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CHAPTER SIX: WEAK INTERACTIONS OF THE HADRONWS.

Fral: Pion Deecay.

In 1947 Lattes, Nuirhead, Ochialini and Powell (1) obtained tracks of
charged pions in nuclear emulsions. These appeared to decay into muens
after they had travelled a short distance in the emulsion. By measuring the
multiple scattering in the tracks due to Coulomb repulsion by emulsion nuclei,
the pion mass was estimated to be about 140 I-leV/cz, in accordance with the
predictions of Yukawa (2). The first accurate measurement of the charged pion
mass was made by masmetic lmal}l'sial of a secondary pion beam from an accelerator,
and this yielded a mass of 139.6 ﬁa\'/cz. The currently acknowledged value for
the charged pion mass is (3)

139,5688 + 0.0064 MeV/o® . (6.1.1)
The charged pion lifetime has been measured as

(2.6030 2 0.0023) x 10° & . (6.1.2)
We now attempt to construct a Hamiltonian for the common charged pien decay
W*Hp"‘ + v . (6.1.3)

Obviously this could be done by wriling a product of the three relevant fields
and then multiplying by a suitable coupling constant. However, there is no
need to introduce a new interaction. We know that the pion interacts strongly
with nucleons. Thus we postulate that the charged pion decay is a two-stage
process: first the pion virtually decays into nucleon-antinucleon pair (it
cannot actually decay into this channel btecause of msss conservation), and then
the nucleon-antinucleon pair annihilate each other by a reordered neutron
decay reaction. The quantity obtainable from az Hamiltonian and most readily
comparable with experiment is usually the lifetime or matrix element for a
decay. In the case of the charged pion, however, it is difficult to obtain

a complete matrix element for decay because very little is known about the
w—af + N {6.1.4)
strong interaction vertex. However, we shall now coneider the matrix element
for the second vertex, which is purely due to the weak interaction. We write



the Hamiltonian in the usual four-fermion fomm: ;
L o= @2 @0+ Ve gma - v v, g +

- Herm. conj. (6.1.5)
The Hamiltonian (6.1.5) allows us to make a prediction immediately. Since we
know that the antineutrino in "T7 decay will be right-handed, and as we
also know that, in this decay, the muon snd antineutrine must emerge in opposite
directions with zero total angular momentum, we may deduce that the muon will
have negative helicity. The situation is reversed for the T —. Qur helicity
theory has been checked experimentally (4} and has been found to be correct.
The existence of definite polarization for the particles in pion decay shows
that here also, parity is not conserved. This hypothesis was tested by
Garwin et al. (5) in 1957. A beam of pions was allowed to decay into muons.
According to (6.1.5), these will tend to be aligned in a particular direction.
When the muons decayed, the counting rate for electrons was measured from all
directions, and it was found that the electrons were preferentially emitted in
one direction, demonstrating parity violation.

We write the complete matrix element for plon decay as

M, = EN’ g <ol nDEN] x|ny (66
where K is the unknown strong interaction Hamiltonian at the first vertex.
From (6.1.5), we see that the first matrix element on the right-hand side of
(6.1.6) is given by

| g %T> = @@ 7 @ra+ ) yPe x
X %*(1-}{3%)(1 = Yel¥s “v(_)(-pv) S &’ exp (3(p+p'-p, -2 )x)
(6.1.7)

Using reduction formula techniques, we may tentatively write the matrix
element for X as

Gon| x| ™y = (2mf Toep - 5 T 2o, 0ty 20T 2
x (") /A J28,) ) , (6.1.8)

where B is the energy of the pion and F(p, p', p,) is an unknown function

of the nucleon and pion momenta. Putting (6.1.7) and (6.1.8) together,
substituting in (6.1.6), summing over the nucleon quantum numbers, and finding
F using Lorentz invariance, we finally obtain the transition rate for pion decay



when the muon is emitted with polarization r in the solid angle d{l:

] 2
R P A ‘*}")(gr)u +Yy) %
(Yon = 3w (*)(r){z,) ' (6.1.9)
where
| 2| = e = By (6.1.10)

and where g is the weak coupling constant and f is a mumber associated with
the strong interaction. Integrating over all angles and summing over the

possible spin directions for the outgoing muon, (6.1.9) becomes

L. 2, ( (w2 /8, ) )
i on - mo O |2p| (A = (3 /B,
22 B
= B Gl - al)f (6.1.11)

However, (6.1.11) does not allow us to predict a value for T, s since we do
not know the value of f. Substituting for T, we obtain
f = 0.9 o, (6.1.12)
which is confirmed by a study of the strong interaction.

6.2 Electron-iuon Universality in Pion Decay.

The principle of electron-muon universality states that all weak couplings
are identiecal, and hence that, %o within phase-space and kinematical factors,
the electron and muon should be interchangeable in any reaction, and the
interchange should not alter the mairix element for that reaction. Consequently,
a decay mode of the type

i ee——— LN I (6.2.1)
was searched for, and was found to have a branching ratio of
(1.24 + 0.03) x 10°% & . (6.2:2)
Recalling (6.1.11), and substituting m, for m. , we obtain

2.2 2
% - £° mt 2 22 m
s fressly

so that we predict the branching ratio

Rfﬂ'————)a"‘v[

R(w—>e=v) (6.2.4)

as



e o« ()’ (2= sD/eh- 52 )7 L x W,
(6.2.5)
in excellent agreement with the experimental value (6.2.2).

At this juncture, we consider the sensitivity of (6.2.5) under the
inclusion of contributions other than the usual vector and axial vector terms.
Prom (6.1.6), (6.1.7) and (6.1.8), we obtain, removing the assumpiion of pure
V = A interaction:

AR (en Y56, + p; = 2 A2JE) > L8 Rp) X

2 BUp) 0 (14 aYy) w ) (6.2.6)
where g, are the coupling constants for parity-conserving terms and a, are the
coupling constants for parity-violating ones. F:l. is a function obtained from
F in (6.1.8). From gymmetry considerations, we find that only the axial vector
and pseudoecalar terms I‘i will make nonvanishing contribtutions. Thus we may
rewrite (6.2.6) as
Ko ls|m> = () e« p, - 2) (e2[F) 57 X

X (m,, Ty = T Y5(mr &y £y - ag fs} uv{:_)(—gv]

(6.2.7)
Using the standard formula (3.4.10), integrating over muon and neutrino momenta,
and using the properties of the delta function, we obtain

1/‘1' = (gz/lﬁ'lt) (mg - mif/(m?‘j ( 1“:,- f‘ = fsi . +

P 2
-+ 1mr. a £y - ag fsl ~ (6.2.8)
We now assume that the neutrino spinor has only two components (see 3.8), so
that

a, = a5 = 2 T (6.2.9)
The assumption (6.2.9) reduces (6.2.8) to
¥ N o SN CR i CER R T S Y L (6.2.10)

We note that (6.2.10) simplifies to (6.1.11) if we assume

£, = 0 : (6.2.11)
By electron-muon universality, the result (6.2.10) also applies to the decay
(6.2.1) if we replace m » by m, + Thus the branching ratio {6.2.4) now becomes



LN, TR (CCE Y/ 0 D [P SEE VR MR SN
(6.2.12)
which agrees with (6.2.5) in the special case (6.2.11). As soon as £q
begins to meke a significant contritution, the branching ratio becomes near
to unity, in violent disagreement with the experimental value (6.2.2). Thus
we are forced to conclude that the condition
Ty 0 (6.2.13)
ig fulfilled, so thzt there are no peeudoscalar terms in the pion decay
Hamiltonian or matrix element. Since the vertex (6.1.4) is not necessarily
nonrelativistic, any pseudoscalar contributions would appear here, and would
cause incorrect results. This fumiches another proof that there exist no
paeudoscalar terms in the ordinary beta decay Hamiltonian. There exists one
further important pion decay mode:
e Se et v, (6.2.14)
The Hamiltonian for the beta decay (6.2.14) is similar to that for meutron
decay (3.3.5). (6.2.14) has a branching ratio of (6)

(.02 £ 0.07) x 1078 & . (6,2.15)

6.3 The Decay of the Charred Kaon.

Following the discovery of massive particles producing 'V-shaped'
tracks by Leprince-iinguet et al. (7) in 1944, the Bristol coemie Tay group (8)
and subsequently 0'Ceslleigh (9) obtained the tracks of particles with a mass
of about 500 I-1e\f/t:2 in nuclear emulsions. The new particles were named kaons,
Using momentum-analysing magnets to measure kaon momenta, the kaon mass has
been established as (10)

493,707 % 0.037 Kev/c? (6.3.1)
for the charged kaons, and

497.70 X 0.13 }187/02 (6:3.2)
for the K°, The lifetime of the K¥ has been measured as

(.25 = 0.0026) x 10° & (6.3.3)

by time-of-flight methodaz. To date, a conaiderable number of charged kaon
decay modes have been discovered, and we tabulate these, together with their
branching ratios:



Decay lode Branching Hatio

pv (  63.54 +0.19) %

e ( 2la2=0.aT7) %

T T {( 5.59 *0.03) &

Tt {( 1.73 = 0.05) %

rT'y (  3.20 20.09) g

e v { 4.82 20,05) b

en Rty ( 1.8 1.5) = 107°
mnE et v ( 37 202) x 107
nut e v (<5 I - JI.(J-7
nnE pty ( 0.9 £05) x 107
Tt iy (<3 Y & WO
eV { 1.38 £ 0.20) x 1072
evy (<7 ) x 107
ey ( 272019 x w07°
L ( 20 %4 ) x 207
pvy (< 8 ) x 1070
e v Y ( 37%1.4) x 107°
met o ( < 0.2 ) x 107
rfet et (< 1.5 ) x 10_'5
TR (< 2.4 ) x 1078
myy (< 3.5 Y x 1070
WELL (<3 ) x 1w07?
g (< 0.6 T
mY (< 4 ) x 1070
em¥pt (<3 ) % 107°
omt p2 ( < 1.4 ) x 1070
pvy¥ (<6 ¥ x: FO

We shall consider the decays listed above from a number of different
anzles. We begin with an ordinary transition rate calculation for the
Kf—p* s v (6.3.4)
decay. We simply rewrite the pion decay transition rate (6.1.11} for the kaon:



2

i = (EDfen) @) (- w? . (6.3.5)
Pirst, we calculate the ratio

(/802 s (6.3.6)
and this we find, substituting the value (6.3.3) for the charged kaon lifetime
in (6.3.5) to be

~ 114 . (6.3.7)
Thus £2 is about an order of magnitude less than £2 . Ve may think of the K
decay process, like that of the pion, as a two-stage reaction:
K—ap+ A—3et+ v . (6.3.8)

As we shall see later, the second vertex of this reaction is supressed, which
aceounts for the low value of fK' We now concider the decay (6.3.4], and hence
(6.3.8), in terms of currents. According to the V - A theory, the current
/\ p contains both vector and axisl vector terms in various proportions.
However, only one of these iypes of current is manifest in the decay (6.3.4).
If the K*parity is odd, then the decay will occur via the axial or psendovector
interaction, and if it is even, through the vector one. The Sakata model
(see chapter 7) predicts that the parity of the kaon should be the product
of the parities of the nucleon and A and their orbital parity. From a
study of helium-4 I‘w‘pu'.trf‘r.spg::uerﬂ:aa3 it has been established (11) that the parity
of the charged kaon is -1, and hence the axial vector term is responsible for
the decay (6.3.4).

The transition rate for
= Sel+ v (6.3.9)
may also be calculated from (6.1.11). The ratio of the transition rates of
(6.3.9) to (6.3.4) is important, Using a modified version of (6.1.11) for the
individual transition rates, the ratio becomes’

He /M) = (e ((=F - wD)/wg - )

~ 258 x 107 , (6.3.10)
The current experimental value for this ratio is (12)
(1.95 = 0.65) =x 107 , (6.3.11)

agreeing, within. the limits of error, with (6.3.10). The fact that the charged
kaon parity is -1 does not rule out the possibility of a pseudoscalar
interaction in both (6.3.4) and (6.3.9). However, a pure pseudosecalar interaction



would suggest .
WM = (g - =Daf - w)® ~ 102 . (6.3.2)
(6.3.12) is in complete disagreement with experimental results, and by
comparing this to the measured ratio, we find that the upper limit on the
admixture of pseudoscalar hadron current is 2.3 x 107, ¥ note that the
decay is found (13) to be identical to that in T

2 2
and, furthermore, these decay modes behave similarly with respect to high-

muon helieity in Kr decay,
energy V. scattering. The leptonic kaon decay modes all involve AY = 1,
whereas those for the pion are gll of the form AY = 0, Thus the similarities
mentioned above indicate that the same leptonic couples both with the

AY = 0 and with the A Y = 1 hadron currents.

The next decay mode which we consider is

38 Tt v . (6.3.13)
We mow attempt to determine the matrix element for the decay (6.3.13). We write
v, = 8 pxi + I, p"_i i (6.3.14)

where fl and fz are two arbitrary functions. We have written Vi because we are
concerned with a pure vector interaction, since the parity of the K* is the

same as that of the 7v*, Thus

AL = 0 . (6.3.15)
Fultiplying the four-vector (6.3.14) by the leptonic current
‘.-‘.,, Yi (1 + Y5} u, o (6.3.16)
and using
Py = K - 8 » (6.3.17)
g 8, Y@ + Y)u =am 8 (1 + Yoluw, = o, (6.3.18)
assuming zero electronic mass, we obtain the matrix element

2 -
Me = ¢J2 &)V W, %, % Vel & FJe, 4 (6.3.19)
vhere g is an unknown fom factor. Since
2 2 g 2
q° = (pK - ) = my + Wy - . E. (6.3.20)
we may write g as a function of E, instead of qz. Obviously
% - LNt . (6.3.21)

We now wish to find the trensition rate for (6.3.13). Summing over the lepton
spin states, integrating over the outgoing particles' momenta, and using the



expression for the pion energy spectrum, we oblain:

ar = (g 67 &P s, )/2n0) (6.3.22)
where p is the momentum of the original K%, We asoume that glE,) is a slowly-
varying function, at least for the energy range encountered in kaon decay.
The presence of the form factor g is associated with the existence of such

virtual strong interaction loops as

(6.3.23)

The virtual baryons in the loop of the Feynman diagram (14) (6.3.23) have masses
substantially larger than the total energy of the pion. Thus we are justified
in assuming that the momentum integral for these particles will not vary over
any large amount as the energy of the emitted pion varies. Hence g will
effectively be a constant. Integrating (6.3.22) for constant g, we obtain

W Gl :32)/{76871-3) . (6.3.24)

We now include a 'suppression factor' of 0.6, caused by the nonzero value of

the pion mass, so that (6.%.24) reads

W = (02 gg ?)/{7637\-3) . 0.6 . (6.3.25)
Ueing the experimental result for W (6.3.3), we find that

& ~ 2.5 x 1072 , (6.3.96)
for the decsy (6.3.13). However, the corresponding pion decay (6.2.14) gives
g = By (6.3.27)

indicating that AY = 1 decays are ouppressed by at least sn order of mpznitude
in eomparison with hypercharge-conserving decays. We now consider the evidence
for a pure vector interaction in Kej decay. In order to do this, we must find
some measurement which is completely independent of g(E,) and hence of any
assumptions which we may mske concerning its form. Such a measurement is the
polarization of the electrons in the decay. Ve disregard the elsctron mass, a5
we did in writing our mairix element (6.3,19). Thus it may be considered as a



two—component particle similar to the neutrino. Since .
Vo ~ & (6.3.28)
in ¥ _ decay, the electron helicity will effectively be -1. However, thern are

a nurzzer of rare cases in which this is not correct. These occur when the pion
carries away no energy, leaving the neuirino and electron to emerge from the

decay in opposite direction and with opposite helicities, because of the

conservation of angular momentum. If the electron mass were actually zero, then

such a situation would evidently be forbidden. However, the slight departure of the
electron mass from zero causes this situation occasionally to happen. Experimentsally,
it is necessary to measure the polarization of positrons in " decay, since

nearly all K particles will be captured by atomic nuclei. Here the

vector current gives right-handed positrons, whereas the tensor and scalar

currents, which are the only other possible terms in Kaj decay, predict left-
handed positrons. Experimente show that the posiirons are in fact right-handed
confiming the vector current model.

Another feature of Ke decay which is independent of assumpiions about

the form factor g is the aleczmn—onerg}r spectrum for a given pion energy.

From the matrix element (6.3.19), we may deduce that the electron spectrun

for a particular pion energy is given by (15)

o = (@ m)len?) (27 (- By~ 28)7) ageam, . (6.3.29)
Thus the energy of an electron for fixed plon energy varies within the range
(m, = Be = |2)2 € B, & (g = B + (p.0/2. (6.3.20)
The electron spectrum becomes zero at both the maximum and minimum points given
in (6.3.20), and has a peak at

g o~ Bog = (m, = mJ/2 . (6.3.71)
For a vector coupling, the energy spectrum is of the approximate form

2 = -
B o= B + B » (8.3.32)
vhereas, for a scalar coupling it is
o= B (B, < B0 (6.3.33)
and for a tensor coupling it is

2
¥o= E . (6.3.34)

Thus we see that a measurement of the electron spectrum for a fixed pion energy
would enable the coupling responsiltle for Ke} decay to be determined unamhiguously.



However, the number of eventis with a particular pion energy tends to be small,
and so we must devise a method of using events with different, but known, pion
energies, This problem was conasidered in detail by Kobzarev (16). The best method
wae found to utilize a Dalitsz plot (17). Here energies are plotted for each
of the three resultant particles within an equilateral triangle. The axes are
the perpendicular bisectors of the sides. Geometrically, we see that the

eum of the distances from a point on to the three sides is always a constant
equal to the height of the triangle. This arises from the fact that the lines
going to each side of the triangle are the altitudes of three smaller
triangles whose total area is egumal to that of the large triangle. In three-
body decays, this property is useful, since the height of the triangle is
interpreted as the energy of the initial particle, and energy conservation

is automatically obeyed by any point within the triangle. However, not every
point in the iriangle will be allowed, because of momentum conservation.

We draw an axis x coincident with the base of the triangle, and a y axis

with its perpendicular bisector. We let

h = n}: - M. (603-35}
¥ = Tx = B, = @, (6.75.36)
x = (g - )3 . (6.3.35)

The allowed region within the triangle iz bounded by the line corresponding
to the maximum kinetic energy of the pion,

y = (g - mﬂ)a/(anx) i (6.3.36)
and by that corresponding to the maximum energy of the other two products:
3wl o« y2 + 2un. ¥ . (6.3.77)
We see that for any function g, the total number of electrons with an energy
within the range

0 < B g FE. (4 (6.3.78)
mist be lower than that with an energy of
* Enax (e) < 5 4 Eiax (e) * (6.3.39)

since the diagram must be symmeirical about the vertical (y) axis, because the
zero-mase electron and neutrine spectra must be identical, We now modify our
diagram, defining

y' o= [2,‘1 i (6.3.40)



x' = [E‘Ir - B i (6,3.41)
we see that the allowed region tokes up the slightly eimpler form of the area

bounded by the y' axis and the lines

¥ ow P (6.3.42)
and
o (6.3.43)

In terms of our new variables, the energy distribution (6.3.29), assuming the
first factor to be roughly unity, simplifies to

o~ (3% - P ax ey . (6.3.44)
Let us now draw a ray in our modified diagrem such that

x = ay , (6.3.45)
6 £ & £ B (6.3.48)

We calculate the ratio of the total number of points to the left of this
ray to the total number of points to its right. For a vector coupling,

o= (32 - &/5) , (6.3.47)
for a scalar coupling

'RS = a (6.3.48)
and for a tensor coupling

B, = & (6.3.49)

iixperimentally, it has been found (18) that the distribution ratic (6.3.47)
is definitely favoured, indicating, once again, a pure vector coupling in
Koy decay.

We now consider the decay mode
K2 -——-)ra\:q. "+ v . (6.3.50)
Since the muon mass may not be disregarded in the same manner as m, may, an
extra term

~£m, 8 (1 - Ys) uy (6.3.51)
enters into the matrix element (6.3.19), so that the latier becomes
B, = G2 V. (e pK1 - fq)u Y, (0«1 wo o (6.3.52)

where q is here the total momentum of the leptons. If we assume the functions
T and g to be effective constants, then we finally obtain

W = (08 m)/(768w7) (0.56% - 0,205 + 0.058°) . (6.3.53)
Since we know that, experimentally, the probabilities (6.3.53) and (6.3.25) are



approximately equal, we may write ¢
0682 ~ 0.5g - 0.2fg + 0.05%° (6.3.54)
by equating the two probabilities. The equation (6.3.54) has two solutions
for £/g:

fle ~ 4.5 , (6.3.55)
ffle ~ =0.5 . (6.3.56)
For muon kinetic energies of under %0 lieV, the muon spectra corresponding to
the different possible values of f/g differ by a factor of nearly 3. At large
muon energies, the two spectira tend to become similar. The muon polarization
ig even more gensitive to the walue of f/g. The molution (6.3.55) corresponds
to a predominantly scalar interaction, while (6.3.56) corresponds to a vector
coupling, If the solution (6.3.56) is correct, then the muons in K;’j decay
ghould have a predominanily left-handed polarization. If, however, a scalar
interaction predominates, then the muons will be mostly right-handed. Thus,
by observing muon asymmetry, we may deduce the type of coupling responsible
for K, decay. Experiments (19) favour a vector interaction.

(]
We now consiuo:' the sz and I(&n_ decays
B 452, (6.3.57)
K——>T + T + ™ (6.3.58)

in terms of isospin, which we discussed in 5.1. We shall calculate the matrix
elements for these decays in 7.1, Since the final state in the decay (6.3.57)
contains two ¥ = 0 pseudoscalar particles, its parity will be given by
P = (-1)° , (6.3.59)
where § is its total angular momentum. Thus we see that if parity were conserved
in the wesk interaction, then the decay (6.3.57) would be forbidden. Since
the kaon spin is even, the kaon must be a boson, so that its final state
of two pions must have a wave function which is symmetric under the interchange
of the iwo pions. We find that states wvith I = Q and I = 2 fulfill this
requirement. However, I = O is forbidden, since it would imply charge
nonconservation, because it has zero charge, whereas the KT has nonzero charge.
Thus the final state pions must have I = 2, 13 = 1.

