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Abstract
In practice, it is quite difficult to write correct multithreaded pro-
grams due to the potential for unintended and nondeterministic
interference between parallel threads. A fundamental correctness
property for such programs is atomicity—a block of code in a pro-
gram is atomic if, for any parallel execution of the program, there
is an execution with the same overall program behavior in which
the block is executed serially.

We propose semantic atomicity, a generalization of atomicity
with respect to a programmer-defined notion of equivalent behav-
ior. We propose an assertion framework in which a programmer
can use bridge predicates to specify noninterference properties at
the level of abstraction of their application. Further, we propose a
novel algorithm for systematically testing atomicity specifications
on parallel executions with a bounded number of interruptions—
i.e. atomic blocks whose execution is interleaved with that of other
threads. We further propose a set of sound heuristics and optional
user annotations that increase the efficiency of checking atomicity
specifications in the common case where the specifications hold.

We have implemented our assertion framework for specifying
and checking semantic atomicity for parallel Java programs, and
we have written semantic atomicity specifications for a number of
benchmarks. We found that using bridge predicates allowed us to
specify the natural and intended atomic behavior of a wider range
of programs than did previous approaches. Further, in checking
our specifications, we found several previously unknown bugs,
including in the widely-used java.util.concurrent library.

Categories and Subject Descriptors D.2.4 [Software Engineer-
ing]: Software/Program Verification; D.2.5 [Software Engineer-
ing]: Testing and Debugging; F.3.1 [Logics and Meanings of Pro-
grams]: Specifying and Verifying and Reasoning about Programs

General Terms Algorithms, Reliability, Verification

1. Introduction
With the growing prevalence of multicore processors, it is increas-
ingly necessary for programmers to write parallel software. Yet par-
allel programming remains notoriously difficult. A key reason for
this difficulty is that the parallel threads of a multithreaded program
may nondeterministically interfere with one another.
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Thus, a fundamental parallel correctness property for multi-
threaded programs is atomicity [9]. A block of code is atomic if it
appears to execute all at once, indivisibly and without interruption
from any other program thread. The behavior of an atomic code
block can be understood and reasoned about sequentially, as no
parallel operations can interfere with its execution.

Many researchers have proposed using transactional memory
hardware, libraries, and/or language constructs to implement such
atomic blocks. But in much existing multithreaded code, desired
atomicity is implemented using a variety of synchronization tech-
niques, including coarse or fine-grained locking and non-blocking
synchronization with primitives such as atomic compare-and-swap.
Correctly implementing atomicity using these techniques can be
difficult and error-prone. Thus, as we discuss in Section 6, there has
been great interest in techniques enabling programmers to specify
what fragments of their concurrent programs behave as if atomic,
and in techniques for testing or verifying that such programs con-
form to their atomicity specifications.

Traditional notions of atomicity are often too strict in practice,
however, because they require the existence of serial executions
that result in an state identical to that of the interleaved execution.
We propose an assertion framework that allows programmers to
specify that their code is semantically atomic—that any parallel,
interleaved execution of an atomic block will have an effect se-
mantically equivalent to that of executing the block serially. Pro-
grammers specify this semantic equivalence using bridge predi-
cates [3]—predicates relating pairs of program states from the in-
terleaved and the equivalent serial execution. Such predicates allow
the equivalence of executions to be defined at the level of abstrac-
tion of an application.

We further propose an approach to check our semantic atomic-
ity specifications by testing whether or not specified programs are
semantically linearizable. We choose to check linearizability be-
cause (1) this stronger notion is significantly easier to check since
the restriction on allowed serial executions significantly reduces the
space of serial executions that we must search, and (2) the notion of
linearizability is often used to describe the parallel correctness of
various concurrent data structures. Essentially, to test linearizability
for a particular interleaving we need to consider only permutations
of atomic blocks that overlapped in the interleaved execution.

The key to the efficiency of our approach is based on two obser-
vations. First, linearizability can be checked efficiently for a par-
allel execution in which only a small number of atomic blocks
overlap, since we need to examine only a small number of simi-
lar sequential executions. Second, our experience shows that most
atomicity bugs can be reproduced with a small number of over-
lapping atomic blocks. Thus, we test linearizability of a program
by generating parallel executions with only a small number of in-
terrupted atomic blocks. Our experiments show that we can effec-



tively find serious atomicity errors in our benchmarks by testing
such interruption-bounded executions.

To further reduce the search space for the linearized execution,
we propose a set of sound heuristics and optional user annotations.
We show in our experiments that in the presence of such annota-
tions we can often find the linearized execution in the first attempt.

We have implemented our assertion framework for Java and
used it to specify the intended atomicity of a number of bench-
marks. We found that the ability to specify atomicity at the semantic
level, using bridge predicates, is crucial for capturing the intended
atomic behavior of many of our of the benchmarks. Such bench-
marks contain sections of code that, while semantically atomic, are
not atomic under more strict, traditional notions of atomicity.

In summary, we describe the following contributions:

• We propose using bridge predicates to specify that regions of
parallel programs are intended to be semantically atomic. Our
notion of semantic atomicity is more general than traditional
strict notions of atomicity and is applicable to a wider range of
parallel programs.
• We propose an approach to test efficiently and effectively a pro-

gram’s semantic atomicity specification by checking the lin-
earizability of program executions with a bounded number of
interrupted atomic sections. We further propose program anno-
tations and corresponding heuristics to reduce significantly the
search space that must be explored during testing, without sac-
rificing any ability to find atomicity errors.
• We implement an assertion framework for Java for specifying

and testing semantic atomicity specifications and evaluate our
approach on a number of Java benchmarks. We find that bridge
predicates are required in a majority of the examples. We show
that the heuristics we propose make the testing approach both
reasonably efficient and effective at finding bugs.
• We find a number of previously unknown atomicity errors,

including several in Java’s built-in data structure libraries.

2. Specifying Semantic Atomicity
In this section, we informally describe atomicity and motivate our
proposal for semantic atomicity specifications. We first describe a
real-world motivating example. We then expand on semantic atom-
icity specifications using two simpler examples. In Section 2.1, we
discuss the effort involved in programmers writing such atomicity
specifications.

We consider parallel programs in which certain regions of code
are annotated as atomic blocks. This annotation specifies the pro-
grammers belief or intention that each atomic block is written so
that, however the block is actually executed, the effect is as if the
block’s execution occurred all-at-once, with no interference or in-
terruption from other parallel threads. For simplicity, we consider
each indivisible program instruction that is not in a user-annotated
atomic block to be in its own implicit, single-instruction block.

Example 1: Concurrent Queue Consider the example program
in Figure 1 using Java’s ConcurrentLinkedQueue data structure,
an implementation of Michael and Scott’s non-blocking queue [23].
ConcurrentLinkedQueue, from the java.util.concurrent
package, is implemented in a lock-free, non-blocking manner, up-
dating its internal structure using compare-and-swap operations. If
two parallel queue operations conflict, one of the operations will
detect the conflict and retry.

