
Learning Based Opportunistic Admission Control
Algorithm for MapReduce as a Service

Jaideep Dhok
Internation Institute of

Information Technology,
Hyderabad

Gachibowli, Hyderabad
jaideep@research.iiit.ac.in

Nitesh Maheshwari
Internation Institute of

Information Technology,
Hyderabad

Gachibowli, Hyderabad
nitesh.maheshwari
@research.iiit.ac.in

Vasudeva Varma
Internation Institute of

Information Technology,
Hyderabad

Gachibowli, Hyderabad
vv@iiit.ac.in

ABSTRACT
Admission Control has been proven essential to avoid over-
loading of resources and for meeting user service demands in
utility driven grid computing. Recent emergence of Cloud
based services and the popularity of MapReduce paradigm
in Cloud Computing environments make the problem of ad-
mission control intriguing. We propose a model that al-
lows one to offer MapReduce jobs in the form of on-demand
services. We present a learning based opportunistic algo-
rithm that admits MapReduce jobs only if they are unlikely
to cross the overload threshold set by the service provider.
The algorithm meets deadlines negotiated by users in more
than 80% of cases. We employ an automatically supervised
Näıve Bayes Classifier to label incoming jobs as admissible
and non-admissible. From the list of jobs classified as admis-
sible, we then pick a job that is expected to maximize service
provider utility. An external supervision rule automatically
evaluates decisions made by the algorithm in retrospect, and
trains the classifier. We evaluate our algorithm by simulat-
ing a MapReduce cluster hosted in the Cloud that offers a
set of MapReduce jobs as services to its users. Our results
show that admission control is useful in minimizing losses
due to overloading of resources, and by choosing jobs that
maximize revenue of the service provider.

Keywords
Cloud Computing, Software as a Service, MapReduce, Ad-
mission Control

1. INTRODUCTION
Cloud computing has been recognized as a one of the

prominent new computing paradigms. The ability of cloud
to provide on demand access to software, application plat-
forms and infrastructure in the form of scalable services has
attracted considerable interest in the academic community
as well as in industry. MapReduce [14] has emerged as the

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ISEC’10 Feb 25-27 2010, Mysuru, Karnataka, India
Copyright 2010 ACM 978-1-60558-922-0/10/02 ...$5.00.

paradigm of choice for developing large scale data intensive
applications in the cloud. The state of the art in running
MapReduce in the cloud is in the form of the Elastic MapRe-
duce service by Amazon [2], which falls under the so called
Platform as a Service (PaaS) paradigm, where users can sub-
mit their applications developed in the form of MapReduce
jobs and resources necessary for performing computations
are assembled on the fly.

Although PaaS has its own advantages, MapReduce when
offered in the Software as a Service (SaaS) paradigm can
prove useful to users as well as the service providers, as users
can reuse MapReduce components and service providers can
expose MapReduce jobs as pay-per-use services which are
frequently in demand as building blocks for performing data
intensive computations. Service providers rent computa-
tional resources from an infrastructure provider, and allow
users to run ready to use services offered by the service
provider. Effective admission control mechanisms are nec-
essary in this setting in order to maximize utility from the
perspective of service providers, and to ensure quality of
the services for users [11, 12]. Admission control has been
essential in preventing overload of computational resources
thereby maintaining a guaranteed level of service.

In this paper we present a method for modeling MapRe-
duce jobs as ready to use services, thus effectively bringing
MapReduce in the Software as a Service paradigm. We ex-
tend the utility models proposed in previous work in order
to adopt it to MapReduce. We also address the problem of
admission control in this paradigm, particularly for Hadoop
[4] which has emerged as the leading MapReduce implemen-
tation. The admission control algorithm that we propose
uses a novel machine learning based approach for predict-
ing job admission. The algorithm trains itself according to
policy rules set by the service provider.

Most literature in this field has dealt with solving the
problem of admission control for publicly available compu-
tational grids, where users can run arbitrary jobs and pay
for the resources consumed by their applications [9, 13, 15,
16]. In our model, service providers offer a limited set of
MapReduce jobs as web services. Existing resource man-
agement algorithms in Hadoop lay their focus on policies
for sharing of resources and multiplexing job execution in-
stead of focusing on maximizing user and service provider
utility. Further, existing systems allow limited or no support
for admission control.

