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CHAPTER SIX :

	

WEAR INTERACTIONS OF THE HADRONS .

6 .1	 Pion DecaY .

In 1947 Lattes, Nuirhead, Ochialini and Powell (1) obtained tracks of

charged pions in nuclear emulsions . These appeared to decay into muon s

after they had travelled a short distance in the emulsion . By measuring the

multiple scattering in the tracks due to Coulomb repulsion by emulsion nuclei ,

the pion mass was estimated to be about 140 NeV/c 2, in accordance with the

predictions of Yukawa (2) . The first accurate measurement of the charged pion

mass was made by magnetic analysi s
1

of a secondary pion beam from an accelerator ,

and this yielded a mass of 139 .6 Ivey/c 2. The currently acknowledged value fo r

the charged pion mass is (3 )

139 .5688 ± 0.0064 NeV/c 2 .

	

(6 .1 .1 )

The charged pion lifetime has been measured a s

(2.6030 t 0.0023)
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(6 .1 .2 )

We now attempt to construct a Hamiltonian for the common charged pion decay

rr t 	
>t. t .} v
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(6 .1 .3 )

Obviously this could be done by writing a product of the three relevant field s

and then multiplying by a suitable coupling constant . However, there is no

need to introduce a new interaction . We know that the pion interacts strongly

with nucleons . Thus we postulate that the charged pion decay is a two-stag e

process : first the pion virtually decays into nucleon-antinucleon pair (i t

cannot actually decay into this channel because of mass conservation), and then

the nucleon-entinucleon pair annihilate each other by a reordered neutro n

decay reaction. The quantity obtainable from a Hamiltonian and most readil y

comparable with experiment is usually the lifetime or matrix element for a

decay. In the case of the charged pion, however, it is difficult to obtai n

a complete matrix element for decay because very little is known about th e

,r	 ) N + N

	

(6 .1 .4 )

strong interaction vertex . However, we shall now consider the matrix elemen t

for the second vertex, which is purely due to the weak interaction. We write



the Hamiltonian in the usual four-fermion form :

HI

	

=

	

(g42)

	

1V ' N ( x ) Y r( 1 + Y 5 ) •y !- N ( x ) 'lT Iv( x )( l - Y 5 ) Yr 1(fy.( x ) +

+ herm. conj. (6.1 .5 )

The Hamiltonian (6 .1 .5) allows us to make a prediction immediately . Since we

know that the antineutrino in Tr+decay will be right-handed., and as we

also know that, in this decay, the muon and antineutrino must emerge in opposit e

directions with zero total angular momentum, we may deduce that the muon wil l

have negative helicity . The situation is reversed for the TC -. Our helicity

theory has been checked experimentally (4) and has been found to be correct .

The existence of definite polarization for the particles in pion decay shows

that here also, parity is not conserved . This hypothesis was tested by

Garwin et al . (5) in 1957 . A beam of pions was allowed to decay into muons .

According to (6 .1 .5), these will tend to be aligned in a particular direction .

When the muons decayed, the counting rate for electrons was measured from al l

directions, and it was found that the electrons were preferentially emitted i n

one direction, demonstrating parity violation .

We write the complete matrix element for pion decay a s

=Mif

	

N,

	

<1-,,
vN I HI I N,

	

lN>
\N,

NI X IT> , (6 .1 .6 )

where X is the unknown strong interaction Hamiltonian at the first vertex .

From (6 .1 .5), we see that the first matrix element on the right-hand side o f

(6.1.6) is given by

°r 1
a

N, PI > _ (g/ T-2) uN(-)
(-2' ) Yr( 1 + y5 ) 1.11 (4-) (2)

	

x

X

	

(t)
(P r )(l - Y 5 ) Yr uv(-)(-p

.„) . S d3x exp (j(p+p'-pr-p„ )x )

(6 .1 .7 )

Using reduction formula techniques, we may tentatively write the matri x

element for X a s

<N, N I x l

	

(2*6 4 7(p + p ' - p,T ) 1x (+) (2) F(p, p ' , p„)u,l(-)

	

X

	

X (-P ' ) ( 1/( ZS~) ) ,

	

(6 .1 .8 )

where E,r is the energy of the pion and F(p, p', pr ) is an unknown function

of the nucleon and pion momenta . Putting (6 .1 .7) and (6 .1 .8) together,

substituting in (6 .1 .6), summing over the nucleon quantum numbers, and findin g

F using Lorentz invariance, we finally obtain the transition rate for pion decay



when the muon is emitted with polarization r in the solid angle d Q

g2 f 2 dal 1'24 E
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( Y 4m n - my ) u r (+)(r)(P.r)

	

(6 .1 .9 )

where

P

	

=

	

m n -

	

E r ,

	

(6 .1 .10 )
r

and where g is the weak coupling constant and f is a number associated with

the strong interaction . Integrating over all angles and summing over th e

possible spin directions for the outgoing muon, (6 .1 .9) become s
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However, (6 .1 .11) does not allow us to predict a value for T„ , since we do

not know the value of f . AUbstituting for T,,, we obtain

f

	

=

	

0 .931 m„ ,

	

(6 .1 .12 )

which is confirmed by a study of the strong interaction .

6 .2	 Electron-Iduon Universality in Pion Decay' .

The principle of electron-muon universality states that all weak couplings

are identical, and hence that, to within phase-space and kinematical factors ,

the electron and muon should be interchangeable in any reaction, and th e

interchange should not alter the matrix element for that reaction . Consequently ,

a decay mode of the type

1c ±

	

e 2

	

v

	

(6 .2 .1 )

was searched for, and was found to have a branching ratio o f

(1 .24 x 0 .03)
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Recalling (6 .1 .11), and substituting me for mr , we obtain

1

	

2 f2 =2,3t. ( 2

	

_
TT,

	

8,c

	

m-„ m

so that we predict the branching rati o
R (	 v) ,
R(-R—pertv)

(6 .2 .2 )

m 2 )2
e (6 .2 .3 )

(6 .2 .4 )

as



T/T' _ (me/mr, ) 2 ( (

	

- m e)/( m2, - m;) ) 2

	

1.283 x 10-4 ,

(6 .2 .5 )

in excellent agreement with the experimental value (6 .2 .2) .

At this juncture, we consider the sensitivity of (6 .2 .5) under th e

inclusion of contributions other than the usual vector and axial vector terms .

From (6 .1.6), (6 .1 .7) and (6 .1.8), we obtain, removing the assumption of pure

V - A interaction :

<r, ,r si

	

_ (271) 4 °(Pr

	

Pv - P,t ) ( 1 /( 2~)	 gi Fi (Pn)

	

X

X

	

ur (+) (p r) O i (1 + ai Y 5 ) uv(-)(-P,c,)

	

,

	

(6 .2 .6 )

where gi are the coupling constants for parity-conserving terms and a i are th e

coupling constants for parity-violating ones . F
i
is a function obtained fro m

F in (6 .1 .8) . From symmetry considerations, we find that only the axial vecto r

and pseudoscalar terms F . will make nonvanishing contributions . Thus we may

rewrite (6 .2.6) as

<N, vp I s I n> = (2 n ) 4 �'(Pr

	

Pv - p,) (g/2,F-3,) uf,(+) ( Pr)

	

x

x

	

(mr f7 - fs +
y5(m/"

av
fv - a

s fs) uv(-)( -R )

(6.2 .7 )

Using the standard formula (3 .4.10), integrating over muon and neutrino momenta ,

and using the properties of the delta function, we obtai n

1/T

	

( g2/16,c )

	

( m n - mrl 2/(mn) ( I mr f . - fs 1 2

+ Imr a7 f 7 - as f s I2 + (6.2.8 )

We now assume that the neutrino spinor has only two components (see 3 .8), s o

tha t

av = as .. 1 .

The assumption (6 .2 .9) reduces (6 .2.8) t o

1/T

	

=

	

( g2/8n) ( mn -
mN) 2

/(m n.)

	

I mrfv - fsI 2 •

We note that (6 .2.10) simplifies to (6 .1 .11) if we assum e

f s = 0

By electron-muon universality, the result (6 .2 .10) also applies to the decay

(6 .2 .1) if we replace mr by me . Thus the branching ratio (6 .2 .4) now becomes
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.
- mr)/(m„ - me)) 2

	

I(me fV - fs)/(mr f V - f s ) I 2

(6 .2 .12 )

which agrees with (6.2.5) in the special case (6 .2 .11) . As soon as f s

begins to make a significant contribution, the branching ratio becomes near

to unity, in violent disagreement with the experimental value (6 .2 .2) . Thus

we are forced to conclude that the conditio n

f3

	

0

	

(6 .2 .13 )

is fulfilled, so that there are no pseudoscalar terms in the pion deca y

Hamiltonian or matrix element . Since the vertex (6 .1 .4) is not necessaril y

nonrelativistic, any pseudoscalar contributions would appear here, and woul d

cause incorrect results . This furnishes another proof that there exist n o

pseudoscalar terms in the ordinary beta decay Hamiltonian . There exists on e

further important pion decay mode :

7C 1 	 >Ir. + e t +v .

	

(6 .2 .14 )

The Hamiltonian for the beta decay (6 .2 .14) is similar to that for neutro n

decay (3 .3 .5) . (6 .2 .14) has a branching ratio of (6 )

(1.02 ± 0.07)
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(6 .2 .15 )

6 .3	 The Decay of the Charged Kaon .

Following the discovery of massive particles producing 'V-shaped '

tracks by Leprince-Ringuet et al. (7) in 1944, the Bristol cosmic ray group (8 )

and subsequently O'Cealleigh (9) obtained the tracks of particles with a mas s

of about 500 KeV/c 2 in nuclear emulsions . The new particles were named kaons .

Using momentum-analysing magnets to measure kaon momenta, the kaon mass has

been established as (10 )

493.707

	

±

	

0 .037

	

HeV/c2 (6 .3 .1 )

for the charged kaons, an d

497.70

	

±

	

0 .13

	

KeV/c 2 (6 .3 .2 )

for the Ko . The lifetime of the K t has been measured a s

(1 .2371

	

2

	

0 .0026)

	

x

	

10-8

	

s (6 .3 .3)

by time-of-flight method s2. To date, a considerable number of charged kaon

decay modes have been discovered, and we tabulate these, together with thei r

branching ratios :



Decay Nod e

v
rc-rc °

n-rr - rr '
,r

A 11 v

e Tr° v

en°n° v

rr n e = v

n *c '- e* v

NTT°v Y

eTr°v Y

n e? e

e , e t e'

n l^ '
nY Y

7rr r

71 V

rr Y

en'N'-

eT' )A

v v v

Branching Rati o

(

	

63 .54 t 0 .19) %

(

	

21 .12 t 0 .17) %

(

	

5 .59— 0 .03 )

(

	

1 .73 t 0 .05) o,

(

	

3 .20 ± 0 .09) 5
(

	

4 .82 ± 0 .05) 5
(

	

1 .8

	

± 1,5 ) x 10 5

(

	

3 .7

	

`-

	

0 .2) x 10- 5

(< 5

	

) x 10- 7

(

	

0 .9

	

± 0 .5) x 10-5

( < 3

	

) x 10-6

(

	

1 .38 *_ 0 .20) x 10- 5

(< 7

	

) x 10- 5

(

	

2 .71 ± 0 .19) x 10-4

(

	

10

	

t 4

	

) x 10-5

(<

	

6

	

) x 10-5

(

	

3 .7 ±

	

1 .4 ) x 10-4

( <0.26

	

) x 10-6

(<

	

1 .5

	

) x 10-5

( <

	

2.4

	

) x 10-6

( <

	

3.5

	

) x 10- 5

(< 3

	

) x 10- 4

( < 0 .6

	

) x 10- 6

(<4

	

) x 10- 6

(<3

	

) x 106

(

	

< 1 .4

	

) x 10- 8

( < 6

	

) x 106

We shall consider the decays listed above from a number of different

angles . We begin with an ordinary transition rate calculation for th e

K t —9 t v

	

(6 .3 .4 )

decay. We simply rewrite the pion decay transition rate (6 .1 .11) for the kaon :



1/TK

	

=

	

(g2fK )/(2r )

	

(m 2r)/( ;3C ) (4 — m2 ) 2 .

	

( 6 .3.5 )

First, we calculate the rati o

(fK/fr ) 2

	

(6 .3 .6 )

and this we find, substituting the value (6 .3.3) for the charged kaon lifetim e

in (6 .3.5) to b e

1/14 (6.3.7)

Thus fK is about an order of magnitude less than fn . We may think of the K

decay process, like that of the pion, as a two—stage reaction :

K

	

+ A	 let + v .

	

(6 .3 .8 )

As we shall see later, the second vertex of this reaction is supressed, which

accounts for the low value of fK. We now consider the decay (6 .3.4), and hence

(6.3.8),in terms of currents . According to the V – A theory, the curren t

A- p contains both vector and axial vector terms in various proportions .

However, only one of these types of current is manifest in the decay (6 .3.4) .

If the K *parity is odd, then the decay will occur via the axial or pseudovecto r

interaction, and if it is even, through the vector one . The Sakata model

(see chapter 7) predicts that the parity of the kaon should be the product

of the parities of the nucleon and /A and their orbital parity . From a

study of helium—4 hyperfregment s 3 it has been established (11) that the parit y

of the charged kaon is -1, and hence the axial vector term is responsible fo r

the decay (6 .3 .4) .

