cdata"
 lock="0 | 1"
>
 ...pcdata...
</validationMessaging>

The validationMessaging element is used within the following other elements:
common

For more information, see The validationMessaging element in the Config Common Element Reference.

XFA Specification
Chapter 30, Adobe Config for Acrobat Syntax Reference Config for Acrobat Syntax Reference 1289

The versionControl element
Part of the common configuration subset.

<versionControl

Properties:
 lock="0 | 1"
 outputBelow="warn | error | update"
 sourceAbove="warn | error"
 sourceBelow="update | maintain"
>
</versionControl>

The versionControl element is used within the following other elements:
common

For more information, see The versionControl element in the Config Common Element Reference.

XFA Specification
Chapter 30, Adobe Config for Acrobat Syntax Reference Config for Acrobat Syntax Reference 1290

The whitespace element
Part of the common configuration subset.

<whitespace

Properties:
 desc="cdata"
 lock="0 | 1"
>
 ...pcdata...
</whitespace>

The whitespace element is used within the following other elements:
transform

For more information, see The whitespace element in the Config Common Element Reference.

XFA Specification
Chapter 30, Adobe Config for Acrobat Syntax Reference Config for Acrobat Syntax Reference 1291

The window element
Part of the common configuration subset.

<window

Properties:
 desc="cdata"
 lock="0 | 1"
>
 ...pcdata...
</window>

The window element is used within the following other elements:
data

For more information, see The window element in the Config Common Element Reference.

XFA Specification
Chapter 30, Adobe Config for Acrobat Syntax Reference Config for Acrobat Syntax Reference 1292

The xsl element
Part of the common configuration subset.

<xsl

Properties:
 desc="cdata"
 lock="0 | 1"
>

 <debug/> [0..1]
 <uri/> [0..1]
</xsl>

The xsl element is used within the following other elements:
data template

For more information, see The xsl element in the Config Common Element Reference.

The debug property

Part of the common configuration subset.

The uri property

Part of the common configuration subset.

 1293

31 Adobe Config for LiveCycle ES2 Reference

This chapter describes the language used by Adobe LiveCycle ES2 for implementation-specific sections of
the configuration packet.

The config syntax reference is broken up into four chapters. “Adobe Config General Syntax Reference” on
page 1211 describes portions of the Adobe config grammar that are used by all Adobe products, including
the outermost container elements. “Adobe Config for Acrobat Syntax Reference” on page 1242 describes a
subtree that is specific to members of the Acrobat family of products. This chapter describes a subtree that
is specific to LiveCycle ES2, including LiveCycle Presentation Agent.

In addition, all Adobe applications implement the mandatory XFA common configuration section. That
section is fully described in “Config Common Specification” on page 846.

Guide to the Config for Adobe LiveCycle ES2 Syntax Reference
For information about how to read this syntax reference see “How to Read an Element Specification” on
page 565.

All elements and attributes described in this specification, unless otherwise indicated, belong to the
following namespace:

http://www.xfa.org/schema/xfa-config/3.1/

Note: The trailing “/” is required.

XFA Specification
Chapter 31, Adobe Config for LiveCycle ES2 Reference Config for LiveCycle ES2 Syntax Reference 1294

Config for LiveCycle ES2 Syntax Reference
This section describes the subtree of the Adobe config grammar that is specific to LiveCycle ES2 and its
associated products, including LiveCycle Presentation Agent.

The accessibleContent element
This option controls the ability of accessibility aids to copy text or graphics from the document.

<accessibleContent

Properties:
 desc="cdata"
 lock="0 | 1"
>
 ...pcdata...
</accessibleContent>

The accessibleContent element is used within the following other elements:
permissions

Accessibility aids such as screen readers need to copy text from the document into their own buffers. This
option sets a permission flag which controls the ability of programs which identify themselves as
accessibility aids to extract text or graphics from the document. Once extracted, the data may be used for
any purpose.

This permission flag applies only when an encrypted PDF document is opened using the user password.
There are no restrictions if the document is unencrypted or it is opened using the master password.

This option corresponds to bit 10 in table 3.20 ("User access permissions") of [PDF].

Content

The content must be one of the following:

0

Disallow copying to accessibility aids. This is the default.

1

Allow copying to accessibility aids.

The desc property

An attribute to hold human-readable metadata.

The lock property

A permission flag for allowing or blocking attempted changes to the element.

0

Allow changes to properties and content.

1

Block changes to properties and content.

XFA Specification
Chapter 31, Adobe Config for LiveCycle ES2 Reference Config for LiveCycle ES2 Syntax Reference 1295

The addSilentPrint element
This option controls whether a print dialog opens automatically upon opening of the document.

<addSilentPrint

Properties:
 desc="cdata"
 lock="0 | 1"
>
 ...pcdata...
</addSilentPrint>

The addSilentPrint element is used within the following other elements:
silentPrint

Content

The content must be one of the following:

0

Do not invoke a print dialog on open. The user can still invoke the normal print dialog via the
menu. This is the default.

1

Open a print dialog on open. The print job will not be submitted until the user approves it by
some action such as clicking on a button.

The desc property

An attribute to hold human-readable metadata.

The lock property

A permission flag for allowing or blocking attempted changes to the element.

0

Allow changes to properties and content.

1

Block changes to properties and content.

XFA Specification
Chapter 31, Adobe Config for LiveCycle ES2 Reference Config for LiveCycle ES2 Syntax Reference 1296

The addViewerPreferences element
This option controls whether the associated viewer preferences are to be included in the output
document.

<addViewerPreferences

Properties:
 desc="cdata"
 lock="0 | 1"
>
 ...pcdata...
</addViewerPreferences>

The addViewerPreferences element is used within the following other elements:
viewerPreferences

Content

The content must be one of the following:

0

Do not include the viewer preferences. The viewer program will use its own defaults. This value is
assumed if the element is missing or empty.

1

Include the viewer preferences. These are just defaults which the user can override.

The desc property

An attribute to hold human-readable metadata.

The lock property

A permission flag for allowing or blocking attempted changes to the element.

0

Allow changes to properties and content.

1

Block changes to properties and content.

XFA Specification
Chapter 31, Adobe Config for LiveCycle ES2 Reference Config for LiveCycle ES2 Syntax Reference 1297

The adjustData element
Part of the common configuration subset.

<adjustData

Properties:
 desc="cdata"
 lock="0 | 1"
>
 ...pcdata...
</adjustData>

The adjustData element is used within the following other elements:
data

For more information, see The adjustData element in the Config Common Element Reference.

XFA Specification
Chapter 31, Adobe Config for LiveCycle ES2 Reference Config for LiveCycle ES2 Syntax Reference 1298

The adobeExtensionLevel element
This option specifies the level of Adobe extensions to be incorporated into the rendered PDF file.

<adobeExtensionLevel

Properties:
 desc="cdata"
 lock="0 | 1"
>
 ...pcdata...
</adobeExtensionLevel>

The adobeExtensionLevel element is used within the following other elements:
pdf

PDF 1.7 has been incorporated into an ISO standard. In consequence Adobe cannot issue a new version of
PDF whenever it wants. Instead Adobe issues vendor-specific extensions.

Content

 This option is ignored unless the value of version is 1.7.

The value, when specified, must be one of the following.

6

Corresponds to XFA 3.1. This is the default.

5

Corresponds to XFA 3.0, which includes all XFA 2.9 changes.

4

Corresponds to XFA 2.9, which was not publicly released.

3

Corresponds to XFA 2.8.

2

Corresponds to XFA 2.7

1

Corresponds to XFA 2.6

When the PDF version is 1.7, and this element is omitted or empty, XFA 2.5 is signified.

The desc property

An attribute to hold human-readable metadata.

The lock property

A permission flag for allowing or blocking attempted changes to the element.

XFA Specification
Chapter 31, Adobe Config for LiveCycle ES2 Reference Config for LiveCycle ES2 Syntax Reference 1299

0

Allow changes to properties and content.

1

Block changes to properties and content.

XFA Specification
Chapter 31, Adobe Config for LiveCycle ES2 Reference Config for LiveCycle ES2 Syntax Reference 1300

The alwaysEmbed element
This option specifies a font which is to be embedded in the output document, whenever possible.

<alwaysEmbed

Properties:
 desc="cdata"
 lock="0 | 1"
>
 ...pcdata...
</alwaysEmbed>

The alwaysEmbed element is used within the following other elements:
fontInfo

This option overrides the embed element for the font it names, forcing it to be embedded in the output
document whenever possible. One use of this is for a specialized font that is not likely to be present in the
client. Another use is for a font containing only the Euro symbol, which is not included in many fonts that
were defined before the Euro was introduced.

It is not always possible to embed a font in the document. Particular fonts may have license restrictions
which bar embedding.

As with all the font embedding options, this option applies only when creating or updating a PDF file
which holds an XFA form intended for distribution. It is not used when printing because the application
can query the printer to find out what fonts the printer needs.

Although this option is in the present section of config, it also affects the behavior of Designer and,
when saving form state, of Acrobat.

Content

The content must be a font name. Any whitespace in the element content is presumed to be part of the
font name, including leading and trailing whitespace. No normalization is performed, so for example a
space character is not equivalent to a tab character and upper-case letters are distinct from lower-case
letters.

The desc property

An attribute to hold human-readable metadata.

The lock property

A permission flag for allowing or blocking attempted changes to the element.

0

Allow changes to properties and content.

1

Block changes to properties and content.

XFA Specification
Chapter 31, Adobe Config for LiveCycle ES2 Reference Config for LiveCycle ES2 Syntax Reference 1301

The amd element
This option specifies the amendment level of the PDF/A specification.

<amd

Properties:
 desc="cdata"
 lock="0 | 1"
>
 ...pcdata...
</amd>

The amd element is used within the following other elements:
pdfa

Content

As specified in [ISO-19005-1], the content of this element "shall be the amendment number and year,
separated by a colon" (paragraph 6.7.10). An empty element, which is the default, signifies the original
unamended specification.

The desc property

An attribute to hold human-readable metadata.

The lock property

A permission flag for allowing or blocking attempted changes to the element.

0

Allow changes to properties and content.

1

Block changes to properties and content.

XFA Specification
Chapter 31, Adobe Config for LiveCycle ES2 Reference Config for LiveCycle ES2 Syntax Reference 1302

The attributes element
Part of the common configuration subset.

<attributes

Properties:
 desc="cdata"
 lock="0 | 1"
>
 ...pcdata...
</attributes>

The attributes element is used within the following other elements:
data

For more information, see The attribute element in the Config Common Element Reference.

XFA Specification
Chapter 31, Adobe Config for LiveCycle ES2 Reference Config for LiveCycle ES2 Syntax Reference 1303

The base element
Part of the common configuration subset.

<base

Properties:
 desc="cdata"
 lock="0 | 1"
>
 ...pcdata...
</base>

The base element is used within the following other elements:
template

For more information, see The base element in the Config Common Element Reference.

XFA Specification
Chapter 31, Adobe Config for LiveCycle ES2 Reference Config for LiveCycle ES2 Syntax Reference 1304

The batchOutput element
This option specifies if the processing is required to be done in batch mode.

<batchOutput

Properties:
 desc="cdata"
 format="none | concat | zip | zipCompress"
 lock="0 | 1"
>
</batchOutput>

The batchOutput element is used within the following other elements:
labelPrinter pcl pdf ps zpl

Normally an XFA processor produces a single output document containing all of the data which it has
merged into the form. However in batch mode it produces a separate document for each input record.
The collection of separate documents is packaged within a single output file.

The desc property

An attribute to hold human-readable metadata.

The format property

This attribute controls the format of the batch output file.

none

Batching mode is disabled. The output is a single document. This is the default.

zip

Batching is enabled. Each record generates a separate document. The collection of documents is
packaged as a standard zip file (without any compression).

zipCompress

Batching is enabled. Each record generates a separate document. The collection of documents is
packaged as a compressed zip file.

The lock property

A permission flag for allowing or blocking attempted changes to the element.

0

Allow changes to properties and content.

1

Block changes to properties and content.

XFA Specification
Chapter 31, Adobe Config for LiveCycle ES2 Reference Config for LiveCycle ES2 Syntax Reference 1305

The behaviorOverride element
This option specifies compatability flags that are to be forced, overriding compatability flag settings in the
template.

<behaviorOverride

Properties:
 desc="cdata"
 lock="0 | 1"
>
 ...pcdata...
</behaviorOverride>

The behaviorOverride element is used within the following other elements:
present

Content

The value of this element is a space-separated list of keyword:value pairs, with each keyword separated
from its value by a colon (:) character.

A keyword is the name of a compatability flag as used in the originalXFAVersion processing directive.
Unrecognized keywords are ignored.

At the time of writing all compatability flags accept two values, 0 and 1. The meaning of these values, and
which is the default, varies from flag to flag.

The desc property

An attribute to hold human-readable metadata.

The lock property

A permission flag for allowing or blocking attempted changes to the element.

0

Allow changes to properties and content.

1

Block changes to properties and content.

XFA Specification
Chapter 31, Adobe Config for LiveCycle ES2 Reference Config for LiveCycle ES2 Syntax Reference 1306

The cache element
This option controls the use of caches to reduce resource consumption and/or output file size.

<cache

Properties:
 desc="cdata"
 lock="0 | 1"
>

 <templateCache/> [0..1]
</cache>

The cache element is used within the following other elements:
present

The desc property

An attribute to hold human-readable metadata.

The lock property

A permission flag for allowing or blocking attempted changes to the element.

0

Allow changes to properties and content.

1

Block changes to properties and content.

The templateCache property

This option controls the use of a template cache to reduce template open time.

XFA Specification
Chapter 31, Adobe Config for LiveCycle ES2 Reference Config for LiveCycle ES2 Syntax Reference 1307

The change element
This option controls the user's ability to make changes to the PDF document.

<change

Properties:
 desc="cdata"
 lock="0 | 1"
>
 ...pcdata...
</change>

The change element is used within the following other elements:
permissions

The permisson bit controlled by this option grants the user permission to modify the contents of the
document by any means not controlled by the modifyAnnots element, the formFieldFilling
element, or the documentAssembly element. For example, this option controls the user's ability to edit
the boilerplate.

Content

The content must be one of the following:

0

Disallow changes. This is the default.

1

Allow changes.

The desc property

An attribute to hold human-readable metadata.

The lock property

A permission flag for allowing or blocking attempted changes to the element.

0

Allow changes to properties and content.

1

Block changes to properties and content.

XFA Specification
Chapter 31, Adobe Config for LiveCycle ES2 Reference Config for LiveCycle ES2 Syntax Reference 1308

The common element
Part of the common configuration subset.

<common

Properties:
 desc="cdata"
 lock="0 | 1"
>

 <data/> [0..1]
 <locale/> [0..1]
 <localeSet/> [0..1]
 <messaging/> [0..1]
 <suppressBanner/> [0..1]
 <template/> [0..1]
 <validationMessaging/> [0..1]
 <versionControl/> [0..1]
Children:
 <log/> [0..n]
</common>

The common element is used within the following other elements:
present

For more information, see The common element in the Config Common Element Reference.

The data property

Part of the common configuration subset.

The locale property

Part of the common configuration subset.

The localeSet property

Part of the common configuration subset.

The log property

Part of the common configuration subset.

The messaging property

Part of the common configuration subset.

The suppressBanner property

Part of the common configuration subset.

The template property

Part of the common configuration subset.

XFA Specification
Chapter 31, Adobe Config for LiveCycle ES2 Reference Config for LiveCycle ES2 Syntax Reference 1309

The validationMessaging property

Part of the common configuration subset.

The versionControl property

Part of the common configuration subset.

XFA Specification
Chapter 31, Adobe Config for LiveCycle ES2 Reference Config for LiveCycle ES2 Syntax Reference 1310

The compress element
This element controls the compression used when generating a PostScript document.

<compress

Properties:
 desc="cdata"
 lock="0 | 1"
 scope="imageOnly | document"
>
</compress>

The compress element is used within the following other elements:
ps

Some PostScript printers allow compression of images or the entire document. However different printers
support different compression algorithms. The print driver is required to know what compression
algorithm(s) can be used with the particular printer.

The desc property

An attribute to hold human-readable metadata.

The lock property

A permission flag for allowing or blocking attempted changes to the element.

0

Allow changes to properties and content.

1

Block changes to properties and content.

The scope property

This property determines which parts of the document will be compressed. It must contain one of the
following values:

imagesOnly

Only images are compressed. For each image the driver picks a compression method that is
efficient for binary data. After compression the data is encoded as printable characters. This is the
default.

document

The entire document is compressed. The driver picks a single compression method for the whole
document that is efficient for textual data.

XFA Specification
Chapter 31, Adobe Config for LiveCycle ES2 Reference Config for LiveCycle ES2 Syntax Reference 1311

The compressLogicalStructure element
This option controls the compression of logical structure within the PDF.

<compressLogicalStructure

Properties:
 desc="cdata"
 lock="0 | 1"
>
 ...pcdata...
</compressLogicalStructure>

The compressLogicalStructure element is used within the following other elements:
compression

Logical structure data is ancillary information about the document, beyond the visible appearance. For
example it includes hints for screen readers. This information can be quite bulky.

Logical structure is described in section 10.6 of [PDF].

Content

The content must be one of the following:

0

Do not compress the logical structure data. This is the default.

1

Compress the logical structure data. Doing so consumes additional processing time.

The desc property

An attribute to hold human-readable metadata.

The lock property

A permission flag for allowing or blocking attempted changes to the element.

0

Allow changes to properties and content.

1

Block changes to properties and content.

XFA Specification
Chapter 31, Adobe Config for LiveCycle ES2 Reference Config for LiveCycle ES2 Syntax Reference 1312

The compressObjectStream element
This option controls the compression of object streams within the PDF.

<compressObjectStream

Properties:
 desc="cdata"
 lock="0 | 1"
>
 ...pcdata...
</compressObjectStream>

The compressObjectStream element is used within the following other elements:
compression

Tagging data is carried in object streams. This data can be quite bulky.

Object streams are described in section 3.4.6 of [PDF].

Content

The content must be one of the following:

1

Compress object streams. Doing so consumes additional processing time but produces smaller
files. This is the default.

0

Do not compress object streams.

The desc property

An attribute to hold human-readable metadata.

The lock property

A permission flag for allowing or blocking attempted changes to the element.

0

Allow changes to properties and content.

1

Block changes to properties and content.

XFA Specification
Chapter 31, Adobe Config for LiveCycle ES2 Reference Config for LiveCycle ES2 Syntax Reference 1313

The compression element
This element contains elements specifying the type and degree of compression to apply to the output
document.

<compression

Properties:
 desc="cdata"
 lock="0 | 1"
>

 <compressLogicalStructure/> [0..1]
 <compressObjectStream/> [0..1]
 <level/> [0..1]
 <type/> [0..1]
</compression>

The compression element is used within the following other elements:
pdf

The compressLogicalStructure property

This option controls the compression of logical structure within the PDF.

The compressObjectStream property

This option controls the compression of object streams within the PDF.

The desc property

An attribute to hold human-readable metadata.

The level property

This option specifies the degree of compression to be used when generating a PDF document.

The lock property

A permission flag for allowing or blocking attempted changes to the element.

0

Allow changes to properties and content.

1

Block changes to properties and content.

The type property

This element specifies either the type of compression to be applied to a file or the type of output to be
produced by an automated form server.

XFA Specification
Chapter 31, Adobe Config for LiveCycle ES2 Reference Config for LiveCycle ES2 Syntax Reference 1314

The conformance element
This option specifies the conformance level with the PDF/A specification.

<conformance

Properties:
 desc="cdata"
 lock="0 | 1"
>
 ...pcdata...
</conformance>

The conformance element is used within the following other elements:
pdfa

Content

The PDF/A-1 specification [ISO-19005-1] defines two levels of conformance, PDF/A-1A and PDF/A-1B.

The content must be one of the following:

A

Conformance to PDF/A-1A. This is the default.

B

Conformance to PDF/A-1B.

The desc property

An attribute to hold human-readable metadata.

The lock property

A permission flag for allowing or blocking attempted changes to the element.

0

Allow changes to properties and content.

1

Block changes to properties and content.

XFA Specification
Chapter 31, Adobe Config for LiveCycle ES2 Reference Config for LiveCycle ES2 Syntax Reference 1315

The contentCopy element
This option controls the user's ability to copy text or graphics from the document.

<contentCopy

Properties:
 desc="cdata"
 lock="0 | 1"
>
 ...pcdata...
</contentCopy>

The contentCopy element is used within the following other elements:
permissions

This permission flag enables or disables the ability to copy or otherwise extract text or graphics from the
document. Note that, for older PDF client software, disabling copying also disables accessibility aids such
as screen readers. Newer PDF client software (implementing PDF 1.4 or later) understands a separate
permission flag for accessibility aids. That flag is controlled by the accessibleContent element.

This permission flag applies only when an encrypted PDF document is opened using the user password.
There are no restrictions if the document is unencrypted or it is opened using the master password.

This option corresponds to bit 5 in table 3.20 ("User access permissions") of [PDF].

Content

The content must be one of the following:

0

Disallow copying. This is the default.

1

Allow copying.

The desc property

An attribute to hold human-readable metadata.

The lock property

A permission flag for allowing or blocking attempted changes to the element.

0

Allow changes to properties and content.

1

Block changes to properties and content.

XFA Specification
Chapter 31, Adobe Config for LiveCycle ES2 Reference Config for LiveCycle ES2 Syntax Reference 1316

The copies element
This option specifies the number of copies for a (potentially) printed output document.

<copies

Properties:
 desc="cdata"
 lock="0 | 1"
>
 ...pcdata...
</copies>

The copies element is used within the following other elements:
present

This option is used by Presentation Agent when producing an output document. It is ignored if the
destination element contains pdf. Otherwise it is incorporated into the output document as a
directive.

Content

The content must be a positive integer. The default is 1.

The desc property

An attribute to hold human-readable metadata.

The lock property

A permission flag for allowing or blocking attempted changes to the element.

0

Allow changes to properties and content.

1

Block changes to properties and content.

XFA Specification
Chapter 31, Adobe Config for LiveCycle ES2 Reference Config for LiveCycle ES2 Syntax Reference 1317

The creator element
This option supplies a string to identify the PDF creator.

<creator

Properties:
 desc="cdata"
 lock="0 | 1"
>
 ...pcdata...
</creator>

The creator element is used within the following other elements:
pdf

PDF documents can identify the document creator via the Creator entry in the Document Information
dictionary. This dictionary is described in table 10.2 of [PDF]. XFA processors duplicate this string in the
XMP metadata packet.

Content

The content is a string identifying the program or application that created the template. The string may
contain whitespace.

If the supplied element is omitted or empty the existing value is preserved.

The desc property

An attribute to hold human-readable metadata.

The lock property

A permission flag for allowing or blocking attempted changes to the element.

0

Allow changes to properties and content.

1

Block changes to properties and content.

XFA Specification
Chapter 31, Adobe Config for LiveCycle ES2 Reference Config for LiveCycle ES2 Syntax Reference 1318

The currentPage element
This option sets the initial page.

<currentPage

Properties:
 desc="cdata"
 lock="0 | 1"
>
 ...pcdata...
</currentPage>

The currentPage element is used within the following other elements:
script

At the start of processing the application copies this value into xfa.host.currentPage. Scripts may
subsequently alter the value.

Content

The content must be a non-negative integer. The default is 0.

The desc property

An attribute to hold human-readable metadata.

The lock property

A permission flag for allowing or blocking attempted changes to the element.

0

Allow changes to properties and content.

1

Block changes to properties and content.

XFA Specification
Chapter 31, Adobe Config for LiveCycle ES2 Reference Config for LiveCycle ES2 Syntax Reference 1319

The data element
Part of the common configuration subset.

<data

Properties:
 desc="cdata"
 lock="0 | 1"
>

 <adjustData/> [0..1]
 <attributes/> [0..1]
 <incrementalLoad/> [0..1]
 <outputXSL/> [0..1]
 <range/> [0..1]
 <record/> [0..1]
 <startNode/> [0..1]
 <uri/> [0..1]
 <window/> [0..1]
 <xsl/> [0..1]
Children:
 <excludeNS/> [0..n]
 <transform/> [0..n]
</data>

The data element is used within the following other elements:
common

For more information, see The data element in the Config Common Element Reference.

The adjustData property

Part of the common configuration subset.

The attributes property

Part of the common configuration subset.

The excludeNS property

Part of the common configuration subset.

The incrementalLoad property

Part of the common configuration subset.

The outputXSL property

Part of the common configuration subset.

The range property

Part of the common configuration subset.

The record property

Part of the common configuration subset.

XFA Specification
Chapter 31, Adobe Config for LiveCycle ES2 Reference Config for LiveCycle ES2 Syntax Reference 1320

The startNode property

Part of the common configuration subset.

The transform property

Part of the common configuration subset.

The uri property

Part of the common configuration subset.

The window property

Part of the common configuration subset.

The xsl property

Part of the common configuration subset.

XFA Specification
Chapter 31, Adobe Config for LiveCycle ES2 Reference Config for LiveCycle ES2 Syntax Reference 1321

The debug element
Part of the common configuration subset.

<debug

Properties:
 desc="cdata"
 lock="0 | 1"
>

 <uri/> [0..1]
</debug>

The debug element is used within the following other elements:
xsl

For more information, see The debug element in the Config Common Element Reference.

The uri property

Part of the common configuration subset.

XFA Specification
Chapter 31, Adobe Config for LiveCycle ES2 Reference Config for LiveCycle ES2 Syntax Reference 1322

The defaultTypeface element
DEPRECATED. Specifies a fallback font to use when the font specified by the template is not available.

<defaultTypeface

Properties:
 desc="cdata"
 lock="0 | 1"
 writingScript="* | Arabic | Cyrillic | EastEuropeanRoman |
 Greek | Hebrew | Japanese | Korean |
 Roman | SimplifiedChinese | Thai |
 TraditionalChinese | Vietnamese"
>
 ...pcdata...
</defaultTypeface>

The defaultTypeface element is used within the following other elements:
fontInfo

Different installations have different fonts available. Different platforms have different fallback policies.
This option specifies a uniform fallback font across all platforms and installations.

This element is deprecated. Newer implementations should use the content of the typefaces element
in the locale set.

Content

The content is the typeface name for the font. Any whitespace in the element content is presumed to be
part of the typeface name, including leading and trailing whitespace. No normalization is performed, so
for example a space character is not equivalent to a tab character and upper-case letters are distinct from
lower-case letters.

When there is no defaultTypeface element supplied, or there is none that applies to the current locale,
the application falls back onto "Courier Std". This font ships with LiveCycle ES2.

The desc property

An attribute to hold human-readable metadata.

The lock property

A permission flag for allowing or blocking attempted changes to the element.

0

Allow changes to properties and content.

1

Block changes to properties and content.

The writingScript property

Typically each font includes only a subset of the glyphs included in Unicode. To handle this you can
specify multiple defaultTypeface options with each one asserting a unique value for
writingScript. This property determines which locales fall back to this font.

XFA Specification
Chapter 31, Adobe Config for LiveCycle ES2 Reference Config for LiveCycle ES2 Syntax Reference 1323

This property must have one of the following values:

*

Use the font as the default for locales which are not explicitly matched by any other
defaultTypeface element.

Arabic

Use the font as the default for Arabic locales.

Cyrillic

Use the font as the default for Cyrillic locales.

EastEuropeanRoman

Use the font as the default for Eastern European locales.

Greek

Use the font as the default for Greek locales.

Hebrew

Use the font as the default for Hebrew locales.

Japanese

Use the font as the default for Japanese locales.

Korean

Use the font as the default for Korean locales.

Roman

Use the font as the default for Western European locales.

SimplifiedChinese

Use the font as the default for simplified Chinese locales.

Thai

Use the font as the default for Thai locales.

TraditionalChinese

Use the font as the default for traditional Chinese locales.

Vietnamese

Use the font as the default for Vietnamese locales.

XFA Specification
Chapter 31, Adobe Config for LiveCycle ES2 Reference Config for LiveCycle ES2 Syntax Reference 1324

The destination element
When contained by a present element this option specifies the output format.

When contained by an openAction element this option specifies the action to be performed upon
opening the document in an interactive client.

<destination

Properties:
 desc="cdata"
 lock="0 | 1"
>
 ...pcdata...
</destination>

The destination element is used within the following other elements:
openAction present

Content

When containted by a present element, the content specifies the output format as follows:

pdf

The output format is [PDF]. The pdf element contains PDF-specific options. PDF may be used
either for interactive clients such as members of the Acrobat family or for printing. This is the
default.

pcl

The output format is [PCL]. The pcl element contains PCL-specific options. PCL is used for
printing.

ps

The output format is [PostScript]. The ps element contains PostScript-specific options. PostScript
is used for printing.

webClient

The output format is HTML. The webClient element contains HTML-specific options.The HTML
may incorporate CSS, JavaScript and other extensions and may vary from one client to another.
Interactivity is expected, but not necessarily support for every XFA feature.

zpl

The output format is [ZPL]. The zpl element contains ZPL-specific options. ZPL is used for
printing.

When contained by an openAction element, the content specifies the action to be performed upon
opening the document in an interactive client. If it contains pageFit the document is resized to fit the
window. If the element is empty or omitted or contains some other value the default action is taken.

The desc property

An attribute to hold human-readable metadata.

XFA Specification
Chapter 31, Adobe Config for LiveCycle ES2 Reference Config for LiveCycle ES2 Syntax Reference 1325

The lock property

A permission flag for allowing or blocking attempted changes to the element.

0

Allow changes to properties and content.

1

Block changes to properties and content.

XFA Specification
Chapter 31, Adobe Config for LiveCycle ES2 Reference Config for LiveCycle ES2 Syntax Reference 1326

The documentAssembly element
This option controls the user's ability to (re-)assemble the PDF document.

<documentAssembly

Properties:
 desc="cdata"
 lock="0 | 1"
>
 ...pcdata...
</documentAssembly>

The documentAssembly element is used within the following other elements:
permissions

This options controls whether the user has the right to insert, delete, or rotate pages, and create
navigation elements such as bookmarks and thumbnail images. If permission is granted the user has these
rights, even if modification of the document is otherwise forbidden by the setting of the change element.

This permission flag applies only when an encrypted PDF document is opened using the user password.
There are no restrictions if the document is unencrypted or it is opened using the master password.

This option corresponds to bit 11 in table 3.20 ("User access permissions") of [PDF].

Content

The content must be one of the following:

0

Disallow insertion, deletion, or rotation of pages and creation of navigation elements. This is the
default.

1

Allow insertion, deletion, or rotation of pages and creation of navigation elements.

The desc property

An attribute to hold human-readable metadata.

The lock property

A permission flag for allowing or blocking attempted changes to the element.

0

Allow changes to properties and content.

1

Block changes to properties and content.

XFA Specification
Chapter 31, Adobe Config for LiveCycle ES2 Reference Config for LiveCycle ES2 Syntax Reference 1327

The driver element
This element holds information for use by a particular driver.

<driver

Properties:
 desc="cdata"
 lock="0 | 1"
 name="cdata"
>

 <fontInfo/> [0..1]
 <xdc/> [0..1]
</driver>

The driver element is used within the following other elements:
present

Adobe supplies drivers for the most popular page description languages such as PDF, PDF/A, PCL, and ZPL.
However custom drivers may also be used. This element supplies the driver with additional information.

The desc property

An attribute to hold human-readable metadata.

The fontInfo property

This element holds options pertaining to fonts.

The lock property

A permission flag for allowing or blocking attempted changes to the element.

0

Allow changes to properties and content.

1

Block changes to properties and content.

The name property

The name of the driver to which the contained information applies.

This parameter has no default. It must be supplied.

The xdc property

This option contains elements which specify how to obtain the device control (XDC) information.

XFA Specification
Chapter 31, Adobe Config for LiveCycle ES2 Reference Config for LiveCycle ES2 Syntax Reference 1328

The duplexOption element
Sets the value of the Duplex option in the viewer preferences dictionary.

<duplexOption

Properties:
 desc="cdata"
 lock="0 | 1"
>
 ...pcdata...
</duplexOption>

The duplexOption element is used within the following other elements:
viewerPreferences

Content

This value corresponds to the Duplex option in the viewer preferences dictionary. The Duplex option is
described in table 8.1 in section 8.1 of [PDF]. The content must be one of the following:

simplex

This corresponds to the PDF keyword Simplex. This is the default.

duplexFlipLongEdge

This corresponds to the PDF keyword DuplexFlipLongEdge.

duplexFlipShortEdge

This corresponds to the PDF keyword DuplexFlipShortEdge.

The desc property

An attribute to hold human-readable metadata.

The lock property

A permission flag for allowing or blocking attempted changes to the element.

0

Allow changes to properties and content.

1

Block changes to properties and content.

XFA Specification
Chapter 31, Adobe Config for LiveCycle ES2 Reference Config for LiveCycle ES2 Syntax Reference 1329

The embed element
This option controls the embedding of fonts in the output document.

<embed

Properties:
 desc="cdata"
 lock="0 | 1"
>
 ...pcdata...
</embed>

The embed element is used within the following other elements:
fontInfo

This option controls whether fonts used in the document are embedded in the document, when possible.
If the fonts are not embedded the client computer may not be able to reproduce the text properly. On the
other hand fonts take a relatively large amount of data.

It is not always possible to embed a font in the document. Particular fonts may have license restrictions
which bar embedding.

When this option is set to disable embedding of fonts, it may be overriden for specific fonts by the
alwaysEmbed element.

As with all the font embedding options, this option applies only when creating or updating a PDF file
which holds an XFA form intended for distribution. It is not used when printing because the application
can query the printer to find out what fonts the printer needs.

Although this option is in the present section of config, it also affects the behavior of Designer and,
when saving form state, of Acrobat.

Content

The content must be one of the following:

0

Do not embed the fonts in the output document, except where overridden by the alwaysEmbed
element. This is the default.

1

Embed whatever fonts can be embedded in the output document.

The desc property

An attribute to hold human-readable metadata.

The lock property

A permission flag for allowing or blocking attempted changes to the element.

0

Allow changes to properties and content.

XFA Specification
Chapter 31, Adobe Config for LiveCycle ES2 Reference Config for LiveCycle ES2 Syntax Reference 1330

1

Block changes to properties and content.

XFA Specification
Chapter 31, Adobe Config for LiveCycle ES2 Reference Config for LiveCycle ES2 Syntax Reference 1331

The encrypt element
This option determines whether the output document is encrypted or not.

<encrypt

Properties:
 desc="cdata"
 lock="0 | 1"
>
 ...pcdata...
</encrypt>

The encrypt element is used within the following other elements:
encryption

Encryption of PDF documents is described in section 3.5 of [PDF]. The algorithm used is RC4 as described
in section 3.5.1 of [PDF].

Content

The content must be one of the following:

0

Do not encrypt. This is the default.

1

Encrypt.

The desc property

An attribute to hold human-readable metadata.

The lock property

A permission flag for allowing or blocking attempted changes to the element.

0

Allow changes to properties and content.

1

Block changes to properties and content.

XFA Specification
Chapter 31, Adobe Config for LiveCycle ES2 Reference Config for LiveCycle ES2 Syntax Reference 1332

The encryption element
This element contains options controlling encryption and use of the output document.

<encryption

Properties:
 desc="cdata"
 lock="0 | 1"
>

 <encrypt/> [0..1]
 <encryptionLevel/> [0..1]
 <permissions/> [0..1]
</encryption>

The encryption element is used within the following other elements:
pdf

The document author can impose restrictions upon the use of a PDF document, such as allowing fields to
be filled in but no other changes to be made. In order to enforce this the document is encrypted. PDF
viewers know how to decrypt PDF documents, however they also enforce the restrictions imposed by the
permissions declared within this element.

The desc property

An attribute to hold human-readable metadata.

The encrypt property

This option determines whether the output document is encrypted or not.

The encryptionLevel property

This option specifies the length of encryption key to use.

The lock property

A permission flag for allowing or blocking attempted changes to the element.

0

Allow changes to properties and content.

1

Block changes to properties and content.

The permissions property

This element contains subelements controlling the permission settings in the output PDF document.

XFA Specification
Chapter 31, Adobe Config for LiveCycle ES2 Reference Config for LiveCycle ES2 Syntax Reference 1333

The encryptionLevel element
This option specifies the length of encryption key to use.

<encryptionLevel

Properties:
 desc="cdata"
 lock="0 | 1"
>
 ...pcdata...
</encryptionLevel>

The encryptionLevel element is used within the following other elements:
encryption

Encryption of PDF documents is described in section 3.5 of [PDF]. The algorithm used is RC4 as described
in section 3.5.1 of [PDF]

.

Content

The content must be one of the following:

40bit

Uses a 40 bit encryption key. This is the default.

128bit

Uses a 128 bit encryption key.

The desc property

An attribute to hold human-readable metadata.

The lock property

A permission flag for allowing or blocking attempted changes to the element.

0

Allow changes to properties and content.

1

Block changes to properties and content.

XFA Specification
Chapter 31, Adobe Config for LiveCycle ES2 Reference Config for LiveCycle ES2 Syntax Reference 1334

The enforce element
This option names viewer preference settings which the user will not be allowed to alter.

<enforce

Properties:
 desc="cdata"
 lock="0 | 1"
>
 ...pcdata...
</enforce>

The enforce element is used within the following other elements:
viewerPreferences

Content

The content is a space-separated list of zero or more names of viewer preference settings. Names of viewer
preference settings which may be locked are defined by the PDF specification.

In XFA 3.0 (Acrobat 9.1) the only valid setting name is printScaling. When this setting is enforced the
user can only print with the default print scaling. The default print scaling can itself be changed using the
printScaling configuration option.

Note that previous versions of PDF did not include the ability to lock viewer preference settings, so when
an older version of Acrobat opens the PDF file it ignores this option.

The desc property

An attribute to hold human-readable metadata.

The lock property

A permission flag for allowing or blocking attempted changes to the element.

0

Allow changes to properties and content.

1

Block changes to properties and content.

XFA Specification
Chapter 31, Adobe Config for LiveCycle ES2 Reference Config for LiveCycle ES2 Syntax Reference 1335

The equate element
This option specifies a mapping from a specified typeface to a replacement typeface.

<equate

Properties:
 desc="cdata"
 force="cdata"
 from="cdata"
 lock="0 | 1"
 to="cdata"
>
</equate>

The equate element is used within the following other elements:
map

This option is commonly used to deal with typefaces specified in the device control information that are
not available on the printer or display device. For example, the following syntax:

<equate from="Arial_normal_normal" to="Arial_bold_italic">

changes the font for text that is specified as plain Arial to bold italicized Arial in the generated output.

The desc property

An attribute to hold human-readable metadata.

The force property

This attribute determines the circumstances under which the substitution is done. The value must be one
of the following:

1

Perform the substitution for all characters.

0

Perform the substitution only for characters that are missing from the from font.

The from property

This attribute supplies the name of the typeface as specified in the device control information.

The lock property

A permission flag for allowing or blocking attempted changes to the element.

0

Allow changes to properties and content.

1

Block changes to properties and content.

XFA Specification
Chapter 31, Adobe Config for LiveCycle ES2 Reference Config for LiveCycle ES2 Syntax Reference 1336

The to property

This attribute supplies the name of the substitute typeface.

XFA Specification
Chapter 31, Adobe Config for LiveCycle ES2 Reference Config for LiveCycle ES2 Syntax Reference 1337

The equateRange element
This option specifies a mapping from a specified typeface to a replacement typeface for a subset of
Unicode code points.

<equateRange

Properties:
 desc="cdata"
 from="cdata"
 lock="0 | 1"
 to="cdata"
 unicodeRange="cdata"
>
</equateRange>

The equateRange element is used within the following other elements:
map

This option is commonly used to deal with glyphs that are used in the form but are not included in the
specified font on the printer or display device. For example, the following syntax:

<equateRange from="Arial" to="Courier" unicodeRange="U+20AC">

instructs the XFA processor to use the Euro glyph from the Courier font in place of the Euro glyph that is
missing from the Arial font. However if the XFA processor knows the the glyph to actually be present in
the Arial font on the target display or printer the XFA processor ignores this directive.

The desc property

An attribute to hold human-readable metadata.

The from property

This attribute supplies the name of the typeface as specified in the device control information.

The lock property

A permission flag for allowing or blocking attempted changes to the element.

0

Allow changes to properties and content.

1

Block changes to properties and content.

The to property

This attribute supplies the name of the substitute typeface.

The unicodeRange property

This attribute limits the substitution to a subset of Unicode characters based on the code point.

The values are expressed using uppercase hexadecimal numbers prefixed by "U+", corresponding to
character code positions in ISO 10646 [ISO-10646]. A range may be specified by separating the starting

XFA Specification
Chapter 31, Adobe Config for LiveCycle ES2 Reference Config for LiveCycle ES2 Syntax Reference 1338

and ending range values with a hyphen (-) character. Multiple discontinuous ranges can be specified,
separated by commas. Any whitespace before or after a comma is ignored.

For example, "U+20-7E, U+80, U+3A0-1F00" covers the range U+0020 through U+007E inclusive, the
U+0080 character and the range U+03A0 through U+1F00 inclusive.

XFA Specification
Chapter 31, Adobe Config for LiveCycle ES2 Reference Config for LiveCycle ES2 Syntax Reference 1339

The exclude element
This option tells the application to ignore particular events.

<exclude

Properties:
 desc="cdata"
 lock="0 | 1"
>
 ...pcdata...
</exclude>

The exclude element is used within the following other elements:
script

Scripts are normally invoked by events. Some events are generated only by a user interface and thus
cannot occur in a non-interactive context such as a form server. However other events can occur. This
option controls which of those events are allowed to occur.

Content

The content must be a space-separated list of zero or more of the following:

calculate

Exclude calculate events. Calculation scripts will not be triggered.

close

Exclude close events.

enter

Exclude enter events.

exit

Exclude exit events.

initialize

Exclude the initialize event.

ready

Exclude ready events.

validate

Exclude validate events. Validation scripts will not be triggered.

The default is an empty list, which enables all events.

The desc property

An attribute to hold human-readable metadata.

The lock property

A permission flag for allowing or blocking attempted changes to the element.

XFA Specification
Chapter 31, Adobe Config for LiveCycle ES2 Reference Config for LiveCycle ES2 Syntax Reference 1340

0

Allow changes to properties and content.

1

Block changes to properties and content.

XFA Specification
Chapter 31, Adobe Config for LiveCycle ES2 Reference Config for LiveCycle ES2 Syntax Reference 1341

The excludeNS element
Part of the common configuration subset.

<excludeNS

Properties:
 desc="cdata"
 lock="0 | 1"
>
 ...pcdata...
</excludeNS>

The excludeNS element is used within the following other elements:
data

For more information, see The excludeNS element in the Config Common Element Reference.

XFA Specification
Chapter 31, Adobe Config for LiveCycle ES2 Reference Config for LiveCycle ES2 Syntax Reference 1342

The flipLabel element
This element determines whether or not the label will be printed flipped.

<flipLabel

Properties:
 desc="cdata"
 lock="0 | 1"
>
 ...pcdata...
</flipLabel>

The flipLabel element is used within the following other elements:
labelPrinter zpl

To flip a label is to print its content rotated by 180 degrees around the geometric center of the label.

Content

The content must be one of the following:

usePrinterSetting

This value causes the printer setting to be honored. This is the default.

on

This value causes the label content to rotate 180 degrees, regardless of the printer setting.

off

This value causes the label content to print without rotation, regardless of the printer setting.

The desc property

An attribute to hold human-readable metadata.

The lock property

A permission flag for allowing or blocking attempted changes to the element.

0

Allow changes to properties and content.

1

Block changes to properties and content.

XFA Specification
Chapter 31, Adobe Config for LiveCycle ES2 Reference Config for LiveCycle ES2 Syntax Reference 1343

The fontInfo element
This element holds options pertaining to fonts.

<fontInfo

Properties:
 desc="cdata"
 lock="0 | 1"
>

 <embed/> [0..1]
 <map/> [0..1]
 <subsetBelow/> [0..1]
Children:
 <alwaysEmbed/> [0..n]
 <defaultTypeface/> [0..n]
 <neverEmbed/> [0..n]
</fontInfo>

The fontInfo element is used within the following other elements:
driver labelPrinter pcl pdf ps webClient zpl

The alwaysEmbed property

This option specifies a font which is to be embedded in the output document, whenever possible.

The defaultTypeface property

DEPRECATED. Specifies a fallback font to use when the font specified by the template is not available.

The desc property

An attribute to hold human-readable metadata.

The embed property

This option controls the embedding of fonts in the output document.

The lock property

A permission flag for allowing or blocking attempted changes to the element.

0

Allow changes to properties and content.

1

Block changes to properties and content.

The map property

This option encloses one or more equate elements that supply mappings from a specified resource to
another during the rendering of an output document.

The neverEmbed property

This option specifies a font which is never to be embedded in the output document.

XFA Specification
Chapter 31, Adobe Config for LiveCycle ES2 Reference Config for LiveCycle ES2 Syntax Reference 1344

The subsetBelow property

This option specifies a usage threshold below which an embedded font is reduced to the subset of
symbols that are actually used.

XFA Specification
Chapter 31, Adobe Config for LiveCycle ES2 Reference Config for LiveCycle ES2 Syntax Reference 1345

The formFieldFilling element
This option controls the user's ability to enter data into existing fields of forms.

<formFieldFilling

Properties:
 desc="cdata"
 lock="0 | 1"
>
 ...pcdata...
</formFieldFilling>

The formFieldFilling element is used within the following other elements:
permissions

This option sets a permission bit which controls the user's ability to fill in form fields, including signature
fields. If permission is granted the user can fill in fields regardless of the content of the modifyAnnots
element.

This permission flag applies only when an encrypted PDF document is opened using the user password.
There are no restrictions if the document is unencrypted or it is opened using the master password.

This option corresponds to bit 9 in table 3.20 ("User access permissions") of [PDF].

Content

The content must be one of the following:

0

Disallow filling in of form fields. This is the default.

1

Allow filling in of form fields.

The desc property

An attribute to hold human-readable metadata.

The lock property

A permission flag for allowing or blocking attempted changes to the element.

0

Allow changes to properties and content.

1

Block changes to properties and content.

XFA Specification
Chapter 31, Adobe Config for LiveCycle ES2 Reference Config for LiveCycle ES2 Syntax Reference 1346

The groupParent element
Part of the common configuration subset.

<groupParent

Properties:
 desc="cdata"
 lock="0 | 1"
>
 ...pcdata...
</groupParent>

The groupParent element is used within the following other elements:
transform

For more information, see The groupParent element in the Config Common Element Reference.

XFA Specification
Chapter 31, Adobe Config for LiveCycle ES2 Reference Config for LiveCycle ES2 Syntax Reference 1347

The ifEmpty element
Part of the common configuration subset.