In the decay (6.3.56}. we find that Dalitz plots for the emergent pion

energies are roughly isotropic, indicating that the matrix element for Kjﬁ



decay is effectively independent of pion energy (see 7.1), and suggesting

zero spin for the kaon. In terms of isospin (5.1), we see that the final 3w
state may have I = 0, 1, 2 or 3, and is not uniquely characterized by its

total isospin, each of the pions having I = 1. Let 1(12) denote the intermediate
isospin of two of the pions. This quantity can take one of the three possible
values: 0, 1 and 2, If the total isospin of the three-pion systen (1(1?3)]
to be zero, then we must have qu) = 3, 1[3} = 1, If the total isospin
is %o be 3, then evidently I0?) = 2. vor 10029 o
number of different possible states, distinguished by differing values of

is
1 or 2, there are
1(12). As we have shown above, the three-pion system must have I3 = I,

Thus there remain six possibilities IT(lz‘}; Ty

los1, > = W3 UM mad+mmry <[, mr) ) (6.3.60)

|11, D = (1/2) (1T %,n) = (M)~ [wnn,w) + vt ))
(6.3.61)

l2i 1, 1 = (1/2B) (7,0, + |1, mnthe 2|, my ) -
= 3R, TS~ 3| w6 T, AT ) (6.3.62)
|12, D = (1/2) (17, 1 md = feymr e +ng ws ) — [, ne ) )
(6.3.63)

|20 2, D = (/2[3) (2 [mymsm )2 |mmymd + |ag ) «
+ | we, N wD) = [, W) — [, W) (6.3.64)

|20 3, D = (/]5) 2Im 7, mDaamwin) 42w, v 4
+ [ D 4 [ ) 4 Wt ey ) (6.3.65)

The multiplicative factors erise from Clebsch-Cordan coeffecients (see Appendix B).
Of the isospin states (6.3.60) through (6.3.65), only one, on its own, has the
symmetry properties required (i.e. invariance under pion interchange). This

is (6.3.65). However, a linear combination of the states (6.3.60), (6.3.61)

and (6.3.62) will also serve:

Isi 1, 1> = (1/J15) (2|nnym) s2|w, w42 WD —

= |re Tt — [ Ay~ [, ) (6.3.66)
Thus, in general, the isospin form of the final three-pion state will be given by
3> = al23,1) + »ls 1,1), (6.3.67)

where a and b are two complex coefficients. We find that the two possible
charge states of the decay which we are investigating have a branching ratio



given by

. 2 '
HE—> "+ no4 7 22 - b 6.%.68
R ﬂ}c—)-q++~n““-rﬂ”) a —+ 2b : (6.3.68)

The result (6.3.68) assumes that all the pions have exactly the same mass.
However, this is not precisely the case, and in the low-energy reactions
vhich we are congidering here, the pion mass difference can have a significant
effect. Calculating this effect using phase-space volumes (20), we obtain

2
R o= 1.243 h’—f—é y (6.3.69)
where
x = b/a . {6.3-70)

As | x |-»%0, R —0.311, and as x—>0, R —4.97. Experimentally,

the value for R is (21)

R = 0.29 = 0.04 , (6.3.70)
which is consistent with a large value for the paremeter x, Thus it seems
likely that the three-pion state is predominantly of the symmetrie form
(6.3.66), although & small admixture of the state (6.3.65) cannot be excluded.
This implies that the final state of the decay (6.3.58} usually has

T =01, (6.3.72)

6.4 Hyperon Decays.

Among the 'V-particles' mentioned in 6.3, there existed one particle,
known as the A, which, from momentum and energy measurements of its decay
products, was found to have a mass of (22)

1115.60 * 0.05 uev/c® . (6.4.1)
The A lifetime was established by measurement of the delay between
production and decay in a bubble chamber as

(2.518% 0,071) x 1070 g (6.4.2)
There was also a massive triplet, known as the X particles, which were found
to be responzible for a number of the 'V-particle' tracks obtained from cosnic
rays. By analysis of the proton range in its decay, the T nass vas
ascertained as

1169.57 + 0.06 Hev/e? , (6.4.3)
and its lifetime, from track angle and length measurements, as



-10
(0.800 = 0.006) x 10 8 (6.4.4)
The 3 mass was found by measuring the ranges of the sigma particles in the

reactions
K p — 0", (6.4.5)
K+ p—2>Z37" . (6.4.6)

From (6.4.5) and (6.4.6), the mass difference botween the Z and the Z~

vas calowlated, and, knowing the value of the X ' mass (6.4.3), this yielded
a value of

1197.35 = 0.06 Hev/c? (6.4.7)
for the ¥ mass. By similar methods to those employed for the E°, the Z~
lifetime was found %o be

(1.482 = o0.017) x 1070 & v (6.4.8)
By measuring the Z'~Z mass difference, the Z° wmass becomes

1192.48 = 0.08 rev/e” , (6.4.9)
and its lifetime, by nuclear emulsion range measurements, is established as
<. 1.0 X 1024 s . (6.4.10)
Theoretical estimates for the I lifetime give (23)

~5 x 1077 o (6.4.11)

A further type of 'V-particle' was the cascadie or = hyperon, which
decayed into another 'V-particle', which in tumrn decayed into stable particles.
From track analysis in heavy-liquid bubble chambers, the = “mass was calculated

as

1321.29 * 0.014 :-mv/::z : (6.4.12)
and its lifetime as

(1.652 % 0.023) x 10°° 5 . (6.4.13)

However, the 'Strangeness Scheme' 4

of Gell-lenn and Nishijima (24) indicated
that there should also exist & =", This was found using bubble chambers,

and track analysis demonstrated that its mass was

1314.9 * 0.6 i\ie\f/cz " {6.4.14)
and that its lifetime was
{2-96 t 0-1?) x 10_10 E (6.4 .15)

The last hyperon to be discovered was the 1, which had been predicted by
Gell-Hann (25) using SU(3) symetry (see chapter 8). From the 41 bubble chamber



events involving the {1 photographed to date, its tentative mass assignment is

1672.2 + 0.4 n;ev/cz § (6.4,16)
and its lifetime is thought to be
(1.3 * 0.8) = 100 s . (6.4.17)

We now tabulate the decays and branching ratios for the hyperons (26):

Particle Decay Hode Branching Hatio

o~ PTC ( 64.2 = 0.5) %
nm® { 35.8 £ 0.5) o
pev ( 81% %0.29) x 107
PRV (  1.57 % 0.35) 107
Py (085 £0.14) x 107

- pm° ( 51.6 = 0.7) o
n ( 484 % 0.7) b3
Py (  1.24 =0.18) x 107
nwty (  0.93 % 0.10) 1077
Aetv (202 %0.47) x 107
npTy (< 2.4 ) 1077
ne v { <10 ) x 107
peTe” ( <7 ) 107

=° AY { 100 ) 5
Ae’e” ( < 5.45 ) x 107

=i n” ( 100 ) %
ne v { 1.08 £ 0.04) 1077
nop v ( 0.45 = 0.04) 107
ne v { 0.60 + 0.08) 1074
nn Y ( 1.0 %202) x 1w

=° Ao ( 100 ) %
pTo (< 0.9 ) x 107
pe v (< 1.3 ) 107
te v (< 1.5 ) 1677



Particle Decay MHode Branching Ratio

ey (< 1.5 ) x 1072
Al (< 15 ) x 107
= Ky { < 1.5 ) x w7
PRV [0 s ) x 1072
= AT ( 100 ) %
Ne v (070 2 0.21) x 1077
T'e"v (< 0.5 ) x 107
ARy (< 1.3 I 1070
i T (< 0.5 ) &
nT” (e L3 ) ox 1077
ne v (< 1.0 ) b
2 = Total of
o 41 events
=='N seen

We now make a number of general comments concerning the hyperon decays,
and discuss the decays of particular hyperons in greater detail in the
following sections., For the beta decay
N——sp + & + ?e i (6.4.18)
we find that we are unable to write a simple four-term matrix element as we
were able to for the neutron (5.5.1), (5.5.2), eince we cannot now assume that
vector current is conserved, and the weak magnetic form factor is no longer
unimportant, since the decay (6.4.18) has significantly more disintegration

energy than the neutron decay. Thus its matrix elemen® becomes

" — = b 6 a
}'if = G/J2 (Vi + Ai) ueYi (1 + Yg) u (6.4.19)
where ‘-"i and ..-\1 are the vector and axial vector currents respectively, defined:
LA 8 {fl ¥, * £, 613 q; = fz’qi)u,\ . (6.4.70)

T Ep{glri * B6y a5 4 qui)Y u, , (6.4.21)
where



& - = . 6.4.22
e = B B, = By B (6.4.22)
Since we have six unknown form factors in (6.4.20) and (6.4.21), and only two
equations, it is impossible to solve for them and nence to obiain a value
for the rate of hyperon beta decay, However, we try assuming that the momentum

traneferred, q, is negligible, and hence

= = . 6.4.2
£, * £, & = & 0 { 3)
Further we get

= = Bod. 2
f1 & T (6.4.24)

although this has little justification. With the assumptions (6.4.23) and
(6.4.24), the matrix element (6.4.19) reduces to

N, = (a/J2) Ep vy (o YS) ““‘_‘e Y (1 + Ys) u . (6.4.25)
(6.4.25) gives

W= (620 0)/a5w%) (6.4.26)
where D is the maximum electron energy:

D = (ﬁi - rﬁ}/z:-;r . (6.4.27)

where M!, is the hyperon masa and I‘Iﬁ the nucleon mass. In the expresaion for the
transition rate (6.4.26), C is a dimensionless constant which compensates for
the recoil of the hyperon and its decay products. When D—>0, C—>1, and
when D -—-—-)HT/E, ¢ —>2.5, so that C is roughly constant for all decays.

We note that for C——0, the formula (6.4.26} becomes the neutron decay
probability:

W= (0 1+ %) )eon?) (6.4.28)
where & is the ratio of axial vector to vector coupling strengths, so that
here we put & = 1. In the second limiting case D = N, /2, we find that
(6.4.26) tends to

woo= (6 @)/ 192n7), (6.4.29)

which is the muon decay rate, so that we setm = Ty By means of the formila
(6.4.26), we should be able to estimate the branching ratios for hyperon bata
decays. Thus, for example, for the A’ this should be 1.5 %, and for the =~
5.8 % . However, experiments (27) indicate that the actual values for these
branching ratios are

(8.13 + 0.29) x 107% (6.4.3%0)
and



(1.08 £ 0.04) x 107 (6.4.31)

respectively, in complete disagreement with our theoretical predictions. Thus
we are forced to conclude that one or both of the assumptions (6.4.23) and
(6.4.24) was unjustified.

6. Lambda Hyperon Decay.

According to the general scheme of the weak interaction, it might be
reasonable to expect that the nucleonic current
@ p) (6.5.1)
chould interact not only with the leptonie current, but alsc with the strange
currents

(A ») - (6.5.2)

The interaction of the two currents (6.5.1) and (6.5.2) has the form

@ (A" + (AGE T = GGEAN + (Ao G n)
(6.5.3)

Thus the Feynman diagram
A

(6.5.4)
P

corresponds to the first term in thiis interaction. However, by transposing an
incoming particle for an ouigoing antiparticle, the simple scattering process
(6.5.4) becomes

N—p +n+p. (6.5.5)
The N decays

A & T, (6.5.6)
AR—n+ 7w , (6.5.7)

may thus be accounted for by the disgrams

(6.5.8)

\f>

v




and

; 5 (6.5.9)
M n

regpectively, Alternatively, we could have drawn a closed p p loop, so that
the /\ becomes a virtusl neutron, which becomes real with the emission of
a pion to conserve momentum and energy.

We now consider the asymmetry parameters governing the angular
distritution of polarized ~ decay products. Ve assume throushout that the A’
has & spin of %, and there exists strong experimentsl evidence to reinforce this
viev (28). We rewrite the matrix element (6.4.19) in the fom

e = QAZED T @) 1+ eV )uale) ? . [ &xem (aln, - 1y - %)

(6.5.10)
where F is & scalar amplitude and g is a parameter deacribing the parity-
violating component of the interaction. At first sight, (6.5.10) appears to
describe only a pure scalar interaction. However, rewriting the middle
factor (containing the spinors) of (6.5.10) for a vector interaction, we obtain
weooo= o IRV, w e¥o) wle) (a8, + (B).F, + (3), 7))

(6.5.11)
which is essentially the same as (6.4.20). In (6.5.11) we have three

form factor constants. However, we may immediately write the temrm in F

2
without the factor F, R, using momentum conservation in terms of Py and p
Using the Dirac equation we find (29) that
" = ( - 5 - i
F (7, Fll“ﬂ (?2 + FB)h,\ y (6.5.12)
Pet = ((, - P, ~ (7, + PHA)R (6.5.13)

wiiere F' is our new pingle amplitude. Obviously this may be determined uniquely
by the equations (6.5.12) and (6.5.13), and thus we see that the vector
matrix element (6.5.11) is completely equivalent to the sealar one (6.5.10).
It may be shown that all other permitted fypes of interactions also produce
matrix elements equivalent to (6.5.10).

From (6.5.10), we may now write the transition rate for ,\ decay as



(Fw/3%) - (1?[2/Bv)(dﬂ«/4ﬂ)(1+((ﬁ§ - mf)/b:f)) X
x o m) I, eh) | Sle) 0 ery) uwio)]®

(6.5.14)
where * ias an arbitrary function such that
gl = |2a] = (1/2m,) l )(:-:f . z.; . mf,) . (6.5.15)
In (6.5.14) we have integrated over all angles except for the angle which the
A polarization vector makes with the direction of motion of the pion. Denoting
this quantity by © , we obtain the angular distribution:
W0) a(eon@) = [Tylz) (1 + ely) ua)]? aleose) . (6.5.16)
Since the spiner u,.,{O'} vanighes except for the component with Dirac index one,
which is unity, we may rewrite (6.5.16):

We)y = |Gl o+ pYIhI? - (6.5.17)
Thus we find that, for the decay of totally polarized A particles:

we) = k. (1 + &acose), (6.5.18)
where

a2 = (2 |z, Re(p) )AL+ lel? 121;12/(:-:1\. = "‘N)? s (6.5.19)

If the angular distritution (6.5.18) is to be isotropic, then we see that a

muet vanish, corresponding to a zero or infinite wvalue for the parity-violation
parameter g - In these cases, parity is said to be congerved. Thus a nonisotropic
angular distritution implies parity vieclation. However, the angular

distritution is always isotropic when the original A is unpolarized.

Experimentally, A particles produced in the reaction

A+ p—3A + &, (6.5.20)

known as 'associated production' (3C), tend to be polarized perpendicularly
to the pw™ scattering plane. (Observations of A particles produced in
(6.5.20) indicate that the product (31)

aP = 0.55 % 0.06 (6.5.21)
for
ANe—sm«p , (6.5.72)
and
aP =  0.60 £ 0.13 (6.5.23)
for

N—7 +n . (6.5.24)



It should be noted that we are never able to meaure the parameter a on its own,
but only in the product aP, P being the polarization of the A . Furthermore,
since we are never able to determine P, our values for aF, (6.5.71) and (6.5.23)
only set a lower limit upon a, and leave it unsigned.

Slightly more information may be obtained by observing the asymmetry
in the angular distribution of the nucleons, rather than the pions, in A\
decay. We define the initial A polarization by
P = (w, - h'_}gz , (6.5.25)
where W, is the number of particles with their spins aligned in the + 3
direction, and W_ the number in the - g direction, and gz is the unit vector
in the z direction. Obviously
W, + W = 1. (6.5.26)
Since the spin of the A is %, and it is thought that total angular momentum
is elways conserved, the final two-particle state resulting from A decay must
be either 5 or P-wave, i.e. it must have an orbitel angular momentum of O or
1. Uping spherical hamonicss, we find that
lwg> = T T _ (6.5.27)
vy = & G, o050 + Jeine e ), (6.5.20)
omitting the nomalization factor, where &i‘ is the transition amplitude
for a P-wave state, and §, represents the sense of polarization. In our case,
we find that when the /\ is polarized in a + z direction

i'qr'; B @ (As L cose )y, + hs e‘w sine§ (6.5.29)
and when in a - z dir.?cticn
IU; > = A it sine";,i'{As -4 cos0)§. . (6.5.30)

Thus the expectation value of the component of the nucleon spin operator
in the final state ias given by
4 i 2 2 P

el 61 ¥:> = lag + A cos8° - |4)]° sine, (6.5.7:1)

- - 2 o2 2
<Wr [6,1 9> = 1AF1 sin“g - IAS - A cosR|% . (6.5.32)
Substituting with (6.5.25) for the polarization of the initial A , we obtain

2 ?

{6,y =  2Re(h, a7) cosp + P(|A|" + |a;|" cos(20) ) . (6.5.%3)
The other two components of the nucleon spin may be calculated in a similar
manner, Introducing the unit vectors g n and Ep y and using a vector notation
for the polarization P, we obtain



8y = 2mreln,af)e, - 2In(h, A7 )e, KB * (af - e +
= 2“‘11123«{21:3 ) (5-5-3"t)

The result (6.5.34) is usually written, in experimental work, as

@y = k.(Hx - g De +ee, X2 + Vg, xDxe)) »

(645.35)
where
« = 2 (mela, A NAIRIZ+ ad%) (6.5.36)
¢ = 2(mla, s DA g®) (6.5.57)
Y o= gl - 18l A08g% ¢ 1ad® (6.5.39)
so that
wE e g B e g (6.5.39)
The constant k in (6.5.35) is usually taken as
E = 11 - «gpgj {6+5.40)

in erder to normalize the expectation value cperator of the nucleon mpin.
Hecalling 3.3 we find that T invariance of the Hamiltonian (6,5.10) demands

(’ to be real, so that § vanishes. In the case where the initial /A particles
are unpolarized, i.e. P = 0, we see that (6.5.35) simplifies to

<_J_) = =RE, (6.5.41)
Thua the protona from unpolarized A decay are longitudinally polarized by the
amount -™®, Hence we have found a method of obtaining a value for o on its

own. Experiments on the decay (6.5.22) give (%2)

® = 0,647 £ 0.016 , (6.5.42)
g = -0.10 = 0.07 , (6.5.43)
§ = 0.75 % 0.02 . (6.5.44)

Although & does not vanish within experimental error (6.5.43), due to a low
amplitude interaction batween the final pion and proton, a small value of [
might be expected, so that T invariance is not forbidden. We notethat the
experimental values (6.5.42), (6.5.43) and (6.5.44) obey the condition (6.5.39)
within experimental error. We see that the ratio of the amplitudes )‘LP and

;'S is real, and that mmerically it is

APXAS =  -0.3 <+ 0.05 , (6.5.45)



50 that the P-wave amplitude is about three times as strong as the S-wave one.

We note that, substituiing the result (6.5,42) in (6.5.21), we obtain P = 1,

and thus the A°particles from the reaction (6.5.20) are almost completely
polarized. The asymmetry parameters =, ¢, and | camot be measured directly

in the decay (6.5.24), but assuming that the polarization of the initial

/\ particles was the same for (6.5.22) as for (6.5.24), experiments show that (33)
< (A—n + 7))

= o » 6.5.46
DC(A——-a»pa-w") 1,10 % ¢.27 , (6.5.46)

go that the ratio is unity within experimental error.

6.6  Sigma Hyperon Decay.

The formula (6.5.36) presented above is, in fact, valid for any spin
+ particle, Since thers is good evidence (34) to support the view thaet the
sigma particles have spin 4, we may also apply it to their decay. However, as
was geen in 6.4, the Z multiplet possess three dominant weak decay modes:

Ze—p + T, (6.6.1)
e 2N o« M, (6.6.2)
F—n + T, (6.6.3)

It is customary to distinguish between the amplitudes of these decaya by
writing the sign of the pion in the final state of the decay as & subscript
to the amplitude, Assuming the reality of the amplitudes and hence 7
invariance, we may write (6.5.36) as

“, = 2 1)/ (g)? + 16y%) (6.6.4)
vhere the subscript i may be o, — or + . The parameier xo has been
measured directly (35):

®,o= 0.7 = 0.08 . (6.6.5)
We note that within experimental error, the parameter (6.6.5) has the same
magnitude but a different sign from that for the A (6.5.42).

The parameters «, and =_may not, however, be measured directly, rince
it is not poesible to measure ithe polarization of the neutron in (6.6.2) and
(646.3) in the same manner as the polarization of the proton is measursd in
(6.6.4), However, comparison of the asymumetry in the pions from (6.6.2) and
(6.6.1) yields (36)



() /) = (P ®) = (0.03 & 0.08)/(0.75 & 0.17) =

= 0.04 * 0.1 , (6.6.6)
and, ueing the known value for o< (6.6.5), we obtain
<, = 0.03 t 0.09 . (6.6.7)

Thus, within experimental error, the value of =, vanishes, demonstrating that
parity is conserved in the decay (6.6.2). Experiments on the resonance
K(1520) indicate that (37)
x_ = 0.13 £ 006 (6.6.8)
again faevouring parity conservation. Thus it appears that in the decays
(6.6.2) and (6.6.3), the parity-violating amplitude is small if it exista at
all, Thece decays afford some of the only examples of non-parity-violating weak
interactions.