The remainder of this paper is organized as follows. We

Figure 1: MapReduce has seen tremendous growth in the
recent years especially for data intensive computing. The
figure presents popular uses of MapReduce as gathered from
the Hadoop PoweredBy page [7]. (Percentages in the figure
are approximate)

present the MapReduce as a Service paradigm and service
contracts in Section 2. Next, we give a brief overview of
scheduling in Hadoop, and present our admission control al-
gorithm in Section 3. Section 4 describes the methodology
and simulation models used in evaluating our algorithm and
the results of evaluation. We then compare our work with
existing work in Section 5. Finally, we conclude by summa-
rizing the key contributions, and touching on future topics
in this area in Section 6.

2. MAPREDUCE IN SAAS PARADIGM
Software as a Service (SaaS), Platform as a Service (PaaS)

and Infrastructure as a Service (IaaS) are the three key
paradigms that enable cloud computing. In these models,
software applications, software platforms and infrastructure
are provided to the users in the form of on-demand services,
and they are charged according to the pay-per-use model.
MapReduce, which has become a popular paradigm for large
scale data processing in the Cloud, is usually associated with
the PaaS paradigm, where the service provider offers a ready
to use MapReduce cluster where users can run their jobs. An
example of such a platform is the Amazon Elastic MapRe-
duce service [2] where users can provision Hadoop clusters
on the fly, and perform data intensive computation by pro-
viding the implementation of Map and Reduce components,
and process data that is hosted in Cloud based storage ser-
vices.

2.1 MapReduce Jobs as Services
We propose an extension to the above model that brings

MapReduce in the SaaS paradigm. In our model, service
providers offer a set of MapReduce applications as Web Ser-
vices. For performing data intensive operations, users search
from a repository of registered services and select a service
that performs the desired operation. The service repository
thus takes form of an online market place where users can
choose from a range of MapReduce services. A market is
beneficial to users, as the service providers are forced to
provide better service at cheaper rates in order to overcome

competition. Figure 2 shows the architecture.
MapReduce in the SaaS paradigm has following benefits

from the users’ perspective:

• Users can choose from a wide range of available appli-
cations to perform their computations, without having
to invest in development of such applications.

• Users do not have to deal with establishing and main-
taining MapReduce clusters, thus saving operational
cost.

• Users can combine MapReduce services to form a data
processing pipeline, where each unit in the pipeline
could be offered by a different service provider, thus
allowing the user to form a ‘mashup’ service.

After selecting a service, the users interact with it only
through the web service interfaces exposed by the service
provider. This helps in hiding implementation details from
the uses, which could be beneficial to the service provider in
cases where exposing application implementation details is
not preferred. Messages exchanged between the user and the
services are based on familiar transport mechanisms, for ex-
ample, XML or JSON over HTTP. Users specify input data
location in the cloud, metadata describing the computation
to be performed on the input data and contractual service
demands as parameters to the web service. Output data
could either be obtained directly as a response from the ser-
vice or it could be stored in the cloud. The latter approach
is useful if the user desires to perform further computation
by means of another service instance.

After accepting a request, a service provider then launches
a MapReduce job corresponding to the request in her clus-
ter that is hosted entirely in the cloud. The cloud in this
case can be a private cloud that emulates cloud computing
on privately owned infrastructure, or it could also be hosted
in public cloud computing offerings such as Amazon EC2
[1], GoGrid, RackSpace Cloud etc. We assume that dis-
tinct requests are independent of each other, and thus could
be completed in parallel. To increase revenue, the service
provider processes multiple requests simultaneously by mul-
tiplexing job execution in the MapReduce cluster to achieve
better resource utilization. The computational resources of
the cluster are shared proportionately among the users. The
proportion of resource allocated to a user’s request depends
upon the utility earned by the service provider after com-
pleting the user’s request.