<ifEmpty

Properties:
 desc="cdata"
 lock="0 | 1"
>
 ...pcdata...
</ifEmpty>

The ifEmpty element is used within the following other elements:
transform

For more information, see The ifEmpty element in the Config Common Element Reference.

XFA Specification
Chapter 31, Adobe Config for LiveCycle ES2 Reference Config for LiveCycle ES2 Syntax Reference 1348

The includeXDPContent element
This option controls the inclusion of XDP packets in the PDF/A document.

<includeXDPContent

Properties:
 desc="cdata"
 lock="0 | 1"
>
 ...pcdata...
</includeXDPContent>

The includeXDPContent element is used within the following other elements:
pdfa

The specified packet(s), without any XDP container, is/are placed in the generated PDF under the
XFAResources Names dictionary. This is purely supplementary information, not a "live" part of the
document.

Content

In XFA 2.6 the content of this element must be either an empty string (signifying no packets), which is the
default, or the value datasets which causes the dataSets packet to be attached to the document.

The desc property

An attribute to hold human-readable metadata.

The lock property

A permission flag for allowing or blocking attempted changes to the element.

0

Allow changes to properties and content.

1

Block changes to properties and content.

XFA Specification
Chapter 31, Adobe Config for LiveCycle ES2 Reference Config for LiveCycle ES2 Syntax Reference 1349

The incrementalLoad element
Part of the common configuration subset.

<incrementalLoad

Properties:
 desc="cdata"
 lock="0 | 1"
>
 ...pcdata...
</incrementalLoad>

The incrementalLoad element is used within the following other elements:
data

For more information, see The incrementalLoad element in the Config Common Element Reference.

XFA Specification
Chapter 31, Adobe Config for LiveCycle ES2 Reference Config for LiveCycle ES2 Syntax Reference 1350

The incrementalMerge element
Controls whether the supplied data is to be added to the form or to replace the existing data.

<incrementalMerge

Properties:
 desc="cdata"
 lock="0 | 1"
>
 ...pcdata...
</incrementalMerge>

The incrementalMerge element is used within the following other elements:
present

Content

The content must be one of the following:

0

Replace existing data. This is the default.

1

Append new data to the existing data.

The desc property

An attribute to hold human-readable metadata.

The lock property

A permission flag for allowing or blocking attempted changes to the element.

0

Allow changes to properties and content.

1

Block changes to properties and content.

XFA Specification
Chapter 31, Adobe Config for LiveCycle ES2 Reference Config for LiveCycle ES2 Syntax Reference 1351

The interactive element
This option specifies whether a PDF form should be generated as a flat form (for printing) or as an
interactive form for online use.

<interactive

Properties:
 desc="cdata"
 lock="0 | 1"
>
 ...pcdata...
</interactive>

The interactive element is used within the following other elements:
pdf

There are two distinct ways to use a PDF document. One is to print it out, employing PDF as a page
description language. The other is to use client software with a user interface that allows interaction with
the document. The content of this element indicates which way the output document will be used.

Content

The content must be one of the following:

0

The form will be printed for filling out off-line with a pen or pencil. Interactive user interface
objects, such as fields and radio buttons, are rendered as boilerplate and the annotation layer is
left empty. This is the default.

1

The form will be filled out on-line using a suitable client program. Interactive user interface
objects are placed into the annotation layer.

The desc property

An attribute to hold human-readable metadata.

The lock property

A permission flag for allowing or blocking attempted changes to the element.

0

Allow changes to properties and content.

1

Block changes to properties and content.

XFA Specification
Chapter 31, Adobe Config for LiveCycle ES2 Reference Config for LiveCycle ES2 Syntax Reference 1352

The jog element
This option controls the physical shifting of paper in the output tray.

<jog

Properties:
 desc="cdata"
 lock="0 | 1"
>
 ...pcdata...
</jog>

The jog element is used within the following other elements:
pcl ps

Many printers provide a facility to make it easy to separate different sets of pages in the output tray by
shifting alternate sets slightly to one side or the other. This option controls that behavior.

Content

The content must be one of the following:

usePrinterSetting

Causes the printer setting to be honored. This is the default.

none

Prevents jogging within the XFA print job.

pageSet

Causes the paper to jog between page sets within the XFA print job.

The desc property

An attribute to hold human-readable metadata.

The lock property

A permission flag for allowing or blocking attempted changes to the element.

0

Allow changes to properties and content.

1

Block changes to properties and content.

XFA Specification
Chapter 31, Adobe Config for LiveCycle ES2 Reference Config for LiveCycle ES2 Syntax Reference 1353

The labelPrinter element
Supplies options for one category of label printer.

<labelPrinter

Properties:
 desc="cdata"
 lock="0 | 1"
 name="cdata"
>

 <batchOutput/> [0..1]
 <flipLabel/> [0..1]
 <fontInfo/> [0..1]
 <xdc/> [0..1]
</labelPrinter>

The labelPrinter element is used within the following other elements:
present

The destination element controls the output format. Some of the allowed output formats are used to
drive label printers. An instance of this element supplies additional options for one particular format of
label printer.

For label printers using ZPL this element replaces the deprecated zpl element. However when the output
format is ZPL, and there is no labelPrinter element provided for ZPL, then the XFA processor looks for
a zpl element to fall back on.

The batchOutput property

This option specifies if the processing is required to be done in batch mode.

The desc property

An attribute to hold human-readable metadata.

The flipLabel property

This element determines whether or not the label will be printed flipped.

The fontInfo property

This element holds options pertaining to fonts.

The lock property

A permission flag for allowing or blocking attempted changes to the element.

0

Allow changes to properties and content.

1

Block changes to properties and content.

XFA Specification
Chapter 31, Adobe Config for LiveCycle ES2 Reference Config for LiveCycle ES2 Syntax Reference 1354

The name property

This attribute specifies which label printer format is controlled by this particular element. The value must
be one of the following:

zpl

This element contains options for printers using ZPL (Zebra Programming Language). This is the
default.

dpl

This element contains options for printers using DPL (Datamax Printer Language).

ipl

This element contains options for printers using IPL (Intermec Printer Language).

tcpl

This element contains options for printers using TCPL (Tally Compressed Printer Language).

The xdc property

This option contains elements which specify how to obtain the device control (XDC) information.

XFA Specification
Chapter 31, Adobe Config for LiveCycle ES2 Reference Config for LiveCycle ES2 Syntax Reference 1355

The layout element
This option controls whether the output is a single panel or paginated.

<layout

Properties:
 desc="cdata"
 lock="0 | 1"
>
 ...pcdata...
</layout>

The layout element is used within the following other elements:
present

Content

The content must be one of the following:

paginate

This is normally used when the output is going to a printer or a PDF client such as a member of the
Acrobat family. As containers grow they overflow from one page to the next. The output
document includes all pages. This is the default.

panel

This is normally used when the output is going to an HTML browser. Containers can grow to any
size without overflowing the page. The output document includes only the content
corresponding to xfa.host.currentPage.

The desc property

An attribute to hold human-readable metadata.

The lock property

A permission flag for allowing or blocking attempted changes to the element.

0

Allow changes to properties and content.

1

Block changes to properties and content.

XFA Specification
Chapter 31, Adobe Config for LiveCycle ES2 Reference Config for LiveCycle ES2 Syntax Reference 1356

The level element
This option specifies the degree of compression to be used when generating a PDF document.

<level

Properties:
 desc="cdata"
 lock="0 | 1"
>
 ...pcdata...
</level>

The level element is used within the following other elements:
compression

Most of a PDF document can be packaged internally into streams. Streams can be compressed. Other
(non-streamed) portions of the document cannot be compressed.

Content

The content must be one of the following:

0

Disables compression. This is the default.

integer

Enables compression. The integer must be greater than zero. The value makes no difference to the
compression.

The desc property

An attribute to hold human-readable metadata.

The lock property

A permission flag for allowing or blocking attempted changes to the element.

0

Allow changes to properties and content.

1

Block changes to properties and content.

XFA Specification
Chapter 31, Adobe Config for LiveCycle ES2 Reference Config for LiveCycle ES2 Syntax Reference 1357

The linearized element
Controls whether the output PDF document is to be linearized.

<linearized

Properties:
 desc="cdata"
 lock="0 | 1"
>
 ...pcdata...
</linearized>

The linearized element is used within the following other elements:
pdf

Linearized PDF is reorganized to optimize performance when the document is being viewed across a
network. For more information see appendix F "Linearized PDF" of [PDF].

Content

The content must be one of the following:

0

Do not linearize. This is the default.

1

Do linearize. This consumes additional processing time.

The desc property

An attribute to hold human-readable metadata.

The lock property

A permission flag for allowing or blocking attempted changes to the element.

0

Allow changes to properties and content.

1

Block changes to properties and content.

XFA Specification
Chapter 31, Adobe Config for LiveCycle ES2 Reference Config for LiveCycle ES2 Syntax Reference 1358

The locale element
Part of the common configuration subset.

<locale

Properties:
 desc="cdata"
 lock="0 | 1"
>
 ...pcdata...
</locale>

The locale element is used within the following other elements:
common

For more information, see The locale element in the Config Common Element Reference.

XFA Specification
Chapter 31, Adobe Config for LiveCycle ES2 Reference Config for LiveCycle ES2 Syntax Reference 1359

The localeSet element
Part of the common configuration subset.

<localeSet

Properties:
 desc="cdata"
 lock="0 | 1"
>
 ...pcdata...
</localeSet>

The localeSet element is used within the following other elements:
common

For more information, see The localeSet element in the Config Common Element Reference.

XFA Specification
Chapter 31, Adobe Config for LiveCycle ES2 Reference Config for LiveCycle ES2 Syntax Reference 1360

The log element
Part of the common configuration subset.

<log

Properties:
 desc="cdata"
 lock="0 | 1"
>

 <mode/> [0..1]
 <threshold/> [0..1]
 <to/> [0..1]
 <uri/> [0..1]
</log>

The log element is used within the following other elements:
common

For more information, see The log element in the Config Common Element Reference.

The mode property

Part of the common configuration subset.

The threshold property

Part of the common configuration subset.

The to property

Part of the common configuration subset.

The uri property

Part of the common configuration subset.

XFA Specification
Chapter 31, Adobe Config for LiveCycle ES2 Reference Config for LiveCycle ES2 Syntax Reference 1361

The map element
This option encloses one or more equate elements that supply mappings from a specified resource to
another during the rendering of an output document.

<map

Properties:
 desc="cdata"
 lock="0 | 1"
>
Children:
 <equate/> [0..n]
 <equateRange/> [0..n]
</map>

The map element is used within the following other elements:
fontInfo mediumInfo

This option is commonly used to deal with typefaces or output media specifications in the device control
information that are not available on the printer or display device.

The desc property

An attribute to hold human-readable metadata.

The equate property

This option specifies a mapping from a specified typeface to a replacement typeface.

The equateRange property

This option specifies a mapping from a specified typeface to a replacement typeface for a subset of
Unicode code points.

The lock property

A permission flag for allowing or blocking attempted changes to the element.

0

Allow changes to properties and content.

1

Block changes to properties and content.

XFA Specification
Chapter 31, Adobe Config for LiveCycle ES2 Reference Config for LiveCycle ES2 Syntax Reference 1362

The mediumInfo element
This option contains elements that remap from specified medium types to different medium types.

<mediumInfo

Properties:
 desc="cdata"
 lock="0 | 1"
>

 <map/> [0..1]
</mediumInfo>

The mediumInfo element is used within the following other elements:
pcl ps

Medium types are defined in the device control file (XDC). The medium type can specify not only the
paper specification (and therefore input tray) but also the output tray and output treatment.

The desc property

An attribute to hold human-readable metadata.

The lock property

A permission flag for allowing or blocking attempted changes to the element.

0

Allow changes to properties and content.

1

Block changes to properties and content.

The map property

This option encloses one or more equate elements that supply mappings from a specified resource to
another during the rendering of an output document.

XFA Specification
Chapter 31, Adobe Config for LiveCycle ES2 Reference Config for LiveCycle ES2 Syntax Reference 1363

The message element
Part of the common configuration subset.

<message

Properties:
 desc="cdata"
 lock="0 | 1"
>

 <msgId/> [0..1]
 <severity/> [0..1]
</message>

The message element is used within the following other elements:
messaging

For more information, see The message element in the Config Common Element Reference.

The msgId property

Part of the common configuration subset.

The severity property

Part of the common configuration subset.

XFA Specification
Chapter 31, Adobe Config for LiveCycle ES2 Reference Config for LiveCycle ES2 Syntax Reference 1364

The messaging element
Part of the common configuration subset.

<messaging

Properties:
 desc="cdata"
 lock="0 | 1"
>
Children:
 <message/> [0..n]
</messaging>

The messaging element is used within the following other elements:
common

For more information, see The messaging element in the Config Common Element Reference.

The message property

Part of the common configuration subset.

XFA Specification
Chapter 31, Adobe Config for LiveCycle ES2 Reference Config for LiveCycle ES2 Syntax Reference 1365

The mode element
Part of the common configuration subset.

<mode

Properties:
 desc="cdata"
 lock="0 | 1"
>
 ...pcdata...
</mode>

The mode element is used within the following other elements:
log

For more information, see The Mode element in the Config Common Element Reference.

XFA Specification
Chapter 31, Adobe Config for LiveCycle ES2 Reference Config for LiveCycle ES2 Syntax Reference 1366

The modifyAnnots element
This option controls the user's ability to modify the annotation layer of the document.

<modifyAnnots

Properties:
 desc="cdata"
 lock="0 | 1"
>
 ...pcdata...
</modifyAnnots>

The modifyAnnots element is used within the following other elements:
permissions

The permission bit set by this option grants the user the ability to add or modify text annotations and, if
the change element grants permission, to create or modify interactive form fields (including signature
fields). This option can also grant the user the ability to fill in existing fields of a form, but that permission
can also be granted independently by the formFieldFilling element.

This permission flag applies only when an encrypted PDF document is opened using the user password.
There are no restrictions if the document is unencrypted or it is opened using the master password.

This option corresponds to bit 6 in table 3.20 ("User access permissions") of [PDF].

Content

The content must be one of the following:

0

Disallow modification of the annotation layer. This is the default.

1

Allow modification of the annotation layer.

The desc property

An attribute to hold human-readable metadata.

The lock property

A permission flag for allowing or blocking attempted changes to the element.

0

Allow changes to properties and content.

1

Block changes to properties and content.

XFA Specification
Chapter 31, Adobe Config for LiveCycle ES2 Reference Config for LiveCycle ES2 Syntax Reference 1367

The msgId element
Part of the common configuration subset.

<msgId

Properties:
 desc="cdata"
 lock="0 | 1"
>
 ...pcdata...
</msgId>

The msgId element is used within the following other elements:
message

For more information, see The msgId element in the Config Common Element Reference.

XFA Specification
Chapter 31, Adobe Config for LiveCycle ES2 Reference Config for LiveCycle ES2 Syntax Reference 1368

The nameAttr element
Part of the common configuration subset.

<nameAttr

Properties:
 desc="cdata"
 lock="0 | 1"
>
 ...pcdata...
</nameAttr>

The nameAttr element is used within the following other elements:
transform

For more information, see The nameAttr element in the Config Common Element Reference.

XFA Specification
Chapter 31, Adobe Config for LiveCycle ES2 Reference Config for LiveCycle ES2 Syntax Reference 1369

The neverEmbed element
This option specifies a font which is never to be embedded in the output document.

<neverEmbed

Properties:
 desc="cdata"
 lock="0 | 1"
>
 ...pcdata...
</neverEmbed>

The neverEmbed element is used within the following other elements:
fontInfo

This option overrides the embed element for the font it names, forcing it not to be embedded in the
output document. This is used for a font that is known to be present in the client.

As with all the font embedding options, this option applies only when creating or updating a PDF file
which holds an XFA form intended for distribution. It is not used when printing because the application
can query the printer to find out what fonts the printer needs.

Although this option is in the present section of config, it also affects the behavior of Designer and,
when saving form state, of Acrobat.

Content

The content must be a font name. Any whitespace in the element content is presumed to be part of the
font name, including leading and trailing whitespace. No normalization is performed, so for example a
space character is not equivalent to a tab character and upper-case letters are distinct from lower-case
letters.

The desc property

An attribute to hold human-readable metadata.

The lock property

A permission flag for allowing or blocking attempted changes to the element.

0

Allow changes to properties and content.

1

Block changes to properties and content.

XFA Specification
Chapter 31, Adobe Config for LiveCycle ES2 Reference Config for LiveCycle ES2 Syntax Reference 1370

The numberOfCopies element
Sets the value of the NumCopies option in the viewer preferences dictionary.

<numberOfCopies

Properties:
 desc="cdata"
 lock="0 | 1"
>
 ...pcdata...
</numberOfCopies>

The numberOfCopies element is used within the following other elements:
viewerPreferences

Content

This value corresponds to the NumCopies option in the viewer preferences dictionary. The NumCopies
option is described in table 8.1 in section 8.1 of [PDF]. The content must be an integer in the range 2
through 5, inclusive. There is no default. When this element is omitted the NumCopies option is not set
and the viewer defaults to a single copy.

The desc property

An attribute to hold human-readable metadata.

The lock property

A permission flag for allowing or blocking attempted changes to the element.

0

Allow changes to properties and content.

1

Block changes to properties and content.

XFA Specification
Chapter 31, Adobe Config for LiveCycle ES2 Reference Config for LiveCycle ES2 Syntax Reference 1371

The openAction element
This element contains options governing the behavior of an interactive client when it opens the
document.

<openAction

Properties:
 desc="cdata"
 lock="0 | 1"
>

 <destination/> [0..1]
</openAction>

The openAction element is used within the following other elements:
pdf

The desc property

An attribute to hold human-readable metadata.

The destination property

When contained by a present element this option specifies the output format.

When contained by an openAction element this option specifies the action to be performed upon
opening the document in an interactive client.

The lock property

A permission flag for allowing or blocking attempted changes to the element.

0

Allow changes to properties and content.

1

Block changes to properties and content.

XFA Specification
Chapter 31, Adobe Config for LiveCycle ES2 Reference Config for LiveCycle ES2 Syntax Reference 1372

The output element
This element contains the elements that specify where to send the generated output.

<output

Properties:
 desc="cdata"
 lock="0 | 1"
>

 <to/> [0..1]
 <type/> [0..1]
 <uri/> [0..1]
</output>

The output element is used within the following other elements:
present

The output element must contain a to element. If the to element contains uri there must also be a uri
element containing the URI.

The desc property

An attribute to hold human-readable metadata.

The lock property

A permission flag for allowing or blocking attempted changes to the element.

0

Allow changes to properties and content.

1

Block changes to properties and content.

The to property

Part of the common configuration subset.

The type property

This element specifies either the type of compression to be applied to a file or the type of output to be
produced by an automated form server.

The uri property

Part of the common configuration subset.

XFA Specification
Chapter 31, Adobe Config for LiveCycle ES2 Reference Config for LiveCycle ES2 Syntax Reference 1373

The outputBin element
Selects the bin into which the printer places the printed form.

<outputBin

Properties:
 desc="cdata"
 lock="0 | 1"
>
 ...pcdata...
</outputBin>

The outputBin element is used within the following other elements:
pcl ps

Content

The content is inserted verbatim into the print stream. Consequently the content must conform to the
page description language (PCL or PDF) corresponding to its containing element.

When this element is enclosed within a pcl element, the content of this element is a non-negative integer
which is inserted into a PCL output tray select command.

When this element is enclosed within a ps element, the content of this element is a string which is passed
as the value of a PostScript OutputTray parameter. This parameter is described in table 6.5 of the
PostScript reference, [PostScript].

Note that the mapping from the content to the physical bin is specific to the individual printer. It may even
change when the printer is reconfigured.

When this element is empty or omitted the output bin selection is left up to the printer.

The desc property

An attribute to hold human-readable metadata.

The lock property

A permission flag for allowing or blocking attempted changes to the element.

0

Allow changes to properties and content.

1

Block changes to properties and content.

XFA Specification
Chapter 31, Adobe Config for LiveCycle ES2 Reference Config for LiveCycle ES2 Syntax Reference 1374

The outputXSL element
Part of the common configuration subset.

<outputXSL

Properties:
 desc="cdata"
 lock="0 | 1"
>

 <uri/> [0..1]
</outputXSL>

The outputXSL element is used within the following other elements:
data

For more information, see The outputXSL element in the Config Common Element Reference.

The uri property

Part of the common configuration subset.

XFA Specification
Chapter 31, Adobe Config for LiveCycle ES2 Reference Config for LiveCycle ES2 Syntax Reference 1375

The overprint element
This print option controls clipping of content that exceeds the size of its container.

<overprint

Properties:
 desc="cdata"
 lock="0 | 1"
>
 ...pcdata...
</overprint>

The overprint element is used within the following other elements:
present

This option is only used when printing. When generating PDF this option is ignored unless the
interactive property in the pdf section is set to 0.

Content

The content must be one of the following:

none

Forbids overprinting. The renderer clips all content at container boundaries. This is the default.

both

Both field and draw content is allowed to print beyond container boundaries. No clipping is done.

draw

Draw content is allowed to print beyond the draw boundaries. Field content is clipped.

field

Field content is allowed to print beyond the field boundaries. Draw content is clipped.

The desc property

An attribute to hold human-readable metadata.

The lock property

A permission flag for allowing or blocking attempted changes to the element.

0

Allow changes to properties and content.

1

Block changes to properties and content.

XFA Specification
Chapter 31, Adobe Config for LiveCycle ES2 Reference Config for LiveCycle ES2 Syntax Reference 1376

The packets element
This option specifies which packets are to be included in the output XDP.

<packets

Properties:
 desc="cdata"
 lock="0 | 1"
>
 ...pcdata...
</packets>

The packets element is used within the following other elements:
xdp

An XDP contains subsections called packets. This option controls which packets are included in the XDP.

Each packet is enclosed within an element which is a second-level node, that is, a child of the xdp element.
The packets are identified by the name in the start tag of the enclosing element.

Some packets are defined as part of XFA - the template and data packets, for example. There may be
custom packets in an XDP, that is, packets not defined in XFA. When an XDP containing custom packets is
loaded, for each custom packet a corresponding placeholder node is created under the root xfa node.
These placeholder nodes are accessible to scripts, but they have no content or children in the XFA DOM.
However the full custom packet content is preserved in the associated XML DOM. The name of the custom
packet node is copied from the packet's enclosing element.

When the packet element is empty, missing, or contains *, all XFA packets and custom packets are included
in the output XDP.

This option has effect only when the content of destination is xdp.

Content

The content must be * or a list of packet element names separated by white space. The following packet
element names correspond to XFA DOMs:

config

XFA configuration information (i.e. the options described in this present specification).

datasets

XML form data and the data description.

template

XML form template.

xfdf

Annotations.

xslt

An XSLT stylesheet for transforming data before it is loaded into the XFA Data DOM.

XFA Specification
Chapter 31, Adobe Config for LiveCycle ES2 Reference Config for LiveCycle ES2 Syntax Reference 1377

The desc property

An attribute to hold human-readable metadata.

The lock property

A permission flag for allowing or blocking attempted changes to the element.

0

Allow changes to properties and content.

1

Block changes to properties and content.

XFA Specification
Chapter 31, Adobe Config for LiveCycle ES2 Reference Config for LiveCycle ES2 Syntax Reference 1378

The pageOffset element
This element overrides the page origin.

<pageOffset

Properties:
 desc="cdata"
 lock="0 | 1"
 x="cdata"
 y="cdata"
>
</pageOffset>

The pageOffset element is used within the following other elements:
pcl

Using this element the printed region can be shifted away from the default location. This is commonly
used with pre-printed stock. The printed region may be shifted right or left, up or down, provided that
printable content of the form remains within the printable region of the page.

The desc property

An attribute to hold human-readable metadata.

The lock property

A permission flag for allowing or blocking attempted changes to the element.

0

Allow changes to properties and content.

1

Block changes to properties and content.

The x property

The amount to shift the origin in the horizontal direction. The value must be either the string
useXDCSetting (which is the default) or a measurement.

The value useXDCSetting causes the XFA processor to use the default X offset provided by the device
driver.

When a measurement is supplied it is used as the X offset. A positive measurement shifts the content to
the right. A negative measurement shifts the content to the left.

The y property

The amount to shift the origin in the vertical direction. The value must be either the string useXDCSetting
(which is the default) or a measurement.

The value useXDCSetting causes the XFA processor to use the default Y offset provided by the device
driver.

When a measurement is supplied it is used as the Y offset. A positive measurement shifts the content
down the page. A negative measurement shifts the content up the page.

XFA Specification
Chapter 31, Adobe Config for LiveCycle ES2 Reference Config for LiveCycle ES2 Syntax Reference 1379

The pageRange element
Sets the value of the PrintPageRange option in the viewer preferences dictionary.

<pageRange

Properties:
 desc="cdata"
 lock="0 | 1"
>
 ...pcdata...
</pageRange>

The pageRange element is used within the following other elements:
viewerPreferences

This option corresponds to the PrintPageRange option in the viewer preferences dictionary. The
PrintPageRange option is described in table 8.1 in section 8.1 of [PDF].

Content

The content must be a space-separated list of positive integer page numbers and there must be an even
number of page numbers in the list. Each successive pair of page numbers specifies a page range which is
inclusive. For example, the range "5 10" means pages 5, 6, 7, 8, 9, and 10.

When this element is omitted or empty PrintPageRange is omitted from the preferences dictionary. When
printing the viewer defaults to all pages.

The desc property

An attribute to hold human-readable metadata.

The lock property

A permission flag for allowing or blocking attempted changes to the element.

0

Allow changes to properties and content.

1

Block changes to properties and content.

XFA Specification
Chapter 31, Adobe Config for LiveCycle ES2 Reference Config for LiveCycle ES2 Syntax Reference 1380

The pagination element
DEPRECATED. This element selects simplex or duplex printing.

<pagination

Properties:
 desc="cdata"
 lock="0 | 1"
>
 ...pcdata...
</pagination>

The pagination element is used within the following other elements:
present

This element is deprecated. Use the paginationOverride element for new forms.

There are three cascading levels of simplex/duplex control. The highest level is the device control
document (XDC) which specifies the printer capabilities. The next level is the job level which, in the
absence of a paginationOverride element, is controlled by this element. Finally the form template
may specify different page layouts for different simplex/duplex settings.

Content

The content must be one of the following:

simplex

The form is printed using one side of the paper only. This is the default.

duplexShortEdge

If the printer is capable of duplex printing the form is printed using both sides of the paper. The
second side of each sheet is reached by flipping the sheet in the axis of the short edge.

duplexLongEdge

If the printer is capable of duplex printing the form is printed using both sides of the paper. The
second side of each sheet is reached by flipping the sheet in the axis of the long edge.

The desc property

An attribute to hold human-readable metadata.

The lock property

A permission flag for allowing or blocking attempted changes to the element.

0

Allow changes to properties and content.

1

Block changes to properties and content.

XFA Specification
Chapter 31, Adobe Config for LiveCycle ES2 Reference Config for LiveCycle ES2 Syntax Reference 1381

The paginationOverride element
This element optionally overrides the pagination specified in the form.

<paginationOverride

Properties:
 desc="cdata"
 lock="0 | 1"
>
 ...pcdata...
</paginationOverride>

The paginationOverride element is used within the following other elements:
present

This has no effect upon presentation to glass. When printing via a printer with duplexing capability it
controls whether the printing is one-sided or two-sided and the mode of two-sided printing.

Content

The content must be one of the following:

none

Honors the pagination specified in the form. This is the default. For forms in which the pageSet
has a relation property of orderedOccurrence this results in simplex printing.

forceDuplex

Prints the document two-sided regardless of the design of the form. The imposition (long edge or
short edge) is controlled by the orientation of the form, as specified by the controlling medium
element in the template. In portrait orientation the imposition is long edge whereas in landscape
orientation it is short edge.

forceDuplexLongEdge

Prints the document two-sided with the pages flipped over the long edge.

forceDuplexShortEdge

Prints the document two-sided with the pages flipped over the short edge.

forceSimplex

Prints the document single-sided.

The desc property

An attribute to hold human-readable metadata.

The lock property

A permission flag for allowing or blocking attempted changes to the element.

0

Allow changes to properties and content.

XFA Specification
Chapter 31, Adobe Config for LiveCycle ES2 Reference Config for LiveCycle ES2 Syntax Reference 1382

1

Block changes to properties and content.

XFA Specification
Chapter 31, Adobe Config for LiveCycle ES2 Reference Config for LiveCycle ES2 Syntax Reference 1383

The part element
This option specifies the version number of the PDF/A specification that the document will conform to.

<part

Properties:
 desc="cdata"
 lock="0 | 1"
>
 ...pcdata...
</part>

The part element is used within the following other elements:
pdfa

Content

Currently the only legal value is 1, corresponding to PDF/A-1 [ISO-19005-1]. This is also the default value.

The desc property

An attribute to hold human-readable metadata.

The lock property

A permission flag for allowing or blocking attempted changes to the element.

0

Allow changes to properties and content.

1

Block changes to properties and content.

XFA Specification
Chapter 31, Adobe Config for LiveCycle ES2 Reference Config for LiveCycle ES2 Syntax Reference 1384

The pcl element
This element contains options that apply specifically to PCL output files.

<pcl

Properties:
 desc="cdata"
 lock="0 | 1"
 name="cdata"
>

 <batchOutput/> [0..1]
 <fontInfo/> [0..1]
 <jog/> [0..1]
 <mediumInfo/> [0..1]
 <outputBin/> [0..1]
 <pageOffset/> [0..1]
 <staple/> [0..1]
 <xdc/> [0..1]
</pcl>

The pcl element is used within the following other elements:
present

This element is only used when the content of destination is pcl.

The batchOutput property

This option specifies if the processing is required to be done in batch mode.

The desc property

An attribute to hold human-readable metadata.

The fontInfo property

This element holds options pertaining to fonts.

The jog property

This option controls the physical shifting of paper in the output tray.

The lock property

A permission flag for allowing or blocking attempted changes to the element.

0

Allow changes to properties and content.

1

Block changes to properties and content.

The mediumInfo property

This option contains elements that remap from specified medium types to different medium types.

XFA Specification
Chapter 31, Adobe Config for LiveCycle ES2 Reference Config for LiveCycle ES2 Syntax Reference 1385

The name property

This attribute is used to distinguish different flavors of PCL, each of which has its own pcl element. The
destination option supplies the name, if any, which is to be matched. A pcl element corresponding to
full-up PCL5 omits this attribute to indicate it is the default for all PCL printers.

The different pcl elements invoke different device descriptor files via their xdc properties. This brings
about the actual difference in generated PCL.

The outputBin property

Selects the bin into which the printer places the printed form.

The pageOffset property

This element overrides the page origin.

The staple property

This option controls the stapling function in the printer.

The xdc property

This option contains elements which specify how to obtain the device control (XDC) information.

XFA Specification
Chapter 31, Adobe Config for LiveCycle ES2 Reference Config for LiveCycle ES2 Syntax Reference 1386

The pdf element
This element contains options that apply specifically to PDF output files.

<pdf

Properties:
 desc="cdata"
 lock="0 | 1"
 name="cdata"
>

 <adobeExtensionLevel/> [0..1]
 <batchOutput/> [0..1]
 <compression/> [0..1]
 <creator/> [0..1]
 <encryption/> [0..1]
 <fontInfo/> [0..1]
 <interactive/> [0..1]
 <linearized/> [0..1]
 <openAction/> [0..1]
 <pdfa/> [0..1]
 <producer/> [0..1]
 <renderPolicy/> [0..1]
 <scriptModel/> [0..1]
 <silentPrint/> [0..1]
 <submitFormat/> [0..1]
 <tagged/> [0..1]
 <version/> [0..1]
 <viewerPreferences/> [0..1]
 <xdc/> [0..1]
</pdf>

The pdf element is used within the following other elements:
present

This element is only used when the content of destination is pdf.

The adobeExtensionLevel property

This option specifies the level of Adobe extensions to be incorporated into the rendered PDF file.

The batchOutput property

This option specifies if the processing is required to be done in batch mode.

The compression property

This element contains elements specifying the type and degree of compression to apply to the output
document.

The creator property

This option supplies a string to identify the PDF creator.

XFA Specification
Chapter 31, Adobe Config for LiveCycle ES2 Reference Config for LiveCycle ES2 Syntax Reference 1387

The desc property

An attribute to hold human-readable metadata.

The encryption property

This element contains options controlling encryption and use of the output document.

The fontInfo property

This element holds options pertaining to fonts.

The interactive property

This option specifies whether a PDF form should be generated as a flat form (for printing) or as an
interactive form for online use.

The linearized property

Controls whether the output PDF document is to be linearized.

The lock property

A permission flag for allowing or blocking attempted changes to the element.

0

Allow changes to properties and content.

1

Block changes to properties and content.

The name property

This attribute is used to distinguish different flavors of PDF, each of which has its own pdf element. The
destination option supplies the name, if any, which is to be matched. A pdf element corresponding to
full-up PDF omits this attribute to indicate it is the default for all PDF documents. To accomodate both
full-up PDF and PDF/A a second pdf element could be added with this attribute set to pdfa.

The different pdf elements invoke different device descriptor files via their xdc properties. This brings
about the actual difference in generated PDF.

The openAction property

This element contains options governing the behavior of an interactive client when it opens the
document.

The pdfa property

This option controls the format of PDF/A that is generated.

The producer property

This option supplies a string to identify the PDF producer.

The renderPolicy property

This option controls whether the generation of page content is done on the server or deferred to the
client.

XFA Specification
Chapter 31, Adobe Config for LiveCycle ES2 Reference Config for LiveCycle ES2 Syntax Reference 1388

The scriptModel property

This option controls whether XFA-specific information is to be included in the output PDF document.

The silentPrint property

This element contains options controlling the semi-automatic printing of the document when it is
opened.

The submitFormat property

This option specifies the format in which the form data will be sent back to the server.

The tagged property

This option controls the inclusion of tags into the output PDF document.

The version property

This option specifies the version of PDF which is to be generated.

The viewerPreferences property

This element holds options controlling the viewer preferences.

The xdc property

This option contains elements which specify how to obtain the device control (XDC) information.

XFA Specification
Chapter 31, Adobe Config for LiveCycle ES2 Reference Config for LiveCycle ES2 Syntax Reference 1389

The pdfa element
This option controls the format of PDF/A that is generated.

<pdfa

Properties:
 desc="cdata"
 lock="0 | 1"
>

 <amd/> [0..1]
 <conformance/> [0..1]
 <includeXDPContent/> [0..1]
 <part/> [0..1]
</pdfa>

The pdfa element is used within the following other elements:
pdf

The amd property

This option specifies the amendment level of the PDF/A specification.

The conformance property

This option specifies the conformance level with the PDF/A specification.

The desc property

An attribute to hold human-readable metadata.

The includeXDPContent property

This option controls the inclusion of XDP packets in the PDF/A document.

The lock property

A permission flag for allowing or blocking attempted changes to the element.

0

Allow changes to properties and content.

1

Block changes to properties and content.

The part property

This option specifies the version number of the PDF/A specification that the document will conform to.

XFA Specification
Chapter 31, Adobe Config for LiveCycle ES2 Reference Config for LiveCycle ES2 Syntax Reference 1390

The permissions element
This element contains subelements controlling the permission settings in the output PDF document.

<permissions

Properties:
 desc="cdata"
 lock="0 | 1"
>

 <accessibleContent/> [0..1]
 <change/> [0..1]
 <contentCopy/> [0..1]
 <documentAssembly/> [0..1]
 <formFieldFilling/> [0..1]
 <modifyAnnots/> [0..1]
 <plaintextMetadata/> [0..1]
 <print/> [0..1]
 <printHighQuality/> [0..1]
</permissions>

The permissions element is used within the following other elements:
encryption

Permissions are described in section 3.5.2 of [PDF].

The accessibleContent property

This option controls the ability of accessibility aids to copy text or graphics from the document.

The change property

This option controls the user's ability to make changes to the PDF document.

The contentCopy property

This option controls the user's ability to copy text or graphics from the document.

The desc property

An attribute to hold human-readable metadata.

The documentAssembly property

This option controls the user's ability to (re-)assemble the PDF document.

The formFieldFilling property

This option controls the user's ability to enter data into existing fields of forms.

The lock property

A permission flag for allowing or blocking attempted changes to the element.

0

Allow changes to properties and content.

XFA Specification
Chapter 31, Adobe Config for LiveCycle ES2 Reference Config for LiveCycle ES2 Syntax Reference 1391

1

Block changes to properties and content.

The modifyAnnots property

This option controls the user's ability to modify the annotation layer of the document.

The plaintextMetadata property

This option, when asserted, causes the metadata in the output PDF document to be unencrypted.

The print property

This option controls the user's ability to print the PDF document.

The printHighQuality property

This option controls the user's ability to print the PDF document with high fidelity.

XFA Specification
Chapter 31, Adobe Config for LiveCycle ES2 Reference Config for LiveCycle ES2 Syntax Reference 1392

The pickTrayByPDFSize element
This option controls whether Acrobat defaults to selecting the input paper tray based on the PDF page
size.

<pickTrayByPDFSize

Properties:
 desc="cdata"
 lock="0 | 1"
>
 ...pcdata...
</pickTrayByPDFSize>

The pickTrayByPDFSize element is used within the following other elements:
viewerPreferences

Content

The content must be one of the following.

0

Leave the check box unchecked. This is the default.

1

Check the check box.

The desc property

An attribute to hold human-readable metadata.

The lock property

A permission flag for allowing or blocking attempted changes to the element.

0

Allow changes to properties and content.

1

Block changes to properties and content.

XFA Specification
Chapter 31, Adobe Config for LiveCycle ES2 Reference Config for LiveCycle ES2 Syntax Reference 1393

The picture element
Part of the common configuration subset.

<picture

Properties:
 desc="cdata"
 lock="0 | 1"
>
 ...pcdata...
</picture>

The picture element is used within the following other elements:
transform

For more information, see The picture element in the Config Common Element Reference.

XFA Specification
Chapter 31, Adobe Config for LiveCycle ES2 Reference Config for LiveCycle ES2 Syntax Reference 1394

The plaintextMetadata element
This option, when asserted, causes the metadata in the output PDF document to be unencrypted.

<plaintextMetadata

Properties:
 desc="cdata"
 lock="0 | 1"
>
 ...pcdata...
</plaintextMetadata>

The plaintextMetadata element is used within the following other elements:
permissions

Document metadata is represented by an XML stream contained within the output PDF document.
However if the document is encrypted, the metadata is also by default encrypted. When asserted this
option causes the metadata stream to be unencrypted even if the rest of the document is encrypted, thus
making the metadata available to unprivileged applications.

The metadata stream is discussed in section 10.2.2 of [PDF].

Content

The content must be one of the following:

0

Encrypt the metadata if the rest of the document is encrypted. This is the default.

1

Do not encrypt the metadata even if the rest of the document is encrypted.

The desc property

An attribute to hold human-readable metadata.

The lock property

A permission flag for allowing or blocking attempted changes to the element.

0

Allow changes to properties and content.

1

Block changes to properties and content.

XFA Specification
Chapter 31, Adobe Config for LiveCycle ES2 Reference Config for LiveCycle ES2 Syntax Reference 1395

The presence element
Part of the common configuration subset.

<presence

Properties:
 desc="cdata"
 lock="0 | 1"
>
 ...pcdata...
</presence>

The presence element is used within the following other elements:
transform

For more information, see The presence element in the Config Common Element Reference.

XFA Specification
Chapter 31, Adobe Config for LiveCycle ES2 Reference Config for LiveCycle ES2 Syntax Reference 1396

The present element
This element contains options for the LiveCycle Forms ES2.

<present

Properties:
 desc="cdata"
 lock="0 | 1"
>

 <behaviorOverride/> [0..1]
 <cache/> [0..1]
 <common/> [0..1]
 <copies/> [0..1]
 <destination/> [0..1]
 <incrementalMerge/> [0..1]
 <layout/> [0..1]
 <output/> [0..1]
 <overprint/> [0..1]
 <pagination/> [0..1]
 <paginationOverride/> [0..1]
 <script/> [0..1]
 <validate/> [0..1]
 <xdp/> [0..1]
Children:
 <driver/> [0..n]
 <labelPrinter/> [0..n]
 <pcl/> [0..n]
 <pdf/> [0..n]
 <ps/> [0..n]
 <submitUrl/> [0..n]
 <webClient/> [0..n]
 <zpl/> [0..n]
</present>

The behaviorOverride property

This option specifies compatability flags that are to be forced, overriding compatability flag settings in the
template.

The cache property

This option controls the use of caches to reduce resource consumption and/or output file size.

The common property

Part of the common configuration subset.

The copies property

This option specifies the number of copies for a (potentially) printed output document.

The desc property

An attribute to hold human-readable metadata.

XFA Specification
Chapter 31, Adobe Config for LiveCycle ES2 Reference Config for LiveCycle ES2 Syntax Reference 1397

The destination property

When contained by a present element this option specifies the output format.

When contained by an openAction element this option specifies the action to be performed upon
opening the document in an interactive client.

The driver property

This element holds information for use by a particular driver.

The incrementalMerge property

Controls whether the supplied data is to be added to the form or to replace the existing data.

The labelPrinter property

Supplies options for one category of label printer.

The layout property

This option controls whether the output is a single panel or paginated.

The lock property

A permission flag for allowing or blocking attempted changes to the element.

0

Allow changes to properties and content.

1

Block changes to properties and content.

The output property

This element contains the elements that specify where to send the generated output.

The overprint property

This print option controls clipping of content that exceeds the size of its container.

The pagination property

DEPRECATED. This element selects simplex or duplex printing.

The paginationOverride property

This element optionally overrides the pagination specified in the form.

The pcl property

This element contains options that apply specifically to PCL output files.

The pdf property

This element contains options that apply specifically to PDF output files.

XFA Specification
Chapter 31, Adobe Config for LiveCycle ES2 Reference Config for LiveCycle ES2 Syntax Reference 1398

The ps property

This element contains options that apply specifically to PostScript output files.

The script property

This element contains options controlling the handling of scripts.

The submitUrl property

This option specifies an URL to which form data may be submitted.

The validate property

This option causes validations to be automatically run before specified activities.

The webClient property

This element contains options that apply specifically to HTML output files.

The xdp property

This element contains options governing the output document when it is in XDP format.

The zpl property

(DEPRECATED) This element contains options used by the XFA application when generating documents in
Zebra Programming Language (ZPL).

XFA Specification
Chapter 31, Adobe Config for LiveCycle ES2 Reference Config for LiveCycle ES2 Syntax Reference 1399

The print element
This option controls the user's ability to print the PDF document.

<print

Properties:
 desc="cdata"
 lock="0 | 1"
>
 ...pcdata...
</print>

The print element is used within the following other elements:
permissions

The permission bit set by this option controls whether the user is able to produce a hard copy of the
document. The printed copy may be degraded in appearance compared to the original, depending upon
the content of the printHighQuality element.

This permission flag applies only when an encrypted PDF document is opened using the user password.
There are no restrictions if the document is unencrypted or it is opened using the master password.

This option corresponds to bit 3 in table 3.20 ("User access permissions") of [PDF].

Content

The content must be one of the following:

0

Disallow printing. This is the default.

1

Allow printing.

The desc property

An attribute to hold human-readable metadata.

The lock property

A permission flag for allowing or blocking attempted changes to the element.

0

Allow changes to properties and content.

1

Block changes to properties and content.

XFA Specification
Chapter 31, Adobe Config for LiveCycle ES2 Reference Config for LiveCycle ES2 Syntax Reference 1400

The printHighQuality element
This option controls the user's ability to print the PDF document with high fidelity.

<printHighQuality

Properties:
 desc="cdata"
 lock="0 | 1"
>
 ...pcdata...
</printHighQuality>

The printHighQuality element is used within the following other elements:
permissions

The permission bit set by this option controls whether the user is able to produce a print file with as much
detail as the original document. The print file is a faithful digital copy of the original document, hence
could be used to spoof the original.

This permission flag applies only when an encrypted PDF document is opened using the user password.
There are no restrictions if the document is unencrypted or it is opened using the master password.

This option corresponds to bit 12 in table 3.20 ("User access permissions") of [PDF].

Content

The content must be one of the following:

0

Disallow high-fidelity printing. This is the default.

1

Allow high-fidelity printing.

The desc property

An attribute to hold human-readable metadata.

The lock property

A permission flag for allowing or blocking attempted changes to the element.

0

Allow changes to properties and content.

1

Block changes to properties and content.

XFA Specification
Chapter 31, Adobe Config for LiveCycle ES2 Reference Config for LiveCycle ES2 Syntax Reference 1401

The printScaling element
This option controls Acrobat's default print scaling.

<printScaling

Properties:
 desc="cdata"
 lock="0 | 1"
>
 ...pcdata...
</printScaling>

The printScaling element is used within the following other elements:
viewerPreferences

The print dialog in Acrobat contains a drop-down list that controls page scaling. This option controls the
value initially selected in that list when the dialog is first presented.

Content

The content must be one of the following:

appdefault

Leaves the drop-down list at the application default. As of Acrobat 9.1 this is the list item "Shrink to
printable area". This is the default for this configuration option.

noScaling

Sets the drop-down list to the value that disables print scaling. As of Acrobat 9.1 this is the list item
"None". In conjunction with the enforce option this can be used to ensure that a form containing a
bar code will always be printed at the intended size.

The desc property

An attribute to hold human-readable metadata.

The lock property

A permission flag for allowing or blocking attempted changes to the element.

0

Allow changes to properties and content.

1

Block changes to properties and content.

XFA Specification
Chapter 31, Adobe Config for LiveCycle ES2 Reference Config for LiveCycle ES2 Syntax Reference 1402

The printerName element
This option supplies a default printer for a semi-automatic print.

<printerName

Properties:
 desc="cdata"
 lock="0 | 1"
>
 ...pcdata...
</printerName>

The printerName element is used within the following other elements:
silentPrint

When the addSilentPrint option is enabled a print dialog is presented upon opening the document.
This option names the default printer for that print job.

Content

The content of this option is the name of a printer in the form that the operating system requires.

There is no default in the usual XFA sense. If this element is missing or empty the dialog diplays the
ambient default printer.

The desc property

An attribute to hold human-readable metadata.

The lock property

A permission flag for allowing or blocking attempted changes to the element.

0

Allow changes to properties and content.

1

Block changes to properties and content.

XFA Specification
Chapter 31, Adobe Config for LiveCycle ES2 Reference Config for LiveCycle ES2 Syntax Reference 1403

The producer element
This option supplies a string to identify the PDF producer.

<producer

Properties:
 desc="cdata"
 lock="0 | 1"
>
 ...pcdata...
</producer>

The producer element is used within the following other elements:
pdf

PDF documents can identify the document producer via the Producer entry in the Document Information
dictionary. This dictionary is described in table 10.2 of [PDF]. XFA processors duplicate this string in the
XMP metadata packet.