The implementation of ConcurrentLinkedQueue is designed
to ensure that, when multiple queue operations occur concurrently,
their result is the same as if all queue operations had been executed
atomically. We specify this intended atomicity in Figure 1 by en-

Queue q = new ConcurrentLinkedQueue();
q.add(1); q.add(1);

thread1: thread2:
@assert atomic { @assert atomic {

q.remove(1); q.remove(1);
} }

bridge predicate:

q.equals(q’)

Figure 1. Example program with highly-concurrent queue. The
queue initially contains two copies of the value 1, and two
parallel threads each try to remove a 1 from the queue. These
remove operations are specified to execute as if atomic. The
program is not strictly atomic, but is semantically atomic with
respect to the given bridge predicate.

head:!

head:! null!null!

head:! null!

null! 1!1!

head:! null! 1!

head:! null!null!
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Figure 2. Initial internal structure of queue q.
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Figure 3. Internal structure of queue q after any serial execution
of the example program.
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Figure 4. Possible structure of q after a parallel, interleaved
execution of the example program.

closing each parallel call to remove(1) in a specified atomic block,
which we write as @assert atomic {...}.

If our specification was a strict atomicity specification, it would
assert: for any parallel execution of the program, in which the calls
to remove(1) can interleave, there there must exist a serial exe-
cution, in which each call to remove(1) occurred atomically, pro-
ducing an identical final state. But this strict atomicity specification
does not hold.

Internally, a ConcurrentLinkedQueue is a linked list. Nodes
in the list can be lazily deleted—i.e. a remove operation can set the
data field of a node to null, indicating that the corresponding data
element is no longer in the queue, but leave removing the node to
some future operation.

Before the parallel threads execute remove, the internal list
structure is as shown in Figure 2. In any serial execution of the two
calls to remove, the second call will lazily delete the node null’ed
by the first call, yielding the final internal queue structure shown
in Figure 3. But in a parallel execution in which the two calls to
remove are interleaved, it is possible for neither call to clean up
after the other, yielding the final internal state of the queue shown
in Figure 4.

Thus, under a traditional, strict definition of atomicity, the
remove method is not atomic, as a non-serial, interleaved execu-
tion can yield a program state not reachable by any serial execu-
tion. But in either case the abstract, semantic state of queue q is the
same—the queue is empty! That is, the code is atomic, but only at
the semantic level of the contents of the queue.



int balance = 0;

void deposit1(int a) {
@assert atomic {

int t = balance;
t += a;
balance = t;
}

}

int balance = 0;

void deposit2(int a) {
@assert atomic {

int t = balance;
while (!CAS(&balance, t, t + a)) {

t = balance;
}
}
}

int conflicts = 0;
int balance = 0;

void deposit3(int a) {
@assert atomic {

int t = balance;
while (!CAS(&balance, t, t + a)) {

conflicts += 1;
t = balance;

}
}
}

bridge predicate:
balance == balance’

Figure 5. Three different implementations of a function to make a deposit into a bank account. Implementation deposit1 is not atomic,
while deposit2 is atomic. Implementation deposit3 is not strictly atomic, but it is semantically atomic with respect to the bridge
predicate balance==balance’.

To capture this kind of parallel correctness property, we propose
semantic atomicity. Blocks of code are semantically atomic when,
however their execution is interleaved with that of other code, their
effect is semantically equivalent to their effect when executed se-
rially. The desired semantic equivalence is specified by a program-
mer using a bridge predicate. For this program, semantic equiva-
lence is given by the bridge predicate Φ(σ, σ′):

q.equals(q′)

This bridge predicate compares two program states, σ and σ′,
the first from an interleaved, parallel execution of our example pro-
gram and the second from a serial execution. The unprimed q refers
to the queue in state σ and the primed q′ refers to the queue in state
σ′. This bridge predicate specifies states σ and σ′ are semantically
equivalent when the equalsmethod of ConcurrentLinkedQueue
returns true on the queues from the two states—that is, when the
two queues contain the same elements, independent of their inter-
nal structure.

This semantic atomicity specification does hold for our example
program. For any parallel execution of the program, there exists a
serial execution that produces an equivalent final queue q.

Example 2: Bank Account Consider the code in Figure 5 for
function deposit1 for making a deposit into a bank account whose
balance is stored in variable balance. The atomic specification
in deposit1 does not hold because there is an interleaved exe-
cution for which there is no equivalent serial execution. Suppose
two threads call deposit1(100) in parallel, with balance initially
0. Under certain interleavings, both calls to deposit1 can read a
balance of 0 and then both can write 100 to balance, producing

List list = new Vector();

thread1: thread2:
@assert atomic { @assert atomic {

... ...
list.add(1); list.add(3);
... ...
list.add(2); list.add(4);

} }

bridge predicate:

equalMultisets(list, list’)

Figure 6. Example program in which two atomic blocks insert
elements into a synchronized list.

a wrong final result: balance=100. In contrast, any serial execu-
tion of the two threads, in which the body of deposit1 cannot
be interleaved with any other code, must produce the final result
balance=200.

Note that atomicity violations can occur even in code that is free
of data races. For example, if deposit1 held a shared lock while
reading and writing to balance, but released the lock in between
when executing “t += a”, then the procedure would be free of data
races but would still not be atomic.

Consider instead the implementation deposit2 in Figure 5,
which uses an atomic compare-and-swap (CAS) operation to mod-
ify variable balance. In this implementation, the atomicity spec-
ification does hold. Each call to deposit reads balance into a
temporary t and then attempts to atomically update balance to
t + a, succeeding if balance still equals t. If some other thread
interferes, changing balance between the read of balance and the
CAS, then the atomic update fails and deposit re-reads balance
and tries again.

Finally, consider the implementation deposit3 in Figure 5.
This code is identical to deposit2, except that a count is kept, in
shared variable conflicts, of the approximate1 number of failed
compare-and-swap operations during runs of deposit3.

Due to the introduction of shared counter conflicts, the
atomic specification no longer holds. In a parallel execution with
two calls to deposit3(100), if the execution of the methods inter-
leave, it is possible for conflicts to be incremented to 1. But in
any execution in which the methods are executed serially, the value
of conflicts will be 0.

However, the deposit3 implementation is semantically atomic
with respect to the bridge predicate:

balance == balance
′

That is, if some interleaved execution produces a final balance,
there will exist a serial execution producing a final balance′ such
that balance and balance′ are equal.

Example 3: Multiset Stored as a List Consider the example pro-
gram in Figure 6, in which two threads accumulate integers into
a shared list. If the programmer cares about the exact order
of the final elements in list, then this code is not atomic. Al-
though method add of Vector is synchronized, an interleaved exe-
cution of this example program can yield a final list of [1,3,2,4],
while a serial execution of the two atomic blocks could yield only
[1,2,3,4] or [3,4,1,2].

1 Such performance counters are often not synchronized, as developers
reason that the cost of synchronization is too great and approximate counts
are often suitable for performance debugging.



But this code can be thought of as atomic if the pro-
grammer cares only about the multiset of elements in the fi-
nal list. That is, the example program in Figure 6 is se-
mantically atomic with respect to some bridge predicate like
equalMultisets(list,list’), where equalMultisets is a
function that compares two collections to see if they have equal
multisets of elements.

2.1 Writing Semantic Atomicity Specs
Our above examples demonstrate that we can reap the benefits of
atomicity as a specification and reasoning tool in many more con-
texts if we consider the more relaxed form of semantic atomicity
with respect to an application-specific bridge predicate. But how
much effort is involved in writing such a specification for a parallel
program?