The transition rate fo r

K
t
–	 >e l + v

	

(6 .3 .9 )

may also be calculated from (6 .1 .11) . The ratio of the transition rates of

(6 .3 .9) to (6 .3 .4) is important . Using a modified version of (6 .1.11) for th e

individual transition rates, the ratio become s

W(Ke2)/W(K r2 )

	

=

	

(m
e

/mr~) ((m? -

	

me
)

/(m,' –
m2 J) 2

2 .58 x 10–5 .
The current experimental value for this ratio is (12 )

(1.95

	

0 .65)

	

x

	

l0—5 ,
agreeing, within the limits of error, with (6 .3 .10) . The fact that the charge d

kaon parity is -1 does not rule out the possibility of a pseudoscalar

interaction in both (6 .3 .4) and (6.3 .9) . However, a pure pseudoscalar interaction

(6.3 .10 )

(6 .3 .11)



would sugges t

w(Ke2 )/W'1(K r2)

	

_

	

(mK – me) 2/(mm – mr2 ) 2

	

1 .02 .

	

(6 .3 .12 )

(6 .3.12) is in complete disagreement with experimental results, and b y

comparing this to the measured ratio, we find that the upper limit on th e

admixture of pseudoscalar hadron current is 2 .3 x 10 - 3. We note that th e

muon helicity in Kr2 decay is found (13) to be identical to that in
t,2

decay ,

and, furthermore, these decay modes behave similarly with respect to high –

energy yr scattering. The leptonic kaon decay modes all involve P Y = 1 ,

whereas those for the pion are all of the form [Y = 0. Thus the similaritie s

mentioned above indicate that the same leptonic couples both with the

LY = 0 and with the AY = 1 hadron currents.

The next decay mode which we consider i s

K*—~ e
rY

iv° ~ v .

	

(6 .3 .13 )

We now attempt to determine the matrix element for the decay (6 .3 .13) . We write

Vi

	

fl pK . +

	

.2
PR .

	

(6 .3 .14 )

where fl and f 2 are two arbitrary functions . We have written Vi because we are

concerned with a pure vector interaction, since the parity of the K is th e

same as that of the rr'' . Thu s

Ai = 0

	

.

	

(6 .3 .15 )

Multiplying the four–vector (6 .3.14) by the leptonic curren t

-tie Y i (1 + Y 5 ) uv ,

and using

P7 _ PK – q

	

,

qi u e Yi(l
4-

1 5 ) uv = me e ( 1 +

	

Y5 ) uv

	

=

	

0 ,

	

(6 .3 .18 )

assuming zero electronic mass, we obtain the matrix elemen t

g(g 2 )-mac K P
Ki

uv Yi (1 + Y5 ) u e ,

where g is an unknown form factor . Sinc e

q 2 = (PK – Pn) 2 = mK + mn – 2AK E„ ,

we may write g as a function of 8 T instead of q 2 . Obviousl y

2g

	

£ l tf2 .

We now wish to find the transition rate for (6 .3 .13) . Summing over the lepto n

spin states, integrating over the outgoing particles' momenta, and using th e

(6.3 .16 )

(6 .3 .17 )

(6 .3 .19 )

(6 .3 .20 )

(6 .3 .21)



expression for the pion , energy spectrum, we obtain :

dW

	

=

	

(nr G2 g2 p 3 dE,c )/(12_70 3) ,

	

(6 .3 .22 )

where p is the momentum of the original Kt. We assume that g(E,) is a slowly —

varying function, at least for the energy range encountered in kaon decay .

The presence of the form factor g is associated with the existence of such

virtual strong interaction loops as

nIn"

(6.3 .23 )

The virtual baryons in the loop of the Feynman diagram (14) ( 6 .3 .23) have masses

substantially larger than the total energy of the pion . Thus we are justifie d

in assuming that the momentum integral for these particles will not vary ove r

any large amount as the energy of the emitted pion varies . Hence g wil l

effectively be a constant . Integrating (6 .3 .22) for constant g, we obtai n

w

	

=

	

(G 2 g2 n )/(7687V 3 ) .

	

(6 .3 .24 )

We now include a 'suppression factor' of 0 .6, caused by the nonzero value of

the pion mass, so that (6 .3.24) read s

w

	

=

	

(G 2 g 2 ms)/(768v 3 ) . 0 .6

	

(6 .3 .25 )

Using the experimental result for H (6.3 .3), we find tha t

g 2

	

2 .5

	

x

	

10- 2 ,

	

(6 .3 .26 )

for the decay (6 .3 .13) . However, the corresponding pion decay (6.2.14) give s

g

	

=

	

2 ,

	

(6 .3 .27 )

indicating that LY = 1 decays are suppressed by at least an order of magnitud e

in comparison with hypercharge—conserving decays . We now consider the evidenc e

for a pure vector interaction in Ke3 decay. In order to do this, we must fin d

some measurement which is completely independent of g(E„) and hence of an y

assumptions which we may make concerning its form . Such a measurement is the

polarization of the electrons in the decay . We disregard the electron mass, a s

we did in writing our matrix element (6 .3 .19) . Thus it may be considered as a



two-component particle similar to the neutrino . Sinc e

v
e

	

c

	

(6 .3 .28 )

in Ke3 decay, the electron helicity will effectively be -1 . However, there are

a number of rare cases in which this is not correct . These occur when the pio n

carries away no energy, leaving the neutrino and electron to emerge from th e

decay in opposite direction and with opposite helicities, because of th e

conservation of angular momentum . If the electron mass were actually zero, then

such a situation would evidently be forbidden . However, the slight departure of the

electron mass from zero causes this situation occasionally to happen . cperimentally ,

it is necessary to measure the polarization of positrons in K 1- decay, since

nearly all K particles will be captured by atomic nuclei . Here the

vector current gives right-handed positrons, whereas the tensor and scala r

currents, which are the only other possible terms in K e3 decay, predict left -

handed positrons . Experiments show that the positrons are in fact right-hande d

confirming the vector current model .

Another feature of Ke3 decay which is independent of assumptions abou t

the form factor g is the electron-energy spectrum for a given pion energy .

From the matrix element (6 .3.19), we may deduce that the electron spectrum

for a particular pion energy is given by (15 )

dW

	

=

	

( G2 g 2 mK )/( 8r' 3 )

	

(2„2 - (mK - E„ - 2Ee ) 2 ) dE„ dce . (6.3.29 )

Thus the energy of an electron for fixed pion energy varies within the rang e

( m - E n -

	

He < (mK

	

E, + 12,1)/2 .

	

( 6 .3 .30 )

The electron spectrum becomes zero at both the maximum and minimum points give n

in (6 .3 .30), and has a peak at

Ee = Epeak =

	

( '1K - D1,)/2 .

	

( 6 .3 .31 )

For a vector coupling, the energy spectrum is of the approximate for m

N -a
?
+

EpeaY '
whereas, for a scalar coupling it i s

N Epee ( °e '4 °'max ) '
and for a tensor coupling it i s

N E2e (6.3.34 )

Thus we see that a measurement of the electron spectrum for a fixed pion energ y

would enable the coupling responsible for Ke3 decay to be determined unambiguously .

(6 .3 .32 )

(6 .3 .33)



However, the number of events with a particular pion energy tends to be small ,

and so we must devise a method of using events with different, but known, pio n

energies . This problem was considered in detail by Kobzarev (16) . The best metho d

was found to utilize a Dalitz plot (17) . Here energies are plotted for each

of the three resultant particles within an equilateral triangle . The axes are

the perpendicular bisectors of the sides . Geometrically, we see that the

sum of the distances from a point on to the three sides is always a constan t

equal to the height of the triangle . This arises from the fact that the line s

going to each side of the triangle are the altitudes of three smalle r

triangles whose total area is equal to that of the large triangle . In three—

body decays, this property is useful, since the height of the triangle i s

interpreted as the energy of the initial particle, and energy conservation

is automatically obeyed by any point within the triangle . However, not every

point in the triangle will be allowed, because of momentum conservation .

We draw an axis x coincident with the base of the triangle, and a y axi s

with its perpendicular bisector . We le t

h mK

	

–

	

mn

	

, (6 .3 .35 )

y

	

= - map, (6 .3 .36 )

_ (Ev
– 'eV 5 (6 .3 .35)

The allowed region within the triangle is bounded by the line corresponding

to the maximum kinetic energy of the pion ,

Y =

	

(m — mn) 2/( K ) r

	

(6 .3 .36 )
and by that corresponding to the maximum energy of the other two products :

3x2

	

y2

We see that for any function g, the total number of electrons with an energ y

within the range

q 4 Ee C + Emax (e) ( 6 .3 .38 )
must be lower than that with an energy o f

Emax (e) C Ee C Emax (e) ' ( 6 .3 .39 )
since the diagram must be symmetrical about the vertical (y) axis, because th e

zero-mass electron and neutrino spectra must be identical . We now modify ou r

diagram, definin g

Y' =

	

IP-1

	

,

	

(6 .3 .40 )



x' = l Ev — Bel (6.3.41 )

we see that the allowed region takes up the slightly simpler form of the are a

bounded by the y' axis and the line s

y ,

and
y max

(6.3 .42 )

y'

	

= x

	

. ( 6 .3 .43)

In terms of our new variables, the energy distribution (6 .3 .2.9), assuming th e

first factor to be roughly unity, simplifies t o

dW

	

(y '2 — x' 2 ) dx' dy' .

Let us now draw a ray in our modified diagram such that

x'

	

=

	

a y ' ,

0 .4 a 4 1 .

We calculate the ratio of the total number of points to the left of thi s

ray to the total number of points to its right. ?or a vector coupling ,

Ry

	

_

	

(3/2) (a - (a3/3) ) ,

	

(6 .3 .47 )

for a scalar coupling

RS

	

=

	

a

	

,

	

(6 .3 .48 )

and for a tensor coupling

RT

	

=

	

a3

	

(6 .3 .49 )

Experimentally, it has been found (18) that the distribution ratio (6 .3.47 )

is definitely favoured, indicating, once again, a pure vector coupling i n

Ke3 decay .

We now consider the decay mode

K = -->h r + -rt°+ v .

	

(6 .3 .50 )

Since the muon mass may not be disregarded in the same manner as m
e
may, an

extra term

— f mr uv (1 — f5 ) ur

	

(6 .3 .51 )

enters into the matrix element (6 .3.19), so that the latter become s

Mif

	

=

	

G

	

1VK

-VT.

(g pK — f qi) uv Y i (1 + f 5 ) u r ,

	

( 6 .3 .52 )
i

where q is here the total momentum of the leptons . If we assume the function s

f and g to be effective constants, then we finally obtai n

Wo =

	

(G2 m
K
)/(7681r 3 ) (0 .5g2 - 0 .2fg + 0 .05f2) .

	

(6 .3 .53 )

Since we know that, experimentally, the probabilities (6 .3 .53) and (6 .3 .25) are

(6 .3 .44 )

(6 .3 .45 )

(6 .3.46 )



approximately equal, we may writ e

0 .6 g2

	

0 .5 g2 - 0.2 fg + 0 .05 f2

	

(6 .3 .54 )

by equating the two probabilities . The equation (6 .3 .54) has two solution s

for f/g :

f/g ^- 4 .5

	

, (6 .3 .55 )

f/g -0 .5 (6 .3 . 5 6)

For muon kinetic energies of under 30 i;eV, the muon spectra corresponding t o

the different possible values of f/g differ by a factor of nearly 3 . At large

muon energies, the two spectra tend to become similar . The muon polarizatio n

is even more sensitive to the value of f/g . The solution (6 .3 .55) correspond s

to a predominantly scalar interaction, while (6 .3 .56) corresponds to a vecto r

coupling . If the solution (6 .3 .56) is correct, then the muons in Kra decay

should have a predominantly left-handed polarization . If, however, a scalar

interaction predominates, then the muons will be mostly right-handed . Thus ,

by observing muon asymmetry, we may deduce the type of coupling responsibl e

for K, 3 decay . Experiments (19) favour a vector interaction .

We now consider the K2n and K3r decay s
K	 )

	

+-cc°,

	

(6 .3 .57 )
K r + 7t + (6.3.58 )

in terms of isospin, which we discussed in 5 .1 . We shall calculate the matrix

elements for these decays in 7 .1 . Since the final state in the decay (6 .3 .57 )

contains two JP = 0 pseudoscalar particles, its parity will be given by

P

	

=

	

(-1) S ,

	

(6 .3 .59 )
where S is its total angular momentum. Thus we see that if parity were conserved

in the weak interaction, then the decay (6 .3 .57) would be forbidden . Sinc e

the kaon spin is even, the kaon must be a boson, so that its final stat e

of two pions must have a wave function which is symmetric under the interchange

of the two pions . We find that states with I = 0 and I = 2 fulfill thi s

requirement . However, I = 0 is forbidden, since it would imply charge

nonconservation, because it has zero charge, whereas the K * has nonzero charge .

Thus the final state pions must have I = 2, 1 3

	

1 .

In the decay (6 .3.58), we find that Dalitz plots for the emergent pio n

energies are roughly isotropic, indicating that the matrix element for K 37T



decay is effectively independent of pion energy (see 7 .1), and suggesting

zero spin for the kaon . In terms of isospin (5 .1), we see that the final 3,T

state may have I = 0, 1, 2 or 3, and is not uniquely characterized by it s

total isospin, each of the pions having I = 1 . Let I (12) denote the intermediate

isospin of two of the pions . This quantity can take one of the three possible

values : 0, 1 and 2 . If the total isospin of the three-pion system ( 1 (123) ) i s
to be zero, then we must have I (12) = 1, I (3) = 1 . If the total isospi n

is to be 3, then evidently I (12) -

	

2. For I
(123) = 1 or 2, there ar e

number of different possible states, distinguished by differing values o f

I (12) . As we have shown above, the three-pion system must have 1 3 - 1 .
Thus there remain six possibilities I T (12) ; T, T3 > .
0 ; 1, 1> _ ( l/1rr

7) (I n+, g , 7 '> + I 7 r 7.Tr'> -

	

7\-°, n+> )

	

(6 .3 .60 )
11 ; 1 , 1> = ( 1/2 ) ( I li , – 1 7 , 7 ,7°) – I n r 2 r~+ ~ + I 7 , TL{r 7+ > )

-'

	

(6 .3 .61 )
I2 ; 1, 1> = (1/2 Jri5) (I7',1 ,1'> +Ir, n, TT') + 2IT, rc,7i '> -

- 317',n',7r'>- 3 -a°, 7.; v°>+617r ; n,>r > ) (6 .3 .62 )
1 ; 2, 1>

	

°

	

( 1 /2 ) (Iv,>T°,Tr°>

	

Irr°,7r',7r°> + I n r r7-r>–17, lT, Tr+ > )
(6 .3 .63)

( l ~2 T3) ( 2 Tof i n > -2 I7T,'n',7r'> + 7(-, -n' ', Tr' >
+I rt°, n',n'> - I n', n .n+> ) (6.3 .64 )

(1/J1~) (2I7C%TV. .'r°>+2ln, c .T°>+2I n', n ,n+> +

	

4 IT ,iv,+>+Inrs*, Tr ') -4
"

17C:1'; n' > )

	

( 6 .3 . 65 )
The multiplicative factors arise from Clebsch-Gordan coeffecients (see Appendix B) .

