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Abstract—There has been a growing interest in designing relay
deployment strategies for cooperative wireless networks. In this
paper, we focus on multi-hop, cluster-based, linear networks.
Several relay selection strategies are applied to achieve the
cooperative diversity benefits. We derive the number of hops
that minimizes the end-to-end outage probability. On the other
hand, if the required overhead for cooperation is considered,
increasing the number of relays in each cluster can degrade the
performance. Using an information-theoretic approach, we also
investigate the number of relays that maximizes the throughput.
Simulation results are presented to verify the analysis.

I. INTRODUCTION

Wireless ad hoc networks, such as wireless sensor networks

(WSN) and mobile ad hoc networks (MANET), have been

extensively studied [1]-[3]. Relaying techniques are commonly

applied for accomplishing the transmission in ad hoc networks

since, in practical scenarios, the direct link between the source

and destination could be very weak due to the possibly severe

signal attenuation from path-loss and shadow fading. The relay

deployment problem, which aims to optimally position the

relays, is a key design issue that helps provide better network

performance (network connectivity, lifetime, etc.) [4]-[7].

Cooperative communication has been proposed as a promis-

ing approach to combat fading in wireless networks. By

exploiting the broadcast nature of the wireless medium, coop-

eration utilizes distributed relays to help transmit the desired

signal to achieve spatial diversity gain. Cooperation in ad

hoc networks has been extensively studied. For example, in

[7], an approach for applying cooperative techniques and

relay deployment to maximize the network lifetime has been

proposed. In [8], relay selection strategies have been designed

to achieve full diversity gain for a multi-hop linear network

with cooperative relays, and outage performance for different

schemes has been analyzed.

In ad hoc networks, the multi-hop transmission process can

be viewed as a one-dimensional linear network once the route

is determined by a given routing protocol [9]. Fig. 1 illustrates

a multi-hop ad hoc network, which can be simplified to a linear

network model as illustrated in Fig. 2. The linear network
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Fig. 1. Multi-hop wireless ad hoc network. The route contains a source-
destination pair, and several relay clusters. The nodes in each cluster are
selected from the potential relay nodes (small circles) according to a given
routing protocol.

model is widely used to provide insights for practical multi-

hop network design.

In this paper, we focus on a multi-hop linear network with

cooperative relays, which has been investigated in [8]. We

strive to answer the following questions: 1) Where should the

relay clusters be located? 2) How many relays should be in

each cluster? First, according to the outage analysis in [8], we

derive the optimum relay cluster locations which minimize the

end-to-end outage probability. Further, we consider the requir-

ed cooperation overhead by using the overhead-performance

tradeoff analysis in [10]-[11]. A larger number of relays could

lead to worse performance because of the extra overhead costs

in implementing cooperation. The optimum number of relays,

which maximizes the throughput, is then discussed.

The rest of the paper is organized as follows. Section II pre-

sents the system model. Section III analyzes the optimum relay

deployment strategy. In Section IV, simulation results are given

to verify our analysis. Finally, we conclude in Section V.

II. SYSTEM MODEL

A. Network Topology

We consider a generalized N -hop linear network model. The

system under consideration consists of a source node S and

a destination node D, and N − 1 intermediate relay clusters

which are located between the source and destination. The

number of nodes in the jth relay cluster is denoted as Lj ,

j = 1, 2, · · · , N − 1; there are
∏N−1

j=1 Lj distinct end-to-end



paths in the network. Each path can be represented by a set

containing the indices of the relays in all the clusters. The

source-to-destination distance is assumed to be ds.

We assume that the inter-cluster distance is much larger than

the intra-cluster distance. Since it has been shown in [12] that

equally spaced relays are optimum in a linear network, we

also assume that the relay clusters are equidistant (i.e., the

inter-cluster distance is ds/N ). All nodes in the network are

assumed to be half-duplex transceivers which are equipped

with only one antenna.

Hop 1 Hop 2 Hop N

S D

Fig. 2. Linear network model with cooperative relays.

B. Communication Schemes

We consider a selective decode-and-forward, fixed-rate,

relaying strategy (i.e., at each hop, only one relay node is

selected to forward the signal at a constant transmission rate).

Two selection schemes are investigated in this paper: optimal

selection (select the “best” path from all end-to-end paths) and

ad hoc selection (select the “best” path at each hop) [8].