To write a semantic atomicity specification for a program, a
programmer must: (1) Indicate with @assert atomic which static
blocks of code are intended to execute as if atomic, and (2) Write a
bridge predicate to define when two final states of the program are
semantically equivalent. We believe neither task should be difficult
for the author of a parallel program.

We believe that, when writing multithreaded software, program-
mers must already be thinking about the possible interference be-
tween parallel tasks and how to prevent harmful interference using,
for example, thread-safe data structures, locks, or atomic primi-
tives such as compare-and-swaps. That is, programmers are already
thinking about how to ensure that program tasks are atomic at some
semantic level. Thus, it should not be difficult to specify which
blocks of code are intended to behave equivalently whether or not
other program tasks are run concurrently—for example, a modi-
fication to concurrent queue data structure or a deposit to a bank
account. Further, in our experimental evaluation (Section 5), we
found it to be quite simple to identify the intended atomic blocks
in our benchmark programs. We specified between one and eight
atomic blocks for each such benchmark.

We similarly believe that it is straightforward to specify when
two program results are semantically equivalent using a bridge
predicate. This specification task does not require reasoning about
possible program interleavings, but simply identifying which vari-
ables or objects hold the final result of a program and considering
when two such final results are semantically the same—for exam-
ple, that two queues are equivalent if they contain the same ele-
ments in the same order, independent of the structure of their inter-
nal linked lists. Further, in our experimental evaluation (Section 5),
we found that writing such bridge predicates required only a few
lines of specification for each benchmark.

3. Semantic Atomicity and Linearizability
In this section we elaborate on several possible interpretations of
atomicity specifications. We first describe these notions at a high
level, and compare them to other notions of parallel correctness
and non-interference. Later in this section we give the precise
formal foundations on which we developed the checking algorithm
described in the rest of this paper.

3.1 Overview
At a high-level, we think of a parallel program annotated with
atomic blocks as having two different execution semantics: (1)
In the interleaved or non-serial semantics, the atomic annotations
have no effect—the parallel operations of different threads can be
freely interleaved. (2) In the serial or non-interleaved semantics,
when one program thread enters an atomic block, no other thread
may execute until the first thread exits that atomic block. (Because
we treat every instruction as being in an implicit single-instruction

atomic block, we can think of the serial semantics as having a
global re-entrant lock that each thread must acquire to enter any
atomic block and that is released on exiting a block.)

Traditional parallel correctness properties such as atomicity, se-
rializability, or linearizability hold for a program when, for any
interleaved execution of the program, there exists a similar serial
execution that produces an identical final program state. The differ-
ences between these correctness properties are in their definitions
of similar executions:

• Atomicity [9] requires only that, for each interleaved execution,
there exists a serial execution yielding the same final program
state. The interleaved and serial executions need not be similar
in any other way.
• Serializability [28] requires that, for each interleaved execution,

there exists a serial execution which both yields the same final
program state and in which all the same atomic blocks are
executed.
Conflict-serializability [28] further requires that all correspond-
ing atomic blocks perform the same conflicting read and write
operations in the interleaved and parallel execution, and that
all pairs of conflicting operations occur in the same relative or-
der. Conflict-serializability, though very strict, can be checked
efficiently, and is thus used in many atomicity testing and veri-
fication tools, (e.g., [8–10, 12, 37]).
• Linearizability [17], like serializability, requires that, for each

interleaved execution, there exists a serial execution which both
yields the same final program state and in which the same
atomic blocks are executed. Further, it requires that any pair
of atomic blocks whose execution does not overlap in the in-
terleaved execution must occur in the same order in the serial
execution.
Note that this definition of linearizability is somewhat dif-
ferent than that of [17] and later generalization [24], which
formalize atomic blocks as having distinguished responses or
return values and compare program states via observational
equivalence—i.e. whether sequences of atomic blocks would
return the same values. Our definition is appropriate for gen-
eral atomic blocks without distinguished return values, while
capturing the key requirement that a serial execution is equiva-
lent only if it preserves the ordering of non-overlapping atomic
blocks.

All three properties defined above require that, for each inter-
leaved execution, there exists some serial execution producing an
identical final state. As discussed in Section 2, such strict state
equality is too restrictive to capture critical noninterference proper-
ties for many programs. For such programs, we propose employing
a user-specified bridge predicate [3]—a predicate relating a pair
of program states from an interleaved and a serial execution—to
define a semantic equivalence between final program states.

That is, we can define semantic atomicity, semantic serializabil-
ity, and semantic linearizability, all with respect to a user-specified
bridge predicate Φ, by allowing in the above definitions that, for
any interleaved execution with final state σ, the equivalent serial
execution can have any final state σ′ such that Φ(σ, σ′).

The checking algorithm described in Section 4 tests semantic
linearizability, primarily because linearizability is significantly eas-
ier to check, as it constrains the search space of similar serial execu-
tions to those that preserve the ordering of non-overlapping atomic
blocks. But before describing out testing algorithm, we will briefly
formalize in Section 3.2 these three parallel correctness properties.



3.2 Formal Definitions
In this section, we briefly formalize the above definitions of seman-
tic atomicity, serializability, and linearizability.

Let Thread denote the set of program threads, Σ denote the set
of program states including the thread-local states, Atomic denote
the set of static program block annotated as atomic, and Op denote
the set {begin(a) : a ∈ Atomic} ∪ {end, ε} of atomic block op-
erations. Intuitively, the operations are used to label the state tran-
sitions as follows. begin(a) marks the beginning of a dynamic
instance of the static atomic block a, end marks the end of the
last open atomic block, and ε is used for all other state transitions.
We assume that atomic blocks are properly nested, and all instruc-
tions are inside one atomic block. If an instruction is not inside a
programmer-annotated atomic block, then we assume that there is
an implicit atomic block containing just that instruction.

Definition 1. A program P consists of an initial program state σ0

and a transition relation→:

−→ ⊆ Σ× Thread× Op× Σ

We write σ
t:op−−→ σ′ when the program can transition from state

σ to σ′ by executing the atomic block operation op by thread t.

Definition 2. An execution of program P = (→, σ0) is a sequence
of transitions in the operational semantics→:

σ0
t1:op1−−−−→ σ1

t2:op2−−−−→ · · · tn:opn−−−−→ σn

An execution is complete if all begin(a) have a matching end
operation in the same thread.

Definition 3. An execution E is serial iff, for each matched t :
begin(a) and t : end transition in E, there are no transitions
between the two by any other thread s 6= t.

Definition 4. A transition t : op in an execution E is a top-level
transition if it does not occur between any matched t : begin(a)
and t : end by the same thread.

Note that all top-level transitions are a begin or end since we
assume that all instructions are part of atomic blocks.

Definition 5. A complete execution E = σ0
···−→ σn of program

P is semantically linearizable with respect to Φ iff there exists a
serial execution E′ = σ0

···−→ σ′n′ of P such that:

(1) Φ(σn, σ
′
n′),

(2) for every thread t ∈ Thread, the sequence of top-level opera-
tions performed by t is the same in E and E′.

(3) non-overlapping top-level atomic blocks in E appear in the
same order E′.

A program P is semantically linearizable with respect to Φ iff
every execution of P is semantically linearizable.