Of the isospin states (6 .3 .60) through (6 .3 .65), only one, on its own, has th e

symmetry properties required (i .e . invariance under pion interchange) . Thi s

is (6 .3 .65) . However, a linear combination of the states (6 .3 .60), (6 .3 .61 )
and (6 .3 .62) will also serve :

	

IS ; 1 , 1> _ ( 1/ 15) (2In ;n ;n->+2ITC",+r+,7''>+21

	

7; 11 > -

-In° 1-e,-R+> -
1 7',

	

> - J e , -e , n°>)

	

( 6 .3 . 66 )
Thus, in general, the isospin form of the final three-pion state will be given b y

I317> = a 12 ; 3, 1>

	

+

	

b IS ; 1, 1> ,

	

(6 .3 .67 )
where a and b are two complex coefficients . We find that the two possibl e

charge states of the decay which we are investigating have a branching rati o

1>12 ; 2 ,

12 ;3,



given by

R

	

J(K —~ n++ n°+	 )
W(K--*-rr,++-TT + - i'- TC

2a- b
a -}- 2b

2

	

(6 .3 .68 )

The result (6 .3.68) assumes that all the pions have exactly the same mass .

However, this is not precisely the case, and in the low-energy reaction s

which we are considering here, the pion mass difference can have a significant

effect . Calculating this effect using phase-space volumes (20), we obtain
2

R

	

—

	

1 .243
12

	

x 1

1

	

2x ( 6 .3 . 6 9 )

wher e

x

	

= b/a .

	

(6 .3 .70 )

As I x -- 0o , R---40.311, and as x -->0, R --) .4 .97 . Experimentally,

the value for R is (21 )

R

	

=

	

0 .29 ± 0 .04

	

,

	

(6 .3 .71 )

which is consistent with a large value for the parameter x . Thus it seems
likely that the throe-pion state is predominantly of the symmetric for m

(6 .3 .66), although a small admixture of the state (6 .3 .65) cannot be excluded .

This implies that the final state of the decay (6 .3 .58) usually has

I = 1 .

	

(6 .3 .72)

6 .4	 Hyperon Decays . ,

Among the 'V-particles' mentioned in 6 .3, there existed one particle ,
known as the

	

which, from momentum and energy measurements of its decay
products, was found to have a mass of (22)
1115 .60 t

	

0 .05

	

NeV/c 2

	

(6 .4 .1 )

The A° lifetime was established by measurement of the delay betwee n

production and decay in a bubble chamber a s

(2 .578 t- 0 .02.1)

	

x

	

10 -10

	

s .

	

(6 .4 .2 )
There was also a massive triplet, known as the Z particles, which were foun d

to be responsible for a number of the 'V-particle' tracks obtained from cosmic
rays . By analysis of the proton range in its decay, the Z"i' mass wa s
ascertained as

1189.37 -

	

0 .06

	

NeV/c 2 ,

	

(6 .4 . 3 )

and its lifetime, from track angle and length measurements, as



20 10

	

s .

	

(6 .4 .4 )

by measuring the ranges of the sigma particles in th e

(6 .4 .5 )

(6 .4 .6 )

the mass difference between the E .+ and th e

was calculated, and, knowing the value of the :: '' mass (6 .4 .3), this yielded

a value o f

1197 .35 ± 0 .06

	

i :eV/c2

	

(6 .4 .7 )

for the

	

mass. By similar methods to those employed for the

	

the 2

lifetime was found to be

(1.482 ± 0.017)

	

x 10-1°

	

s .

By measuring the Z- £ mass difference, the 21° mass become s

1192.48 ± 0.08

	

HeV/c 2 ,

and its lifetime, by nuclear emulsion range measurements, is established as

< 1 .0

	

x

	

10-14

	

s .

	

(6 .4 .10 )

Theoretical estimates for the TI .` lifetime give (23 )

.~ 5

	

x

	

10-17

	

s .

	

(6 .4 .11 )

A further type of 'V-particle' was the cascade or - hyperon, whic h

decayed into another 'V-particle', which in turn decayed into stable particles .

From track analysis in heavy-liquid bubble chambers, the :H'-mass was calculated

as

1321.29 ± 0 .014

	

MeV/c 2 ,

	

(6 .4 .12 )

and its lifetime a s

(1 .652 ± 0.023)

	

10 -1°

	

s .

	

(6 .4 .13 )

However, the 'Strangeness Scheme'
4

of Gell-Hann and Nishijima (24) indicate d

that there should also exist a = ° . This was found using bubble chambers ,

and track analysis demonstrated that its mass was

1314.9 ± 0.6

	

6eV/c 2

	

,

	

(6 .4 .14 )

and that its lifetime wa s

(2.96 t 0 .12)

	

x 10-10

(0.800 ± 0.006)

	

x

The

	

mass was found

reaction s

K* p

	

Z4+ 7N

K -r P--->' Z+7t +

From (6 .4 .5) and (6.4 .6),

(6 .4 .8 )

(6 .4 .9 )

s .

	

(6 .4 .15 )

The last hyperon to be discovered was the I1 , which had been predicted by

Gell-Mann (25) using SU(3) symmetry (see chapter 8) . From the 41 bubble chamber



events involving the SL photographed to date, its tentative mass assignment i s

1672 .2 -+ 0.4 ReV/c2 , (6.4 .16 )

and its lifetime is thought to b e

(1.3 ± 0 .25)

	

x 1010 s .

	

(6 .4 .17 )

We now tabulate the decays and branching ratios for the hyperons (26) ;

Particle

	

Decay Rode

	

Branching Ratio

n°

	

pv -

	

( 64 .2 ± 0 .5 )

nor°

	

(

	

35 .8 ± 0 .5 )

p e v

	

(

	

8 .13 it. 0 .29) x 10- 4
p N v

	

(

	

1 .57 ± 0 .35) x 10- 4

p -rr - ~

	

(

	

0 .85 ± 0 .14) x 10-3

pIs°

	

(

	

51 .6 *_ 0 .7 )

	

o
ni*

	

(

	

48 .4 ± 0.7 )

	

%

p Y

	

(

	

1 .24 x 0 .18) x 10- 3

nTr * v-
°2 :09 23

	

.0.10) x

100 : 53e+ V

	

(

	

- 0 .47) x 1

nv

	

( < 2.4

	

) x 10-5

n e* v

	

( < 1 .0

	

) x 10-5

p e ' e -

	

(< 7

	

) x 10-6

/\

	

( 100

	

)

	

%

/\e * e -

	

( < 5.45

	

) x 10-3

( 100

	

)

	

%

(

	

1 .08 - 0 .04) x 10-3

(

	

0 .45 -s 0 .04) x 10-3

(

	

0 .60 -±0 .06) x 10 4

(

	

1 .0 ± 0 .2 ) x 10-4

Ate -

p e v

Z' e v

( 100

	

)

	

%

( < 0 .9

	

) x 10-3

(< 1 .3

	

) x 10-3

( < 1 .5

	

) x 10-3



Particle

	

Decay , . ode

	

Branching Rati o

e' v

	

( < 1.5

	

) x 10- 3

r v

	

( < 1 .5

	

) x 10 3

7. - }^' v

	

( < 1 .5

	

) x 10-3

pp v

	

(< 1 .3

	

) x 10- 3.

( 100

/\ e v

	

(

	

0 .70

	

0 .21) x 10 3

Z ' e - v

	

( < 0 .5

	

) x 10 3

/\N v

	

(< 1.3

	

) x 10-3

2'p:v

	

(<0.5

	

)

	

o

n7 -

	

(< 1 .1

	

) x 10 3

n e v

	

( < 1 .0

	

)

Total of
41 events
seen

We now make a number of general comments concerning the hyperon decays ,

and discuss the decays of particular hyperons in greater detail in the

following sections . For the beta decay

ri

	

p + e + ve ,

	

(6 .4 .18 )

we find that we are unable to write a simple four-term matrix element as we

were able to for the neutron (5 .5 .1), (5 .5 .2), since we cannot now assume tha t

vector current is conserved, and the weak magnetic form factor is no longer

unimportant, since the decay (6 .4 .18) has significantly more disintegratio n

energy than the neutron decay . Thus its matrix element become s

Mif = G/ .j2 (Vi + Ai ) ueYi (1 +'y5 ) uv ,

	

(6 .4 .19 )

where V . and A . are the vector and axial vector currents respectively, defined :

Vi up (fl
r i

	

+
f2

6i
J

q . f3 qi ) u,

	

, (6 .4 .20 )

Ai

	

=

where

up (gl r i

	

+ +
626i j q J

f3 qi ) Y 5 u A

	

, (6 .4 .2.1)



q = P, — Pp = Pe + Pv (6 .4 .22 )

Since we have six unknown form factors in (6 .4 .2.0) and (6 .4 .21), and only two

equations, it is impossible to solve for them and hence to obtain a valu e

for the rate of hyperon beta decay. However, we try assuming that the momentum

transferred, q, is negligible, and henc e

f 2 = f3 = g2 ' g3

	

0

	

(6 .4 .23 )

Further we set

f l

	

gl = 1

	

(6.4 .24 )

although this has little justification . With the assumptions (6 .4.23) and

(6.4.24), the matrix element (6 .4 .19) reduces to

;,;if =

	

(G/,2) up Yi ( 1 + / 5 ) ague Yi (1 t Y 5 ) uv .

	

( 6 .4 .25 )

(6 .4 .25) gives

w

	

=

	

(G 2 D5 c)/(15, 3) ,

	

(6 .4 .26 )

where D is the maximum electron energy :

D

	

= (My — r )/2My ,

	

(6 .4 .27 )

where My is the hyperon mass and K the nucleon mass . In the expression for th e

transition rate (6 .4 .26), C is a dimensionless constant which compensates fo r

the recoil of the hyperon and its decay products . When D-->O, C —+1, an d

when D

	

C---->2 .5, so that C is roughly constant for all decays .

We note that for C —+0, the formula (6 .4 .2.6) becomes the neutron decay

probability :

W

	

= (G2 D5 (1 + 3a2) )/(60n 3) ,

	

(6 .4 .28 )

where a is the ratio of axial vector to vector coupling strengths, so that

here we put a = 1. In the second limiting case D = My/2, we find tha t

(6.4.26) tends to

(G 2 m5)/(1927c5),

	

(6 .4 .2.9 )

which is the muon decay rate, so that we set m . mr . By means of the formula

(6 .4.26), we should be able to estimate the branching ratios for hyperon bet a

decays . Thus, for example, for the /s this should be 1 .5 %, and for the 2: —

5 .8 % . However, experiments (27) indicate that the actual values for thes e

branching ratios ar e

(8.13 ± 0 .29) x 10- 4

	

(6 .4 .30 )

and



(1.08 ± 0 .04) x l0
3

	

(6 .4 .31 )

respectively, in complete disagreement with our theoretical predictions . Thu s

we are forced to conclude that one or both of the assumptions (6.4.23) and

(6.4 .24) was unjustified .

6 .5	 LambdaHyperon Decay .

According to the general scheme of the weak interaction, it might b e

reasonable to expect that the nucleonic current

(np) (6.5 .1)

should interact not only with the leptonic current, but also with the strang e

current 5

(A- p) .

	

(6 .5 .2 )

The interaction of the two currents (6 .5 .1) and (6 .5 .2) has the form

(n p) (7\ p ) t +

	

(/\ p ) (n p )* _ (=I' p ) (P A) +

	

(/\ p) (P n )

( 6 .5 .3 )

Thus the Feynman diagram

(6 .5 .4 )

corresponds to the first term in idis interaction . However, by transposing an

incoming particle for an outgoing antiparticle, the simple scattering proces s

(6.5 .4) become s

A --9P + n + p . (6 .5 .5 )

The t decays

A'—> p + (6 .5 .6 )

ri~n + rr° (6 .5 .7 )

may thus be accounted for by the diagram s

n -

b (6 .5 .8}
nn

P



and

	

4'

(6 .5 .9 )

respectively . Alternatively, we could have drawn a closed p p loop, so tha t

the /\ becomes a virtual neutron, which becomes real with the emission o f

a pion to conserve momentum and energy .

We now consider the asymmetry parameters governing the angula r

distribution of polarized A° decay products . We assume throughout that the e
has a spin of +, and there exists strong experimental evidence to reinforce thi s

view (28) . We rewrite the matrix element (6 .4.19) in the for m

h f =

	

(l/„5--E,,.) TIN (2n) (1 + e15) u A (PA) F .