2.2 Example Use Cases
Having discussed the model, we now present few use cases

of MapReduce as a service:

• Ad-hoc querying on large datasets - Consider a scenario
where an online movie rental company is offering a
large anonymized data set of its users’ order history (of
the order of few TBs) for analysis. The company can
also offer several ready to use operations such as data
selection, filtering, joins, pre-processing, etc. in the
form of MapReduce jobs. Users can chain several such
operations to extract useful informative patterns from
the orders data such as set of genre of orders placed
by users in a particular age group. Users do not have
to own the data set, and they can reuse components
developed by the service provider to extract desired
information.

Figure 2: The architecture of MapReduce as a Service. Our model is based on the Hadoop open source MapReduce framework.

• On demand crawling and indexing of web information
sources - A service provider could allow users to sub-
mit a list of seed URLs to be crawled using a domain
specific crawling algorithm developed by the service
provider. The crawling engine will utilize MapReduce
jobs for distributing workload across multiple nodes.
The service providers could also provide initial pre pro-
cessing utilities in the form of MapReduce jobs such as
jobs for extracting images and their alt-text and sur-
rounding text from crawled web pages. Users can pay
the provider only for the resources consumed during
their crawl process, such as network bandwidth, disk
space consumed by the crawled data etc.

• Document Format Conversion Service - In this exam-
ple, users submit a list of documents stored in the cloud
to the service provider, along with the desired out-
put format for the documents. The service provider
can then offer MapReduce jobs to convert documents
in the desired file format. Example applications in-
clude on-demand video and audio conversion, generat-
ing thumbnails from video files etc.

2.3 Contractual Service Agreement
In MapReduce as a service model, users only pay for the

share of resources consumed for their computation. Besides
the demand of correctness of computation, deadline for per-
forming the computation is also an integral part of users’
expectation about the quality of service. Thus the price of
the resources that the user is willing to pay and the dead-
line that the service provider agrees by, constitute the ser-
vice contract in this model. The user and service providers
must negotiate and mutually agree upon this contract. We
do not address the problem of price determination in this
paper; auctioning mechanisms such as the Dutch auction or
the English auction could be used effectively for the purpose
of judging the value of service.

Users specify utility functions that indicate the price they
are willing to pay as a function of time taken to complete
service request. We extend the generic three phase utility
functions proposed by [9, 13, 15, 16]. In this framework,
the users specify a soft deadline and a hard deadline. If

the request completes before the soft deadline, a user pays
the complete amount he/she agreed upon before submitting
the request. After the soft deadline, the utility from the
perspective of the user degrades, until the hard deadline,
after which the user is no longer interested in the outcome
of the request and is unwilling to pay for completion of the
service. The decay in the utility could be linear, or the
rate of decay could also vary with time passed since the soft
deadline. The following set of parameters capture the set of
utility functions that exhibit this behavior.

Formally, utility can be expressed as a function of time:

U(t) =

8<:
U0 if 0 < t ≤ T1

U0 − α(t− T1)β if T1 < t ≤ T2

UP if t > T2

where, t = 0 is the time when a service request is accepted.
U0 is the initial utility that the user is willing to pay if the
request is completed before the soft deadline T1, after which
the utility decays until the hard deadline T2. Users can
control the values of decay parameters α and β. Finally, UP
gives the utility that the users are willing to pay after the
hard deadline. A negative value of UP implies a penalty to
be incurred by the service provider for failing to meet the
hard deadline. If UP is zero after T2, it means that the user
is no longer interested in the outcome of the service, and
thus will not pay any charges to the provider. The provider
is thus free to cancel the request.

Figure 3: Utility Functions for different values of decay pa-
rameters.

The values of the decay parameters (α and β) represent
the users interest in the outcome of the service request. A
value of β = 1 gives a linear degradation in the utility if
the job is not completed within the soft deadline. Similarly
a value of β = 0 indicates a sharp drop off in the users
interest if the soft deadline is missed. Decay functions for
various values of α and β are shown in Figure 3.

The next section describes the need for admission control
algorithms for the MapReduce as a Service model and our
proposed algorithm.

3. PROPOSED ADMISSION CONTROL AL-
GORITHM

We attempt to solve the problem of admission control
for Hadoop, which is a leading open source framework for
MapReduce. We briefly mention the architecture of Hadoop
MapReduce, and then proceed to our algorithm. First, let
us consider the need for an admission control algorithm.