For the sake of simplicity, a time division system without

spatial reuse is considered in this paper, i.e., there is only one

transmission during any particular time period. We assume

that all transmissions are identical and are assigned to equal

portions of the available time duration. Also, all nodes use

a finite transmit power P over a bandwidth B. Hence, if

the desired end-to-end spectral efficiency is η (bps/Hz), the

required per-hop spectral efficiency is Nη. Perfect time and

frequency synchronization among all nodes is assumed.

The channels are assumed to follow a quasi-static flat

Rayleigh fading model with path loss. Perfect channel state

information (CSI) is always available at the receivers. Suppose

that the transmission path (selected by some specific criteria)

is represented by {r1, r2, · · · , rN−1, rN}, where rj is the

selected relay in the jth cluster, and rN denotes the destination

node. Then, the signal received at rj can be expressed as

y =

√
P

(
ds/N

d0

)−α

hrj−1,rjx+ z, (1)

where x is the signal transmitted by the previous hop, hrj−1,rj

is the channel coefficient between rj−1 and rj , which is

modeled as a complex Gaussian random variable with zero

mean and variance 1/2 per complex dimension, and z is

additive white Gaussian noise with zero mean and variance

N0/2. In (1), α is the path-loss exponent (typically between

2 and 4), d0 is the reference distance [13]. To simplify our

analysis, we will assume d0 = 1 m in this paper. Different

values for this parameter will not affect the analysis which

follows. Then, the signal-to-noise ratio (SNR) at rj is

γj =
P

N0B

(
ds
N

)−α

|hrj−1,rj |2. (2)

C. Performance

Here, we focus on the end-to-end outage performance. The

end-to-end spectral efficiency can be expressed as

C =
1

N

[
log

(
1 + min

j=1,2,··· ,N
γj

)]
, (3)

and the outage probability is

pout = Pr

{
1

N

[
log

(
1 + min

j=1,2,··· ,N
γj

)]
< η

}

= Pr

{
min

j=1,2,··· ,N
γj < 2Nη − 1

}

= Pr

{
min

j=1,2,··· ,N
|hrj−1,rj |2 <

2Nη − 1

Nαγd

}

= Pr

{
gmin <

2Nη − 1

Nαγd

}
,

(4)

where γd = P
N0B

d−α
s is the received SNR for the direct link,

and gmin = min |hrj−1,rj |2 is the channel gain for the worst

hop in the selected transmission path. Obviously, the end-to-

end outage is determined by the bottleneck hop.

We notice that the channel gains |hrj−1,rj |2, j =
1, 2, · · · , N are identically distributed exponential random

variables, but they are not independent; the channel at the

jth hop depends on which nodes are selected in the previous

relay clusters.

III. OPTIMUM RELAY DEPLOYMENT STRATEGY

In this section, we answer the two questions posed in

Section I. First, we discuss the optimum number of hops for

a multi-hop linear network with cooperative relays, and then

determine the best relay placement. To simplify the analysis,

we first assume that L1 = L2 = · · · = LN−1 = L. However,

we also extend our analysis to more practical scenarios (for

example, Lj is a random variable and not necessarily equal

for all j). Then, we investigate the optimum number of relays

per cluster, which can balance the system performance and the

required overhead.

A. Optimum Number of Hops (Optimal Selection)

For the optimal relay selection strategy, the path which max-

imizes the channel gain for the bottleneck link, gmin, will be

chosen. Although there are
∏N−1

j=1 Lj = LN−1 distinct end-to-

end paths, some of these paths might share the same bottleneck

link. Let Ψ denote the set that contains the bottleneck links of

all possible paths, and ψ is the number of distinct elements in

Ψ. In other words, ψ represents the degrees of freedom that

can be utilized for diversity gain.

It has been shown in [8] that the end-to-end outage proba-

bility for optimal selection can be upper bounded by

pout <

(
1− exp

(
− (2Nη − 1)

Nαγd

))ψ

, (5)



According to Lemma 1 in [8], ψ ≥ L. So

pout <

(
1− exp

(
− (2Nη − 1)

Nαγd

))L

= p∗out. (6)

It is easy to show that the optimum N� that minimizes the

upper bound p∗out satisfies

α+N�η2N
�η ln 2− α2N

�η = 0. (7)

Using techniques similar to those in [14], we have

N� = argmin p∗out =
[

1

η ln 2

(
α+W(−αe−α)

)]
+

, (8)

where [·]+ is the operator which rounds the operand to the

nearest positive integer, and W(·) is the principal branch of

the Lambert W function [15].