	

d3x exp (J(P„ — PW — P„) x )

(6.5 .10 )

where F is a scalar amplitude and
e

is a parameter describing the parity —

violating component of the interaction . At first sight, (6 .5 .10) appears t o

describe only a pure scalar interaction . However, rewriting the middl e

factor (containing the spinors) of (6 .5 .10) for a vector interaction, we obtai n

j V (Ppi )Y r (1 t eY5) un(a,) ((PN )r Fl + ( p,)r F 2 + (pp ) 1, F3 ) )

(6 .5 .11 )

which is essentially the same as (6 .4 .20) . In (6 .5 .11) we have three

form factor constants . However, we may immediately write the term in F 2

without the factor F2 using momentum conservation in terms of pa, and pn
Using the Dirac equation we find (29) that

F'

	

_

	

( F 2 — F1 )NN — ( F2 + F 3)A',

	

(6 .5 .12 )

F' e'

	

((F2 - F1)M + (F
2 + F3 )N, ) e ,

	

(6 .5 .13 )

where F' is our new single amplitude . Obviously this may be determined un i quely

by the equations (6 .5 .12) and (6 .5 .13), and thus we see that the vecto r

matrix element (6 .5 .11) is completely equivalent to the scalar one (6 .5 .10) .

It may be shown that all other permitted types of interactions also produce

matrix elements equivalent to (6 .5 .10) .

From (6 .5.10), we may now write the transition rate for /\ decay as



(FWat)

	

(IFI 2 /8-n)

/

(dSl,,/47n) (1+ ((i

	

- m2,)/xn) )

	

X

X

	

( 1 m,,)

	

J )` (H , H , mn) I iiy,(%)(I + eY5 ) .,,( 0)I 2

(6 .5 .14 )

where )' is an arbitrary function such that

12NI

	

=

	

IF I

	

=

	

(1/2 i) i)('''n

	

,

	

) .

	

(6 .5 .15 )

In (6 .5 .14) we have integrated over all angles except for the angle which th e

t■ polarization vector makes with the direction of motion of the pion . Denoting

this quantity by 0 , we obtain the angular distribution :

0) d(cos0) =

	

I .( 5 ) (1 t 0' 5 ) u,,(0)1 2 d(cose) .

	

(6 .5 .16 )

Since the spinor uA(0) vanishes except for the component with Dirac index one ,

which is unity, we may rewrite (6 .5 .16) :

W(e)

	

=

	

I(ulN(P,i) ( 1 + PY5))1I2

	

(6 .5 .17 )

Thus we find that, for the decay of totally polarized A particles :

W(9 )

	

=

	

k . (1 + a cose) ,

	

(6 .5 .18 )

wher e

a

	

=

	

(2 1%1 Re(C ) )/( l + 1(.1 2 ILN12/(i .̀,

	

EN ) 2 ) .

	

(6.5 .19 )

If the angular distribution (6 .5.18) is to be isotropic, then we see that a

must vanish, corresponding to a zero or infinite value for the parity-violation

parameter
e

. In these cases, parity is said to be conserved . Thus a nonisotropi c

angular distribution implies parity violation . However, the angular

distribution is always isotropic when the original A is unpolarized .

Experimentally, A particles produced in the reactio n

7- + p

	

A + K0

	

(6 .5 .20 )

known as 'associated production' (30), tend to be polarized perpendicularly

to the per- scattering plane . Observations of A particles produced in

(6 .5 .20) indicate that the product (31 )
a P 0.55 0 .06 (6 .5 .21 )

for

(6 .5 .22 )

and

a P

	

= 0.60 ± 0.13 (6 .5 .23 )

fo r

n -1,'r + n (6 .5 .24)



It should be noted that we are never able to meaure the parameter a on its ,own ,

but only in the product aP, P being the polarization of the A' . Furthermore ,

since we are never able to determine P, our values for aP (6 .5 .21) and (6 .5 .23 )

only set a lower limit upon a, and leave it unsigned .

Slightly more information may be obtained by observing the asymmetry

in the angular distribution of the nucleons, rather than the pions, in I\

decay. We define the initial /\ polarization by

P

	

=

	

( W +

	

-

	

W_)?z ,

	

(6 .5 .25 )

where W+ is the number of particles with their spins aligned in the + z

direction, and W the number in the - z direction, and a
z

is the unit vector

in the z direction . Obviously

W, + W = 1 (6.5 .26 )

Since the spin of the A is +, and it is thought that total angular momentu m

is always conserved, the final two-particle state resulting from A decay mus t

be either S- or P-wave, i .e . it must have an orbital angular momentum of 0 o r

1 . Using spherical harmonics6 , we find tha t

A S

	

(6 .5 .27 )

AP (5+ cose + 1.sine ejO ) ,
S >

P> (6 .5 .28 )

omitting the normalization factor, where A P is the transition amplitude

for a P-wave state, and 1, represents the sense of polarization . In our case ,

we find that when the A is polarized in a + z directio n

=

	

(AS t AP cos9))+ + i P e j

	

sin0y

	

,

	

(6 .5 .29 )

and when in a - z directio n

~1~1 f

	

=

	

A P

	

sine,+ (AS - AP cos 0)__ .

	

( 6 .5 .30 )
Thus the expectation value of the component of the nucleon spin operato r

in the final state is given by

<If I 6,1 f

	

=

	

iA s

	

Ap cos ei2 - IAPI2 sin 2 0 ,

	

(6 .5 .31 )

<Vf 1 6 z I Vf > =

	

I 2 sin28 - 1As - AP cose 12 .

	

(6 .5 .32)
Substituting with (6 .5 .25) for the polarization of the initial A, we obtain

<:d z )

	

=

	

2 Re(A P AS) cost+ P(lA S 2 + lAPI2 cos(2.0) ) .

	

(6 .5 .33 )

The other two components of the nucleon spin may be calculated in a similar
manner . Introducing the unit vectors!, and ee , and using a vector notatio n

for the polarization p, we obtain



<.L> = 2 Re(A P AS )ems —

	

2 Im(t , A3 )e x X .10- ÷

+

	

21,'p 1 2 e R (e nP)

(I Aso - IA-,f

	

'r

(6 .5 .34 )

The result (6 .5 .34) is usually written, in experimental work, a s

<6~ = k .(—( a — 2p .62p +\-XP + Y((-p XP) X 2p)) ,

(6 .5 .35 )

=

Y =
so that
pct +

	

2 + Y2

The constant k in (6 .5 .35) is usually taken a s

k

	

=

	

1/(1 — o(e P)

	

(6 .5 .40 )
—P _

in order to normalize the expectation value operator of the nucleon spin .

Recalling 3 .3 we find that T invariance of the Hamiltonian (6 .5 .10) demand s

	

to be real, so that

	

vanishes . In the case where the initial /\ particle s

are unpolarized, i .e . 11= 0, we see that (6 .5 .35) simplifies t o
<6)

	

—xc~

	

(6 .5 .41 )

Thus the protons from unpolarized A decay are longitudinally polarized by th e

amount -oc . Hence we have found a method of obtaining a value for v, on it s

hbcperiments on the decay (6 .5 .22) give (32 )

a =

	

0 .647 ± 0 .016 ,

= — 0 .10

	

0 .07

	

,

=

	

0 .75 ± 0 .02

	

(6 .5 .44 )

Although

	

does not vanish within experimental error (6 .5 .43), due to a low

amplitude interaction between the final pion and proton, a small value o f

might be expected, so that T invariance is not forbidden . We not that th e

experimental values (6 .5 .42), (6 .5 .43) and (6 .5 .44) obey the condition (6 .5 .39 )

within experimental error . We see that the ratio of the amplitudes A P an d

As is real, and that numerically it i s

Ap /A s =

	

- 0 .36 ± 0 .05 ,

	

(6 .5 .45 )

where

oc

	

= 2 (Re(AP AS ))/(ICI 2 + IASI 2 )

2 (Im(AP As ))/( jAP 1 2 + IA n l 2 )

	

,

(IAsI2 — IAI,1 2 )/(1A sI
2

,' I API 2)

(6 .5 .36 )

(6 .5 .37 )

(6 .5 .38 )

(6 .5 .39 )

(6 .5 .42 )

(6 .5 .43)



so that the P-wave amplitude is about three times as strong as the S-wave one .

We note that, substituting the result (6 .5,42) in (6 .5 .21), we obtain P - 1 ,

and thus the ^°particles from the reaction (6 .5 .20) are almost completel y

polarized . The asymmetry parameters 0(, q, and

	

cannot be measured directly

in the decay (6 .5 .24), but assuming that the polarization of the initial

/\ particles was the same for (6 .5 .22) as for (6 .5 .24), experiments show that (33 )

DC (A—3n t	 )

Dd (/\ --e. p 7r-)
1 .10 t 0 .27 ,

	

(6 .5 .46 )

so that the ratio is unity within experimental error .

6 .6	 Sigma Hyperon Decay.

The formula (6 .5 .36) presented above is, in fact, valid for any spin

particle . Since there is good evidence (34) to support the view that th e

sigma particles have spin -1-, we may also apply it to their decay . However, a s

was seen in 6 .4, the E multiplet possess three dominant weak decay modes :

g +

	

>

	

+ 7r°

	

, (6 .6 .1 )p

E .

	

1n

	

+ 7T H

	

, (6 .6 .2 )

n

	

+ 7r "

	

. (6 .6 .3)

It is customary to distinguish between the amplitudes of these decays by

writing the sign of the pion in the final state of the decay as a subscrip t

to the amplitude . Assuming the reality of the amplitudes and hence T

invariance, we may write (6 .5 .36) a s

ce
i

	

=

	

2(A,; 4)/(14 1 2 * 1AS1
2

)

where the subscript i may be o, - or -r . The parameter .
0 has been

measured directly (35) :

oC O =

	

0 .78 ± 0 .03 .

We note that within experimental error, the parameter (6 .6 .5) has the carne

magnitude but a different sign from that for the n (6 .5 .42) .
The parameters Sc and x_ may not, however, be measured directly, sinc e

it is not possible to measure the polarization of the neutron in (6 .6 .2) and

(6 .6 .3) in the same manner as the polarization of the proton is measured i n

(6 .6 .4) . However, comparison of the asymmetry in the pions from (6 .6 .2) an d

(6 .6 .1) yields (36)

(6 .6 .4 )

(6 .6 .5 )



(°<+)/( xo ) =

	

(a,P)/(o<o) = (0.03 ± 0 .08)/(0 .75 t 0 .17 )

=

	

0 .04 at 0 .11

	

,

and, using the known value for oco (6 .6 .5), we obtai n

a*

	

=

	

0 .03 t 0 .09

	

.

(6 .5 .6 )

(6 .6 .7 )

Thus, within experimental error, the value of a„ vanishes, demonstrating that

parity is conserved in the decay (6 .6 .2) . Experiments on the resonanc e

K(1520) indicate that (37 )

a_

	

=

	

0 .13 ± 0 .16

	

,

	

(6 .6 .8 )

again favouring parity conservation . Thus it appears that in the decay s

(6 .6 .2) and (6 .6.3), the parity-violating amplitude is mall if it exists at

all . These decays afford some of the only examples of non-parity-violating wea k

interactions .

We now consider the amplitudes A2 and A 6 present in f decay . Using

a suitable normalization factor, and ignoring the difference in phase-spac e

factors due to the L+ - F mass difference, we have

1 /T=

	

=

	

(AS)2 *
(A;) 2 ,

	

(6 .6 .9 )

1/TE.

	

(AS)2

	

(4) 2

	

(AS)2 + (4)2

	

(6 .6 .10 )

assuming time-reversal invariance . Approximating (6 .6 .7) by

a,_ -

	

0 ,

	

(6 .6 .11 )

we see that either Ap or A6 vanishes. We arbitrarily choos e

Ap =

	

0 .

	

(6 .6 .12)

We know tha t

R(e )

	

_

	

((AS) 2 + (Al°,)2)/((AS)2

	

( A;) 2

	

(25) 2 + ( JO)2 )

(6 .6 .13 )
and experiments demonstrate that (38 )

R(E' )

	

_ I0.50 ± 0 .02 ,

	

(6 .6 .14 )

and henc e
(AS)2 + (4)2

	

=

	

(A3 ) 2

	

(6 .6 .15 )

We now wish to determine APo and Ac's in terms of off , . However, since the.

relation (6 .6 .4) is quadratic, we obtain two possible values for eac h

amplitude :

AS

	

=

	

± (0 .43 '- 0 .05) AS



0
(0 .90

	

Y

	

0 .03) AS (6.6 .17 )

or

A
S

	

= (0 .43

	

±

	

0 .05) Al

	

, (6 .6 .18 )

AP

	

= (0 .90

	

0 .03) 8

	

, (6 .6 .19 )

wher e

A
S
+

	

= 1/ 217- 9 . (6 .6 .20 )

Approximating (6 .6.8) by

(6 .6 .21 )0

	

,

we obtai n

A

	

= 0 (6 .6 .22 )
S

A; t 1/J

	

±AS

	

, (6 .6 .23 )

or

Ap

	

= 0

	

,, (6 .6 .24 )

A S

	

= t 1/j

	

*_AS

	

. (6 .6 .25)

Clearly we have a considerable choice of values for the amplitudes . We shal l

use the results obtained above in the next section .

6 .7	 Isotopic Selection Rules in Hy-nor= Decays .

In (5 .3 .23) we mentioned the partial conservation la w

= 4 . (6 .7 .1 )

However, examining our expression for the strange current — nucleonic curren t

interaction (6 .5 .3), we see that we can only definitely writ e

IL~II

	

=

	

E , 3/2 .

	

(6 .7 .2 )

We know the Gell—Diann — Nakano — Nishijima (G N) relation (39 )

Q =

	

1 3 + Y/2

	

,

	

(6 .7 .3 )

and hence (6 .7 .2) corresponds t o

Q Y

	

=

	

1 , 2 .

	

(6 .7.4)

As we mentioned in 5 .3, there exist a number of decays, which, if

AY

	

=

	

2

	

(6 .7 .5 )

were allowed, should have much larger branching ratios than have been observed .