Note that if we remove conditions (2) and (3) above we obtain
the notion of semantic atomicity. Similarly, if we remove only the
condition (3) above we obtain the notion of semantic serializability.
And when the bridge predicate Φ(σ, σ′) is strict state equality
σ = σ′, we obtain traditional linearizability, atomicity (removing
conditions 2 and 3), and serializability (removing condition 3). We
prefer to work with the stronger notion of linearizability because it
is significantly easier to check.

Note that, for the purpose of checking similarity between the
parallel and the serial executions, we identify the dynamic instances
of atomic blocks by the combination of the thread that runs them,
the static label of the atomic block, and the index of the dynamic
occurrence in the execution.

4. Testing Semantic Linearizability
Now that we have defined semantic linearizability for programs
with atomic block specifications, we can address the problem of
checking the linearizability of such atomicity specifications.

Suppose P is a program with atomic blocks specified to be se-
mantically linearizable with respect to bridge predicate Φ. Check-
ing the linearizability of P consists of two problems:

(1) Given an interleaved execution E of a program P , is E seman-
tically linearizable with respect to Φ?

(2) Is program P semantically linearizable with respect to bridge
predicate Φ? That is, is every interleaved execution of P se-
mantically linearizable?

Given a solution to the first problem, we can in theory solve
the second by enumerating all interleaved executions of P and
checking if each is linearizable. In practice, however, it is typically
not feasible to enumerate all executions of a parallel program.

Instead, we resort to checking the linearizability of only a subset
of the interleaved executions of P . Such a checking procedure
will be sound—if we discover any executions of P that are not
linearizable, then P cannot be linearizable—but incomplete—even
if all checked executions are linearizable, we cannot know for
certain that P itself is linearizable.

There are a number of existing techniques and tools that can
be applied to generate a subset of the parallel, interleaved exe-
cutions of a program for testing and verification—for example, a
preemption-bounded model checker [25] such as CHESS [26] or
an active testing [29, 30] tool such as CalFuzzer [18]. We describe
in Section 5.1 the details of our technique for generating the inter-
leaved executions to test.

The key to the effectiveness of our approach, however, is to
consider only those interleaved executions in which only a small
number of atomic blocks either have their execution interrupted by
the operations of other threads or themselves interrupt the atomic
blocks of other threads.

We show in the Sections 4.1 and 4.2 that we can efficiently
check the linearizability of such interruption-bounded executions.
And in Section 4.3 we will describe a technique, leveraging op-
tional programmer-supplied hints to further increase the efficiency
of such testing. Our experimental results demonstrate that testing
a program for linearizability only on interruption-bounded inter-
leaved executions is sufficient to find real atomicity errors.

4.1 Interruption-Bounded Executions
Let E be an interleaved execution of some program P :

E = σ0
t1:op1−−−−→ σ1

t2:op2−−−−→ · · · tn:opn−−−−→ σn

We say a top-level atomic block t : begin(ai), . . . , t : end in
thread t inE is interrupted if any operations by other threads occur
between t : begin(ai) and t : end in E. The interrupting oper-
ations in the other threads are part of atomic blocks that interrupt
the atomic block t : begin(ai), . . . , t : end.

Suppose an execution E has R interrupted atomic blocks and
K interrupting atomic blocks. (Note that a single block may be
both interrupted and interrupting). We ask the question, how many
possible linear orderings are there of the top-level atomic blocks of
E that preserve the order of non-overlapping atomic blocks in E?

We show below in Theorem 6 that such an execution E has
no more than (K + 1)R possible linear orderings of its top-level
atomic blocks that preserve the order of non-overlapping atomic
blocks. As we discuss in the next section, to check that an execution
E is semantically linearizable, we will examine linear orderings
of the top-level atomic blocks of E that preserve the ordering of
non-overlapping blocks in E. Thus, if execution E is interruption-



bounded—i.e. has no more than R interrupted atomic blocks and
no more than K interrupting blocks—then there will be no more
than (K + 1)R serial schedules that need to be examined.

Theorem 6. Suppose an execution E has R top-level interrupted
atomic blocks and K top-level interrupting atomic blocks. There
are no more than (K + 1)R possible linear orderings of the top-
level atomic blocks ofE that preserve the order of non-overlapping
atomic blocks.

Proof. The proof is by induction onR. For the base caseR = 1, the
bound is K + 1, because the K interrupting blocks are themselves
non-overlapping and thus their linear order is fixed. The interrupted
block can be placed in K + 1 positions in the order.

Suppose E has R interrupted atomic blocks and K interrupting
atomic blocks. There exists some set S of c ≥ 1 blocks in E such
that: (1) every block in S is interrupted, and (2) no block in S
interrupts any block not in S.

Suppose that such an S exists with c = |S| = 1. Then, there
are no more than (K + 1)R−1 linear orderings of the remaining
blocks, with the single block in S removed. And there are no more
than K + 1 ways to add back the single block into any such order,
yielding the desired bound.

Suppose instead that an S exists only with c = |S| > 1. Then
every block in S is both interrupted and interrupting. (If any block
were not interrupting, then it would be an S with c = 1.) Thus,
there are no more than (K + 1 − c)R−c linear orderings of the
remaining atomic blocks, of which R − c are interrupted and no
more than K − c are interrupting. Consider the number of distinct
ways in which the c blocks of S could appear in such an ordering of
the remaining blocks. There are c! linear orderings of the c blocks
of S. And, relative to the remaining K − c interrupting blocks,
there are no more than K− c+ 1 possible positions for each of the
c blocks in S. Thus, the number of ways to add one linear ordering
of the c blocks of S to one linear ordering of the remaining blocks
is no more thanK!/c!(K−c)!, which is the the number of ways to
partition a sequence of length c into K − c+ 1 segments, allowing
empty segments. The desired bound holds, as:

(K + 1− c)R−c · c! · K!

c!(K − c)! ≤ (K + 1)R

4.2 Testing Linearizability of
Interruption-Bounded Executions
Algorithm 1 lists CheckLinearizable(P,Φ, E), our algorithm for
testing the semantic linearizability, with respect to Φ, of an execu-
tion E of a program P .

We say that a schedule is a sequence (t1, a1), . . . , (tn, an) of
pairs of thread identifiers ti and atomic block labels ai. We assume
that all sources of nondeterminism in a program P , besides the
scheduling of parallel threads, have been eliminated. For example,
the input to P and the environment in which P runs must be
fixed. Thus, the behavior of the serial executions of P , in which
no atomic block interrupts the execution of any other block, are
uniquely identified by the schedule in which the top-level atomic
blocks occur.

Then, let Linearizations(E) be a procedure computing the set of
all schedules of the top-level atomic blocks in E that preserve the
order of non-overlapping atomic blocks in E. A serial execution
can be a witness to the linearizability of E only if it corresponds
to one of the schedules in Linearizations(E). By Theorem 6, the
number of such schedules, and thus the number of such serial
executions, is bounded by the number of interruptions in E.