We now congidér the amplitudes AP and AS present in Z decay. Using
a suitable nommalization factor, and ignoring the difference in phase~cpace

factors due to the Z'- T mass differsnce, we have

= =i
e = W%+ ()P, (6.6.9)
& ! 2 .
Yip = W7« )P« P+ W2, (6.6.10)
assuming time-reversal invariance. Approximating (6.6.7) by
®, = 0, (6.6.11)
we gee that either AP or AS vanighes. We arbitrarily choose
A, = 0. (6.6.12)
We lmow that
= oy2 0.2 e F2 042 02
5(=) (D + WDAAUP? + ()2 + (W7 + (D)
(6.6.13)
end experiments demonstrate that (38)
R(ZY) = Zo.50 = 0.02, (6.6.14)
and hence
042 0,2 e 2 =
(ag™ + (&) (ag) = /705, (6.6.15)

We now wish to detormine A; and A; in terms of e, . However, since the
relation (6.6.4) is quadratic, we obtain two possible values for each

amplitude:

A; E 1(0.43 2 0.05) a , (6.6.16)



I = (090 % 0.03) & , (6.6.17)
or

;“; = (0.43 * 0.05) a; . (6.6.18)
;.; = (0.90 % 0.03) ag ; (6.6.19)
wiere

_43* - 1/ 2T~ . (6.6.20)
Approximating (6.6.8) by

o< = o, (6.6.7)
we obtain

a; - 0. 3 (6.6.22)
A; - t 1/&:- Lo d ﬁAs » {6-6323)
or

,g = o, (6.6.24)
iy o« ot - ~ :A; : (6.6.25)

Clearly we have a considerable choice of values for the amplitudes. We ghall

use the results obtained above in the next section.

6.7 _ Isotopie Selection Rules in Hyperon Descays.

In (5.3.23) we mentioned the partial conservation law
a1 = T . (6.7.1)
However, examining our expression for the sirange current - nucleonic current

interaction {6.5.3), we see that we can only definitely write

lal = %,302. (6.7.2)
We know the Gell-liann — Hakano — Nishijima (GIN) relation (39)

Qe = I+ 7 (6.7.3)
and hence (6.7.2) corresponds to

Ay = Vig B (6.7.4)
As we mentioned in 5.3, there exist a number of decaym, which, if

NY = 2 (6.7.5)

were allowed, should have much larger branching ratios than have been obaerved,
Examples are

=" —3p +m” (6.7.6)



SL— Rw~ f (6.7.7)
St _3ne v . (6.7.8)
However, no decay with (6.7.5) has yet been obeerved, and so we are forced to
conclude that (6.7.1) is a justified selection rule. If this is the case, then
there should exist come theoretical basis for (6.7.1). At present, therse

are 4wo separate hypotheses to account for (6.7.1). The first (40) is that
the hadronic weak interactions are all caused by products of the charged

current terms

(n p) (6.7.9)
and
(A p), (6.7.10)

so that (6.7.1) is an inherent property of the wesk interaction. Transitions
of the form (6.7.5) might be caused by the intervention of virtual strong
interactions such as

" # (6.7.11)
n

N
o 7

A

The socond theory is that the currents (6.7.9) and (6.7.10) are supplemented
by the neutral hadron currents

(A~ ), (6.7.12)
(@ n), (6.7.13)
G ). (6.7.14)
This would mean that all wesk interactions, such as those of the form

An(Fp+ fn) , (6.7.15)

would obey (6.7.1) automatically. Recently, convineing evidence in favour
of neutral hadron currents has been found in neutrino-hadron interacticns,
and we shall discuss ihis in more detail in the next section.

Tne final states in the /\ decays (6.5.6) and (6.5.7) may have
either I = 4 or I = 3/2 depending upon the isospin projections of the pion
and nucleon. For the final state

T+ p, (6.7.16)



Glebsch-Gordan coefficients give the coefficient of the I = ¥ wave function
as ({2/f3), and of the I = 3/2 one as (1/[3). Similarly, the state

™ +  n (6.7.17)
has a coefficient of (-1/J3) for the I = % component of its wave function,
and of (J2/ [3) for its T = 3/2 component. Thus, superposing the I = +
components of the states (6.7.16) and (6.7.17), we obtain

Yiey = PN+ 9) - /3w + ), (6.7.18)
and eimilarly, for the I = 3/2 components:
Vi = WP+ 2) + (JZ/ B)A*+ ). (6.7.19)

The relation (6.7.18), asscuming that the 7T N final state always has I = %,
predicts the ratio of amplitudes for the decays (6.5.22) and (6.5.24) to be

Jz : 1, (6.7.20)
so that the ratio of probabilities for the decays is
251 (6.7.21)
From (6.7.21) we may write
WA—>p +T7) 2 .
= = £ 6.7.22
B WAa—n +7% + WA—D + ™) T ( )

where B is the branching ratio for the decay (6.5.22). The experimental value
for B is

B = 0.663 * 0.014 , (6.7.23)
in excellent agreement with the prediction (6.7.22). Since the amplitudes for
the decays (6.5.22) and (6.5.24) are similar (6.7.20), the angular correlations
of the decay products must alsc be the same. Thus, by C invariance, the
asymmetry parameter a must be the same for both decays. From (6.5.21) end (6.5.23)
we see that experiments give (41)

aofa_ = 1,10 ‘* 0.27 , (6.7.24)
in good agreement with our prediction. A further check on the hypothesis (6.7.1)
is afforded by studying the m"and T "decay rates of the hyperfragment

AHeq\. From (6.7.20), we may predict

"‘;/"‘?.s 2 0.3 # o0.12, (6.7.25)
in good agreement with the experimental value of (42)
0.38 £ 0.01 . (6.7.26)

Returning to Z  decay, we now see that we may write, using Clebasch-Gordan



coefficients,

2, 7> BB |Gt - WP iy . G
|m, 7" > wh 2,8 - @6 (B . (6T7.8)
[my 7> |(3/2), =(3/2) (6.7.29)

adopting the convention [I, 13> for the kets on the right-hand side. From
(6.7.27), (6.7.28), and {6.7.29) we find that we may write

A5 - W= - 93 . (6.7.30)
&J‘-' = /3 + ((2/B3) v ' (6.7.31)
A = X (6.7.32)

wlﬁem § denotes the ppin index, end may be either P or S. From (6.7.30),
(6.7.31) and (6.7.32), we may eliminate x and y %o obtain

X = Al w2 :L; - i - o . (6.7.33)
(6.7.33) holds if and only if (6.7.1) is valid. Now we wish to find some
combination of the amplitudes (6.6.16) througn (6.6.5) which will fit the
selection rule (6.7.33). We see that the choice (6.6.24), (6.6.25) violates
(6.7.33) for j = 1, because of the fact that neither (6.6,17) mor (6.6.19)
vanishes, and we chose

A; = 0 . (6.7.%4)
Thus (6.6.22), (6.6.23) must be the correct choice. This yields

g = (0.33 £ o.o'r);(é (6.7.35)
if (6.6.15) and (6.6.17) hold, and

xg = (-0.27 % o.oa)n*;s (6.7.36)

if {6.6.18) and (6.6.19) hold, taking the most favourable combination of
signs. Similarly

%, = (-0.27 = 0.04),'; (6.7.37)
or
X & (0.39 = 0.07)1\;. (6.7.38)

Thus xj does not vanish with experimental error, implying that (6.7.1) is not
precisely true. If we interpret the amplitudes f, J\u. and A as vectors
which have S and P components, then (6.7.33) implies that these should fom
a triangle, which is not, in fact, the case (43). The result (6.7.33) might
aleo have been obtained by assuming the existence of an imsginary particle in



sigma decay known as a 'epurion', with I = 4, I3 = %, ¥ =1, This would
imply no wvioclation of isospin conservation in Z decay. The 'spurion'
approach is employed in Okun': ¥esk Interaction of Hlementary Particles,
Pergamon 1965, pp. 177-180.

Finally, we consider the predictions which may be made using isospin
concerning the = and (L decays. From Clebsch-Gordan coefficients we see
immediately that the ratic of the amplitudes in the decays
T b (6.7.3)
s AN+ T (6.7.40)
is (J2): 1, and hence we predict

ﬂ—'—-—_g. =R 5 3, (6.7.41)
WE=t—s A+

The experimental value for (6.7.41) is (44)

1.68 + 0.25, (6.7.44)
in sgreement with our prediction. Similarly, sll asymmeiry paremeters in the
decays (6.7.39) and (6.7.40) should be equal, and experiments show that (45)
u’“']x" = 1.22 £ 0.50 . (6.7.45)
We may use the same ratiocs and principles in - decay as in = decay, and
thus

Wa—="+7") = 2 (6,7.46)
W= =z+7") + WL— = 47) 3 7 wTx557
and

e (6.7.47)

However, due to the fact that very few JL™ decays have been observed, because
Sg- = =3, meaning that the £ is only very rarely produced, no
experimental values for (6.7.46) and (6.7.47) have yet been obtained.

6.8 Neutrino-Hadron Interactions.

We first discuss the nypercharge-conserving neutrino-hadren
processes., With the restriction

Y = 0, (6.8.1)
and the assumpiion of nucleon targets, we have two elastic reactions:

v, + @ — BT p (6.8.2)
vl ¥ p—_—F G # » (5.8.3}



and two inelastic ones:
WG E—— im 4+ e (6.8.4)
¥+ p——1F + v, (6.8.5)

wi.lare C ie any complex of strongly-interacting particles with Y = 1. The
Hemiltonian for theee processes (6.8.2), (6.8.3), (6.8.4) and (6.8.5) is

B = (6/J2) (Jr(x) + Lr(x)}ir[xj + Hemm. conj., (6.8.6)
where the leptonic current Lr{x) is defined

L(x) = Zl= o q'fyvl Y. + Q% (6.8.7)
and

L) = 1 (x)}(1 - 25‘1_4) ‘ (6.8.8)
The Hamiltonien (6.8.6) assumes a local current-current foxm for the wealk
interaction, and uses the V-A theory, the two-component theory of the neutrine,
and the conservation of leptons. We know very little indeed about the
hadronic wealt current Jr(x}, and the matrix elements of this current are
interpreted as fomm factors, which are dependent upon strong interacticn
dynemics., However, the leptonic current {5.8.’7) containe no form factors,
and it is this which causes its 'local' or point property. At high energies,
the interaction is dominated by the hadronic current, so that the neutrino
cross-section is dependent purely upon the form factors:

(@6, /45> = ((6)%2r) (lgyad? + Jegled? + el +

+ (A2 . (6.8.9)

An important guestion which has probably been settled by studying
neutrino-hadron interactions is vhether neutral lepton currents exist. We
mentioned neutral currents in 4.4, and said that tems of the type (4.4.11),
(4.4.12) and (4.4.13), at least in their pure leptonic form, were protably
not present in the wealk Hamiltonian. However, such semileptonic reactions as
Vo ¥ PV + 0 + ", {6.8.10)
still involve no change in lepton or hadron current. In 1973, tracks representing
the reaction (6.8,10) were obtained (46) in a liquid hydrogen bubble chamber.
Further, a second neutral current reaction,

Vot P——% * D ¢ ™, (6.8.11)
was also observed. However, the rate for (6.8.10) and (6.8.11) has been shown



to be less than 10% (47) of the rate for )
vr + n ——)r’ + P 3 {6-3-12}
suggesting that the charged current terms may have a larger amplitude

than the neutral ones. However, these results are, as yet, only very
tentative, and thus we may not say with any degree of certainty, that we
must introduce a second leptonic coupling constant into the wesak interaction.

We now consider briefly the so-called 'neutrino flip' hypothesis.
There is no reason to ascume that the lepton currentes {?ee) and (V. p) are
coupled to both the AY =0 and the AY =1 hadron currents. Hence it has
been suggested that, instead, it is the {;}‘ e) and {;a }J) currents which
are coupled to the AY < 1 hadron current (48). This hypothesis was known
as the 'neutrino flip' theory because it interchanged the roles of the two
neutrinos in hypercharge-changing semileptonic reactione. However, high-energy
experiments show that the neutrines arising from kaon decay, which the
neutrine flip theory predicts to be electron neutrinos, preduce muons when
they interact with nucleons via AY = 0 currents, and not electrons, as
the neutrine flip hypothesis demands. The result of a number of experiments
(49) demonstrates that, if a neutrino flip coupling does exist, then ita
amplitude must be less than 20 % of the amplitude for the unflipped coupling.
Thus the neutrino flip hypothesis, in the form given above, appears to he
unlikely.

We now discuss the methods for confirming CP and hence T invariance
in neutrino-hadron reactions. CP violation would be revealed by polarization
in the final state nucleon from an unpolarized farget. We congider the
reaction (6.8.2) and we find that the final state transverse polarization
I’JG is given by
@ e #* = (m.xxpvp|sag) . (6.8.13)
where v and p are the momentum vectors of the neutrino and proton respectively,
v.is the incident neutrino energy, n is the unit vector in the direction of
the nucleon polarization, and ¢Vis the angle between ¥ and p, i.e. the proton
recoil angle. F is a measure of the transverse polarization, and is a funetion
of the form factors. Unfortunately, it is difficult to find transverse polariz-
ation due to the wesk interaction in (6.8.2}, since electromsgnetic effects



with a much higher amplitude also produce polarization. T invarisance would
cause the coupling constants affecting the form factors in F to be real, =0
that P would vanish, reeulting in no wealt interaction polarization. A second
method of detecting T violation is to study a reaction of the type (50)
% % ey Y # g, (6.8.14)
where Z io an atomic nucleus and C is a hadron complex, for fixed lepton
energy end fixed lepton-neutrino angle. Since the polarization of the
lepton involves a factor
e XXl (6.8.15)
and since n, the unit vector in the direction of the lepton polarization
vector, changes elgn under the operator T, sizeable lepton polarization would
imply T violation. Azain, no sensitive experiments have yet been carried out
on the reaction (6.8.14).

The selection rule
AI = 1, (6.8.16)
implies that J:‘. and J“:_ transform as pure lsovector operators. The
consequences of (6.8.16) may be tested in such processes as

v p—> 1+ p + 7, (6.8.17)
w4+t a— 17 « n o+ 7%, (6.8.18)
vy + a————317 + p + 7. (6.8.19)

However, since leptons have no isospin, the conseguences of (6.8.16) in
(6.8.17), (6.8.18) and (86.8.19) are the same as the consequences of isospin

conegervation in

s"' + P 5P+ ot ’ (6-3.?0)
st 4+ A sn 4+ T, (6.8.21)
AN (E— . < (6.8.22)

where 3% is a spurion with the isospin properties of the T *. Thus, in
analogy with ordinary - N scattering, we see that, if the T I states in

in (6.8.20), (6.8.21) and (6.8.22) are in the pure I = 3/2 state, then the
ratio of the rates for (6.8.17), (6.5.18) and (6.8.19) should te

1: (1/9): (2/9), (6.8,23)

by Clebsch-Gordan coefficients. Hence the ratio of charged to neutral plon



production should be given by

e+
H\n®

Similarly, if the final T N state iz pure I = -";, then the ratio of rates

5, (6.8.24)

becomes

0: (4/9): (2/9), (6.8.25)
go that

Nt

N 2 . (6.8,26)

Preliminary experiment shows that (6.8.24) and (6.8.26) are correct.



(HAPTER S@VEN:  THE KO AND CP VIOLATION.

Ta1 The K° Decay lMatrix Flement.

The I(c decay
K——> 277 (7.1.1)
has a matrix element of the form
LA S A Vi T ) (r3.2)

where fo is an urknown constant. From a conslderation of dimensions, we may
deduce that

%= Oz ), : (7.1.3)
where x, is a constant in the order of unity. We find that the rate of the so-
called 'theta' decay of the x° is given by

Vg = (£2 f(mlf - 4m2n))/{16‘rrn1§) . (7.1.4)
Using the experimental lifetime of the theta decay, (1)

(0.866 * 0.007) x 10720, (7.1.5)
we obiain

X ~ 0.7. (7.1.6)
We note that, whereas the rate of & decay is (2)

(1128 * 0.006) x 10° &%, (7.1.7)
the rate of the decay

gt——— 2m (7.1.8)
is only

(1.707 = 0.005) x 10° o, (7.1.9)

Thus the K‘n‘g decay of the K7 ie about 7000 times less probable than that of
the KD. As we showed in 6.3, the only isospin state availatle to the pions
in (7.1.8) is I = 2, and thus (7.1.8) involves
a1l = (3/2) , (7.1.10)
violating the selection rule (6.7.1). However, since the rate for the decay
(7.1.8) is only (7.1.9), we see that the rule (6.7.1) is obeyed %o a high
degree of accuracy.

In the decays



R——— T AT (7.1.11)
E——7 4 7, (7.1.12)
a final state with I =1 or I =2 is forbidden by (6.7.1), so that we are
forced to conclude that the final two-pion atates of (7.1.11) and (7.1.12)
have a total isospin of zero. We describe the isospin wave function of the
first pion by the vector a, and of the second, by b. In order to obtain a
total isospin of szero, we write the final state isospin as the scalar product
of the vectors a and b:

2.2 = &b * &b, + ab, . (7.1.13)
Taking into account that the 7" is described by the wave function

ar = (g + jaz)/J—? i (7.1.14)
the ™ by

a. = (y -3)/2, (7.1.15)
and the m° by

8, = a5 , {7.1.16)

we may rewrite the sealar product (7.1.13) in terms of the new variables
(7.1.124), (7.1.15) and (7.1.16):

a.k =~ ab * ab + ab . (7.2.27)
Since the probability of charged pion formation is proportional to

la, b.l,z + l"_ b)? , (7.1.18)

while that for neutral pions is proportional to

la, 2|2 , (7.1.29)
o o -

the rule (6.7.1) gives (see 6.7)

L A )

'l'.’{K —_—3T - 1\"') = 2 (701-20)
or

N WE—— o+ %) . 1
B(K) = WE e Y 7 = = 3 . (7.1.21)

Taking into account a possible small admixture of amplitude with AI = (3/2),
we predict

BK) = 0.29 = 0.37 . (7.1.22)
Experiments give
B(K) = (0.3123 + o0.0026) (7.1.23)

in good agreement with theory.



In the case of the three-pion decay )
K———> 7T rw+7s, (7.1.24)
matrix element calculations become more complex than in the two~pion case. In
analogy with (7.1.2), we write the matrix element for (7.1.24) as
o= L WU Toa Wy o (7.1.25)
vhers f, is a dimensionless variable dependent upen the energy of the final
state pions in the so-called 'tau' decay (7.1.2&). Smne the pion energy
never exceeds about 25 MeV, it is reasonable to assume that £, is roughly

constant with energy. Hence, in analogy to (7.1.3), we may write

£, =~ tx %}2 , (T.1.26)

where X, is again a constant near unity. We may now obiain an expression

for the rate of (7.1.24), and integrating over the momenta of 7T , and 71‘3 ’

we have

W= (B)an) [ (a)/6am ) . (4no)/m,) (7.1.27)
T N T ! Dy Dl /¢ GG Ay ) (Te1.27

where q is the absolute value of the J~momentum of 77, or 77. in its c.m.s.

2 3
Iniroducing a constant Q, known as the disintegration energy of the decay,

defined

e = m o= 3ng, (7.1.78)
we find that

W, = (AN 350 . (7.1.29)
Writing f in the form (7.1.26), we observe that

X AL (7.1.%0)
substituting the experimental value for the rate of the decay (7.1.24) of (3)
(6.42 += 0.13) x 10° A (7.2.31)

We note that in the casze of the three-pion decay, the ¥ idecn:,r is not

3
suppressed.

We now perform a similar snalysis in terms of isospin on the K;“

decay as we did on the K;_ﬂ_ one above. As we found in (6.3.72), the final
pion states in the decays

E———arlanTea ) (7.1.32)
RF——3 T TEeRT, () (7.1.%3)
Ko—-—) T4 T+ s (7.1.34)

K st 75 (7.1.35)



tend to have I = 1. As above, we denote the isospin wave functions of the
pions by &, b and ¢ . Thus the general three-pion state will be described by

2 = a(e + becad) + elad). (7.1.36)
The component
a\." = E,.[E-E} + b;—(?—'é) = C_.(ﬁﬂ_-’h) (7'1'3?)

corresponds to the decays (7.1.32) and (7.1.33), and the component

o - ;i

A aO(_t_:_.gj - botg.g} + c:o(g.g} (7.1.78)
corresponds to the neutral decays (7.1.34) and (7.1.35). We now write A” and
2% in the form

£ = a/b e+ a b e, «#abe +abo,+ado +

-+ e -]
+ a,b.c, + a b e + a boe + 8 b o (7.1.79)
A° - a, b, e_ + a b ¢, + @, b,ec, + a b o, + a b c_+
+ a, b, e, + 8, b ¢, 4 & Boo, * a,b e, . (7.1.40)

By the rule (6.7.1}. we obtain the following relations between the decay modes:

WK ——s2n*+ n- 2 ]2_a-h.cJ2 + Phoc.a® + pacibl? - 12
WK ——2n" + n*g Ba,b,c” + [30,c,a,l ¢ [Ra,0.hyl 3

(7.1.41)
W(k® ~> 3n° = 5 8, by ol 5
WK = 75 ring la,boel” + la, b+ Teal + boeal” +
£ 2 = 2
e = 1442
+ le,a,bl+ Je,an) [ 2 (7:1.42)

Further, since it has been found that 50 % of all x° particles decay into the
37 channel,

Wt mtenten™) 4 y(K——smee nteTT) - 1 (7.1.43)
WE—— T+ w*) + WK —sT 477+ T) : 143

However, due %o the mass difference within the pion triplet, we must make some
phase-space corrections to our ratios (7.1.41), (7.1.42), (7.1.43). These
become

1.24 : 4 ~ 0.32 (7.1.44)
1.49 : (2x1.23) ~ 1.8 (7.1.45)

(3x1.49 + 2x1.23) : (4 + 1.726) ~ I3 % (7.1.46)
The first of these ratios (7.1.44) we obtained before (6.3.71), and we find that
our two predictions and the experimental value agree well. However, the
experimental ratios for (7.1.45) and (7.1.48) are not yet accurate enough for
comparison.



7,2 The Dusl Properties of the X°.