Content

The content is a string identifying the program or application that filled and rendered the form. The string
may contain whitespace.

If the supplied element is omitted or empty the existing value is preserved.

The desc property

An attribute to hold human-readable metadata.

The lock property

A permission flag for allowing or blocking attempted changes to the element.

0

Allow changes to properties and content.

1

Block changes to properties and content.

XFA Specification
Chapter 31, Adobe Config for LiveCycle ES2 Reference Config for LiveCycle ES2 Syntax Reference 1404

The ps element
This element contains options that apply specifically to PostScript output files.

<ps

Properties:
 desc="cdata"
 lock="0 | 1"
 name="cdata"
>

 <batchOutput/> [0..1]
 <compress/> [0..1]
 <fontInfo/> [0..1]
 <jog/> [0..1]
 <mediumInfo/> [0..1]
 <outputBin/> [0..1]
 <staple/> [0..1]
 <xdc/> [0..1]
</ps>

The ps element is used within the following other elements:
present

This element is only used when the content of destination is ps.

The batchOutput property

This option specifies if the processing is required to be done in batch mode.

The compress property

This element controls the compression used when generating a PostScript document.

The desc property

An attribute to hold human-readable metadata.

The fontInfo property

This element holds options pertaining to fonts.

The jog property

This option controls the physical shifting of paper in the output tray.

The lock property

A permission flag for allowing or blocking attempted changes to the element.

0

Allow changes to properties and content.

1

Block changes to properties and content.

XFA Specification
Chapter 31, Adobe Config for LiveCycle ES2 Reference Config for LiveCycle ES2 Syntax Reference 1405

The mediumInfo property

This option contains elements that remap from specified medium types to different medium types.

The name property

This attribute is used to distinguish different flavors of PostScript, each of which has its own ps element.
The destination option supplies the name, if any, which is to be matched. A ps element corresponding
to full-up PostScript Level 2 omits this attribute to indicate that it is the default for PostScript printers.

The different ps elements invoke different device descriptor files via their xdc properties. This brings
about the actual difference in generated PostScript.

The outputBin property

Selects the bin into which the printer places the printed form.

The staple property

This option controls the stapling function in the printer.

The xdc property

This option contains elements which specify how to obtain the device control (XDC) information.

XFA Specification
Chapter 31, Adobe Config for LiveCycle ES2 Reference Config for LiveCycle ES2 Syntax Reference 1406

The range element
Part of the common configuration subset.

<range

Properties:
 desc="cdata"
 lock="0 | 1"
>
 ...pcdata...
</range>

The range element is used within the following other elements:
data

For more information, see The range element in the Config Common Element Reference.

XFA Specification
Chapter 31, Adobe Config for LiveCycle ES2 Reference Config for LiveCycle ES2 Syntax Reference 1407

The record element
Part of the common configuration subset.

<record

Properties:
 desc="cdata"
 lock="0 | 1"
>
 ...pcdata...
</record>

The record element is used within the following other elements:
data

For more information, see The record element in the Config Common Element Reference.

XFA Specification
Chapter 31, Adobe Config for LiveCycle ES2 Reference Config for LiveCycle ES2 Syntax Reference 1408

The relevant element
Part of the common configuration subset.

<relevant

Properties:
 desc="cdata"
 lock="0 | 1"
>
 ...pcdata...
</relevant>

The relevant element is used within the following other elements:
template

For more information, see The relevant element in the Config Common Element Reference.

XFA Specification
Chapter 31, Adobe Config for LiveCycle ES2 Reference Config for LiveCycle ES2 Syntax Reference 1409

The rename element
Part of the common configuration subset.

<rename

Properties:
 desc="cdata"
 lock="0 | 1"
>
 ...pcdata...
</rename>

The rename element is used within the following other elements:
transform

For more information, see The rename element in the Config Common Element Reference.

XFA Specification
Chapter 31, Adobe Config for LiveCycle ES2 Reference Config for LiveCycle ES2 Syntax Reference 1410

The renderPolicy element
This option controls whether the generation of page content is done on the server or deferred to the
client.

<renderPolicy

Properties:
 desc="cdata"
 lock="0 | 1"
>
 ...pcdata...
</renderPolicy>

The renderPolicy element is used within the following other elements:
pdf

Clients that process dynamic forms necessarily have the ability to generate page content from the XFA
content. Therefore when creating a PDF file containing a dynamic form it is not necessary to include any
PDF page content in the PDF file. Instead the PDF file may contain just the XFA content and a shell of PDF
markup surrounding it. This is called a shell PDF file.

The PDF specification defines a NeedsRendering flag in the the catalog dictionary (document catalog)
which controls whether PDF viewers attempt to regenerate the page content when the document is
opened. For a shell PDF file this flag is true.

Content

The content must be one of the following:

server

Page content is generated on the server. An ordinary PDF file is produced. This value may be used
with any kind of form.

client

No page content is generated on the server. A shell PDF file is produced. This value must only be
used with a dynamic form.

The desc property

An attribute to hold human-readable metadata.

The lock property

A permission flag for allowing or blocking attempted changes to the element.

0

Allow changes to properties and content.

1

Block changes to properties and content.

XFA Specification
Chapter 31, Adobe Config for LiveCycle ES2 Reference Config for LiveCycle ES2 Syntax Reference 1411

The runScripts element
This option controls what set of scripts the application runs.

<runScripts

Properties:
 desc="cdata"
 lock="0 | 1"
>
 ...pcdata...
</runScripts>

The runScripts element is used within the following other elements:
script

Scripts can be labelled with the runAt attribute as runnable at the client, at the server, or at both. The XFA
application uses the content of the runScript element to tell it whether it is to execute only client
scripts, only server scripts, or all scripts. In effect runScript tells it whether to behave like a server, like a
client, or like a standalone application.

When a client encounters a script marked to run at the server, it submits a request to the server to run the
script and return the result. The submit target is controlled by the submitUrl option and the format of
the request is controlled by the submitFormat option. Assuming the request is processed successfully,
after the client receives the result it merges the received data into the form.

Content

The content must be one of the following:

both

Execute all scripts. This is the default.

client

Execute only client scripts.

none

Do not execute any scripts. Note: prior to XFA 3.0 this value was missing from this documentation
but was in fact supported by LiveCycle.

server

Execute only server scripts.

The desc property

An attribute to hold human-readable metadata.

The lock property

A permission flag for allowing or blocking attempted changes to the element.

0

Allow changes to properties and content.

XFA Specification
Chapter 31, Adobe Config for LiveCycle ES2 Reference Config for LiveCycle ES2 Syntax Reference 1412

1

Block changes to properties and content.

XFA Specification
Chapter 31, Adobe Config for LiveCycle ES2 Reference Config for LiveCycle ES2 Syntax Reference 1413

The script element
This element contains options controlling the handling of scripts.

<script

Properties:
 desc="cdata"
 lock="0 | 1"
>

 <currentPage/> [0..1]
 <exclude/> [0..1]
 <runScripts/> [0..1]
</script>

The script element is used within the following other elements:
present

The currentPage property

This option sets the initial page.

The desc property

An attribute to hold human-readable metadata.

The exclude property

This option tells the application to ignore particular events.

The lock property

A permission flag for allowing or blocking attempted changes to the element.

0

Allow changes to properties and content.

1

Block changes to properties and content.

The runScripts property

This option controls what set of scripts the application runs.

XFA Specification
Chapter 31, Adobe Config for LiveCycle ES2 Reference Config for LiveCycle ES2 Syntax Reference 1414

The scriptModel element
This option controls whether XFA-specific information is to be included in the output PDF document.

<scriptModel

Properties:
 desc="cdata"
 lock="0 | 1"
>
 ...pcdata...
</scriptModel>

The scriptModel element is used within the following other elements:
pdf

PDF is an extendible format which is capable of carrying XFA information embedded in the document. This
embedded information is simply ignored by non-XFA PDF clients. However, it does make the file bigger.
This option is provided as a way to produce plain PDF without any XFA content.

Content

The content must be one of the following:

XFA

Embed XFA content at will. This is the default.

none

Produce plain PDF without any XFA content.

The desc property

An attribute to hold human-readable metadata.

The lock property

A permission flag for allowing or blocking attempted changes to the element.

0

Allow changes to properties and content.

1

Block changes to properties and content.

XFA Specification
Chapter 31, Adobe Config for LiveCycle ES2 Reference Config for LiveCycle ES2 Syntax Reference 1415

The severity element
Part of the common configuration subset.

<severity

Properties:
 desc="cdata"
 lock="0 | 1"
>
 ...pcdata...
</severity>

The severity element is used within the following other elements:
message

For more information, see The severity element in the Config Common Element Reference.

XFA Specification
Chapter 31, Adobe Config for LiveCycle ES2 Reference Config for LiveCycle ES2 Syntax Reference 1416

The silentPrint element
This element contains options controlling the semi-automatic printing of the document when it is
opened.

<silentPrint

Properties:
 desc="cdata"
 lock="0 | 1"
>

 <addSilentPrint/> [0..1]
 <printerName/> [0..1]
</silentPrint>

The silentPrint element is used within the following other elements:
pdf

This facility can be used to present a print dialog to the user upon opening the document. The print job is
not submitted until the user approves printing by taking some action such as clicking on a button.

The addSilentPrint property

This option controls whether a print dialog opens automatically upon opening of the document.

The desc property

An attribute to hold human-readable metadata.

The lock property

A permission flag for allowing or blocking attempted changes to the element.

0

Allow changes to properties and content.

1

Block changes to properties and content.

The printerName property

This option supplies a default printer for a semi-automatic print.

XFA Specification
Chapter 31, Adobe Config for LiveCycle ES2 Reference Config for LiveCycle ES2 Syntax Reference 1417

The staple element
This option controls the stapling function in the printer.

<staple

Properties:
 desc="cdata"
 lock="0 | 1"
 mode="usePrinterSetting | off | on"
>
</staple>

The staple element is used within the following other elements:
pcl ps

The desc property

An attribute to hold human-readable metadata.

The lock property

A permission flag for allowing or blocking attempted changes to the element.

0

Allow changes to properties and content.

1

Block changes to properties and content.

The mode property

The value of this attribute must be one of the following:

usePrinterSetting

The printer setting is honored.

on

The print job is stapled, regardless of the printer setting. The location and number of staples is
determined by the printer driver and device control document (XDC). If multiple copies are
printed each copy is stapled individually.

off

The print job is not stapled, regardless of the printer setting.

XFA Specification
Chapter 31, Adobe Config for LiveCycle ES2 Reference Config for LiveCycle ES2 Syntax Reference 1418

The startNode element
Part of the common configuration subset.

<startNode

Properties:
 desc="cdata"
 lock="0 | 1"
>
 ...pcdata...
</startNode>

The startNode element is used within the following other elements:
data

For more information, see The startNode element in the Config Common Element Reference.

XFA Specification
Chapter 31, Adobe Config for LiveCycle ES2 Reference Config for LiveCycle ES2 Syntax Reference 1419

The startPage element
Part of the common configuration subset.

<startPage

Properties:
 desc="cdata"
 lock="0 | 1"
>
 ...pcdata...
</startPage>

The startPage element is used within the following other elements:
template

For more information, see The startPage element in the Config Common Element Reference.

XFA Specification
Chapter 31, Adobe Config for LiveCycle ES2 Reference Config for LiveCycle ES2 Syntax Reference 1420

The submitFormat element
This option specifies the format in which the form data will be sent back to the server.

<submitFormat

Properties:
 desc="cdata"
 lock="0 | 1"
>
 ...pcdata...
</submitFormat>

The submitFormat element is used within the following other elements:
pdf

This option applies only to interactive PDF output documents. The content of this element determines the
settings for bits 3 (ExportFormat, 9 (SubmitPDF), and 6 (XFDF) in the submit-form action as described in
table 8.86 ("Flags for submit-form actions") of [PDF].

Content

The content must be one of the following:

html

The data will be submitted in HTML. This is the default.

delegate

The format will be determined by the server and client at run time. The result is
implementation-defined.

fdf

The data will be submitted in XFDF.

xml

The data will be submitted in XML.

pdf

The data will be submitted in PDF.

The desc property

An attribute to hold human-readable metadata.

The lock property

A permission flag for allowing or blocking attempted changes to the element.

0

Allow changes to properties and content.

1

Block changes to properties and content.

XFA Specification
Chapter 31, Adobe Config for LiveCycle ES2 Reference Config for LiveCycle ES2 Syntax Reference 1421

The submitUrl element
This option specifies an URL to which form data may be submitted.

<submitUrl

Properties:
 desc="cdata"
 lock="0 | 1"
>
 ...pcdata...
</submitUrl>

The submitUrl element is used within the following other elements:
present

The default submit URL is the target for running a script on the server when required by the script's runAt
property. It is also a target used by template submit elements that do not specify a target.

This element may occur singly or as any number of siblings. When a set of siblings is present they form an
ordered array.

If there is a submitUrlIndex variable in the variables dataset, the value of submitUrlIndex
supplies an integer index which selects one of the submit URLs from the array to use as the default submit
URL. If there is no submitUrlIndex variable then the first occurrence of this element is used.

Content

The content must be a valid URL to which the eventual client may submit the script request and/or the
form data.

The desc property

An attribute to hold human-readable metadata.

The lock property

A permission flag for allowing or blocking attempted changes to the element.

0

Allow changes to properties and content.

1

Block changes to properties and content.

XFA Specification
Chapter 31, Adobe Config for LiveCycle ES2 Reference Config for LiveCycle ES2 Syntax Reference 1422

The subsetBelow element
This option specifies a usage threshold below which an embedded font is reduced to the subset of
symbols that are actually used.

<subsetBelow

Properties:
 desc="cdata"
 lock="0 | 1"
>
 ...pcdata...
</subsetBelow>

The subsetBelow element is used within the following other elements:
fontInfo

Sometimes a font is used only for a few characters in a document. It is wasteful to embed the entire font if
only a portion of it is used. This options sets a usage threshold below which only the used subset is to be
embedded. Above the threshold the entire font is to be embedded, if possible.

This option does not apply to fonts that are not embedded. Embedding is controlled by the embed and
alwaysEmbed elements.

This option has no effect for fonts that are used in data-entry fields. If the font is embedded at all, it is
embedded in its entirety.

As with all the font embedding options, this option applies only when creating or updating a PDF file
which holds an XFA form intended for distribution. It is not used when printing because the application
can query the printer to find out what fonts the printer needs.

Although this option is in the present section of config, it also affects the behavior of Designer and,
when saving form state, of Acrobat.

Content

The content must be a positive integer from 0 to 100, inclusive. The default value for this option is 100,
which causes all embedded fonts that are not used in data-entry fields to be subsetted.

The desc property

An attribute to hold human-readable metadata.

The lock property

A permission flag for allowing or blocking attempted changes to the element.

0

Allow changes to properties and content.

1

Block changes to properties and content.

XFA Specification
Chapter 31, Adobe Config for LiveCycle ES2 Reference Config for LiveCycle ES2 Syntax Reference 1423

The suppressBanner element
Part of the common configuration subset.

<suppressBanner

Properties:
 desc="cdata"
 lock="0 | 1"
>
 ...pcdata...
</suppressBanner>

The suppressBanner element is used within the following other elements:
common

For more information, see The suppressBanner element in the Config Common Element Reference.

XFA Specification
Chapter 31, Adobe Config for LiveCycle ES2 Reference Config for LiveCycle ES2 Syntax Reference 1424

The tagged element
This option controls the inclusion of tags into the output PDF document.

<tagged

Properties:
 desc="cdata"
 lock="0 | 1"
>
 ...pcdata...
</tagged>

The tagged element is used within the following other elements:
pdf

Tags, in the context of PDF, are additional information included in a document to expose the logical
structure of the document. Tags assist accessibility aids and reformatting. For example a page number may
be tagged as an "artifact" so that a screen reader does not enunciate it in the middle of the text. Although
tags make a document more useful they also increase the size of the document and the processing time to
create it.

Tags are described in section 10.7 of [PDF].

Content

The content must be one of the following:

0

Do not insert tags. This is the default.

1

Insert tags.

The desc property

An attribute to hold human-readable metadata.

The lock property

A permission flag for allowing or blocking attempted changes to the element.

0

Allow changes to properties and content.

1

Block changes to properties and content.

XFA Specification
Chapter 31, Adobe Config for LiveCycle ES2 Reference Config for LiveCycle ES2 Syntax Reference 1425

The template element
Part of the common configuration subset.

<template

Properties:
 desc="cdata"
 lock="0 | 1"
>

 <base/> [0..1]
 <relevant/> [0..1]
 <startPage/> [0..1]
 <uri/> [0..1]
 <xsl/> [0..1]
</template>

The template element is used within the following other elements:
common

For more information, see The template element in the Config Common Element Reference.

The base property

Part of the common configuration subset.

The relevant property

Part of the common configuration subset.

The startPage property

Part of the common configuration subset.

The uri property

Part of the common configuration subset.

The xsl property

Part of the common configuration subset.

XFA Specification
Chapter 31, Adobe Config for LiveCycle ES2 Reference Config for LiveCycle ES2 Syntax Reference 1426

The templateCache element
This option controls the use of a template cache to reduce template open time.

<templateCache

Properties:
 desc="cdata"
 lock="0 | 1"
 maxEntries="integer"
>
</templateCache>

The templateCache element is used within the following other elements:
cache

In automated workflows the same templates are frequently reused. Since parsing and loading a template
consumes resources it is desireable to keep recently used templates preloaded in memory.

If both the URI and timestamp of a desired template match a template currently in the cache, the copy in
the cache is used. Otherwise the template is loaded the normal way.

The desc property

An attribute to hold human-readable metadata.

The lock property

A permission flag for allowing or blocking attempted changes to the element.

0

Allow changes to properties and content.

1

Block changes to properties and content.

The maxEntries property

The maximum number of templates to keep in memory. If this value is zero caching of templates is
disabled. The default value is 5.

XFA Specification
Chapter 31, Adobe Config for LiveCycle ES2 Reference Config for LiveCycle ES2 Syntax Reference 1427

The threshold element
Part of the common configuration subset.

<threshold

Properties:
 desc="cdata"
 lock="0 | 1"
>
 ...pcdata...
</threshold>

The threshold element is used within the following other elements:
log

For more information, see The threshold element in the Config Common Element Reference.

XFA Specification
Chapter 31, Adobe Config for LiveCycle ES2 Reference Config for LiveCycle ES2 Syntax Reference 1428

The to element
Part of the common configuration subset.

<to

Properties:
 desc="cdata"
 lock="0 | 1"
>
 ...pcdata...
</to>

The to element is used within the following other elements:
log output

For more information, see The to element in the Config Common Element Reference.

XFA Specification
Chapter 31, Adobe Config for LiveCycle ES2 Reference Config for LiveCycle ES2 Syntax Reference 1429

The transform element
Part of the common configuration subset.

<transform

Properties:
 desc="cdata"
 lock="0 | 1"
 ref="cdata"
>

 <groupParent/> [0..1]
 <ifEmpty/> [0..1]
 <nameAttr/> [0..1]
 <picture/> [0..1]
 <presence/> [0..1]
 <rename/> [0..1]
 <whitespace/> [0..1]
</transform>

The transform element is used within the following other elements:
data

For more information, see The transform element in the Config Common Element Reference.

The groupParent property

Part of the common configuration subset.

The ifEmpty property

Part of the common configuration subset.

The nameAttr property

Part of the common configuration subset.

The picture property

Part of the common configuration subset.

The presence property

Part of the common configuration subset.

The rename property

Part of the common configuration subset.

The whitespace property

Part of the common configuration subset.

XFA Specification
Chapter 31, Adobe Config for LiveCycle ES2 Reference Config for LiveCycle ES2 Syntax Reference 1430

The type element
This element specifies either the type of compression to be applied to a file or the type of output to be
produced by an automated form server.

<type

Properties:
 desc="cdata"
 lock="0 | 1"
>
 ...pcdata...
</type>

The type element is used within the following other elements:
compression output

There are two type elements. When contained by compression, the type element specifies the type of
compression to be applied to a file. When contained by output, the type element specifies the type of
output to be produced by a form server.

Content

When contained by compression, the content specifes the type of compression to be applied to a PDF
file. Allowable compression methods are a subset of those listed in Table 3.5 of the PDF Reference [PDF].
The allowable compression methods are as follows:

none

Does not compress the output. This is the default.

ascii85

Encodes 8-bit data as 7-bit ASCII using base-85 encoding.

asciiHex

Encodes 8-bit data as 7-bit ASCII hexadecimal numbers.

ccittfax

Compresses images using the CCITT compression method that is used for facsimile. Other
streams are compressed using the zlib/flate method.

flate

Uses the zlib/flate compression method.

lzw

Uses the LZW (Lempel-Ziv-Welch) adaptive compression method.

runLength

Compresses images using run length compression. Other streams are compressed using the
zlib/flate method.

When contained by output, the content specifes the output of a form server as follows:

XFA Specification
Chapter 31, Adobe Config for LiveCycle ES2 Reference Config for LiveCycle ES2 Syntax Reference 1431

native

The form server creates a PDF file. This is the default.

xdp

The form server creates an XDP file.

mergedXDP

The form server performs a merge operation, runs calculations, then creates an XDP file.

The desc property

An attribute to hold human-readable metadata.

The lock property

A permission flag for allowing or blocking attempted changes to the element.

0

Allow changes to properties and content.

1

Block changes to properties and content.

XFA Specification
Chapter 31, Adobe Config for LiveCycle ES2 Reference Config for LiveCycle ES2 Syntax Reference 1432

The uri element
Part of the common configuration subset.

<uri

Properties:
 desc="cdata"
 lock="0 | 1"
>
 ...pcdata...
</uri>

The uri element is used within the following other elements:
data debug log output outputXSL template xdc xsl

For more information, see The uri element in the Config Common Element Reference.

XFA Specification
Chapter 31, Adobe Config for LiveCycle ES2 Reference Config for LiveCycle ES2 Syntax Reference 1433

The validate element
This option causes validations to be automatically run before specified activities.

<validate

Properties:
 desc="cdata"
 lock="0 | 1"
>
 ...pcdata...
</validate>

The validate element is used within the following other elements:
present

For all activities except saving the form to a file, when the validation fails with an error the pending action
is cancelled. However when validation generates a warning, or when validation succeeds, the pending
action goes ahead.

When saving the form to a file the XFA processor does not care whether validation succeeds or fails; it
saves the file regardless. This is the only reasonable behavior for a non-interactive application. However
the warning and error messages logged during validation may still be useful.

NOTE: Since XFA 2.8 this element has been a child of either the acrobat element or the present
element. However, for backwards compatibility, when members of the Acrobat family do not find this
element under the acrobat element they fall back to looking under the present element.

Content

The content is a space-separated list of zero or more activity names. The activity names must be drawn
from the following list:

preSubmit

Validate before submitting the form to an HTTP server. This is the default.

prePrint

Validate before printing the form.

preExecute

Validate before executing a request to a WSDL-based web service.

preSave

Validate before saving the form to a file.

The default behavior is to validate only before submitting. To prevent even this validation supply this
element but leave it empty.

The desc property

An attribute to hold human-readable metadata.

The lock property

A permission flag for allowing or blocking attempted changes to the element.

XFA Specification
Chapter 31, Adobe Config for LiveCycle ES2 Reference Config for LiveCycle ES2 Syntax Reference 1434

0

Allow changes to properties and content.

1

Block changes to properties and content.

XFA Specification
Chapter 31, Adobe Config for LiveCycle ES2 Reference Config for LiveCycle ES2 Syntax Reference 1435

The validationMessaging element
Part of the common configuration subset.

<validationMessaging

Properties:
 desc="cdata"
 lock="0 | 1"
>
 ...pcdata...
</validationMessaging>

The validationMessaging element is used within the following other elements:
common

For more information, see The validationMessaging element in the Config Common Element Reference.

XFA Specification
Chapter 31, Adobe Config for LiveCycle ES2 Reference Config for LiveCycle ES2 Syntax Reference 1436

The version element
This option specifies the version of PDF which is to be generated.

<version

Properties:
 desc="cdata"
 lock="0 | 1"
>
 ...pcdata...
</version>

The version element is used within the following other elements:
pdf

The PDF language was designed to be extensible and has been extended numerous times. To ensure
forward compatability with newer versions of PDF, clients and printers that do not recognize a portion of a
PDF file simply ignore that portion. Usually this works well, but sometimes it is desireable to generate PDF
that caters to older software.

Content

The content must be one of the following:

1.7

This and earlier versions of PDF are supported by members of the Acrobat 8.0 family of products
and all newer releases. For XFA 2.6 and above this is the default. The adobeExtensionLevel option
distinguishes between releases of Adobe products that use PDF 1.7.

1.6

This and earlier versions of PDF are supported by Acrobat 7, corresponding to XFA 2.2 and by
Acrobat/Reader 7.0.5, corresponding to XFA 2.4. (There is no XFA 2.3).

1.5

This and earlier versions of PDF are supported by Acrobat 6, corresponding to XFA 2.1. This was
the earliest version of PDF to include XFA.

1.4

This and earlier versions of PDF are supported by Acrobat 5.

1.3

This and earlier versions of PDF are supported by Acrobat 4.

1.2

This and earlier versions of PDF are supported by Acrobat 3.

For any given release of XFA the default is the corresponding version of PDF.

The desc property

An attribute to hold human-readable metadata.

XFA Specification
Chapter 31, Adobe Config for LiveCycle ES2 Reference Config for LiveCycle ES2 Syntax Reference 1437

The lock property

A permission flag for allowing or blocking attempted changes to the element.

0

Allow changes to properties and content.

1

Block changes to properties and content.

XFA Specification
Chapter 31, Adobe Config for LiveCycle ES2 Reference Config for LiveCycle ES2 Syntax Reference 1438

The versionControl element
Part of the common configuration subset.

<versionControl

Properties:
 lock="0 | 1"
 outputBelow="warn | error | update"
 sourceAbove="warn | error"
 sourceBelow="update | maintain"
>
</versionControl>

The versionControl element is used within the following other elements:
common

For more information, see The versionControl element in the Config Common Element Reference.

XFA Specification
Chapter 31, Adobe Config for LiveCycle ES2 Reference Config for LiveCycle ES2 Syntax Reference 1439

The viewerPreferences element
This element holds options controlling the viewer preferences.

<viewerPreferences

Properties:
 desc="cdata"
 lock="0 | 1"
>

 <addViewerPreferences/> [0..1]
 <duplexOption/> [0..1]
 <enforce/> [0..1]
 <numberOfCopies/> [0..1]
 <pageRange/> [0..1]
 <pickTrayByPDFSize/> [0..1]
 <printScaling/> [0..1]
</viewerPreferences>

The viewerPreferences element is used within the following other elements:
pdf

The viewer preferences dictionary is described in section 8.1 of [PDF].

The addViewerPreferences property

This option controls whether the associated viewer preferences are to be included in the output
document.

The desc property

An attribute to hold human-readable metadata.

The duplexOption property

Sets the value of the Duplex option in the viewer preferences dictionary.

The enforce property

This option names viewer preference settings which the user will not be allowed to alter.

The lock property

A permission flag for allowing or blocking attempted changes to the element.

0

Allow changes to properties and content.

1

Block changes to properties and content.

The numberOfCopies property

Sets the value of the NumCopies option in the viewer preferences dictionary.

XFA Specification
Chapter 31, Adobe Config for LiveCycle ES2 Reference Config for LiveCycle ES2 Syntax Reference 1440

The pageRange property

Sets the value of the PrintPageRange option in the viewer preferences dictionary.

The pickTrayByPDFSize property

This option controls whether Acrobat defaults to selecting the input paper tray based on the PDF page
size.

The printScaling property

This option controls Acrobat's default print scaling.

XFA Specification
Chapter 31, Adobe Config for LiveCycle ES2 Reference Config for LiveCycle ES2 Syntax Reference 1441

The webClient element
This element contains options that apply specifically to HTML output files.

<webClient

Properties:
 desc="cdata"
 lock="0 | 1"
 name="cdata"
>

 <fontInfo/> [0..1]
 <xdc/> [0..1]
</webClient>

The webClient element is used within the following other elements:
present

This element is only used when the content of destination is webClient.

The desc property

An attribute to hold human-readable metadata.

The fontInfo property

This element holds options pertaining to fonts.

The lock property

A permission flag for allowing or blocking attempted changes to the element.

0

Allow changes to properties and content.

1

Block changes to properties and content.

The name property

An identifier that may be used to identify this element in script expressions.

The xdc property

This option contains elements which specify how to obtain the device control (XDC) information.

XFA Specification
Chapter 31, Adobe Config for LiveCycle ES2 Reference Config for LiveCycle ES2 Syntax Reference 1442

The whitespace element
Part of the common configuration subset.

<whitespace

Properties:
 desc="cdata"
 lock="0 | 1"
>
 ...pcdata...
</whitespace>

The whitespace element is used within the following other elements:
transform

For more information, see The whitespace element in the Config Common Element Reference.

XFA Specification
Chapter 31, Adobe Config for LiveCycle ES2 Reference Config for LiveCycle ES2 Syntax Reference 1443

The window element
Part of the common configuration subset.

<window

Properties:
 desc="cdata"
 lock="0 | 1"
>
 ...pcdata...
</window>

The window element is used within the following other elements:
data

For more information, see The window element in the Config Common Element Reference.

XFA Specification
Chapter 31, Adobe Config for LiveCycle ES2 Reference Config for LiveCycle ES2 Syntax Reference 1444

The xdc element
This option contains elements which specify how to obtain the device control (XDC) information.

<xdc

Properties:
 desc="cdata"
 lock="0 | 1"
>

 <uri/> [0..1]
 <xsl/> [0..1]
</xdc>

The xdc element is used within the following other elements:
driver labelPrinter pcl pdf ps webClient zpl

The device control information is used by the driver for the particular printer or language. For example, it
contains information about the available fonts.

The desc property

An attribute to hold human-readable metadata.

The lock property

A permission flag for allowing or blocking attempted changes to the element.

0

Allow changes to properties and content.

1

Block changes to properties and content.

The uri property

Part of the common configuration subset.

The xsl property

Part of the common configuration subset.

XFA Specification
Chapter 31, Adobe Config for LiveCycle ES2 Reference Config for LiveCycle ES2 Syntax Reference 1445

The xdp element
This element contains options governing the output document when it is in XDP format.

<xdp

Properties:
 desc="cdata"
 lock="0 | 1"
>

 <packets/> [0..1]
</xdp>

The xdp element is used within the following other elements:
present

The contained options have effect only when the content of destination is xdp.

The desc property

An attribute to hold human-readable metadata.

The lock property

A permission flag for allowing or blocking attempted changes to the element.

0

Allow changes to properties and content.

1

Block changes to properties and content.

The packets property

This option specifies which packets are to be included in the output XDP.

XFA Specification
Chapter 31, Adobe Config for LiveCycle ES2 Reference Config for LiveCycle ES2 Syntax Reference 1446

The xsl element
Part of the common configuration subset.

<xsl

Properties:
 desc="cdata"
 lock="0 | 1"
>

 <debug/> [0..1]
 <uri/> [0..1]
</xsl>

The xsl element is used within the following other elements:
data template xdc

For more information, see The xsl element in the Config Common Element Reference.

The debug property

Part of the common configuration subset.

The uri property

Part of the common configuration subset.

XFA Specification
Chapter 31, Adobe Config for LiveCycle ES2 Reference Config for LiveCycle ES2 Syntax Reference 1447

The zpl element
(DEPRECATED) This element contains options used by the XFA application when generating documents in
Zebra Programming Language (ZPL).

<zpl

Properties:
 desc="cdata"
 lock="0 | 1"
 name="cdata"
>

 <batchOutput/> [0..1]
 <flipLabel/> [0..1]
 <fontInfo/> [0..1]
 <xdc/> [0..1]
</zpl>

The zpl element is used within the following other elements:
present

As of XFA 3.1 this element is deprecated. For new designs use the labelPrinter element instead.

The batchOutput property

This option specifies if the processing is required to be done in batch mode.

The desc property

An attribute to hold human-readable metadata.

The flipLabel property

This element determines whether or not the label will be printed flipped.

The fontInfo property

This element holds options pertaining to fonts.

The lock property

A permission flag for allowing or blocking attempted changes to the element.

0

Allow changes to properties and content.

1

Block changes to properties and content.

The name property

This attribute is used to distinguish different flavors of ZPL, each of which has its own zpl element. The
destination option supplies the name, if any, which is to be matched. A zpl element corresponding to
full-up ZPL omits this attribute to indicate that it is the default for ZPL printers.

XFA Specification
Chapter 31, Adobe Config for LiveCycle ES2 Reference Config for LiveCycle ES2 Syntax Reference 1448

The different zpl elements invoke different device descriptor files via their xdc properties. This brings
about the actual difference in generated ZPL.

The xdc property

This option contains elements which specify how to obtain the device control (XDC) information.

 1449

32 Adobe Variables Set Specification

The Adobe-specific Variables Set contains data relevant to the state of the client-server relationship.

All of the elements and attributes described in this specification must belong to the following namespace:

http://ns.adobe.com/server-context-data/

Note: The trailing “/” is required.

This DOM lives within the heirarchy of XFA DOMs as xfa.datasets.variables.

The variables element
A container for client-server state variables.

<variables

Properties:
>

<submitUrlIndex> [0..1]
</variables>

The submitUrlIndex property

Controls which out of a set of default submit URLs is used as the default for this session.

XFA Specification
Chapter 32, Adobe Variables Set Specification 1450

The submitUrlIndex element
Controls which out of a set of default submit URLs is used as the default for this session.

<submitUrlIndex
>

...pcdata...
</submitUrlIndex>

The submitUrlIndex element is used within the following other elements:

“The variables element”

Content

The content is a small non-negative integer specifying which out of a set of default submit URLs is to be
used for this session. This content can be altered at run time in the client without breaking the certification
of the form.

The set of default submit URLs is supplied by the Adobe Configuration DOM for LiveCycle ES2. If a submit
URL with the specified index exists in Config DOM it is used. If there is nothing to match the index there
then the client falls back to whatever URL is available, for example the URL of the website hosting the form.

When this element is empty or omitted the value defaults to 0. This ensures compatibility with forms using
versions of XFA prior to XFA 2.8, which only allowed a single default submit URL.

 1451

Part 5: Appendices, Bibliography, Glossary and Index

This part contains appendices that provide adjunct information referenced by the narrative chapters in
Part 1. It also contains a bibliography, a glossary and an index.

 1452

A
Algorithms for Determining Coordinates Relative to
the Page

This appendix provides algorithms that can be used to determine an object’s position relative to the page
coordinates. For brevity, within this section a container is referred to as a parent and the contained object
as a child. A single container object may be parent to one object and child to another.

Suppose, for example, a child object places its internal origin at the top-left corner of its nominal content
region (the typical case). If we have a point (Cx,Cy) in child coordinates, we can generate common
coordinates (CCx,CCY) for the parent with the following simple equations:

CCx = Cx + Mx

CCY = Cy + My

where Mx and My are the child's left and top margin insets, respectively.

In order to convert these common coordinates into its own space, the parent must first determine the
origin (Ox,Oy) of the child's top-left corner in its (the parent's) own coordinate space. These would be
computed from the child's anchor point (Ax,Ay), using the child's nominal extent's width and height (W,H)
as follows:

Ox = Ax (TopLeft, MiddleLeft, BottomLeft)

Ox = Ax - W/2 (TopCenter, MiddleCenter, BottomCenter)

Ox = Ax - W (TopRight, MiddleRight, BottomRight)

Oy = Ay (TopLeft, TopCenter, TopRight)

Oy = Ay - H/2 (MiddleLeft, MiddleCenter, MiddleRight)

Oy = Ay - H (BottomLeft, BottomCenter, BottomRight)

Now, it's a very simple transformation to generate parent coordinates (Px,Py) from common coordinates:

Px = CCx + Ox

Py = CCy + Oy

Or,

Px = Cx + Mx + Ox

Py = Cx + My + Oy

A slight optimization could be to avoid recalculating the invariants (Mx+Ox, My+Oy) through a little
cooperation between the parent and the child.

 1453

B Layout Objects

The following table lists the characteristics of all the different layout objects.

Characteristics of layout objects

Layout object Used as …

arc boilerplate geometric figure

layout strategy Not a container

break control? No

natural size? Inherited, except line thickness

growable? All except line thickness. No limit

splittable? No

multiply-occurring? No

container for N/A

area physical and logical grouping of objects

layout strategy Positioned

break control? No

natural size? Defined by contained objects

growable? Yes (but area boundaries are not visible
so this has no concrete effect)

splittable? Yes

multiply-occurring? No

container for area, draw, exclGroup, field,
subform, subformSet

Association at merge time.

XFA Specification
 1454

barcode machine-readable data

layout strategy Not a container

break control? No

natural size? Fixed or variable, depending on
barcode type. When barcode type is
variable, natural size depends upon
symbol width.

growable? Depends upon barcode type; when
yes, controlled by length of data

splittable? No

multiply-occurring? No

container for N/A

button clickable region

layout strategy Not a container

break control? No

natural size? Zero (Visually represented by
container’s caption and/or borders.)

growable? No

splittable? No

multiply-occurring? No

container for N/A

checkButton check box or radio button

layout strategy Not a container

break control? No

natural size? Size property (defaults to
10pt)+margins

growable? Yes

splittable? In margins

multiply-occurring? No

container for N/A

Characteristics of layout objects (Continued)

Layout object Used as …

XFA Specification
 1455

contentArea physical region of a display surface

layout strategy Positioned, flowing

break control? No

natural size? Properties w and h required. Imposes
splitting on contents.

growable? No

splittable? No

multiply-occurring? No

container for area, draw, exclGroup, field,
subform, subformSet

Association at layout time

draw containing
image

static displayable (boilerplate) image

layout strategy Positioned

break control? No

natural size? May be supplied by the properties w
and h; otherwise, content + caption +
margins.

Does not cause splitting

growable? Yes. Optional limits supplied by
properties, such as minH

splittable? In margins

multiply-occurring? No

container for Image

draw containing
geometric figure

static displayable (boilerplate) geometric figure

layout strategy Positioned

break control? No

natural size? Properties w and h required. Does not
cause splitting

growable? No

splittable? In margins

multiply-occurring? No

container for arc, line, rectangle

Characteristics of layout objects (Continued)

Layout object Used as …

XFA Specification
 1456

draw containing text static displayable (boilerplate) text

layout strategy

break control?

natural size? May be supplied by the properties w
and h; otherwise, supplied by content
+ caption + margins.

Does not cause splitting

growable? Yes. Optional limits supplied by
properties such as minH.

splittable? In margins and between lines. Text
within rotated containers cannot be
split.

multiply-occurring? No

container for Text

embedded object non-text displayable entity embedded in text

layout strategy Not a container

break control? No

natural size? Implementation-defined

growable? No

splittable? No

multiply-occurring? No

container for N/A

exclGroup logical grouping of fields (one-of-many)

layout strategy Inherited

break control? No

natural size? content + caption = margins

growable? No

splittable? In margins or within contained object

multiply-occurring? No

container for field

Characteristics of layout objects (Continued)

Layout object Used as …

XFA Specification
 1457

field containing
button

clickable widget

layout strategy Positioned

break control? No

natural size? Caption + margins

growable? Yes. Optional limits supplied by
properties such as maxH.

splittable? In margins

multiply-occurring? No

container for button

field containing
check-box

clickable widget

layout strategy Positioned

break control? No

natural size? Content + caption + margins

growable? Yes. Optional limits supplied by
properties such as maxH.

splittable? In margins

multiply-occurring? No

container for checkButton

field containing date,
time, or date-time

one item of variable data

layout strategy Flowing

break control? No

natural size? Content + caption + margins

growable? Yes. Optional limits supplied by
properties such as maxH.

splittable? In margins and between lines

multiply-occurring? No

container for text

Characteristics of layout objects (Continued)

Layout object Used as …

XFA Specification
 1458

field containing image variable image

layout strategy Positioned

break control? No

natural size? Content + caption + margins

growable? No

splittable? In margins

multiply-occurring? No

container for image

field containing
number

variable numeric data

layout strategy Flowing

break control? No

natural size? Content + caption + margins

growable? No

splittable? In margins

multiply-occurring? No

container for text (single-line)

field containing
password

variable character data

layout strategy Flowing

break control? No

natural size? Implementation-defined

growable? No

splittable? In margins

multiply-occurring? No

container for text (single-line)

Characteristics of layout objects (Continued)

Layout object Used as …

XFA Specification
 1459

field containing radio
button

clickable widget

layout strategy Positioned

break control? No

natural size? Content + caption + margins

growable? Yes. Optional limits supplied by
properties such as maxH.

splittable? In margins

multiply-occurring? No

container for checkButton

field containing
signature

clickable widget

layout strategy Implementation-defined

break control? No

natural size? Content + caption + margins

growable? No

splittable? In margins

multiply-occurring? No

container for Implementation-defined object

field containing text variable character data

layout strategy Flowing

break control? No

natural size? Content + caption + margins

growable? No

splittable? In margins and between lines. Text
within rotated containers cannot be
split.

multiply-occurring? No

container for text

Characteristics of layout objects (Continued)

Layout object Used as …

XFA Specification
 1460

glyph printable symbol

layout strategy Not a container

break control? No

natural size? Determined by character code, type
face, and type size

growable? No

splittable? No

multiply-occurring? No

container for N/A

image bitmapped image

layout strategy Not a container

break control? No

natural size? Determined by the image data

growable? Yes, unless aspect is actual. No
limit.

splittable? No

multiply-occurring? No

container for N/A

line boilerplate geometric figure

layout strategy Not a container

break control? No

natural size? Inherited, except line thickness

growable? All, except thickness. No limit.

splittable? No

multiply-occurring? No

container for N/A

Characteristics of layout objects (Continued)

Layout object Used as …

XFA Specification
 1461

pageArea display surface, such as one side of a sheet of paper

layout strategy Positioned (all content), flowing (all
content except contentArea)

break control? No

natural size? Assumed to be infinite

growable? Not applicable; already infinite

splittable? No

multiply-occurring? Yes; controlled by occur property

container for area, contentArea, draw,
exclGroup, field, subform,
subformSet

pageSet collection of display surfaces

layout strategy Not applicable

break control? No

natural size? Assumed to be infinite

growable? Not applicable; already infinite

splittable? No

multiply-occurring? No

container for pageArea

rectangle boilerplate geometric figure

layout strategy Not a container

break control? No

natural size? Inherited, except line thickness

growable? All except line thickness; no limit

splittable? No

multiply-occurring? No

container for N/A

Characteristics of layout objects (Continued)

Layout object Used as …

XFA Specification
 1462

subform logical grouping of fields and boilerplate

layout strategy Positioned, flowing

break control? Yes, except when used as a leader or
trailer

natural size? May be supplied by the properties w
and h; otherwise, determined by
content. Does not cause splitting.

growable? yes. Optional limited supplied by
properties such as maxH.

splittable? In margins and where consensus exists
among contained objects

multiply-occurring? No. occur property not used in layout

container for area, draw, exclGroup, field,
subform, subformSet

subformSet logical grouping of subforms

layout strategy

Not applicable (transparent)

break control?

natural size?

growable?

splittable?

multiply-occurring? No. occur property not used in layout

container for subform, subformSet

text sequence of glyphs and/or embedded objects

layout strategy Flowing

break control? No

natural size? Determined by contents

growable? No

splittable? Between lines. Text within rotated
containers cannot be split.

multiply-occurring? No

layout container for glyph or embedded object

Characteristics of layout objects (Continued)

Layout object Used as …

 1463

C AXTE Line Positioning

Introduction
The process of text layout is indeed complex. Even English—which is perhaps the simplest language to lay
out—is not without its challenges.

A number of Adobe products, including members of the Acrobat family of products, use the Adobe XFA
Text Engine (AXTE) to effect text layout. Description of a complete layout process might occupy volumes.
This document attempts to describe one key aspect of the AXTE layout process: line positioning. This
document describes the behavior of AXTE when used for XFA-related processing in Acrobat 7 and later.
Acrobat 6 used a different text engine which is not discussed here. Some other (non-XFA) subsystems of
Acrobat use a different mode of AXTE which behaves slightly differently.

Note: This appendix is non-normative, that is, it is not a requirement that XFA processors operate exactly
as described here. Rather this appendix is provided to help users of XFA understand the way in
which a popular implementation handles certain aspects of text layout.

Line Positioning
An extreme over-simplification might be to describe the text layout process as follows:

● Divide the text amongst one or more lines

● Position each line vertically

● Within each line, position its text horizontally

This document describes the middle step. One aspect of the first and third steps that makes them difficult
to document is that their processing is very language-dependent. For example, the rules for determining
how much Arabic text fits in a line, and then positioning that text horizontally within the line are quite
different from the rules for Thai text.

With one exception, the variables that control line positioning are used in the same way across languages.
The exception is overall text orientation: horizontal (e.g., English) of vertical (e.g., Chinese). At this time of
writing, vertically-oriented text is very much a work-in-progress in AXTE. Consequently, this document
limits itself to horizontally-oriented text. In other words, describing line position is “simply” describing the
vertical position of lines of horizontal text.

Scope
AXTE is only the text engine. It does not stand alone. Instead, there is an application that invokes AXTE
services as needed to lay out and render text. AXTE deals with each text object in isolation. It is up to the
invoking application to determine where text objects go on the page, screen or output/display medium.

For example, any XFA-based application deals with the concept of the XFA box model. This model
describes object positioning and display embellishments such as margins and borders. In turn, box model
objects are typically positioned in a subform—itself a box model object. Eventually, the entire hierarchy
gets placed on a page. AXTE is oblivious to the box model constructs and higher-level positioning
operations. Instead, it works in its own relative co-ordinate space that XFA applications place in the
content region of the box model text object. In other words, AXTE deals only with the text itself and all box

http://www.unicode.org/reports/tr14

XFA Specification
Introduction 1464

model application is outside the scope of this document. Note that box model captions are separate text
objects from AXTE’s perspective.

This document makes no attempt to describe the behaviours of higher-level applications. For more
information on those behaviours, please consult the applications’ documentation.

AXTE makes extensive use of font metrics. These are measurements of various aspects of glyphs stored in
font files. However, there are inconsistencies and ambiguities in the way such metrics are created and
used. AXTE relies on Adobe’s font access library, Adobe® CoolType, to access font information and resolve
such issues. Explanation of CoolType algorithms is beyond the scope of this document.

Definitions
This document uses the term text block to describe any text object. In an XFA form each text object
(including separate caption and field value) is a separate text block.

In the XFA world, higher-level XFA processing applies many XFA box model variables to get each AXTE text
block positioned properly. These include borders and margins at the object, caption and widget level. As
mentioned already, such processing is outside the scope of this document. Note that AXTE has its own
margins, applied at the paragraph level.