In [8], an approximation for pout is provided as

pout ≈ 2

(
1− exp

(
− (2Nη − 1)

Nαγd

))L

−
(
1− exp

(
− (2Nη − 1)

Nαγd

))2L

+ o

((
− (2Nη − 1)

Nαγd

)L
) , (9)

where the last term is negligible in the high-SNR regime. We

can prove that the number of hops N� in (8) minimizes the

approximation as well. On the other hand, for a fixed-rate

scheme, the end-to-end throughput can be defined as η(1 −
pout). Therefore, N� in (8) also maximizes the throughput.

Remark 1: Eq. (8) is exactly the same as the closed-form

expression for the optimum number of hops for a linear net-

work in an AWGN channel [9]. In [9], the power consumption

that guarantees a given transmission rate is minimized. Note

that there is an inherent power constraint in our model; our

problem, which maximizes the rate by using a specific power,

can be stated as a dual problem of the optimization problem in

[9]. The duality gap is zero since both problems are convex and

linearity constraint qualification conditions [16] are satisfied.

This also explains why the optimum number of hops only

depends on the rate and the path-loss exponent.

Remark 2: According to (8), the optimum number of hops

does not depend on the number of relays in each cluster, i.e.,

diversity does not affect the optimum number of hops when the
relay clusters are equidistant. Obviously, the end-to-end out-

age performance can be significantly improved when we have

diversity gain, however, the number of hops minimizing the

outage probability remains the same. The intuitive explanation

is that, after we select the path through all relay clusters, we

form another linear network which only has one relay per hop.

The diversity benefit helps increase the received SNR per hop,

however, the structure of the linear network and the derivation

of the optimum number of hops do not change.

Remark 3: Eq. (8) can be rewritten as

Nη =
1

ln 2

(
α+W(−αe−α)

)
. (10)

The right hand side (RHS) of (10) is a constant which only

depends on the path-loss exponent α. For example, when

α = 4, we have Nη ≈ 5.66. In [17], the rate which maximizes

the transport capacity is also given by the RHS of (10). The

result in [17] can be considered as a special case of the

work considered here: for single-hop transmission (N = 1)

with a power constraint, maximizing the transport capacity is

equivalent to minimizing the outage.
Note that these results only hold for a fixed-rate relaying

scheme. If rate-adaptive techniques are also taken into account

or the ergodic capacity is chosen as the performance measure,

the optimum number of hops will be different; this is a topic

we are currently investigating.
If we assume the Lj’s are not necessarily all equal, the upp-

er bound in (5) can still be used. The following lemma helps

to determine the optimum number of hops in this scenario.
Lemma 1. Ψ includes at least min{L1, L2, · · · , LN−1}

distinct links, i.e., ψ ≥ Lmin = min{L1, L2, · · · , LN−1}.
Proof: Without loss of generality, we assume that L1 =

Lmin. In this case, a link in the first hop can be shared by at

most
∏N−1

j=2 Lj paths, which implies that at least L1 links are

required to cover all possible paths, that is, ψ ≥ Lmin. �
According to Lemma 1, we can rewrite (5) as

pout <

(
1− exp

(
− (2Nη − 1)

Nαγd

))Lmin

= p∗∗out. (11)

Obviously, N� in (8) can also minimize p∗∗out.
In a practical wireless ad hoc network, the number of relays

in each cluster should be a random variable. We can assume

that all the nodes in an ad hoc network form an m-dimension

homogenous Poisson point process of intensity λ in R
m [18].

Then the probability of finding � nodes in a bounded space A
is given by a discrete Poisson distribution

A(�) = Pr{� nodes in A} = e−λφ(A) (λφ(A))
�

�!
, (12)

where φ(A) is a standard Lebesgue measure (area, volume,

etc.) of A. We can state that L = λφ(A) is the average number

of decoded nodes in the given relay cluster A. Therefore, we

assume that L1, L2, · · · , LN−1 are i.i.d. Poisson random vari-

ables with parameter L, and

Pr{Lmin = �} =

(
1− Γ(�,L)

Γ(�)

)N−1

−
(
1− Γ(�+ 1,L)

Γ(�+ 1)

)N−1

,

(13)

where

Γ(�,L) =
∫ ∞

L
t�−1e−t dt (14)

is the incomplete gamma function.
Combining (11) and (13), we can obtain an upper bound

on the average outage probability with a random number of

potential relays

pout <
∞∑
�=0

Pr{Lmin = �}
(
1− exp

(
− (2Nη − 1)

Nαγd

))�

,

(15)



and show that N� in (8) also minimizes the upper bound in

(15). The proof is similar and is omitted here.