The parity of the @ meson may be determined by knowing the total
parity of its two decay pions. Since the pions have odd parity, the total
parity of the di-pion asystem is given by
I (7.2.1)
vhere L is the orbital angular momentum of the final state. Thus, assuming

the pions to have zero spin, the possible JP assignments for the © become

F o= 5597, 2 T e (7.2.2)
From the decay mode
8— 1%, (7.2.3)

it ip obvious that the © is a boson, and hence the permitted spin-parity
aguignments are reduced to

F w0585 8 ceees s (T.2.4)
i.e. even spin and even parity. We now attempt to evaluate the spin-parity of
the T meson, with decay mode

T 33 . (7.2.5)
In order to find the total parity of the three-pion system, we consider it as
a di-pion of orbital momentum L, with another pion of orbital momentum M
relative to the di-pion. Thus we have, in analegy to (7.2.1),

P o= (7@t @F, (7.2.6)

and since symmetry demands even parity for the di-pion, (7.2.6) now becomes
¥

P = = (<1) {7.2.7)
We find that the epin of the three—pion system obeys the inequality

-]l L 3 € ez, (7.2.8)
and thus the first few possible spin-parity assignments are

F o8 A T weees (7.2.9)

Hence assuming parity conservaiion, the lowest allowed .)P for the KO, if

the @ and T mesons are indeed the same particle, should be 2" from
(7.2.4) and (7.2.9). However, angular distribution of decay products favour
zero spin for the K%, Tt was for this reason that, in 1956, Lee and Yang

(4) sugzested that parity might not be conserved in the wesk interaction, thus



allowing the KO to possess zero spin, and, as yet, undetemmined parity. As we
saw in 3.7, parity is, in fact, violated by the weak interaction. liore
sensltive sngular distribution experiments (5) have shown that the K°
has JP = 0 . A further important feature of the @ and T mesons is that,
due to the difference in phase-space factors for their decays, their lifetimes
differ by a factor of over 100:
T, = (0.886% 0.007) =x 1 (7.2.10)
P, = (5.179%0.040) x 10° & . (7.2.21)
According to the formila (5.1.27), the ¥° and X° should have strangenesses
of +1 and -1 respectively. However, since the keons are the lightest sirange
particles, they must decay via the sirangeness-violating weak interaction.
Since the final states from the g° and 7° decays contain only non-gtrange
particles, it is impossible to ascertain from a study of its decay products
whether a partioular particle vas initially a K oz a K . For this reason,
Fermi considered that the X° and £° were, in fact, indistinguishsble. However,
whereas K mesons could be produced both in associated production reactions:
N & Pmm————a g g A (7.2.12)
and in charge exchange
| Sl - L S (T.2.13)
£ mesons could only be produced by charge exchange
K+ p— % + n , (7.2.14)
or in pairs with K and KO:
Ty ey B 3 0§ . (7.2.15)
From (7.2.12), (7.2.13), (7.2.14) and (7.2.15) we see that, if strangeness
is conserved in the sirong interactions (and there evidence to support this
view), then more K° than E° particles should be produced, implying a
distinction between the two entities. The solution to this paradox was put
forward by Gell-ljann and Pais (6) in 1955. Since the decay products of the
Ko and 'Eo are identical, we see that the two particles may transfomm into
one another via virtual pion sfates. These transitions involve [AS|=2, and
hence they must be two-stage or second-order wesk effects, with & very low
amplitude. However, this hypothesis indicates that, if we have a pure X° beam
at t = 0, then at a later time, we shall have a superposition of both x°



and I'{'o. This situation is peculiar o the K’a meson, gince it is the only
particle which is able to undergo virtual transitions to its antiparticle
state. All baryons and leptons may not commute with their antiparticles
because of baryen and lepton conservation, the photon is its own antiparticle,
the charged pions are forbidden to commute with each other by charge
congservaiion, and the 77° is its own antiparticle. Thus we write the composition
of a K° beam obeerved at any Tinite distance from its source as

k(£ = ae) €% ¢ B8] E%D. (7.2.16)

In order to determine the functions A and B, we must now find what eigenstates

of the weak interaction are responsible for ° decay. At this point, we
ghall assume invariance under the combined opsrator CP. For the % and
£° themcelves, we have .
ey = SRy (7.2.17)
|&°> - - &y, (7.2.18)
mince, assuming the spin of the keon to be zero, in the rest frame of the
K®, CP will have the same effect as C on its own, The minus signs on the
right-hand sides of (7.2.17) and (7.2.18) are purely arbitrary. Thus we see that
the K° and £° are not themselves the required eigenstates of CF. However,
writing

> = WB (Y ) (#.2:15)
K> - @ (- ), (7.2.20)
we find that

e & = &3> (7.2.21)
e x> = -y . (7.2.22)

so that “; and x; are eigenstates of CP. In terms of K; and Ky , we find
that

. -}
K> = @R (S iy ), (7.2.23)
=0
B> = @ (g)- :a|::2> ) . (7.2.28)
The fact that the state vector of K is the complex conjugate of that of x°
is suggested by electric charge continuity eguations of the type (1.4.12).

e note that the phases of x(l and Ko are always purely arbitrary, so that we
may introduce a factor e¥ 3G at will.



We now examine the effect of the operator CF on the final pion states
in k° decay. We showed above (7.2.4) that the parity of the two pion system was
even. For the 'ND ™ o gystem, it is obvious that ¢ = +1, since the n°
is its own antiparticle. Strictly, the effect of the P operator om a system
containing two particles is to interchange their spatial co-ordinates, so that
PIR*w™) = [wwty . ) (7.2.25)
If the product of the intrinsic parities” of the two pions in (7.2.75) had
not been even, then the right-hand side of the equation would have been
negative. The ¢ operator transforms each particle into its antiparticle, and
thus
@|™Tn™> = [n*n) 5 (7.2.26)
Since the state on the right-hand side of (7.2.26) is identical to the
initial state in (7.2.25), we may deduce that the CP parity of the two-pion
system is always even. However, the situation becomes more complex when we
attempt o evaluate the three-pion CP parity. As above, we write the orbital
angular momentum of the di-pion 7V* 70~ aystem as L, and the orbital momentum
of the 'rro with respect to the di-pion as M. Thus
@R ey = (1% ()F ()F clnrmene) , (T2.27)
following (7.2.6). Writing the di-pion and the TT~ separately, (7.2.27)
becones

“DEH ginen=d oy = (1) (@) ey

= ()| Rm ) a (7.2.28)
From (7.2.28) we see that for H = 0, the Jr saystem has CP = -1. Since the
three 770 mesons in the decay (7.1.34) ave identical, Bose mmewz demands
that they have M even, so that CP = -1. In the charged pion mode (7.1.35),
states with ¥ = 1 are strongly inhibited by angular momentum barrier effects.
Thus we are forced to conclude that the 2m mode has CP = +1, while the

;has P = +1, and the I{; han
CP = =l. If we are to assume (P invariance, this means that the 1{; may only

decay into the 27y channel, while the I{; may only decay into the 3™ ons.

Thus, unlike the ¥° and £, the composite states K; and K; may be distinguished
by their decay modes. As with the © and Y mesons, the different types of

decay for the K; and K;

37 mode has CP = -1. As we saw above, the K

cause a difference in lifetimes between the two particles.



7.3  Phenomena in x° Peams.

We consider first the development of a ¥° beam with time. The Ka
particles produced in a reaction of the type
Tt p————3K + x° (7.3.1)
will be 50 K; and 500 K; megons, immediately after production, before
any decays have ocgured. A xenon bubble chamber has been used to show that
0.55 T 0.05 (7.3.2)
of a1l x° particles decay by the 27 mode. The reason for this is that the
x° particles produced in (7.3.1) will be a superposition of the K; and K;
states according to (7.2.23). Since the lifetime of the K; ig much shorter
than that of the Ky , the ratio of K] to K) in a K~ beam will decrease until
finally, the beam will be pure KZ . Ve now wish to obtain an expression for
the amplitudes of the states Ki and K; in a developing ¥° beam. Ve xmow that
when a particle is undergoing exponentiial decay of the form
8e) = wo) &, (7.3.3)

wl must multiply its wave function by a phase—space factor (see Lppendix c)
—t
a8

, (7.3.4)
where
[ 7, S (7.3.5)
as well as by the standard factor
g Imt (7.3.6)

where m is the particle mass. Often we write

K= mn - $5F, (7.3.7)
so that the combined phase-space factors (7.3.4) and (7.3.6) become

oIt (7.3.8)
Thue, in terms of the factor (7.3.8), we may write the complete % vave function

o> = RSy SHIIE gy Ay (g5

vhere M(1) is the value of I for the K; , and N_ for the K; . (7.3.9) yields,

2
as expected,

o> = @/ &> + 51x), (7.3.10)



in agreement with (7.2.23). ¥e now wish to £ind the intensity of K; and
x‘; after a given time t. Writing Y(t) explicitly in terms of K and E°,
we obtain from (7.3.9):
W = D>+ Rp) B L (e - 1) S

(7.3,11)
In order to find the £° intensity, we multiply the wave function (7.3.11)
by its complex econjugate, following the Born interpretation (1.4.9), and
extract the terms in £
BE) o 7 (e-!'{l)t . r{2)t

]

‘_ﬁn e-"}( (1) + f'(a]]t)

2 cos ((m2 -
(7.3.12)
Similarly, for the ED, we obtain

W) oo (TR o2 SHE )+ ()

- 2cos ((m, - n))

(7.3.12)
As expected,
3E%) + M@ o He MW L STy 7.3.13)
From times short compared with B(2) = 1/ r(2),
3% € 0+ o TE L s (am) TN L (7.3.4)
MR o+ + o B | o tam) e TAWy L (3a5)
vhers Am ig the K; -'ﬁ; mass difference, eo that the intensities of K° and K

oscillate with frequency A\m.
We now consider the phenomenon of Tegeneration, which allows us to obtain

a numerical value for Am, After about a hundred K;
w1l be pure 1{; , and

v = WRED+ ) . (7.3.16)
However, if we direct our k% beam on to a target, then the strong interactions
which take place within the target will alfer the phases of the particles,

so that (7.3.16) becones

lv> = (/42 @+ R ) . (7.3.17)

Three basiec types of strong interaction affect the i{° beams scattering from

lifetimes, our £° bean

single nucleons, scabtering from complete nuclei, and coherent scattering from
all the nuclei in the target. The latter is known as 'transmission regeneration’,
since, asz we shall see, we have regenerated a number of K_i particles, which



form a secondary beam parallel to the K; one, Writing (7.3.17) in terns of

Ko and KO , we have

ﬁy) = (a-wv)/2| x> + (a+0)/2)| K5 - (7.3.18)
Since ¥° and ﬁo undergo different strong interactions within the target,
a> b, (7.7.19)
and thus we are forced to conclude that (7.3.18) impliee that a mumber of

Jq' particles have been regenerated. Let £, be the probability that a ;:z

is produced from an incoming 1{; via the strong interaction.

T =  {E=0) (7.3.20)

2L

We assume that the incoming Ko

2
momentun p2 . Let the strong scattering process occur at a distance x from

besm may be deseribed by a plane wave of

the edge of the regenerator elab, and let it produce a K: beam with momentum
P - Thus the amplitude for the siate K: on the sscond edge of a slab of thicimess
L is

b= ep(ik,x) £y e(fl (L-x) ). (7.3.21)
Experimentally, the amplitude is selightly lower than (7.3.21), since mome of
the K; mesons may already have decayed by the time they emerge from the target,
and we are assuming zero decay probavility for the Kz . Let the rest lifetime
of the K.; be T, . By relativity (see Appendix A), we calculate that the

Ki lifetime observed in the laboratory frame is

T o= T - G/ = Yo (7.3.22)
Thus we may rewrite the amplitude (7.3.21):

A= oem (HBANE - x/2YT) . (7.3.23)
We now wish o find the energy El of the outgoing I{g in terms of the energy

E, of the incoming X, . Ve know that

k, = k %73, (7.3.24)
2 2 i 2 2 2
k2 + m, + M = ‘/‘cl oo+ VT 4 T, (7.3.25)

where p is the momentum of the recoiling nucleus in the targei and I is its
mags. Assuming M fo be much greater than any other energy involved,

substituting for p in (7.3.25), and solving for ky, we obtain

k- k, = (mfey) (m, = m). (7.3.26)

Denoting the totel effective number of nuclei per unit length in the target by
N, the amplitude for the 1c§ at the second edge of the target becomes



L
A = Jo N dx exp (jkax) le exp (jkll:L -x) exp (—-{ml/'kl)((l- - x]/?l'l)) )

0 £) 50k, = k) + (@ ey )(3/22))) (emo () -

exp (J,L = (o /i )(0/20,)) )« (7.3.27)
Thus the probability of finding a K; at the second side of the target is given by
V(K:)_ = W (1 - 2cos (25¢) € + &%) , (7.3.28)
where
g = (m/a) (/) , (7.3-29)
§ = (g =k)m KL = ol (7.3.%0)

and W, is the probability of observing a K at the second side of an infinitely-
thick target. Thus oscillations known as 'strangeness oseillations' occur in

a regenerated xg beam. The equation (7.3.28), from which we might theoretically
calculate &m, is modified by multiple strong interactions and by the
non-forward scattering of some of the main beam particles.

By studying the frequency of strangeness oscillation in regeneration
experiments, it is pogsible to find the magnitude of & , but mot its sign.
By this method, it has been deduced that (7)

Y = (0.60 £ 0.15) . (7.3.31)
However, it is alsc possible to measure both the sign and the magnitude of

& in a single experiment. We take as an example of an experiment of this
type that of liehlhop et al. (8) in 1968. A K* beam of momentum 0.99 GeV/c
vaeg made to imyinge upon a copper target in which charge exchange took place,
resulting in the production of & k% beam. At a distance of a few K: lifetines
from this target was placed an irvon regenerator slab, The beam of I(; emerging
from the regenerator consisted of a superposition of K;’_ particles from the
original beam and K; particles regenerated from Kg' 8 in the target. The total
K; intensity, which was dependent upon the magnitudes and phases of the
original and regenerated K; wave functions, was measured by means of a number
of foil spark chambers. The phase of the original wave is proportional to

the original Ki momentum Py and the phase of the regenerated wave to the
regenerated K; momentus p . Due to the nass difference betwoen Kz and K: .
P * P, F P (7.3.21)



A number of strong interaction effects in the regenerator affect the phase of
the regenerated K; wave. By measuring the intensity of the K; beam for
differing values of T = (D + L)/B, where D is the distance from the copper
target to the iron slab and B is the mean {ree path of the q,

B ~ ¢T ~ 2.66a, (7.3.32)
interference phenomena showed that

(m"z - ng_,l) = (0.44 0.08) K/ 7 A (7.3.33)

o
reverting to 5.I. units. A more senzitive measurement of the K; - h1

mnes difference has been made (9) by observing interference between the

decays
x:—-—) T L, (7.3.34)
;{;—————> T W, (7.3.55)

:'EI. The decay (7.3.%5)

ie an example of CP wviolation, which will be discuseed in the following
section. This methed yields
An = (0.480 = 0.024) K /7y =, (7.3.36)

Using the best available values for a?f and T,, an average of a number of

were the }Li particles have been regonerated from K

recent experiments gives (10)

am = (5.403 = 0.0%) x 100 K &= (7.3.37)
= (51235 2 0.033) x 107 I . (7.3.38)
We now append a brief survey of the theory underlying the Y.; - KE mass
difference. This is thought fo have arisen because of the exisience of
the so—called 'self-energy' diagrams such as
7™
(7.3.39)
K ® [

We now consider through which states the I\‘.G K commutation depicted in
(7.3.'39) may occur, since it is the matrix elements for conversion into there
states vhich determine the magnitude of the z° self-energy. Obviounly the
states available to the K| mist be different from those available to the

o . . " o
Kz s Othervise no mass difference would result. We assume throughout thig



discussion absolute CF invariance, although this is not fully justified.
However, the contribution made to the mass difference by CP violation is
very small, in the order of the (P-violating amplitude, which is about 10—3.
First, we consider the posaibility that I':o - Zo commutation occurs via
semileptonic intermediate states. However, taking the diagram

n=

K oF K’

v. (7.3.40)

as an example, we see that one vertex must always involve AY = - A4AQ,
violating the melection mule (5.3.16). There is good evidence to show that
any violation of {5.3.16) has an amplitude of under 10'3, 20 that lephonic

contributions to D will e negligitle. Thus the main contribution to the

K; and K; self-energies appears to come from commutation via the 277 state

end/or via the T1° and ° (3n) poles. Prom CP invariance, we see that

only the s wave (J = 0) 277 state contribtutes to the Kl , while the 77 © and

q poles and the p wave (J = 1) 277 state contritute to the :(2 seif-energy.
Because of the rule (6.7.1), only the I = 0 5 wave 277 state is

important, We introduce the Lorents invariant galf-energy operator:
3
2 - o A2TT 4 o Q
N@d) = 21;~{--)-—2 3 J KR | 9, =8 > . (7.3.4)

where T, . is the T matrix element (see 2.7) for the k% - £° traneition,

and W is the energy of the x;’ » We find that, since

LA (7.3.42)
in the rest frame of the i{i,

(B = -G/me) R Mwd) , : (7.3.43)
v, = T = eee) m @) . (7.5.44)

Caleulating (W), we may deduce that (7.3.43) is primarily dependent

upon the effective mass of the 2+ system, G. If

2m, £ & & mo , (7.3.45)
then the 27 state gives a positive contribution to the K; self-energy, and

hence a negative cne to A m. If



G > m0 s f'?-3-l‘3'6}

then 2 makes a positive contribution fo A m. Thus, if an & wave
reaona.nce3 were to exist with a mass near to that of the Kg. and with the
27 decay mode dominant, then its mass would determine the magnitude and
sign of the 2m contritution to A m. However, experiments show that no
guch resonance exists, unless we are to identify our resonance with the
unconfirmed pole € (600). Thus the 21 state probably does not make an
important contribution to Am. The T'.“o. qo and f'o (p wave 2 ) states

contrivute only to the K; self-energy. The 77 and rf contributions are

given by
(Ba)y = (@Epe = 0/23)(((gon] - w2 -

- (( 'laK';.,sz}/(mﬁ - ms) i (7.3.47)
wiere BK; r» is proportional to the amplitude of the decay
ooe——s %+ =, (7.3.48)
and similarly aK; n° is proportional to the amplitude of
© 5 n° nem o+n® (7.3.49)

However, it is not usually possivle o calculate the amplitudes for the
decays (7.3.48) and (7.3.49), even in terms of the whole K: decay rate.
F(3) (see chapter 8) does mske this possille, tut the predictions of exact
SI(3) are contrary to the experimental valus of Am, and the degree of (%)
violation is not, at present, known. Contributions to Am may also come from
the vector mesons f('TTD} and (o(783), and from the axial vector mesons
A (1100) and o' (1675). However, onceagain, the amplitudes a are nob known,
and 50 no caleulation of A m is possible.

The experimental value of Am is pernaps the best evidence against
!AY[ = 2 transitions. For if these were allowed, then k% - B> commutation
could occur without an intermediate state of zero hypercharge, for example
x° AT N s A+ T »E° (7.3.50)
In (7.3.50), both the first and last transitions would occur by the sirvons

interaction, while the middle one would still take place via the weak intnraction.,

However, since (7.3.50) is a first-order weak interaction, we find that ite



contribution to A m is much greater than that of, for exemple, (7.3.39).
Summing over all reactions of the type (7.3.50), we find that
Ba ~ (exd)fend)? (A) ~ 07 (m), (7.3.51)
where G is the weak coupling constant. If only |AY) = 1 transitions are
allowed, then

Am ~ (1/rl) 5 (7.3.52)
(7.3.52) is in near agreement with experiment (7.3.38), but (7.3.51) is in
violent disagreement. This means that we may set an upper limit on the

oYl 3 2 emplitude of 1072,

T.4 CF Violation.

In 1964, Christenson, Cronin, Fitch and Turlay (11), while studying
regeneration phenomena, detected the decay
L——>2% , (7.4.1)
showing that (P was violated. A target was placed at 30“ to a 30-GeV proton
beam. Gamma rays from this target were attenuated by placing a 4-cm-—thick
lead block behind it, and charged pariicles were removed from the secondary
beam by means of an electromsgnet. The beam was then collimated, and 18 m
further on, a second lead collimator led it into a helium-filled bag.
Decay products from here were detected by means of two spectrometers placed
symmetrically 22° from the main beam. Hach of these spectrometers coneintnd
of a pair of spark chambers separated by a magnet and triggered by seintillation
counters and a water Cererkov detector. The spark chmabere were triggered if
and only if a main beam particle decayed into charged particles with velpcities
greater than about 0.75 c. Decays of the type (7.4.1) were detected in the
following manner. uhen two particles of oppesite electric charge were detected
in coineidence by the gparic chambers, the momentun and effective mass, on
the assumption that the two particles were pions was calculated. The effective

or invariant mass was found from the formula

Hope = o o((B 4 )% « Ay + 3;3)2)"1’ ; (7.4.2)
using
5 = (o] + K. (7.4.3)

[7.4.2} corresponded to the rest mass of the decaying particle if and only if



the particle decayed by the mode (7.4.1). For this decay,

. ;
= : B Tobuts

- B, oo~ 493 Hev/e” , ( )

tut for the nomrmal decay

K——————— " - =, (7.4.5)

mince only the charged pions are observed,

2 HeV/e® < B, < 363 Hev/e”. (7.4.6)

For

o )

;{2—5 TAE MY, (7.4.7)

280 mev/o” < N, < 516 NeV/e? , (7.4.8)

and for

K:————> T+ e + vV , (7.4.9)

280 l\iev/ca < My < 936 lvie'u'/c:? . (7.4.10)

For the reactions (7.4.7) and (7.4.9), Y e would vary mmoothly, and would
not be peaked around 493 i-Ie‘U’/oa, as for the modes (7.4,1) and (7.4.5). In a
two-body decay, the sum of the three-momenta of the decay products and the
initial direction of the decaying particle should be the same, tut for three-
body decays, the two vectors are usually at an angle to each other. By both
angular and effective mass measurements, it was found that 45 + 9 out of

22 700 K; particlea decayed via the 2n mode. This number wee at least an
order of magnitude too large to be explained by regeneration of ;i:'a in the
helium or elsewhere. Christenson et al. showed that

HKS—— n T+ 7)

R o= e a dergedweten) (2.0t 0.4) x 1072, (7.4.11)
and
Ne-] = W(K;—aﬂ'+n'j/h’l:K;-—)7\‘*+ ) = (1.90 % 0.05) x 1070,
(7.4.12)
CP viclation has also been observed in the decay
x;——.w:" + n° . (7.4.13)

One technique (12) used to detect (7.4.13) was to observe gamna rays produced
by the decaying 7v° mesons by means of metal plates, in which the 'pair produciion’
reaction

——SeTu. & (7.4.24)
took place. One difficulty encountered was to correct for decays of the type



K; >3m0 36 Y, (7.4.15)

when two of the final gamma rays did not materialize, simulating a Eﬂo decay.