We need only a mechanism for controlling the execution of a
program P to force it along a schedule s. Let Execute(P, s) denote
such a procedure. At a high level, for a program P and a schedule

Algorithm 1 CheckLinearizable(P,Φ, E)

σ ← final state of execution E
for s ∈ Linearizations(E) do

if Execute(P, s) succeeds, yielding σ′ then
if Φ(σ, σ′) then

return true
end if

end if
end for
return false

s = (t1, a1), . . . , (tn, an), procedure Execute(P, s) will, for each
i from 1 to n:

• If thread ti is not active or the next top-level atomic block to be
started by ti is not labeled ai, then Execute(P, s) fails.
• Otherwise, we let thread ti execute begin(ai) and let it con-

tinue to run until it executes a matching end. If thread ti blocks,
Execute(P, s) fails.
Similarly, Execute(P, s) fails if ti runs forever without ever
reaching a matching end. As the termination of ti is undecid-
able, the best we can do is for Execute(P, s) to fail after ti does
not reach a matching end in a specified amount of time or num-
ber of instructions.

4.3 Hints for More Efficient Testing
In testing the semantic linearizability of the atomic blocks in a
program P , we expect to have to test the linearizability of many
interleaved executions of P . We expect that the great majority of
these tested interleavings will be linearizable—concurrency errors
such as atomicity violations tend to occur only on a small fraction
of executions, especially in well-tested and widely-used software.
(Our experimental results match this expectation.)

If an interleaved execution E is not linearizable, then we
will have to look at all serial ways to schedule the top-level
atomic blocks of E that are consistent with the ordering of non-
overlapping blocks in E. But if an interleaved execution E is lin-
earizable, we can determine this fact by finding a single equivalent
serial execution. This raises the possibility that, for executions that
turn out to be linearizable, we could make the testing procedure
described in Section 4.2 more efficient by prioritizing the order in
which we examine the possible linearizations of E.

Thus, we propose two kinds of optional hints that a program-
mer can add to their multithreaded code, along with their seman-
tic atomicity specification. For an interleaved execution E, the
hints will suggest which serial orderings of the overlapping atomic
blocks should give equivalent results. Before falling back to a com-
plete search of all linearizations ofE, we will first try the lineariza-
tions consistent with these hints from the programmer.

Our optional hints take two forms: (1) linearization points, and
(2) distinguished reads and writes:

Linearization Points First, a user can specify linearization points
(also called commit points) for atomic blocks. Any dynamic execu-
tion of an atomic block should reach at most one annotated lin-
earization point.

This hint indicates that, if two atomic blocks overlap and both
execute a linearization point, then the block that executed its lin-
earization point first should be ordered first in any serial execution.

Manually-annotated linearization points are often used in efforts
to prove or verify the correctness of concurrent data structures [5,
7, 35, 38]. However, it has been observed [2, 5, 35] that it may
be very difficult to identify or annotate all linearization points for
some programs.



Distinguished Reads and Writes Second, a user can annotate cer-
tain reads and writes of shared variables as distinguished reads
and writes. When linearization points cannot be identified stati-
cally, one could often identify some distinguished shared memory
accesses (i.e. reads and writes) whose ordering determines the or-
dering between the atomic blocks. For example, if an atomic block
inserts (i.e. writes) an item to a list and another overlapping atomic
block gets (i.e. reads) the same item from the list, then the order-
ing between the write and read accesses determines the ordering
between the atomic blocks. If a CAS operation succeeds, then a
shared memory write performed by the CAS is considered distin-
guished. On the other hand, if a CAS operation fails, then the shared
memory read performed by the CAS operation can be ignored (i.e.
not considered distinguished). In several of our benchmarks, we
have found that even if we cannot identify the linearization points
of all atomic blocks, we can identify distinguished reads and writes
and use them to determine the ordering among overlapping atomic
blocks. We next describe how we use distinguished operations to
order atomic blocks.

Given distinguished operations op1 and op2 on the same shared
variable, we say that op1 is ordered before op2 if at least one of the
two operations is a write and if op1 is executed first.

Suppose atomic blocksB1 andB2 overlap. These hints indicate
that B1 should be ordered before B2 in any serial execution if,
for any variable v, some distinguished write to v in B1 or the last
distinguished read to v inB1 is ordered before a distinguished write
to v in B2 or the last distinguished read of v in B2.

These hints may indicate that B1 should come before B2 and
that B2 should come before B1, in which case we ignore the
distinguished reads/writes for ordering B1 and B2 with respect to
each other.

Using Hints in Testing Linearizability Given an interleaved exe-
cutionE, we use a depth-first search to find a serial ordering consis-
tent with the annotated hints inE. And if no execution is consistent
including both the linearization points and the distinguished reads
and writes, we find an ordering consistent with just the lineariza-
tion points. We test this single serial ordering to see if it is a witness
to the semantic linearizability of E, and, if not, we fall back to the
exhaustive search in Section 4.2.

Our experimental results demonstrate that these hints can im-
prove our linearizability testing to the point where the first serial
execution to be examined is found to satisfy the bridge predicate.
Furthermore, using these optimizations is sound because the testing
procedure falls back to searching all other possible serial lineariza-
tions when a programmer’s hints do not guide us to a witness to
linearizability.

5. Evaluation
In this section, we describe our efforts to experimentally evaluate
our approach to specifying and checking semantic atomicity for
multithreaded programs. Specifically, we seek to demonstrate that:

1. We can find real atomicity errors in multithreaded programs
by testing the semantic linearizability of random interleaved
executions with a small number of interrupted and overlapping
atomic blocks.

2. In the common case where a tested interleaving is linearizable,
we can soundly increase the efficiency of our testing using
optional programmer annotations.

5.1 Implementation
In order to evaluate our claims, we implemented our approach
for Java programs. Our implementation consists of several compo-
nents: (1) an annotation and assertion library for specifying which

class Atomic {

static void open()

static void close()

static void assert(Object o, Predicate p)

interface Predicate {
boolean apply(Object a, Object b)

}
}

Figure 7. Core atomicity specification API.

blocks of code in a Java program are intended to be semantically
atomic, as well as for specifying the bridge predicate with respect
to which the blocks are intended to be atomic; (2) a component to
generate random, interruption-bounded interleaved executions of a
multithreaded test program; (3) a component to test the semantic
linearizability of a given interleaved execution by generating and
examining all serial executions that are linearizations of the inter-
leaved execution.

Atomicity Assertion Library Figure 7 shows the core API of our
atomic assertion library. A programmer calls Atomic.open() and
Atomic.close() to indicate the beginning and end of semantic
atomic blocks in their code. Each call to open is uniquely identified
by its location in the program source (accessible by, e.g., examining
a call stack trace).

The bridge predicate giving the desired semantic equiva-
lence between interleaved and serial executions is specified via
Atomic.assert. In an interleaved execution, a sequence of calls to
Atomic.assert(obj,pred) indicates that there must exist some
serial execution—a linearization of the interleaved execution—in
which each corresponding call Atomic.assert(obj’,pred) is
such that pred.apply(obj,obj’) returns true.

That is, suppose the nth call to Atomic.assert(obj,pred)
in an interleaved execution records the serialized value of object
obj. (We require that all objects passed to Atomic.assert im-
plement the Serializable interface so that this recording is pos-
sible. Most common objects in the Java standard library can be
serialized in this way.) Then, in a serial execution, while test-
ing the linearizability of this interleaved execution, the nth call to
Atomic.assert(obj’,pred) reads the previously serialized ob-
ject obj and checks if pred.apply(obj,obj’) holds. The se-
rial execution is reported to be equivalent to the interleaved exe-
cution iff the same number of Atomic.assert calls are made and
pred.apply(obj,obj’) returns true for each one.