In our model, a service provider processes multiple re-
quests simultaneously by multiplexing job execution in the
cluster. Resources in the cluster are shared proportionately
among the requests, and these proportions are decided by
the utility that the service provider is expecting to earn after
successful completion of a request. As a result, it becomes
necessary to judiciously accept incoming jobs, so that incom-
ing jobs do not affect the performance of already running
jobs. Admission control also helps to prevent overloading of
resources in the cluster. As the cluster is hosted in the cloud,
the resources in the cluster could be scaled on-demand using
auto-scaling capabilities. However, even if an auto-scaling
facility is available, admission control can still prove viable
because the rate of arrival of new requests could be much
more than the rate of commissioning new nodes in the clus-
ter.

3.1 Background: Hadoop Architecture
Hadoop’s MapReduce implementation borrows much of

its architecture from the original MapReduce system at Google
[14]. Figure 4 depicts the architecture of Hadoop’s MapRe-
duce implementation. Although the architecture is central-
ized, Hadoop is known to scale well for small (single node)
to very large (up to 4000 nodes) installations [8].

Scheduling decisions are taken by a master node (Job-
Tracker), whereas the worker nodes (TaskTrackers) are re-
sponsible for task execution. The JobTracker keeps track of
the heartbeat messages received periodically from the Task-
Trackers and uses the information contained in them while
assigning tasks to the TaskTracker. If a heartbeat is not
received from a TaskTracker for a specified time interval,
the TaskTracker is assumed to be dead. In such a case, the
JobTracker re-launches all the incomplete tasks previously
assigned to the dead TaskTracker. Task assignments are
sent to the TaskTracker as a response to the heartbeat mes-
sage. The TaskTracker spawns each MapReduce task in a
separate process, in order to isolate itself from faults due to
user code in other tasks.

3.2 Proposed Algorithm
The administrator specifies the maximum number of Map

and Reduce task slots that control the number of simulta-
neously running tasks on a TaskTracker. Jobs compete for
task slots in the cluster, and it is the responsibility of the

Figure 4: Architecture of MapReduce in Hadoop.

scheduler to properly allocate slots so that jobs do not suf-
fer from starvation, and they receive their fair share of the
resources in the cluster.

The admission controller runs at the master (JobTracker)
node in the MapReduce cluster. Although user requests for
services can arrive asynchronously, the algorithm considers
them for admission only at fixed points in time. Time in-
terval between two such admission points is referred to as
an admission interval. Job requests arrived during an ad-
mission interval are maintained in the queue of candidate
jobs. The algorithm takes this queue as input, and admits at
most one job for execution in the cluster. All other requests
are rejected and are not considered for further processing.
The users are notified if their requested services have been
accepted or rejected. Figure 5 summarizes the admission
control block.

Figure 5: Admission Controller.

To decide if and which request to accept, we use the Ex-
pected Utility Hypothesis from decision theory. This hy-
pothesis states that given a set of choices with varying pay-
outs and the likelihood of those payouts, a rational agent al-

ways prefers the option that maximizes the agent’s expected
utility. Applying this principle to the problem of selecting a
job to be admitted, the algorithm chooses a job that max-
imizes expected utility from the perspective of the service
provider. Formally,

Selected job = argmaxj(Uj × P (J = Success|E))

where, Uj is the utility of the job as calculated from the
utility function agreed upon by the user and the service
provider in their service contract. While making the com-
parison, we consider only the utility that will be earned if
the job is completed before the soft deadline specified by
the user. J = Success denotes the event that job admis-
sion is successful according to success criteria dictated by
the service provider. The probability P (J = Success|E)
is conditional on the current state of the resources in the
cluster, E.

The admission controller uses prior knowledge accumu-
lated to make admission control decisions for predicting the
outcome of admission of candidate jobs. To achieve this, we
compute the posterior probability P (J = Success|E) using
Bayes Theorem:

P (J = Success|E) =
P (E|J = Success)× P (J = Success)

P (E)

The above equation forms the foundation of learning in
our algorithm. The algorithm uses results of decisions made
in the past to make the current decision. This is achieved
by keeping track of past decisions and of their outcomes in
the form of conditional probabilities.