This correction was made by means of the 'lonte Carlo' computer calculation,
in which decaysof the type (7.4.16) were tested to find out how often they
would simulate (7.4.13) decays. Another method used to cbserve (7.4.13) was
(13) to mensure the energies of the final gamma rays from 7%° decay. Only

in the 2T° decay will a gamma ray have an energy of above 170 eV in the
c.m.s. system of the Ko. The Y -ray energies were found by a spark-chamber
magnetic spectrometer, but transfomation to the K° c.m.8, demanded a knowledge
of the KD momentum. This was obiained by regulating the beam in short bursts,
and making time-of-flight velocity measurements. Knowing the kaon mass, the
momentum could thus be caleulated. The rate for 277 decay as & fraction of
37 decay was deduced by measuring the number of gamma rays with energles
abtove and below 170 KeV. Correcting for processes ofher than (7.4.15) which
could produce low-energy gamma rays, the resuls

(¢] o]
- Ko—2 ™ =
|’1m| mé_l.___;""—ﬁg'zw = (2.9 % 0.5) x 207 (7.4.16)

wag obtained. The currently aciknowledged values of the 1(; decay CP violation
parameters are (14)

I, = (227 = 0.07) x 07 , (7.4.17)

| %6 " (2.25 = 0.09) x 1070 , (7.4.18)
We write the total weak Hamiltonian as

B = B+ H_, (7.4.19)

where H_is the usual vesk Familtonian, which we assume obeys |AY| =1, and
H_ is our new CP violating Hamiltonian. The final pions in the decay (7.4.1),
since tney have zero iotal angular momentum, must be inan I = 0 or an

I = 2 state. We define the guantities:

¢ = (K1=0m| B MALT=0 |8 [K]D) , (T.4.20)
&' = (<I=2IH;LKZ>)/(<1=251{;|K§>) . (7.4.21)
0 = (KT=2 8] |E D)ALT=0 lar]>) , (7.4.27)
oo = Iealo®® = (e a () (7.6.23)



T = 106l €™%%2 = (s00l)/aylo)) (72.94)
e = (a(+-N/ayle0)) (7.4.25)

where l']+_1 and | | were defined in (7.4.12) and (7.4.16) respectively.
We now write (7.2.19) as

&3> = (/2 (™ + &> , (7+4.76)
and (7.2.20):

|KE> = (172 GES - &%) , (T.6a7T)
where Kg and K: are defined

K;-———b 27, (7.4.28)
1"1" 3 . (7.4.29)
If there were no CP viclation, then

Ki = K?s ; K; = i{z " (7.4.%0)
In terms of the quantaties p and q in (7.4.26) and (7.4.27), we find that

e = (e - /e + @ - (7.4.31)

A mimilar relation holds for ¢'. We now see that ¢ and e ' are measures of

CP violation, since if there exists perfect (P invariance,

P =g =1, (7.4.22)
so that (7.4.26) becomes (7.2.19), and

& - 0. (7.4.33)
If both CP and CPT invariance hold, then we also have

&t = 0. (T.4.34)

However, in the event of CP violation, only cne of the relations (7.4.%3) and
(7.4.34) must be true. e see that wa(7.4.22) is a meamire of the validity of
the | AI| =% male (6.7.1), since, if the rule is satisfied, no transitions

to an I = 2 final state are allowed. Experiments indicate (15) that

ol  ~ /. (7.4.35)
Assuming ]wla to be near zero, we find that

1. ~ e+ (1/R) e, (7.4.36)
8 = - e =2 , {7.4.37)
so that

lel < @A, + Qs . (7.4.%8)



| &'l < (@l |+ 16,10 - (7.4.39)
Using the experimental values (7.4.17) and (7.4.18), we obtain

le] € 3 x 107, (7.4.20)
le'| € 2.9 x 207 . (7.4441)
We may show that

i | x> = Uel® - 1P/ + 1® & 2. (1.0.42)
Thue the states Kl and K2 are nearly orthogonal, i.e. they have only a small
overlap. From our definition of K; and of K;, we soe that the velue of
(7.4.42) is a measure of the CP violation in the KO — £ system, and it would
svidently be zero if there were no CP violation. In (7.4.23) and (7.4.74),

wo wrote r{+_ and N &8 the product of a magnitude and a phaee. The magnitudes
have been found by measuring ihe ratic of CP-violating to CP-conserving decays
(7.4.17), (7.4.18), and the pheses by measuring interference betwesn the
decays (7.3.34) and (7.3.35). The time-dependent interference term is
proportional to

(6mt - 9,) , (7.4.43)
and thus the detemmination of B is sensitive to the value of Am. Using
the value (7.3.38), experiments give (16)

e,. = (46 = 15)° . (7.4.44)
Studies of interference decay product angular distribution yield (17)
o, = (46.6 = 2.5)°. (7.4.45)

The value of Re ¢ may be found from measurements of charge asymmetry in
the reactions

KE————) RE L ™4 Vi (T.4.46)
giving (18)

Te € - 1.09 * 0.18) x 1072 . (7.4.47)
Asmuning

hool = h+-l ! (7.4.48)
we find that

8e = (427 = 1.3)°, (7.4.49)
Q00 - 4 = 13)°, (7-4.50)

and we see that the value of |¢'| must be snall compared with|e| .
CPT invariance implies the precise equality of the total rate for



K——3m (7.4.51)

and for

E———3n (7.4.52)
or

T(+=) + T(oo+) = [(-==-+) + MMoo-=). (7.4.53)

However, the Dalitz plots for the processes (7.4.51) and (7.4.52) are not
congruent, because of the existence of a final-siate etrong interaetion
batween the pions. Thus, different rates for the (v + =) mode of the K
and for the (- = + ) mode of the K decay would constitute evidence for
CP tut not necesearily for CPT violation. However, simple consideration
of the mymmetric isospin state (6.7.66) for the final pions also yields an
aquality of the partial rates” for (7.4.51) and (7.4.52), so that this
is not a sensitive test of (P invariance. Experimentally (19),
wé:::ﬁf: ::; ~ 1.0004 % 0,002, (7.4.54)
which is congistent with no deviation between the partisl rates for {7.4.51)
and (7.4.52). A more satisfactory iest of CP invariance in the decays

Kkt —>s3n (7.4.55)
is afforded by measuring the final-state energy epectrum. If CF is conserved,
then this should be identical for the K~ and the ¥ . Experimental measurement
of the slopes in the spectra for the decays (7.4.55) yield (20)

st(+ + =) = 0.11%0.015, (7.4.56)
5 (- - +#) = o0.015%0.02 , (7.4.57)
which is consigtent with CP invariance.

. If CF were exactly conserved, then the decay

q———ﬁ‘ﬂ‘-‘- +TC AT, (7.4.58)
although not forbidden (see 7.2), would be inhibited by an angular momentum
barrier factor of order

(og)? ~ /w0 , (7.4.59)
q being the disintegration energy of the decay (7.4.56} » ‘Buch a low rate is
effectively unobgervable because of the large background of
K—>3n (7.4.60)
decays. However, the decay



Kl———’) 31’\ (7.4.61)
ig forbidden by P invariance, since the '?T 5 in the final state are identical
particles. Writing

(& (+ - N/af+ -0) = x(+-0) + §y(+-0), (7.4.62)
experiments show that (21)

x(+ = 0) = 0.14 + Q.32 , (7.4.63)
¥+ - 0) B 0.33 % 0.61 , (7.4.64)

excluding any CP-violating amplitude with greater strength than the CP-conmerving
one in (7.4.61). Further experiments (22) yield

2 -
mo[ & L. (7.4.65)
Mlternatively, we might reveal CP viclation in charge asymmetry in the decay
Kz-—-—-——a 1\‘4'4_ o+ 'Ro . (Te4.66)

However, experiments (23) show that

A = No. > M. < ) = (0x5)%, (7.4.67)

which is consistent with CP invariance.

Pinally, we coneider (P violation in the semileptonic decaya of the

Ka. Assuming that A‘I/ A0 = 1 or-l, we have four decays to discuss:

e oy o 4T g v (7:4.68)
P—> "+ 1 & Vo 7.4.69)
P+ 1T+ 7, (7.4.70)
s+ 1"y . (7.4.71)

A8 we saw above, CP violation in hadronic decays does not necessarily involve
< # o ; (7.4.72)
but the semileptonic decays, since they have only I = O in the final state,
do demand € # O for CP violation, melcing them of special interast.
Teglecting the final state interaction between the -wtand 1¥, CPT invariance
implies congruent Dalitz plots and equal and opposite .I“ polarization in

K]_3 and K13 decays. In most experimente, J.{ and K beams are allewed to
propagate in vacuo until the shori-lived componsni 'I-\. has completely died
out through 27v decay, so that only F.L's remain, whose semileptonic decays
(7.4.68), (7.4.69), (7.4.70) and (7.4.71) may then be studied. CP violation
in these decays will cause a slight departure from the CP-invariant forms of



palitz plot and muon polarization, Writing )
= (layag = ) /alar/ag = 1)), (7.4.73)

CF invarisnce implies

P
%{%t%» % 1% 4Ree{-l[ﬁ%] : (7.4.74)

neglecting higher powers of & . Thus, by studying charge ssymetry, we may
find a value for € 5o long as we know X from other sources. However,

even if X = 0, the semileptonic &2 decays should exhibit charge asgymmetry
if e # 0. The parameter

+ g
3 N w1) - w3 g
L) ORI (7.4.75)
has been measured exporimentally as (24)
§(e) = (p2420.3) x 1077, (7.4.76)
§ (W = (405 £1.7) x 1077, (1.4.77)
yielding
.
= = ey
We) (1.0043 T 0.0007) (7.4.773)
:—'“f%;“—“g- = (1.0080 £ 0.0027) . (7.4.79)

Statisties show that the departure from unity in (7.4.78) and (7.4.79) is
significant, tut that the inequality of electron and muon values is not
pignificant, so that eleetron-muon universality is upheld. An aversge of the
values (7.4.76), (7.4.77) gives

o
1 - Izl ” =3
.E‘L - 2 Ree| T i 732_1 (2.32 £ 0.35) x 10

(7.4.60)
However, we see that we cannot detormine X and & separately from (7.4.80),

and thus we need an independent walue of X. Assuming X= 0, we have

e ¢ = (1,16 = 0.18) x 1070, (7.4.81)
tut He ¢ is very sensitive o the value of X, and measurements on decays such
as

Zrm———pn+ TNy W (7.4.82)
have only set an upper limit of 0,1 on | X[, Thus we must determine the
magnitude of the complete facior



2

1= lxl5 (7.4.83)

i %+
by experiment. Measurements of the relative intensity of the regenerated
K; component in a K beam.give the value of (7.4.83) as (25)

(1.06 1 0.06) , (7.4.84)
and thus we obtain
Ree = (1,09% 0.18) x 107, (7.4.85)

which is close to the value (7.4.81) for which we assumed X = 0. Thus we
have egtablished some degree of CP violation in the Ko gemileptonic decays.

7.5  iodels for CP Violation.

When CP violation was first detected in the decay (7.-1-.1]_ a number of
theories were edvanced to account for this effect. One was that the Bose
symnetry used to calculate the CP parity of the two-pion system was incorrect,
tut this wes invalidated by the observation of the decay (7.4.13). Another
suggestion was that the decay
K—»35 +# K

2 1
tock place, where 3 is a particle with (P = -1 and with a mass less than the

—>5 NN (7524

Kg - K; mass difference. However, if this were the situation, then no
interference between the K, final state TS and the K| finsl state w*n~
would be expected, but this definitely occurs. A further explanation was
that the effect wan due to & long-range 'galactic' interaction (26) which coupled
with different strenzth to matter and antimetter and hence to the Ko and
£°. Thus, in s region in which matter sxiats in greater quantities than
antimatter, the 'galactic' interaction would cause the Kz and 1{; to be a
mixture of CP eigenstates. Eowever, this theory predicts the rate for
the decay (7.4.1) to be proportional to

Y a4, (7.5.2)
where Y ig the Lorents factor (seec appendix L) and J is the spin of the
quantun or propagator (see chapier 9) of the new field, Experiments on
the reaction (7.4.1) for varying K; momenta have shown that there is no
observable velocity-dependence for the reaction rate.

We write the tofal Hemilfonian of the strong, eleciromagmetic and wealk



interactions as

H = &, H_, (7.5.3)
where
@ () = =u, . (1.5.4)

From the existence of the decay (7.4.1) it is obvicus that an interaction with
CP = -1 does exist, but its properties are almost unknown. The CP-viclating
reactions may be classified according to their hypercharge selection rules.

We first consider the case in which H_ is a AT = 2 operator. We write

B o= Byt E (7.5.5)
where H(J is the Hamiltonian for the strong and electromagnetic interactione,

end H'if is the normal (P-conserving weak Hamilionian obeying the selection mile
Jay] = 1. (7.5.6)

Since all the weak hadronic decays obey (7.5.6), H_ cannot be the Hamiltonian
responsible for them. However, H_ hag ite effect by giving nonegual off-
diagonal terms to the mass matrixs, cousing p # q in (7.4.26), and hence a
nonvanishing amplitude for the decay (7.4.1). In order to account for the
obgerved branching ratios, we find that the contribution to the AY = 2
amplitude made by H_ must be about ] q+_| times that from second-order

OY = 1 CP-conserving effects. Thus H_describes an interaction with coupling
conatant

~ 1072 (@ m:?/lm) - (7.5.7)
vhere G is the usual wesk coupling constant:

2 -5
G my —~ 10 . (7.5.8)

Becauss of ite small coupling constant (7.5.7), the interaction i (AY = 2)
is known as the superweak interaction. It wae Tirst postulated by

Wolfstein in 1964 (27). Teglecting tems of order 1077, we find that there
will be no other CP-violating wesk effecis except for thome associated with
the i(o, since it is for this state only that terms of order

(Fu2/a ) (Gn2/are ) . 1072 . (7.5.9)
appear through the existence of the mase matrix . The muperweak interaction
model assumes that the normal wesk Hamilfonian is T invariant, so that the
amplitudes a, appearing in the definitions (7.4.23), (7.4.24) and (7.4.25)
must &1l be real. We now iniroduce the definitions



et = (- alafe))lo + )aja) ¢, (7.5.20)
o = (o alays))/e + @))aya) &, (7.5.11)

where &_ now represents the amplitude to the state withI = r (previously,
it denoted the amplitude for the 1{: decay into a particular channel). The
reality of amplitudes thus implies

e’ = ew (7.5.12)
Nee = € = oo * . (7.5.13)
From the so-called 'unitarity condition' ',

((am 7,28 + In (e™e)) = Ree tan B¢, (7.5.14)
we obtain

(26m)7, Re e = Reetmng(1+ ), (7.5.15)
meking use of (7.5.12) and (7.5.13). Neglecting uz. (7.5.15) yields

tang, = 28m7g , (7.5.18)
O = (427 + 1.3)°. (7.5.17)
Thus, from (7.5.13) we predict

e, = 9, = (47 = 13)° (7.5.18)

which is correct within experimental error (7.4.44), (7.4.45), (7.4.50).
However, the prediction

L. = & (7.5.19)
does not agree with experiment (7.4.17), (7.4.81). The final predicticn
Neo = € (7.5.20)

hae not yet been tested, due to lack of satisfactorily-accurate experiments.
The second case which we consider is that when H isa AY= 1

operator. Here H_ has the same hypercharge selection rule as the normal

weak Hamiltonian H“r » 60 that most weak interasctions should have CP-viclating

amplitudes. Taking the example (7.4.1), we find that

e ~ 1070 (7.5.21)

where F is the coupling constant of the CP-violating Hamiltonian H_.

However, as we have mentioned above, experiments have failed to reveal

definite CP violation in any other weak processes, although the level of

accuracy is rarely 1_0-3. Thus, until further experiments have been performed

we have no method of deciding between the weak and superwsak interaction



theories. We now discuss two particular models for the AY = 1 CP—violating
Hamiltonian B_ . The first postulates that OP vielation occurs in the

AT = 3/2 part of the weak hadronic Hamilionian (28). If it were definitely
established that

Il = In.l (7.5.22)
then thig would favour the AI = 3/2 model, since g ' could ho longer

be emall compared to e, and there would have to be GP violaticn in the

AL = 3/2 component of the hadronic HUsmiltonian. However, if (7.5.22) is
not true, i.e.

Mool = In_| (7.5.23)
then CP violation must occur exclusively in the AI = + part of the
Hamiltonian. Assuming that the CP-viclating intersction satisfies an exact
AI = 3/2 selection rule, while the CP-congerving one saticfies exactly
Al = 4, we find that

BY) = (G- e e)?, (7.5.24)
vhich may be shown to imply that neither the x° nor the ¥ receive ol f=-mergy
contritutions from the 27%v channel. From (7.5.24) it seems likely that

will be very smell, o that the decay (7.4.1) must ocour primarily becnuse

Im (aa/ao} # 0 (7.5.75)
(isospin definition), indieating that
le’l > e . (7.5.76)
(7.5.26) is not favoured by current experimental evidence, since

- .3L | =%
]q*_l = €+ e ~ 189 x 10°, (7.5.27)
and
Ree ~ 11 x W2 , (7.5.78)
g0 that
&! < € . {7.5.29)

Thus we are forced to conclude that the AI = 3/2 model is probably not
correct,

The second model for the Hamiltenian H_ (AY = 1) which we consider
is known as the 'semiwosk' model (29) « Thig is based on the observation

that the characteristic amplitude for e first-order (P-conserving weak process



is in the order of

(elfem) ~ 207, (7.5.20)
whereas that for a (P-violating one is

~ (e2/am)Y? ~ 207

We then postulate that both CP-conserving and CP-violating hadronic
processes arc due to a fundamental pemiwesk CP-violating interaction with
coupling constant

£ o~ (c:mzf/n;n)"" ~ w7, (7.5.32)
By a sutiable choice of conditione, we ensure that all firsi-order matrix

(7.5.31)

elements vanish, that all CP-conserving nommal weak processes have second-
order fiatrix elements, and that the third-order matrix elements deecribe
CP-violating procesges. We choose the semiweak Hamiltonian:
B, = £ f3x)w, (7.5.33)
where N io a neutral current with AY = 0 and |AY| =1, but with no
AY = 2 components. We find that Hr can be so constructed that the firet-
order matrix elements vanish because of momentum conservation. However, in
the second order, we predict [AY| = 2, which is inconsistent with experiment.
This problem im overcome by postulating that the AY = 2 part vanishes, vhich
is found to be enuivalent to demanding that a particular commutator vanishes.
The third-order terms give correct predictions for CP-violating reactions.
The 'semiweak' hypothesis may provide ihe basis for a wnified theory of the
weak interaction.

In the third case, H_ obeys AY = 0 {if contains no leptonic
component) and violates C and T tut conserves P, and thus violates CP.
Here, CP violation occurs as a result of the cross-temm HWH_ appearing in
the second-order matrix elements. This means that in both strong and weak
processes (including electromagnetic interactions), there must exint a C and
CP-violating anplitude vhich is about |1, | ~ 2 x 107 times as larze as
the C and CP-conserving one. Thus we may test this model by searching for
C and CP (or T) violation in strong and electromagnetic interactions. Since
the amplitude for the process (7.4.1) is of the same magnitude as the coupling
congtant of the electromagnetic interaction, it has been suggested (%0) that
CP violation might be caused by the eleciromagnetic interaction. The ratio



lqoo /q\__' (7.5.34)

is consistent with models in which CP violation in weak procestes is due

to OP violation in the electromsgnetic interaction, since the final ftwo-pion
atate in tne decay (7.4.1) may be any admixture of I = ¢ and I = 2 states.

To the weak interaction, models with differing values of AY probably appear
identical, tut in the AY = U case, we should expect sizeable C- and T-violating
amplitudes in the electromagnetic interaction. We split the total hadronic
electromagnetic current into two components:

_em . am LEm B

I = i % B . (7.5.35)

whers

¢ 4 o= -, (7.5.36)
; ;

¢k, C = K, - (7.5.37)

Thus K is the C-violaling amplitude. As usual, the total current must be
congerved:

(3/2x) 37 = o . (7.5.78)
We now define two types of charge:

G = - § ™ 0ok (7.5.39)
o] g N k R
% - =i B () x . (7.5.40)
The total charge of a system is given by

Qo = g + Q. (7.5.41)
Obviously, for any known particle

o |particte> = 0, (7.5.42)

gince the signs of the charges on all known particles are reversed by the
operator C. It is usually acknowledged that (7.5.42) is true for all particles
although there is little justification for this assumption.