Sampling Interleaved Executions Our tool for randomly gener-
ating interleaved executions of a multithreaded test program is built
on top of the publicly-available and open-source CalFuzzer [18]
framework for testing concurrent Java programs. CalFuzzer uses
Soot [33] to instrument Java bytecode, adding calls to a user’s anal-
ysis/testing code on every read, write, lock, unlock, etc.—we use
these calls to take control of the parallel scheduling of a Java pro-
gram and replace it with our own scheduler.

Our thread scheduler is parameterized by a maximum number
R of atomic blocks to interrupt, a numberK of other atomic blocks
to execute while the atomic block is interrupted, and a bound C on
the number of times to interrupt at each distinct program statement.
After any statement executes in the test program, the scheduler
picks the next thread to execute a statement as follows:



Benchmark

Approx. LoC
(Benchmark
+ Library)

# Static
Atomic
Blocks

Interruption-Bounded
Interleavings Avg. # of Serial Executions

Conflicts
total non- errors linear. linear. non-

linear. (heuristics) linear.
ConcurrentLinkedQueue 200 6 241 7 2 2.96 1.20 4.29 4
ConcurrentSkipListMap 1400 6 487 6 2∗ 2.54 - 4.83 4
ConcurrentSkipListSet 100 6 463 5 2∗ 2.57 - 4.6 4
CopyOnWriteArrayList 600 6 222 0 0 6.23 1.0 - 0
CopyOnWriteArraySet 60 6 221 0 0 4.39 1.0 - 0

LockFreeList 100 6 319 57 1 2.08 - 3.46 2
LazyList 100 8 231 0 0 2.46 1.02 - 2

PJ pi 150 + 15,000 1 20 5 1 1.0 - 4.8 1
PJ keysearch 200 + 15,000 1 904 0 0 1.0 - - 0

PJ mandelbrot 250 + 15,000 1 73 0 0 1.0 - - 0
PJ phyl 4400 + 15,000 2 605 27 1 1.0 - 125.56 2

Table 1. Experimental results.

• If the last statement was a top-level Atomic.close and no
thread has an open atomic block, then pick the next thread
randomly from among all active threads.
• If the last statement was by thread t and thread t has an open

atomic block, then subject to certain constraints, we interrupt
the atomic block thread t is executing, selecting a random
different active thread to run next.
The constraints are: (1) We perform no more than R interrup-
tions during an execution. (2) For each statement in each possi-
ble calling context, we interrupt at that statement only if it is in
the first C occurrences in the current execution of the statement
and calling context, and only if we have not interrupted at that
statement, calling context, and occurrence combination in any
other run.
• If the last statement was a top-level Atomic.close and other

threads have open, interrupted blocks:
If we have executed K complete atomic blocks since interrupt-
ing the longest-open atomic block, we select, if possible, a ran-
dom active thread in an interrupted atomic block to run next.
Otherwise, randomly select to execute next any active thread
not in an interrupted atomic block.

Overall, generated interleaved executions will have roughlyKR

expected possible linearizations. In our experiments, we use param-
eters R = 1, K = 4, and C = 4.

Checking if an Interleaving is Linearizable Recall from the pre-
vious section that we can use CalFuzzer [18] to control the schedul-
ing of a parallel Java application. We use this ability to implement
procedure Execute(P, s), described in Section 4.2, for executing a
program P along a serial schedule s = (t1, a1), . . . , (tn, an).

We then implement Algorithm 1, given this Execute(P, s)
procedure and using the atomic assertion library described above
to check the specified bridge predicate.

5.2 Benchmarks
We evaluated our approach on a number of Java benchmarks. The
name, size, and number of static blocks specified as atomic is given
for each of these benchmarks in Table 1.

The first group of benchmarks are concurrent data structures
from the Java standard library java.util.concurrent and else-
where. ConcurrentLinkedQueue, ConcurrentSkipListMap,
ConcurrentSkipListSet, and CopyOnWriteArrayList are
from the Oracle Java SDK 6 (update 20). LockFreeList is a
concurrent, lock-free list from [16], used as a benchmark by [4].

Benchmark LazyList is a concurrent set, implemented as a linked
list with lazy deletion, from [35].

As our technique is designed to be applied to whole, closed
programs, we must create a test harness for each data structure
benchmark. Each harness creates one instance obj of the data
structure and then calls four to eight methods on the instance in
parallel, recording the return values. Each method call is speci-
fied to be semantically atomic with respect to a bridge predicate
requiring both that obj.equals(obj’) and that all method re-
turn values be the same. For additional details, please see our
benchmarks and test harnesses, which can be downloaded from:
http://www.cs.berkeley.edu/~jburnim.

The other group of benchmarks are from the Parallel Java (PJ)
Library [19]. The PJ benchmarks include an app for computing
a Monte Carlo approximation of π (pi), a parallel cryptographic
key cracking app (keysearch3), an app for parallel rendering
of Mandelbrot Set images (mandelbrot), and a parallel branch-
and-bound search for optimal phylogenetic trees (phylogenetic).
Each of these benchmarks relies on roughly 15,000 lines of PJ
library code for threading, synchronization, etc.

5.3 Experimental Setup and Results
For each benchmark, we execute our systematic random sched-
uler, described in Section 5.1 to generate a number of interleaved,
interruption-bounded executions. We test each generated execution
to see if it is semantically linearizable.

The number of interruption-bounded executions generated for
each benchmark is listed in Column 4. Column 5 lists the number
of executions found to not be semantically linearizable. We found
non-linearizable executions for four of the data structure bench-
marks and two of the PJ application benchmarks. In Column 6,
we report the number of distinct bugs exposed by these atomicity-
violating executions. We discuss some of these errors in detail in
the next section. Note that every violation of the linearizability of
our semantic atomic blocks indicated a true error.

For the linearizable executions of each benchmark, Columns 7
and 8 report the average number of serial executions that had to
be examined to find a witness to the linearizability, without and
with heuristically using any hints from programmer annotations2.
Our annotations greatly reduce the number of serial executions that
must be examined for several of the data structure benchmarks.

2 Note that, for the PJ benchmarks, because the different atomic blocks are
largely independent, it is usually the case that the first serial execution we
examine witnesses the linearizability.



Column 9 reports the number of serial executions examined for
non-linearizable interleavings. For most benchmarks, this number
is small, as expected, because we are testing the linearizability of
interruption-bounded executions. 3

Finally, Column 10 reports the number of atomic blocks in each
data structure that are not conflict-serializable. We discuss these
numbers in the next section.

5.4 Atomicity Errors Found
We now discuss several atomicity errors found by our testing.

ConcurrentLinkedQueue Our automated testing of our seman-
tic atomicity specification for Java’s ConcurrentLinkedQueue
found two errors. As far as we can determine, these errors have
not previously been reported.

The code in Figure 8 gives a simple test harness that exposes
one of the two errors. Initially, queue q contains elements 1 and 2.
We expect that, because methods add, remove, and size should
all be atomic, in any parallel, interleaved execution the call to
q.size() must return that the queue contains one element (after
q.remove(1) but before q.add(3)) or two elements (before the
remove or after the add). However, it is possible for q.size() to
incorrectly report that the queue q contains three elements!