The denominator P (E) in the above equation is indepen-
dent of candidate jobs and can be ignored safely as a con-
stant while comparing the candidate jobs. For each job in
the list, we estimate the probability of future success as well
as future failure. A job is rejected if the likelihood of a
failure is more than that of a success. If all jobs are likely
to fail, none of the jobs are admitted. In other words, we
classify the candidate jobs into potentially successful and
potentially unsuccessful jobs, and then select the job that
provides maximum utility from the set of potentially suc-
cessful jobs. Figure 5 summarizes this process.

We thus select the job that maximizes the following quan-
tity:

Uj × P (E|J = Success)× P (J = Success)

P (E)

The state of the environment E comprises of a number of
factors describing the state of cluster resources such as clus-
ter load, number of pending tasks currently in the cluster,
the rate at which tasks are being completed, etc. We also
extend the state of resources by including in it the prop-
erties of job request such as the size of request, mean run
times observed in the past to complete similar requests, etc.
Figures 6 and 7 list the cluster and job parameters and the
reasoning for their inclusion in the state of the environment,
E.

The quantity P (E|J = Success) thus becomes:

P (E|J = Success) = P (e1, e2, e3...en|J = Success)

where, e1, e2, . . . , en are the factors constituting the
state of the environment E.

Parameter Description
Used map slots Ratio of number of map tasks

currently running to the maxi-
mum allowed number of concur-
rent tasks in the MapReduce clus-
ter (quantifies the availability of
resources)

Used reduce slots Same as above, but for reduce
tasks

Pending maps Number of map tasks currently
waiting for slots to be allo-
cated (quantifies the pending map
workload)

Pending reduces Same as above, but for reduce
tasks

Finishing jobs Number of jobs that are about to
finish i.e. having very few pending
tasks. If the value of this param-
eter is high, the newly accepted
job is expected to have sufficient
resources for its execution

Map time average Moving average of map task run-
times (denotes the rate at which
map tasks are being completed.

Reduce time av-
erage

Same as above, but for reduce
tasks

Load Ratio of number of tasks waiting
to be assigned a slot to the maxi-
mum number of slots

Figure 6: Cluster Parameters included in E

We assume that the probabilities of these factors are con-
ditionally independent of each other (the Näıve Bayes as-
sumption). Thus,

P (E|J = Success) =

nY
j=1

P (ej |J = Success)

Service providers predefine the criteria for success or fail-
ure of a job. For example, the service provider could specify
that any new admission that results in overloading of re-
sources of the cluster beyond a specified threshold will be
considered as a failure. Success and failure rules are used to
validate a decision, based on the effects of the current deci-
sion. Validation rules cannot be applied until data about the
impact of a decision is available. The results of these valida-
tions are sent as feedback to the admission controller. Upon
receiving the feedback, the algorithm updates its probabili-
ties so that mistakes made by the algorithm, if any, are not
repeated in the future.

It is possible that an admission decision can adversely
affect the makespan of already running jobs. However, the
decision will be considered invalid only if it does not meet the
success or failure criteria set by the service provider. Service
providers could define success-failure criteria that consider
the effect on makespan of other jobs as well.

Our algorithm is greedy, as we choose the job that seems
to provide maximum utility from the immediately available
choice. It is also opportunistic, as we are willing to suffer
degradation of performance of existing jobs, if the newly ad-
mitted job can offer more utility compared to utility gained

Parameter Description
Job maps Number of map tasks in the can-

didate job (depends on the size of
input data)

Job reduces Number of reduce tasks in the
candidate job

Mean map time Mean map task runtime observed
for this job in its past runs

Mean reduce time Same as above, but for reduce
tasks of the job

Figure 7: Job Parameters included in E

from these already executing jobs.

4. EVALUATION AND RESULTS
To verify the efficacy of our algorithm, we simulated the

Hadoop MapReduce architecture and studied the behavior
of our algorithm with the following baseline approaches:

• Myopic - In this approach, the job with maximum ini-
tial utility is accepted without other considerations

• Random - A job is admitted randomly from a given set
of candidate jobs. The given set of jobs is appended
with a null value to simulate job rejection.