In order to test the hypothesis outlined above, we must search for
C and T (or CP) violation in electromagnetic processes, The reaction
e e LG T (7.5.43)
must proceed electromsgnetically, since it violates G parity {see 5.3). If
(7.5.43) is C-invariant, then the paremeter

A= (B> By = B D BB D B.) BB B

(7.5.44)



will be zero. A mumber of experiments have been carried out for the purpose
of evaluating A, of which we discuss two. In 1966 Larribe et al. (31)
obtained q particles by the interaction of 0.82 GeV/c T mesons with
liguid deuterium in a bubble chamber according to the reaction
T4 d —>pensp . (7.5.45)
Eta decays were identified by a short proton recoil, and particle energies
were found by kinematic fitting. In all, 21 Q00 events were measured, of
which 765 fitted the reaction {7.5.4‘5}. This experiment yielded
A= 0,048 T 0.036 , (7.5.46)
which ie consistent with € invariance. A much larger number of evenis may be
measured if spark chambers are used instead of bubble chambers, and an
experiment uging spark chambers was performed by Cnops et al. (32). Here,
N° particles were produced in a liquid hydrogen target by incident
mesons with momenta of 0.713 Ge\l’/c according to
T+ p———>n + 1. (7.5.47)
The neutron momentum was measured by time-of-flight analyeis in onder to
find the precise qo energy. After a specified time interval, two sparic
chambers were triggored if and only if they received two oppositely—charped
particles, corresponding %o the charged pions of eta deecay. In order to
avoid errors caustd by the asymmetiry of the magnetie field used to separate
the decay pions, this was reversed half-wvay through the experiment. Zy the
end of the experiment, 10 665 events fitting the reaction (77.5.47) had been
atudied, yielding
A = (0.3 = 1.1) % . (7.5.48)
Parity conservation may easily be checked for the electromametic
interaction by attempting to observe nuclcar transitions which violate
parity, By this method, the upper limit for electromagnetic P viclation has
been set at 10_3. P invariance in the strong interaction has been inveatigated
in great detail by studying nuclear decays. In 1971, Krane et al. (33)
polarized hafnium-180 and obgerved spatial asymmetry in its decay ganma
rays, demonstrating that a small component of the strong interaction violates
parity. Time reversal invariance in the strong interaction has been verified
by measuring the rates for the reactions (34)



5 + M S® + T, (7.5.49)

and these have been shown to be ecual to an accuracy of better than 0.3 9.
The best test of electrumagnetic T invariance is the measurement of a
possible electric dipole moment (EDif) of the neutron. The Hamilionian for
electromagnetic interactions between the electric~ and magnetic-dipole
moments of the neutron may be writien

By = f, i G, LE (7.5.50)
where Ca and (’e are the magmitudes of the magnetie- and electric-dipole
moments, & is the gpin vector end I and £ are the magnetic and electiric
field vectors. It is obvious that Il and & are even under P and odd uvnder T ,
vhile E is odd under P and even under T. Thus the contribution to the
Hamiltcnian due to the magnetic—dipole moment is invariant under both F and
T, while that due to the electric—dipcle moment changes sign under both of these
operations. Hence a nonzero neutron ELX would imply P or T violation in the
electromagnetic interaction. Writing ({ = ¢ = 1)

B = el o~ 107 ¢ (e cm), (7.5.51)
where e is the electronic charge end £ ig the T or P-violating ampliturda,

we may measure the neutron EDi. In the experiment of Dress et al. (35),
thermal neutrons from a reactor were '"cooled' by passage through a narrow
tube of polished niclel with radius of curvature 1 m. 3ince the critical
angle for neutron total internal reflection is inversely proportional to
velocity, only low-energy neutrons were transmitted through the tube to
strike a mognetized vobalt-iron mirror at grazing incidence. The neutron
beam was thug 70 % spin-polarized transversely to its dirsction of propagation.
Having traversed a spectrometer, the neuirons impringed upom an analyring
maguet similar to the polarizer, and were reflected to a neutron-sencitive
scintillation counter. Tne transmitted intensity is obviously greatest for
those neutrons which do not suffer depolarizaticn in the specirometer. The
spectrometer consisted firstly of a 10 G uniform magnetic field which catised
the neutrons to precess with the Larmor frequency (36)

v = pi/m, (7.5.52)
vhere (A is the neuiron magnetic moment and H is the strength of the external
magnetic field. Secondly, an RF field with frequency v was applied to the



neutron beam, so that at resonance,

v v o~ Bkiz , (7.5.53)
the neutron beam was partislly depolarized, changing the transmitted intensity,
I. Finally, a reversible electric field £ of 100 kV/ew was applied in the

game direction as the constant magnetic field. The experiment consisted of
obgerving the change in I when E was reversed. If the neutron posressed an

E@¥ in the same direction as its spin, then E would produce an additional
mmall precession for constant v, thus changing I. No effeet of this type was
observed, so that

-22 =
EDS 1 tron < 3 x 10 e cm. (7.5.54)

Comparing (7.5.54) with (7.5.51), we see that the experimental value for the
neutron EDW sets an upper limit of 1072 on the T-violating amplitude in the
electromagnetic interaction. Thus it seems likely that CP violation in the

weak interaction is not caused by C or T violation in another known interaction.



CHAPTER EIGHT:  'THE WEAK INTERACTION AND SU(3).

8.1 The Group SU(J).

.

SU(3) is an infinite group consisting of all unitary and unimodular
3 X 3 matrices, such that
Mu' - T (8.1.1)
det M - T, (8.1.2)
A useful method for studying groups is to employ Lie algebra (1). By definition,
any matrix M belonging to a matrix group must possess an irrverael.
Thus there exists a matrix A such that
Mo« eb = T s A s (A%20) + (A/3) eenes (8.1.3)
and hence A is the logarithm of M. The set of all matrices whose exponentials
also belong to the complete group G are said to constitute the Lie
algebra of G. For SU(3), we write

K = ot (8.1.4)
The unitarity condition (8.1.1) now yields

nxt B B " Fis (8.1.5)
whence '

kH' = 1 - ¥tn. (8.1.6)

Thus ¥ and ¥™ commute; it follows that their logarithms also commute, s0
that

03B e_jh‘ = aj(h'_h-r) & & = 1, (8.1.7)
and hence

h = n¥ oy (8.1.8)
i.e. h is Hermitean. Thus we deduce that the Lie algebra of 5U(3) consists
of 3 X 3 Hermitean mairices. Since these matrices must have three elements
on their leading diagonals, they must also have zero trace. Obviously

any member h of the Lie algebra of SU(3) may be expressed

h = PyB * Py8y * Pyby + reees Py B (8.1.9)

where p, are real parameters and gi are the generators of the Lie group. i



is the number of degrees of freedom of any matrix h. All 3 X 3 complex
matrices initially depend upon 18 real parameters. The condition (8.1.8)
provides three real and three complex relations between the matrix
elements, and the tracelessmess condition yields one further relation.
Thus we find that '

8. (8.1.10)
One possible choice for the basis or generators of the Lie algebra of su(3)
is (2):

l'o 10 (0 -5 ©
g = (1 0 0 €&, = (4 0 0
0 0 0 o0 0 o
1 0 0] To 0 1
g5 = [0 -1 © g = |0 0
o o o L2 0
0 0 -3) 0 o0 o (s.1.11)
& = |0 0 0 g = |0 1
i o o 0 1 o
0 o 0] 1 0
g.{ = 0 0 -j gs - —\}‘3 0 1
g 3 @l 0 0 =2
From (8,1.3), we see that
N = " lim (1 + a)" , (8.1.13)
- o0
and hence
1
A = ‘lin = (2/m) )i (8.1.14)
N0

It may be shown that, for large n, the matrix

I + &/ (8.1.15)

is an operator of the group G. It is known as an infinitesimal operator.
Similarly, as we shall see, the matrices i—gi form an explicit representation
of the infinitesimal generators of the group SU(3), which we denote by

F..

i



We now consider the commutation relations between the su(3)
gensrators Fj.' For this purpose, it suffices to evaluate all commutators
of the matrices gi , and thus we obtain

8

[e; 18] = 24y 23 Ty & (8.1.16)
where fijk are the so-called 'antisymmetric structure constants' of SU(3):
ijic Im ik %J.IE
123 1 345 t
147 * 367 ~+
156 -+ 458 {3/2
246 ¥ 678 32 .
257 E
Accordingly, the commutation relations for the generators are

5 8
[Bo2]) » 20y b % (8.1.17)

which are the standard relations for the infinitesimal generators of a
group.

Within a given representation of SU(3), it is possible to specify
a particular state by giving the eigenvalues of this state under two
of the generators of SU(3). Since
E?S v Bl = o , _ (8.1.18)
the eigenvalues of a state under these two generators will elwayse be
simul taneously measurable., We immediately notice that 53 ig gimply the
third Pauli epin matrix (5.1.4) bordered with zerces in order to make it

a 3 X 3 matrix. Thus the eigenvalue of a particle state under F_ is simply

3
the I3 aspignment of that state. Furthemmore, we find that Fa is the hyper-

charge operator Y. However, I‘a also commutes with Fl and F2 s B0 that

we may, in fact, diagonalize and hence maasurez I the total ieospin operator,
2 2 2 2

I = L +I I (8.1.19)

as well as Y and I.j,at the same time. At this point, we note that,

defining the electric charge operator Q in a mimilar manner as we did in
5.1,

R = B, (8.1.20)
the Gell-¥ann - Nisghijima - Nakano relation (5.3.22) is verified. Since



there exist a mumber of irreducible representations of the group SU(3) in
Hilbert or n~dimensional space, it is necessary to assign & further quantum
number to each particle state in order to describe it unambiguously.
Initially, two numbers are needed to label each SU(3) representation. One
is given by

- 8 2
P Zi_l ¥ s (8.1.21)
and the other, G, by & complicated third-order polynomial in ?i' The

formula for the number of states in an arbitrary irreducible :ﬂapr.-nsnaent-eut:}.on3

is

alr, &) = He o+ 1)(6 « 1P + 6+ 2). (8.1.22)
d(P, G) ie often known as the dimensionality of a particular representation,
We now append a table listing the simpler representations of SU(3).

{r G) a(®, ¢) Name
(0, 0) 1 singlet
(1, 0) 3 triplet
(o, 1) i triplet
(2, 0) 6 sextet
(0, 2) 6" sextet
(1, 1) 8 octet
(3, 0) 10 decuplet
(0, 3) 10" decuplet
(2, 2) 27 27 - plet

The {3 7} representation is obtained by complex conjugation of the {3}
representation. The quantum numbemof the singlet representation {1}

must obviously all be zere, or

I = 3g = T = @s (8.1.23)
since the group SU(3) was defined in terms of 3 X 3 matrices, there must
exist a three-dimensional representation of this group, along with further
representations in higher dimensions, Thus {3} is the smallest non-
trivial representation of SU(3). In order to find the values of ¥ and 13

for the three states w , u, and ug in {3} , we must solve the two eigenvalue
equations:



. B8.1.24
Te% = A5y, % ( )

= 8.1.25
‘Pa u, = Yi u ( )
where u, are the three unit 3-vectors. Multiplying the hypercharge

operator Pa by ﬁ. we obtain

l} X
w * 1/3
u, 4 /5 (8.1.26)
Uy 0 -2/3

Thus the representation {3} contains an isospinor with Y = 1/3 and an
isovector with Y = -2/3. Similarly, we find that the charges of u, , u,

and u, are 2/3, =1/3 and -1/3 e respectively. In 1964 Zweig and Gell-Mann
postulated that the states in the representation {3} might, in fact,

have physical significance. They suggested that there exist so-called

'quarks' with fractionsl charges, which combine together to form the

observed hadrons. We shall discuss the quarks in greater detail in the
following sections. Finally, we note that there is aleo another representation,
{3'} y whose infinitesimal generators are obtained from Pi by complex
conjugation.

B, e Octet.

On miltiplying the representation {3*}by {3}, we obtain
30 e [ - & e 4, (8.2.1)
8o that we have a trivial singlet and a new irreducible octet representation
of 5U(3). Obviously, all particles in this octet must have zero baryon
nuaber, end hence they are identified with the mesons. We let Py be the
field operator representing the octet of gpinless or peeudoscalar mesons,

where the upper index a denotes the column within the 3 X 3 matrix concerned,
and b the row, Thus we have

[ = Pf |03 = -8 0,1, 1)
(8.2.2)
"D = P;IO) = |& 0,1, -1)



| = (/e - P3) [ = |& 01, o)

(8.2.4)

x> = 2o E (& L )
' (8.2.5)

(%> = sz) = 8 1,4 -4
(8.2.6)

ey = o> * (& 1+ )
(B.2.7)

K> = 7o - 18 L h 4D
(e.2.8)

> = (-B/J'E)Pglo) = |& o0 0>
(8.2.9)

The minus sign appears in front of some of the sbove states because we have
adopted the phase convention

DR 13) = NEE 1)(1¢ I+ 1) | 15 I;%1>. (8.2.10)
Sinee in field theory it is customary to talk of the destruction operator

of the £°rather than of the creation operator of the Ko, we now rewrite
a

?h as a destruction operator in matrix form: "
0/ J8) ¢ + 1/ {2)r° n* K"
o= B (/JE)n° - 2’ x°
K £ (-2/[6)q°
(8.2.11)

denoting the field operators of particles by their symbols. Alternatively
we may employ the so-called 'octet' notation, so that the particles in
the peseudoscalar meson octet have wave functions which may be expressed
in terms of d?i (1 =1, 2,3 «vess B ), The conversion between the
matrix and octet notations may be achieved by means of the formulae

R = B 23 (e, ¢, ), (8.2.12)
b, (x = M) Zn'b?l (i), 2§ (200 (8.2.13)

where g, are the Gell-Nann matrices (8.1.11). Thus, explicitly, we may



write

nt(x) = (/J2) (§,(x) 3 §9,(x) ), (8.2.14)
n%x) = ¢y (x) s (8.2.15)
k*(x) = (A2) (¢, 7 d4g(x) ), (8.2.16)
°x) = QA2) (b= - §9qx) ), (8.2.17)
B2x) = (1/12) (§4(x) + 344(x) ), (8.2.18)
1%(x) = bglx) . (8.2.19)
We may obtain another octet by the group multiplication
pelBle3 - Ly @8 @ & @ {1} . (8.2.20)
It is usually assumed that the fundamental states in{ 3} have
B = 1/3, (8.2.21)

and hence all the particlesin the octets of (8.2.20) must be baryons.
The first of these octets is usually taken to contain the rs +* varyons,
g0 that its field operator in matrix form becomes

/BA° + (1/[2)5° e P
B = 3 W/fE)A° - 1/2)x° n
=" =° (=2/8) N°
(8.2.22) -
The corresponding operator i: is given by
B = BT Y, (8.2.23)
8o that
(1/B)A° + (1//2)T° 5" o
g =~ /B R - /[2)E° =°
P n (-2/46) R°
(8.2.24)

The octet notation for baryons may be written down in complete analogy with
that for mesons:

M) = AR (y) 5 sy, (8.2.25)



> (=) = Vs () (8.2.26)

p(x) = QA2 (Y (=) - =) ), (8.2.27)
n(x) = 1/2) (yg(x) = 3yl ) . (8.2.28)
="=) = A2) (Ylx) + dygl=) )y (8.2.29)
="(x) = (1/2) (yelx) + Jy(x) ), (8.2.30)
A (x) = Y, (x) . (8.2.31)

We now consider one of the most important predictions of SU(B}
symmetry: the mass formulae. We know that the mass-splitting within
isotopic multiplets is caused by electromagnetic self-energy effects
ariging from the differing values of 13 within the multiplet. Similarly,
the somewhat larger mass splitting within the SU(3) supermultiplets (octets
and so on) was attributed to the so-called 'medium strong' interaction (3).
Although there is little experimental evidence in favour of a physical
interpretation of the medium strong interaction, Ne'eman (4) has suggested
that its propsgator (see chapter 9) might be the ¢ (1020). In (8.2.20)
we saw that there must also exist a decuplet representation of SU(3) {10} .
Ite isospin and hypercharge content is given by
{1} : (1, v) =~ (3/2,1), (3, 0), (& -1), (o, -2). (8.2.32)
Upon graphing Y against I3 y we find that the demrplet.foma a triangle.

Ifwedrauma:isatGOo to thanaxia, we create an axis of unitary or
U-epin:

v TY
o N\o Yo o
=2 =1 1 2 I
0] o] 33
o |[a1\o
o

(8.2.33)
We now make the assumption that the strong interaction is scalar in both



I- and U-spin, but that the electromagnetic interaction has a scalar
dependence upon U and a vector one upon 13 » Thus

m(I, 13) - m (1) + x(1) I (8.2.34)
gives the charge-splitting within a particular isotopic multiplet.
Similarly, we assume that the mass-splitiing between different isotopic
multiplets is scalar in I and vector in U, so that

u(T, U,) = m, (@ + y(O) U . (8.2.35)
Since
U'j = Y - +q, (8.2.76)

and since Q is constant within any U-spin (or unitary) multiplet, (8.2.35)
becomes
n(U, Us) = m (v} + Y. (8.2.37)
In the decuplet (B.2.33), no two different particles occupy the same
position, and hence the masses of particles in the same unitary multiplet
within the decuplet should be linearly related to their walues of Y. In
this way, we predict the so-called 'equal-spacing' rule (5). The particles
in the decuplet are ususlly identified as follows: the quadruplet consists
of the A(1232) 75N resonance, the triplet of the Z resonance Y™ (1383),
and the doublet of the = *(1531.8) regonance. When SU(3) symmetry was
firgt postulated, there existed no particle corresponding to the ¥ = -2
singlet. It was predicted that a particle, which was named the (L7, should
occupy this position, and its mass was tentatively caleulated by means of
the equal-spacing rule
m, - e = M., - Byw = Bya - m, (8.2.38)
as about 1675 i‘r:a‘-'/cg. As we saw in 6.4, the [)° was indeed discovered, and
its experimental mass assigmnment (6.4.16) is in good agreement with that
predicted from (8.2.78).

The derivation of & mass formula for the octet is slightly more
complicated than for the decuplet, owing to the fact that there exist
two superposed pariicle states with
I, = ¥ = 0. (B.2.39)
These states are easily distinguished by isoepin as an isosinglet (;’\o)
and an isotriplet (£°). However, they behave identically with respect to



U-spin, so that the U3 = 0 member of the U = 1 triplet will be a mixture

of the zg and /\ states. We now introduce the operators U, and U_ in
analogy to I, and I_ (5.1.10), (5.1.11), so that

U n - anh =+ b E°, (8.2.40)

it‘;om angular momentum (see Appendixz B) we know that .

v [0 U = ol + 1) - 5uy-1) |v, (- 1),
(8.2.41)

whence

v, 1 = 2 |1,0> . (8.2.42)

Combining (8.2.40) and (8.2.42),

U_n> = 2(aZ% + [vA)) . (8.2.43)

We now transform to the ¥ ' state by applying the operator I, :

LU |n> = Jam Jaz+1) - I(1, + 1), (8.2.44)
whence

I, 8 o> = Jza |2, (8.2.45)
where the term in /N has vanished. e may also reach the T via the

proton, and since I, and U_ must commute:

e O S U jpy = PR (8.2.46)
Thus

a = . : (8.2.47)
Normalization obviouely demands that

= pP2 = a1, (8.2.48)
80 that

b o= 3. (8.2.49)
We arbitrarily choose b to be positive, yielding

LES PR A o> = $=> 4+ J%ﬁ/\}, (8.2.50)

80 that we have proved the mixing coefficients in (8.2.22). Substituting
in (8.2.35) and squaring &ll coefficients to obtain expectation values,
we may write down the Gell-Mann - Ckubo formula (6)

(mn * m.a)/2 = (me +  Zm.)/4 . (B.2.51)
Experimentally,
(mn + ma..)/z = 1127.2 £ 0.4 I-Ie‘l’/r:2 : (8.2.52)



(mge + 3 )4 = 1134.8 £ 0.1 NeV/e> , (8.2.53)
in near agreement with the prediction (8.2.51). Both (8.2.38) and (8.2.51)
are, in fact, special cases of the more genersl mass formula obtained from
perturbation theory:

B o= w AW 4 SEERA) - B . (8.2.54)
where a, b and ¢ are constants depending upon the supermultiplet in
question. Since the Klein-Gordan equation (2.2.1) for bosons contains ma,
whereas the Dirac equation only involves m, it seems reascnable to
postulate that any SU(3) mass formulae for mesons should contain only

the squares of the meson masses. On thia hypothesis, we predict

W = imd o+ 3ol , (8.2.55)
in good agreement with experiment. Deviations from the formula (8.2.55) in
higher-mass meson octets are caused by the mixing of octet and singlet
states, a strong interaction effect. SU(3) makes a mumber of useful
predictions concerning magnetic moments, and these are also borne out by
experiment.

8.3  Applications of SU(3) to the Structure of the Wesk Interaction.

From 5.3 we recall that the intermal symmetry quantum numbers
(Q, Y, I) for the AY = 0 hadron currents are identical to those of the
T2, and that those for the AY = 1 currents are the same as those of
the K, Since welnow that the w* and K* are in the same SU(3) cctet, we
now postulate that all vector (axial vector) hadron currents also belong
to the same vector (axial vector) cctet of currents. We write the total
semileptonic weak Hamiltonian in the standard form

H = -(c/(2) (Jr Er <+ Herm. conj.) , (8.3.1)

J. = AN (8.3.2)

where

?r = a‘u’?_ -+ bV’l: (8.3.3)
R /T S B P S (/P T ) (8.3.4)

L, o= a4 wa (8.3.5)

= alaL T da) o+ v+ G, (8.3.6)



adopting the convention that the mumber in the suffixes corresponds to
the position of the currents in the current octet, in analogy to

(8.2.2) et seq. The current ?r' for example, may now evidently be written
v & alfp = 370 + BV, - 3V) . (8.3.7)

In the same notation, the neutral, hypercharge-conserving AI = 0, 1
electromagnetic current becomes

.T:_l = Vo + (A3) Vg - (8.3.8)

As a natural extension of the CVC hypothesis for &Y = 0 currents

discussed in 5.2, we now make the assumption that .Iel, \I’o and V:L all

belong to the same octet. The remaining components of the vector octet,

Ve + 3 Vop 0 (8.3.9)
with internsl quantum numbers @ = 0, ¥ = 1, I = %, do not appear to
Play any important rSle in semileptonic weak processes. Similarly, in

the axial vector octet, neither N 371- nor ‘A‘,’-r + 1 Ay appear

to be significant. In general, the axial vector currents induce traneitions
between different members of the baryon and meson octets and the vacium

(as in the decay (6.3.4) ). At this point, we note that we have assumed

that all the axial vector currents transform as members of an octet and

not of some higher representation of SU(3). From the baryon fields Vi

we may construct an octet of axial vector currents:

AL = “Ef g (W v Yey) + D e Wy 37.Y VW) »
(8.3.10)

in 'octet' notation, where d, 5 are the symmetric constants of 5U(3):

118 . /3
146 +
157 L
228 1/ 3
247 -4
256 3
338 1/3

344 *



355 %
%66 -
377 -7
448 -(1/2f3)
558 -(1/2[3)
668 -(1/23)
I8 -(1/23)
888 (/3 .
(8.3.11)
It ie usual to normalize the coupling constants F and D
D + F = [ (8.3.12)
& s gd+ F) . (8.3.13)

We may now deduce that, due to its comservation, the vector current is of
the pure F type in the limit of exact 5U(3) (i.e. where all SU(3)-violating
interactions do not exist). The axigl vector current, however, must be
divided into an F~- and a D~-coupling.