Since the diversity does not affect the optimum number of

hops even if we consider the randomness of the decoded sets,

we can easily extend the results for linear networks with a

single relay per hop [9][12][14][17] to our scenarios. In the

following, we assume L1 = L2 = · · · = LN−1 = L.

B. Optimum Number of Hops (Ad hoc Selection)

In an ad hoc selection scheme, the relay selection is per-

formed in a per-hop manner and performance is suboptimal.

A high-SNR approximation is provided in [8]

pout ≈ (N − 2 + 2L)

(
2Nη − 1

Nαγd

)L

, (16)

We can show that the optimum N must satisfy

N(lnN)2+(β+ ζ)N lnN + ζ lnN −αβN +αβ = 0, (17)

where β = (2L − 2)η ln 2, ζ = α − 1
L . A closed-form

expression for the optimum N cannot be obtained since (17)

is a nonlinear transcendental equation; we can solve it by

numerical methods. In Section IV, we will show that the

optimum number of hops from (17) is very close to the value

that satisfies (8).

Suppose we have a source-destination pair with desired

spectral efficiency η. Then, we can easily obtain the optimum

N� based on (8) and then equally place N�− 1 relay clusters

between the source and the destination. Note that N� does not

depend on the number of relays L, which indicates that we

can separate the relay deployment problem into two parts: (1)

deciding the locations of the relay clusters and (2) determining

the number of relays in each cluster. In the next subsection, we

will investigate the optimum number of relays which achieves

the best overhead-performance tradeoff.

C. Optimum Number of Relays

Obviously, the outage probability decreases as the number

of relays L increases because we have more diversity gain.

The outage capacity, maxη η(1− pout(η)) (bps/Hz), is thus a

monotonically increasing function of L. However, in a realistic

system, the receivers require knowledge of the CSI so that the

signal can be successfully decoded. This can be facilitated by

sending training symbols. Also, the receivers need to feedback

some information, such as the CSI or the index of the best

path, to implement the relay selection strategies. Intuitively,

when we have more relays, we will incur more overhead for

the training and selection tasks. The training and feedback

overhead, which is also a monotonically increasing function

of L, should also be considered. In that case, more relays does

not necessarily lead to better performance.

According to [10], the smallest number of training sym-

bols for a multiple-antenna system is equal to the number

of transmit antennas. This result can be directly applied to

our scenarios. For the optimal selection scheme, we have

L2(N − 2) + 2L links in the network, which requires at least

L2(N − 2) + 2L training symbols to guarantee meaningful

channel estimation. For the ad hoc selection scheme, we need

at least L training symbols per hop, and the overall number

of training symbols is NL.
The feedback overhead for relay selection has been studied

in [11]. In general, logL feedback bits are required to im-

plement perfect selection among L possible links. Intuitively,

logL is the entropy (uncertainty) of the index for the best link

from all L links. For the ad hoc selection scheme, we require

(N − 1) logL feedback bits to choose the path. The analysis

for the optimal selection scheme is more complicated. In [11],

the overhead-performance tradeoff is only investigated for the

single-hop case. We use a simplified analysis to approximate

the feedback overhead bits for the optimal selection scheme:

since we have to select the best path from all LN−1 paths, we

have to use at least logLN−1 = (N − 1) logL bits to denote

the index of the selected path. Intuitively, more feedback

bits might be required for the optimal selection scheme;

however, we use the lower bound here to provide insights

about the overhead-performance tradeoff. The analytical study

of required feedback bits is the topic of future work.
We note that the optimal and ad hoc selection schemes

require the same amount of feedback overhead. However,

optimal selection costs much more in training overhead than

the ad hoc selection scheme. Note also that the analysis here

only provides lower bounds for the required overhead.
Suppose that the feedback signals for updating the selected

path are sent periodically with period T (which is usually

chosen as 10% of the channel coherence time), and the training

symbol duration is Ts = T/M , i.e., there are M symbols per

block. Then, the spectral efficiency for optimal selection is

ηse,opt =

(
1− L2(N − 2) + 2L

M

)
ηout

− (N − 1) logL

BT
bps/Hz,

(18)

and the spectral efficiency for ad hoc selection is

ηse,ad hoc =

(
1− NL

M

)
ηout

− (N − 1) logL

BT
bps/Hz,

(19)

where ηout = maxη η(1 − pout(η)) is the outage capacity.