4.1 Simulation Model
In our simulation model, the properties of a job are dis-

tributions specifying runtimes of map and reduce tasks of
a job. To model the distribution of runtimes, we extracted
and observed real world MapReduce job traces of MapRe-
duce jobs run on actual Hadoop clusters. We observed that
Map runtimes of a particular job follow the Normal dis-
tribution with the mean and standard deviation being the
characteristic of the job. Similarly for reduce tasks the run-
times for Sort, Shuffle and Reduce phases also followed the
Normal distribution.

Based on these observations, a map task modeled in our
simulation occupies a slot for a random amount of time
which is chosen from a Normal distribution which is the
characteristic of the job. Similarly each of the three phases
in a reduce task modeled in our simulation also occupies a
slot in accordance with Normal distributions which are again
properties of the job. Our simulation does not model task
failures as the utility is earned only after successful comple-
tion of a job request. Thus it is the responsibility of the
service provider to make sure that all accepted jobs are ex-
ecuted successfully, irrespective of individual task failures.
We only use the information that can be obtained through
the JobTracker in Hadoop as the JobTracker provides a uni-
fied view of the MapReduce cluster. All the parameters men-
tioned in Figure 6 and 7 could directly be obtained from the
JobTracker itself. Figure 8 lists the simulation parameters
and distributions used in generating simulation events.

For comparing the results across different runs, we keep
the pseudo random distribution parameters constant be-
tween runs. All values reported in the results are averaged
over 10 independent runs, unless otherwise specified.

4.2 Learning Algorithm Accuracy
To verify whether the admission controller is able to ac-

cept/reject jobs in order to maintain overload threshold as

Parameter Decription
Job arrival distribu-
tion

Exponential

Job arrival rate (λ) 5 minutes
JobTracker heart-
beat interval

3 seconds

Admission interval 3 minutes
JobTracker map slots 50
JobTracker reduce
slots

20

Job map size Uniform Random (51, 100)
Job reduce size <Job map size>/10
Simulation time 500 minutes
Decay parameters (α
and β)

α = 1, β = 1

Soft deadline (T1) Time taken when all map tasks
are executed in parallel + Time
taken when all reduce tasks are
executed in parallel

Hard deadline (T2) Time taken when only one task
of the job is executed at a time

Figure 8: Simulation Parameters

specified by the service provider, we measured the actual
load average observed in a simulation run, and compare
it against the desired load average as set by the service
provider. The plot below summarizes results of these ex-
periments.

Figure 9: Achieved and expected load ratio

As we can see in the plot (Figure 9), the achieved load av-
erage value is fairly close, to the desired load average value.
Further, the error rate is independent of the desired load av-
erage value. The errors may arise as a result of Näıve Bayes
assumption made while computing posterior probabilities.

4.3 Comparison of Achieved Load Averages
with Baseline Approaches

Next, we compare the performance of the learning our
admission control algorithm with two baselines, as specified
in the beginning of this section.

First, we compare the mean load averages observed in
our algorithm to Myopic admission, and Random admission.

For this set of experiments, we kept the overload threshold
to 100%. In other words, our admission controller rejected
all those jobs which were predicted to cause the cluster load
over 1.0. Figure 10 shows the results.

Algorithm Achieved Load Average
Random 42.11
Myopic 42.09
Our algorithm 0.97

Figure 10: Comparison of Achieved Load Averages

As can be clearly seen in Figure 10, our admission con-
trol algorithm is very effective in preventing overload. This
establishes the correctness of our algorithm, and proves our
argument of the necessity of sophisticated admission control
algorithms for MapReduce.

4.4 Service Contracts
The final experiments in our evaluation verify the ability

of our algorithm in meeting user deadline guarantees. For
this set of experiments, the values of decay parameters α
and β were both set to 1, thereby making the decay rate
linear. The soft deadline (T1) in our case is the runtime of
the job, if all tasks of the job are executed simultaneously.
The hard deadline (T2) is double the value of the soft dead-
line. To compare the algorithm with baseline approaches,
we calculate the percentage of jobs that complete before the
soft deadline, and the percentage of jobs that complete after
the soft deadlines. We can see in Figure 11 that our algo-
rithm is able to meet user QoS requirements in most of the
cases, whereas the baseline approaches cause job runtimes
to exceed soft deadlines in most of the cases.