The following diagram demonstrates some of the key concepts in vertical text positioning. Figure 1 shows
three lines of text, middle-aligned in a block, with paragraph top and bottom margins. The black box
indicates the extent of the text block. Dark grey lines denote the vertical boundaries between lines. Light
grey lines indicate significant vertical offsets within lines.

XFA Specification
Introduction 1465

Figure 1 — Vertical layout definitions

Vertical text positioning is a function of a number of variables. Variables originate from font metrics, rich
text content, or can be computed from other variables. The following table lists detailed definitions of the
terms and variables used.

Term Variable Source Definition

Ascender The portion of any letter that extends above the baseline (see
definition below). For example, the entire letter “L” is an ascender
in figure 1.

Ascent A Font The nominal height of the font above the baseline (see definition
below). This is nominal only in that different characters have
different ascents. For example, the characters “L” and “2” in figure 1
above do not extend quite as high as the lower-case “l”. More
important, it is possible for some characters to extend beyond the
declared ascent, for example, accented upper-case letters such as
the letter “Ö” in the example. Ascent is based on the Roman
baseline of a font.

XFA Specification
Introduction 1466

Ascent
Overflow

AO Computed Additional vertical ascent applied to the first line to accommodate
accents and other ascenders that extend beyond the declared
ascent of the font. See the special handling of the letter “Ö” in the
first line of figure 1. Ascent overflow is determined by comparing
the bounding boxes of all glyphs in the line against the line’s
ascent.

Baseline B Computed The line on which text characters are placed. Note that some
characters extend below the baseline, for example, the letter “p” in
figure 1. As a variable, the value of the baseline is the positive
distance from the top of the line’s extent to the baseline position.

Baseline Shift BS Text Amount to shift the baseline of a span of text, either up or down.

Block Height BH Text Height of the text block into which the lines are to be placed.

Derived Line
Spacing

DS Computed Vertical line spacing computed for a line after all variables have
been taken into account except for paragraph’s top and bottom
margins.

Descender The portion of a letter that extends below the baseline, for
example, the bottom part of the letter “p” in figure 1 above.

Descent D Font The nominal height of the font below the baseline, for example, to
accommodate the portion of the letter “p” in figure 1 that extends
below the baseline. Descent is based on the Roman baseline of a
font.

First Line
Offset

FO Computed The distance from the top of the text block to the top of the first
line.

Font Size FS Text The declared size of the font. In an ideal world, this would be equal
to the sum of the ascent and descent. For example, suppose a text
object asserts a font of 12pt Myriad Pro. Then, the characters will
normally be scaled such that the sum of the ascent and descent is
12pt. However, for many fonts, the sum of ascent and descent may
be more than or less than the font height. Also known as font
height.

Full Height FH Computed Final height of a line, after all variables and computations have
been taken into account. In figure 1, the full height is the distance
between the dark grey lines that denote its vertical limits.

Line The fundamental unit of vertical placement of horizontal text. In
figure 1, each line is denoted by the text “line” at the left-hand side.

Term Variable Source Definition

XFA Specification
Introduction 1467

Line Gap LG Font Space inserted between lines to ensure there is a visually pleasing
separation between those lines. The line gap may also allow for
descenders to clear ascenders or accented capitalized letters on
the next line. Note that the line gap is not included in the font size.
Note also that the line gap appears between lines. In other words,
the number of gaps in a block of text is one less than the number
of lines. In AXTE, the line gap is associated with the line that
precedes it. Also sometimes referred to as leading, although
leading can also mean the distance from one baseline to the next.

Line Height The height of a line, including ascent, descent and line gap across
all fonts in a line.

Line Spacing SP Text Override of line height, supplied by the text. It is quite common for
the line spacing override to be zero, indicating there is no override
in effect. In other words, the line height would be determined
from font metrics.

Margin
Bottom

MB Text Margin applied after the last line in a paragraph. Also referred to as
bottom margin. This is independent of margins applied by the XFA
box model.

Margin Top MT Text Margin applied before the first line in a paragraph. Also referred to
as top margin. This is independent of margins applied by the XFA
box model.

Text Height TH Computed Text height, generally computed as the sum of maximum ascent
and descent across a line.

Term Variable Source Definition

XFA Specification
Discussion 1468

Discussion
This section provides a verbal description of positioning issues.

Vertical Positioning Algorithm
Simply stated, the text layout algorithm can be thought of as following three steps.

● Flatten field hierarchy

● Break individual lines

● Measure and place lines

These are described in the following subsections.

Flatten Field Hierarchy

AXTE supports the concept of fields nested in text objects, and indeed fields within fields. This is necessary
for form letters and other applications where flowed text consists of a combination of form-supplied
content (draws) and user-supplied content (fields).

Though it has no direct effect on vertical positioning, flattening is nonetheless an important step in the
process. This determines the order of the content to be laid out and therefore indirectly influences line
positioning.

Break Individual Lines

The second layout step is to separate the flattened content into one or more lines, performing
word-wrapping to ensure that no line exceeds the width available. AXTE uses the standard Unicode line
breaking algorithm [UAX-14] during this stage.

As the rest of this document demonstrates, the process of vertical line positioning is all about positioning
these lines.

Measure and Place Lines

This is the stage that is of most relevance to vertical line positioning.

Before individual lines can be placed, they must be measured as a group, in order that vertical alignment
may be applied. Measuring a line means determining its Full Height. This step also determines the overall
text block height for growable text blocks.

If the text block height is greater than the accumulated lines’ height, the extra space appears at the
bottom for top-aligned text, at the top for bottom-aligned text and split above and below for
middle-aligned text.

Once AXTE has determined how much space to reserve above the lines, it has its Y offset—the first line
offset—for the first line. This is the distance from the top of the text block to the top of the first line. The
bottom of the first line is determined by measuring down from its top by its full height. The top of the
second line is then positioned at the bottom of the first, and so on. Even though text is eventually placed
on a line’s baseline, many operations treat the line as a block, extending in Y from its top to its bottom.

XFA Specification
Discussion 1469

Coordinate Systems
In any large graphic application, there are often multiple coordinate systems in use, with transformations
between each. For this discussion, there are at least four:

● Application coordinates

● Text block coordinates

● Text line coordinates

● Font (glyph) coordinates

This discussion concentrates on the middle two. The rendering API used by AXTE supports multiple
coordinate systems and stacking of coordinate transformations. It also supports rotation, so that AXTE
need only worry about rendering glyphs horizontally and lines vertically.

Text Block Coordinates

The top-left corner of a text block is at (0,0) in its coordinate system. X coordinates increase to the right
while Y coordinates increase downward. The top of each line is determined in this coordinate space.

Text Line Coordinates

Most of the calculations described below occur in text line coordinates. Each line has its own coordinate
system, with (0,0) positioned at its top-left. Thus, the baseline’s Y coordinate has a value greater than
zero, the distance from the top of the line to the baseline.

Lines, Spans and Accumulation
Some attributes apply at the paragraph level. For example, it doesn’t make sense to change horizontal
alignment part way through a paragraph. The AXTE API ensures that paragraph-level attributes change
only at paragraph breaks. Because an individual line can be part of only one paragraph, it can have only a
single value for such an attribute, irrespective of how many spans are in the line. One example of this kind
of attribute is the line spacing override.

While the line is the fundamental unit of interest in this discussion, a number of operations apply on a finer
level of granularity—the span. Also known as a run, a span is a set of contiguous input characters1 with
consistent text attributes (e.g., font, baseline shift). In some of the algorithm descriptions below it is
necessary to distinguish between the variable value for an individual span and that for the entire line. In
such a case, the span variable is prefixed with a lower case s, while the line’s variable is not. For example, a
span’s descent would be denoted by sD, while the line’s descent is designated as D.

Because different spans may have different attributes, AXTE needs to reconcile them. For example, two
spans may have different font sizes, which means different ascent, descent and line gap values. Or they
may have the same size, but different font families which apportion the font height into ascent and
descent differently. These variables directly affect line height calculation and therefore influence line
positioning.

AXTE generally reconciles conflicting metrics by taking the larger of the two. This is referred to as
accumulation. AXTE tends to perform accumulation on a variable-by-variable basis before calculating

1. The actual glyphs rendered for a line may not map 1:1 to the original characters and they may be re-
ordered as part of the layout process. However this discussion focuses on the attributes themselves
and not the actual glyphs rendered with those attributes. Indeed, AXTE performs all measurement for
vertical text positioning on spans (of input characters, not glyphs).

XFA Specification
Discussion 1470

derived variables. For example, suppose a line has two spans with the same font size, but that height is
apportioned differently into ascent and descent between the two spans. If AXTE were to compute text
height on each span first, both spans would yield the same height and AXTE would end up with a text
height that was too small. Instead, AXTE accumulates ascent and descent separately and computes text
height only when all spans have been accumulated. In this way, the computed text height is larger and
has room for both the maximum ascent and maximum descent. When examining line content for vertical
positioning, AXTE accumulates all of the following variables across the entire line, before performing
calculations based on them:

● Ascent (A)

● Descent (D)

● Line Gap (LG)

● Spacing Override (SP), though this should not change value over the line

Note that Descent and Line Gap are accumulated independently. Some text processing systems
accumulate the sum of Descent and Line Gap.

Special Lines
AXTE is aware of four special line types and applies special vertical positioning processing:

Note that the first line in a text block is also the first line in its paragraph and that the last line in a text block
is also the last line in its paragraph. In addition, the first line in a paragraph may be also the last line in its
paragraph (one-line paragraph), and the first line in a block may be also the last line in the block (one-line
text block).

Baseline Shift
Baseline shifts introduce a fair degree of complexity to the vertical positioning of text.

Relative Shifts

A baseline shift can be specified as a percentage of font size. This means that font metrics must be
available to the code processing baseline shifts, and it must compute absolute shifts on-the-fly. Resolving
relative shifts into absolute values is done a span-by-span basis, relative to the font size of the span
containing the shift. In the algorithm descriptions below, any reference to a span’s baseline shift (sBS)
assumes that it has been resolved to an absolute value.

Type Processing

First line in block If there is a line spacing override and it is larger than the default line spacing, the
extra space is ignored on the first line in a text block, for consistency with other
text processing applications.

Last line in block Any line gap value does not apply to the last line in a text block.

First line in
paragraph

The top margin value applies only if the line is the first in its paragraph.

Last line in
paragraph

The bottom margin value applies only if the line is the last in its paragraph.

XFA Specification
Discussion 1471

The Real Baseline

Earlier, this document discussed a line’s baseline, as if there was only one and it was absolute for the line.
Baseline shifts introduce multiple baselines in a single text line. In order to provide a reference point in this
document and to remain consistent with the implementation, the existing definition of baseline stands.
Baseline shifts simply cause temporary adjustments to the rendering baseline, but do not influence the
line’s baseline, other than through line height adjustments (see below) for ascent and descent extension.

Line Height Adjustments

The application of a baseline shift may or may not cause the shifted text to move outside the vertical space
the line would otherwise occupy. An outright shift with no font size change will always require extra
space. However, shifts are often accompanied by font size reductions (e.g., subscripts and superscripts).
Shifted and resized text may fit without extending the space. A baseline shift’s extensions may occur in
either the ascent or descent area, and therefore may contribute to the accumulation of either ascent or
descent.

XFA Specification
Detailed Algorithms 1472

Detailed Algorithms
The following two subsections describe the vertical placement algorithms with a minimum of prose. Note
that all span-level algorithms are applied before line-level ones, which in turn are applied before any
block-level ones.

Span Level

Basic Metric Adjustments

AXTE accommodates a combined ascent and descent larger than the font size. If the sum of the two is less
than the font size, it pads the ascent, so that the requested font size is always consumed.

In addition, some fonts report unusual values for line gap, ranging from zero to 100% of the font size. Such
values could lead to text lines that were too close together or too far apart. AXTE adopts the convention
embraced by other Adobe applications that line gap is always determined to be 20% of font size.

if (sA + sD) < sFS then
sA = sFS – sD

sLG = sFS * 0.2

General Metric Accumulation

This is where the accumulation of the (possibly modified) basic metrics occurs. AXTE simply accumulates
separate ascent, descent and line gap for later calculation.

accumulate sA in A
accumulate sD in D
accumulate sLG in LG

Line Spacing

Internally AXTE has the convention that a line spacing override value of zero means that there is no
override in effect (line spacing to be determined from font metrics). Convention has it that increasing line
spacing does not push down the first line of a text block—it affects only the remaining lines.

if first line in block then
if sSP > sFS then

sSP = 0
accumulate sSP in SP

Baseline Shift

Note that most spans have no shift. This discussion applies only to those that do. The span’s absolute shift
value, sBS, is negative for up-shifts and positive for down-shifts.

AXTE treats up-shifts and down-shifts consistently. An up-shift will alter the accumulated ascent only if
more ascent space is required after taking both the shift and font size into account. A down-shift will alter
the accumulated descent only if more descent space is required after taking both the shift and font size
into account.

Note that a baseline shift is often accompanied by a change to a smaller font size. Therefore, span
variables sA, sD, sLG and sFS are often smaller than those accumulated elsewhere in the line.

XFA Specification
Detailed Algorithms 1473

Consequently, steps that accumulate data based on these variables often don’t change the underlying
accumulated values.

if sBS < 0 then
accumulate sA + |sBS| in A

else
accumulate sD + |sBS| in D

Line Level

Text Height

This is simply a matter of computing the overall text height based on the independently accumulated
ascent and descent values.

TH = A + D

Derived Spacing

This is essentially the calculation of the line height required for all the text in the line, before considerations
that apply to special lines. If any line spacing override is in effect, it is used. Otherwise, AXTE uses the sum
of accumulated ascent, descent and line gap.

if SP > 0 then
DS = SP

else
DS = TH + LG

Margin Adjustments

Appropriate margins are dropped if this line doesn’t meet special line criteria. If there is no bottom margin
or it is too small, it is increased.

if not first line in paragraph then
MT = 0

if not last line in paragraph then
MB = 0

Full Height

The full height is the total amount of vertical space occupied by the line. AXTE removes the line gap on the
last line in a block so that bottom-aligned text doesn’t appear shifted up.

FH = MT + DS + MB
if last line in block then

FH = FH - LG

Adjustment for First Line Accents

Some fonts have glyphs whose ascent overflowed the font’s declared ascent. This happens most often to
accented capital letters. Without accounting for this situation, it could lead to the complete truncation of
accents from a displayed line of text is some applications. So AXTE adjusts for ascent overflow on the first
line only, provided there is no line spacing override in effect. On subsequent lines, it is expected that any
overflow will spread into the line gap of the previous line.

XFA Specification
Detailed Algorithms 1474

if first line in block and AO > 0 and SP == 0 then
A = A + AO
TH = TH + AO
FH = FH + AO

Baseline

Finally the position of the baseline—relative to the top of the line’s space—can be determined. All
non-shifted glyphs are drawn on this baseline (B). For any span that has a baseline shift, its glyphs are
position on a baseline computed as B+sBS.

When no line spacing override was in effect, version 6 effectively included the line gap above every line
(including the first) by computing a baseline above the bottom margin by the line’s descent amount.

If there is a spacing override, AXTE uses that value to position the descent, provided the spacing override
exceeds the text height. In other words, increasing the line spacing override over the text height makes
the text move down, but decreasing it below the text height does not make it move up. This is intentional
behaviour to obtain the most sensible line positioning in both cases.

AXTE has already accounted for the spurious line gap (after the last line) in the calculation of full height
above.

if (SP == 0) or (SP – LG < TH) then
B = MT + TH - D

else
B = MT + SP - LG - D

Block Level

First Line Offset

Once the full height of all lines in the block has been determined, the first line offset can be set. Under
certain circumstances, AXTE may store lines whose total height is greater than the block height. In such a
case, the block is treated as being top-aligned. Depending on the application, lines spilling out the
bottom may or may not be rendered.

if sum(FH) > BH then
FO = 0

else
if top alignment then

FO = 0
else if middle alignment then

FO = (BH – sum(FH)) / 2
else

FO = BH – sum(FH)

 1475

D History of Changes in This Specification

This chapter describes the changes made to the XFA syntax and XFA processing rules since version 2.0.

New Object Models
The following Data Object Models (DOMs) were added after version 2.0.

Data Object Models

Support for relational data added, version 3.1

New syntax is defined in the data description and in the template to support the use of data containing
multiple tables related by keys. A SOM expression can reach through a foreign key to the associated row of
the foreign table, allowing a form to treat relational data as though it was flattened. See “Labelling
relational data” on page 946.

Data injection into data description added, version 3.1

New syntax is defined in the data description for the injection of custom data. This is used primarily to
keep track of custom elements and attributes that are added to a standard, pre-defined schema. See
“Labelling injected data” on page 946.

New variables dataset added, version 2.8

A new dataset called variables is defined under xfa.datasets. This new dataset is used for server
context data. See “Adobe Variables Set Specification” on page 1449.

Adobe XMP documented, version 2.6

A new non-normative section has been added which documents the data placed into the XMP packet by
LiveCycle Designer ES2. See “XMP packet” on page 1198.

Adobe configuration syntax documented, version 2.6

A new non-normative section has been added which documents the Adobe-specific portions of the
configuration packet. See “Adobe Config General Syntax Reference” on page 1211, “Adobe Config for
Acrobat Syntax Reference” on page 1242, and “Adobe Config for LiveCycle ES2 Reference” on page 1293.
These are separate and distinct from the normative specification of the common section of the
configuration packet which is still defined under “Config Common Specification” on page 846 as it was in
earlier versions of this specification.

Connection Set DOM added, version 2.1

The Connection Set DOM holds information concerning web services. This information is required in order
to use web services. The Connection Set DOM is serialized as XML in a new section of the XDP.

XFA Specification
New XFA Features 1476

Connection Data DOM added, version 2.1.

The Connection Data DOM is a temporary buffer used to hold data that is about to be sent to a host or has
just been received from a host. While there the data can be inspected and modified by scripts. The
Connection Data DOM is only serialized in free-standing messages to the host, never as part of an XDP.

Data Description DOM added, version 2.1.

The Data Description DOM holds a description of the structure (schema) for the data. This information is
optional. Furthermore, scripts and supplied data are not constrained by the data description. However if
the data description is supplied, and the supplied data conforms to it, then the XFA processor will ensure
that any changes it makes to the Data DOM during data binding conform to the supplied schema.This
DOM is serialized as XML in a new section of the XDP.

Layout DOM added, version 2.1

The Layout DOM holds the mapping of logical form features - blocks of text, images, and so on - to pages
and regions of pages. This DOM is never serialized to XDP.

Special Object Models

Special Object Models, version 2.1

Several special objects are mentioned in this document. These objects play a role in Scripting Object
Model expressions, which may in turn appear as the values of XFA template attributes. These special
objects include $event, $host, $layout, $log, and $vars. These objects and their properties and methods
are described in LiveCycle Designer ES2 Scripting Reference [LC-Scripting-Reference].

New XFA Features

Template Loading and Interpretation

Compatibility flag override in LiveCycle, version 3.0

Options for backwards compatibility are normally controlled by flags in the originalXFAVersion
processing instruction which is located inside the template. A new behaviorOverride element has
been added to LiveCycle’s portion of the configuration packet to allow installation-wide override of
specified compatibility flags. For more information see “Overriding compatibility flags via the
Configuration DOM” on page 1204.

Template version control, version 2.6

The common section of the configuration packet can now control what action should be taken when an
application written for a particular version of XFA encounters a template created for a different version of
XFA. For more information see the description of the versionControl element in “Config Common
Specification” on page 846.

Adobe legacy flags documented, version 2.6

A new non-normative section has been added which documents Adobe’s implementation of a processing
instruction called originalXFAVersion in the template packet. This indicates the original version of
the template before any automatic upgrade. The same processing instruction may contain flags causing
Adobe processors to revert to specific older behaviors despite the template version upgrade, or to adopt
newer behaviors than the template version would indicate. This apparatus is provided to accommodate

XFA Specification
New XFA Features 1477

things that cannot be automatically updated, such as expectations coded into scripts. See “Processing
instruction for backward compatibility” on page 1204.

Container Properties

Barcode examples expanded and illustrated, version 3.1

The barcode chapter has been expanded with new examples and illustrations. See “Using Barcodes” on
page 411.

Form fragments declaring traversals, version 2.8

Changes have been made to the method by which form fragments containing explicitly declared
traversals are loaded into the Template DOM. These changes improve the consistency of the behavior
when the same form fragment is loaded into different templates. See “Resolving Prototypes with
Traversals” on page 232.

Access property extended to subforms, version 2.8

Previously only fields and exclusion groups had access properties. Now subforms have access properties.
An inheritance mechanism is provided so that access to a whole section of a form can be downgraded or
upgraded without having to update the fields and exclusion groups individually. See “Access Restrictions”
on page 48.

Improved orphan and widow control, version 2.8

New attributes have been defined for the para element to improve the handling of widow and orphan
text. Previously there was a single attribute called preserve which controlled both. The new widows and
orphans attributes allow them to be separate controlled. Also, the definition of preserve was defective.
The preserve attribute is deprecated. See “Text Overflow” on page 67.

Keep property extended to fields and draws, version 2.8

The keep property controls whether, where, and how the content of the container is allowed to split
during layout of a non-XFAF form. Previously the keep property was available only on subforms, whereas
fields were always splittable (provided the field content was text) and draws were never splittable. In XFA
2.8 there are keep properties on fields and draws to allow finer control. For more information about the
keep property see “Content Splitting” on page 284 and “Adhesion” on page 305.

Image storage in PDF, version 2.6

When an XFA form is packaged inside a PDF, the XFA form can now draw upon images stored as resources
in the PDF container. When an image is referenced by URI the URI is checked against the list of stored
images. This allows image reuse without replicating the image data. It also allows the form to be
preloaded with images from which users can select using an image picker. If a reference in the client does
not match any of the images in the PDF the reference fails. See “Storing Images Inside PDF” on page 257.

New barcode types, version 2.6

The new barcode types include UPS Maxicode, Aztec, Data Matrix, and the RSS14 family. See “Barcode
type” on page 414.

XFA Specification
New XFA Features 1478

Form fragments, version 2.4

Almost any object in the template can now be used as a prototype for other objects. In addition
prototypes may be located in external templates accessed via URI. Hence any accessible template may
supply prototypes for other templates. See “Defining Prototypes” on page 225.

Bar code encryption, version 2.4

Barcode data can be encrypted using a public key before rendering as a barcode. This makes it possible to
transfer confidential data via facsimile. See “Pre-Processing of Barcode Data” on page 417.

Barcode character encoding, version 2.4

Barcode data can be translated into a specified character encoding, as opposed to always being encoded
as UTF-8 serialized Unicode. In particular QRCode barcodes can use the customary Shift-JIS character set.
See “Pre-Processing of Barcode Data” on page 417.

Exclusion group element’s capability expanded, version 2.1

The exclusion group container element (exclGroup) now has most of the same characteristics as the field
container element. For example, exclusion group may now contain the properties event, connect, validate,
and calculate.

Previously, an exclusion group was simply a logical grouping of fields.

Hide/reveal containers depending on relevance, version 2.1

All containers now include an attribute that can result in the container being excluded from the form if it is
not relevant to the current form view. For example, this capability can automatically cause the form to
reformat itself, depending on whether the form is being viewed online or printed.

Growable containers, version 2.1

Certain types of containers may be defined as growable along one or both axes. The extent to which the
container can grow or shrink is defined by a size range. Whether the container grows within the given
range is driven by the size of the data provided.

Paragraph formatting, version 2.1

Paragraph formatting instructions may be associated with any of the elements that contain displayable
text. Such instructions include horizontal and verticle alignment, line spacing, and margins.

Barcode formatting, version 2.1

A container may now specify that its data should be displayed as a barcode, rather than as text.

Image aspect, version 2.1

The aspect of an image may be retained as the size of its host container changes. That is, if a container
grows or shrinks, the image it contains may be grown or shrunk or may remain unchanged.

Noninteractive fields, version 2.1

Fields may be designated to be non-interactive. Such fields participate in data binding, but after that they
are treated as draw elements.

XFA Specification
New XFA Features 1479

Automation and Web-Related Interactions

Examples expanded and corrected, version 3.1

Examples have been added and existing examples corrected throughout these chapters. See “Automation
Objects” on page 364 and “Scripting” on page 403.

Inactive presence, version 3.0

A new value, inactive, is defined for the ubiquitous presence property. When applied to containers
this prevents the container and its contents from processing calculations, validations, and events. When
applied to non-containers the new value has the same effect as the previous defined value hidden. See
“Explicitly Concealing Containers” on page 67.

Event propagation, version 3.0

Events can now optionally propagate upward to their ancestral objects. This permits a single handler on a
container to handle events triggered in any of its contained objects. See “Event Propagation” on page 380.

Validation events added, version 3.0

A new class of event has been added which is triggered by a change in the validation state of a form
object. The most common use for this is to make customized changes to the appearance of form objects
that reflect their validity. See “Validation Events” on page 389.

Global validation handling control, version 3.0

The common subset of the configuration grammar has been extended to include an element that controls
the presentation of validation messages to the user. This can be used to improve the user experience when
multiple validation failures occur. This control only affects the user experience, not any programmatic
effects of validation failures. For more information see “The validationMessaging option” on page 379.

Authentication policy for web services, version 2.8

The Connection Set grammar has been extended to incorporate descriptions of the authentication
policies of web services. This allows a higher level of security in client-server transactions. See “Using the
Security Features of Web Services” on page 562. However the set of supported security features is
application-defined. For a description of support within Adobe products see “Support for authentication
during client-server interchange” on page 1185.

Submit via WSDL/SOAP, version 2.8

SOAP RawPost operations are supported and recognized as distinct from document operations. See
“Using Web Services” on page 449.

Pre- and post-submit events standardized, version 2.8

This version of the specification tightens up the definition of event processing before and after submits.
The tightened definition applies to all submits regardless of the mechanism, including HTTP POST,
e-mail,and WSDL/SOAP. As part of this a new postSubmit class of event has been added. See “Standard
Submit Processing” on page 439.

Pre-sign and post-sign events added, version 2.8

Events are now despatched before and after a signing action. This allows scripts to intervene in order, for
example, to make selected fields read-only before signing. See “Signing Events” on page 387.

XFA Specification
New XFA Features 1480

Pre- events may cancel the associated action, version 2.8

It is now possible for form processing to cancel an action during the pre-action event processing. For
example, a submit action can be cancelled during preSubmit event processing. See the description of
$event.cancelAction on page 392.

Secure submit, version 2.5

Submitted data can be signed with one or more signatures. In addition signatures can be verified and/or
cleared. The submitted data can also be encrypted.

Index change event, version 2.5

An event is provided to trigger scripts when the index of an instance is modified. For example, suppose a
dyamic form has three instances of a subform and the middle instance is deleted. This causes an
indexChange event to be generated for the last subform because its index changes from 2 to 1. For more
information see “Instance Manager Events” on page 388.

URL-encoded option for submit, version 2.4

Data submitted to a host can be URL-encoded in a consistent way. For more information see the “Template
Specification” on page 565.

Choice-list enter and exit events pair up, version 2.4

The event model for choice lists is modified to ensure enter and exit events always pair up. See “Field
Events” on page 383.

Manifests as scripting variables, version 2.4

Manifests (sets of objects for signing or other processing) can be specified via scripting variables. For more
information see the “Template Specification” on page 565.

Support for Web Services, version 2.1

XFA template now supports Web Services that implement 'doc-literal' SOAP operations over HTTP. In such
operations, the Web Service's WSDL defines SOAP binding operations with 'document' style, and SOAP
messages with 'literal' encoding. This capability has added properties to the elements xfa:datasets,
dd:dataDescription, and xfa:event.

Submission of form parts to a target URI, version 2.1

An event may include a submission property. When such an event is activated, the submission property
causes the form (all or part) to be submitted to a target URI. The submission property indicate the parts,
the packaging, the encoding, and the destination URI.

Subforms may include calculations, verison 2.1

Subforms may include calculations, which simplies declaring a calculation influenced by multiple
child-containers within a subform.

Calculations may specify override conditions, version 2.1

Calculate elements may include override the override attribute, which specifies whether the calculation
may be executed or not. If allowed to execute, the override attribute specifies whether the user is
allowed to override the calculated value.

XFA Specification
New XFA Features 1481

Scripts specify whether they should be executed on the client, server or both, version 2.1

Scripts may now specify whether they should be executed on an XFA processing application that thinks it
is a client, one that thinks it is a server, or both.

Previously, there was no such distinction.

Event for populating drop-down choice list widgets, version 2.2

Fields containing drop-down choice lists may have a new event, which is triggered when the user clicks on
the down-arrow symbol. This new event is intended to house scripts that add choices to the choice list.
The new event is especially useful when the choice list is infrequently used and its choices take a while to
load.

Document variables, version 2.1

Subforms may be defined with variables that specify various content types, such as text, external data, and
images. The variables can be used by scripts to establish the value of a container as the value of the
variable. See “Document Variables” on page 367.

Validation checks against validation-specific picture clauses, version 2.1

Validation checks a newly supplied or calculated value against the picture clause contained in the validate
element. That is, the picture clause used for validation checks is independent of the picture clause used for
formatting.

Previously, such validation was checked against the picture clause contained in the format element. The
requirement to perform such validation was indicated by the value of the validate element’s formatTest
attribute.

When reading in legacy files, if the validate element’s formatTest attribute is set to "warning" or
"error", copy the <format>/<picture> to the <validate> tag.

Event source included as an event attribute, version 2.1
The event element now includes an attribute used to indicated the source of the trigger that activates the
event. In the following template sample, the script fires in the context of field "X" when the button associ-
ated with "Y" is clicked.

<field name="X">
<event ref="Y" activity="click">

<script> … </script>
</event>

</field>

<field name="Y"/>

The default value for ref is "$", indicating the event context is the current node.

Other

See “FormCalc support for East Asian scripts in locale designators” on page 1492.

XFA Specification
New XFA Features 1482

Naming Conventions

Template traverse element nameable by operation, version 2.8

The traverse element does not take a name attribute. However starting in version 2.8 the operation
property acts as though it was (also) a name property. Hence the value of the operation property can be
used inside an ordinary SOM expression to select one from a set of sibling traverse objects. See “Explicitly
Named Objects” on page 93.

Support for tags and attribute names containing “.” and “_”, version 2.2

In earlier versions of XFA, XFA names were not allowed to include the characters “.” (period) or “_”
(underscore). This simplified parsing of SOM expressions in which “.” is a special character. However this
meant that XFA could not support data files containing element tags or attribute names containing either
“.” or “_”.

In XFA 2.2 the definition of an XFA name is relaxed so that almost any valid tag or attribute as defined in
[XML] can be used in data. The sole exception is that XFA still does not support the colon (“:”) character in
tags and attributes; although the colon character is allowed by XML, it is rarely used because it conflicts
with [XML Namespace].

Note that XFA 2.1 also requires XFA-SOM expression parsers to support an escape notation using “\”
(backslash) to escape the special meaning of “.” inside SOM expressions. In addition scripts written in
FormCalc (“FormCalc Specification” on page 1007) require special handling of references to data nodes
having names containing the “.” character. See “Using SOM Expressions in FormCalc” on page 106 for more
information.

Support for xsi:nil, version 2.1

The original XML specification [XML1.0] does not provide a way to distinguish between elements and
attributes that contain a zero-length string ("") and those which have no value at all assigned to them (null
values). This distinction is important in many applications. Later the [XML-Schema] standard introduced a
notation to represent values which are truly null. XFA 2.1 supports the representation of null values in data
using the notation defined by the XML-Schema, the xsl:nil attribute. However it is still
implementation-defined whether a particular XFA processor supports null values as distinct from
zero-length strings or not. See “Data Values Representing Null Data” on page 139 for more information
about null-value handling.

Data Mapping (Data Loading)

Examples and discussion corrected, version 3.0

The discussion of null metadata (in XML terms, missing attributes) was inconsistent with the actual XFA
data description grammar that has been in use since XFA 2.1. The examples and discussion have finally
been corrected to match the grammar. See “Data Values Representing Null Data” on page 139 and
“Unloading Null Data” on page 150. In addition minor language changes were made to clarify the Data
Description Specification, but the data description grammar has not been altered. See “Data Description
Specification” on page 943.

New grouping transform, version 2.1

A new grouping transform has been added in XFA 2.1. This transformation allows for contiguous related
data items to be grouped automatically into a hierarchical structure, as though they had been wrapped
inside an enclosing element. This added structure makes it possible to take maximum advantage of XFA’s
intelligent merging and layout. See “Extended Mapping Rules” on page 501 for more information.

XFA Specification
New XFA Features 1483

Support for references in image data, version 2.1

Image data may now include hypertext references to content. Depending on the trusted nature of the
source of such hypertext references, the image data may be loaded into the XFA Data DOM.

Specifying data attributes to use for naming nodes in the XFA Data DOM, version 2.1

The config element can specify the data attribute from which the data loader obtains the node name,
rather than using the data element name. This config attribute is useful in situations where the element
names are not meaningful. See “The nameAttr Element” on page 518.

Data Unloading

Use of data description when writing out XML, version 2.1

When loading data from XML XFA does not need to know the schema of the input XML data document.
However when unloading to XML, XFA 2.1 allows for the use of a schema to control the form of the output
XML data document. When no schema is supplied the behavior is unchanged from previous versions. The
schema, if present, is contained in an XFA Data Description as described in “Unloading Node Type
Information” on page 149. See “Data Values Representing Null Data” on page 139 for a detailed
description of the way in which the data description is applied when unloading.

Data Binding

Dynamic forms examples corrected, version 3.1

The examples throughout the chapter have been corrected. See “Dynamic Forms” on page 326.

Complex binding, version 2.4

Data binding can update properties other than value via an explicit reference to the Data DOM or to a
web service. Almost any property can be updated this way at bind time, for example a caption can be
copied from a data value. See “Bind to Properties (Step 5)” on page 210.

Conditional binding, version 2.4

Data binding to the value property of a container via an explicit data reference can be conditional upon
the value of the data. This is accomplished via an extension to the grammar for SOM expressions. See
“Selecting a Subset of Sibling Nodes” on page 101.

Dynamic forms, version 2.1

These are forms that change in structure in accordance with the data. See “Static Forms Versus Dynamic
Forms” on page 326 for detailed information.

Repeating subforms, version 2.1

In XFA 2.0, when it was desired to repeat the same subform multiple times, it was necessary to re-declare
the subform once for each instance. In XFA 2.1 a repeating subform can be declared just once along with
properties that control how many times it repeats. See “Forms with Repeated Fields or Subforms” on
page 234 for detailed information.

XFA Specification
New XFA Features 1484

Explicit data references, version 2.1

The automatic data-binding logic can now be overridden on a per-field basis. The field can be forced to
bind to an arbitrary node in the Data DOM. See “Explicit Data References” on page 199 for detailed
information.

Subform sets, version 2.1

Subforms can now be grouped under a controlling object called a subform set. The subform set declares
the logical relationship of the subforms, for example, that they are mutually exclusive. The logical
relationships supported correspond closely to the relationships supported by common schema
languages. See “Subform Set” on page 342 for detailed information.

Record processing, version 2.1

Data can now optionally be processed a record at a time. In this mode only a logical record of data is
loaded into memory at any one time. Processing in record mode limits consumption of memory and CPU
cycles. It also limits the scope of data binding to the current record in most cases. See “Creating, Updating,
and Unloading a Basic XFA Data DOM” on page 122.

Global fields, version 2.1

A field can now be declared global. A field declared this way can bind to certain data outside the current
record. Globals were not required in XFA 2.0 because it did not support record processing. See “The Bind
Element” on page 176 for detailed information.

Note that in every case XFA 2.1 data binding is backwards-compatible with XFA 2.0 templates and data.
The default behavior is always the same as the XFA 2.0 behavior.

Data description element, version 2.1

XML data documents consumed by XFA processing applications may include data description elements.
Such elements provide information used during data binding to ensure the XFA Form DOM for the data
corresponds to a desired schema.

Default data binding to include attribute data, version 2.1

XML data consumed by an XFA processing application frequently uses attributes to supply data. To
accommodate such use, the config grammar default value for the attribute property has been changed
to "preserve".

Previously the default value for the attribute property was "ignore".

Subform scope option, version 2.1

It is now possible to make a subform transparent to the data binding process without making it nameless.
Hence it can be referenced in XFA-SOM expressions even though it is a non-entity for data binding.

Layout

Control over duplex imposition

Prior to XFA 3.1, XFA processors always told the printer to impose duplexing on the long edge. Starting
with XFA 3.1 there is a duplexImposition property on the pageSet object to control which edge the
duplexing is imposed on. See “The duplexImposition property - not a page qualifier” on page 290.

XFA Specification
New XFA Features 1485

Improved examples of pagination

The pagination examples have been improved and illustrations added. See “Page selection algorithm” on
page 297 and “Combining multiple pagination strategies” on page 302.

Corrected comparison of breakBefore and breakAfter leaders and trailers, version 3.1

Prior to this release, the formal description of the leader and trailer properties of breakAfter and
breakBefore in the Template Syntax Reference was correct, but the informal comparison in “Break on
Exit” on page 358 was incorrect. In this release the comparison and its examples have been corrected.

Change in keep behavior, version 2.8

Previously layout objects that were kept together would not be placed in the current content region if they
did not fit. Now they are placed in the current content region and either clipped or allowed to run outside
the region. See “Adhesion” on page 305.

Pair kerning support, version 2.8

Kerning based purely on the two adjacent glyphs (pair kerning) is now supported. See “Selection and
Modification of the Font” on page 57.

Hyphenation support, version 2.8

Text may now be automatically hyphenated in a controlled manner. New properties added to the para
element allow the auto-hyphenation to be fine tuned. This feature may be used both with plain text and
with rich text, with boilerplate (draw objects) and with field content. See “Automatic Hyphenation” on
page 65.

XFA Foreground (XFAF), version 2.5

A new way of declaring boilerplate is defined. In traditional XFA forms the boilerplate is defined as draw
elements and laid out at run time. This applies whether the form is static or dynamic. In the new XFAF
forms the boilerplate is laid out in advance as a PDF appearance stream split up into pages. This reduces
run time overhead at the cost of fixing the appearance (but not the order) of each page. It also allows finer
control over the appearance of boilerplate text within a page because PDF supports features (such as
individual positioning of characters) that XFA does not.

It is still necessary to use draw for boilerplate when you need to add or omit sections within a page
dynamically. For this reason traditional boilerplate is still fully supported by XFA.

An XFAF form is restricted to a subset of template elements. The type of form in which each element is
used is indicated in the element description within the template syntax specification. See “How to Read an
Element Specification” on page 565.

For more information about XFAF see “The Relationship between XFA and PDF” on page 20 and “Static
versus Dynamic Forms” on page 28

Change to initial page selection, version 2.5

The algorithm for selecting the initial pageArea has been changed. The old algorithm surprised form
authors by causing a blank page to be emitted at the start of processing under some circumstances. The
new algorithm conforms better to intuition. See “Determining the start point” on page 290.

XFA Specification
New XFA Features 1486

Explicit control of printer pagination, version 2.5

Templates can control pagination on printers with greater flexibility and precision. The same template can
print optimally on both simplex (single-sided) and duplex (double-sided) printers. See “Pagination
Strategies” on page 289.

Support for right-to-left text flow, version 2.4

Locales in which text flows right to left are now supported. Any block of text may contain any mixture of
left to right and right to left flow. In addition draws can specify a locale (and therefore a default flow
direction for text). See “Flowing Text Within a Container” on page 56.

Conditional breaking, version 2.4

Layout markup can supply a scripting expression to decide at layout time whether or not a particular break
should be taken. See “Break Conditions” on page 264.

Nesting tables, version 2.4

Tables may nest to any depth. See “Tables” on page 321.

Automatically breaking layout, version 2.1

Subforms may now specify their appearance in the event their content forces them to grow across a page
boundary. This appearance may specify the inclusion of a leader subform at the top of a subform break or
the inclusion of a trailer subform at the bottom of a subform break.

Containers may describe the appearance of borders around containers that break across pages.

Dynamic layout, version 2.1

XFA supports dynamic forms. Such forms automatically adjust depending on data being entered. In a
dynamic form, the arrangement of the form is determined by the arrangement of the data. For example, if
the data contains enough entries to fill a particular subform 7 times, then the Form DOM incorporates 7
copies of the subform. Depending on the template, subforms may be omitted entirely or rearranged, or
one subform out of a set selected by the data. Dynamic forms are more difficult to design than static forms
but they do not have to be redesigned as often when the data changes. In addition dynamic forms can
provide an enhanced visual presentation to the user because unused portions of the form are omitted
rather than simply left blank.

In contrast, XFA 2.0 supports only static forms. In a static form, the template is laid out exactly as the form is
to be presented. When the template is merged with data, some fields are filled in. Any fields left unfilled
are present in the form but empty (or optionally given default data). These types of forms are
uncomplicated and easy to design.

Flowing layout strategy, version 2.1

In flowing layout, containers may be positioned from top-right to bottom-left. Additionally, flowing layout
also supports tables, as described in “Flowing layout support for tables and table-rows, version 2.1”
(below).

Previously, text layout could flow only from left to right.

XFA Specification
Chapter D, New XFA Features 1487

Flowing layout support for tables and table-rows, version 2.1

Flowing layout now supports tables, by allowing subforms to specify a layout strategy for tables. If such a
subform contains child subforms that specify a layout strategy for rows, the implied columns and rows are
kept in sync with one another.

Rendering

Support for long or short edge duplexing, version 3.1

The pageSet element has a new duplexImposition attribute to control which way pages are
duplexed. For more information see “The duplexImposition property - not a page qualifier” on page 290.
For LiveCycle ES2 this setting can be overridden from within the Configuration DOM using the
paginationOverride property.

Support for more label printers, version 3.1

The configuration syntax for LiveCycle ES has been extended to include support for more types of label
printers. In addition to printers using ZPL (Zebra Programming Language), which was already supported,
LiveCycle now supports DPL (Datamax Printer Language), IPL (Intermec Printer Language), and TCPL (Tally
Compressed Printer Language). For more information see the description of the labelPrinterelement
in the “Adobe Config for LiveCycle ES2 Reference”. This replaces the zpl element, which is now
deprecated.

Rich Text

Outbound hyperlinks, version 2.8

Rich text may now include outbound hyperlinks, that is, hyperlinks to external documents. The external
document can be of any type recognized by the host operating system. See “Rich Text That Contains
Hyperlinks” on page 216. Note that the presence of a hyperlink within a draw or caption changes the
default traversal order of the form. See “Traversal Sequences That Include Objects Ineligible for Input
Focus” on page 496.

Embedded objects, version 2.1

Rich text may now include references to text or images. Such references may be expressed using the
Scripting Object Model (for internal references) or using URI’s (for external references). Embedded objects
are resolved dynamically.

Subscript and superscript support, version 2.1

Rich text may now employ the superscript and subscript markup defined by[XHTML].

Accessibility and User Interface

Examples added and corrected, version 3.1

New examples and illustrations have been added to this chapter and existing examples corrected. See
“User Experience” on page 471.

XFA Specification
Chapter D, New XFA Features 1488

New Widget Types

Signature widget, version 2.1

There is a new type of widget defined for use in affixing a digital signature to a form.

Image entry widget, version 2.1

There is a new type of widget defined for use in picking an image for entry into a form.

Rich text option for text widget, version 2.1

The text widget can now optionally accept rich text from the user and allow editing of existing rich text.

Widget Functionality

Validation overrides, version 2.8

The user experience of validation failures is now explicitly defined. Users are now given a choice of fixing
the offending data or overriding the validation tests. See “The User Experience of Validation” on page 499.

Control over scrolling, version 2.5

New properties hScrollPolicy and vScrollPolicy have been added to various widgets to give
explicit control over horizontal and vertical scrolling when being used interactively. For more information
see “Date/Time Editing Widget” on page 479, “Numeric Edit” on page 485, and “Text Edit Widget” on
page 489.

Checkmark shapes, version 2.5

For improved compatibility with Acroforms, checkmarks in checkbuttons can take any of a specified set of
shapes. For more information see the description of the checkButton element within the “Template
Specification” on page 565.

Button highlight, version 2.5

For improved compatibility with Acroforms, buttons may specify a highlight mode. When the highlight
mode is push the button can have two captions, one that is displayed when it is depressed and another
that is displayed when it is released. For more information see the description of the button element
within the “Template Specification” on page 565.

Comb support in numeric and date edit widgets, version 2.5

Previously combs were only supported in text edit widgets. For more information see the description of
the comb element within the “Template Specification” on page 565.

Explicit control over number of cells in combs, version 2.5

A new attribute numberOfCells is provided to explicitly specify the number of character cells in the
comb. This provides an override for those situations in which the field’s maxChars property does not
necessarily equal the number of cells (for example because the text contains combining characters). For
more information see the description of the comb element within the “Template Specification” on
page 565.

XFA Specification
Chapter D, New XFA Features 1489

Widget margins, version 2.1

Any of the user interface widgets may specify a margin, which insets from the edge of the containing field.
The margin prevents the widget from being eclipsed by the field’s border, especially in the situation where
the border is wide and is even- or right-handed.

Widget borders, version 2.1

Any of the user interface widgets may specify a border.

Choice List Widgets

Multiple selections, version 2.1

Choice list widgets can now allow the user to select multiple options from the list of options.

Immediate commitment of selections, version 2.1

The default behavior of choice lists widgets is now to commit the selected data, as soon as the user makes
the selection. When data is committed, it is propagated to the XFA Data DOM. Previously, choice list
selections were submitted only when the choice-list field was exited.

Note: Templates based on XFA versions prior to 2.1 may need to be modified to retain their original
behavior. This is accomplished by adding to the choiceList element the attribute definition
commitOn="exit".

Caption Appearance

Clarification of caption reserve, version 2.5

Previous versions of this specification did not make clear the meaning of a caption reserve set to zero. This
is now clarified. For more information see the description of the caption element under the “Template
Specification” on page 565.

Captions can differ between views, version 2.4

The caption element now accepts a relevant attribute. This makes it possible for a caption to differ in
different views of the form, for example when printed versus when filled in interactively. For more
information see the “Template Specification” on page 565.

Caption margins, version 2.1

Captions may specify a margin, which insets the caption text from the edge of the containing field. The
margin prevents the widget from being eclipsed by the field’s border, especially in the situation where the
border is wide and is even- or right-handed. Also, the margin allows more refined placement of captions.

Form Navigation

Accelerator key allows keyboard sequence to bring fields into focus, version 2.2

Fields and Exclusion Groups may now have an accelerator key property (accessKey). When the character
assigned to a field’s accessibility key is selected in combination with the system’s modifier key (on
Windows, Alt), the form’s focus shifts to the indicated field.