The optimal L which maximizes the spectral efficiency can

be obtained numerically. This will be presented in Section IV.

IV. SIMULATION RESULTS

Assume we have a source-destination pair at a distance

ds = 1 km. The objective is to place several relays between

the source and destination, such that the end-to-end outage

performance is optimized. All nodes in the network, including

the source and the destination, are supplied with transmit

power P = 20 dBm over the frequency bandwidth B = 10
MHz. The path-loss exponent α is assumed to be 4, and the

noise spectral density N0 = −174 dBm/Hz. When no relay is

employed, the average received SNR at the destination is

γd =
P

N0B
d−α
s = 4 dB. (20)



The general conclusions, which can be observed from the

following simulation results, do not depend upon the specific

values of these parameters.

A. Where Should The Relay Clusters Be Located?

Since equidistant relay clusters have been shown to be op-

timal, once we know the number of hops which can minimize

the outage probability, the optimal relay deployment strategy

can be determined. In Figs. 3 and 4, the outage probability is

plotted as a function of the number of hops for the optimal and

ad hoc selection schemes. The desired spectral efficiency η is

assumed to be 2 bps/Hz. As expected, we can observe from

Fig. 3 that the optimum number of hops N� does not depend

on the number of relays L for the optimal selection scheme.

The simulation results also verify our analytical results (8).

According to Fig. 4, the optimum number of hops for ad hoc

selection is almost the same as that given by (8). This indicates

that we can use the analysis for the optimal selection scheme

to obtain approximate results for the ad hoc selection scheme.
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Fig. 3. Optimum number of hops for different values of L (optimal selection),
η = 2 bps/Hz, γd = 4 dB.

Fig. 5 provides results for different values of the desired

spectral efficiency η. The number of relays L is chosen to be

4 in Fig. 5. By rounding the analytical result to the nearest

positive integer, we can easily obtain the optimum number

of hops and determine where to place the relay clusters. For

example, if η is 1.5 bps/Hz, the optimum number of hops is

4 and the optimum per-hop distance is 250 meters.

B. How Many Relays Should Be In Each Cluster?

Now we determine the optimum number of relays by

investigating the required training and feedback overhead.

Consider a wireless system with moderate mobility such that

the coherence time is 10 msec [19]. The feedback signals for

updating the selected path are sent every 1 msec. The training

symbol duration is assumed to be Ts = 1 μsec, i.e., there are

1000 symbols to be transmitted in each block. Intuitively, the

impact of overhead becomes negligible with large coherence
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Fig. 4. Optimum number of hops for different values of L (ad hoc selection),
η = 2 bps/Hz, γd = 4 dB.
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Fig. 5. Optimum number of hops for different η (optimal and ad hoc selection
schemes). L = 4, α = 4, γd = 4 dB.

time and small training duration. The simulation results also

verify this intuition; however, here we only present the results

for specific parameters to show the importance of overhead.

Figs. 6 and 7 illustrate the tradeoff between the throughput

(bps/Hz) and the number of relays per cluster for the optimal

and ad hoc selection schemes. One observation is that when

the amount of overhead is small, we can always obtain a

gain by adding more relays. However, the diversity gain is

eventually canceled by the excessive amount of overhead when

the number of relays increases. In Fig. 6, the required overhead

occupies all the transmission resources when N and L are

large, and no meaningful data can be transmitted through the

multi-hop network. Another observation is that, although ad

hoc selection is sub-optimal in outage, sometimes it provides

higher throughput than optimal selection which requires a

significant amount of overhead.
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V. CONCLUSION

In this paper, we investigated the optimal relay deployment

strategy for a multi-hop linear network with cooperative relays.

Two different techniques were considered: optimal selection

and ad hoc selection. First, we derived a closed-form ex-

pression for the number of hops that minimizes the end-

to-end outage probability. We proved that the diversity gain

does not affect the optimum number of hops, which means

that most existing results for a linear network can also be

applied to our scenarios. We also provided lower bounds on

the required training and selection overhead for cooperation,

and then determined the number of relays that maximizes

the throughput. Simulation results were provided to verify the

analysis.

In the future, we will quantify the required overhead more

precisely so that the optimum number of relays can be better

estimated. Instead of assuming a perfect selection process, we

will also study the optimal deployment strategy with imperfect

relay selection. In addition, we will consider other cooperative

techniques such as space time coding and beamforming.

Practical network models which consider random distributed

nodes and intra-cluster distance will also be investigated.
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