Figure 11: Performance while meeting user deadlines

5. RELATED WORK
We use the three stage utility model previously described

in Risk Reward [15], Aggregate Utility [9], and Millennium
[13]. These works discuss the problem of generic utility com-
puting model where service providers rent resources from a
third party in order to offer their services. Aggregate Utility
allows users to control the behavior of the service providers
by specifying aggregate utility functions. However, in our
work we assume that individual requests of users are in-
dependent of each other. We also provide a more generic
model for capturing user desires, especially to capture user
disappointment, where as other works assume a linear decay
in the utility. Unlike previous works, our algorithm employs

machine learning, thus allowing the admission controller to
make use of the effects of decisions made in the past, thereby
continuously improving the performance of the algorithm.

An important difference between the works mentioned
above and our work is that the previous works solve the
problem of admission control where a service provider rents
resources from an infrastructure provider, and allows users
to execute arbitrary jobs. This model has become popu-
lar as the PaaS paradigm. We approach the problem for
admission control for SaaS, where the service provider has
complete knowledge about the services being offered.

MapReduce [14] presents MapReduce paradigm and its
advantages for large scale data processing. Hadoop [4], which
is a popular MapReduce implementation, bases much of its
architecture and design decisions on the work in [14]. Our
work extends the familiar usage of MapReduce for data pro-
cessing by establishing a private cluster, to data processing
by use of on-demand web services powered by MapReduce
jobs. Amazon Elastic MapReduce [2] comes close to what
we propose, however they offer MapReduce as a platform,
whereas we present the model where MapReduce is offered
as a service.

Work by Bichler and Setzer in [10] presents the problem
of admission control for media on demand services, where
they assume that service duration is of a fixed length, which
is not the case for MapReduce jobs. They accept a service
request if its revenue is higher than its opportunity cost,
whereas in our approach we accept the service request with
maximum expected utility.

Existing schedulers for Hadoop FAIR, Capacity, and Dy-
namic Priority [5, 6, 17] offer very limited facility of admis-
sion control. For example, the FAIR scheduler has a feature
to suspend jobs until sufficient free resources are available.
Existing schedulers focus on implementing resource sharing
policies, within a MapReduce cluster owned internally by
an organization. The dynamic priority scheduler uses mar-
ket based approaches to control resources shared, by users
in a cluster, however they also do not address the problem
of admission control. Our approach borrows from the pre-
vious work on admission control in utility computing and
provides a model more suited for cloud computing, in a sce-
nario where MapReduce is offered as a service. In the next
section we conclude by summarizing our results and men-
tioning future areas of research.

6. CONCLUSIONS AND FUTURE WORK
We presented a new paradigm of offering and utilizing

MapReduce jobs in the cloud. The model we proposed is
advantageous to users as well as potential service providers,
willing to offer data intensive application as ready to use
MapReduce services. We also presented a concrete mech-
anism for expressing user demands in the form of utility
functions that capture users’ perceived value of the service
as a function of time.

We mentioned the need of an effective admission con-
trol algorithm, in order to meet our proposed paradigm.
We have used a machine learning based approach, which
utilizes experience gained in making admission control de-
cisions the past. Our algorithm proved to be effective in
achieving service provider expectations, as well as meeting
quality of service requirements of users. Learning based ap-
proaches have rarely being tried for resource management in
utility/grid/cloud computing.

Future directions of our research include investigating the
use of machine learning in other resource management prob-
lems for example service brokering, and federation of re-
sources across infrastructure owned by different organiza-
tions.

7. ACKNOWLEDGMENTS
This work is partly supported by a grant from Yahoo!

India R&D, under the Nurture an area: Cloud Computing
project. We would like to thank Chidambaran Kollengode,
Jothi Padmanabhan and Preeti Priyadarshini of Yahoo! for
their continual support and feedback. We would also like to
thank ReddyRaja Annareddy of Pramati Technologies for
his suggestions and Akshat Kumar for his help in debugging
simulation source code.

8. REFERENCES

[1] Amazon Elastic Compute Cloud.
http://aws.amazon.com/ec2/.

[2] Amazon Elastic MapReduce.
http://aws.amazon.com/elasticmapreduce/.