This source of this error is that computing the number of ele-
ments in a ConcurrentLinkedQueue requires traversing its inter-
nal linked list structure and counting the number of elements. Sup-
pose thread2’s call to q.size() begins its traversal, finding and
counting elements 1 and 2. But, before the call sees that it is at the
tail of the list, it is interrupted by thread1. The calls by thread1
to q.remove(1) and then q.add(3) eliminate element 1 from the
head of the list and insert element 3 at the tail of the list. Then,
when thread2’s call to q.size() continues, it finds and counts
element 3 and returns that queue contains three items.

Our testing found a similar error for the toArray method
of ConcurrentLinkedQueue. Further, while our test harness
only exercised the add, remove, size, and toArray methods of
ConcurrentLinkedQueue, manual inspection of its source code
revealed that methods equals and writeObject can similarly re-
turn non-atomic results due to iterating over the elements of the
queue without checking for concurrent modifications.

We note that although ConcurrentLinkedQueue’s documen-
tation4 specifies that iteration through such a queue is only “weakly
consistent”, no such warning is given for methods size, toArray,
equals, or writeObject. In fact, the documentation for the size
method states:

“Beware that, unlike in most collections, this method is
NOT a constant-time operation. Because of the asyn-
chronous nature of these queues, determining the current
number of elements requires an O(n) traversal.”

which seems to specify that size, although it requires O(n) time,
will return a consistent value (i.e., be linearizable). We thus judge
that the unexpected behaviors of these methods are errors.

ConcurrentSkipListMap and Set Our testing of benchmarks
ConcurrentSkipListMap and ConcurrentSkipListSet found
two violations of our semantic atomicity specifications for each
benchmark. In particular, our test harnesses for these benchmarks
each concurrently performs two insertions, two deletions, a call
to size(), and a call to toArray() (or keySet().toArray()

3 Difficulties controlling the Java scheduler benchmark phyl, however,
lead to extra, unwanted interruptions and thus a larger number of serial
executions that must be examined.
4 http://download.oracle.com/javase/6/docs/api/java/util/
concurrent/ConcurrentLinkedQueue.html

Queue q = new ConcurrentLinkedQueue();
q.add(1); q.add(2);
int sz = 0;

thread1: thread2:
@assert atomic {

q.remove(1); @assert atomic {
} sz = q.size();
@assert atomic { }

q.add(3);
}

bridge predicate:

q.equals(q’) && (sz == sz’)

Figure 8. Simple harness for ConcurrentLinkedQueue that
reveals an atomicity error involving add, remove, and size. The
annotated blocks are not semantically linearizable with respect
to the bridge predicate.

for ConcurrentSkipListMap). Our specification asserts that all
six method calls execute semantically as if atomic, and our testing
finds that neither method size nor method toArray is semanti-
cally atomic.

Note that the documentation5 for ConcurrentSkipListMap
and ConcurrentSkipListSet do warn for method size:

“Additionally, it is possible for the size to change during
execution of this method, in which case the returned result
will be inaccurate. Thus, this method is typically not very
useful in concurrent applications.”

Thus, our specification is too strict in this case, as method size is
not expected to be semantically atomic. Further, the documentation
makes it clear that some bulk methods such as equals, putAll,
etc., are not intended to be atomic. It is not clear from this docu-
mentation whether or not toArray is intended to be atomic.

Lock-Free List Our automated testing of our semantic atomicity
specification for the lock-free list from [16] found one previously
known error. In this lock-free list, two concurrent calls to remove
can incorrectly both report that they have successfully deleted the
same single element from a list. The online errata to [16] corrects
this error.

PJ phyl Branch-and-Bound Search We also found a previously-
unknown atomicity error in Parallel Java benchmark phyl. Figure 9
presents a very simplified, high-level version of the benchmark that
illustrates the nature of the error.

Benchmark phyl is a parallel branch-and-bound search to find
a minimum-cost phylogenetic tree for a given collection of DNA
sequences. The search is nondeterministic—there may exist mul-
tiple minimum-cost trees and the search could return different
minimum-cost trees on different runs, depending on the thread
schedule and the resulting order in which the candidate trees are
evaluated.

The benchmark can be thought of as parallel for-loop over
possible phylogenetic trees. For each tree t, the cost is computed
and the global minimum cost min cost is updated. This update
is safe, as proper synchronization is used to protect updates to the
minimum cost. Thus, the final value of min cost will always be
correct.

Updates to min tree, however, are not properly synchronized.
Suppose one parallel loop iteration finds a new minimum-cost tree,
updates min cost, and enters the body of the if-statement with

5 http://download.oracle.com/javase/6/docs/api/java/util/
concurrent/ConcurrentSkipListMap.html and Set.html



parallel-for (t in trees) {
@assert atomic {

cost = compute cost(t)
synchronized (min cost) {

min cost = min(min cost, cost)
}
if (cost == min cost) {

min tree = t
}

}
}

bridge predicate:

min tree.equals(min tree’)
&& (min cost == min cost’)

Figure 9. Simplified version of PJ phyl benchmark highlight-
ing the nature of the atomicity error found by our technique.

condition cost == min cost, but is then interrupted by some
other parallel loop iteration. The other iteration could further de-
crease min cost and write to min tree. But then when the first
loop iteration continued, it would incorrectly overwrite min tree
with a tree no longer of minimal cost. Such an inconsistent value
for min tree cannot occur in a serial execution in which the body
of iteration of the parallel for-loop occurs atomically.6

5.5 Discussion
Comparison to Conflict-Serializability Most existing tools for
detecting atomicity violations check whether executions of a test
program are conflict-serializable. As discussed in Section 3.1,
conflict-serializability is a strict notion of atomicity, requiring that,
for each interleaved execution, there exist a serial run in which ev-
ery atomic block executes the same set of conflicting read and write
operations, all in the same relative order.

Column 10 of Table 1 shows that several of the data structure
benchmarks had atomic blocks that were not conflict-serializable,
despite being semantically linearizable. Note that this column re-
ports the number of static atomic blocks found to not be conflict-
serializable in at least one dynamic, parallel execution. When run
on all of the interruption-bounded interleavings in our experiments,
a traditional atomicity analysis based on conflict-serializability
would report 100+ dynamic atomicity violations for most of these
benchmark. These would all be false positives (except for the few
also violating semantic atomicity) that a user would have to exam-
ine. Burckhardt et al. [2] have also found that traditional atomicity
analyses produce hundreds of false warnings for similar concurrent
data structures.

Every atomicity violation reported by our approach, on the
other hand, indicated a real atomicity violation, leading to program
results not equivalent to those of any serial execution.

Effectiveness of Interruption-Bounded Testing Our experimen-
tal results demonstrate that we can find many real semantic atom-
icity errors by testing linearizability on interleaved executions
with a small number of interruptions. There are some errors,
however, that require more interruptions to detect. For example,
there is a known7 atomicity violation in the version of Java’s
ConcurrentLinkedQueue we tested (JDK 6, update 20), involv-
ing concurrent calls to poll() and remove(o). In particular, it is

6 The error in the phyl source is that each worker thread’s call to
globalResults.addAll(results) is not atomic. This method updates
the global list of minimum-cost trees with each worker thread’s list of
locally-minimum-cost trees.
7 http://bugs.sun.com/view_bug.do?bug_id=6785442

possible for a call to remove(o) to return true—indicating that it
removed object o from the queue—while a parallel call to poll()
appears to remove and return the same object o. But this error can
occur only if the call to remove(o) locates o at the head of the
queue, then poll() interrupts and starts to (non-atomically) re-
move o from the queue, and then remove(o) interrupts poll()
and finishes its remove.