We now examine the matrix elements for v;i.r and !‘i:r between different
states within SU(3) representations. Obviously we must concentrate on the
octets, since these are the best-known of the supermultiplets . According to
the Wigner-Eckart theorem (7), the matrix element between two octet

states O, and Ok is given by

Vyh Vih
O [Vyp o 2| 053 N I ¥ + dg D
(8.3.14)
VoA VA
where Fr and Dr are reduced matrix elements. We assume

q = 0 (8.3.15)
and hence our matrix elements F:. ’ Fi ’ Di and Di each contain only one
form factor. Making an explicit matrix element calculation, we find that
we have six arbitrary parameters in the finsl expression: a, b, a', b',
gi{o) and gz (0). 2 and b are basieally vector coupling constants, and
gimilarly a' and b' are axial vector ones. In order to reduce the number
of arbitrary constants, we now assume a hypothesis known as 'paralleliem’.
We denote the field operators for the three quarks by "A", "B" and "C".



If we impose the condition that quarks and leptons must enter symmetrically
into the total weak current, then the latter becomes
Jariny (1 + Yg) "B +  J® U o N r5) ner o 4

+ 3V Y (v Xde v 3R a Tdp o (8326
where lepton eymbols represent wave functions. From (8.3.16), we see that,
if the quark model is indeed correct, then
b'/a = b/a . (8.3.17)
We now recall the Cabibbo hypothesis from 5.6. First, we attempt to
justify the condition (5.6.5). If {5.6.5) is true, then

. = cos @ (Jlr + 3 JZr} + gin © (J4r + 3 ']5;-} ¥
(B.3.18)
3 = Vip * AL - (8.3.19)

since (8.3.18) belongs to an SU(3) octet, it is poseible to perform a
transformation in SU(3) space under which its AY = 1 component will
vanish (8), Thie transformation is found to be
o2 © T (8.3.20)
which is equivalent to a rotation about the T-axis in SU(3) space. We
must Totate through the angle 2 & because the compoments of (8.3.18)
form a U-spin doublet, and transform into each other by rotation through
the angle © . We note that the charge operator ‘

e = r o+ a3 w, (8.3.21)
commites with (8.3.20} and is hence invariant under this transformation.
If

b/a = tane, (8.3.22)
then the octet commutation relation (see 8.4)
EXCREMCTD) R KA Sc ) (8-3.23)
yields
exp (2§ 0 F,) (al3y,, + 39,0 + v, + 375)) exp (-250F,) =
= a® + B° @y + 33, . (8.3.24)

Since it is thought that the strong interaction does not discriminate
between different directions in SU(3) space, the AY = 0 current
on the right-hand side of (8.3.24) should have the same strength as the



lepton currents in (8.3.16), which, by the CVC hypothesis, are of the

same strength as (J,. + J Jar). 50 that

32+ b2 = z [

(8.3.25)

D
Thus we finally are left with three parameters: 9 , gi((}) and g,(0), e0

that the matrix elements are

(:tak | 7. | :aj> =

(@/(2m ) (@, m)/lpg ) ) X

Wp') Y, (Jeos @ £ o g * dsino f4+15,dk) u(p) ,

B la |3 =

(8.3.76)

(/2 )X Sy m)/(pg B5)) ) %

Wp )V Yol s0ty 4pg + 80 £, .0 0) g,(0)

D
(cos B d1+i2,jk + ®n @ d4+i§.jk) gﬁ(o) Y ulp) .

(8.3.27)

We now discuss various tests of the 'octet current' hypothesis.

We append a table of the matrix elements for beta decays predicted by

(8.3.26) and (8.3.27):

Hadrone in decay

n————p cos g
I——/\ ]
=" - cos B
A maip ~(3/[6) sine
Sa———3n -gin @
% 5P -(1/(2) eing
T—A (3/(6) sing
=5 (1//2) sino
=" 2in®

where ¥ denotes gi(o} and D gi(ﬁ}. Since
g, (0)/g,{0) ~  1l.22,

D + F ~ 1.22.
Thus, assuming

—Blz—ﬁi—g.i—
con® (P+ D}

(2/[6) cosa D

cos a(=F + D)

(1//6) sine(-3F - D)
sine(-F+D)

(1/f2) sine(-F+D)
(1Af8) sine (37 - D)
(1/f2) sine (P+D)

sine (F+ D)

(8.3.28)

(8.3.29)
(8.3.30)



Gyfe, =  0.978 t 0.002 , (8.3.71)
we obtain

sing@ = 0.209 % 0.016 . (8.3.71)
However, the value of (8.3.31) is very sensitive both to radiative
corrections and to the so-called 'wesk interaction cut-off' energy

(see chapter 9), so that a better estimate for sin @ is that from
observed hyperon decay rates: (9)

gin®@ = 0.24 = 0.01. (8.3.32)
Further experiments on hyperon decay rates yield

F = 0.45 * 0.04, (8.3.33)
D = 0.79 = 0.04 . (8.3.34)

Using the values (8.3.32), (8.3.33) and (8.3.34) we may predict the rafe
for any hyperon decay. Comparison with experiment demonstrates that the
Cabibbo three-parameter model is very satisfactory. For example, theory
vields the rate for the beta decay

Ne———3p 4+ o 4 ;e (8.3.35)
as

0.32 x 1072, (8.3.36)
normalized to the neutron decay rate, and experiments give (10)

(0.32 + 0.05) x 1072, , (8.3.37)

in excellent agreement with theory.

B.4 The Algebra of Currents.

We recall that when we arrived at the CVC hypothesis in 5.2, we

identified the current VS with the isospin current:

(0] . i

v.(x) = Gx) + §3,02) ), (8.4.1)
and the isovector component of the electromsgnetic interaction:

v31_(x) = er{x) 5 (8.4.2)

In the absence of electromagnetiem, all three components of Vir(x) are
exactly conserved, so that the generators of isospin rotdions are given
purely by

I, = -3 § & W (1=1213,

(8.4.3)



which implies that these generators satisfy the equal-time commutation
relations:

oo 10] = 35 L0 (i=1,2,3) ,
(8.4.4)

where € L3k is the Levi-Civita symbol, such that

= B.4.
€ 45 +1 (8.4.5)
for ijk an even permutation of 123, and

= - 8.4.6
€ 1 ( )

if ijk is an odd permutation of 123. At this point, we note that the
generators Ir are the infinitesimal generators of the isospin group
su(2), with basis matrices (1.7.18). We discussed them in 5.1. In the

presence of electromagnetism, the components Il and I, of the isospin

current are no lenger conserved, although 13 is unaﬂ:c'ted by electromagnetism,
regulting in the CVC hypothesis. Thus SU(2) is not a symmetry
of the total weak Hamiltonian, due %o radiative effecta. If we now
taka A (x) to be the (1 + j2) component of en isovector axial vector current
:)_ (x) in analogy to (8.4. 1) (8.4.3) becomes (IE - YS L)
() - -5 | ax A“(;. %) . (8.4.7)
Sinca the &, (x) are not conserved, the I (t) are now time-dependent, and
as 15(1:) is an Lsovector, we obtain the equal-time commutation relations:

[:i(t). oWl ¢ e 0w =127 .

(8.4.8)
We now mske the assumption that, although (8.4,8) is, at present, only
provabtle in the abteence of electromagnetism, it also applies in the presence
of electromagnetism. We then require
(s, W]t 3 ey L0, (8.4.9)
although this has little justification. (8.4.4), (8.4.8) and (8.4.9) constitute
the basic relations of SU(2) ® SU(2) current algebra. Strictly, since
we are concerned with time rather than space integrals, our above discussion
should be known as 'charge' algebra. We note that (8.4.9) is the
fundamental relation involved in the Adler-Weissberger formula (11),
which may be used to calculate the axial vector coupling constant in
neutron decay to an accuracy of up to 95% by means of the form factors



involved in TX N scattering. GA may also be obtained by the Goldberger-
Treiman relation (12) deduced from dispersion theory:

= (g/2) e, = L Ecs (8.4.10)
where m is the nucleon mass, By is the T'-N coupling constant, f is

a further strong interaction constant and g is the total week coupling
constant. To conclude our discussion of SU(2) @ SU(2) charge algebra, we
menticn the so-called 'chiral! SU(E)@SB(E) algebra. By taking the

linear combinations of I and I5

1
I 16 ! 2.0 (8.4.11)
we obtain
L,R .L,R : L,R i
[ I = deg T (i=1, 2, 3), (8.4.12)
- I?] = o (1=1, 2, 3). (8.4.13)

However, since Ar(x) is not conserved, chiral SU(2) @ SU(2) is not an
exact symmetry of the weak Hamiltonian. It has, nevertheless, been
suggested that the commutation relations (8.4.12) and (8.4.13) still hold
good despite FCAC.

We now examine SU(3) @) SU(3) current algebra. In the limit of
exact SU(3) symmetry, there exist eight conserved currents v, {x}

(£ = 1,2, 3 eeveenyB), and thu.s the SU(3) generators are given by

RO = -3 v,k (=1, veer8),
(8.4.14)

satisfying the commutation relations

(70 m()] = 31, (%) (1=1, ...,8) ,
(8.4.15)

where the £, :jkl were given in 8.1. The generators E‘i{t] are usually known
as the vector charges. In exact SU(3) all the Fi(t) are time-independent,
but in the presence of the strong interaction, only F, , ot F3 and
Fa are time-independent, and when the electromagnetic interaction is

also included, only
.1?3 = 13 p (8.4.16)

By o= W3/2)x (8.4.17)
remain independent of time. At this point, we make the assumption that



even when SU(3) symmetry is no longer exact, the relation (8.4.14) still
remains true. As before, we assume that the AY =0 and AY = 1 components
of the current \'ir{x] may be taken as the (1 + j2) and (4 *+ j5) parts
of a vector current octet. Similarly, we postulate that the hypercharge-
conperving and hypercharge-viclating compenents of the axial vector hadron
current are also the (1 + Jj2) and (4 + j5) parts of an axial vector
current octet. Defining

ri(t) = -3 ax 33._4(;, t) (i = 1,...,8) ,
(8.4.18)

we obtain

EADE Fg(t)] = 3t B9 (i=1,8), (8.4.19)

which is analogous to the statement (8.4.8) for SU(2) ® SU(2) current
algebra. Without proof, we adapt (8.4.9) for sU(3):
[Fz(t}. Fg(t}] = Ity F(t) . (8.4.20)
We now examine the so-called 'triplet' model for ‘J’ir{x) and J\ir(x),
in which the conditions (8.4.15) and (8.4.19) are fulfilled. We set
(the first suffix is the unitary index, the second the Lorentsz index)

V(%) - IV Y, (6/2) Vi), (8.4.21)
A () = STERNY5 /Y&, (8.4.22)
where UJ(x) is a unitary triplet
(V')
¥ix) - V() (8.4.23)
(=)
We find (13) that, if we may integrate over all of three—space, then the
so-called 'Schwinger terms' dependent upon the gradient of the three-space
normalization & function vanish from the equal-time commutators of Y (x),
50 that only the relations

[F(8), v (x 9] = I e Y, (8.4.24)
(7 (), Az t)] = 3£y 5 Al %), (8.4.25)
(B0 vlm 0] = A, (8.4.26)

[Ff(t). Al #)] = 32 g Vi ¥) (8.4.27)



remain. The equations (8.4.24), (8.4.25), (B.4.26) and (8.4.27) hold

for any triplet model, such as the quark, Sakata (14) or Meki-Hara (15)
models. The Sakata model postulates that the observed hadrons are bound
states of the 'fundamental' particles p, n and /N, The Maki-Hara model

is based on the same principle, but assumes the 'fundamental' particles

to be =°, =, and A° . However, the commutation relations of the x (space)
components of the axial vector and vector currents with the electromagnetic
current do tend to vary from model to model. The reason for this is that
the electromagnetic current itself:

J S N 7R R A R

b

(8.4.28)
contains three arbitrary constants a » 8, and 8y . We now append a table
giving the values of these parameters for different models:

Model Charge on triplet .a_l 22_ 32
Quark 23 -1/3 -1/3 1 1 0

(9 + 950 Q)

Sakata 1 0 0 1 1 1

(pr n, M )

Melci~fiara 0 -1 0 G L -1 -1

(=% = AY)

liarshak (16) 0 -1 -1 1 1 -2

(=== 7))

At present, there is no way to ascertain the constants a and thus it
is not possible to discriminate between the various triplet models
proposed. At this point, we mention the scalar and peeudoscalar current

densities equivalent to (8.4.21) and (8.4.22):

8, (x) = Pix) g/z Tix) (8.4.29)
P, (x) < W)Y, (8,/2) Vix) - (8.4.30)
The associated equal-time commutation relations are

[Fz(t). 8;(z, t)] = 3455 Pz ) (8.4.31)

[Fi(t}. Py(x +)] -idg 8§ %), (8.4.32)



RAQIENES t)] = g 5.(x %) (8.4.33)
[#;(8), Byl #)] = 315 Pz 8], (8.4.34)
using a triplet model. It has been suggested that the scalar and pseudo-
scalar interactions may contribtute a few terms to the hadronic Hamiltonian,
but there is good evidence to show that their amplitude must be very

small (see Chapter 6).

8.5  Applicationa of SU(3) Symmetry in Hyperon Decaya.

Since the amplitude for
Pavs = 3fa (8.5.1)
decays is definitely nonzero, we are forced to conclude that the hadronic AY = 1
Hamiltonian Hh receives contributions not only from octe: currents, tut
also from currents transfomming as members of the represcntation
{2’?} formed in

B {8} = [} e {8} @ {8} & {10} @ (10"} e {211,

(8.5.2)
where the index 3 denotes a representation formed by the symmetric
combination of the components of the representations { 8} on the left-
hand side of the reduction, and A one formed by their gn‘tieyrmmtric
combination. The usual current octet is of the form {85 }. The octet
current hypothesis implies that only octet currents exist, and hence,
if this is correct, then there must exist some mechaniem for enhancing
octet currents over 27-plet onea. We now examine some of the phenomenological
predictions of the octet current theory. We write a typical hadron decay
as ;

B— B .+ 7™ + S , (8.5.3)
where S is a spinless spurion with zero four-momentum. With the formalism
(8.5.3) we may write all interactions as SU(3) invarients, and, by
considering the properties of the spurion, we may deduce those of the
Hamiltonian responsible for the reaction. We represent our octet spurion
by the Hemitean 3 X 3 matrix 5 (i =1, 8), Since the spurion has the
pame transformational properties as the Hamiltonian Hh. we must examine

the behaviour of components of current octets under the charge conjugation



operator in order to ascertain its effect on the spurion. Most octets

Oi are self-conjugate under the C operator, and hence

—_— s

c(oi) By £.0;, (8.5.4)
where

€, = +1 (3 =1 % 4,6;8) (8.5.5)
€ = (2 = 2,57 , (8.5.6)

P, denoting the C-parity of the neutral components,3 and 8,0f O, (7).
(8.5.4) may be deduced from the behaviour of the generators F, under the
matrix transposition operator. Thus the spurion may have either PC = +1 or
-1. Similarly, since both parity-conserving (p.c.) and parity-violating
(p.v.) weak hadron decays do occur, the spurion may also have either

even or odd parity, P. Initially, therefore, we must con-ider four

cases for the spurion parities:

P = =1 (p.uv.) ¢ = »1 (8.5.7)
P = =1 (p.v.) c = -1, (8.5.8)
P = 41 (p.c.) C = =«1 , (8.5.9)
P = +1 (p.c.) ) = =1 . (8.5.10)

Since CP invariance holds to a high degres in the weak interaction (see
Chapter 7), we find that B and hence S must have

cP = +1 . : (8.5.11)
(8.5.11) requires that the spurion in the case (8.5.7) transforms as

& \mdercIS)lJ(B), since

B> =6, & (8.5.12)
Similarly, the spurion in (8.5.8) transforms like gg » that in (8.5.9)
also as g; , and that in (8.5.10) as gq + We thus consider the cases
(8.5.8) end (8.5.9), in which the Hamiltonian is of the type 8¢ + Thus the
matrix element for these processes is

SIS (053
using the matrix notation for the baryons and mesons involved, The most
general form of the matrix element (8.5.13) may be obtained by evaluating
traces (see 2.8) in the product

ol A (8.5.14)
while the indices in (8,5.14) are permuted in all possitle ways. Since



all the 5U(3) octets must have vanishing trace, the general matrix
element (8.5.13) may be written

no= Zig I . (8.5.15)
::em = Tr (BB P 8) (8.5.16)
M, = Tr (ES3BP) (8.5.17)
My, = 1r (BP S B) (8.5.18)
M, = v (BP B S) (8.5.19)
ug = Tr (BB SP) (8.5.20)
M, = r (BsP B) (8.5.21)
iy - T (BP) Tr (B S) (8.5.22)
iy = 1 (8s) Tr(BP) (8.5.23)
My - T (BB) Tr (P S) , (8.5.24)

and the ci are scalar coefficients. However, we may decompose our matrix

element still further. Each term (8.5.16) through (8.5.23) consists of

& p and an s wave component, so that, for example,

M, o = ey * Vg, = T (EBPS) =+ T?(-BYEBPS) .
(8.5.25)

It has been demonstrated that (18)

By Mgt Mg - 2 :'|.=§ N (8.5.26)

and, by an explicit calculation, we may verify that none of the traces

M5 d By M’T , OT M9 contritute to observed processes, so that there

exigt five linearly independent coupling constants C! in the general hadronic

i
matrix element. We now recall the effect of the C operator on the various

components of our matrix element:

a C =b
, 252
By (8.5.27)
c =4
P;—————-——-éPc ' (8.5.78)
C
S L A = - +5.29
85 ES Sﬁ SG ’ (8.5.29)



and under C we may show that

K>y (8.5.30)
Hpe—> Mg © o (8.5.731)
p'._((—)mg (8.5.32)
My—> K, (8.5.33)
Me—D>H, (8.5.34)
BN - (8.5.35)
Writing the decay Hamiltonian in the standard form

(Bh(a + 3Y.)B)PE » (8.5.36)

we gee that the term in the coupling constant A has odd parity, whereas
that in B has even parity. Imposing rigid CP invariance, we may deduce
that only the combinations

T (8.5.37)
Moo+ Mg (8.5.38)
My = Mg (8.5.39)
Be, o+ Mg, (B.5.40)
M’Ts - Mg . (8.5.41)
M, o+ Mgy (8.5.42)
HZp (8.5.43)
“49 (8.5.44)

ever enter into the matrix element, and always separately. (8.5.37)
through (8.5.43) in turn indicate that

a, = 8 = & = O (B.5.45)
a = =g (8.5.46)
o = -8 (8.5.47)
ay = =gy (8.5.48)
b = B (8.5.49)



. 8.5.50
b b (8.5.50)

b,7 = by . (8.5.51)
where a and ‘ni are the coupling constants for the parity-conmserving and
parity-violating components of the total matrix element respectively. Thus
the total parity-violatingz matrix element is of the form

al(Tr{E BPg) - Tr(}'angs B)) + &j{Tr(!_SPgs P) - Tr(B gEPB)) +

+ a.?{i‘r(ﬁ P) Tr(B gg) - 72(B gg) Tr(BP) ) » (8.5.52)
and the parity-conserving one of the type

b, (7=(3 EBPgﬁ} + m(BY; 35 P) + b, m(BYg g BP) *

# bs{Tr(_B Y5 PggB) + 2(B V5857 B) + b,(BY ;P Bgy) +

+ v (m(B2)f  Tr{Bgy) *+ Tr(Bgy) ¥ e(ER)) . (8.5.53)
Thus far, we have tacitly assumed that decays of the types (8.5.7) and (8.5.10)
do not occur, tut we could equally have formulated matrix elements on the
hypothesis that the spurion transfoms as g, under S0(3). However, there
exists good evidence in favour of a low CP-violating amplitude in the
wesk interaction, and hence, although rare, it is still possible for the
gpurion to be of the form g.r rather than g -

Using (8.5.52) and (8.5.53), we obtain the following relations

for the parity-violating and parity-conserving amplitudes

A(A®) = -ZMA) = e - [3) s, (8.5.5)
AZD) = -a (8.5.55)
AZD) =y - (8.5.56)
MZ)) = -2 a (8.5.57)
MZD) = -2u=)) = - f25) o + [1/6) oy

(8.5.58)
(A = -EBA) = =18 (b -1) - 16 (b o)

(8.5.59)
B(z7) = by o+ by (8.5.60)
B(z7) = b o+ b (8.5.61)



B(Z ) = b o+ by ' (8.5.62)

5z ) = 12 (y - b) (8.5.63)
B(=7) - - Z28(=)) = 1/f6 (o5 = b)) = 1B (o) = b)),
(B.5.64)

where the suffixes on the left-hand side denote the chargeson the decay
pions. Solving for the amplitudes &, in (8.5.54) through (8.5.58), we
obtain the Lee-Sugawara (L-5) (19) relation for the s-wave amplifudes:

a(=") + AlAD) = Az . (8.5.65)

Similarly, solving in (B.5.59) through (8.5.64), we find that

() + B(A°%) - 38(]) . (8.5.66)

Experimentally,

(2=7 + A/G: A = -1.440 % 0.037, B = 14.03 £ 0.657 ,
(B.5.67)

z; : A = -1.155% 0.187 B = 15.715%1.42 ,
(8.5.68)

in good agreement with the Lee-Sugawara relations (8.5.65) and (B.5.66).
There exist a number of alternative methods for deducing (8.5.65). The
first employs dispersion theory and a number of properties of the
octet. In addition to the L-S relation, this approach y.'ialds

Mz = (ZB) @y, - m)/lm, - m) = 119
(8.5.69)
AM=D)ANY) = - (o - mMle, - m) = -1.23
(8.5.70)
Az = 0. (8.5.71)
Experiments zive (20)
Az T)/AAY) = 1.203 + 0.708 , (8.5.72)
M=D)/A(A2) = - 1,307 * 1.208 , (8.5.73)
A(ZD) g 0.016 + 0.0% , (8.5.74)

in good agreement with the predictions of dispersion theory. Current
algebra constitutes an alternative approach to the theory of weak hyperon



decay. Using the Born approximation (see 5.4), we perform a number of
explicit calculations according to the octet current hypothesis. We then
calculate the contribution to the Hamiltonian from currents transforming as
components of a 27-plet. Thie yields

MAY) + 2u=]) = JBaEy) + J5R) A=), (8.5.75)
which is equivalent to the Lee-Sugarawa relation (8.5.65) if and only if
(8.5.71) is correct.