XFA Specification
Chapter D, New XFA Features 1490

Aids for Vision-Impaired Users

Role of a container may be defined, especially for table headings and rows, version 2.1

The assist element now includes a role attribute, which can be used to declare the role any container plays.
XFA processing applications can use this property to identify the role of subforms, exclusion groups, fields,
and draws. One possible use of this new attribute is to assign it values from the HTML conventions. Such
values would declare the role of the parent container, such as role="TH" (table headings) and
role="TR" (table rows). Such role declarations may be used by speech-enabled XFA processing
applications to provide information about a particular container.

Speech order prioritized, version 2.1

The speech order for a field may be re-prioritized.

Localization and Picture Clauses

Data Localization

Updated locale code format, version 2.6

XFA defers to other standards bodies where locale codes are concerned. Unfortunately locale codes are
still evolving. The description of locale codes in the Picture Clause Specification has been updated to
reflect current practice, in particular the use of four-letter script codes. See “Locale Identifier Strings” on
page 1111.

Locale Set, an XML grammar for representing localization information, version 2.1

The Locale Set contains locale-specific data used in localization and canonicalization. Such data includes
picture clauses for representing dates, times, numbers, and currency. It also contains the localized names
of items that appear in dates, times and currencies, such as the names of months and the names of the
days of the week. It also contains mapping rules that allow picture clauses to be converted into a localized
string that can be used in UI captions and prompts.

Data Picture Transform (template and config), version 2.1

It is now possible to specify a bind picture clause for converting incoming localized data into canonical
format and outgoing data back into localized format. Such a picture clause would target a known data
format. For example, a picture clause transform could strip the currency symbol from certain incoming
data (leaving a pure number suitable for manipulation by scripts) and insert the currency symbol into the
corresponding outgoing data. See “Localization and Canonicalization” on page 152 for more information.

The config grammar may now specify a picture clause to use in localizing data. Such a picture would
override the template-provided data picture clause described in the previous paragraph. A
config-provided data picture clause may be useful in providing a picture clause specific for the data,
especially when the format may not be known at the time the XFA template is created. It is also overrides
template-provided picture clauses, in resolving canonicalization/localization when multiple XFA fields
provide conflicting bind picture clauses for the same data. See “Transforms” on page 503.

Default output format reflects locale, version 2.2

The date/time/number fields that omit a format picture clause are displayed in a locale-sensitive manner.
Previously, such un-pictured field values were displayed in canonical format.

XFA Specification
Chapter D, New XFA Features 1491

This change does not alter the behavior for data-binding or other data transfer specification. That is, a bind
element that does not enclose a picture element still consumes and produces data in a canonical format
only. And placing a picture element within a bind will result in the data being formatted and parsed based
on the locale. See “Rule 4, Output Formatting When Output Picture Clause Omitted” on page 165.

Picture Clause Expressions

Full-width character support re-documented, version 3.1

Due to an editing error, documentation of full-width character support for Asian locales was inadvertently
deleted from some earlier versions of the specification. It has been restored to the text. There are no
changes.

Compound picture clause description corrected, version 2.6

The description of compound picture clauses was garbled. There is only one data value to process, no
matter how many picture clauses are compounded. For a corrected description see “Compound Picture
Clauses” on page 1114.

Uppercase versus lowercase picture symbols, version 2.5

The specification was unclear about the differences between the Z and z picture symbols and between the
Z (U+FF3A) and z (U+FF5A) picture symbols. A new section has been added to clarify the differences. See
“Uppercase Picture Symbols versus Lowercase Picture Symbols” on page 1137.

Generic pre-defined picture clauses, version 2.4

Picture clause syntax is extended to allow templates to invoke a predefined picture format (such as
date.short) which adapts to the particular locale automatically. These picture clauses are defined in the
Locale Set and can be altered by the form creator. See “Predefined Picture Clauses” on page 1113.

New picture symbol "8", version 2.4

Anew numeric picture symbol is defined for pictures that always retain the supplied precision of the data.
See “” on page 1143.

Picture clause symbols for zero and null values, version 2.2

Picture clauses now include picture clause symbols that can format/parse null data and zero data. These
new symbols are identified with category designators that identify them as applying to null data or zero
data. See “Null-Category Picture Clauses” on page 1142 and “Zero-Category Picture Clauses” on
page 1142.

Retention of precision in decimal numbers parsed, version 2.2

When a decimal number is input parsed as the value of field that lacks a UI picture element, the XFA
processing application retains the specified number of digits to the right of the decimal point. The field
properties may specify an upper limit of fractional digits to retain or may specify the number of fractional
digits as being data-driven.

This change and the change “Number picture clause symbol for fractional digits, version 2.2” (below) allow
XFA processing applications to retain and format significant fractional digits entered for decimal numbers.

XFA Specification
Chapter D, New XFA Features 1492

Number picture clause symbol for fractional digits, version 2.2

A new number picture clause symbol has been added that specifies the number of significant digits to the
right of the decimal radix (decimal point). If the fractional digit that corresponds with the symbol is
present in the data, it is included in the number. If it is not, it is represented as a space.

This change and the change “Retention of precision in decimal numbers parsed, version 2.2” on page 1491
allow XFA processing applications to retain and format significant fractional digits entered for decimal
numbers.

Compound picture clauses, version 2.1

Picture clauses may now include multiple parts, with each part calling out a specific locale or a specific
category of data. Such a compound picture clause is similar to a C-language union data type.

Symbols used for whitespace characters, version 2.1

Picture clauses may include the asterisk (*) or plus sign (+). For input parsing, these symbols indicate,
respectively, zero or more whitespace characters or one or more whitespace characters. For output
parsing, these symbols indicate a single space.

Support for Asian-Language Representations, version 2.1

The date, time, and number picture clauses now support for Asian-language representations. In particular,
they allow specification of the formats described below.

Imperial era years

Date picture clauses can specify that years be expressed relative to imperial era years. Additionally, date
picture clauses can specify a particular style of imperial era. Imperial eras assign a starting point for
counting years. They are equivalent to the Gregorian calendar’s implied assignment of AD to a year.

● Full-width numeric values. All time, date, and number data formats can be specified as full-width
characters. In text that combines Latin numbers and Asian-language ideographs, full-width numbers
provide a consistent size and a squared shape that is more consistent with Asian-language ideographs.

Ideographs

All time and date information may be expressed using ideographs. The particular script (ideograph
system) used may be the default for the prevailing locale or may be explicitly declared in the prevailing
locale.

Tens rule

All ideographic numeric values may be expressed using the Arabic numeral system or the tens rule
numeral system. A numeral system is a method for using numerals to represent numbers.

Support for East Asian scripts in locale designators

The locale designator used in the picture clauses can now specify a script. A script is an entire set of
characters or ideographs, such as Korean Hangul or Latin.

FormCalc support for East Asian scripts in locale designators

FormCalc now supports East Asian scripts in locale designators used in picture clauses. Picture clauses are
used in the

XFA Specification
Chapter D, New XFA Features 1493

A script is an entire set of characters or ideographs, such as Korean Hangul or Latin. This change is
consistent with corresponding changes in “Localization and Picture Clauses” and “New XFA Features”.

Note: XFA template values for the locale attribute is limited to language and country code designators,
such as fr_FR (French specific for France) and zh (Chinese).

Scripting

Scripting Object Model (SOM)

Value tests in SOM expressions, version 2.4

The SOM expression syntax is extended to allow selection of a subset of nodes by applying a Boolean
expression to each. See “Selecting a Subset of Sibling Nodes” on page 101.

Referencing objects by their class names, version 2.1

Objects may now be referenced by their class names, as described in “Reference by Class” on page 96.

Previously, an object could be referenced only by its name. This limitation presented a problem for
un-named objects.

Document variables used as named script objects, version 2.2

Scripts may now reference properties and methods declared in a named script object. Such a named script
object is declared in a variables element. See “SOM Expressions That Reference Variables Properties” on
page 121.

FormCalc

New functions to access locale, version 2.1

FormCalc now provides several functions that support locale. In particular, it allows conversion of
canonical localizable data, such as currency, date, and time, from/to localized presentations of such data. It
also allows access to the prevailing locale for any form data, where prevailing data is obtained from the
template, from the host system, or from the default locale for XFA processing applications.

FormCalc support for East Asian scripts in locale designators

This feature is described above in “FormCalc support for East Asian scripts in locale designators” on
page 1492.

JavaScript

Change "ECMAScript" to "JavaScript", version 2.6

Most references to ECMAScript in this specification have been changed to JavaScript in deference to ISO
terminology and to the PDF reference [PDF]. In practice this makes no difference because this specification
has never required any support for JavaScript/ECMAScript, much less compliance with a particular version
of the ECMA or ISO standard. A few references to ECMAScript remain where the context requires it.

XFA Specification
Chapter D, Modified XFA Features 1494

Security and Control

MDP+ document signatures, version 2.5

The grammar for XML digitial signatures is extended to support MDP+ document signatures. For more
information see “Signed Forms and Signed Submissions” on page 545.

XML digital signatures, version 2.2

XFA now supports XML digital signatures, using the mechanism described by W3C for an XML Digital
Signature [XMLDSIG-CORE]. This support includes new event properties that describe actions for creating,
clearing, and validating signatures. It also includes metadata additions to the Signature object described
[XMLDSIG-CORE]. These additions are used in signature validation. See “Signed Forms and Signed
Submissions” on page 545.

Uniquely identifying templates, version 2.2

XDP and PDF specify properties for uniquely identifying a template and for time-stamping the template
whenever it is changed. In addition, XFA designing applications and XFA processing applications are
required to retain/propogate the the template identifier and to update the time stamp when applicable.

Modified XFA Features
See “Validation checks against validation-specific picture clauses, version 2.1” on page 1481.

See “Immediate commitment of selections, version 2.1” on page 1489.

See “Default data binding to include attribute data, version 2.1” on page 1484.

Deprecated XFA Features

Config Syntax

ZPL element deprecated, version 3.1

The zpl element in the LiveCycle ES configuration syntax has been deprecated. For new designs use the
labelPrinter element instead. For more information see the description of the labelPrinter
element in the “Adobe Config for LiveCycle ES2 Reference”.

Template Syntax

Deprecated defaultUI element, version 3.1

The functionality of the defaultUi element has been usurped by other XFA grammar. For a data-driven
forms use a dynamic subform. For a form that varies between contexts use the relevant property. For a
custom GUI place an extras child directly into the ui element.

Refactored break element, version 2.4

The syntax of the break element was confusing, largely because it was overloaded with too many
functions. It has been replaced with a set of simpler single-purpose elements. The break element is still
legal in XFA 2.4 but is deprecated and slated for removal in a future version.

XFA Specification
Chapter D, Deprecated XFA Features 1495

Deprecated hAlign and vAlign attributes on container elements, version 2.4

The hAlign and vAlign attributes on container elements (subform, field, draw and exclGroup) are
redundant. The same-named attributes on the para element, which is a property of each of the container
elements, should be used instead. The redundant attributes on the container elements are deprecated in
XFA 2.4 and slated for removal in a future version.

Note: These attributes were never implemented in Acrobat.

Deprecated stateless attribute on the script element, version 2.4

The stateless attribute on the script element is not practical. It intrudes too deeply into the
architecture of the scripting languages. This attribute is deprecated in XFA 2.4 and slated for removal in a
future version.

Note: This attribute was never implemented in Acrobat.

Deprecated transient attribute on the exclGroup element, version 2.4

The transient attribute on the exclGroup element has no real effect. An exclGroup is always
effectively transient because it is data-driven. This attribute is deprecated in XFA 2.4 and slated for removal
in a future version.

 1496

E Schemas

About the Schemas
The XFA schemas are written in the language RELAX: Next Generation (RNG) which is described in
[RELAX-NG]. XFA schemas are written in this language rather than the more usual XML-Schema 1.0
[XMLSchema] because XFA allows free ordering in situations where XML-Schema cannot support it. This
free ordering allows differently-named children of an element to appear in any order without changing
the meaning. In RNG this is signified by the interleave directive. For example, in RNG one can say:

<element name="a">
<interleave>

<element name="x"/>
<element name="y"/>
<element name="z"/>

</interleave>
</ref>

This declares that the element a has three child elements x, y, and z which may appear in any order. There
are six possible permutations for the child elements: xyz, xzy, yxz, yzx, zxy, and zyx . This could be declared
in XML-Schema but it would have to be declared as six alternative sequences of child elements.
Unfortunately the number of permutations goes up as the factorial of the number of distinct child
elements and XFA has elements with dozens of distinct children. Hence it is not practical to represent XFA
in XML-Schema while preserving the free ordering.

XFA Profiles

Starting with XFA 2.5 there is a facility to specify that a form uses a subset of the full XFA capability. This is
indicated in the template element by a non-default value for the baseProfile attribute. Currently the
only specified value is interactiveForms, which corresponds to the XFAF subset.

When the template element specifies a profile, the contents of the template must be restricted to the set
of elements and attributes allowed by that profile. For the restrictions of the XFAF profile see “Grammar
Excluded from XFAF” on page 267.

Caution: The XFA Schema attached to this Appendix is defined for the full XFA grammar. It will not detect
the presence of elements or attributes that are not appropriate for the profile specified by the
form.

XFA Specification
Chapter E, Schemas About the Schemas 1497

Extracting the Schemas
The schemas are included as file attachments in the PDF form of this document. If you are viewing a hard
copy, obtain the PDF file from the Adobe website at http://adobe.com/go/xfa_specifications.

Each schema file is denoted by an attachment symbol in the rightmost column of the table below. To
extract a schema using Acrobat, right-click on the attachment symbol and select "Save embedded file to
disc..." from the context menu. Be sure to extract all of the files into the same directory. Also, for each file
use the supplied filename. This is necessary because the XDP schema (xdp.rng) incorporates all of the
other schemas in the set by reference using their filenames.

Note: These schemas validate XFA 3.1 grammars only. They ignore packets generated for other versions of
XFA which use different namespaces. Some namespaces stay the same from one version of XFA to
the next, while others change. The template grammar in particular always changes from one
version of the specification to the next, hence the template packet namespace always changes.

Using the Schemas to Validate an XFA Document

The validator usually used for RNG is Jing. Jing is written in java. You can download Jing from the location
given in the bibliography as [JING]. To validate an XDP file, start Jing on the command line with the
command

java -jar jing.jar xdp.rng myfile.xdp

Note: The XDP schema allows it to contain arbitray custom packets as child elements. The validation
accepts any and all such packets. However if a packet matches one of the types declared in any of
the schemas then the content of that packet is validated against that schema.

File Description Attachment

config.rng configuration

connectionset.rng connections to web services

data.rng user data portion of the dataSets packet

dataDescription.rng data description portion of the dataSets
packet

localeset.rng locale definitions

pdf.rng accompanying PDF

sourceset.rng connections to databases

stylesheet.rng XSLT stylesheet(s) for custom
transformation of data and/or the template

template.rng template

xdp.rng container for everything else

xfdf.rng annotations

xmldsig-core-schema.rng signing control

http://adobe.com/go/xfa_specifications

	
		
		

			
			
				
			
		
	

	
	

		
		
			

			
				
				
					
					
						
					
					
					
					

					
					

				
			
		

	

Adobe Systems Inc., iComm
File Attachment
config.rng

		
		

			

		

		

		
		

			

		

		
		
		

			

		

		
		
		

			

		

		
	

Adobe Systems Inc., iComm
File Attachment
connectionset.rng

	
		
		

			
			
				
					
						 dataValue
						 dataGroup
											
				
			
			
			
			
				
			
		
	

	
	

		
		
			

			
			
				
					
						 dataValue
						 dataGroup
											
				
			

			
				
				
					
					
						
							
								
							
						
					
					
					
					

					
					

				
			
		

	

Adobe Systems Inc., iComm
File Attachment
data.rng

	
		
		
			
				
			
			
		
	

	
		
	
		 		
			 ([0-9]+)?
		
	

	
	
		
			
			
		
	
	
	

		
		

			
				
					
				
			

			
				
					
				
			

			
				
					
						 choice
						 ordered
						 unordered
					
				
			

			
				
							
		
	
	
	
	
		
		
			
				
					
				
			

			
			
				
					
				
			

			
				
					
						
						 -1
					
				
			

			
				
					
						 choice
						 ordered
						 unordered
					
				
			

			
				
					
						 empty
						 exclude
						 xsi
											
				
			
			
			
				
					
				
			
			
			
				
				
					
					
						
							
								
							
						
					
					
					
					

					
					

				
			
		
	

Adobe Systems Inc., iComm
File Attachment
dataDescription.rng

	

		
			
				
					
						
							
							
						
					
					
					
						
							
						
					
					
					
						
						
						
						
						
						
						
					
				
			
		
	

	
		

			
			
				
					 gregorian
				
			
		
			
				
					
					
						
					
				
				
					
					
						
					
				
				
				
			
		
	

	
	
		
		
			
				
					
						 1
						 0
					
				
			
			
			
			
		
	

	 				

		
		
			
				
			
			
				
					
				
				
					
						
					
					
						
							
						
						
							
								
							
							
								
									
								
								
									
										
									
									
										
											
										
										
											
												
											
											
												
													
												
												
													
														
													
													
														
															
														
													
												
											
										
									
								
							
						
					
				
			
		
	
	
	
	
		
			
				
					
						 0
						 1
					
				
			
		
			
			
		
	

	

		
		
			
				
			
			
				
					
				
				
					
						
					
					
						
							
						
						
							
								
							
							
								
									
								
								
									
										
									
								
							
						
					
				
			
		
	

	
		
			
			
				
					
				
				
					
						
					
				
			
		
	

	
		
			
			
				
					
				
				
					
						
					
				
			
		
	

	
		
		
			
			
			
				
				
					
					
						
					
				
			
			
		
	

	
		
		
			
				
					
						 full
						 long
						 med
						 short
					
				
			
			
			
		
	

	
		
		
			
			
			
				
				
					
					
						
					
				
			
			
		
	

	
		
		
			
				
					
						 full
						 long
						 med
						 short
					
				
			
			
			
		
	

	
		
		
			
			
			
				
				
					
				
			
			
		
	

	
		
		
			
				
					
						 numeric
						 currency
						 percent
					
				
			
			
			
		
	

	
		
			
		
	
	
	
		

			
			
			
				
				
					
					
						
						
							
						
					
				
			
		
		
	

	
		
		
			
				
					
						 decimal
						 grouping
						 percent
						 minus
						 zero
					
				
			
			
			
		
	
	
	
		
		
			
			
			
				
				
					
				
			
		
		
	

	
		
		
			
				
					
						 symbol
						 isoname
						 decimal
					
				
			
			
			
		
	

Adobe Systems Inc., iComm
File Attachment
localeset.rng

	
	
		
			 ([0-9]+)?
		
	

	

		
		
			
			

				
					
				

				

					
						
							 chunked
						
					

					

						

							
								
									
								
							

							
								
									
								
							

							
								
									 base64
								
							

						

					

				

			

		

	

Adobe Systems Inc., iComm
File Attachment
pdf.rng

		
		

			

		

		

		
		

			

				
 0
				
 1
				
 	
			

		

		
		

			

				
 ((\-)?[0-9]+)?
			

		

		
		

			

		

		
		
	

 base64
 none
 package

 storedProc
 table
 text
 unknown

 moveFirst
 stayBOF

 client
 server

 dynamic
 forwardOnly
 keyset
 static
 unspecified

 addNew
 moveLast
 stayEOF

 batchOptimistic
 optimistic
 pessimistic
 readOnly
 unspecified

Adobe Systems Inc., iComm
File Attachment
sourceset.rng

	

 1.0

	
		
		
			
		
		
		
			
			
		
		
	

 version

	
	 version
	
	

	
		
		
		
	

 extension-element-prefixes

	

 exclude-result-prefixes

	

 use-attribute-sets

	
	
	

	

	

	

	

	

	
	
	
	

 yes
 no

 yes
 no

 single
 multiple
 any

	
		 alphabetic
		 traditional
		
	

	
		 text
		 number
		
		
	

	
		 ascending
		 descending
		
	

	
		 upper-first
		 lower-first
		
	

 yes
 no

 xml
 html
 text

 yes
 no

 yes
 no

 yes
 no

 #default

	
	 #default

	
	
	
		 |\i\c:*
	
	

 1

 .*:.*

 ([^\{\}]|\{\{|\}\})*\{([^"'\{\}]|"[^"]*"|'[^']*')+\}([^\{\}]|\{\{|\}\}|\{([^"'\{\}]|"[^"]*"|'[^']*')+\})*

 [^\{\}]*(\{\{|\}\}|\{([^"'\{\}]|"[^"]*"|'[^']*')+\})([^\{\}]|\{\{|\}\}|\{([^"'\{\}]|"[^"]*"|'[^']*')+\})*

 ([^\{\}]|\{\{|\}\}|\{([^"'\{\}]|"[^"]*"|'[^']*')+\})*

Adobe Systems Inc., iComm
File Attachment
stylesheet.rng

		
		

			

		

		
		

			
			

		

		
		

			

				

			

		

		
		

			

				

				

					

						

							

						

						

						

					

				

			

		

		
		

			

				
 0
				
 1
				
 	
			

		

		
		
		

			

				
 ((\s)?(([0-9]+)|([0-9]+\-[0-9]+)):[0-9]+(in|cm|mm|pt))*
			

		

		
		

			

				
				
 (([0-9]{1,2}|[1][0-9]{2}|[2][0-4][0-9]|[2][5][0-5]),){2}([0-9]{1,2}|[1][0-9]{2}|[2][0-4][0-9]|[2][5][0-5])
			

		

		
		
		

			

				
 ([0-9]{4}((\-)?[0-9]{2}((\-)?[0-9]{2})?)?)?
			

		

		
		

			

				
 ([0-9]{4}((\-)?[0-9]{2}((\-)?[0-9]{2})?)?)?(T)?([0-9]{2}((:)?[0-9]{2}((:)?[0-9]{2}(\.[0-9]{4})?(Z|([\+\-][0-9]{2}((:)?[0-9]{2})?))?)?)?)?
			

		

		
		
		

			
			

				
 ((\-)?[0-9]*(\.([0-9]*))?)?
			

		

		
		

			

				
 SHA1
				
 SHA256
				
 SHA512
				
 RIPEMD160
				
			

		

		
		
		

			

				

				

			

		

		
		
		

			
			

				
 ((\-)?[0-9]+)?
			

		

		
		

			

				
 ((\-){0,1}(0|([0-9]*(.[0-9]*){0,1}(in|cm|mm|pt))))
			

		

		
		
		

			

				
 1
			

		

		
		

			

		

		
		
		

			

				
 ([0-9]{2}((:)?[0-9]{2}((:)?[0-9]{2}(\.[0-9]{4})?(Z|([\+\-][0-9]{2}((:)?[0-9]{2})?))?)?)?)?
			

		

		
	

 optional
 required

 0
 1

 even
 left
 right

 1mod10
 1mod10_1mod11
 2mod10
 auto
 none

 flateCompress
 none

 0
 1

 above
 aboveEmbedded
 below
 belowEmbedded
 none

 0
 1

 internationalCarrier
 secureSymbol
 standardSymbol
 usCarrier

 dataRef
 global
 none
 once

 close
 open

 even
 left
 right

 hidden
 inactive
 invisible
 visible

 auto
 contentArea
 pageArea
 pageEven
 pageOdd

 auto
 contentArea
 pageArea
 pageEven
 pageOdd

 0
 1

 0
 1

 auto
 contentArea
 pageArea
 pageEven
 pageOdd

 0
 1

 auto
 contentArea
 pageArea
 pageEven
 pageOdd

 inverted
 none
 outline
 push

 disabled
 error
 ignore
 warning

 bottom
 inline
 left
 right
 top

 hidden
 inactive
 invisible
 visible

 optional
 required

 check
 circle
 cross
 default
 diamond
 square
 star

 round
 square

 exit
 select

 always
 multiSelect
 onEntry
 userControl

 0
 1

 exportAndImport
 exportOnly
 importOnly

 0
 1

 round
 square

 hidden
 inactive
 invisible
 visible

 dashDot
 dashDotDot
 dashed
 dotted
 embossed
 etched
 lowered
 raised
 solid

 auto
 off
 on

 host
 none

 optional
 required

 bottomCenter
 bottomLeft
 bottomRight
 middleCenter
 middleLeft
 middleRight
 topCenter
 topLeft
 topRight

 hidden
 inactive
 invisible
 visible

 butt
 round
 square

 hidden
 inactive
 invisible
 visible

 dashDot
 dashDotDot
 dashed
 dotted
 embossed
 etched
 lowered
 raised
 solid

 optional
 required

 change
 click
 docClose
 docReady
 enter
 exit
 full
 indexChange
 initialize
 mouseDown
 mouseEnter
 mouseExit
 mouseUp
 postExecute
 postOpen
 postPrint
 postSave
 postSign
 postSubmit
 preExecute
 preOpen
 prePrint
 preSave
 preSign
 preSubmit
 ready
 validationState

 refAndDescendents
 refOnly

 nonInteractive
 open
 protected
 readOnly

 bottomCenter
 bottomLeft
 bottomRight
 middleCenter
 middleLeft
 middleRight
 topCenter
 topLeft
 topRight

 lr-tb
 position
 rl-tb
 row
 table
 tb

 hidden
 inactive
 invisible
 visible

 base64
 none
 package

 import
 remerge

 both
 client
 server

 nonInteractive
 open
 protected
 readOnly

 bottomCenter
 bottomLeft
 bottomRight
 middleCenter
 middleLeft
 middleRight
 topCenter
 topLeft
 topRight

 hidden
 inactive
 invisible
 visible

 hidden
 inactive
 invisible
 visible

 none
 pair

 0
 1
 2

 all
 word

 0
 1
 2

 all
 word

 italic
 normal

 0
 1
 2

 all
 word

 bold
 normal

 optional
 required

 0
 1

 0
 1

 0
 1

 actual
 fit
 height
 none
 width

 base64
 none
 package

 embed
 link

 optional
 required

 hidden
 inactive
 invisible
 visible

 0
 1

 contentArea
 none
 pageArea

 contentArea
 none
 pageArea

 contentArea
 none
 pageArea

 optional
 required

 even
 left
 right

 /
 \

 toBottom
 toLeft
 toRight
 toTop

 optional
 required

 all
 exclude
 include

 1
 2
 3

 author
 filler

 landscape
 portrait

 auto
 delegate
 pageFront

 auto
 delegate

 auto
 off
 on

 optional
 required

 any
 blank
 notBlank

 any
 even
 odd

 any
 first
 last
 only
 rest

 duplexPaginated
 orderedOccurrence
 simplexPaginated

 center
 justify
 justifyAll
 left
 radix
 right

 bottom
 middle
 top

 auto
 off
 on

 crossDiagonal
 crossHatch
 diagonalLeft
 diagonalRight
 horizontal
 vertical

 toCenter
 toEdge

 optional
 required

 even
 left
 right

 both
 client
 server

 PDF1.3
 PDF1.6

 clear
 sign
 verify

 optional
 required

 0
 1

 caption
 custom
 name
 toolTip

 nonInteractive
 open
 protected
 readOnly

 0
 1

 bottomCenter
 bottomLeft
 bottomRight
 middleCenter
 middleLeft
 middleRight
 topCenter
 topLeft
 topRight

 lr-tb
 position
 rl-tb
 row
 table
 tb

 hidden
 inactive
 invisible
 visible

 auto
 manual

 name
 none

 choice
 ordered
 unordered

 optional
 required

 0
 1

 formdata
 pdf
 urlencoded
 xdp
 xfd
 xml

 full
 interactiveForms

 0
 1

 auto
 off
 on

 0
 1

 auto
 off
 on

 optional
 required

 back
 down
 first
 left
 next
 right
 up

 disabled
 error
 warning

 disabled
 error
 warning

 disabled
 error
 warning

 0
 1

		
	

Adobe Systems Inc., iComm
File Attachment
template.rng

	
		
			
				
					
				
			
			
				
					
				
			
			
				
				
					
				
	
				
				
					
				
				
				
				
					
				
				
				
				
					
				
				
				
				
					
				
				
				
				
					
				
				
				
				
					
						
						
							
						
					
				
				
				
				
					
				

				
				
					
				
				
				
				
					
				
				
				
				
					
						
							
						
					
				

			
		
	

	
	
		
			 ([0-9]{4}((\-)?[0-9]{2}((\-)?[0-9]{2})?)?)?(T)?([0-9]{2}((:)?[0-9]{2}((:)?[0-9]{2}(\.[0-9]{4})?(Z|([\+\-][0-9]{2}((:)?[0-9]{2})?))?)?)?)?
		
	

	
	
		
			
			
				
				
					
				
				
				
				
					
				
	
				
				
					
						
					
				
			
		
	
	
	
	
		
			
				
					 data
					 dataDescription
					
					
				
			
			
				
					
						
					
					
					
				
			
		
	

	
	
		
			
				
					 datasets
					 template
					 connectionSet
					 pdf
					 config
					 sourceSet
					 stylesheet
					 Signature
					 xfdf
					 localeSet
					
					
					
					
					
					
					
					
					
					
				
			
			
				
					
						
					
					
					
				
			
		
	

	
	
		
			
			
				
					
						
					
					
					
				
			
		
	

Adobe Systems Inc., iComm
File Attachment
xdp.rng

 space

 preserve
 default

 Review
 Marked

 Rejected
 Completed
 None
 Accepted
 Marked
 Unmarked
 Cancelled

 Key
 Check
 Comment
 Insert
 NewParagraph
 Help
 Star
 UpArrow
 RightArrow
 Paragraph
 RightPointer
 Note
 UpLeftArrow
 Circle
 Cross

 none
 paragraph

 right
 centered
 left

 D:\d{4,4}((0[1-9]|1[0-2])((0[1-9]|[1-2]\d|3[0-1])(([0-1]\d|2[0-3])(([0-5]\d)(([0-5]\d)(Z|([\+\-]([0-1]\d'|2[0-3]')([0-5]\d')?)?)?)?)?)?)?)?

 D:\d{4,4}((0[1-9]|1[0-2])((0[1-9]|[1-2]\d|3[0-1])(([0-1]\d|2[0-3])(([0-5]\d)(([0-5]\d)(Z|([\+\-]([0-1]\d'|2[0-3]')([0-5]\d')?)?)?)?)?)?)?)?

 Paperclip
 PushPin
 Graph
 Tag

 raw
 filtered

 ascii
 hex

 (ASCIIHexDecode,|ASCII85Decode,|LZWDecode,|FlateDecode,|RunLengthDecode,|CCITTFaxDecode,|JBIG2Decode,|DCTDecode,|JPXDecode,|Crypt)*(ASCIIHexDecode|ASCII85Decode|LZWDecode|FlateDecode|RunLengthDecode|CCITTFaxDecode|JBIG2Decode|DCTDecode|JPXDecode|Crypt)

 #[A-Fa-f0-9]{6,6}

 ClosedArrow
 Butt
 Diamond
 RClosedArrow
 None
 ROpenArrow
 Circle
 OpenArrow
 Square

 ClosedArrow
 Butt
 Diamond
 RClosedArrow
 None
 ROpenArrow
 Circle
 OpenArrow
 Square

 #[A-Fa-f0-9]{6,6}

 #[A-Fa-f0-9]{6,6}

 #[A-Fa-f0-9]{6,6}

 ClosedArrow
 Butt
 Diamond
 RClosedArrow
 None
 ROpenArrow
 Circle
 OpenArrow
 Square

 ClosedArrow
 Butt
 Diamond
 RClosedArrow
 None
 ROpenArrow
 Circle
 OpenArrow
 Square

 #[A-Fa-f0-9]{6,6}

 signed
 mulaw
 alaw
 raw

 Speaker
 Ear
 Mic

 SBNotApproved
 SBInformationOnly
 SBNotForPublicRelease
 SBRejected
 SBConfidential
 SBPreliminaryResults
 SHSignHere
 SHWitness
 SHAccepted
 SBFinal
 SBForComment
 SBApproved
 SBVoid
 SBDraft
 SBForPublicRelease
 SBCompleted
 SHInitialHere

 NotForPublicRelease
 Expired
 Final
 TopSecret
 ForPublicRelease
 Approved
 ForComment
 Departmental
 Sold
 Draft
 AsIs
 Experimental
 Confidential
 NotApproved

 no
 yes

 (invisible,|hidden,|print,|nozoom,|norotate,|noview,|readonly,|locked,|togglenoview,)*(invisible|hidden|print|nozoom|norotate|noview|readonly|locked|togglenoview)

 D:\d{4,4}((0[1-9]|1[0-2])((0[1-9]|[1-2]\d|3[0-1])(([0-1]\d|2[0-3])(([0-5]\d)(([0-5]\d)(Z|([\+\-]([0-1]\d'|2[0-3]')([0-5]\d')?)?)?)?)?)?)?)?

 #[A-Fa-f0-9]{6,6}

 D:\d{4,4}((0[1-9]|1[0-2])((0[1-9]|[1-2]\d|3[0-1])(([0-1]\d|2[0-3])(([0-5]\d)(([0-5]\d)(Z|([\+\-]([0-1]\d'|2[0-3]')([0-5]\d')?)?)?)?)?)?)?)?

 raw
 filtered

 ascii
 hex

 (ASCIIHexDecode,|ASCII85Decode,|LZWDecode,|FlateDecode,|RunLengthDecode,|CCITTFaxDecode,|JBIG2Decode,|DCTDecode,|JPXDecode,|Crypt)*(ASCIIHexDecode|ASCII85Decode|LZWDecode|FlateDecode|RunLengthDecode|CCITTFaxDecode|JBIG2Decode|DCTDecode|JPXDecode|Crypt)

 inset
 bevelled
 underline
 dash
 solid

 inset
 bevelled
 underline
 dash
 solid
 cloudy

 [^.]+

Adobe Systems Inc., iComm
File Attachment
xfdf.rng

Adobe Systems Inc., iComm
File Attachment
xmldsig-core-schema.rng

XFA Specification
Chapter E, Schemas About the Schemas 1498

Using the Schemas to Generate an XFA Document

RNG is not a generative grammar. The interleave operator does not determine an order for the
elements it governs. By contrast XML-Schema is deliberately more restrictive than RNG so that it can be
used to generate new documents. There is a program for creating a schema in XML-Schema format
automatically from the RNG schema, however in order to accomplish this the program "freezes" the
document order of the RNG schema into the order of child elements in the XML-Schema schema. Hence
the XML-Schema schema is a subset of the RNG schema, with all content included but most orderings
excluded.

Caution: This XML-Schema schema should only be used for generating XFA documents, never for
validating them.

The program for generating an XML-Schema schema from an RNG schema is called Trang and it is available
for download at the location given in the bibliography as [TRANG]. For information about running Trang
see the manual that accompanies the program.

The XML-Schema grammar is defined in [XMLSchema].

 1499

Bibliography

The references in this section are grouped in the categories: “General References”, “Fonts and Character
Encoding References”, and “Barcode References”.

General References
[Acrobat-Security]

Document Security User Guide for Adobe Acrobat and Adobe Reader Version 9. Adobe Systems, Inc.
At press time this has not yet been released. When released it will be available, along with related
documents, at http://www.adobe.com/go/acrobat_security.

[ADO]

ADO API Reference. Microsoft.
At press time the most current version, 2.8, is available at
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/ado270/htm/mdmscadoapirefe
rence.asp

[Adobe-Patent-Notice]

Adobe Patent Clarification Notice.
At press time there are two relevant Patent Clarification Notices, one for PDF and one for XDP, and
they are available at
http://partners.adobe.com/public/developer/support/topic_legal_notices.html.

[BMP]

Microsoft has never released a specification for the Windows BMP format, however according to
http://blogs.msdn.com/andypennell/archive/2005/07/20/441117.aspx the information is
available in publicly available source code within the headers BITMAPFILEHEADER,
BITMAPINFOHEADER, BITMAPV4HEADER and BITMAPV5HEADER.

[CSS2]

Cascading Style Sheets, level 2 (CSS2) Specification. B. Bos, H. W. Lie, C. Lilley, I. Jacobs, 12 May 1998.
Available at http://www.w3.org/TR/REC-CSS2

[ElectronicSecurity]

A primer on electronic document security, Adobe Systems Incorporated.
Available at http://www.adobe.com/devnet/livecycle/policyserver/articles/security_wp_ue.pdf.

[ECMAScript357]

ECMAScript for XML (E4X) Specification. ECMA International, 2005.
Available at http://www.ecma-international.org/publications/files/ecma-st/Ecma-357.pdf.

[EPS]

Encapsulated PostScript File Format Specification. Version 3.0. Adobe Systems Inc., May 1992.
Available at http://partners.adobe.com/public/developer/en/ps/5002.EPSF_Spec.pdf.

http://partners.adobe.com/public/developer/support/topic_legal_notices.html
http://www.adobe.com/devnet/livecycle/policyserver/articles/security_wp_ue.pdf
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/ado270/htm/mdmscadoapireference.asp
http://www.adobe.com/go/acrobat_security
http://www.adobe.com/go/acrobat_security
http://www.adobe.com/go/acrobat_security
http://www.ecma-international.org/publications/files/ecma-st/Ecma-357.pdf
http://www.w3.org/TR/REC-CSS2
http://blogs.msdn.com/andypennell/archive/2005/07/20/441117.aspx
http://partners.adobe.com/public/developer/en/ps/5002.EPSF_Spec.pdf

XFA Specification
Chapter , Bibliography General References 1500

[EXCLUSIVE-XML-CANONICALIZATION]

Exclusive XML Canonicalization. World Wide Web Consortium, 2002.
Available at http://www.w3.org/TR/xml-exc-c14n/.

[GIF]

GRAPHICS INTERCHANGE FORMAT(sm), Version 89a. CompuServe Incorporated, 1990.
Available at http://www.w3.org/Graphics/GIF/spec-gif89a.txt.

[HTTP]

Hypertext Transfer Protocol -- HTTP/1.1. World Wide Web Consortium.
Available at http://www.w3.org/Protocols/rfc2616/rfc2616-sec9.html#sec9.5

[IANA]

Character Sets. Internet Assigned Number Authority.
Available at http://www.iana.org/assignments/character-sets.

[IEEE754]

IEEE 754: Standard for Binary Floating-Point Arithmetic. This standard may be purchase through
http://grouper.ieee.org/groups/754.

[ISO-639-1]

Codes for the representation of names of languages -- Part 1: Alpha-2 code. International
Organization for Standardization.
Available for purchase at http://www.iso.org/

[ISO-3166-1]

Country Codes. International Organization for Standardization.
Available for purchase at http://www.iso.org/

[ISO-4217]

Codes for the representation of currencies and funds. International Organization for Standardization.
Available for purchase at http://www.iso.org/

[ISO-8601]

Data elements and interchange formats — Information interchange — Representation of dates and
times. International Organization for Standardization (ISO), 2000.
Available for purchase at http://www.iso.org/.

[ISO-15924]

ISO 15924:2004 Information and documentation -- Codes for the representation of names of scripts.
International Organization for Standardization (ISO), 2004.
Available for purchase at http://www.iso.org/.

[ISO-19005-1]

ISO 19005-1 Document Management - Electronic document file format for long-term preservation --
Part 1: Use of PDF 1.4 (PDF/A-1). International Organization for Standardization (ISO), 2007.
Available for purchase at http://www.iso.org/.

http://www.w3.org/Protocols/rfc2616/rfc2616-sec9.html#sec9.5
http://www.iana.org/assignments/character-sets
http://grouper.ieee.org/groups/754
http://www.iso.org/
http://www.iso.org/
http://www.iso.org/
http://www.iso.org/
http://www.w3.org/TR/xml-exc-c14n/
http://www.iso.org/
http://www.iso.org/
http://www.w3.org/Graphics/GIF/spec-gif89a.txt

XFA Specification
Chapter , Bibliography General References 1501

[ISO-32000-1]

ISO/DIS 32000 - Document management -- Portable document format -- PDF 1.7. International
Organization for Standardization (ISO), 2007.
Available for purchase at http://www.iso.org/.

[JING]

JING. A RELAX NG validator in Java. Thai Open Source Software Center Limited, 2001, 2002, 2003.
Available at http://www.thaiopensource.com/relaxng/jing.html.

[JPEG]

ISO/IEC 10918-1 Information technology -- Digital compression and coding of continuous-tone still
images: Requirements and guidelines. International Organization for Standardization (ISO), 1994..
Available for purchase at http://www.iso.org/.

[LC-Scripting-Reference]

LiveCycle Designer ES2 Scripting Reference.
Available at http://www.adobe.com/go/learn_lc_scriptingReference.

[ISO 15924]

ISO 15924: Codes for the representation of names of scripts
Available at http://www.unicode.org/iso15924/iso15924-en.html

[MIMETYPES]

MIME Media Types. Internet Assigned Number Authority.
Available at http://www.iana.org/assignments/media-types/.

[PDF]

PDF Reference, sixth edition, Adobe Portable Document Format, Version 1.7. Adobe Systems
Incorporated, 2006.
Available at the PDF Reference Page at http://www.adobe.com/go/partner_public_pdf_ref.

[PNG]

Portable Network Graphics (PNG) Specification (Second Edition). World Wide Web Consortium,
November 2003.
Available at http://www.w3.org/TR/PNG/.

[PostScript]

PostScript Language Reference, Third Edition. Also known as the Red Book. Addison-Wesley, 1999.
Available at http://www.adobe.com/devnet/postscript/pdfs/PLRM.pdf.

[RELAX-NG]

RELAX NG Specification, Committee Specification: 3 December 2001. The Organization for the
Advancement of Structured Information Standards (OASIS), 2001.
Available at http://www.oasis-open.org/committees/relax-ng/spec-20011203.html.

[RFC1738]

Uniform Resource Locators (URL). T. Berners-Lee, L. Masinter, M. McCahill, 1994.
 Available at http://www.ietf.org/rfc/rfc1738.txt.

http://www.iso.org/
http://www.iana.org/assignments/media-types/
http://www.iana.org/assignments/media-types/
http://www.oasis-open.org/committees/relax-ng/spec-20011203.html
http://www.ietf.org/rfc/rfc1738.txt
http://www.adobe.com/go/learn_lc_scriptingReference
http://www.adobe.com/go/partner_public_pdf_ref
http://www.iso.org/
http://www.thaiopensource.com/relaxng/jing.html
http://www.adobe.com/devnet/postscript/pdfs/PLRM.pdf
http://www.unicode.org/iso15924/iso15924-en.html
http://www.w3.org/TR/PNG/
http://www.w3.org/TR/PNG/
http://www.w3.org/TR/PNG/

XFA Specification
Chapter , Bibliography General References 1502

[RFC1951]

DEFLATE Compressed Data Format Specification version 1.3. P. Deutsch, 1996.
Available at http://www.ietf.org/rfc/rfc1951.txt

[RFC1766]

Tags for the Identification of Languages. Internet Engineering Task Force, March 1995
http://www.ietf.org/rfc/rfc1766.txt.

[RFC2045]

Multipurpose Internet Mail Extensions (MIME) Part One, Format of Internet Message Bodies. N. Freed,
N. Borenstein, November 1996.
 Available at http://www.ietf.org/rfc/rfc2045.txt.

[RFC2046]

Multipurpose Internet Mail Extensions (MIME) Part Two: Media Types. N. Freed, N. Borenstein, 1996.
 Available at http://www.ietf.org/rfc/rfc2046.txt.

[RFC2119]

RFC2119: Key words for use in RFCs to Indicate Requirement Levels. S. Bradner, March 1997. Available
at http://www.ietf.org/rfc/rfc2119.txt.

[RFC2376]

XML Media Types. E. Whitehead, M. Murata, July 1998. Available at
http://www.ietf.org/rfc/rfc2376.txt.

[RFC2396]

RFC2396: Uniform Resource Identifiers (URI): Generic Syntax. T. Berners-Lee et al., August 1998.
Available at http://www.ietf.org/rfc/rfc2396.txt.

[RFC2397]

RFC2397: The "data" URL scheme. L. Masinter, August 1998.
Available at http://www.ietf.org/rfc/rfc2397.txt.

[RFC3161]

RFC3161: Internet X.509 Public Key Infrastructure Time-Stamp Protocol (TSP). C. Adams et al., August
2001.
Available at http://www.ietf.org/rfc/rfc3161.txt.

[RFC-3066bis]

RFC 3066bis is the identifier for a working draft of Tags for Identifying Languages.
Available at http://xml.coverpages.org/draft-phillips-langtags-03.txt

[RFC3280]

Public Key Infrastructure (X.509) (PKIX) Certificate and Certificate Revocation List (CRL) Profile. IETF RFC
3280, April 2002 ,http://www.ietf.org/rfc/rfc3280.txt

[SOAP1.1]

Simple Object Access Protocol (SOAP) 1.1. World Wide Web Consortium, 2000.
Available at http://www.w3.org/TR/2000/NOTE-SOAP-20000508/. Note that although this is
merely a note, not a recommendation, it has been adopted as the framework for [[WSDL1.1].

http://www.ietf.org/rfc/rfc1951.txt
http://www.ietf.org/rfc/rfc1766.txt
http://www.ietf.org/rfc/rfc2045.txt
http://www.ietf.org/rfc/rfc2046.txt
http://www.ietf.org/rfc/rfc2119.txt
http://www.ietf.org/rfc/rfc2396.txt
http://xml.coverpages.org/draft-phillips-langtags-03.txt
http://www.w3.org/TR/2000/NOTE-SOAP-20000508
http://www.ietf.org/rfc/rfc3280.txt
http://www.ietf.org/rfc/rfc2376.txt
http://www.ietf.org/rfc/rfc3161.txt
http://www.ietf.org/rfc/rfc2397.txt

XFA Specification
Chapter , Bibliography General References 1503

[SRGB]

IEC 61966-2-1: Multimedia systems and equipment - Colour measurement and management - Part 2-1:
Colour management - Default RGB colour space sRGB. October 1999. Amended by IEC
61966-2-1-am1: Amendment. March 2003.
Available at http://webstore.iec.ch/.

[TIFF]

TIFF™ Revision 6.0 Final — June 3, 1992. Adobe Systems, Inc., 1992.
Available at http://partners.adobe.com/public/developer/en/tiff/TIFF6.pdf.

[TRANG]

Trang. Multi-format schema converter based on RELAX NG. Thai Open Source Software Center
Limited, 2002, 2003.
Available at http://thaiopensource.com/relaxng/trang.html.

[URI]

RFC2396: Uniform Resource Identifiers (URI): Generic Syntax. T. Berners-Lee, R. Fielding, L. Masinter,
August 1998. This document updates RFC1738 and RFC1808.
Available at http://www.ietf.org/rfc/rfc2396.txt.

[UTS35]

Unicode Technical Standard #35: Locale Data Markup Language (LDML). M. Davis, July 2007.
Available at http://www.unicode.org/reports/tr35/.

[WS-Policy]

Web Services Policy 1.2 - Framework (WS-Policy). World Wide Web Consortium, 2006.
Available at http://www.w3.org/Submission/WS-Policy/.