Comparison to Determinism The error we detect in the Parallel
Java (PJ) phyl benchmark was missed by our previous work [3],
which attempted to verify the semantic deterministic behavior of
this and other benchmarks. In [3], we checked a semantic deter-
ministic specification for the benchmark like:

deterministic {
// Phylogenetic branch-and-bound search.
...

} assert (min cost == min cost’);

This specification asserts the following. For any pair of execu-
tions E and E′ of this code pair from initial state σ0 to final states
σ and σ′, it must be the case that min cost in σ equals min cost
in σ′. That is, letting Φdet denote bridge predicate min cost ==
min cost, it asserts:

∀σ0
E−→ σ. ∀σ0

E′
−→ σ′. Φdet(σ, σ

′)

To compare, let Φatm denote our bridge predicate
min tree.equals(min tree’) ∧ (min cost == min cost’)
for semantic linearizability. Then, our semantic atomicity specifi-
cation is that, for any execution E from σ0 to σ, there exists one
serial execution E′ from σ0 to σ′ such that Φatm(σ, σ′) and E′ is a
linearization of E. That is:

∀σ0
E−→ σ. ∃σ0

E′
−→ σ′. Φatm(σ, σ′) ∧ E′ a linearization of E

This difference between existential and universal quantifica-
tion in the specification is the core difference between the com-
plementary notions of atomicity and determinism. Many parallel
programs are intended to be deterministic—that is, to always pro-
duce semantically equivalent output for the same input, no matter
the thread schedule. Deterministic specifications can exactly cap-
ture this intended determinism. But many parallel programs em-
ploy algorithms that are inherently nondeterministic and which can
correctly return different final results in different runs on the same
input. For example, the branch-and-bound search PJ phyl, which
can correctly return different minimum-cost trees depending on the
nondeterministic scheduling of its threads.

For such programs, a semantic atomicity specification can be
thought of as specifying the nondeterministic behavior that is ac-
ceptable or intended—the results of any serial execution of the pro-
gram, in which the atomic blocks may execute in a nondetermin-
istic order but their executions cannot be interleaved. At the same
time, the specification asserts that no additional nondeterminism—
from the nondeterministic interleaving of specified atomic blocks
in a parallel execution—should appear in the final results of the
program. That is, the result of any interleaved execution must be
semantically equivalent to the result of some serial execution.

Future Work Our experimental results provide promising evi-
dence both that it is feasible to write semantic atomicity spec-
ifications for parallel applications and data structures, and that
we can effectively test such specifications by checking them on
interruption-bounded executions. Our parallel application bench-
marks are of somewhat limited size, however, and much work re-
mains to validate our approach on a wider range of programs. In
particular, we must investigate what challenges larger applications
pose to writing semantic atomicity specifications and to the scala-
bility of our testing technique.



6. Related Work
A large body of work has focused on verifying and testing atomic-
ity in multithreaded programs, including static verification via type
systems [9, 10], dynamic detection of atomicity violations [1, 6,
8, 12, 36, 37], model checking of atomicity [14], and active test-
ing [18, 30] for atomicity violations. These generally have focused
on verifying that such atomic blocks are conflict serializable [28].

Some research efforts have focused on verifying and testing no-
tions of atomicity that are less strict than conflict serializability of
atomic sections. For example, [7] uses model checking to verify
linearizable of atomic sections, but requires all atomic sections to
be annotated with a linearization point which specifies the linear
order in which the atomic sections must be executed in the match-
ing serial execution. Similarly, [11] generalizes type-based verifi-
cation of conflict-serializability (via reduction [22]) to account for
non-conflict-serializable but side-effect-free operations like a fail-
ing compare-and-swap in a busy-waiting loop.

Another such weaker notion is atomic-set serializability [34],
which groups storage locations into atomic sets and requires, for
each atomic set, all atomic blocks are conflict-serializable with re-
spect to the locations in the set. Violations of atomic-set serializ-
ability are detected dynamically by [13] and found through active
testing [18, 30] by [21].

A related area of research is verifying and testing
linearizability[17] for concurrent objects. A concurrent object
is linearizable if, for any client program which interacts with the
object only through its methods and for which all such method
calls are specified to be atomic, all executions of the client are
linearizable. Several efforts have manually proved linearizability
for certain highly-concurrent data structures [5, 31, 32]. Further,
[38], [35], Line-Up [2], and CoLT [4] model check linearizability
of concurrent objects.

At a high level, our approach to testing semantic linearizabil-
ity of atomic blocks is similar to the approach of Line-Up [2].
Line-Up generates all serial executions of a test harness using a
given concurrent object, and then uses preemption-bounded model
checking [25] to enumerate interleaved executions and to test that
each such execution is equivalent to one of the pre-generated se-
rial ones. Our approach, however, works on larger programs for
which it is neither feasible to pre-generate all serial executions
or to perform exhaustive preemption-bounded model checking,
even with a small preemption bound. Rather, we randomly sam-
ple interruption-bounded interleaved executions and, for each such
execution, examine only the corresponding serial executions (i.e.
those with the same ordering of non-overlapping atomic blocks).
Further, our approach is applicable to any program with annotated
atomic blocks, not just concurrent objects, and our approach checks
semantic linearizability.

A large body of work on transactional memory has developed
hardware and software techniques for implementing atomic blocks.
While such work provides hardware support, libraries, or language
constructs that guarantee that blocks of code intended to be atomic
are, in fact, executed atomically. Our work focuses instead on test-
ing that a program correctly implements its intended atomicity. The
kind of of semantic atomicity we test is analogous to transactional
memory work on open nesting [27], transactional boosting [15],
and coarse-grained transactions [20]. These lines of work achieve
greater concurrency in running transactions in parallel by ignor-
ing conflicts at the low level of reads and writes and focusing on
whether data structure operations abstractly/semantically commute
or conflict. For example, two calls to the add method of a concur-
rent list may conflict at both the level of individual reads and writes
and when the data structure is viewed as an abstract list. But such
calls can be seen to commute if the list is instead viewed as an
abstract multiset.

7. Conclusion
The traditional notions of atomicity and linearizability require each
interleaved execution to correspond to a serial execution that pro-
duces an identical final state. Our experiments show that the tradi-
tional interpretation of these properties is often too strong. Instead,
we propose to allow the programmer to specify a bridge predi-
cate that expresses a more relaxed, application-dependent notion
of equivalence between the allowable final states.

The resulting semantic linearizability property is not only
widely applicable but also effectively testable. We described and
demonstrated experimentally one possible testing strategy, based
on the observation that most atomicity bugs can be reproduced in
parallel executions with a small number of atomic block interrup-
tions, executions for which the set of candidate linear schedules is
also small. This set of candidates can be further reduced by using
programmer-annotated commit points in atomic blocks, to the point
where in the common case we find the desired serial schedule on
the first try. In our experiments all instances when a serial schedule
could not be found were atomicity violations.
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