Examples are

0
---4 p *

	

(6.7 .6 )



-n -

	

(6 .7 .7 )

1 —fine v (6.7.8 )

However, no decay with (6 .7 .5) has yet been observed, and so we are forced t o

conclude that (6 .7 .1) is a justified selection rule . If this is the case, the n

there should exist some theoretical basis for (6 .7 .1) . At present, there

are two separate hypotheses to account for (6 .7 .1) . The first (40) is that

the hadronic weak interactions are all caused by products of the charge d

current term s

(n

	

P)

	

(6 .7 .9 )

and

O P) (6 .7 .10 )

so that (6.7.1) is an inherent property of the weak interaction . Transition s

of the form (6 .7 .5) might be caused by the intervention of virtual stron g

interactions such as

The second theory is that the currents (6 .7 .9) and (6.7.10) are supplemente d

by the neutral hadron currant s

n)

	

, (6 .7 .12 )

(n n)

	

, (6 .7 .13 )

(P P)

	

. (6 .7 .14)

This would mean that all weak interactions, such as those of the for m

(P p t n n)

	

,

	

(6 .7 .15 )

would obey (6 .7.1) automatically . Recently, convincing' evidence in favour

of neutral hadron currents has been found in neutrino-hadron interactions ,

and we shall discuss this in more detail in the next section .

The final states in the A decays (6 .5.6) and (6 .5 .7) may have

either I = + or I = 3/2 depending upon the isospin projections of the pio n

and nucleon . For the final state

r + p

	

(6 .7 .16 )

(6 .7 .11 )



Clebsch-Gordan coefficients give the coefficient of the I =

	

wave functio n

as ( f/ f ), and of the I = 3/2 one as (1/5) . Similarly, the stat e

.,r a

	

n

	

(6 .7 .17 )

has a coefficient of (-1/,r3) for the I = component of its wave function ,

and of (5/5) for its I = 3/2 component . Thus, superposing the I

components of the states (6 .7 .16) and (6 .7 .17), we obtain

I=

	

_

	

( J-2/f)(7

	

p) - ( 1/J3)( 7N° + n),

	

(6 .7 .18 )

and similarly, for the I = 3/2 components :

-3/2 =

	

(1/ ,Y3)(7r

	

p )

	

( 4-2/ .r3)(7° + n) .

	

(6 .7 .19 )

The relation (6 .7 .18), assuming that the 7C N final state always has I =

predicts the ratio of amplitudes for the decays (6 .5 .22) and (6 .5 .24) to b e

f2 : 1 ,

	

(6 .7 .20 )

so that the ratio of probabilities for the decays i s

2 : 1 .

	

(6 .7 .21 )

From (6 .7 .21) we may writ e

	 w(A—> p +n")	 	 2

B Y!(r -->n +~°) + ;(A—gyp + 3
. (6.7 .22 )

where B is the branching ratio for the decay (6 .5 .22) . The experimental value

for B i s

B

	

a 0.663 ± 0.014 ,

	

(6 .7 .23 )

in excellent agreement with the prediction (6 .7 .22) . Since the amplitudes fo r

the decays (6 .5 .22) and (6 .5 .24) are similar (6 .7 .20), the angular correlation s

of the decay products must also be the same . Thus, by C invariance, the

asymmetry parameter a must be the same for both decays . From (6 .5.21) and (6 .5 .23 )

we see that experiments give (41 )

ao -/a

	

=

	

1 .10 ± 0 .27 ,

	

(6 .7 .24 )

in good agreement with our prediction . A further check on the hypothesis (6 .7 .1 )

is afforded by studying the r°and ri decay rates of the hyperfragmen t

n He 4 . From (6 .7 .20), we may predict

A0/AS

	

0 .39 ; 0 .12 ,

	

(6 .7 .25 )

in good agreement with the experimental value of (42 )

0 .38

	

0 .01 .

	

(6 .7 .26 )

Returning to 21 decay, we now see that we may write, using Clebsch-Gordan



coefficients,

	

y
Ip, 70 >

	

(.r2/3) 1(3/ 2 ),

	

>

	

-

	

(
//
1/
r
d) 1 4, 4-> ,

	

(6 .7 .27 )

In, -n + >

	

( 1 /J3) 1(3/2 ), z>

	

-

	

( .12/
rr
J

13) 1 '3., 4> ,

	

(6 .7 .28 )

In, it

	

1(3/2), -(3/ 2> ,

	

(6 .7 .29 )

adopting the convention

	

1 3 > for the kets on the right-hand side. Fro m

(6 .7 .27), (6 .7.28), and (6 .7 .29) we find that we may writ e

A°

	

(5/3) x - Y/5

	

(6 .7 .30 )
J

A~

	

=

	

x/3 + (,C-2/,D) y

	

(6 .7 .31 )

A .

	

=

	

x

	

,

	

(6 .7 .32)

where j denotes the spin index, and may be either P or S . From (6 .7 .30) ,

(6 .7.31) and (6 .7 .32), we may eliminate x and y to obtain

X .

	

A

	

+ 2 n° - A.

	

=

	

0

	

(6 .7 .33 )
J

	

r

	

J

	

J

	

J
(6 .7 .33) holds if and only if (6 .7 .1) is valid . Now we wish to find som e

combination of the amplitudes (6 .6 . :6) through (6 .6 .25) which will fit th e

selection rule (6 .7 .33) . We see that the choice (6 .6 .24), (6 .6 .25) violate s

(6 .7 .33) for j . 1, because of the fact that neither (6 .6 .17) nor (6 .6 .19 )

vanishes, and we chose

Thus (6 .6 .22), (6 .6 .23) must be the correct choice . This yield s

XS

	

=

	

(0 .39 t 0.07)AS

	

(6 .7 .35 )

if (6 .6 .16) and (6 .6 .17) hold, and

XS

	

=

	

(-0 .2.7 ± 0.04)AS

	

(6 .7 .36 )

if (6 .6 .18) and (6 .6 .19) hold, taking the most favourable combination o f

signs . Similarly

XP

	

=

	

(-0 .27 ± 0 .04)4

	

(6 .7 .37 )

or

XP

	

(0 .39 t 0 .07)4 .

	

(6 .7 .38 )

Thus X . does not vanish with experimental error, implying that (6 .7 .1) is no t
J

precisely true . If we interpret the amplitudes A' , A° , and A_ as vector s

which have S and P components, then (6 .7 .33) implies that these should form

a triangle, which is not, in fact, the case (43) . The result (6 .7 .33) migh t

also have been obtained by assuming the existence of an imaginary particle i n

(6 .7 .34)



sigma decay known as a 'spurion', with I = )-, I 3 = , Y = 1 . This woul d

imply no violation of isospin conservation in 2' decay . The 'spurion '

approach is employed in Okun' : Weak Interaction of Elementary Particles ,

Pergamon 1965, pp. 177-180 .

Finally, we consider the predictions which may be made using isospi n

concerning the = and

	

decays. From Clebsch-Gordan coefficients we se e

immediately that the ratio of the amplitudes in the decay s

	 /\ + T-

	

(6 .7 .39 )

>/\+ ,s°

	

(6 .7 .40 )

is ([) : 1, and hence we predic t

iv( = —jA	 r-)

	

2 .

	

(6 .7 .41 )
W(=°

	

'A+7c' )
The experimental value for (6 .7 .41) is (44 )

1 .68 ± 0.23 , (6.7.44 )

in agreement with our prediction . Similarly, all asymmetry parameters in th e

decays (6 .7 .39) and (6 .7 .40) should be equal, and experiments show that (45 )

oC-/oc ', c 1 .22 ± 0 .50 . (6.7.45 )

We may use the same ratios and principles in IL decay as in = decay, an d

thus

	

r-)

	

2
j9(52= =°+rr") t w(S2=—) _ - +lc°)

	

3

	

(6 .7 .46 )

an d

a",/a°° = 1 .

However, due to the fact that very few -a decays have been observed, becaus e

S . = -3, meaning that the 12- is only very rarely produced, n o

experimental values for (6 .7 .46) and (6 .7 .47) have yet been obtained .

6 .8	 Neutrino-Hadron Interactions .

We first discuss the hypercharge-conserving neutrino-hadro n

processes . With the restriction

0,

	

(6 .8 .1 )

and the assumption of nucleon targets, we have two elastic reactions :

(6 .7 .47)



and two inelastic ones :

vl

	

+ ).17

	

+ C (6 .8 .4 )n

vl

	

+ 1+

	

+ C'

	

, (6 .8 .5 )p

where C is any complex of strongly-interacting particles with Y = 1 . The

Hamiltonian for these processes (6 .8 .2), (6 .8 .3), (6 .8 .4) and (6 .8 .5) i s

H

	

=

	

(G/,2) (Jr(x) + Lr(x))Lr(x) + Heim . conj .,

	

(6 .8 .6 )

where the leptonic current L
1
(x) is defined

y
Lr(x)

	

=

	

> 1= e,r. j -Vvi Yr (l

	

' 5 ) l

	

(6 .8 .7 )

and

Er(x)

	

-

	

L r ( x )( 1 - 2 ;' ,4 ) .

	

(6 .8 .8 )

The Hamiltonian (6 .8 .6) assumes a local current-current form for the weak

interaction, and uses the V-A theory, the two-component theory of the neutrino ,

and the conservation of leptons . We know very little indeed about the

hadronic weak current Jr(x), and the matrix elements of this current ar e

interpreted as form factors, which are dependent upon strong interactio n

dynamics. However, the leptonic current (6 .8 .7) contains no form factors ,

and it is this which causes its 'local' or point property. At high energies ,

the interaction is dominated by the hadronic current, so that the neutrino

cross-section is dependent purely upon the form factors :

( d 6v)/( de) =

	

((Go ) 2/2n) (I6A((1
2 )I 2 + gy(g2)I

2
+ q2 IfV(g2)l 2 +

+ g2 IhA(g2 )( 2 )
.

	

(6 .8 .9 )

An important question which has probably been settled by studying

neutrino-hadron interactions is whether neutral lepton currents exist . We

mentioned neutral currents in 4 .4, and said that terms of the type (4 .4 .11) ,

(4 .4 .12) and (4 .4 .13), at least in their pure leptonic form, were probabl y

not present in the weak Hamiltonian . However, such semileptonic reactions a s

v' + p

	

+ n + n'

	

(6 .8 .10 )

still involve no change in lepton or hadron current . In 1973, tracks representing

the reaction (6 .8.10) were obtained (46) in a liquid hydrogen bubble chamber .

Further, a second neutral current reaction ,

yr

	

p

	

yr + p + iv' ,

	

(6 .8 .11 )

was also observed . However, the rate for (6 .8 .10) and (6 .8 .11) has been shown



to be less than 1W, (47) of the rate fo r

yr + n	 r

	

p ,

	

(6 .8 .12 )

suggesting that the charged current terns may have a larger amplitud e

than the neutral ones . However, these results are, as yet, only very

tentative, and thus we may not say with any degree of certainty, that w e

must introduce a second leptonic coupling constant into the weak interaction .

We now consider briefly the so—called 'neutrino flip' hypothesis .

There is no reason to assume that the lepton currents (te e) and ( vr r) are

coupled to both the AY =0 and the DY =1 hadron currents . Hence it has

been suggested that, instead, it is the ( ''; r e) and ( -li e

	

) currents which

are coupled to the P Y . 1 hadron current (43) . This hypothesis was known

as the 'neutrino flip' theory because it interchanged the roles of the two

neutrinos in hypercharge—changing semileptonic reactions . However, high—energy

experiments show that the neutrinos arising from kaon decay, which th e

neutrino flip theory predicts to be electron neutrinos, produce muons when

they interact with nucleons via tn,Y = 0 currents, and not electrons, a s

the neutrino flip hypothesis demands . The result of a number of experiment s

(49) demonstrates that, if a neutrino flip coupling does exist, then it s

amplitude must be less than 20 % of the amplitude for the unflipped coupling .

Thus the neutrino flip hypothesis, in the form given above, appears to b e

unlikely .

We now discuss the methods for confirming OP and hence T invarianc e

in neutrino—hadron reactions . OP violation would be revealed by polarization

in the final state nucleon from an unpolarized target . We consider the

reaction (6 .8 .2) and we find that the final state transverse polarization

t is given by

( d 6v)/( d g 2 ) P t

	

(Fn . v_ x 2)(v Ipj sin v ) ,

	

(6 .8 .13 )

where v and g are the momentum vectors of the neutrino and proton respectively ,

v is the incident neutrino energy, n is the unit vector in the direction of

the nucleon polarization, and o
v is the angle between v and p, i .e. the proton

recoil angle . F is a measure of the transverse polarization, and is a function

of the form factors . Unfortunately, it is difficult to find transverse polariz-

ation due to the weak interaction in (6 .8.2), since electromagnetic effects



with a much higher amplitude also produce polarization . T invariance woul d

cause the coupling constants affecting the form factors in F to be real, s o

that F would vanish, resulting in no weak interaction polarization . A second

method of detecting T violation is to study a reaction of the type (5o )

vl +

	

Z

	

> 1

	

-- C ,

	

(6 .8 .14 )

where Z is an atomic nucleus and C is a hadron complex, for fixed lepto n

energy and fixed lepton–neutrino angle . Since the polarization of th e

lepton involves a factor

n . v_ x 1 ,

	

(6 .8 .15 )

and since n, the unit vector in the direction of the lepton polarizatio n

vector, changes sign under the operator T, sizeable lepton polarization woul d

imply T violation . Again, no sensitive experiments have yet been carried ou t

on the reaction (6 .8 .14) .