[3] Amazon Simple Storage Service.
http://aws.amazon.com/s3/.

[4] Apache Hadoop. http://hadoop.apache.org.

[5] Capacity Scheduler for Hadoop.
http://hadoop.apache.org/common/docs/current/

capacity_scheduler.html.

[6] Dynamic Priority Scheduler for Hadoop. http:
//issues.apache.org/jira/browse/HADOOP-4768.

[7] Hadoop PoweredBy.
http://wiki.apache.org/hadoop/PoweredBy.

[8] Scaling Hadoop to 4000 nodes at Yahoo!
http://developer.yahoo.net/blogs/hadoop/2008/

09/scaling_hadoop_to_4000_nodes_a.html.

[9] A. AuYoung, L. Rit, S. Wiener, and J. Wilkes. Service
contracts and aggregate utility functions. In High
Performance Distributed Computing, 2006 15th IEEE
International Symposium on, pages 119–131, 0-0 2006.

[10] M. Bichler and T. Setzer. Admission control for media
on demand services. Service Oriented Computing and
Applications, 1(1):65–73, 2007.

[11] J. Broberg, S. Venugopal, and R. Buyya.
Market-oriented grids and utility computing: The
state-of-the-art and future directions. Journal of Grid
Computing, 6(3):255–276, 2008.

[12] R. Buyya, C. S. Yeo, S. Venugopal, J. Broberg, and
I. Brandic. Cloud computing and emerging it
platforms: Vision, hype, and reality for delivering
computing as the 5th utility. Future Generation
Computer Systems, 25(6):599 – 616, 2009.

[13] B. N. Chun and D. E. Culler. User-centric
performance analysis of market-based cluster batch
schedulers. In CCGRID ’02: Proceedings of the 2nd
IEEE/ACM International Symposium on Cluster
Computing and the Grid, page 30, Washington, DC,
USA, 2002. IEEE Computer Society.

[14] J. Dean and S. Ghemawat. MapReduce: Simplified
Data Processing on Large Clusters. In Proceedings of
the 6th Symposium on Operating Systems Design and
Implementation, pages 137–150, 2004.

[15] D. E. Irwin, L. E. Grit, and J. S. Chase. Balancing
risk and reward in a market-based task service. In
HPDC ’04: Proceedings of the 13th IEEE
International Symposium on High Performance
Distributed Computing, pages 160–169, Washington,
DC, USA, 2004. IEEE Computer Society.

[16] F. I. Popovici and J. Wilkes. Profitable services in an
uncertain world. In SC ’05: Proceedings of the 2005
ACM/IEEE conference on Supercomputing, page 36,
Washington, DC, USA, 2005. IEEE Computer Society.

[17] M. Zaharia, D. Borthakur, J. Sen Sarma,
K. Elmeleegy, S. Shenker, and I. Stoica. Job
Scheduling for Multi-User MapReduce Clusters.
Technical Report UCB/EECS-2009-55, EECS
Department, University of California, Berkeley, Apr
2009.

http://aws.amazon.com/ec2/
http://aws.amazon.com/elasticmapreduce/
http://aws.amazon.com/s3/
http://hadoop.apache.org
http://hadoop.apache.org/common/docs/current/capacity_scheduler.html
http://hadoop.apache.org/common/docs/current/capacity_scheduler.html
http://issues.apache.org/jira/browse/HADOOP-4768
http://issues.apache.org/jira/browse/HADOOP-4768
http://wiki.apache.org/hadoop/PoweredBy
http://developer.yahoo.net/blogs/hadoop/2008/09/scaling_hadoop_to_4000_nodes_a.html
http://developer.yahoo.net/blogs/hadoop/2008/09/scaling_hadoop_to_4000_nodes_a.html

	Introduction
	MapReduce in SaaS Paradigm
	MapReduce Jobs as Services
	Example Use Cases
	Contractual Service Agreement

	Proposed Admission Control Algorithm
	Background: Hadoop Architecture
	Proposed Algorithm

	Evaluation and Results
	Simulation Model
	Learning Algorithm Accuracy
	Comparison of Achieved Load Averages with Baseline Approaches
	Service Contracts

	Related Work
	Conclusions and Future Work
	Acknowledgments
	References