[WSDL1.1]

Web Services Description Language (WSDL) 1.1. World Wide Web Consortium, 2001.
Available at http://www.w3.org/TR/2001/NOTE-wsdl-20010315

[XFDF]

XML Forms Data Format Specification Version 2.0. Adobe Systems Incorporated, 2003.
Available at http://www.adobe.com/go/learn_lc_XFA.

[XHTML]

XHTML 1.0: The Extensible HyperText Markup Language - A Reformulation of HTML 4 in XML 1.0. World
Wide Web Consortium, 2000.
Available at http://www.w3.org/TR/2000/REC-xhtml1-20000126/.

[XLIFF]

XLIFF 1.1 Specification. OASIS Open, 2003.
Available at
http://www.oasis-open.org/committees/xliff/documents/cs-xliff-core-1.1-20031031.htm.

[XML1.0]

Extensible Markup Language (XML) 1.0 Specification. World Wide Web Consortium, 1998.
Available at http://www.w3.org/TR/REC-xml

http://www.w3.org/TR/2001/NOTE-wsdl-20010315
http://www.w3.org/Submission/WS-Policy/
http://www.w3.org/TR/2000/REC-xhtml1-20000126/
http://webstore.iec.ch
http://www.ietf.org/rfc/rfc2396.txt
http://www.adobe.com/go/learn_lc_XFA
http://www.w3.org/TR/REC-xml
http://thaiopensource.com/relaxng/trang.html
http://www.unicode.org/reports/tr35/
http://www.oasis-open.org/committees/xliff/documents/cs-xliff-core-1.1-20031031.htm
http://partners.adobe.com/public/developer/en/tiff/TIFF6.pdf

XFA Specification
Chapter , Bibliography General References 1504

[XML1.1]

Extensible Markup Language (XML) 1.1 (Second Edition). World Wide Web Consortium, 2006.
Available at http://www.w3.org/TR/xml11.

[XMLBASE]

XML Base. World Wide Web Consortium, June 2001.
Available at http://www.w3.org/TR/xmlbase/.

[XMLDOM2]

Document Object Model (DOM) Level 2 Specification: Version 1.0. World Wide Web Consortium, 1999.
Available at http://www.w3.org/TR/DOM-Level-2/.

[XMLDSIG-CORE]

XML-Signature Syntax and Processing. World Wide Web Consortium, 2001.
Available at http://www.w3.org/TR/xmldsig-core/.

[XMLEncryption]

XML Encryption Syntax and Processing. World Wide Web Consortium, 2002.
Available at http://www.w3.org/TR/xmlenc-core/.

[XMLEvents]

XML Events. An Events Syntax for XML. World Wide Web Consortium, 2003.
Available at http://www.w3.org/TR/xml-events/.

[XMLNAMES]

Namespaces in XML. T. Bray, D. Hollander, A. Layman, 14 January 1999.
XML namespaces provide a simple method for qualifying names used in XML documents by
associating them with namespaces identified by URI.
Available at http://www.w3.org/TR/REC-xml-names

[XMLSchema]

XML Schema Part 1: Structures and XML Schema Part 2: Datatypes. World Wide Web Consortium,
2001.
Available at http://www.w3.org/TR/xmlschema-1/ and http://www.w3.org/TR/xmlschema-2/ ,
respectively.

[XMPMeta]

XMP Specification. Adobe Systems Incorporated, January 2004.
Available at http://www.adobe.com/devnet/xmp/.

[XPATH]

XML Path Language (XPath) Version 1.0. World Wide Web Consortium, 1999.
Available at http://www.w3.org/TR/xpath.

[XSL-FO]

Extensible Stylesheet Language (XSL) Version 1.1. World Wide Web Consortium, October 2006.
Available at http://www.w3.org/TR/xsl11/.

[XSLT]

XSL Transformations (XSLT) Version 1.0. World Wide Web Consortium, November 1999.
Available at http://www.w3.org/TR/xslt.

http://www.adobe.com/devnet/xmp/
http://www.adobe.com/devnet/xmp/
http://www.w3.org/TR/xmlbase/
http://www.w3.org/TR/DOM-Level-2/
http://www.w3.org/TR/xmldsig-core/
http://www.w3.org/TR/REC-xml-names
http://www.w3.org/TR/xmlschema-1
http://www.w3.org/TR/xmlschema-2
http://www.w3.org/TR/xpath
http://www.w3.org/TR/xslt
http://www.w3.org/TR/xml-events/
http://www.w3.org/TR/xml-events/
http://www.w3.org/TR/xml11
http://www.w3.org/TR/xsl11/
http://www.w3.org/TR/xmlenc-core/
XSL_FO

XFA Specification
Chapter , Bibliography Fonts and Character Encoding References 1505

Fonts and Character Encoding References
[Code-Page-936]

See: http://www.microsoft.com/globaldev/reference/dbcs/936.mspx.

[Code-Page-950]

See: http://www.microsoft.com/globaldev/reference/dbcs/950.mspx.

[GB18030]

Chinese National Standard GB 18030-2000: Information Technology -- Chinese ideograms coded
character set for information interchange -- Extension for the basic set (Xinxi Jishu -- Xinxi Jiaohuan
Yong Hanzi Bianma Zifuji -- Jibenji de Kuochong). China Standard Press, Beijing, November 2000.

[GB2312]

Chinese Character Encoding Charset for Information Exchange — Base Set (National Standard
GB2312-80). State Bureau of Standardization of the People's Republic of China (PRC), 1980. A paper
copy of this standard, with English titles but Chinese text, can be purchased at
http://webstore.ansi.org/RecordDetail.aspx?sku=GB+2312-1980.

[ISO-8859]

Information technology — 8-bit single-byte coded graphic character sets. Parts 1 through 16.
International Organization for Standardization (IS0), 1998-2003.
Available for purchase at http://www.iso.org/.

[ISO-10646]

Information technology — Universal Multiple-Octet Coded Character Set (UCS) — Part 1: Architecture
and Basic Multilingual Plane. International Organization for Standardization (ISO), 2000.
Available for purchase at http://www.iso.org/.

[KSC5601]

Code for Information Interchange (Hangul and Hanja). Korea Industrial Standards Association, 2004,
Ref. No. KS X 1001. This is the successor to the KS C 5601-1992 standard.
Available for purchase (with text in Korean) at
http://www.kssn.net/English/WebStore/C_WebStore_detail.asp?k1=X&k2=1001&k3=6.

[Shift-JIS]

JIS X 0208: 7-bit and 8-bit double byte coded KANJI sets for information interchange. Japanese
Industrial Standards Committee, 1997.
 Available for purchase at http://www.webstore.jsa.or.jp/webstore/Top/indexEn.jsp?lang=en.

[UAX-9]

Unicode Standard Annex #9. The Unicode Consortium, 2005.
Available at http://www.unicode.org/unicode/reports/tr9/.

[UAX-14]

Unicode Standard Annex #14. The Unicode Consortium, 2002.
 Available at http://www.unicode.org/reports/tr14/tr14-12.html.

[UAX-19]

Unicode Standard Annex #19. The Unicode Consortium, 2002.
 Available at http://www.unicode.org/reports/tr19/tr19-9.html.

http://www.kssn.net/English/WebStore/C_WebStore_detail.asp?k1=X&k2=1001&k3=6
http://www.kssn.net/English/WebStore/C_WebStore_detail.asp?k1=X&k2=1001&k3=6
http://www.kssn.net/English/WebStore/C_WebStore_detail.asp?k1=X&k2=1001&k3=6
http://webstore.ansi.org/RecordDetail.aspx?sku=GB+2312-1980
http://webstore.ansi.org/RecordDetail.aspx?sku=GB+2312-1980
http://webstore.ansi.org/RecordDetail.aspx?sku=GB+2312-1980
http://www.microsoft.com/globaldev/reference/dbcs/950.mspx
http://www.iso.org
http://www.iso.org
http://www.webstore.jsa.or.jp/webstore/Top/indexEn.jsp?lang=en
http://www.unicode.org/reports/tr14/tr14-12.html
http://www.unicode.org/unicode/reports/tr9/
http://www.unicode.org/reports/tr19/tr19-9.html
http://www.microsoft.com/globaldev/reference/dbcs/936.mspx

XFA Specification
Chapter , Bibliography Barcode References 1506

[Unicode-2.1]

The Unicode Standard, Version 2.1.9. The Unicode Consortium, 2002. This version of Unicode is
referenced only for its definition of Basic Multilingual Plane (BMP) character set. All other Unicode
references relate to the Unicode Standard, Version 3.2 (below).
Available at http://www.unicode.org/standard/versions/components-pre4.html#Unicode_2_1_9.

[Unicode-3.2]

The Unicode Standard, Version 3.2. The Unicode Consortium, 2002.
Available at http://www.unicode.org/standard/versions/components-pre4.htmll#Unicode_3_2_0.

Barcode References
[APO-Barcode]

Customer Barcoding Technical Specifications. Australia Post, 1998. Available at
http://www.auspost.com.au/GAC_File_Metafile/0,,2043_techspec,00.pdf.

[Aztec]

 ANSI/AIM BC13 ISS - Aztec Code. American National Standards Institute, Inc. and AIM International
(year of publication not available).
 Available for purchase at http://www.aimglobal.org/aimstore/.

[Codabar]

ANSI/AIM BC3-1995, USS - Codabar. American National Standards Institute, Inc. and AIM
International, 1993.
 Available for purchase at http://www.aimglobal.org/aimstore/.

[Code2Of5Interleaved]

ANSI/AIM BC2-1995, USS - Interleaved 2 of 5. American National Standards Institute, Inc. and AIM
International, 1993.
 Available for purchase at http://www.aimglobal.org/aimstore/.

[Code39]

ANSI/AIM BC1-1995, Uniform Symbology Specification - Code39. American National Standards
Institute, Inc. and AIM International, 1993.
 Available for purchase at http://www.aimglobal.org/aimstore/.

[Code49]

ANSI/AIM BC6-1995, Uniform Symbology Specification - Code49. American National Standards
Institute, Inc. and AIM International, 1993.
 Available for purchase at http://www.aimglobal.org/aimstore/.

[Code93]

ANSI/AIM BC5-1995, Uniform Symbology Specification - Code93. American National Standards
Institute, Inc. and AIM International, 1993.
 Available for purchase at http://www.aimglobal.org/aimstore/.

[Code128-1995]

ANSI/AIM BC4-1995, Uniform Symbology Specification - Code128. American National Standards
Institute, Inc. and AIM International, 1995.
 Available for purchase at http://www.aimglobal.org/aimstore/.

http://www.unicode.org/standard/versions/components-pre4.html#Unicode_3_2_0
http://www.auspost.com.au/GAC_File_Metafile/0,,2043_techspec,00.pdf
http://www.aimglobal.org/aimstore/
http://www.aimglobal.org/aimstore/
http://www.aimglobal.org/aimstore/
http://www.aimglobal.org/aimstore/
http://www.aimglobal.org/aimstore/
http://www.aimglobal.org/aimstore/
http://www.aimglobal.org/aimstore/
http://www.unicode.org/standard/versions/components-pre4.html#Unicode_2_1_9

XFA Specification
Chapter , Bibliography Barcode References 1507

[Code128-1999]

ANSI/AIM BC4-1999, Uniform Symbology Specification - Code128. American National Standards
Institute, Inc. and AIM International, 1999.
 Available for purchase at http://www.aimglobal.org/aimstore/.

[DataMatrix]

ANSI/AIM BC11 ISS - Data Matrix. AIM International (year of publication not available).
 Available for purchase at http://www.iso.org/.

[ISO-15420]

Information technology — Automatic identification and data capture techniques — Barcode
symbology specification EAN/UPC (ISO/IEC 15420:2000). International Organization for Standards
(ISO) and International Electrotechnical Commission (IEC), 2000.
 Available for purchase at http://www.iso.org/.

[LOGMARS]

MIL-STD-1189B. United States (of America) Department of Defence, 1984.
 Note: this standard has been withdrawn. The Department of Defence has adopted [Code39] in its
place. However according to http://www.afmc.wpafb.af.mil/HQ-AFMC/LG/LSO/LOA/stands.htm
on 5 December 2003, "Users are cautioned to evaluate this document for their particular
application before citing it as a replacement document." (As of February 2008 the server
www.afmc.wpafb.af.mil is no longer available.)

[Maxicode]

ANSI/AIM BC10-ISS, Maxicode. American National Standards Institute, Inc. and AIM International,
1996.
 Available for purchase at http://www.aimglobal.org/aimstore/.

[PDF417]

Uniform Symbology Specification PDF417. AIM International, 1998.
 Available for purchase at http://www.aimglobal.org/aimstore/.

[QRCode]

International Symbology Specification - QR Code (AIM ITS/97/001). AIM International, 1997.
 Available for purchase at http://www.aimglobal.org/aimstore/.

[RM4SCC]

Mailsort User Guide, sections "Mailsort 700" and "Mailsort 120". Royal Mail (United Kingdom), 2006.
 Available at http://www.mailsorttechnical.com/downloads_mailsort_user_guide.cfm.

[RSS14]

Reduced Space Symbology (RSS) bar code symbology specification. AIM International, 2006. Also
known as ISO/IEC 24724-2006.
Available for purchase at http://www.aimglobal.org/aimstore/.

[Telepen]

Uniform Symbology Specification - Telepen. AIM International (year of publication not available).
 Available for purchase at http://www.aimglobal.org/aimstore/.

http://www.aimglobal.org/aimstore/
http://www.aimglobal.org/aimstore/
http://www.iso.org
http://www.aimglobal.org/aimstore/
http://www.aimglobal.org/aimstore/
http://www.aimglobal.org/aimstore/
http://www.mailsorttechnical.com/downloads_mailsort_user_guide.cfm
http://www.aimglobal.org/aimstore/
http://www.iso.org

XFA Specification
Chapter , Bibliography Barcode References 1508

[USPS-C100]

Facing Identification Mark (FIM). United States (of America) Postal Service, 2006. Replaces the C100
standard.
 Available at http://pe.usps.com/text/dmm300/708.htm#wp1316612.

[USPS-C840]

Standards for POSTNET and Intelligent Mail Barcodes. United States (of America) Postal Service,
2006. Replaces the C840 standard.
 Available at http://pe.usps.com/text/dmm300/708.htm#wp1352817.

[USPS-B3200]

Intelligent Mail Barcode Specification. United States (of America) Postal Service, 2005.
 Available at https://ribbs.usps.gov/index.cfm?page=intellmailmailpieces.

https://ribbs.usps.gov/index.cfm?page=intellmailmailpieces
http://pe.usps.com/text/dmm300/708.htm#wp1316612
http://pe.usps.com/text/dmm300/708.htm#wp1316612
http://pe.usps.com/text/dmm300/708.htm#wp1316612
http://pe.usps.com/text/dmm300/708.htm#wp1352817
http://pe.usps.com/text/dmm300/708.htm#wp1352817
http://pe.usps.com/text/dmm300/708.htm#wp1352817

 1509

Glossary

A

ambient locale

The locale specified for the operating system or
environment in which an application operates. In
the rare circumstance where the application is
operating on a system or within an environment
where a locale is not present, the ambient locale
defaults to English United States (en-US), which is
the default locale.

application processor

See “XFA application processor”

annotation

Additional content added to a PDF document.
Such content includes comments.

B

boilerplate

See fixed content (boilerplate).

C

canonical format

A locale-agnostic, standardized way to represent
date, time, numbers, and currencies. Canonical
time and date formats are subsets of the ISO-8601
standard [ISO-8601].

canonicalization

The part of input parsing that considers locale
when converting locale-specific dates, times,
numbers, and currencies into canonical format.
See also localization.

character data

All text within an XML document that is not
markup constitutes character data. See the
description of character data within section “2.4
Character Data and Markup” of the XML
specification [XML].

connection set

The connections used to initiate or conduct web
services. Such a set defines connections for web
services (WSDL), sample data (XML), and schema
files (XSD).

container element

A type of XFA template element that specifies
either of the following: (a) content elements and
the form-related aspects of navigating to,
displaying and processing those elements; or (b)
other container elements and the form-related
aspects of navigating to, displaying and processing
those container elements.

Container elements include pageArea, area,
subform, field, and exclGroup.

container object or node

An object that can be populated with content
objects or with other subordinate container
objects. Container objects are created during data
binding and layout processing.

Container objects include area, subform, field,
and exclGroup.

content element

A type of XFA template element that houses
datatyped text or graphic elements (lines and
images). Such text or graphic elements may be
defined as default data or un-changeable data in
the content element.

content object or node

An object that houses datatyped pcdata (text) or
graphic elements (lines and images). New content
objects are created during data binding and layout
processing.

The data may be pre-defined in the content
element or may be provided by the form user or by
some other source, such as Web Service
interactions.

XFA Specification
Glossary content type element — document object model (DOM) 1510

content type element

A content type element defines the type of the
data in the parent content element. It may also
include default data or un-changeable data, which
is used when the form is displayed. Examples of
such datatype elements are date, decimal, and
image.

current record

It is possible to read and process the data
document one record at a time rather than loading
it all into memory at once. When operating in this
mode the record which is currently being
processed is called the current record. Records
immediately preceding and following the current
record may also be loaded, depending upon the
setting of a configuration option. When record
processing is not being done the current record
should be understood as including the entire data
document. See “Creating, Updating, and
Unloading a Basic XFA Data DOM” on page 122 for
more information about record processing.

D

data binding (merging)

The process of merging the Data DOM with the
Template DOM.

Data DOM (XFA Data DOM)

The Data DOM is the tree-structured
representation of user data. During the data
binding process, the Data DOM supplies the
content for fields in the merged form. The term
Data DOM differs from the XML Data DOM.

data group

A data group is an object in the XFA Data DOM that
corresponds to an element holding other elements
(as opposed to character data) in an XML data
document. Within the XFA Data DOM interior
nodes are usually data groups. A data group may
have other data groups and/or data values
descended from it.

data independence

An XFA feature that allows a form designer to
change a template without requiring that
corresponding changes be made to the structure

of the data. This feature also retains the structure
of the XML Data DOM and the values of objects in
the XML Data DOM that are not used used in the
XFA Form DOM.

data loader

A program or subsystem responsible for loading
data from an XML data document into the XFA
Data DOM.

data unloader

A program or subsystem responsible for unloading
data from the XFA Data DOM into a new XML data
document.

data value

A data value is an object in the XFA Data DOM that
corresponds to an element holding character data
(and possibly other elements) in an XML data
document. Within the XFA Data DOM leaf nodes
are usually data values. A data value may have
other data values descended from it but it must
not have any data group descended from it.

date/time format style

A locale-independent style of representing date or
time. Supported date and time styles include
short, medium, long, and full. One date style is
designated the default, as is one time style. The
date/time format styles may be defined in the
localeSet element, described in“The localeSet
Element” on page 166.

default locale

See “ambient locale”.

default mapping rule

A rule that governs, by default, how an XML data
document is mapped to an XFA Data DOM.

document

An serialized XML tree. A document is typically
stored as a file.

document object model (DOM)

A Data Object Model is an in-memory
representation of data as a tree of objects. An
object which belongs to a DOM may be referred to
as a “node” in order to emphasize its role as a tree

XFA Specification
Glossary document order — form template 1511

member. For example, a “form node” is an object
belonging to the Form DOM.

document order

The order in which a Form DOM is traversed.
Document order starts at the root of the content
subtree of the Form DOM and traverses the
content subtree depth-first and left-to-right
(oldest-to-newest).

document range

The section(s) of the XML data document that
is/are loaded into the XFA Data DOM.

dynamic form

An XFA form that automatically adds containers
and rearranges its layout depending on the data
being entered into it. In a dynamic form, the
arrangement of the form is determined by the
arrangement of the data supplied to the Form
DOM. A dynamic form is enabled by an XFA
template that specifies subforms that may be
replicated, depending on the data supplied to the
Form DOM. See also static form.

E

element content

XML elements that contain only XML child
elements, optionally separated with white space,
constitute “element content”. See the description
within section “3.2.1 Element Content” of the XML
specification [XML].

element type

The first token within an XML start or end tag
identifies the “element type”. The element type is a
string containing a qualified name. A qualified
name consists of an optional namespace prefix
and colon, followed by a mandatory local name.
See the description within section “3. Qualified
Names” of Namespaces in XML [XMLNAMES].

empty element

An XML element that does not enclose any
content.

empty merge

An “empty merge” occurs when a template is
merged with an empty data document (or no data
document at all). The rules for an “empty merge”
are slightly different than the rules for a non-empty
merge. Different attributes of The Occur Element
are used and default data, if defined by the
template, is inserted.

extended mapping rule

A rule that is not in effect by default but is available
as an override or extension to the default-mapping
rules.

F

fixed content (boilerplate)

Data associated with a draw. Such data is defined
by the template designer and does not vary
throughout the life of the form, with the following
exception: Dynamic forms may omit fixed content
that appears in unused containers. See also
variable content.

form creator

The person and/or software that creates a form
template, possibly along with other information
such as a data description.

form data

The variable data within a form. This is data that
the user can enter or modify and/or that is loaded
from an external source such as a database at the
time the form is presented to the user.

Form DOM

The Form DOM is the tree-structured
representation of the filled-in form. The Form DOM
is created and populated by the data binding
process. The Form DOM is not, however, ready to
display; there is another step required to perform a
physical layout, then another to render the form to
a display or printer. The Form DOM embodies
structural relationships, not physical
representations.

form template

A collection of related subforms and optional
business logic, constraints, and processing rules.

XFA Specification
Glossary global — localized date or time format 1512

G

global

When record processing is in effect the current
record and optionally other records adjacent to it
are loaded into the Data DOM. In addition, “global”
data is loaded into the Data DOM and kept in
memory while records cycle in and out. Hence,
global data is available for use by scripts
throughout the document. For example, when an
organization carries on business under several
different names, the appropriate name is often
made global so that it can be displayed on every
page of a multi-page document without having to
incorporate it in the data more than once. Data is
made global by placing it in elements that are at
the same level as or higher in the hierarchy than
the records. In addition a field may be marked
global, which means it is a candidate for matching
to global data (but it can still match to non-global
data).

grammar

Set of rules that specify the use of words in a
particular namespace. This specification describes
several XFA-related grammars, including template,
config , and localeSet.

I

input parsing

The process of transforming a formatted input
value into a raw elemental value, under the
direction of a picture clause. This term is the
inverse of output formatting.

instance manager

An object placed into the Form DOM by the data
binding process for the use of scripts. One instance
manager is placed in the Form DOM for each
dynamic subform in the Form DOM. A script can
use the instance manager to determine how many
instances of the subform have been copied into
the Form DOM and it can delete instances or insert
more instances.

L

Layout DOM

layout node

A layout node is any object in the Layout DOM.

layout processor

The layout processor is an entity tasked with laying
out displayable content on the display surface(s),
typically on behalf of an application.

locale

A standard term used to identify a particular nation
(language and/or country). A locale defines (but is
not limited to) the format of dates, times, numeric
and currency punctuation that are culturally
relevant to a specific country.

locale-dependent format

A style of representing dates, times, numbers, and
currencies that is unique to the locale.

locale set

Locale-specific data used in localization and
canonicalization. Such data includes picture
clauses for representing dates, times, numbers,
and currency. It also contains the localized names
of items that appear in dates, times and currencies,
such as the names of months and the names of the
days of the week. It also contains mapping rules
that allow picture clauses to be converted into a
localized string that can be used in UI captions and
prompts.

localization

The part of output formatting that involves
converting canonical dates, times, numbers, and
currencies into formats and characters commonly
used in a particular locale. See also
canonicalization.

localized date or time format

Locale-specific character strings intended for use
in UI captions and prompts. Such strings are
defined in the localeSet element (locale set).
Some FormCalc functions return localized date or
time formats.

XFA Specification
Glossary merge — picture clause (pattern) 1513

Localized date or time formats cannot be used as
date or time picture clauses (picture clause
(pattern)). In some locales, localized date or time
formats are identical to their picture clause
counterparts; however, this similarity is not
consistent across locales. For example, en_US
might use MM/DD/YY as both a picture clause and
a localized date format. In contrast, the fr_CA
locale might use a localized date format of aa/nn/jj
as the counterpart to the MM/DD/YY picture
clause.

M

merge

The data-binding process is sometimes called the
“merge” process because it can be thought of as
merging content from the Data DOM with
structure from the Template DOM to create a
single document, the Form DOM. However it
should be noted that it is possible to perform a
data binding operation without a Data DOM, in
which case the Form DOM gets its content from
default data in the Template DOM.

metadata

In this specification, “metadata” refers to data
expressed via XML attributes.

mixed content

XML elements that contain character data
interspersed with XML child elements constitute
“mixed content”. See the description of mixed
content within section “3.2.2 Mixed Content” of
the XML specification [XML].

N

node

An object linked to other objects within a
hierarchical structure. In XFA the hierarchical
structure is always one of a predefined set of DOMs
(Document Object Models). All objects specified in
XFA are nodes.

nominal extent

The nominal extent of an object is a rectangle
aligned with the X and Y axes that covers the
region on the page reserved for the object. The

nominal extent does not necessarily include the
whole physical extent of a visible object or, in the
case of a container, its contents.

normalizing the Data DOM

A process optionally performed by XFA processing
applications to move data nodes around to
reconcile data-binding contradictions. An example
of such a contradiction is a data node being bound
to a form node, even though the nearest
merge-able ancestor of the data node and the
nearest merge-able ancestor of the form node are
not bound to each other. “Re-Normalization (Step
4)” on page 203.

O

output formatting

The process of transforming a raw value into a
formatted value, under the direction of a picture
clause. This term is the inverse of input parsing.

P

page area

A description of a rendering surface, such as one
side of a printed page or a screen-display.

page set

An XFA element used to represent a set of display
surfaces, such as a stack of sheets of paper. For
example, a page set for a duplex document would
nominally consist of two page areas: a front page
area and a back page area. In another example, a
page set for an invoice might consist of three page
areas: a first page bearing a letter, followed by
alternating statement-front and statement-back
pages.

PDF subassembly

An unit of content added to the top level of a PDF
document tree. Examples of PDF subassemblies
are annots, data, and signature.

picture clause (pattern)

A sequence of symbols (characters) that specify
the rules for formatting and parsing textual data,
such as dates, times, numbers and text. Each

XFA Specification
Glossary plain text — Web service 1514

symbol is a place-holder that typically represents
one or more characters that occur in the data.

plain text

Text that does not contain any markup signifying
formatting, hence, text that is not rich text.

prevailing locale

The locale obtained after resolving locales
supplied from the following sources (in priority
order) the picture clause, the field or subform
locale property, or the ambient locale. The
prevailing locale affects input parsing and output
formatting. It also affects the results of FormCalc
functions.

R

rich text

Text containing markup signifying formatting such
as bold and underline.

S

script

A set of instructions for processing data or
initiating events such as data exchange with a
server. In XFA scripts are not necessary for common
electronic form functionality, but scripts may be
used to provide greater control or meet unusual
needs.

SOM (XFA Script Object Model)

A model for referencing values, properties and
methods within a particular Document Object
Model (DOM).

SOM resolver

A software component that interprets a SOM
expression, yielding the set of all nodes that match
the expression. The resulting set may be empty.

source set

ADO database queries, used to describe data
binding to ADO data sources

static form

An XFA form that has a set number of subforms.
Unlike dynamic forms, static forms cannot add
subforms to accommodate additional data.

T

template

See form template.

Template DOM

The Template DOM is the tree-structured
representation of the template for the form.
During the data binding process it supplies the
prototype objects and relationships between
objects which are copied into the Form DOM.
Hence the Template DOM dictates the structure of
the resulting merged form.

U

UI

A type of element that describes how data should
be presented to a form user. UI elements are
defined in the XFA template grammar.

V

variable content

Data associated with an exclusion group or field.
Such data, which varies throughout the life of the
form, may be provided by any of the following: the
template as a default value, the person filling out
the form, an external source, a calculation, and
other sources. See also fixed content (boilerplate).

W

Web service

An automated service provided by an external
(non-XFA) processor and accessed using the
Simple Object Access Protocol (SOAP) [SOAP 1.1]
and Web Services Description Language (WSDL)
[WSDL 1.1]. Such services are often made available
to all comers across the Internet, hence the name
"web service".

XFA Specification
Glossary widget — XFT (XFA Template) 1515

widget

A simulated mechanism displayed by the user
interface to enable the user to enter or alter data.
Examples of widgets are radio buttons and
popup-up lists.

X

XCI (XML Configuration Information)

Configuration information for a Presentation
Agent output driver. The root element i n the XCI
grammar is the config element (“Config Common
Specification” on page 846).

XDC (XML Device Control)

A package within an XDP that holds information
specific to a particular output device (such as a
printer) or input-output device (such as a cell
phone). This specification does not define the
contents of the XDC package.

XDP (XML Data Package)

Provides a mechanism for packaging specific types
of content within a surrounding XML container.
The types of content include PDF, XML
configuration information (XCI), dataSet,
sourceSet, XSLT style sheet, XFA template, and
XFDF (form data). XDP may also contain
undocumented packets, such as those used to
communicate events to LiveCycle Forms ES2. The
XDP format is intended to be an XML-based
companion to PDF.

XFA (XML Forms Architecture)

An application of XML for modeling electronic
forms and related processes. XFA provides for the
specific needs of electronic forms and the
processing applications that use them.

XFA is a collection of specifications, including
template and data. XFA is a superset of XForms.

XFA application processor

A program which implements all or part of this
document, the XFA Specification. DOM (Document
Object Model) - a tree-structured set of data as
represented internally inside an XFA processor.
Although the word "object" suggests an
object-oriented programming language, the XFA

DOMs can be implemented in any language.
Document order - the order in which the contents
of a DOM would appear if written out as an XML
document. To traverse a DOM in document order,
start at the topmost node and perform a
depth-first descent of the tree, descending from
each node through its eldest child first, then upon
returning to that node descending through the
next-eldest child, and so on.

XFA Configuration DOM

The “XFA Configuration DOM” provides a set of
software interfaces to the data obtained from an
XFA configuration document. The “XFA
Configuration DOM” includes sections for all of the
different components of XFA, including a section
for the data loader.

XFA Data DOM

The “XFA Data DOM” provides a set of software
interfaces to the data loaded from an XML data
document. The data in the “XFA Data DOM” is in
general a subset of the data in the XML data
document, but it may also contain other data not
present in the XML data document as well as data
that originated in the XML data document but has
been modified.

XFA name

A string suitable for identifying an object in an XFA
DOM, using the XFA Scripting Object Model
syntax. A valid XFA name must be a valid XML
name, as defined in the XML specification version
1.0 [XML], with the additional restriction that it
must not contain a colon (:) character.

XFD (XML Form Data)

XML representation of the content of a form. XFA
can employ any XML data but by convention the
name XFD indicates form-specific data. For
example, when a user partially fills out a form and
saves the partial data as a file, the resulting file is
conventionally known as an XFD.

XFDF (XML Forms Data Format)

XML representations of Adobe PDF annotations.

XFT (XFA Template)

The filename suffix and preferred namespace
prefix for the XFA Template grammar.

XFA Specification
Glossary XML (Extensible Markup Language) — XSS (XFA Source Set) 1516

XML (Extensible Markup Language)

A grammar for packaging arbitrary data using
standard markup elements. XML is intended to be
both human- and machine-readable. The
controlling specification is [XML1.0], as modified
by [XMLNAMES].

XML Data Document

Well-formed XML document containing data that
is processed by XFA processing applications. Such
a document is intended to be processed as data in
the context of a form or workflow processing
application, such as displaying or printing the data
with a form, or manipulating the data via a
workflow process.

XML data DOM

An “XML data DOM” provides a set of software
interfaces to the data in an XML data document.

XMP (XML Metadata)

The filename suffix and preferred namespace
prefix for XML Metadata, which is an XML
representation of PDF metadata. Such metadata
includes information about the document and its
contents, such as the author's name and keywords,
that can be used by search utilities.

XSS (XFA Source Set)

The filename suffix and preferred namespace
prefix for the “source set” grammar.

 1517

Index

!
!, a SOM naming convention 92
",", a picture clause symbol 1136
",", a picture clause symbol 1136

$
$$, a picture clause symbol 1136
$$, a picture clause symbol 1136
$, a picture clause symbol 1136
$, a picture clause symbol 1136
$, a SOM naming convention 108, 114
$connectionSet, a SOM naming convention 91
$data, a SOM naming convention 91
$event, a SOM naming convention 91
$form, a SOM naming convention 91
$host, a SOM naming convention 91
$layout, a SOM naming convention 91
$record, a SOM naming convention 91, 92
$template, a SOM naming convention 91

&
(, a picture clause symbol 1136
(, a picture clause symbol 1136
), a picture clause symbol 1136
), a picture clause symbol 1136

.

.*, a SOM naming convention 100

.., a SOM naming convention 104

@
[*], a SOM naming convention 101
[+nnn], a SOM naming convention 120
[-nnn], a SOM naming convention 120
[nnn], a SOM naming convention 92

\
\, a SOM naming convention 105

0
0 (zero), a picture clause symbol 1141

9
9, a picture clause symbol 1135, 1141
9, a picture clause symbol 1135

A
A, a picture clause symbol 1131, 1141
accelerator keys 498

accessibility 493–499
accelerator keys 498
container role 498
speech 498

additions, a dataDescription attribute 951
ADO 465
Adobe.PPKList 555
allowRichText, a template attribute 221
ambient locale

See locale
anchor point 262, 272
angles 37
APIVersion, an XFA attribute 217, 217
APIVersion, an xfa attribute used in rich text 1169
appearance order 70, 266, 280
append loading 149
Arabic numeral system 1121
arc, a template element

layout characteristics 1453
area, a template element 95, 249, 259

layout characteristics 1453
Asian

date picture clauses 1127–1130
date time rules 1121
dates, times and numbers 1118–1123
eras 1121
numeric picture clauses 1135–1140
time picture clauses 1132–1134

assist, a template element 499
attributes, a config element 501, 505
automation objects 364–402

order of precedence 397–402

B
background images 256
barcode, a template element 47

layout characteristics 1454
barcodes

formatting 47
one-deminsional 50
two-dimensional 50

bibliography 1499–1508
bind, a template element 176, 199, 520
boilerplate 248
bookend leaders and trailers 311
boolean, a template element 40
border, a template element 253, 288
borders 38
box model 49, 259

growable containers 272
break conditions 264
button 472
button, a template element 472

XFA Specification
Index — 1518

layout characteristics 1454

C
calculations 371–373
calendar symbols 168
calendarSymbols, a localeSet element 901
canonical format 156, 1003–1006

date 1003
date-time 1005
number 1005
text 1006
time 1004

canonicalization 152–169
See localization

certificate authorities 555
certified signature 547
change history 1475–1495
check boxes 473
check buttons 473
checkButton, a template element 473

layout characteristics 1454
choice lists 475

multiselect 477
user provided values 477

choiceList, a template element 198, 475
clipping content to fit into a container 54, 263
comments

stored in template 71
concealing containers 67
config

syntax reference 846
config, an xdp packet 996
Configuration DOM 80, 846
connect, a template element 457, 460
Connection Data DOM 382, 386, 439, 440, 449, 450, 451, 456, 458,

459, 460, 461
connection set 927–942
Connection Set Data DOM 81
Connection Set DOM 80
connectionSet, an xdp packet 996
container role 498
container rotation

affect on flowed layout 279
containers 24, 32, 248

of fixed content 248
of other containers 34, 249
of variable content 33
physical surfaces and regions 249

content
absent 41
requirement for decimal and float types 41

content elements 35
content type

data binding 192
content types 39–42, 255–258

boolean, integer, decimal, and float 40
date, time and dateTime 40
external data 42
image 41, 256

lines, rectangles, and arcs 256
text 39

contentArea, a template element 249, 260, 288
layout characteristics 1455

control 540–560
conventions

DOM xii
FormCalc 1011
layout drawings xiv
nodes in a tree graph 172
notational xi
optional terms xiii
picture clause notation 1125
Unicode xii

CR, a picture clause symbol 1136
cr, a picture clause symbol 1136
CreateDate, a property used in XML digital signatures 557
CSS

See rich text
currencySymbol, a localeSet element 903
currencySymbols, a localeSet element 904

D
D, a picture clause symbol 1125
data 25
data binding 171–214, 326–347

ambiguous matches 185
attributes 202
choice lists 198
content type 192
current connection (web services) 451
data window and global data 247
default bind picture clause 520
direct matches 181
exclusion groups 195
explicit data references 199, 342
form ready event 213
global matches 245
globals 341
greedy matching 339
incremental merge 214
introduction to 26
nameless fields 194
non-record mode 243
occurrances 332
principles 175
record mode 243
remerge 214
repeated fields or subforms 234–265
steps 180
subform set 342
transparent nodes 193

data bindings
blank form 338

data description 943–958
Data Description DOM 81
data independence 175
data loader 123, 502, 503, 539
data mapping

XFA Specification
Index — 1519

attribute values 142
calculations and validations 213
character data 137
data groups 142
document range 131, 503
empty elements 138
excluding data by namespace 506
extended rules 501–537
flatten or filter 521
grouping flat stream data 508
image data 146
limiting the range of records 523
mixed content 137
null data 139
overriding attribute loading 505
overriding default empty element handling 514
overriding default handling of inverted XML 518
overriding the data structure 535
range of records considered 523
renaming data elements 530
repeating records 136
rules 131–148
specifying data partitioning 524
starting point 532
values containing element content 141
white space 145

data unloader 502, 503
data window 247
datadescription, a dataDescription element 952
dataGroup, an XFA Data DOM object 123, 128
dataNode, an XML data document attribute 501, 535
datasets, an xdp packet 996
dataValue, an XFA Data DOM object 123, 125
date canonical format 1003
date format

styles 1036
datePattern, a localeSet element 905
datePatterns, a localeSet element 906
date-time canonical format 1005
date-time widgets 479
dateTimeSymbols, a localeSet element 907
day, a localeSet element 908
dayNames, a localeSet element 909
DB, a picture clause symbol 1136
db, a picture clause symbol 1136
DD, a picture clause symbol 1125
DDD, a picture clause symbol 1127
DDDD, a picture clause symbol 1127
decimal

requirement for radix separator 41
decimal, a template element 40
default UI 483
defaults

Configuration DOM 848
defualtUi, a template element 483
desc, a template element 71
Description, a property used in XML digital signatures 557
description, a property used in XML digital signatures 557
digital certificates 555
digital signatures 545–560

for authenticity 546, 551
for integrity 546, 547, 549
for non-reputiability 546, 552
for usage rights 546, 552
part being signed 547
PDF packaging 547
PDF signatures 560
tracking document changes 547
XDP packaging 547
See also PDF digital signature
See also XML digital signatures

displayable layout elements 250
Document Object Model

See DOMs
document range 503
DOM notation xii

examples for XFA Data DOM 130
DOMs 76–86

and XML 77
hierarchy 76
interactions 83

draw, a template element 248, 256
layout characteristics 1455, 1456

DSA-SHA1 555
dynamic forms

compared to static forms 326
data binding 326–347

dynamic layout 350–??
adhesion 350
break conditions 352

E
E, a picture clause symbol 1125, 1136
E, a picture clause symbol 1127, 1136
e, a picture clause symbol 1126
e, a picture clause symbol 1127
ECMAScript

SOM expressions 106
special characters 107

EEE, a picture clause symbol 1125
EEEE, a picture clause symbol 1125
embed, an xfa attribute used in rich text 1168
embedded objects

defined by rich text 46
defined in image elements 256
layout characteristics 1456

embedMode, an xfa attribute used in rich text 1168
embedType, an xfa attribute used in rich text 1168
era, a localeSet element 910
eraNames, a localeSet element 911
escape characters 105
event, a template element 458
events 379–402
exclGroup, a template element 33, 195

layout characteristics 1456
excludeNS, a config element 501, 506
exclusion group 33

check buttons 474
exData, a template element 42

XFA Specification
Index — 1520

execute, a template element 461
extras, a template element 71

F
FFF, a picture clause symbol 1131
field navigation 493–499
field, a template element 33, 42

layout characteristics 1457, 1458, 1459
filename suffix

xci 846
fill of closed graphics 38
filter, a template element 555
fixed content 24
float

requirement for radix separator 41
float, a template element 40
flowing layout 260
font, a template element 43
Form DOM 81, 171–214
formatting data

as specified by picture clauses 47
FormCalc 1007–1107

built-in functions
arithmetic 1039–1048
date and time 1049–1062
financial 1063–1072
logical 1073–1077
miscellaneous 1105–1107
string 1078–1100
URL 1101–1104

case sensitivity 1034
comments 1013
date and time values 1038
date format styles 1036
date picture clauses 1036
expressions

accessors 1024
additive 1022
assignment 1024
block 1032
break 1029
continue 1029
equality 1020
for 1030
foreach 1031
if 1030
lists 1018
logical and 1020
logical or 1020
multiplicative 1022
primary 1023
relational 1021
simple 1018
unary 1022
while 1031

lexical grammar 1012–1016
line terminators 1013
method calls 1034
operators 1016

references 1026
SOM 106
string literals 1013
support for locale 1035
syntactic grammar 1016–1018
time format styles 1037
tokens 1016
user-defined functions 1023
variables 1023
white space 1013

FormCalc functions
Abs() 1039
Apr() 1063
At() 1078
Avg() 1040
Ceil() 1041
Choose() 1073
Concat() 1080
Count() 1042
CTerm() 1064
Date() 1049
Date2Num() 1050
DateFmt() 1051
Decode() 1081
Encode() 1082
Exists() 1074
Floor() 1043
Format() 1083
FV() 1065
Get() 1101
HasValue() 1075
IPmt() 1066
IsoDate2Num() 1052
IsoTime2Num() 1053
Left() 1085
Len() 1086
LocaleDateFmt() 1054
LocalTimeFmt() 1055
Lower() 1087
Ltrim() 1088
Max() 1044
Min() 1045
Mod() 1046
NPV() 1067
Num2Date() 1056
Num2GMTime() 1057
Num2Time() 1058
Oneof() 1076
Parse() 1089
Pmt() 1068
Post() 1102
PPmt() 1069
Put() 1104
PV() 1070
Rate() 1071
Ref() 1105
Replace() 1090
Right() 1091
Round() 1047
Rtrim() 1092

XFA Specification
Index — 1521

Space() 1093
Str() 1094
Stuff() 1095
Substr() 1096
Sum() 1048
Term() 1072
Time() 1059
Time2Num() 1060
TimeFmt() 1062
UnitType() 1107
UnitValue() 1106
Upper() 1098
Uuid() 1097
Within() 1077
WordNum() 1099

full (date) 1036
full XFA 20

G
G, a picture clause symbol 1126
g, a picture clause symbol 1127
gg, a picture clause symbol 1127
gg, a picture clause symbol 1128
ggg, a picture clause symbol 1127
glossary 1509–1516
glyph

layout characteristics 1460
greedy matching 339
groupelement, a dataDescription element 952
groupParent, a config element 502, 503, 509
growable containers 270

anchor point 272
box model 272
influence on flowed content 277
text placement 272–274

GuangXu 1123

H
H, a picture clause symbol 1131
h, a picture clause symbol 1131
handedness

borders and rectangles 253
stroke elements 252

Hangul 1122
Hanja 1122
Heisei 1122
HH, a picture clause symbol 1131
hh, a picture clause symbol 1131
HHH, a picture clause symbol 1132
hhh, a picture clause symbol 1132
HHHH, a picture clause symbol 1132
hhhhh, a picture clause symbol 1132
HTTP POST 443

I
ifEmpty, a config element 502, 503, 515
image widget 484
image, a template element 41, 256

layout characteristics 1460
imageEdit, a template element 484
images

aspect ratio 51
described in draw elements 256
described in field elements 42
mapping 146
provided as data 42

imperial era 1123
imperial eras 1121
incremental merge 214
input parsing 152, 1108
instance manager 346
integer, a template element 40

J
J, a picture clause symbol 1125
JavaScript

See ECMAScript
JJJ, a picture clause symbol 1125

K
K, a picture clause symbol 1131
k, a picture clause symbol 1131
KK, a picture clause symbol 1131
kk, a picture clause symbol 1131
KKK, a picture clause symbol 1132
kkk, a picture clause symbol 1132
KKKK, a picture clause symbol 1133
kkkk, a picture clause symbol 1132

L
layout 24

adhesion 305, 350
anchor point 262
barcodes 50
basic 49–70, 259–266
break conditions 264, 352
clipping 54, 263
combined leaders and trailers 320
concealing containers 67
container rotation 55
container size requirements 54, 260
content overflow 284
content splitting 284
display surface (pageArea) 260
document order 280
drawing conventions xiv
flowing between contentArea objects 288
flowing text within a container 56
geometric figures 260
grouping related objects (area) 259
growable containers and flowed content 277
growable objects 269–296
images 51
leaders and trailers 308
locating containers based on data 28, 264
logical grouping of objects (subform) 52

XFA Specification
Index — 1522

offset vectors 263
page background 260, 265, 381
physical region (contentArea) 260
positioned 274–321
print order 281
relative positions 49, 259
repeating sections 264
set of display surfaces (pageSet) 260
strategies 260
text 52
transformations (spacial) 55
widgets 53
See also dynamic layout

layout algorithm 282
Layout DOM 82
layout DOM 279
layout elements 250
layout objects 251

characteristics 1453–1462
layout processor 259, 282
leaders and trailers 308

combined overflow and bookend 320
letterheads 265
line positioning 1463–1474
line, a template element

layout characteristics 1460
locale

ambient 153
FormCalc 1035
picture clauses 1111
specifying 1112

locale identifiers
ar_SA 155
en 155
en_CA 155
en_GB 155
en_GB_EURO 155
fr 155
fr_CA 155
ja 1122
ja_JP 1122
ko 1122
ko_KR 155, 1122
ko_KR_Hani 155
th_TH_TH 155
zh_CN 155, 1123
zh_HK 155, 1123
zh_MO 1123
zh_TW 1123

locale set
syntax reference 901, 1449

locale, a localeSet element 912
locale, a template element 1111
locale-dependent format 152
localeSet, a localeSet element 166, 914
localeSet, an xdp packet 997
localization 152–169

calendar symbols 168
canonical format 156
dataflow paths 159

localeSet 166
picture clauses 156–159
prevailing locale 153
rules 162
specifying locale 152
user expectations 152

long (date) 1036

M
M, a picture clause symbol 1125, 1131
machine-readable schemas 1496–1498
manifest, a template element 556
mapping

See data mapping
maxOccur, a dataDescription element 953
measurements 36
medium (date) 1036
Meiji 1122
merge. See data binding.
meridiem, a localeSet element 915
meridiemNames, a localeSet element 916
metadata

stored in template 71
MinGuo 1123
minOccur, a dataDescription element 954
MM, a picture clause symbol 1125, 1131
mminOccur, a dataDescription element 954
MMM, a picture clause symbol 1125
MMM, a picture clause symbol 1127, 1133
MMMM, a picture clause symbol 1125
MMMM, a picture clause symbol 1127, 1133
model, a dataDescription element 954
month, a localeSet element 917
monthNames, a localeSet element 918