The selection rul e

DI = 1 ,

	

(6 .8 .16 )

implies that Jo
r

and S o
r

transform as pure isovector operators . The

consequences of (6 .8.16) may be tested in such processes a s

vl + p	 > 1 t p + n+ ,

	

(6 .8 .17 )

vl + n	 > 1 + n +

	

(6 .8 .18 )

vl + n	 a 1

	

+ p

	

(6 .8 .19 )

However, since leptons have no isospin, the consequences of (6 .8 .16) i n

(6 .8 .17), (6 .8 .18) and (6 .8 .19) are the same as the conse quences of isospi n

conservation i n

St

	

+ P ) P

	

+ "T+ (6 .8 .20 )

+ n >n

	

+ n+ , (6 .8 .21 )

S+ + n D P

	

+ (6 .8 .22)

where S ' is a spurion with the isospin properties of the 'rt + . Thus, in

analogy with ordinary -rc N scattering, we see that, if the "T N states i n

in (6 .8.2.0), (6.8.21) and (6 .8.22) are in the pure I = 3/2 state, then the

ratio of the rates for (6 .8.17), (6 .6 .18) and (6 .8 .19) should b e

1: (1/9)7 ( 2/9),

	

(6 .8 .23 )
by Clebsch–Gordan coefficients . Hence the ratio of charged to neutral pio n



production should be given by

N(7'' )
5 .

	

(6 .8 .24 )N(-n°)

	

-

Similarly, if the final 7N state is pure I = -, then the ratio of rates

become s

0: (4/9) : (2/9),

	

(6 .8 .25 )

so that

N(-n')

	

2N (ir°) _

Preliminary experiment shows that (6 .8 .24) and (6 .8 .26) are correct .

(6 .8 .26)



CHAPTER SEVEN :

	

THE K ° AND CP VIOLATION .

7 .1	 The K° Decay Matrix Element .

The K° decay

K--~ Zr'

	

(7 .1 .1 )

has a matrix element of the form

'Nfk

	

(7 .1 .2 )

where fe is an unknown constant . From a consideration of dimensions, we ma y

deduce tha t

f0 =

	

G(xe IK )3 ,

	

(7 .1 .3 )

where xo is a constant in the order of unity . We find that the rate of the so -

called 'theta' decay of the K ° is given by

lie

	

=

	

4 a))/( 167r m ) .

	

(7 .1 .4 )

Using the experimental lifetime of the theta decay, (1 )

(0.866 ± 0 .007) x 10-10 ,

	

(7 .1 .5 )

we obtain

xe ^_

	

0 .7 .

	

(7 .1 .6 )

We note that, whereas the rate of

	

decay is (2 )

(1.128 ± 0 .006) x 1010

	

s 1 ,

	

(7 .1 .'1 )

the rate of the decay

K +^--3 2r

	

(7 .1 .8 )

is only

(1 .707 ± 0 .015) x
106

	

s 1

	

(7 .1 .9 )

Thus the K .72 decay of the K + is about 7000 times less probable than that o f

the K° . As we showed in 6 .3, the only isospin state available to the pion s

in (7 .1 .8) is I = 2, and thus (7 .1 .8) involve s

AI

	

=

	

(3/2) ,

	

(7 .1 .10 )

violating the selection rule (6 .7 .1) . However, since the rate for the deca y

(7 .1 .8) is only (7 .1 .9), we see that the rule (6 .7 .1) is obeyed to a high

degree of accuracy .

In the decays



7' + 7K (7 .1 .11 )

K >77° a-7°, (7 .1 .12)

a final state with I = 1 or I = 2 is forbidden by (6 .7.1), so that we are

forced to conclude that the final two-pion states of (7 .1.11) and (7 .1 .12)

have a total isospin of zero . We describe the isospin wave function of th e

first pion by the vector a, and of the second, by b . In order to obtain a

total isospin of zero, we write the final state isospin as the scalar produc t

of the vectors a and b :

a , b

	

=

	

al bl

	

a2 b 2

	

+

	

a3 b3

	

. (7 .1 .13 )

Taking into account that the n + is described by the wave function

a r

	

=

	

(al --

	

Ja2)/1!

	

, (7 .1 .14 )

the Tr - by

a_

	

_

	

(al

	

- Ja2)/ ,

	

, (7 .1 .15 )

and the 7° by

a 0

	

=

	

a3 (7 .1 .16 )

we may rewrite the scalar product (7 .1.13) in terms of the new variable s

(7 .1 .14), (7 .1 .15) and (7 .1 .16) :

a . b

	

a + b- + a- b + + ao e o .

	

(7 .1 .17 )

Since the probability of charged pion formation is proportional t o

la+ b- L 2 +

	

la b+I 2 ,

	

(7 .1 .18 )

while that for neutral pions is proportional t o

l ao bol t ,

	

(7 .1 .19 )

the rule (6 .7 .1) gives (see 6 .7 )

!1(g

	

n + + rf')
w(K ->-rt' + +c°)

	

2 ,

	

(7 .1 .20 )

or

rt!(K--),c°+,r°)

	

f

	

W(K^ --~'Tr++rr-)

Taking into account a possible small admixture of amplitud e

we predict

B(K)

	

=

	

0 .29

	

-4 0.37

Experiments giv e

B(K)

	

(0 .312.3 ± 0 .0026)

	

(7 .1 .23 )

in good agreement with theory .

3

	

(7 .1 .21 )

with p I = (3/2) ,

(7 .1 .22 )



In the case of the three-pion decay

K >r t-R+sr°, (7 .1 .24 )

matrix element calculations become more complex than in the two-pion case . In

analogy with (7 .1 .2 ~)I,r we write the matrix element for (7 .1 .24) as

Pi

	

=

	

f7 -fK y' If 1 V,r2 hr3

	

'

	

(7 .1 .25 )

where fr is a dimensionless variable dependent upon the energy of the fina l

state pions in the so-called 'tau' decay (7 .1 .24) . Since the pion energy

never exceeds about 25 HeV, it is reasonable to assume that fT is roughly

constant with energy . Hence, in analogy to (7 .1.3), we may writ e

fr

	

G(x .r mK) 2

	

,

	

(7 .1 .26 )

where xT is again a constant near unity . We may now obtain an expressio n

for the rate of (7 .1 .24), and integrating over the momenta of 7r 2 and 71' 3 ,

we have

W,

	

_

	

(f)/(2 .r)' f

	

( dP1 )/( 16mm5 ) . (47r q)/( a ,r) ,

	

(7 .1 .27 )

where q is the absolute value of the 3-momentum of Ti 2 or 7T 3 in its c .m .s .

Introducing a constant Q, known as the disintegration energy of the decay ,

defined

R

	

=

	

my,. - 3m ,r ,

we find that

wr =

	

( f2
Q2)/(27 7

2 3
f )

.

Writing fT in the form (7 .1 .26), we observe tha t

x

	

1 ,

	

(7 .1 .30 )

substituting the experimental value for the rate of the decay (7 .1 .24) of (3 )

(6 .42 ± 0.13) x 10 °

	

s-1 .

	

(7 .1 .31 )

We note that in the case of the three-pion decay, the K3± decay is no t

suppressed .

We now perform a similar analysis in terms of isospin on the Y,3

decay as we did on the
K27r

one above . As we found in (6 .3 .72), the final

pion states in the decay s

K+	 ) rr + + 7C t TY+,

• > 7r°4-m°

K Tr'',

Ko

	

>Tr ° + n ' + c ;

(7 .1 .28 )

(7 .1 .29 )

(7 .1 .32 )

(7 .1 .33 )

(7 .1 .34 )

(7 .1 .35 )

( 1' )

(r')



tend to have I = 1 . As above, we denote the isospin wave functions of the

pions by a, b and c . Thus the general three—pion state will be described b y

_.

	

=

	

a .(b .c) +

	

b .(c.a) +

	

c .(a .b) .

	

(7 .1 .36 )

The component

A + =

	

a +(b.c) t b+ (c.a) + c+ (a .b)

	

(7 .1 .37 )

corresponds to the decays (7 .1 .32) and (7 .1 .33), and the component

A° = ao(b.c) + bo(c.a) + co(a.b) (7.1 .38 )

corresponds to the neutral decays (7 .1 .34) and (7 .1 .35) . We now write A' an d

A° in the for m

A* =

	

a ,t b + c_ + a, b_ c, + a+ b° c .

	

a b+ c + + a , b, c_ +

+ a, b+ c + a b c, + a_ b + c* + a° b ° c+ ,

	

(7 .1 .39 )

A° =

	

a, b„ c_ + a ° b_ c, + a, b, c, + a_ b c + + a, b , c _ +

+ a, b, c, + a, b_ c ° + a_ b c, + a, b° c, .

	

(7 .1 .40 )

By the rule (6 .7 .1), we obtain the following relations between the decay modes :

2n'+ n") 12a .b .c_12

	

+ 12b,c,aJ 2 +

	

12a,c .bJ2

	

= 1 2
W(K'—>2nc° + s ) 12a,b,c,l

	

+

	

IBb,c .a,r +

	

1$as c.
=

3

(7 .1 .41 )
1,1(K°

	

) 3 a, b .,1 2
+Ia,b,c l ^ +

	

l+

	

a.b_c *I^ *

	

+

	

lb .c_a,j.c.aW(K "---,,

	

ms)
(7 .1 .42 )

+

	

Ic, a, b_I 2 +

	

co a_b,1 2

	

6

	

=

	

2

Further, since it has been found that 50 % of all 0 ° particles decay into th e

3nc channel ,

W(K=) °+tc°+n•)

	

+ i7(i`;°—,Tr`+n'4- Tr)

	

1

	

(7 .1 .43 )

However, due to the mass difference within the pion triplet, we must make som e

phase—space corrections to our ratios (7 .1 .41), (7 .1 .42), (7 .1 .43) . Thes e

become

1 .24

	

: 4 0 .32 (7 .1 .44 )

1 .49

	

: (2 x 1 .23) 1 .8 (7 .1 .45 )

(3 x 1 .49 +

	

2 x 1 .23) : (4 -1-

	

1 .26) ti 1 .3 (7 .1 .46)

The first of these ratios (7 .1 .44) we obtained before (6 .3 .71), and we find that

our two predictions and the experimental value agree well . However, th e

experimental ratios for (7 .1 .45) and (7 .1 .46) are not yet accurate enough fo r
comparison .



7,2	 The Dual properties of the K0 .

The parity of the e meson may be determined by knowing the total

parity of its two decay pions . Since the pions have odd parity, the total

parity of the di-pion system is given by

P =

	

( - 1 ) L ,

	

(7 .2 .1 )

where L is the orbital angular momentum of the final state . Thus, assuming

the pions to have zero spin, the possible JP assignments for the g becom e

JP

	

=

	

0 + , 1 , 2 ' , 3 ,	 (7 .2 .2 )

From the decay mod e

6

	

)n°T T°

	

,

	

(7 .2 .3 )

it is obvious that the a is a boson, and hence the permitted spin-parit y

assignments are reduced to

JP =

	

0 ' , 2 ' , 4 ' 	 (7 .2 .4 )

i .e . even spin and even parity . We now attempt to evaluate the spin-parity o f

the T meson, with decay mod e

>3 IN .

	

(7 .2 .5 )

In order to find the total parity of the three-pion system, we consider it as

a di-pion of orbital momentum L, with another pion of orbital momentum H

relative to the di-pion . Thus we have, in analogy to (7 .2 .1) ,

P

	

=

	

(- 1 ) 3 (-1)L (-1)" ,

	

(7 .2 .6 )

and since symmetry demands even parity for the di-pion, (7 .2 .6) now become s

P

	

=

	

- (-1 ) M (7 .2 .7 )

We find that the spin of the three-pion system obeys the inequalit y

I?i - LI . J < 4- (7.2 .8 )

and thus the first few possible spin-parity assignments ar e

J P

	

=

	

0 - , 1* , 2- , 2 '	 (7 .2 .9 )

Hence assuming parity conservation, the lowest allowed JP for thee, if

the 0 and T mesons are indeed the same particle, should be 2' from

(7 .2 .4) and (7 .2 .9) . However, angular distribution of decay products favou r

zero spin for the H° . It was for this reason that, in 1956, Lee and Yang

(4) suggested that parity might not be conserved in the weak interaction, thu s



allowing the K° to possess zero spin, and, as yet, undetermined parity . As we

saw in 3 .7, parity is, in fact, violated by the weak interaction . H H,or e

sensitive angular distribution experiments (5) have shown that the K °

has 2= 0 . A further important feature of the e and T mesons is that ,

due to the difference in phase-space factors for their decays, their lifetimes

differ by a factor of over 1G0 :

Te

	

=

	

(0 .8861 0 .007) x 10-10

	

(7 .2 .7 .0 )

Tr

	

=

	

(5 .179 ± 0 .040) x 10-8

	

s

	

(7 .2 .11 )

According to the formula (5 .1 .2.7), the K° and 2 ° should have strangenesses

of +1 and -1 respectively . However, since the kaons are the lightest strange

particles, they must decay via the strangeness-violating weak interaction .

Since the final states from the K° and 2° decays contain only non-strang e

particles, it is impossible to ascertain from a study of its decay product s

whether a particular particle was initially a K° or a K ° . For this reason,

Fermi considered that the K° and 2° were, in fact, indistinguishable . However,

whereas K° mesons could be produced both in associated production reactions :

7C - + P-	 K °

	

(7 .2 .12 )

and in charge exchange

K + + n	 >K° t p

	

(7 .2.13 )

K° mesons could only be produced by charge exchang e
0

K + p	 >K + n

	

(7 .2 .14 )

or in pairs with K and K0 :

7r + + p	 >K + Ko 4 p

	

(7 .2 .15 )

From (7 .2 .12), (7 .2 .13), (7 .2 .14) and (7 .2 .15) we see that, if strangenes s

is conserved in the strong interactions (and there evidence to support thi s

view), then more K ° than 2° particles should be produced, implying a

distinction between the two entities . The solution to this paradox was pu t

forward by Gell-Nann and Pais (6) in 1955 . Since the decay products of th e

K° and K° are identical, we see that the two particles may transform into

one another via virtual pion states . These transitions involve i PSH 2, and

hence they must be two-stage or second-order weak effects, with a very lo w

amplitude . However, this hypothesis indicates that, if we have a pure K° beam

at t = 0, then at a later time, we shall have a superposition of both K°



and K
0

This situation is peculiar to the K° meson, since it is the onl y

particle which is able to undergo virtual transitions to its antiparticl e

state . All baryons and leptons may not commute with their antiparticle s

because of baryon and lepton conservation, the photon is its own antiparticle ,

the charged pions are forbidden to commute with each other by charg e

conservation, and the rc°is its own antiparticle . Thus we write the compositio n

of a K ° beam observed at any finite distance from its source a s

IK(t)~

	

=

	

A(t) I K°> t

	

B(t) I °> .