CHAPTER NINE: THE INTERMEDIATE VECTOR BOSON HYPOTHESIS.

9.1 The Non-Local Theory of the 'Weak Interaction.

In 1935, Yukawa (1) postulated that, in analogy to his theory
of the strong interaction, wealk bota decay might occur via an intermediate
particle, which he demoted by W. Thus nuclear beta decay would be a
iwo-stage proceas:
B 2)—W + ([ 2+1)—> e + v + (& 2+1),

(9.1.1)
go that the W particle itself must undergo beta decay. Following its
discovery in 1936 (see 4.1), it was immediately suggested that the muon
could be identified with the W particle, mince it beta decayed in the
required manner (2). However, in 1947 it was shown that muons were
produced predominantly in the decay (ses 6.1)

Wl o A s (9.1.2)
implying that the pion was initially the intermediate particle in beta
decay. Horeover, the pion was already thought to be the mediator of the
strong interaction, and thus its properties were incompatible with those
predicted for the W particle, In Chapter 3ix, we saw that the pion does
contribtute to the coupling constant in hypercharge-conserving wesak
procesces via the form factors, but these vanish when
q = 0, ’ (9.1.3)
and the weeic coupling constant does not. Nevertheless, it is possitle
to account for particular weak hadronic processes in terms of the vector
mesons € , A, , K" and so on, but this hypothesis predicts incorrect
selection rules.

In (4.4.33) we demonstrated that the cross-section for electron—

neutrino scattering was given by
6 = 6, (2°)/(1 + 28) , (9.1.4)

ve
80 that



(9.1.5)
as
E————> 00, (9.1.6)
in clear contradiction with experimental facts (3). In obtaining (9.1.4),
we made two major sssumptions: firet, the weak interaction is local, i.e.
it occurs at a single distinct point in space-time; and second, it is
correct to apply first-order perturbation theory. From the unitarity
of the S-matrlxl, we may deduce that the upper limit on the e-v crose-
section is of order
an Nf2 (9.1.7)
where A is the de Broglie wavelength of the incident particle. Thus,
at a given eritiecal or 'cut-off' energy, the formula (9.1.4) will violate
the unitarity of the matrix elemeni. At this energy, meking an approximation
in the extreme relativistic limit,

¢ = @E)m = WX, (9.1.8)
g0 that
B, = (e /Zr)e) = fefom 0)n ~

et 103 GeV . (9-109)

In 1936 Heisenberz pointed out that (4) that at energies
B ~ E_ , (9.1.10)
first-order perturbation theory is no longer applicable, and hence we must

take into account such diagrams as

-
¢ A
(9.1.11)
However, the loop in (9.1.11) and other associated diagrams gives rise +0
a divergenceleas integral, yielding an infinite value, This fact ip, at
present, an unsolved problem in field theory, although Weinberg's suggestion
(5) that they may be avoided by postulating a neutral W particle appears



plausible, Hevertheless, we see that diagrams such as (9.1.11) imply a
definite non-local weask interaction, since there are two weak vertices
which are spatially separated. Ecr cormmponds, according to the
uncertainty relation

Ap . D Zz £ (9.1.12)
to a length of about 107~ m, which is thus assumed to be the lower limit
of the effective range of the weak interaction. A further poseibility is
that the fundamental four-fermion coupling is itself non-local, and in
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fact has a range of up o 10 m. A larger range than thie may be excluded

because of muon decay data. One suggestion is that nommal spacetime laws
cease to be applicable at distances emaller than about 1(;?":L5 m, although
this hypothesis appears unlikely in view of a number of experiments
performed to check the validity of quantum electrodynamics (electromagnetic
field theory) over small distances. Thus we are forced to conclude that
Tukawa's hypothesis for the weak interaction is easentially correct, and
that there must exist an intermediate boson which is responsible for
weak interactions.

We write our new interaction Hamiltonian as (6)
iy = g, () W(x) + Hem. conj., (9.1.13)
where Jr(x) ig the standard week current and h’r[x) is the charged W particle
wave function. Since the prescence of an intermediate particle implies that
all observed weak processes are second-order 'semiwesk' processes, the
bagic coupling of the W particle with the wesk current must be of order
J&'w » where G is the nomal first-order weak coupling constant. Recalling
the definition (2.6.22), we find that the second-order sffective Hamiltonian

arieing from (9.1.1%3) is given by

H - =3 sf, S E TN :’}r (x-x)1T (7 ,(x) 3q(x')), (9.1.14)

which is simply a non-local version of the standard current-current
Hamiltonian

i o= -6/2 J(x)3(x). (9.1.15)
In (9.1.14), the term
/_\.:’r (x=-x')T (9.1.16)

is known as a propagator. Its basic effect is to create a W particle at a



point x, and to destroy it again at x'. The matrix element for the
process is T, We find that, with a suitsble choice of quantum numbers
for the W particle, the current-current and intermediate boeon Hamiltonians
are identical in the limit (9.1.3) if and only if their coupling
constante obey the relation
(gi,/mff) = glZ- (9.1.17)
Thus the existence of the W particle will become important in wealk
processes only when the momentum transferred exceeds mv s the mass of the
W particle.

Since the weak current
M) = @i+ 1)+ csedd(x) + sinady(x)

(9.1.18)
to which we assume the W particle particle to couple is charged, we are
forced to conclude that the W must also be charged. Furthemmore, the
wezk current is a Lorentz vector, and hence the W must also be a vector,
resulting in its elternative name: the intemediate vector boson (IVB).
However, there have also been attempts to show that the W particle is (7) a
scalar rather than a vector particle. We write the muon decay Hamiltonian
B o= -0/2GY 0+ WM G 0 r)v) +

+  Herm. conj., (9.1.19)
or, applying the Fierz reordering matrix (3.3.40),
B o2t )V GG - D)

+ Hem. conj. (9.1.20)

However, the interaction (9.1.20) may also arise in second order from an

intermediate scalar boson interaction:

g® = g p° @+ r)v, B+ B % (1 - yo)e®3* +
+  Hemm. conj., (9.1.71)

where B denotee the scalar boson wave function. (9.1.21) yields the same

matrix element as (9.1.20) if and only if

(g, sg)ﬁng =  &ffZ. _ (9.1.22)

One advantage of the ISB theory over the IVB one is that the former is

momliaa‘nloz, whereas the latter is not, However, the ISB hypothesia



requires a nonzero lepton number assigrment for the W particle, and,
unless we accept the existence of more than one type of intermediate boson,

does not allow a satisfactory unification of all wesk processes.

9.2 Effects of the W Particle on Wesk Processes.

We first consider the pure leptonic wesk interactions. We note
that the Hamiltonian (9.1.14) predicts self-current terms in the
leptonic wesk interaction of the same strength as the muon decay term.
Failure to observe self-current processes would constitute a good argument
agzainst the existence of the IVB., The usual semiweak leptonic Hamiltonian
ig written '
= 2 ") W : .2.1
Hy &, (1 =+ L) W, Herm, conj. (9.2.1)
However, there is now no reason o assume that no derivatives of the basic
lepton fields occur in the Hamiltonian, and hence we may write, for example,
d = S = =
B = gy (F(x)(a + v vg) elx)) 3 /2x W (x) +
V= = VS
+ E (TR Y (1 V) e(x) ) Tlx) +
T = = - - 3 -
* dey G0 6, (ay+ v,7g) 8(x) (3/3x ¥ (x) - /éx, W (x)
(9.2.2)
including scalar and tensor as well as vector lepton currents. The effect
of the derivative couplings in (9.2.2) is to introduce momentum-dependent

terme of the form o and 9, ( tfae ig the gamma matrix enticommutator)

q
in addition to the pE:o Eactor Ir term into the electron and muon current
matrix elements. However, since most wesk processes invelve small coupling
constants and low momentum—transfer, q, the derivative terms in the
Hamiltonian will be almost unobservable, and hence we usually disregard
them.

We now discuss the effect of the IVB on the asymmetry parameters
in muon decay. Recalling p (4.2.26) and ¥ (4.2.28), an explicit
calculation yields the corrected values of these parameters as

P et (49) (mu/m)?), (9.2.3)
Foro o Fo 0 - (25 @), (9.2.4)



where £ 0 and }0 are their values assuming point interaction. Teking the
tentative experimental estimate

m —~ 2 Gev , ' (9.2.5)
we find that

e = fo (1 + 28x 1075, (9.2.6)
¥ ~ Yo (r - 2.5x 10‘6) , (9.2.7)

g0 that the effects of the IVE in muon decay are unobservable. A Turther,
more sensitive, test of the IVB hypothesis is afforded by studying the

rates of processes such as

W W e e e B (9.2.8)
e o
v ¥ b . ¥ JT (9.2.9)

As we saw above (9.1.4), the local weak interaction theory predicts
infinite cross~section for these reactions at high energy. The IVE model,
however, yields

gtB = (s gf:, p)/(w mi (mﬁT + 99, (9.2.10)
whers p is the incident particle momentum. (9.2,10) predicts

a8 5 % ms (9.2.11)
as
» 5 o0 , (9.2.12)

in sgreement with the preliminary results obtained in high-energy
neutrino-scattering experiments at WAL Batavia (8).

In the neutron decay matrix element (5.5.3), (5.5.4), the extra
term added becsuse of the IVE ie undetectable, since we do not know enough
about the form factors involved. Furthermore, at high q2, the form factors
decrease congiderably, reducing the value of the matrix element
significantly, thus rendering accurate measurement very difficult.

The pure hadron processes are also comparatively insensitive to the posmible

existence of the IVB. However, using the soft pion and soft kaon

4

appmxi.mationa3, the Weinberg sum Tules’ and PCAC, we may derive an

expression for the T matrix element in the process

Ry ————FM" % 5 ' (9.2.13)

according to the IVB model (9):



o - - —7 o
(Rg—> ™* + ) = 10 m (5.46 1nge(mhfmp) 4.68), (9.2.14)
and, substituting the experimental value

T(Kg—)n' T = T.8 x 10-7 L (9.2.15)
in (9.2.14), we obtain
n, —~ 8 GeV. (9.2.16)

However, it seems very possible that one or more of the approximations
used in the derivation of (9.2.14) is unjustified, and hence the result
(9.2.16) is inconclusive.

We now examine the effects of the IVB on second-order weak
processes, According to the IVB hypothesis, the reaction
o+ p—V, 4 P (9.2.17)
has a Feyrman diagram

- B =
i fl r

P r
(9.2.18)
Using the standard Feynman rules (see Appendix D), we may evaluate the
T matrix element for (9.2.18), and, by including an IVB term, we obtain
(&fnd) (A%6m%) = (6 AD/(NZ 8T, (9.2.19)
where A is the so-called 'wesk interaction cut-off energy'. This is

the energy at which we cease to integrate over the momenta of particles
in loops on Peynman diagrams, and hence avoid infinite and thus physieally-
meaningless matrix elements. /\ is sometimes identified with the
unitarity limit mentioned above, yielding

N~ 350 GeV. (9.2.20)
Solving for A in (9.2.19), we obtain

N < 1000 GeV ,

It may be shown that the decay

B =3 (9.2.21)
can occur as a combination of first- and fourth-order electromagnetic
interactions, The branching ratio for (9.2.21) through this mechanism has



‘been estimated as (10)

4 x 109, (9.2.22)
However, this decay may slso occur &s & second- or fourth-order pemiwealk
process, the former with Feynman diagram

3B

(9.2.23)
Once again, evaluating the T matrix element for (9.2.23) and for its
fourth-order equivalent, we substitute the experimental branching ratio for
the decay (9.2.71):

~ 1.4 x 107 ’ (9.2.24)
and thus obtain

N T5GeV . (9.2.25)
However, if

A < 10 GevV , (9.2.26)

then (9.2.21) will proceed primaﬁhr as a first-order weak and a fourth-
order electromagnetic transition, and hence our information regarding the
weak interaction 'cut-off' would vanish. The best method for ascertaining
AN is to calculate the X{: - I{g mass difference according to the IVB
model, Introducing a propagator term into the expression (7.3.41), we
finally deduce (11)
an ~  (m £262 sine cos®e AD/(52 n?) , (9.2.27)
and substituting the experimental value for @ (7.3.738), we
predict that
A o~ 4GeV. (9.2.28)
A standard curreni-current calculation of m yields (12)
A~ 3Gev, (9.2.29)
in acceptable agreement with (9.2.28).

There exist a number of further methods of deducing the value of



/\, The equality of wector coupling constants in neutron and muon decay

is initially ensured by the CVC hypothesis. However, virtual weak interactions
tend to violate this eguality. In neutron decay, we have basically

only one type of second-order diagram, assuming that the contribution

from virtual baryons is negligible:

(9.2.30)
Using standand techniques, we find that processes of the type (9.2.30)

result in a neutron decay constant of order
a + J3(A° c}/{an}g Je . (9.2.31)

In muon decay, there are two distinct kinds of second-order diagram:

(9.2.32)

(9.2.33)
We note that the particles im the loop of (9.2.32) have vanishing total



lepton number, while thome in the loop of (9.2.33) have Ligy = 2-

Taking into account processes of the fomm (9.2.32) Iand (9.2.33), the

muon decay coupling constant now reads

1 + 542 (A%a)f(er)?)c. (9.2.34)
Thus we obtain

6 /o = 1 - 42 (A2 /en)?, (9.2.35)
and substituting the experimental result

Go - 6, £ 3%, (9.2.36)
we find that

N & 140 GeV . (9.2.37)

A more accurate determination of »A by this method is rendered extremely
difficult by the need for elesctromagnetic corrections in both neutron
and muon decay. We now examine two decays which are forbillen by the two
neutrino hypothesis, but which, if the latter were invalid, would furnish
useful information concerning /\. The process

p————e + ey & (9.2.38)
has a second-order Feymman disgram of the form

(9.2.39)
The matrix element corresponding to (9.2.39) is equal to

@A) G ¥, (0 Y wa) @ ¥ @+ V)

(9.2.40)
80 that its rate is given by (13)
W’(]A—-—)a +e'+e ) = 1/(96 (2r )7) ¢ P mi (9.2.41)
and its branching ratio is
(CINOVCES (9.2.42)

The experimental upper limit on the branching ratie of (9.2.%8) is (14)



L5 x 107 ., (9.2.43)
and substituting thie value in (9.2.42), we obtain
N < 35 Gev. (9.2.44)
If the neutrino loop is found to give zero contribution (15), then (9.2.78)
must ocour to third-order in the weak interaction, setting an uprper limit
of a few hundred GeV on .

Finally, we examine the 'forbiden' process
p—————3e + f. (9.2.45)
In first-order, this might occur as

e g

FT L P

(9.2.45)
but it may be shown that the matrix element corresponding to (9.2.46)
and associated diagrams vanishee identically because of the (V-A) theory.
However, second-order graphe of the type

(9.2.47)
do produce non-vanishing coupling constants of order
- P 2
e G A 1059(;\/%} ¥ 9.2.48)
From (9.2.48), we may calculate that the branching ratio for (9.2.47) and
similar diagrams is given by
R e ( 4 2 w2 il 2.2
= (8/377) (e7/4m) 6" A" (tog (A/0,))C (9.2.49)
where e is the universal electromsgnetic coupling comstant. Since

experiments give



R € 6x10°, (9.2.50)
substitution in (9.2.49) yields

A < 10 GeV. (9.2.51)
The result (9.2.51) might suggest that if we are to assign a emall
enough value to A, then the decay (9.2.45) might have a very emall
branching ratio regardless of any electron-muon conservation laws.
However, if we assume the weak interaction to be of a non-local nature,
then diagrame such as

W

(9.2.52)
must be included in the total branching ratio for (9.2.45). In general,
it ie impossible to calculate the contributicn from graphs of the fomrm
(9.2.52), tut in this case, assuming that the non-locality of the weak
interaction results from the exisience of a massive charged IVB, the
calculation is rendered posesible. It has been demonstrated that the rate
for (9.2.52) is given by (16)

R —~ (3e/8r) £/A) , (9.2.53)
where £ is a form factor and M is the IVB mass, so long as the magnetic
moment of the W particle is precisely unity, as predicted by the Dirac
equation“. The form factor in (9.2.53) is such that, for

A > o, (9.2.54)
tw/n) = 1 (AZHD? (5.2.55)
producing an unphysical result. If

G My (9.2.56)
then we obtain

RO~ 107, (9.2.57)

which is more satiefactory than (9.2.55), but etill not correct. If,
however, we assign non-unit magnetic moment to the IVB, then at



)*m 3T Nl (9.2.58)
R becomes venishing emall. The presence of an 'anomalous magnetic moment'
or G-factor over and above the Dirac prediction of one, is thought to

be due to the strong interaction. However, as we shall see, the IVB

does not take part in strong interactions, and hence it appears unlikely

that it possesses a nonzero ancmalous magnetic moment,

9.3 The Production and Decay of the W Particle,

The charged IVB which we have considered above may be produced
either by the electromagnetic interaction on its own, by a combination
of strong and semiweak interactions, or by the electromagnetic and
semiwesk interactions. Electromagnetically, the W particle can be produced
in either of the two reactions:
{" % B 7 = WY W5 (9.3.1)
et + e—— W+ W . (9.3.2)
A possible Peynman diagrem for the process (9.3.1) is

4

(9.3.3)
At low energies, scattering of the type (9.3.3) will be predominantly
coherents, but at higher energies, incoherent production will begin to
contrivute significantly. We find that we may express the total cross-
section for all processes (9.3.1) as (17)

Soe = max (6 0 26, + (1 - 1/2)d ), (9.3.4)
where the second temrm in the bracket is an approximate expression for
the total cross-section when incoherent scattering becomes important
(6 » denotes the production cross-section on a proton). If, for example,
the target nucleus is iron (Z = 26), and the W is assumed to have unit



magnetic moment and a mass of 2 GeV, then we obtain the following values
for € 4ot ¥ith gamma rays of varying energy: (18)

£y (lab.) (cev _QLzQ_d_E'_hlal
-44

8.4 x 10
B 1.4 x 10'42
10 9.6 X 10-42
15 1.9 x 10.37
20 1.6 x 107

(9.3.5)

he possible production reaction (9.3.2) will be discussed in Chapter 10.

According to the Hamiltonian (9.1.13), the W particle is coupled
to the hadronie current via the semiwesk interaction, Thus the IVB may
be produced in any reaction of the form
A———B 4+ W%, (9.3.6)
where A and B are any two hadron states coupled by the hadron current.
The most experimentally-viable processes of the type (9.3.6) are

nt . P> + W:. (9.3-7)
S S5 phe—————a oy +  wE, (9.3.8)
p - P—— g -+ wt, (9.3.9)

In (9.3.7), it has been ehown that the total crose-section for W production
is given by (19)
6t°t = 102 x B (-mﬁ} = (9.3.10)
where F is the pion form factor. Assuming that F ie dominated by the
£ meson pole, we find that

B () ~ -1, (9.3.11)
and substitution of the result (9.3%.11) in (9.3.10) yields
T 3 x 1004 @, (9.3.12)

Since (9.3.8) involves the AY = 1 rather than the AY = 0 hadron

current, its cross-section must be less than that for (9.3.7) by a factor

of tanze » where © is the Cabibbo angle (see 5.6 and 8.3). Experimentally,
if the pion decay mode of the IVBE were dominant, then the reactions

(9.3.7) and (9.3.8) would appesr as



» oo, (9.3.13)
K P P (n ), (9.3.14)
a0 that, whereas (9.3.13) would pass unobserved because of the many
similar strong interaction processes, (9.3.14) would be conspicuous
because it does not conserve strangeness. In the case of (9.3.9), it
has been calculated (20) that the cross-section for W production should
be

1077 @?, (9.3.15)

assuming an IVB mass of 2 GeV, but this is probably too large, since it
was calculated in analogy to the process y
P P 4 , (9.3.16)
where the momentum transfer is much smaller.

Finally, we discuss IVB production via the electromagnetic and
semiweak interactions. This may occur through any of the reactions

& ) P P Vo, (9.3.17)
P n W, (9.3.18)
v z A W, (9.3.19)

where the process (9.3.17) occurs via photon exchange instead of via
pion exchange as above. It has & Feynman diagram

(9.3.20)
It may be shown (21) that the differential cross-section for (9.3.20)
has a maximum
i fag® 4 x 0P n’/(gev)? (9.3.21)
for IVB mass 2 GeV and energy 4 GeV in the c¢.m.s. Using dispersion relations
we find (22) that the crose-section for (9.3.18) is
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