N
name conflicts 129
nameAttr, a config element 502, 503
names 75
namespaces

XML data documents 134
node type information

unloading 149
nominal extent 49, 259
notation conventions

sourceSet 565
notation for describing contents xii
notational conventions xi

config 565
template 565

null data
unloading 150

nullType, a dataDescription element 957
number canonical format 1005
numberSymbol, a localeSet element 921
numberSymbols, a localeSet element 922
numeric widget 485
numericEdit, a template element 479, 485

XFA Specification
Index — 1523

O
O (letter), a picture clause symbol 1141
obtaining the value of a SOM expression 106
occur, a template element 241, 290, 332
offset vectors 263
output formatting 152, 1108
outputXSL, a config element 538
overflow leaders and trailers 312

inheritance 317
lists 316

P
page background 260, 265, 381
page coordinates

algorithms 1452
pageArea, a template element 249, 260, 265, 288

layout characteristics 1461
pageSet, a template element 250, 260, 289

layout characteristics 1461
para, a template element 43, 44
para, a templete element 44
parsing 152
password, a template element 488
PDF

contained within XDP 21
PDF and XFA 18
PDF digital signatures 545
PDF signatures 559, 560
pdf, an xdp packet 997
picture clause 1083, 1089, 1108–1143
picture clauses 47

alternate 1116, 1118
Asian date time rules 1121
Asian dates 1127–1130
Asian dates, times, and numbers 1118–1123
Asian numbers 1135–1140
Asian time 1132–1134
categories

date 1125–1130
null 1142
num 1135–1140, ??–1140
text 1141
time 1131–1134
zero 1142

compound 1114–1115, 1116
context-specific symbols 1109
date requirements 1128
full-width characters 1119
global symbols 1110
ideographs 1119
imperial eras 1121
limitations 157
literal text 1110
locale identifier 157, 1111
locale-specific 47, 1116, 1118
requirements for numbers 1139
requirements for time 1133
tens rule numeric systems 1121

picture, a config element 502, 520

positioned layout 260, 274–321
Predicate 101
presence, a config element 501, 502, 503, 521
prevailing locale 153, 1111
print order 281
proto, a template element 225
prototypes 225

overriding properties 229

R
range, a config element 502, 523
rawValue 106
rawValue, a form DOM property 520
record mode 243
record, a config element 502, 524
records 128
rectangle, a template element 253

layout characteristics 1461
ref, a template element 556
reference point

See anchor point
references

boilerplate or images 368
prototypes 226
trustability 543

remerge 214
rename, a config element 502, 503, 530
re-normalization 203
repeated fields or subforms 234–265

fixed occurrence 241
reqAttrs, a dataDescription element 957
resolveNode(), an XFA DOM method 106
resource consumption

managing 243
rich text 45, 1144–1169

character formatting 1155
consecutive spaces 1166
container elements 1146
converting into plain text 218
CSS

color 1145
font 1145
font-family 1145
font-size 1145
font-stretch 1145
font-style 1145
font-weight 1145
line-height 1145
margin 1145
margin-bottom 1145
margin-left 1145
margin-right 1145
margin-top 1145
orphans 1145
page-break-after 1145
page-break-before 1145
page-break-inside 1145
tab-align 1145
tab-interval 1145

XFA Specification
Index — 1524

tab-stop 1145
text-decoration 1145
text-indent 1145
vertical-align 1145
widows 1145

displaying 222
embedded objects 1168
external objects 221
identifying 217
paragraph formatting 1147
properties in XFA Data DOM 219
properties in XFA Template DOM 220
updating in XML Data DOM 221
used for fomatting 215
used to insert external objects 216
user interface 221
version identifiers 216
version specification 1168
XFA Data DOM 218
XHTML

b 1144
body 1144
br 1144
html 1144
i 1144
p 1144
span 1144
sup 1144

RSA-SHA1 555

S
s a picture clause symbol 1136
S, a picture clause symbol 1131, 1135
S, a picture clause symbol 1135
s, a picture clause symbol 1136
schemas

template, connectionSet, sourceSet xi
scripting

Unicode support 409
scripting object model

See SOM
scripts 25, 403–410

automation objects 364
exception handling 409
where executed 404

security 540–560
server interactions

ADO API 465–470
submiting data 443–448
web services 449–461

short (date) 1036
Showa 1122
signature manifest 555
signature widget 489
signature, a template element 489
signature, an xdp packet 998
signatures

user experience 492
See digital signatures

signData, a template element 492, 555
signed forms 545–560
SOAP 449
SOM 86–121

attributes 97
compound object names 90
conventions 88
current container 108
ECMAScript 106
explicitly named objects 93
expressions that include periods and dashes 104
FormCalc 106
inferred index for ancestors 117
inferred index for peers 115
instance manager 346
interleaved elements 93
internal properties and methods 97
name clashes 98
parent property 103
qualified reference 114
qualified vs unqualified references 114
reference by element class 96
relative index 120
repeated elements 92
resolving unqualified web service data 458
runtime object resolution 106
selecting descendants 104
selecting multiple nodes 100
shortcuts 91
transparent nodes 94
unqualified ancestor references 112
unqualified child references 110
unqualified sibling references 111
value 106
variable elements 121

source set 465, 959–988
Source Set DOM 82, 438, 465

and template features 468
sourceSet, a sourceSet element 465
sourceSet, an xdp packet 998
speak a template element 498
spec, an xfa attribute used in rich text 1169
special characters

ECMAScript 107
SOM expressions 104

speech 498
speech order 493
speed navigation 498
SS, a picture clause symbol 1131
SSS, a picture clause symbol 1133
SSSS, a picture clause symbol 1133
start element

XML data documents 132
startNode, a config element 501, 532
static forms 234
structural layout elements 250
stylesheet, an xdp packet 998
subform, a template element 34, 52

layout characteristics 1462
subformSet, a template element 342

XFA Specification
Index — 1525

layout characteristics 1462
submit, a template element 443
submitting data and other form packages 443–448

trust 544

T
tabbing order 493
tables 321–325
Taisho 1122
Tangun 1122
template 22, 565–845

adding custom information 71
containers 24
creating 27
deprecated features 1494
layout elements 250
modified features 1494
new features 1476
scripts 25

Template DOM 82, 170
template, a template element 34
template, an xdp packet 998
templates

unique identification 541
tens rule 1122
tens rule numeric systems 1121
text canonical format 1006
text formatting 43–70, 258, 417, ??–418, ??–419

alignment and justification 44
bar codes 47
line height 45
other 45
rich text 45

text placement 272–274
text, a template element

layout characteristics 1462
textEdit, a template element 489
textLocation, a template element 47
time canonical format 1004
timePattern, a localeSet element 923
timePatterns, a localeSet element 924
toolTip, a template element 498
tracking templates 541
transform, a config element 504
transformation

precedence 504
transformations (spacial) 55
transforms 503
transparent nodes 193
traversal 493
traversal, a template element 493
traverse a template element 493
tree graph

drawing conventions 172
trust

external references 543
receiving submissions 544

U
ubiquitized documents 552
Unicode 1006

notation xii
units 37, 1107
unitspan 1106
unload processing 149
uri, a config element 538
URL 1101, 1104
URL decoded 1081
URL encoded 1082
user experience 471–499
user interface 35

rich text 221
See also widget

V
V, a picture clause symbol 1136
V, a picture clause symbol 1136
v, a picture clause symbol 1136
v, a picture clause symbol 1136
validations 373–378
value, a form DOM property 520
values 36
variable content 24
variables 368

named script objects 369
variables, a template element 95, 368, 369
views

used to hide containers 69

W
w, a picture clause symbol 1126
watermark 265
web service message

structure 451
web services 449–464
web services architecture 452
white space 1088, 1092, 1093
white space handling 145

overriding default behavior 533
whitespace, a config element 502, 503, 533
widgets 53, 471–492

button 472
check box 473
check list 475
date-time 479
default 483
image 484
natural size of 53
numeric 485
signature 489
text edit 489

widgets. See also user interface.
WSDL 449
wsdlConnection, a connectionSet element 457
WW, a picture clause symbol 1126

XFA Specification
Index — 1526

X
X, a picture clause symbol 1141
xdc, an xdp packet 999
XDP 21
xdp, an xdp packet 999
XFA

content elements 35
family of grammars 18
introduction 16–30
key features 16
layout objects 251
major components of 22–26
names 75
scenarios for use 16–18

XFA Config DOM 501–537
XFA Configuration DOM 539

influence on extended data mapping 501
XFA Data DOM 83, 122–152, 458, 501

changes to 148
dataGroup 123, 128
dataValue 123, 125
logical equivalence 151
properties 124
relationship with XML Data DOM 128
structure 123
updating for choice lists 479

XFA data packaging. See XDP
XFA DOM 82
XFA Foreground. See XFAF
XFA form

fill in 27
processing 28

XFA Form DOM
See Form DOM

XFA form lifecycle
creating an XFA template 27
filling in an XFA form 27
processing an XFA form 28

XFA Template DOM
See Template DOM

XFAF 20, 24, 26, 29, 31, 32, 43, 49, 52, 72, 73, 248, 264, 472, 565, 1147,
1477, 1496

xfa-spacerun, a value of CSS style attribute 1166
xfdf, an xdp packet 1000
XHTML

See rich text
XML data document

influence on extended data mapping 501
XML Data DOM 83

changes to 149
logical structures 132
relationship with XFA Data DOM 148
unloading 149

XML data DOM 538
XML decoded 1081
XML digital signature properties

CreateDate 557
Description 557
description 557
xmp 557
xmpmeta 557

XML digital signatures 545, 552–559
digital certificates 555
removing a signature 555
signature manifest 555
signing a form 553
template-provided instructions 555
verifying a signature 555

XML encoded 1082
xmp, a property used in XML digital signatures 557
xmpmeta, a property used in XML digital signatures 557
xmpmeta, an xdp packet 1001
xsl, a config element 538
XSLT transformations 538–539

postprocessing 538
preprocessing 538

XuanTong 1123

Y
Y, a picture clause symbol 1128
YY, a picture clause symbol 1126
YYY, a picture clause symbol 1128
YYYY, a picture clause symbol 1126
YYYYY, a picture clause symbol 1128

Z
Z, a picture clause symbol 1131, 1135
Z, a picture clause symbol 1135
z, a picture clause symbol 1132, 1135
z, a picture clause symbol 1135
Z-order 70, 266, 280
zz, a picture clause symbol 1132

	XML Forms Architecture (XFA) Specification
	Contents
	Preface
	Intellectual Property
	Document Contents
	Intended Audience
	Perspective Used in Describing Processing Guidelines
	Associated Schemas
	Related Documentation
	What’s New
	Conventions
	Notational Conventions
	Typefaces
	Unicode Character Codes
	Document Object Model Notation
	Optional Terms

	Graphical Conventions
	Layout Drawing Conventions

	Part 1: XFA Processing Guidelines
	Introduction to XML Forms Architecture (XFA)
	Key Features
	Scenarios for Using a Form Described by XFA
	Interacting with a User
	Form Appearance
	Actions the User Can Trigger
	Accessibility and Field Navigation

	Printing Forms
	Processing Machine-Generated Data

	Family of XFA Grammars
	Representation of an XFA Form
	The Relationship between XFA and PDF

	Packaging an XFA Form for Application Interchange
	XML Data Package (XDP)
	PDF Document
	Shell PDF
	XDP Versus PDF Packaging

	Major Components of an XFA Form: XFA Template and Data
	XFA Template
	About XFA Template
	Containers of Fixed and Variable Content
	The draw element, a container for fixed content
	The field element, a container for variable data

	Containers of Other Containers
	Laying Out the Containers (and Their Data) to Create the Form’s Appearance
	Scripted Components of an XFA Template

	Data

	Data Binding: Making the Connection Between XFA Template and Data
	Lifecycle of an XFA Form
	Creating an XFA Template
	Filling Out an XFA Form
	Opening a Form
	Providing Data to the Form
	Saving an In-Progress Version of the Form
	Committing a Form

	Processing Form Data, a Server Application Task

	Static versus Dynamic Forms

	Template Features for Designing Static Forms
	Form Structural Building Blocks
	Container Elements
	Containers Associated with Variable Content
	Field
	Exclusion Group

	Containers That Group Other Container Elements
	Template
	Subform
	Exclusion Group

	Content Elements
	User Interface

	Basic Composition
	Measurements
	Values
	Units
	Angles
	Restrictions

	Border Formatting
	Borders
	Thickness
	Fill

	Content Types
	Text
	Date, Time, and DateTime
	Boolean, Integer, Decimal, and Float
	Absent Content
	Decimal Point (Radix Separator)

	Images
	Images Provided as Data
	Scaling the Image to Fit the Container (aspect)

	External Data

	Formatting Text That Appears as Fixed or Variable Content
	Layout Strategies
	Paragraph and Font Formatting of Fixed and Variable Content
	Alignment and Justification
	Line Height
	Other Formatting

	Formatting Rich Text for Fixed and Variable Content
	Rich Text Used for Formatting
	Rich Text Used to Embed Objects
	Rich Text Used for Hyperlinks

	Formatting Variable Content
	Picture-Clause Formatting in General
	Locale-Specific Picture Clauses

	Barcode Formatting of Variable Text

	Access Restrictions
	Basic Layout
	Box Model
	Barcode
	Captions
	Fields
	Images
	Subform
	Text
	Size, Margins and Borders of Widgets
	Size
	Margins and Borders

	Size Requirement for Containers
	Clipping
	Rotating Containers
	Rotating Positioned Content
	Rotating Flowed Content

	Transformations

	Flowing Text Within a Container
	Selection and Modification of the Font
	Text Layout in the Horizontal Direction
	Text Layout in the Vertical Direction
	Tab Stops
	Tab Leader Pattern
	Automatic Hyphenation

	Text Overflow
	Concealing Container Elements
	Explicitly Concealing Containers
	Concealing Containers Depending on View
	Exclusion of Hidden Containers in the Data Binding Process

	Appearance Order (Z-Order)
	Extending XFA Templates
	Adding Custom Named and/or Nested Data to a Template (extras)
	Adding Metadata or Comments to a Template (desc)

	Connecting the PDF to the XFA Template
	Flags
	Resources
	Field Names
	Field location

	Object Models in XFA
	XFA Names
	Document Object Models
	General Information
	Hierarchy of DOMs
	DOMs and XML
	Grouping Elements and Whitespace
	Properties vs. Children
	Properties
	Children

	The DOMs Used in XFA
	The Configuration DOM
	The Connection Set DOM
	The Connection Set Data DOM
	The Data Description DOM
	The Form DOM
	The Layout DOM
	The Locale Set DOM
	The Source Set DOM
	The Template DOM
	The XFA DOM
	The XFA Data DOM
	The XML Data DOM

	Interaction of the DOMs
	Templating versus Binding
	XML Data DOM and XFA Data DOM
	Template DOM, XFA Data DOM, and Form DOM
	Template DOM, Form DOM, and Layout DOM

	Scripting Object Model
	About SOM Expressions
	The Receipt Example

	SOM Conventions
	Basic Object References
	Compound Object Names
	Shortcuts
	More about $record

	Repeated Elements
	Explicitly Named Objects
	Transparent Nodes
	Area Objects Are Always Transparent
	Variables Objects Are Always Transparent
	Other Transparent Objects
	Traverse Objects Are Never Transparent

	Reference by Class
	Attributes
	Internal Properties and Methods
	Name clashes
	Selecting All Child Nodes
	Selecting All Sibling Nodes
	Selecting a Subset of Sibling Nodes
	The Parent Property
	Selecting Descendants At Any Level
	SOM Expressions That Include Periods and Dashes
	SOM only
	Mixed SOM/script context

	Using SOM Expressions in FormCalc
	Runtime resolution of object names

	Using SOM Expressions in JavaScript
	Obtaining the value of an expression
	SOM expressions that use special characters

	Using SOM Expressions in Bind References

	Relative References
	The Current Container
	Unqualified References to Children of the Container
	Unqualified References to Siblings of the Container
	Unqualified References to Ancestors of the Container
	Differences Between Qualified and Unqualified References
	"$." Versus Unqualified SOM Expressions
	Inferred Index
	Inferred Index for Ancestors of the Container
	Relative Index

	SOM Expressions That Reference Variables Properties

	Exchanging Data Between an External Application and a Basic XFA Form
	Creating, Updating, and Unloading a Basic XFA Data DOM
	Background and Goals
	XFA Data DOM Basic Concepts
	About the XFA Data DOM
	dataValue Nodes
	dataGroup Nodes
	Relationship Between the XFA Data DOM and the XML Data DOM
	Tree Notation

	Default Data Mapping Rules
	Document Range
	XML Logical Structures
	Start Element
	Namespaces
	Record Elements

	Data Value Elements
	Data Values Containing Character Data
	Data Values Containing Mixed Content
	Data Values Containing Empty Elements
	Data Values Representing Null Data
	Null Data in Mixed Content
	Data Values Containing Element Content

	Data Group Elements
	Attributes
	Null Values with Attributes

	White Space Handling
	White Space in Data Groups
	White Space in Data Values

	Rich Text
	Image Data

	Updating the XML Data DOM for Changes Made to the XFA Data DOM
	Updating the XFA Data DOM for Changes Made to the XML Data DOM (Append Loading)
	Unload Processing
	Unloading Node Type Information
	Unloading Null Data
	Logical Equivalence

	Localization and Canonicalization
	Requirements for Localization
	Satisfying Locale-Dependent User Expectations
	Specifying the Locale to Use During Localization and Canonicalization
	Resolving Locale Properties
	About Locale Names
	About the Canonical Format Used in the Data and Form DOMs

	About Picture Clauses
	Limitations in Picture Clauses
	Defining Locales
	Run-time locale definition

	Selecting Between Alternate Picture Clauses

	Dataflow Paths for Localizing and Canonicalizing Data
	Rules for Localizing Data
	The localeSet Element
	Calendar symbols
	Date and time symbols
	Date patterns
	Time patterns
	Currency symbols
	Number patterns
	Number symbols

	Loading a Template to Produce the XFA Template DOM
	Creating an XML Template DOM
	Creating an XFA Template DOM
	Supporting Template-Creator Stamps

	Basic Data Binding to Produce the XFA Form DOM
	About Data Binding
	Conventions
	Principles of Data Binding
	The Bind Element
	The match property
	The picture property
	The ref property

	Simple Example of Data Binding
	Data Binding Steps
	Create Form Nodes and Match with Data Nodes (Steps 1 and 2)
	Form Objects with Non-Unique Names
	Content Type
	Transparent Nodes
	Exclusion Groups
	Choice Lists That Can Have Multiple Values
	Explicit Data References
	Multiple Bindings to the Same Data

	Match Attributes (Step 3)
	Re-Normalization (Step 4)
	Bind to Properties (Step 5)
	The setProperty property
	The bindItems property

	Calculations and Validations (Step 6)
	Form Ready Event (Step 7)
	Remerge and Incremental Merge (Step 8)

	Form Processing
	Data Output

	Representing and Processing Rich Text
	About Rich Text
	Rich Text Used for Formatting
	Rich Text That Inserts External Objects
	Rich Text That Contains Hyperlinks
	Version Identifiers for Rich Text Producers and Rich Text Specifications

	Representation of Rich Text Across XML and XFA DOMs
	Recognizing Rich Text
	Recognizing Data as Rich Text
	Recognizing Rich Text Introduced in the Template

	Representing Rich Text in the XFA Data DOM
	Converting Rich Text into Plain Text
	Properties of XFA Data DOM Objects That Represent Converted Rich Text
	Properties of XFA Template DOM Objects That Represent Converted Rich Text

	Providing Rich Text Data Through a User Interface
	Updating the XML Data DOM

	Rich Text That Contains External Objects
	Displaying and Printing Rich Text
	Using Rich Text
	Rich Text Grammar
	Inheritance of Rich Text Properties

	Template Features for Designing Forms with Repeating Sections
	Prototypes
	Defining Prototypes
	Referencing Prototypes
	Fragment from mytemplate.xdp
	Fragment from myprot.xdp (incorrect)
	Fragment from myprot.xdp (corrected)

	Overriding Prototype Properties
	Overriding Attributes
	Overriding Data Content
	Overriding Child Elements

	Resolving Prototypes with Traversals

	Forms with Repeated Fields or Subforms
	Repeated Subform Declarations
	Fixed Occurrence Numbers
	Record Mode
	Globals
	Data Window

	Template Features for Designing Dynamic Forms
	Container Elements
	Containers of Fixed Content
	Draw

	Containers That Group Other Container Elements
	Area

	Containers That Represent Physical Surfaces and Regions
	Content Area
	Page Area
	Page Set

	Types of Layout Elements

	Basic Composition
	Line, Arc, Rectangle and Border Formatting
	Handedness
	Handedness of Stroke Elements
	Handedness of Borders and Rectangles

	Content Types
	Lines, Rectangles, and Arcs
	Images
	Background (draw) Images
	Icon buttons
	Scaling the Image to Fit the Container (aspect)
	Storing Images Inside PDF

	Formatting Text in Dynamic Forms
	Repeating Elements using Occurrence Limits
	Basic Layout in Dynamic Forms
	The Layout Processor
	Box Model
	Area
	ContentArea Layout Object
	Geometric Figure
	PageSet Element
	PageArea Element
	Size Requirement for Containers

	Layout Strategies
	Positioned Layout
	Forbidden Condition: Negative Coordinates

	Clipping
	Locating Containers Based on Data

	Page Selection
	Break Conditions
	Page Background
	Appearance Order (Z-Order)

	Grammar Excluded from XFAF

	Layout for Growable Objects
	Background and Goals
	Growable Containers
	Growth and the Box Model
	Growth in Growable Positioned Objects

	Text Placement in Growable Containers
	Text Layout with Growable Width
	Text Layout with Growable Height

	Flowing Layout for Containers
	Top-to-Bottom Layout
	Left-to-Right Top-to-Bottom Tiled Layout
	Right-to-Left Top-to-Bottom Tiled Layout

	Interaction Between Growable Objects and Flowed Content
	Non-Interactive Form Layout
	Interactive Form Fill-In
	Effect of Container Rotation on Flowed Layout

	The Layout DOM
	The Layout Algorithm
	Error Handling
	Content Overflow

	Content Splitting
	Split Restrictions
	Splitting a Container Having Child Containers
	Borders and Splitting
	Flowing Between ContentArea Objects
	Overriding ContentArea Boundaries

	Pagination Strategies
	The duplexImposition property - not a page qualifier
	Determining the start point
	Occurrence Limits in Ordered Pagination
	Algorithm for Maximum Occurrence Limits
	Algorithm for Minimum Occurrence Limits

	Qualified pagination strategies
	The pagePosition property
	The oddOrEven property
	The blankOrNotBlank property
	Page selection algorithm
	Matching the layout state
	Breaking to a different page within the page set
	Termination processing

	Combining multiple pagination strategies
	Sibling (alternate) page sets
	Nested page sets

	Adhesion
	Leaders and Trailers
	Break Leaders and Trailers
	Bookend Leaders and Trailers
	Overflow Leaders and Trailers
	Overflow Leader/Trailer Lists
	Inheritance of Overflow Leaders and Trailers
	Combined Leaders and Trailers

	Tables

	Dynamic Forms
	Static Forms Versus Dynamic Forms
	Data Binding for Dynamic Forms
	Variable Number of Subforms
	The Occur Element
	The initial property
	The max property
	The min property

	Blank Form
	Greedy Matching
	Globals
	Explicit Data References
	Subform Set
	Instance Manager
	Using Fixed Multiple Occurrences for Pseudo-Static Forms
	Input data for this example

	Layout for Dynamic Forms
	Adhesion in Dynamic Forms
	Break Conditions for Dynamic Forms
	Break on Entry
	Break to Empty pageArea or contentArea
	Combining startNew with beforeTarget
	Conditional Break on Entry
	Inserting a Trailer
	Inserting a Leader

	Break on Exit
	Break on Overflow
	Combining Breaks and Occurrence Limits
	Combining Break and Maximum Occurrence
	Combined Break and Minimum Occurrence

	Automation Objects
	How Script Objects Are Used Within Automation Objects
	Purchase Order Example

	Document Variables
	Variables Used to Hold Boilerplate or Image References
	Variable sets

	Variables Used to Define Named Script Objects
	Instantiation of Named Script Objects
	Declaring and Referencing Named Script Objects

	Variables in datasets

	Calculations
	About
	Activation
	Result

	Validations
	About
	As compared to UI validation
	As compared to XML validation

	Types of Validation Tests
	Activation
	Initialization
	Interactive
	Non-Interactive

	User Interactions With Validation Tests
	Error and Warning Messages
	Interacting with the User to Obtain a Valid Value

	Responding to Test Failures
	The nullTest attribute
	The formatTest attribute
	The scriptTest attribute
	The datatype test
	The validationMessaging option

	Events
	Cancelling Event-Driven Actions
	Event Propagation
	Event Classes
	Application Events
	DOM Events
	Subform Events
	Exclusion Group Events
	Field Events
	Change in the handling of choice list fields

	Connection Events
	Signing Events
	Instance Manager Events
	Validation Events

	Properties
	$event properties

	Order of Precedence When Multiple Actions Are Defined for an Event

	Order of Precedence for Automation Objects Activated by the Same Action
	Effect of changing the presence value

	Scripting
	Purpose of Scripting
	Specifying Where to Execute a Script
	Applications of the runAt="both" property

	Selecting a Script Language
	Object References
	Referring to the current container
	Naked References in JavaScript
	Passing a Pointer to an Object

	Setting Up a Scripting Environment
	The Relationship Between Scripts and Form Objects
	Exception Handling
	Picture Clauses and Localization
	Unicode Support

	Using Barcodes
	A note about the barcode images in this chapter
	Barcode type
	Content for Barcode Fields
	Pre-Processing of Barcode Data
	Framing
	Legends
	Adjusting the Size of the Barcode
	Module properties of one-dimensional barcodes
	Module and extra properties of two-dimensional barcodes
	Which 1D properties apply to which type
	Which 2D properties apply to which type
	Properties of radio-frequency ID Tags

	Forms That Initiate Interactions with Servers
	Types of Interactions
	Ways to Invoke Interactions
	Processing Rules
	Null Handling
	Standard Submit Processing
	Standard pre-submit processing on the client
	Standard submit processing on the host
	Standard post-submit processing on the client

	Standard Signature Processing
	Submitting Data and Other Form Content via E-mail
	Submitting Data and Other Form Content via HTTP
	Content Interchange
	Cycle of Operation in an HTTP Submit
	Examples

	Using Web Services
	Web Service Architecture
	Cycle of Operation in a Web Service Transaction
	Structure of a Web Service Message
	Example That Illustrates the Web Services Architecture
	Input message queries server for the trading price of a corporation
	Output message provides trading price (if successful) or a status indicator (if not successful)
	Definition file may define multiple individual operations, each using a different connection set
	Messages Represented in the Connection Data DOM
	Associating Fields and Exclusion Groups with Nodes in the Connection Data DOM
	Data Conditionally Copied Between the Data DOM and the Connection Data DOM
	Replying to the Web Server and Error Responses

	Schema and WSDL
	Linking a Data Description to a W3C Schema
	Linking a Data Description to a Sample Document

	Interacting with a Database
	The Source Set Packet
	The sourceSet element
	The source element
	The connect element
	The connectString element
	The user and password elements
	The command element
	The query element
	The recordSet Element
	The select element
	The map element
	The bind element

	Template features used with the Source Set DOM
	Fields bound to columns in the data base
	The push buttons
	Updates and rollbacks

	User Experience
	Widgets
	Barcode Widget
	Button
	Check Box and Check Button
	Check Buttons Not Contained in an Exclusion Group
	Check Buttons Contained in an Exclusion Group

	Choice List
	Choice List Before Interacting with User
	Choice list hidden when not active
	Choice list visible when not active

	User Selects Choice-List Field
	Whether the User May Select Multiple Items
	Whether the User May Provide A Data Value

	User Exits Choice-List Field
	Choice list which hides its list when inactive
	Choice list which displays its list when inactive

	Data Associated with Choice List Selections
	When to Update the XFA Data DOM

	Date/Time Editing Widget
	Field with a Date-Time Edit Widget Before Interacting with User
	User Selects a Field That Has Date-Time Edit Widget
	User Supplies Date and/or Time Data to the Field
	User De-Selects the Field Having a Date-Time Widget

	Default UI
	Image Edit Widget
	Image aspect

	Numeric Edit
	Appearance of a Numeric Edit Widget Before the Field is Selected
	User Selects a Field That Has a Numeric Edit Widget
	User Supplies Data
	Default Value Constraint

	User De-Selects the Field

	Password Edit Widget
	Signature Widget
	User in an Interactive Context Clicks on a Signature Widget
	User in an Interactive Context Changes Signed Data
	User in a Non-Interactive Context Hand-Signs a Printed Form

	Text Edit Widget
	Appearance of a Text Edit Widget Before the Field is Selected
	User Selects a Field That Has a Text Editing Widget
	User Supplies Data
	User De-Selects the Field

	User Experience with Digital Signatures
	Signature Event Produces an XML Digital Signature
	Signature Widget Produces a PDF Signature

	Accessibility and Field Navigation
	Traversal: Tabbing Order and Speech Order
	Explicitly Defined Keystroke-Initiated Traversals
	Default Keystroke-Initiated Traversal
	Non-Keystroke Traversals
	Traversal Initiated When Maximum Number of Characters Supplied
	Traversal When Speech Application Completes the Current Container

	Traversal Sequences That Include Objects Ineligible for Input Focus
	Delegating Focus to Another Container
	Script Override of Traversal Order

	Accelerator Keys: Using Keyboard Sequences to Navigate
	Speech of Text Associated with a Container
	Other Accessibility-Related Features

	The User Experience of Validation

	Dealing with Data in Different XML Formats
	Extended Mapping Rules
	Document Range
	Transforms
	The attributes Element
	The excludeNS Element
	The groupParent Element
	The ifEmpty Element
	The nameAttr Element
	The picture Element
	The presence Element
	The range Element
	The record Element
	The rename Element
	The startNode Element
	The whitespace Element
	The xfa:dataNode Attribute

	XSLT Transformations
	XSLT Preprocessing
	XSLT Postprocessing

	Security and Reliability
	Controlling XFA Versions and Updates
	Tracking and Controlling Templates Through Unique Identifiers
	Unique Identifiers and Time Stamps
	Processing Requirements for Template Designing Applications
	Processing Requirements for XFA Processing Applications

	Protecting an XFA Server from Attack
	Respecting External References in Image Data and Rich Text
	Discarding Unexpected Submitted Packets
	Encrypting Submitted Data
	Signing Submitted Data

	Protecting Users from Being Misled
	Signed Forms and Signed Submissions
	Types of Digital Signatures
	Using Digital Signatures to Achieve Different Levels of Security
	Differences Between XML and PDF Digital Signatures
	Using certified signatures to restrict changes
	What part of the document can be signed
	Tracking changes during a form’s lifetime

	Refresher on the Relationship Between XFA and PDF
	Integrity
	Using XML digital signatures for integrity
	Using PDF digital signatures for integrity

	Authenticity
	Using XML digital signatures for authenticity
	Using PDF Digital signatures for authenticity

	Non- Repudiability
	Usage Rights Signatures (Ubiquitized Documents)

	XML Digital Signatures
	Signing a Form
	Respecting the Signed State of a Form
	Removing a Signature
	Verifying a Signature
	Template Provides Instructions on Signature Operation
	Signature filter: Handler, algorithms, and certificates to use to produce a signature
	Manifest: Data and other content digested by the signature handler
	Signature destination
	XFA-Specific Information in the XML Digital Signature

	Example

	PDF Signatures
	PDF Signatures Applied to the Form Itself
	Respecting the Signed State of a Form
	PDF Signatures Accompanying Submitted Data

	Multiple-Appearance Signatures

	Using the Security Features of Web Services
	Structuring Forms for Portability and Archivability

	Part 2: XFA Grammar Specifications
	Template Specification
	Guide to the Template Specification
	XFA Profiles
	How to Read an Element Specification
	Properties
	Regular Properties
	One-of Properties
	Property Defaults

	Children
	Element Occurrence
	Singly Occurring Elements
	Multiply Occurring Elements

	Processing Instructions

	Template Reference
	The appearanceFilter element
	Content
	The id property
	The type property
	The use property
	The usehref property

	The arc element
	The circular property
	The edge property
	The fill property
	The hand property
	The id property
	The startAngle property
	The sweepAngle property
	The use property
	The usehref property

	The area element
	The area property
	The colSpan property
	The desc property
	The draw property
	The exObject property
	The exclGroup property
	The extras property
	The field property
	The id property
	The name property
	The relevant property
	The subform property
	The subformSet property
	The use property
	The usehref property
	The x property
	The y property

	The assist element
	The id property
	The role property
	The speak property
	The toolTip property
	The use property
	The usehref property

	The barcode element
	The charEncoding property
	The checksum property
	The dataColumnCount property
	The dataLength property
	The dataPrep property
	The dataRowCount property
	The encrypt property
	The endChar property
	The errorCorrectionLevel property
	The extras property
	The id property
	The moduleHeight property
	The moduleWidth property
	The printCheckDigit property
	The rowColumnRatio property
	The startChar property
	The textLocation property
	The truncate property
	The type property
	The upsMode property
	The use property
	The usehref property
	The wideNarrowRatio property

	The bind element
	The match property
	The picture property
	The ref property

	The bindItems element
	The connection property
	The labelRef property
	The ref property
	The valueRef property

	The bookend element
	The id property
	The leader property
	The trailer property
	The use property
	The usehref property

	The boolean element
	Content
	The id property
	The name property
	The use property
	The usehref property

	The border element
	The break property
	The corner property
	The edge property
	The extras property
	The fill property
	The hand property
	The id property
	The margin property
	The presence property
	The relevant property
	The use property
	The usehref property

	The break element
	The after property
	The afterTarget property
	The before property
	The beforeTarget property
	The bookendLeader property
	The bookendTrailer property
	The extras property
	The id property
	The overflowLeader property
	The overflowTarget property
	The overflowTrailer property
	The startNew property
	The use property
	The usehref property

	The breakAfter element
	The id property
	The leader property
	The script property
	The startNew property
	The target property
	The targetType property
	The trailer property
	The use property
	The usehref property

	The breakBefore element
	The id property
	The leader property
	The script property
	The startNew property
	The target property
	The targetType property
	The trailer property
	The use property
	The usehref property

	The button element
	The extras property
	The highlight property
	The id property
	The use property
	The usehref property

	The calculate element
	The extras property
	The id property
	The message property
	The override property
	The script property
	The use property
	The usehref property

	The caption element
	The extras property
	The font property
	The id property
	The margin property
	The para property
	The placement property
	The presence property
	The reserve property
	The use property
	The usehref property
	The value property

	The certificate element
	Content
	The id property
	The name property
	The use property
	The usehref property

	The certificates element
	The credentialServerPolicy property
	The id property
	The issuers property
	The keyUsage property
	The oids property
	The signing property
	The subjectDNs property
	The url property
	The urlPolicy property
	The use property
	The usehref property

	The checkButton element
	The border property
	The extras property
	The id property
	The margin property
	The mark property
	The shape property
	The size property
	The use property
	The usehref property

	The choiceList element
	The border property
	The commitOn property
	The extras property
	The id property
	The margin property
	The open property
	The textEntry property
	The use property
	The usehref property

	The color element
	The cSpace property
	The extras property
	The id property
	The use property
	The usehref property
	The value property

	The comb element
	The id property
	The numberOfCells property
	The use property
	The usehref property

	The connect element
	The connection property
	The id property
	The picture property
	The ref property
	The usage property
	The use property
	The usehref property

	The contentArea element
	The desc property
	The extras property
	The h property
	The id property
	The name property
	The relevant property
	The use property
	The usehref property
	The w property
	The x property
	The y property

	The corner element
	The color property
	The extras property
	The id property
	The inverted property
	The join property
	The presence property
	The radius property
	The stroke property
	The thickness property
	The use property
	The usehref property

	The date element
	Content
	The id property
	The name property
	The use property
	The usehref property

	The dateTime element
	Content
	The id property
	The name property
	The use property
	The usehref property

	The dateTimeEdit element
	The border property
	The comb property
	The extras property
	The hScrollPolicy property
	The id property
	The margin property
	The picker property
	The use property
	The usehref property

	The decimal element
	Content
	The fracDigits property
	The id property
	The leadDigits property
	The name property
	The use property
	The usehref property

	The defaultUi element
	The extras property
	The id property
	The use property
	The usehref property

	The desc element
	The boolean property
	The date property
	The dateTime property
	The decimal property
	The exData property
	The float property
	The id property
	The image property
	The integer property
	The text property
	The time property
	The use property
	The usehref property

	The digestMethod element
	Content
	The id property
	The use property
	The usehref property

	The digestMethods element
	The digestMethod property
	The id property
	The type property
	The use property
	The usehref property

	The draw element
	The anchorType property
	The assist property
	The border property
	The caption property
	The colSpan property
	The desc property
	The extras property
	The font property
	The h property
	The id property
	The keep property
	The locale property
	The margin property
	The maxH property
	The maxW property
	The minH property
	The minW property
	The name property
	The para property
	The presence property
	The relevant property
	The rotate property
	The setProperty property
	The traversal property
	The ui property
	The use property
	The usehref property
	The value property
	The w property
	The x property
	The y property

	The edge element
	The cap property
	The color property
	The extras property
	The id property
	The presence property
	The stroke property
	The thickness property
	The use property
	The usehref property

	The encoding element
	Content
	The id property
	The use property
	The usehref property

	The encodings element
	The encoding property
	The id property
	The type property
	The use property
	The usehref property

	The encrypt element
	The certificate property
	The id property
	The use property
	The usehref property

	The event element
	The activity property
	The execute property
	The extras property
	The id property
	The listen property
	The name property
	The ref property
	The script property
	The signData property
	The submit property
	The use property
	The usehref property

	The exData element
	Content
	The contentType property
	The href property
	The id property
	The maxLength property
	The name property
	The rid property
	The transferEncoding property
	The use property
	The usehref property

	The exObject element
	The archive property
	The boolean property
	The classId property
	The codeBase property
	The codeType property
	The date property
	The dateTime property
	The decimal property
	The exData property
	The exObject property
	The extras property
	The float property
	The id property
	The image property
	The integer property
	The name property
	The text property
	The time property
	The use property
	The usehref property

	The exclGroup element
	The access property
	The accessKey property
	The anchorType property
	The assist property
	The bind property
	The border property
	The calculate property
	The caption property
	The colSpan property
	The connect property
	The desc property
	The event property
	The extras property
	The field property
	The h property
	The id property
	The layout property
	The margin property
	The maxH property
	The maxW property
	The minH property
	The minW property
	The name property
	The para property
	The presence property
	The relevant property
	The setProperty property
	The traversal property
	The use property
	The usehref property
	The validate property
	The w property
	The x property
	The y property

	The execute element
	The connection property
	The executeType property
	The id property
	The runAt property
	The use property
	The usehref property

	The extras element
	The boolean property
	The date property
	The dateTime property
	The decimal property
	The exData property
	The extras property
	The float property
	The id property
	The image property
	The integer property
	The name property
	The text property
	The time property
	The use property
	The usehref property

	The field element
	The access property
	The accessKey property
	The anchorType property
	The assist property
	The bind property
	The bindItems property
	The border property
	The calculate property
	The caption property
	The colSpan property
	The connect property
	The desc property
	The event property
	The extras property
	The font property
	The format property
	The h property
	The id property
	The items property
	The keep property
	The locale property
	The margin property
	The maxH property
	The maxW property
	The minH property
	The minW property
	The name property
	The para property
	The presence property
	The relevant property
	The rotate property
	The setProperty property
	The traversal property
	The ui property
	The use property
	The usehref property
	The validate property
	The value property
	The w property
	The x property
	The y property

	The fill element
	The color property
	The extras property
	The id property
	The linear property
	The pattern property
	The presence property
	The radial property
	The solid property
	The stipple property
	The use property
	The usehref property

	The filter element
	The addRevocationInfo property
	The appearanceFilter property
	The certificates property
	The digestMethods property
	The encodings property
	The handler property
	The id property
	The lockDocument property
	The mdp property
	The name property
	The reasons property
	The timeStamp property
	The use property
	The usehref property
	The version property

	The float element
	Content
	The id property
	The name property
	The use property
	The usehref property

	The font element
	The baselineShift property
	The extras property
	The fill property
	The fontHorizontalScale property
	The fontVerticalScale property
	The id property
	The kerningMode property
	The letterSpacing property
	The lineThrough property
	The lineThroughPeriod property
	The overline property
	The overlinePeriod property
	The posture property
	The size property
	The typeface property
	The underline property
	The underlinePeriod property
	The use property
	The usehref property
	The weight property

	The format element
	The extras property
	The id property
	The picture property
	The use property
	The usehref property

	The handler element
	Content
	The id property
	The type property
	The use property
	The usehref property

	The hyphenation element
	The excludeAllCaps property
	The excludeInitialCap property
	The hyphenate property
	The id property
	The pushCharacterCount property
	The remainCharacterCount property
	The use property
	The usehref property
	The wordCharacterCount property

	The image element
	Content
	The aspect property
	The contentType property
	The href property
	The id property
	The name property
	The transferEncoding property
	The use property
	The usehref property

	The imageEdit element
	The border property
	The data property
	The extras property
	The id property
	The margin property
	The use property
	The usehref property

	The integer element
	Content
	The id property
	The name property
	The use property
	The usehref property

	The issuers element
	The certificate property
	The id property
	The type property
	The use property
	The usehref property

	The items element
	The boolean property
	The date property
	The dateTime property
	The decimal property
	The exData property
	The float property
	The id property
	The image property
	The integer property
	The name property
	The presence property
	The ref property
	The save property
	The text property
	The time property
	The use property
	The usehref property

	The keep element
	The extras property
	The id property
	The intact property
	The next property
	The previous property
	The use property
	The usehref property

	The keyUsage element
	The crlSign property
	The dataEncipherment property
	The decipherOnly property
	The digitalSignature property
	The encipherOnly property
	The id property
	The keyAgreement property
	The keyCertSign property
	The keyEncipherment property
	The nonRepudiation property
	The type property
	The use property
	The usehref property

	The line element
	The edge property
	The hand property
	The id property
	The slope property
	The use property
	The usehref property

	The linear element
	The color property
	The extras property
	The id property
	The type property
	The use property
	The usehref property

	The lockDocument element
	Content
	The id property
	The type property
	The use property
	The usehref property

	The manifest element
	The action property
	The extras property
	The id property
	The name property
	The ref property
	The use property
	The usehref property

	The margin element
	The bottomInset property
	The extras property
	The id property
	The leftInset property
	The rightInset property
	The topInset property
	The use property
	The usehref property

	The mdp element
	The id property
	The permissions property
	The signatureType property
	The use property
	The usehref property

	The medium element
	The id property
	The imagingBBox property
	The long property
	The orientation property
	The short property
	The stock property
	The trayIn property
	The trayOut property
	The use property
	The usehref property

	The message element
	The id property
	The text property
	The use property
	The usehref property

	The numericEdit element
	The border property
	The comb property
	The extras property
	The hScrollPolicy property
	The id property
	The margin property
	The use property
	The usehref property

	The occur element
	The extras property
	The id property
	The initial property
	The max property
	The min property
	The use property
	The usehref property

	The oid element
	Content
	The id property
	The name property
	The use property
	The usehref property

	The oids element
	The id property
	The oid property
	The type property
	The use property
	The usehref property

	The overflow element
	The id property
	The leader property
	The target property
	The trailer property
	The use property
	The usehref property

	The pageArea element
	The area property
	The blankOrNotBlank property
	The contentArea property
	The desc property
	The draw property
	The exclGroup property
	The extras property
	The field property
	The id property
	The initialNumber property
	The medium property
	The name property
	The numbered property
	The occur property
	The oddOrEven property
	The pagePosition property
	The relevant property
	The subform property
	The use property
	The usehref property

	The pageSet element
	The duplexImposition property
	The extras property
	The id property
	The name property
	The occur property
	The pageArea property
	The pageSet property
	The relation property
	The relevant property
	The use property
	The usehref property

	The para element
	The hAlign property
	The hyphenation property
	The id property
	The lineHeight property
	The marginLeft property
	The marginRight property
	The orphans property
	The preserve property
	The radixOffset property
	The spaceAbove property
	The spaceBelow property
	The tabDefault property
	The tabStops property
	The textIndent property
	The use property
	The usehref property
	The vAlign property
	The widows property

	The passwordEdit element
	The border property
	The extras property
	The hScrollPolicy property
	The id property
	The margin property
	The passwordChar property
	The use property
	The usehref property

	The pattern element
	The color property
	The extras property
	The id property
	The type property
	The use property
	The usehref property

	The picture element
	Content
	The id property
	The use property
	The usehref property

	The proto element
	The appearanceFilter property
	The arc property
	The area property
	The assist property
	The barcode property
	The bindItems property
	The bookend property
	The boolean property
	The border property
	The break property
	The breakAfter property
	The breakBefore property
	The button property
	The calculate property
	The caption property
	The certificate property
	The certificates property
	The checkButton property
	The choiceList property
	The color property
	The comb property
	The connect property
	The contentArea property
	The corner property
	The date property
	The dateTime property
	The dateTimeEdit property
	The decimal property
	The defaultUi property
	The desc property
	The digestMethod property
	The digestMethods property
	The draw property
	The edge property
	The encoding property
	The encodings property
	The encrypt property
	The event property
	The exData property
	The exObject property
	The exclGroup property
	The execute property
	The extras property
	The field property
	The fill property
	The filter property
	The float property
	The font property
	The format property
	The handler property
	The hyphenation property
	The image property
	The imageEdit property
	The integer property
	The issuers property
	The items property
	The keep property
	The keyUsage property
	The line property
	The linear property
	The lockDocument property
	The manifest property
	The margin property
	The mdp property
	The medium property
	The message property
	The numericEdit property
	The occur property
	The oid property
	The oids property
	The overflow property
	The pageArea property
	The pageSet property
	The para property
	The passwordEdit property
	The pattern property
	The picture property
	The radial property
	The reason property
	The reasons property
	The rectangle property
	The ref property
	The script property
	The setProperty property
	The signData property
	The signature property
	The signing property
	The solid property
	The speak property
	The stipple property
	The subform property
	The subformSet property
	The subjectDN property
	The subjectDNs property
	The submit property
	The text property
	The textEdit property
	The time property
	The timeStamp property
	The toolTip property
	The traversal property
	The traverse property
	The ui property
	The validate property
	The value property
	The variables property

	The radial element
	The color property
	The extras property
	The id property
	The type property
	The use property
	The usehref property