	

(7 .2 .16 )

In order to determine the functions A and B, we must now find what eigenstate s

of the weak interaction are responsible for K decay. At this point, we

shall assume invariance under the combined operator CP . For the K° and

2° themselves, we have

IK°>

	

—

IK

	

,

	

(7 .2 .17 )

CP le>

	

— le) ,

	

(

since, assuming the spin of the

	

kaon to be zero, in the rest frame of :')

K°, CP will have the same effect as C on its own . The minus signs on the

right—hand sides of (7 .2 .17) and (7 .2.18) are purely arbitrary . Thus we see that

the K° and 0° are not themselves the required eigenstates of CP . However,

writing

IKl>

	

= ( l/f2) (lK°> + I Ko> )

	

, (7.2 .19 )

I x 2 > .T) (IK °> — IK > )

	

, (7 .2 .20 )

we find tha t

CP IK l > IK1>

	

, (7 .2.21 )

1K2 ►x2>

	

. (7.2.22 )

so that Ki and K2 are eigenstates of CP . In terms of Kl and KZ , we find

tha t

1K°~ (1/ f2) (14> t iIK2>

	

) , (7.2.23 )

Ix

	

= (1/ f2) (IKi

	

— iJxz> )

	

. (7.2.24)

The fact that the state vector of K° is the complex conjugate of that of K°

is suggested by electric charge continuity equations of the type (1 .4 .12) .

We note that the phases of Ki and K02 are always purely arbitrary, so that w e

may introduce a factor ejG at will .



We now examine the effect of the operator CP on the final pion state s

in Ko decay. We showed above (7 .2.4) that the parity of the two pion system wa s

even. For the 7< o Ti o system, it is obvious that C

	

+1, since the It o

is its own antiparticle. Strictly, the effect of the P operator on a system

containing two particles is to interchange their spatial co-ordinates, so tha t

P ITt+7 >

	

=

	

17 TC+>

	

(7 .2 .25 )

If the product of the intrinsic paritie s ]. of the two pions in (7 .2 .25) had

not been even, then the right-hand side of the equation would have bee n

negative. The C operator transforms each particle into its antiparticle, an d

thus

CP Len-)

	

=

	

I7C' n->

	

(7 .2 .26 )

Since the state on the right-hand side of (7 .2 .26) is identical to th e

initial state in (7 .2 .25), we may deduce that the CP parity of the two-pio n

system is always even . However, the situation becomes more complex when we

attempt to evaluate the three-pion CP parity . As above, we write the orbital

angular momentum of the di-pion 7N + TN system as L, and the orbital momentu m

of the 7i with respect to the di-pion as M . Thu s

CPI TN' TN — rc°~

	

( -1 ) 3 (-1)L (_I )

	

clr + TS - -7°>

	

, (7.2 .27 )

following (7 .2 .6) . Writing the di-pion and the TT separately, (7 .2 .27 )

become s

-(-1)(L+r) c+ ~ -
>' T°> =

-(-1)(L-+,',)
( - 1 ) L 1n 'Ts- 7c

°)

(7.2 .28 )

From (7 .2.28) we see that for H = 0, the 3yv system has CP = -1 . Since th e

three rt mesons in the decay (7 .1 .34) are identical, Bose symmetry2 demand s

that they have H even, no that CP < -1 . In the charged pion mode (7 .1 .35) ,

states with H = 1 are strongly inhibited by angular momentum barrier effects .

Thus we are forced to conclude that the 27v mode has CP

	

al, while th e

37c mode has CP = -1 . As we saw above, the K1 has CP = + 1, and the K2 has

CP = -1 . If we are to assume CP invariance, this means that the Ki may only

decay into the 27r channel, while the KZ may only decay into the 3Tr one .

Thus, unlike the Y and Ko , the composite states Ki and 4 May be distinguished

by their decay modes . As with the 0 and Y mesons, the different types o f

decay for the Ki and KZ cause a difference in lifetimes between the two particles .



7.3	 Phenomena in K° Beams .

We consider first the development of a K beam with time . The K

particles produced in a reaction of the typ e

rr- + p

	

>A ' + K°

	

(7 .3 .1 )

will be 5Q% Ki and 50;, K2 mesons, immediately after production, before

any decays have occured. A xenon bubble chamber has been used to show that

0.53

	

0 .05

	

(7 .3 .2 )

of all K° particles decay by the 27r mode . The reason for this is that th e

K° particles produced in (7 .3 .1) will be a superposition of the K1 and K Z

states according to (7.2 .23) . Since the lifetime of the Ki is much shorte r

than that of the K2 , the ratio of Ki to K2 in a K° beam will decrease unti l

finally, the beam will be pure KZ . We now wish to obtain an expression for

the amplitudes of the states Ki and KZ in a developing K° beam. We know that

when a particle is undergoing exponential decay of the for m
s(t)

	

_

	

y(0) e-kt',

	

(7 .3 .3 )

we must multiply its wave function by a phase—space factor (see Appendix C )
-2

r - te

	

(7 .3 .4 )

wher e

r

	

=

	

1/T ,

as well as by the standard facto r

e
-jmt

,

where m is the particle mass . Often we write

M= m - z j f ,

	

(7 .3 .7 )

so that the combined phase-space factors (7 .3 .4) and (7 .3.6) becom e

e-jMt

	

(7 .3 .8 )

Thus, in terms of the factor (7 .3 .8), we may write the complete K° wave functio n

a sm t)>

	

_ ( 1/f2 )(IK1> e ji(l)t

	

j ( K2> e jX(2)t )

	

(7 .3 .9 )

where 8(1) is the value of M for the Ki , and M2 for the K2 . (7.3 .9) yields,

as expected ,

lW(0)>

	

(1/ r)(IK l >

	

j IK2>) ,

(7.3 .5 )

(7 .3 .6)



in agreement with (7 .2 .23) . We now wish to find the intensity of K1 and

K2 after a given time t . Citing 1)' (t) explicitly in terms of K° and K° ,

we obtain from (7 .3 .9) :

	

( t ) =

	

4(~ K°
> + lizo>) e

-im(1)t

(7 .3 .11 )

In order to find the K° intensity, we multiply the wave function (7 .3 .11 )

by its complex conjugate, following the Born interpretation (1 .4 .9), and

extract the terms in 2 :

	

N(K°) oC

	

4 (e-r(l)t + e r(2)t

(7 .3 .12 )

Similarly, for the Y° , we obtain

N(K°) oC

	

4 (e 7(1)t + e c-(2) t

As expected ,

N(K°) + N(K°) od

	

1(e
r(l)t

+

	

e r(2) t

N(e) 4 ( 1 + e r(l)t - 2 cos ( pmt) er F-Wt) , (7 .3 .15 )
where dm is the Kl - K2 mass difference, so that the intensities of K ° and k °

oscillate with frequency Qm .

We now consider the phenomenon of regeneration, which allows us to obtain

a numerical value for Am . After about a hundred K
0
1 lifetimes, our K° beam

will be pure K2 , and

=

	

( l~ ?) (le) + 1K °> )

	

(7 .3 .16 )
However, if we direct our K ° beam on to a target, then the strong interaction s

which take place within the target will alter the phases of the particles ,

so that (7 .3 .16) become s

- (1/1-2) (aIK °>-t' bIt; °> ) .

	

(7 .3 .17 )
Three basic types of strong interaction affect the K ° beam : scattering fro m

single nucleons, scattering from complete nuclei, and coherent scattering from

all the nuclei in the target . The latter is known as 'transmission regeneration' ,

since, as we shall see, we have regenerated a number of K1 particles, which

+

	

z( l K°) - iRo>) e „(2) t

2 cos ((m 2 - m )) e-2( r(1) + (-(2))t )
1+

N(K°)

	

oC

	

4 (1 +

From times short compared with T(2) = 1/ E(2) ,

e t-(1)t + 2 cos (Amt) e4 r(1)t ) ,

2 cos ((m 2 -

	

)) e-+( r ( 1 ) + r(2))t )ml.
(7 .3 .12 )

(7 .3 .13 )

(7 .3 .14)



0
form a secondary beam parallel to the KZ one . Writing (7 .3 .17) in terms o f

4 and KZ , we hav e

1-f>

	

_

	

((a — b)/2)i 4> + ((a + b)/2)i KZ > .

	

(7 .3 .18 )

Since K° and 0° undergo different strong interactions within the target ,

a > b ,

	

(7 .3 .19 )

and thus we are forced to conclude that (7 .3 .18) implies that a number o f

4 particles have been regenerated . Let £21 be the probability that a 4.
is produced from an incoming KZ via the strong interaction .

f21 =

	

(a — b) .

	

(7 .3 .20 )

We assume that the incoming K2 beam may be described by a plane wave o f

momentum p 2 . Let the strong scattering process occur at a distance x from

the edge of the regenerator slab, and let it produce a 4 beam with momentum
0

pi . Thus the amplitude for the state 4 on the second edge of a slab of thicknes s

L is

A l

	

=

	

exp(j k 2 x ) f21 e xp(J kl (L — x) ) .

	

(7 .3 .21 )

Experimentally, the amplitude is slightly lower than (7 .3.21), since some o f

the Ki mesons may already have decayed by the time they emerge from the target ,

and we are assuming zero decay probability for the Ki . Let the rest lifetime

of the Ki be T1 . By relativity (see Appendix A), we calculate that th e

I{1 lifetime observed in the laboratory frame i s

T =

	

( 1/(,f 1

	

—

	

(p l/ ) 2 )

	

=

	

YT.

	

(7 .3 .22 )

Thus we may rewrite the amplitude (7 .3 .21) :

A

	

=

	

Al exp (—(El/kl)(L — x)/2Y T1 ) .

	

(7 .3 .23 )

Lb now wish to find the energy El of the outgoing Ki in terms of the energy

E2 of the incoming KZ . We know tha t

k 2

	

=

	

k l + p ,

	

(7 .3 .24 )

J k2 + m2 + M = \/k3. + mi + JI' L + p2

	

(7 .3 .25 )

where p is the momentum of the recoiling nucleus in the target and h is it s

mass. Assuming M to be much greater than any other energy involved ,

substituting for p in (7 .3.25), and solving for k1 , we obtain

kl k 2 (m 2
/k

2) (m2 — mi ) . (7 .3 .26)

Denoting the total effective number of nuclei per unit length in the target b y

N, the amplitude for the 4. at the second edge of the target becomes



L

0

	

N dx exp (jk2x) f21 exp ( jk l ( L - x) exp (-(/ 1)((L - x)/2Tl )) )

(a f ?1 )/(j(k2 - kl ) t (ml/x1)(1/2T1)) (exp ( jk2L )

	

-

exp ( jk,L - ( ml/k 1 )( L /2T1 )) )

	

.

	

(7 .3 .27 )

Thus the probability of finding a Ki at the second side of the target is given b y

W(Ki)

	

Wo (1 - 2 cos (2S' g) e-g +

	

e)

	

(7 .3 .28)

where

g

	

=

	

(ml
/2Kl ) (L/Tl )

	

(7 .3 .29 )

_

	

(kl - k2)/m1

	

kl Ti

	

m T i

	

(7 .3 . 3o )

and Wo is the probability of observing a K1 at the second side of an infinitely-

thick target . Thus oscillations known as 'strangeness oscillations' occur in

a regenerated Ki beam . The equation (7 .3 .28), from which we might theoreticall y

calculate 6.m, is modified by multiple strong interactions and by th e

non-forward scattering of some of the main beam particles .

By studying the frequency of strangeness oscillation in regeneratio n

experiments, it is possible to find the magnitude of

	

, but not its sign .

By this method, it has been deduced that (7 )

_

	

(0 .60 ± 0 .15) .

	

(7 .3 .31 )
However, it is also possible to measure both the sign and the magnitude of

in a single experiment . We take as an example of an experiment of thi s

type that of Hehlhop et al . (8) in 1968 . A K t beam of momentum 0 .99 GeV/c

was made to impinge upon a copper target in which charge exchange took place ,

resulting in the production of a K° beam . At a distance of a few Ki lifetime s

from this target was placed an iron regenerator slab . The beam of K1 emerging

from the regenerator consisted of a superposition of Ki particles from th e

original beam and K1 particles regenerated from K ;' s in the target . The tota l

Ki intensity, which was dependent upon the magnitudes and phases of the

original and regenerated K . wave functions, was measured by means of a numbe r

of foil spark chambers . The phase of the original wave is proportional t o

the original Ki momentum p i , and the phase of the regenerated wave to th e

regenerated K1 momentum pR . Due to the mass difference between K1 and K2 ,



A number of strong interaction effects in the regenerator affect the phase o f

the regenerated Ki wave . By measuring the intensity of the Kl beam for

differing values of T - (D + L)/B, where D is the distance from the copper

target to the iron slab and B is the mean free path of the 4,
B

	

c T

	

--

	

2 .66 cm ,

	

(7 .3 .32)

interference phenomena showed that

(mf - mK )

	

(0 .44 ± 0 .06)

	

/ T l

	

s l

	

(7 .3 .33 )
2

	

1

reverting to S .I . units. A more sensitive measurement of the K2 - K1

mass difference has been made (9) by observing interference between th e

decay s

Ki	 >

	

+ T ,

	

(7 .3 .34 )

K°	 >

	

+

	

,

	

(7 .3 .35 )
2

whore the Ki particles have been regenerated from K2's . The decay (7 .3 .35 )

is an example of OP violation, which will be discussed in the followin g

section . This method yield s

L1m - (0 .480 ± 0 .024) )' / T 1

	

s 1 •

	

(7 .3 .36 )

Using the best available values for and T1, an average of a number of

recent experiments gives (10 )

m =

	

(5 .403 ± 0 .035) x 109

	

s 1

	

(7 .3 .37 )

=

	

(5 .123 ± 0 .033) x 10- 2' J .