	The reason element
	Content
	The id property
	The name property
	The use property
	The usehref property

	The reasons element
	The id property
	The reason property
	The type property
	The use property
	The usehref property

	The rectangle element
	The corner property
	The edge property
	The fill property
	The hand property
	The id property
	The use property
	The usehref property

	The ref element
	Content
	The id property
	The use property
	The usehref property

	The script element
	Content
	The binding property
	The contentType property
	The id property
	The name property
	The runAt property
	The use property
	The usehref property

	The setProperty element
	The connection property
	The ref property
	The target property

	The signData element
	The filter property
	The id property
	The manifest property
	The operation property
	The ref property
	The target property
	The use property
	The usehref property

	The signature element
	The border property
	The extras property
	The filter property
	The id property
	The manifest property
	The margin property
	The type property
	The use property
	The usehref property

	The signing element
	The certificate property
	The id property
	The type property
	The use property
	The usehref property

	The solid element
	The extras property
	The id property
	The use property
	The usehref property

	The speak element
	Content
	The disable property
	The id property
	The priority property
	The rid property
	The use property
	The usehref property

	The stipple element
	The color property
	The extras property
	The id property
	The rate property
	The use property
	The usehref property

	The subform element
	The access property
	The allowMacro property
	The anchorType property
	The area property
	The assist property
	The bind property
	The bookend property
	The border property
	The break property
	The breakAfter property
	The breakBefore property
	The calculate property
	The colSpan property
	The columnWidths property
	The connect property
	The desc property
	The draw property
	The event property
	The exObject property
	The exclGroup property
	The extras property
	The field property
	The h property
	The id property
	The keep property
	The layout property
	The locale property
	The margin property
	The maxH property
	The maxW property
	The mergeMode property
	The minH property
	The minW property
	The name property
	The occur property
	The overflow property
	The pageSet property
	The para property
	The presence property
	The proto property
	The relevant property
	The restoreState property
	The scope property
	The setProperty property
	The subform property
	The subformSet property
	The traversal property
	The use property
	The usehref property
	The validate property
	The variables property
	The w property
	The x property
	The y property

	The subformSet element
	The bookend property
	The break property
	The breakAfter property
	The breakBefore property
	The desc property
	The extras property
	The id property
	The name property
	The occur property
	The overflow property
	The relation property
	The relevant property
	The subform property
	The subformSet property
	The use property
	The usehref property

	The subjectDN element
	Content
	The delimiter property
	The id property
	The name property
	The use property
	The usehref property

	The subjectDNs element
	The id property
	The subjectDN property
	The type property
	The use property
	The usehref property

	The submit element
	The embedPDF property
	The encrypt property
	The format property
	The id property
	The signData property
	The target property
	The textEncoding property
	The use property
	The usehref property
	The xdpContent property

	The template element
	The baseProfile property
	The extras property
	The subform property

	The text element
	Content
	The id property
	The maxChars property
	The name property
	The rid property
	The use property
	The usehref property

	The textEdit element
	The allowRichText property
	The border property
	The comb property
	The extras property
	The hScrollPolicy property
	The id property
	The margin property
	The multiLine property
	The use property
	The usehref property
	The vScrollPolicy property

	The time element
	Content
	The id property
	The name property
	The use property
	The usehref property

	The timeStamp element
	The id property
	The server property
	The type property
	The use property
	The usehref property

	The toolTip element
	Content
	The id property
	The rid property
	The use property
	The usehref property

	The traversal element
	The extras property
	The id property
	The traverse property
	The use property
	The usehref property

	The traverse element
	The extras property
	The id property
	The operation property
	The ref property
	The script property
	The use property
	The usehref property

	The ui element
	The barcode property
	The button property
	The checkButton property
	The choiceList property
	The dateTimeEdit property
	The defaultUi property
	The extras property
	The id property
	The imageEdit property
	The numericEdit property
	The passwordEdit property
	The picture property
	The signature property
	The textEdit property
	The use property
	The usehref property

	The validate element
	The extras property
	The formatTest property
	The id property
	The message property
	The nullTest property
	The picture property
	The script property
	The scriptTest property
	The use property
	The usehref property

	The value element
	The arc property
	The boolean property
	The date property
	The dateTime property
	The decimal property
	The exData property
	The float property
	The id property
	The image property
	The integer property
	The line property
	The override property
	The rectangle property
	The relevant property
	The text property
	The time property
	The use property
	The usehref property

	The variables element
	The boolean property
	The date property
	The dateTime property
	The decimal property
	The exData property
	The float property
	The id property
	The image property
	The integer property
	The manifest property
	The script property
	The text property
	The time property
	The use property
	The usehref property

	Config Common Specification
	Background
	The Configuration Data Object Model
	Defaults
	Scripting Interface

	Config Common Element Reference
	The adjustData element
	Content
	The desc property
	The lock property

	The attributes element
	Content
	The desc property
	The lock property

	The base element
	Content
	The desc property
	The lock property

	The common element
	The data property
	The desc property
	The locale property
	The localeSet property
	The lock property
	The log property
	The messaging property
	The suppressBanner property
	The template property
	The validationMessaging property
	The versionControl property

	The data element
	The adjustData property
	The attributes property
	The desc property
	The excludeNS property
	The incrementalLoad property
	The lock property
	The outputXSL property
	The range property
	The record property
	The startNode property
	The transform property
	The uri property
	The window property
	The xsl property

	The debug element
	The desc property
	The lock property
	The uri property

	The excludeNS element
	Content
	The desc property
	The lock property

	The groupParent element
	Content
	The desc property
	The lock property

	The ifEmpty element
	Content
	The desc property
	The lock property

	The incrementalLoad element
	Content
	The desc property
	The lock property

	The locale element
	Content
	The desc property
	The lock property

	The localeSet element
	Content
	The desc property
	The lock property

	The log element
	The desc property
	The lock property
	The mode property
	The threshold property
	The to property
	The uri property

	The message element
	The desc property
	The lock property
	The msgId property
	The severity property

	The messaging element
	The desc property
	The lock property
	The message property

	The mode element
	Content
	The desc property
	The lock property

	The msgId element
	Content
	The desc property
	The lock property

	The nameAttr element
	Content
	The desc property
	The lock property

	The outputXSL element
	The desc property
	The lock property
	The uri property

	The picture element
	Content
	The desc property
	The lock property

	The presence element
	Content
	The desc property
	The lock property

	The range element
	Content
	The desc property
	The lock property

	The record element
	Content
	The desc property
	The lock property

	The relevant element
	Content
	The desc property
	The lock property

	The rename element
	Content
	The desc property
	The lock property

	The severity element
	Content
	The desc property
	The lock property

	The startNode element
	Content
	The desc property
	The lock property

	The startPage element
	Content
	The desc property
	The lock property

	The suppressBanner element
	Content
	The desc property
	The lock property

	The template element
	The base property
	The desc property
	The lock property
	The relevant property
	The startPage property
	The uri property
	The xsl property

	The threshold element
	Content
	The desc property
	The lock property

	The to element
	Content
	The desc property
	The lock property

	The transform element
	The desc property
	The groupParent property
	The ifEmpty property
	The lock property
	The nameAttr property
	The picture property
	The presence property
	The ref property
	The rename property
	The whitespace property

	The uri element
	Content
	The desc property
	The lock property

	The validationMessaging element
	Content
	The desc property
	The lock property

	The versionControl element
	The lock property
	The outputBelow property
	The sourceAbove property
	The sourceBelow property

	The whitespace element
	Content
	The desc property
	The lock property

	The window element
	Content
	The desc property
	The lock property

	The xsl element
	The debug property
	The desc property
	The lock property
	The uri property

	Locale Set Specification
	The calendarSymbols element
	The name property
	The dayNames property
	The eraNames property
	The meridiemNames property
	The monthNames property

	The currencySymbol element
	Content
	The name property

	The currencySymbols element
	The currencySymbol property

	The datePattern element
	Content
	The name property

	The datePatterns element
	The datePattern property

	The dateTimeSymbols element
	Content

	The day element
	Content

	The dayNames element
	The abbr property
	The day property

	The era element
	Content

	The eraNames element
	The era property

	The locale element
	The desc property
	The name property
	The calendarSymbols property
	The currencySymbols property
	The datePatterns property
	The dateTimeSymbols property
	The numberPatterns property
	The numberSymbols property
	The timePatterns property
	The typeFaces property

	The localeSet element
	The locale child

	The meridiem element
	Content

	The meridiemNames element
	The meridiem property

	The month element
	Content

	The monthNames element
	The abbr property
	The month property

	The numberPattern Element
	Content
	The name property

	The numberPatterns Element
	The numberPattern property

	The numberSymbol element
	Content
	The name property

	The numberSymbols element
	The numberSymbol property

	The timePattern element
	Content
	The name property

	The timePatterns element
	The timePattern property

	The typeFace element
	The name property

	The typeFaces element
	The typeFace child

	Connection Set Specification
	About the Connection Set Grammar
	Connection Set Element Reference
	The connectionSet element
	The wsdlConnection property
	The xmlConnection property
	The xsdConnection property

	The effectiveInputPolicy element
	The id property
	The name property
	The use property
	The usehref property

	The effectiveOutputPolicy element
	The id property
	The name property
	The use property
	The usehref property

	The operation element
	Content
	The id property
	The input property
	The name property
	The output property
	The use property
	The usehref property

	The rootElement element
	Content
	The id property
	The name property
	The use property
	The usehref property

	The soapAction element
	Content
	The id property
	The name property
	The use property
	The usehref property

	The soapAddress element
	Content
	The id property
	The name property
	The use property
	The usehref property

	The uri element
	Content
	The id property
	The name property
	The use property
	The usehref property

	The wsdlAddress element
	Content
	The id property
	The name property
	The use property
	The usehref property

	The wsdlConnection element
	The dataDescription property
	The effectiveInputPolicy property
	The effectiveOutputPolicy property
	The name property
	The operation property
	The soapAction property
	The soapAddress property
	The wsdlAddress property

	The xmlConnection element
	The dataDescription property
	The name property
	The uri property

	The xsdConnection element
	The dataDescription property
	The name property
	The rootElement property
	The uri property

	Data Description Specification
	About the Data Description Grammar
	Data Description Grammar
	Labelling injected data
	Labelling relational data

	Data Description Element Reference
	dd:additions Attribute
	dd:association Element
	dd:key
	dd:name
	dd:mappedBy
	dd:target

	dd:dataDescription Element
	name attribute
	content

	dd:group Element
	dd:maxOccur Attribute
	dd:minOccur Attribute
	dd:model Attribute
	dd:nullType Attribute
	dd:primaryKey Attribute
	dd:reqAttrs Attribute

	Source Set Specification
	The Source Set Data Object Model
	Defaults
	Scripting Interface

	Source Set Element Reference
	The bind element
	The contentType property
	The id property
	The name property
	The ref property
	The transferEncoding property
	The use property
	The usehref property

	The boolean element
	Content
	The id property
	The name property
	The use property
	The usehref property

	The command element
	The delete property
	The id property
	The insert property
	The name property
	The query property
	The timeout property
	The update property
	The use property
	The usehref property

	The connect element
	The connectString property
	The delayedOpen property
	The extras property
	The id property
	The name property
	The password property
	The timeout property
	The use property
	The usehref property
	The user property

	The connectString element
	Content
	The id property
	The name property
	The use property
	The usehref property

	The delete element
	Content
	The id property
	The name property
	The use property
	The usehref property

	The extras element
	The boolean property
	The extras property
	The id property
	The integer property
	The name property
	The text property
	The use property
	The usehref property

	The insert element
	Content
	The id property
	The name property
	The use property
	The usehref property

	The integer element
	Content
	The id property
	The name property
	The use property
	The usehref property

	The map element
	The bind property
	The from property
	The id property
	The name property
	The use property
	The usehref property

	The password element
	Content
	The id property
	The name property
	The use property
	The usehref property

	The query element
	The commandType property
	The id property
	The map property
	The name property
	The recordSet property
	The select property
	The use property
	The usehref property

	The recordSet element
	The bofAction property
	The cursorLocation property
	The cursorType property
	The eofAction property
	The extras property
	The id property
	The lockType property
	The max property
	The name property
	The use property
	The usehref property

	The select element
	Content
	The id property
	The name property
	The use property
	The usehref property

	The source element
	The bind property
	The command property
	The connect property
	The id property
	The name property
	The use property
	The usehref property

	The sourceSet element
	The id property
	The name property
	The source property
	The use property
	The usehref property

	The text element
	Content
	The id property
	The name property
	The use property
	The usehref property

	The update element
	Content
	The id property
	The name property
	The use property
	The usehref property

	The user element
	Content
	The id property
	The name property
	The use property
	The usehref property

	XDP Specification
	About the XDP Grammar
	Role of XDP
	Overview of Packaging a PDF Document in XDP Format
	Extensibility of XDP and PDF

	XDP Element Language Syntax
	The xfa Processing Instruction
	XDP Namespace
	XDP Packets

	XDP Reference
	The config Element (an XDP Packet)
	The connectionSet Element (an XDP Packet)
	The datasets Element (an XDP Packet)
	The localeSet Element (an XDP Packet)
	The pdf Element (an XDP Packet)
	chunk element
	href

	The signature Element (an XDP Packet)
	The sourceSet Element (an XDP Packet)
	The stylesheet Element (an XDP Packet)
	The template Element (an XDP Packet)
	The xdc Element (an XDP Packet)
	The xdp Element
	xmlns:xdp
	uuid
	timeStamp

	The xfdf Element (an XDP Packet)
	The xmpmeta Element (an XDP Packet)

	Part 3: Other XFA-Related References
	Canonical Format Reference
	Date
	Notes

	Time
	Notes

	Date-Time
	Number
	Text

	FormCalc Specification
	Grammar and Syntax
	Language Overview
	Grammar
	Notational Conventions

	Lexical Grammar
	White Space
	Line Terminators
	Comments
	String Literals
	Number Literals
	Literals (General)
	Identifiers
	Keywords
	Operators
	Tokens

	Syntactic Grammar
	Basic Expressions
	Expressions Lists
	Simple Expressions
	Operator Precedence
	Numeric operations on non-numeric operands
	Boolean operations on non-Boolean operands
	String operations on non-string operands

	Logical Or Expressions
	Logical And Expressions
	Equality Expressions
	Relational Expressions
	Additive Expressions
	Multiplicative Expressions
	Unary Expressions
	Primary Expressions
	Declaration Expressions: Variables and User-Defined Functions
	Variables
	User-Defined Functions

	Assignment Expressions

	Accessors
	References
	Assignment of References
	Passing References to Functions
	Passing References to Methods
	Returning References from Methods and Functions
	Comparing References for Equality and Inequality
	Qualifying References by an Accessor or Method
	Other Reference Uses

	Control Expressions
	Break Expressions
	Continue Expression
	If Expressions
	Syntax
	Return

	For Expressions
	For Each Expressions
	Return

	While Expression
	Return

	Block Expressions, Explicit and Implied
	Block Expression

	Function and Method Calls
	Function Calls
	Method Calls
	Case Sensitivity
	Argument List

	FormCalc Support for Locale
	Locales
	Specifying a Locale (Locale Identifier String)
	Determining Which Locale to Use

	Date Format Styles
	Date Picture Clauses
	Localized Date Formats

	Time Format Styles
	Time Picture Clauses
	Localized Time Formats

	Date and Time Values

	Arithmetic Built-in Functions
	Abs()
	Syntax
	Parameters
	Returns

	Avg()
	Syntax
	Parameters
	Returns

	Ceil()
	Syntax
	Parameters
	Returns

	Count()
	Syntax
	Parameters
	Returns

	Floor()
	Syntax
	Parameters
	Returns

	Max()
	Syntax
	Parameters
	Returns

	Min()
	Syntax
	Parameters
	Returns

	Mod()
	Syntax
	Parameters
	Returns

	Round()
	Syntax
	Parameters
	Returns

	Sum()
	Syntax
	Parameters
	Returns

	Date And Time Built-in Functions
	Date()
	Syntax
	Returns

	Date2Num()
	Syntax
	Parameters
	Returns
	See Also

	DateFmt()
	Syntax
	Parameters
	Returns
	See Also

	IsoDate2Num()
	Syntax
	Parameters
	Returns
	See Also

	IsoTime2Num()
	Syntax
	Parameters
	Returns
	See Also

	LocalDateFmt()
	Syntax
	Parameters
	Returns
	See Also

	LocalTimeFmt()
	Syntax
	Parameters
	Returns
	See Also

	Num2Date()
	Syntax
	Parameters
	Returns
	See Also

	Num2GMTime()
	Syntax
	Parameters
	Returns
	See Also

	Num2Time()
	Syntax
	Parameters
	Returns
	See Also

	Time()
	Syntax
	Returns

	Time2Num()
	Syntax
	Parameters
	Returns
	See Also

	TimeFmt()
	Syntax
	Parameters
	Returns
	See Also

	Financial Built-in Functions
	Apr()
	Syntax
	Parameters
	Returns

	CTerm()
	Syntax
	Parameters
	Returns

	FV()
	Syntax
	Parameters
	Returns

	IPmt()
	Syntax
	Parameters
	Returns

	NPV()
	Syntax
	Parameters
	Returns

	Pmt()
	Syntax
	Parameters
	Returns

	PPmt()
	Syntax
	Parameters
	Returns

	PV()
	Syntax
	Parameters
	Returns

	Rate()
	Syntax
	Parameters
	Returns

	Term()
	Syntax
	Parameters
	Returns

	Logical Built-in Functions
	Choose()
	Syntax
	Parameters
	Returns

	Exists()
	Syntax
	Parameters
	Returns

	HasValue()
	Syntax
	Parameters
	Returns

	Oneof()
	Syntax
	Parameters
	Returns

	Within()
	Syntax
	Parameters
	Returns

	String Built-in Functions
	At()
	Syntax
	Parameters
	Returns

	Concat()
	Syntax
	Parameters
	Returns

	Decode()
	Syntax
	Parameters
	Returns
	See Also

	Encode()
	Syntax
	Parameters
	Returns
	See Also

	Format()
	Syntax
	Parameters
	Returns
	See Also

	Left()
	Syntax
	Parameters
	Returns

	Len()
	Syntax
	Parameters
	Returns

	Lower()
	Syntax
	Parameters
	Returns
	Bugs

	Ltrim()
	Syntax
	Parameters
	Returns

	Parse()
	Syntax
	Parameters
	Returns
	See Also

	Replace()
	Syntax
	Parameters
	Returns

	Right()
	Syntax
	Parameters
	Returns

	Rtrim()
	Syntax
	Parameters
	Returns

	Space()
	Syntax
	Parameters
	Returns

	Str()
	Syntax
	Parameters
	Returns
	See Also

	Stuff()
	Syntax
	Parameters
	Returns

	Substr()
	Syntax
	Parameters
	Returns

	Uuid()
	Syntax
	Parameters
	Returns
	Bugs

	Upper()
	Syntax
	Parameters
	Returns
	Bugs

	WordNum()
	Syntax
	Parameters
	Returns
	Bugs

	URL Built-in Functions
	Get()
	Syntax
	Parameters
	Returns
	See Also

	Post()
	Syntax
	Parameters
	Returns
	See Also

	Put()
	Syntax
	Parameters
	Returns

	Miscellaneous Built-in Functions
	Ref()
	Syntax
	Parameters
	Returns
	See Also

	UnitValue()
	Syntax
	Parameters
	Returns

	UnitType()
	Syntax
	Parameters
	Returns

	Picture Clause Specification
	About
	How Picture Clauses Are Used
	How Picture Clauses Evolved

	Picture-Clause Building Blocks
	Context-Specific Picture-Clause Symbols
	Global Picture-Clause Symbols
	Picture Clause Literals
	Output Formatting
	Input Parsing

	Locale Identifier Strings
	What a Locale Is
	Determining the Prevailing Locale
	Convention for Explicitly Naming Locale

	Complex Picture-Clause Expressions
	Predefined Picture Clauses
	Compound Picture Clauses
	Locale-Specific Picture Clauses
	Locale-Specific, Compound Picture Clauses
	Alternate Picture Clauses
	Alternate Locale-Specific Picture Clauses

	Calendars and Locale
	Asian Date, Time and Number Considerations
	Using Full-Width Characters and Ideographs in Date and Time Data
	Using Full-Width Characters in Number Data
	Tens Rule Numeric System
	Imperial (Alternate) Eras and Alternate Era Styles
	Japanese Date Time Rules
	Korean Date Time Rules
	Chinese (Taiwan) Date Time Rules
	Chinese (China) Date Time Rules
	Thai Date Time Rules

	Picture Clause Reference
	Conventions
	Date Picture Clauses
	Standard Date Picture Symbols
	Asian Date Symbols
	Requirements for Acceptable Date Picture Clauses
	Avoid Ambiguity in Date Picture Clauses Used for Input Parsing
	Avoid Multiple Occurrences of the Same Types of Symbols in Input Parsing

	Examples of Output Formatting
	Examples of Input Parsing
	Examples of Asian Output Formatting and Input Parsing
	Japanese Locale

	Time Pictures
	Standard Symbols
	Asian Time Picture Symbols
	Requirements for Acceptable Time Picture Clauses
	Examples of Output Formatting
	Examples of Input Parsing
	Examples of Asian Output Formatting and Input Parsing

	Numeric Pictures
	Uppercase Picture Symbols versus Lowercase Picture Symbols
	Effect of the 8 Picture Symbol
	Effect of the % Picture Symbol
	Requirements for Acceptable Number Picture Clauses
	Example of Output Formatting
	Examples of Input Parsing
	Similarly the picture clause S9999 would accept the value -5000 or +5000 or 5000.
	Examples of Picture Clauses Using Full-Width Digits

	Text Pictures
	Examples of Output Formatting
	Examples of Input Parsing

	Null-Category Picture Clauses
	Zero-Category Picture Clauses
	Examples of Input Parsing Against Null- and Zero-Category Picture Clauses
	Examples of Output Formatting Against Null- and Zero-Category Picture Clauses

	Rich Text Reference
	Summary of Supported XHTML and CSS Attributes
	Supported Container Elements
	HTML Element
	Body Element

	Hyperlink Support
	Supported Paragraph Formatting
	First Line Indent
	Horizontal Alignment
	Left Margin
	Line Break
	Line Spacing
	Orphan Control
	Page Break Control
	Paragraph
	Right Margin
	Set Margins
	Space After Paragraph
	Space Before Paragraph
	Vertical Alignment
	Widow Control

	Supported Character Formatting
	Baseline Adjustment
	Bold
	Color
	Font
	Font Scale
	Italic
	Kerning
	Letter Spacing
	Span
	Subscript
	Superscript
	Tab Stops
	Old Syntax for tab-stops (previous to XFA 2.8)
	Current syntax for xfa-tab-stops

	Underline and Strikethrough

	Retaining Consecutive Spaces (xfa-spacerun:yes)
	Embedded Object Specifications
	xfa:embedType
	xfa:embed
	xfa:embedMode

	Version Specification
	xfa:APIVersion
	xfa:spec

	Part 4: Adobe Implementation
	Adobe Implementation
	Non-conformance
	Incorrect default values for moduleWidth and moduleHeight in barcodes
	Use of "$" in JavaScript expressions
	Rich text processing
	Traverse operations restricted to a subset
	Overline not implemented
	Locale set typefaces element
	Pagination override in LiveCycle Forms ES2
	Non-numeric strings in numeric fields
	Captions in XFAF forms
	Font metrics
	Font lineThroughPeriod property
	Font-family in rich text
	Font-stretch in rich text
	Font-weight in rich text
	HAlign and vAlign on container elements
	HScrollPolicy value "on"
	Keep intact, next, and previous pageArea
	Rate on stipple element
	Submitting data via e-mail
	Stateless property on the script element
	Lower() and Upper() functions in FormCalc
	WordNum() function in FormCalc

	Implementation-specific behavior
	Order of event processing
	Registration order
	Execution order

	Form DOM is sparse
	Rich text in data not enclosed within an element
	Multiselect choicelist data containing invalid entries
	Controlling print scaling in Acrobat
	Adhering objects that are too big for the content area
	Barcode text encodings
	New variables dataset
	Multiple default submit URLs
	Submit text encodings
	Support for multiple signature appearances
	Handling of lockDocument auto
	Image formats
	Shell PDF generation and use
	Version of PDF and XFA generated by LiveCycle
	Support for authentication during client-server interchange
	Compression of XFA forms packaged inside PDF
	Backwards compatibility when processing rich text
	The old rich-text versioning system
	The new rich-text versioning system

	Extra scripting objects and DOMs
	Font Mapping in LiveCycle Forms ES2
	Generator Tag
	Image URIs
	JavaScript
	Locale
	LocaleSet
	Interpretation of default in a locale set

	Marking the Adobe Extensions Level in PDF
	PDF Link Annotation Permission Not Carried Over to XFA
	Schemes in URIs
	Signature encoding
	XFA processing instruction
	XLIFF Use
	XML 1.1
	XMP packet
	Creation tool identification
	Author identification
	Document identification
	Fragment catalog

	Config packet

	Processing instruction for backward compatibility
	Overriding compatibility flags via the Configuration DOM
	The LegacyCalcOverride flag
	The LegacyEventModel flag
	The LegacyPlusPrint flag
	The LegacyPositioning flag
	The LegacyRendering flag
	The LegacyXFAPermissions flag
	The v2.7-eventModel flag
	Pre-2.8 submit behavior
	Current submit behavior.

	The v2.7-layout flag
	The v2.7-scripting flag
	The v2.7-traversalOrder flag
	The v2.7-XHTMLVersionProcessing flag

	Adobe Config General Syntax Reference
	Guide to the Adobe Config General Syntax Reference
	Config General Element Reference
	The acrobat element
	The submitUrl property

	The agent element
	The desc property
	The lock property
	The name property

	The alwaysEmbed element
	Content
	The desc property
	The lock property

	The area element
	The level property
	The lock property
	The name property

	The batchOutput element
	The desc property
	The format property
	The lock property

	The config element
	The acrobat property
	The agent property
	The desc property
	The lock property
	The present property
	The trace property

	The debug element
	The uri property

	The defaultTypeface element
	Content
	The desc property
	The lock property
	The writingScript property

	The embed element
	Content
	The desc property
	The lock property

	The equate element
	The desc property
	The force property
	The from property
	The lock property
	The to property

	The equateRange element
	The desc property
	The from property
	The lock property
	The to property
	The unicodeRange property

	The flipLabel element
	Content
	The desc property
	The lock property

	The fontInfo element
	The alwaysEmbed property
	The defaultTypeface property
	The desc property
	The embed property
	The lock property
	The map property
	The neverEmbed property
	The subsetBelow property

	The labelPrinter element
	The batchOutput property
	The desc property
	The flipLabel property
	The fontInfo property
	The lock property
	The name property
	The xdc property

	The map element
	The desc property
	The equate property
	The equateRange property
	The lock property

	The neverEmbed element
	Content
	The desc property
	The lock property

	The present element
	The labelPrinter property

	The submitUrl element
	Content
	The desc property
	The lock property

	The subsetBelow element
	Content
	The desc property
	The lock property

	The trace element
	The area property
	The desc property
	The lock property

	The uri element
	The xdc element
	The desc property
	The lock property
	The uri property
	The xsl property

	The xsl element
	The debug property
	The uri property

	Adobe Config for Acrobat Syntax Reference
	Guide to the Config for Acrobat Syntax Reference
	Config for Acrobat Syntax Reference
	The acrobat element
	The acrobat7 property
	The common property
	The desc property
	The lock property
	The submitUrl property
	The validate property
	The validateApprovalSignatures property

	The acrobat7 element
	The desc property
	The dynamicRender property
	The lock property

	The adjustData element
	The attributes element
	The base element
	The common element
	The data property
	The locale property
	The localeSet property
	The log property
	The messaging property
	The suppressBanner property
	The template property
	The validationMessaging property
	The versionControl property

	The data element
	The adjustData property
	The attributes property
	The excludeNS property
	The incrementalLoad property
	The outputXSL property
	The range property
	The record property
	The startNode property
	The transform property
	The uri property
	The window property
	The xsl property

	The debug element
	The uri property

	The dynamicRender element
	Content
	The desc property
	The lock property

	The excludeNS element
	The groupParent element
	The ifEmpty element
	The incrementalLoad element
	The locale element
	The localeSet element
	The log element
	The mode property
	The threshold property
	The to property
	The uri property

	The message element
	The msgId property
	The severity property

	The messaging element
	The message property

	The mode element
	The msgId element
	The nameAttr element
	The outputXSL element
	The uri property

	The picture element
	The presence element
	The range element
	The record element
	The relevant element
	The rename element
	The severity element
	The startNode element
	The startPage element
	The submitUrl element
	Content
	The desc property
	The lock property

	The suppressBanner element
	The template element
	The base property
	The relevant property
	The startPage property
	The uri property
	The xsl property

	The threshold element
	The to element
	The transform element
	The groupParent property
	The ifEmpty property
	The nameAttr property
	The picture property
	The presence property
	The rename property
	The whitespace property

	The uri element
	The validate element
	Content
	The desc property
	The lock property

	The validateApprovalSignatures element
	Content
	The desc property
	The lock property

	The validationMessaging element
	The versionControl element
	The whitespace element
	The window element
	The xsl element
	The debug property
	The uri property

	Adobe Config for LiveCycle ES2 Reference
	Guide to the Config for Adobe LiveCycle ES2 Syntax Reference
	Config for LiveCycle ES2 Syntax Reference
	The accessibleContent element
	Content
	The desc property
	The lock property

	The addSilentPrint element
	Content
	The desc property
	The lock property

	The addViewerPreferences element
	Content
	The desc property
	The lock property

	The adjustData element
	The adobeExtensionLevel element
	Content
	The desc property
	The lock property

	The alwaysEmbed element
	Content
	The desc property
	The lock property

	The amd element
	Content
	The desc property
	The lock property

	The attributes element
	The base element
	The batchOutput element
	The desc property
	The format property
	The lock property

	The behaviorOverride element
	Content
	The desc property
	The lock property

	The cache element
	The desc property
	The lock property
	The templateCache property

	The change element
	Content
	The desc property
	The lock property

	The common element
	The data property
	The locale property
	The localeSet property
	The log property
	The messaging property
	The suppressBanner property
	The template property
	The validationMessaging property
	The versionControl property

	The compress element
	The desc property
	The lock property
	The scope property

	The compressLogicalStructure element
	Content
	The desc property
	The lock property

	The compressObjectStream element
	Content
	The desc property
	The lock property

	The compression element
	The compressLogicalStructure property
	The compressObjectStream property
	The desc property
	The level property
	The lock property
	The type property

	The conformance element
	Content
	The desc property
	The lock property

	The contentCopy element
	Content
	The desc property
	The lock property

	The copies element
	Content
	The desc property
	The lock property

	The creator element
	Content
	The desc property
	The lock property

	The currentPage element
	Content
	The desc property
	The lock property

	The data element
	The adjustData property
	The attributes property
	The excludeNS property
	The incrementalLoad property
	The outputXSL property
	The range property
	The record property
	The startNode property
	The transform property
	The uri property
	The window property
	The xsl property

	The debug element
	The uri property

	The defaultTypeface element
	Content
	The desc property
	The lock property
	The writingScript property

	The destination element
	Content
	The desc property
	The lock property

	The documentAssembly element
	Content
	The desc property
	The lock property

	The driver element
	The desc property
	The fontInfo property
	The lock property
	The name property
	The xdc property

	The duplexOption element
	Content
	The desc property
	The lock property

	The embed element
	Content
	The desc property
	The lock property

	The encrypt element
	Content
	The desc property
	The lock property

	The encryption element
	The desc property
	The encrypt property
	The encryptionLevel property
	The lock property
	The permissions property

	The encryptionLevel element
	Content
	The desc property
	The lock property

	The enforce element
	Content
	The desc property
	The lock property

	The equate element
	The desc property
	The force property
	The from property
	The lock property
	The to property

	The equateRange element
	The desc property
	The from property
	The lock property
	The to property
	The unicodeRange property

	The exclude element
	Content
	The desc property
	The lock property

	The excludeNS element
	The flipLabel element
	Content
	The desc property
	The lock property

	The fontInfo element
	The alwaysEmbed property
	The defaultTypeface property
	The desc property
	The embed property
	The lock property
	The map property
	The neverEmbed property
	The subsetBelow property

	The formFieldFilling element
	Content
	The desc property
	The lock property

	The groupParent element
	The ifEmpty element
	The includeXDPContent element
	Content
	The desc property
	The lock property

	The incrementalLoad element
	The incrementalMerge element
	Content
	The desc property
	The lock property

	The interactive element
	Content
	The desc property
	The lock property

	The jog element
	Content
	The desc property
	The lock property

	The labelPrinter element
	The batchOutput property
	The desc property
	The flipLabel property
	The fontInfo property
	The lock property
	The name property
	The xdc property

	The layout element
	Content
	The desc property
	The lock property

	The level element
	Content
	The desc property
	The lock property

	The linearized element
	Content
	The desc property
	The lock property

	The locale element
	The localeSet element
	The log element
	The mode property
	The threshold property
	The to property
	The uri property

	The map element
	The desc property
	The equate property
	The equateRange property
	The lock property

	The mediumInfo element
	The desc property
	The lock property
	The map property

	The message element
	The msgId property
	The severity property

	The messaging element
	The message property

	The mode element
	The modifyAnnots element
	Content
	The desc property
	The lock property

	The msgId element
	The nameAttr element
	The neverEmbed element
	Content
	The desc property
	The lock property

	The numberOfCopies element
	Content
	The desc property
	The lock property

	The openAction element
	The desc property
	The destination property
	The lock property

	The output element
	The desc property
	The lock property
	The to property
	The type property
	The uri property

	The outputBin element
	Content
	The desc property
	The lock property

	The outputXSL element
	The uri property

	The overprint element
	Content
	The desc property
	The lock property

	The packets element
	Content
	The desc property
	The lock property

	The pageOffset element
	The desc property
	The lock property
	The x property
	The y property

	The pageRange element
	Content
	The desc property
	The lock property

	The pagination element
	Content
	The desc property
	The lock property

	The paginationOverride element
	Content
	The desc property
	The lock property

	The part element
	Content
	The desc property
	The lock property

	The pcl element
	The batchOutput property
	The desc property
	The fontInfo property
	The jog property
	The lock property
	The mediumInfo property
	The name property
	The outputBin property
	The pageOffset property
	The staple property
	The xdc property

	The pdf element
	The adobeExtensionLevel property
	The batchOutput property
	The compression property
	The creator property
	The desc property
	The encryption property
	The fontInfo property
	The interactive property
	The linearized property
	The lock property
	The name property
	The openAction property
	The pdfa property
	The producer property
	The renderPolicy property
	The scriptModel property
	The silentPrint property
	The submitFormat property
	The tagged property
	The version property
	The viewerPreferences property
	The xdc property

	The pdfa element
	The amd property
	The conformance property
	The desc property
	The includeXDPContent property
	The lock property
	The part property

	The permissions element
	The accessibleContent property
	The change property
	The contentCopy property
	The desc property
	The documentAssembly property
	The formFieldFilling property
	The lock property
	The modifyAnnots property
	The plaintextMetadata property
	The print property
	The printHighQuality property

	The pickTrayByPDFSize element
	Content
	The desc property
	The lock property

	The picture element
	The plaintextMetadata element
	Content
	The desc property
	The lock property

	The presence element
	The present element
	The behaviorOverride property
	The cache property
	The common property
	The copies property
	The desc property
	The destination property
	The driver property
	The incrementalMerge property
	The labelPrinter property
	The layout property
	The lock property
	The output property
	The overprint property
	The pagination property
	The paginationOverride property
	The pcl property
	The pdf property
	The ps property
	The script property
	The submitUrl property
	The validate property
	The webClient property
	The xdp property
	The zpl property

	The print element
	Content
	The desc property
	The lock property

	The printHighQuality element
	Content
	The desc property
	The lock property

	The printScaling element
	Content
	The desc property
	The lock property

	The printerName element
	Content
	The desc property
	The lock property

	The producer element
	Content
	The desc property
	The lock property

	The ps element
	The batchOutput property
	The compress property
	The desc property
	The fontInfo property
	The jog property
	The lock property
	The mediumInfo property
	The name property
	The outputBin property
	The staple property
	The xdc property

	The range element
	The record element
	The relevant element
	The rename element
	The renderPolicy element
	Content
	The desc property
	The lock property

	The runScripts element
	Content
	The desc property
	The lock property

	The script element
	The currentPage property
	The desc property
	The exclude property
	The lock property
	The runScripts property

	The scriptModel element
	Content
	The desc property
	The lock property

	The severity element
	The silentPrint element
	The addSilentPrint property
	The desc property
	The lock property
	The printerName property

	The staple element
	The desc property
	The lock property
	The mode property

	The startNode element
	The startPage element
	The submitFormat element
	Content
	The desc property
	The lock property

	The submitUrl element
	Content
	The desc property
	The lock property

	The subsetBelow element
	Content
	The desc property
	The lock property

	The suppressBanner element
	The tagged element
	Content
	The desc property
	The lock property

	The template element
	The base property
	The relevant property
	The startPage property
	The uri property
	The xsl property

	The templateCache element
	The desc property
	The lock property
	The maxEntries property

	The threshold element
	The to element
	The transform element
	The groupParent property
	The ifEmpty property
	The nameAttr property
	The picture property
	The presence property
	The rename property
	The whitespace property

	The type element
	Content
	The desc property
	The lock property

	The uri element
	The validate element
	Content
	The desc property
	The lock property

	The validationMessaging element
	The version element
	Content
	The desc property
	The lock property

	The versionControl element
	The viewerPreferences element
	The addViewerPreferences property
	The desc property
	The duplexOption property
	The enforce property
	The lock property
	The numberOfCopies property
	The pageRange property
	The pickTrayByPDFSize property
	The printScaling property

	The webClient element
	The desc property
	The fontInfo property
	The lock property
	The name property
	The xdc property

	The whitespace element
	The window element
	The xdc element
	The desc property
	The lock property
	The uri property
	The xsl property

	The xdp element
	The desc property
	The lock property
	The packets property

	The xsl element
	The debug property
	The uri property

	The zpl element
	The batchOutput property
	The desc property
	The flipLabel property
	The fontInfo property
	The lock property
	The name property
	The xdc property

	Adobe Variables Set Specification
	The variables element
	The submitUrlIndex property

	The submitUrlIndex element
	Content

	Part 5: Appendices, Bibliography, Glossary and Index
	Algorithms for Determining Coordinates Relative to the Page
	Layout Objects
	AXTE Line Positioning
	Introduction
	Line Positioning
	Scope
	Definitions

	Discussion
	Vertical Positioning Algorithm
	Coordinate Systems
	Lines, Spans and Accumulation
	Special Lines
	Baseline Shift
	Relative Shifts
	The Real Baseline
	Line Height Adjustments

	Detailed Algorithms
	Span Level
	Basic Metric Adjustments
	General Metric Accumulation
	Line Spacing
	Baseline Shift

	Line Level
	Text Height
	Derived Spacing
	Margin Adjustments
	Full Height
	Adjustment for First Line Accents
	Baseline

	Block Level
	First Line Offset

	History of Changes in This Specification
	New Object Models
	Data Object Models
	Support for relational data added, version 3.1
	Data injection into data description added, version 3.1
	New variables dataset added, version 2.8
	Adobe XMP documented, version 2.6
	Adobe configuration syntax documented, version 2.6
	Connection Set DOM added, version 2.1
	Connection Data DOM added, version 2.1.
	Data Description DOM added, version 2.1.
	Layout DOM added, version 2.1

	Special Object Models
	Special Object Models, version 2.1

	New XFA Features
	Template Loading and Interpretation
	Compatibility flag override in LiveCycle, version 3.0
	Template version control, version 2.6
	Adobe legacy flags documented, version 2.6

	Container Properties
	Barcode examples expanded and illustrated, version 3.1
	Form fragments declaring traversals, version 2.8
	Access property extended to subforms, version 2.8
	Improved orphan and widow control, version 2.8
	Keep property extended to fields and draws, version 2.8
	Image storage in PDF, version 2.6
	New barcode types, version 2.6
	Form fragments, version 2.4
	Bar code encryption, version 2.4
	Barcode character encoding, version 2.4
	Exclusion group element’s capability expanded, version 2.1
	Hide/reveal containers depending on relevance, version 2.1
	Growable containers, version 2.1
	Paragraph formatting, version 2.1
	Barcode formatting, version 2.1
	Image aspect, version 2.1
	Noninteractive fields, version 2.1

	Automation and Web-Related Interactions
	Examples expanded and corrected, version 3.1
	Inactive presence, version 3.0
	Event propagation, version 3.0
	Validation events added, version 3.0
	Global validation handling control, version 3.0
	Authentication policy for web services, version 2.8
	Submit via WSDL/SOAP, version 2.8
	Pre- and post-submit events standardized, version 2.8
	Pre-sign and post-sign events added, version 2.8
	Pre- events may cancel the associated action, version 2.8
	Secure submit, version 2.5
	Index change event, version 2.5
	URL-encoded option for submit, version 2.4
	Choice-list enter and exit events pair up, version 2.4
	Manifests as scripting variables, version 2.4
	Support for Web Services, version 2.1
	Submission of form parts to a target URI, version 2.1
	Subforms may include calculations, verison 2.1
	Calculations may specify override conditions, version 2.1
	Scripts specify whether they should be executed on the client, server or both, version 2.1
	Event for populating drop-down choice list widgets, version 2.2
	Document variables, version 2.1
	Validation checks against validation-specific picture clauses, version 2.1
	Event source included as an event attribute, version 2.1
	Other

	Naming Conventions
	Template traverse element nameable by operation, version 2.8
	Support for tags and attribute names containing “.” and “_”, version 2.2
	Support for xsi:nil, version 2.1

	Data Mapping (Data Loading)
	Examples and discussion corrected, version 3.0
	New grouping transform, version 2.1
	Support for references in image data, version 2.1
	Specifying data attributes to use for naming nodes in the XFA Data DOM, version 2.1

	Data Unloading
	Use of data description when writing out XML, version 2.1

	Data Binding
	Dynamic forms examples corrected, version 3.1
	Complex binding, version 2.4
	Conditional binding, version 2.4
	Dynamic forms, version 2.1
	Repeating subforms, version 2.1
	Explicit data references, version 2.1
	Subform sets, version 2.1
	Record processing, version 2.1
	Global fields, version 2.1
	Data description element, version 2.1
	Default data binding to include attribute data, version 2.1
	Subform scope option, version 2.1

	Layout
	Control over duplex imposition
	Improved examples of pagination
	Corrected comparison of breakBefore and breakAfter leaders and trailers, version 3.1
	Change in keep behavior, version 2.8
	Pair kerning support, version 2.8
	Hyphenation support, version 2.8
	XFA Foreground (XFAF), version 2.5
	Change to initial page selection, version 2.5
	Explicit control of printer pagination, version 2.5
	Support for right-to-left text flow, version 2.4
	Conditional breaking, version 2.4
	Nesting tables, version 2.4
	Automatically breaking layout, version 2.1
	Dynamic layout, version 2.1
	Flowing layout strategy, version 2.1
	Flowing layout support for tables and table-rows, version 2.1

	Rendering
	Support for long or short edge duplexing, version 3.1
	Support for more label printers, version 3.1

	Rich Text
	Outbound hyperlinks, version 2.8
	Embedded objects, version 2.1
	Subscript and superscript support, version 2.1

	Accessibility and User Interface
	Examples added and corrected, version 3.1
	New Widget Types
	Signature widget, version 2.1
	Image entry widget, version 2.1
	Rich text option for text widget, version 2.1

	Widget Functionality
	Validation overrides, version 2.8
	Control over scrolling, version 2.5
	Checkmark shapes, version 2.5
	Button highlight, version 2.5
	Comb support in numeric and date edit widgets, version 2.5
	Explicit control over number of cells in combs, version 2.5
	Widget margins, version 2.1
	Widget borders, version 2.1

	Choice List Widgets
	Multiple selections, version 2.1
	Immediate commitment of selections, version 2.1

	Caption Appearance
	Clarification of caption reserve, version 2.5
	Captions can differ between views, version 2.4
	Caption margins, version 2.1

	Form Navigation
	Accelerator key allows keyboard sequence to bring fields into focus, version 2.2

	Aids for Vision-Impaired Users
	Role of a container may be defined, especially for table headings and rows, version 2.1
	Speech order prioritized, version 2.1

	Localization and Picture Clauses
	Data Localization
	Updated locale code format, version 2.6
	Locale Set, an XML grammar for representing localization information, version 2.1
	Data Picture Transform (template and config), version 2.1
	Default output format reflects locale, version 2.2

	Picture Clause Expressions
	Full-width character support re-documented, version 3.1
	Compound picture clause description corrected, version 2.6
	Uppercase versus lowercase picture symbols, version 2.5
	Generic pre-defined picture clauses, version 2.4
	New picture symbol "8", version 2.4
	Picture clause symbols for zero and null values, version 2.2
	Retention of precision in decimal numbers parsed, version 2.2
	Number picture clause symbol for fractional digits, version 2.2
	Compound picture clauses, version 2.1
	Symbols used for whitespace characters, version 2.1

	Support for Asian-Language Representations, version 2.1
	Imperial era years
	Ideographs
	Tens rule
	Support for East Asian scripts in locale designators
	FormCalc support for East Asian scripts in locale designators

	Scripting
	Scripting Object Model (SOM)
	Value tests in SOM expressions, version 2.4
	Referencing objects by their class names, version 2.1
	Document variables used as named script objects, version 2.2

	FormCalc
	New functions to access locale, version 2.1
	FormCalc support for East Asian scripts in locale designators

	JavaScript
	Change "ECMAScript" to "JavaScript", version 2.6

	Security and Control
	MDP+ document signatures, version 2.5
	XML digital signatures, version 2.2
	Uniquely identifying templates, version 2.2

	Modified XFA Features
	Deprecated XFA Features
	Config Syntax
	ZPL element deprecated, version 3.1

	Template Syntax
	Deprecated defaultUI element, version 3.1
	Refactored break element, version 2.4
	Deprecated hAlign and vAlign attributes on container elements, version 2.4
	Deprecated stateless attribute on the script element, version 2.4
	Deprecated transient attribute on the exclGroup element, version 2.4

	Schemas
	About the Schemas
	XFA Profiles
	Extracting the Schemas
	Using the Schemas to Validate an XFA Document
	Using the Schemas to Generate an XFA Document

	Bibliography
	General References
	Fonts and Character Encoding References
	Barcode References

	Glossary
	A
	B
	C
	D
	E
	F
	G
	I
	L
	M
	N
	O
	P
	R
	S
	T
	U
	V
	W
	X

	Index
	!
	$
	&
	.
	@
	\
	0
	9
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	R
	S
	T
	U
	V
	W
	X
	Y
	Z