	

(7 .3 .33 )

We now append a brief survey of the theory underlying the K2 - Ki mas s

difference . This is thought to have arisen because of the existence o f

the so-called 'self-energy' diagrams such as

(7 .3 .39 )

We now consider through which states the K° -

	

commutation depicted in

(7 .3 .39) may occur, since it is the matrix elements for conversion into thes e

states which determine the magnitude of the K self-energy . Obviously th e

states available to the Ki must be different from those available to th e

K2 , otherwise no mass difference would result. We assume throughout this



discussion absolute CP invariance, although this is not fully justified .

However, the contribution made to the mass difference by CP violation i s

very small, in the order of the CP—violating amplitude, which is about 10-3 .

First, we consider the possibility that K° — K° commutation occurs via

semileptonic intermediate states. However, taking the diagram

(7 .3 .40 )

as an example, we see that one vertex must always involve pY = – Z1Q ,

violating the selection rule (5 .3 .16) . There is good evidence to show that

any violation of (5 .3 .16) has an amplitude of under 10 - 3, so that leptoni c

contributions to 2 m will be negligible . Thus the main contribution to th e

K°1 and x
2 self–energies appears to come from commutation via the 277 state

and/or via the 7T° and q° (37() poles . From CP invariance, we see tha t

only the s wave (J = 0) 271 state contributes to the Ki , while the-n- ° and

q ° poles and the p wave (J = 1) 2-it state contribute to the K2 self—energy .

Because of the rule (6 .7 .1), only the I = 0 s wave 27v state i s

important . We introduce the Lorentz invariant self—energy operator :
3

n ( )

	

=

	

2W (2
2

) ' j

	

d4x <Ko ( T if

	

I Ki >

	

.

	

( 7 .3 .41 )

where Tif is the T matrix element (see 2 .7) for the K° — K° transition ,

and W is the energy of the Ki . We find that, sinc e

W

	

,~

	

(7 .3 .42 )
in the rest frame of the K,° ,

(t' E )K o

	

=

	

— ( 1 /2mK o )

	

Be 17 ( mm) ,

	

(7 .3 .43 )
1

1/Tl =

	

I 1

	

=

	

(2/amKo ) Im n ( ~) .

	

(7 .3 .44 )
Calculating 11(1?), we may deduce that (7 .3 .43) is primarily dependen t

upon the effective mass of the 2-7 system, G . If

2 m,, < G

	

< mfo ,

	

(7 .3 .45 )
then the 2rt state gives a positive contribution to the 4 self–energy, an d

hence a negative one to Am. If



G >

	

mK o

	

,

	

(7 .3 .46 )

then 2rc makes a positive contribution to Am . Thus, if an s rave

resonanc e 3 were to exist with a mass near to that of the K°, and with th e

2-n decay mode dominant, then its mass would determine the magnitude an d

sign of the 2rc contribution to Lam . However, experiments show that no

such resonance exists, unless we are to identify our resonance with th e

unconfirmed pole E. (600) . Thus the 2rc state probably does not make an

important contribution to Am . The 77 0 ,n° and P ° (p wave 2n) state s

contribute only to the K2 self-energy . The 7< and r1 contributions are

given by

( om),,, i =

	

(4 H&c

	

=

	

(1/2mK)(((Iae, .l 2)A

	

- mn))

	

-
2

((lai.) .i2)/(m~ - ~)

	

(7 .3 .47)

where aKo n . is proportional to the amplitude of the deca y

K°

	

> 7c° +

	

-7c°

	

,

	

(7 .3 .48 )

and similarly aKo r is proportional to the amplitude of
2

K°

However, it is not usually possible to calculate the amplitudes for the

decays (7 .3 .48) and (7 .3 .49), even in terms of the whole K2 decay rate .

u(3) (see chapter 8) does make this possible, but the predictions of exac t

5J(3) are contrary to the experimental value of am, and the degree of 55(3 )

violation is not, at present, known . Contributions to am may also come from

the vector mesons e (770) and W(783), and from the axial vector meson s

Al (1100) and W'(1675) . However, onceagain, the amplitudes a are not known ,

and so no calculation of Ll m is possible .

The experimental value of am is perhaps the best evidence a gainst

1pYl = 2 transitions . For if these were allowed, then K0 - K0 co mputation

could occur without an intermediate state of zero hypercharge, for exampl e

K ° 	 > n* fi	 a A + I d

	

>2

	

.

	

(7 .3 .50 )

In (7 .3 .50), both the first and last transitions would occur by the stron g

interaction, while the middle one would still take place via the weak interaction .

However, since (7 .3.50) is a first-order weak interaction, we find that it s

> ~0
(7 .3 .49)



contribution to .Am is such greater than that of, for example, (7 .3 .39) .

„Ramming over all reactions of the type (7 .3.50), we find tha t

ISm

	

( G 2)/(G
m)2

	

( 1 /T l )

	

105 ( 1/Tl ) ,

	

(7 .3 .51 )

where G is the weak coupling constant. If only11Yl = 1 transitions ar e

allowed, then

am

	

(1/T1 ) .

	

(7 .3 .52 )

(7 .3.52) is in near agreement with experiment (7 .3.38), but (7 .3.51) is i n

violent disagreement . This means that we may set an upper limit on th e

I QYI

	

2 amplitude of 10- 5 .

7 .4

	

Cr Violation .

In 1964, Christenson, Cronin, Fitch and Turlay (11), while studyin g

regeneration phenomena, detected the decay

K2	 >277 ,

	

(7 .4 .1 )

showing that UP was violated . A target was placed at 30 0 to a 30-GeV proto n

beam. Gamma rays from this target were attenuated by placing a 4-cm-thic k

lead block behind it, and charged particles were removed from the secondary

beam by means of an electromagnet . The beam was then collimated, and 18 m

further on, a second lead collimator led it into a helium-filled bag .

Decay products from here were detected by means of two spectrometers place d

symmetrically 220 from the main beam . Each of these spectrometers consiste d

of a pair of spark chambers separated by a magnet and triggered by scintillatio n

counters and a water Cerenkov detector . The spark chmabers were triggered i f

and only if a main beam particle decayed into charged particles with velocitie s

greater than about 0 .75 c . Decays of the type (7 .4.1) were detected in th e

following manner . then two particles of opposite electric charge were detecte d

in coincidence by the spark chambers, the momentum and effective mass, o n

the assumption that the two particles were pions, was calculated . The effectiv e

or invariant mass was found from the formul a

Neff =

	

° 2 ((xi -t ;.2 ) 2 -+ c2(i1 + 22 ) 2)

	

(7 .4 .2 )

using

Ei

	

=

	

(c 2 pi + x 2 c 4 ) 2 .

(7 .4 .2) correspondedto the rest mass of the decaying particle if



the particle decayed by the mode (7 .4 .1) . For this decay ,

Neff

	

I

	

493

	

i eV/c2 ,

	

(7 .4 .4 )

but for the normal decay

K2	 	
0

	 > n + -r -R +7

T since only the charged pions are observed ,

280 MeV/c 2 < Neff < 363 MeV/c 2 .

2

280 MeV/c 2 < Nef f
For the reactions (7 .4 .7) and (7 .4 .9), i~eff would vary smoothly, and woul d

not be peaked around 493 MeV/c 2 , as for the modes (7 .4 .1) and (7 .4 .5) . In a

two-body decay, the sum of the three-momenta of the decay products and th e

initial direction of the decaying particle should be the same, but for three -

body decays, the two vectors are usually at an angle to each other . By both

angular and effective mass measurements, it was found that 45 *- 9 out o f

22 700 K2 particles decayed via the 2n mode . This number was at least an

order of magnitude too large to be explained by regeneration of K 's in th e

helium or elset,here . Christenson et al . showed that
o

B

	

=

	

*''(K2	 `+	 - )

K

	

_

	

(2 .0 ± 0 .4) x 10 3, (7 .4 .11 )2 -~ all charged modes )

and

1'1*-I = W(K2—i~ t+n~/h(Kl--fin ++ nl

	

_

	

(1 .90 ± 0 .05) x lO 3 .

(7 .4 .12 )

CB violation has also been observed in the deca y

K2	 > -c° 1_ no

	

(7 .4 .13 )
One technique (12) used to detect (7 .4 .13) was to observe gamma rays produce d

by the decaying "77 ° mesons by means of metal plates, in which the 'pair production '

reaction

Y	 >e + + e

	

(7 .4 .14 )

took place . One difficulty encountered was to correct for decays of the type

(7 .4 .5 )

(7 .4 .6 )

Fo r

K2

280 MeV/c 2 < Neff
and fo r

0

,r + V (7 .4 .7 )> ,

< 516 14eV/c 2 , (7 .4 .8 )

r + e

	

v (7 .4 .9 )+

	

,

< 536 ideV/c2 . (7 .4 .10)



K2	 >3n°

	

>6 Y ,

	

(7 .4 .15 )

when two of the final gamma rays did not materialize, simulating a 27C decay .

This correction was made by means of the 'lh .onte Carlo' computer calculation ,

in which decaysof the type (7 .4 .16) were tested to find out how often the y

would simulate (7 .4 .13) decays . Another method used to observe (7 .4 .13) was

(13) to measure the energies of the final gamma rays from 77° decay . Only

in the 2 77T° decay will a gamma ray have an energy of above 170 KeV in th e

c .m .s . system of the K° . The Y -ray energies were found by a spark-chamber

magnetic spectrometer, but transformation to the K° c .m .s . demanetai a knowledge

of the IC° momentum . This was obtained by regulating the beam in short bursts ,

and making time-of-flight velocity measurements . Knowing the kaon mass, th e

momentum could thus be calculated . The rate for 2TC decay as a fraction of

37 decay was deduced by measuring the number of gamma rays with energie s

above and below 170 KeV . Correcting for processes other than (7 .4 .15) which

could produce low-energy gamma rays, the resul t
i

	

I

	

I>(K °	 2

	

°)

	

_

	

(2 .9 ± 0 .5) x 10—3

	

(7 .4 .16 )
00

	

W(Ki--= 2 71- )

was obtained . The currently acknowledged values of the K2 decay CP violatio n

parameters are (14 )

ha-1

	

=

	

(2 .17 i 0 .07) x 10 —3 ,

	

(7 .4 .17 )

I tlool

	

_

	

(2 .25 ± 0 .09) x 10 -3 .

	

(7 .4 .18 )

we write the total weak Hamiltonian a s

H'

	

=

	

H

	

+

	

H

	

,

	

(7 .4 .19 )w

	

w
where H is the usual weak Hamiltonian, which we assume obeys .aYl = 1, andw
H- is our new CP violating Hamiltonian. The final pions in the decay (7 .4 .1) ,

since they have zero total angular momentum, must be in an I = 0 or an

I _ 2 state . We define the quantities :

a _

	

(<I=oH'JI:2>)/(<I=o1H' K1>) ,

	

(7 .4 .20 )

'

	

(<I=2I

	

IK°>)/(<I=2IH:) ,

	

(7 .4 .21 )

ca =

	

(< I=218WII :1>)/(<I=o IHt'tKl>) ,

	

(7 .4 .22 )

O«_

	

L~,- IeJe .

	

_

	

(a 2 (t -))/(al(+ -)) ,

	

(7 .4 .23)



rl o0

	

1%01
e000o

	

=

	

(a2(oo))/(al(oo))

	

,

	

(7 .4 .24 )

('

	

(al(+-))/(al(oo))

	

(7 .4 .25 )

rornere 121 +- 1 and 1900i were defined in (7 .4 .12) and (7 .4 .16) respectively .

We now write (7 .2 .19) a s

IK0 ,

	

( 1 / J-2) (p1 K °>

and (7 .2 .20) :

(7 .4 .26 )+ (I IK °> )

q 1r> )

K o

If

In

(1/f) (p1K°>

where KS and K° are defined

K°S

>3n

there were no C? violation, then
Kos ,

	

2°2 = K r~ .

terms of the quantaties p and q in (7 .4 .26) and (7 .4 .27), we

(p — q)/( p + q)

(7 .4 .29 )

(7 .4 .30 )

find tha t

(7 .4 .31 )

2- s

A similar relation holds for g' . We now see that E and e' are measures of

CP violation, since if there exists perfect CP invariance ,

p = q = 1 ,
so that (7 .4 .26) becomes (7 .2 .19), and

0 .

If both CP and CPT invariance hold, then we also hav e

= 0. (7.4.34 )
However, in the event of CP violation, only one of the relations (7 .4 .33) and
(7 .4 .34) must be true . We see that w(7 .4 .22) is a measure of the validity o f
the 1 A II = e rule (6 .7 .1), since, if the rule is satisfied, no transition s
to an I = 2 final state are allowed . KScperiments indicate (15) that

1/20 .

	

(7 .4 .35 )

(7 .4 .32 )

(7 .4 .33 )

Assuming 1w1 2 to be near zero, we find that

e + ( 1/5)G' ,

00

	

ti

	

E — / E '

(7 .4 .36 )

(7 .4 .37 )
so that

161

	

4

	

(2/3)17 +— I

	

+

	

( 1/3)11 00 1

	

(7 .4 .38)



E I

	

<

	

(.1/3)(Ir)*_1

	

+

	

fn °° 1)

	

.

	

(7 .4 .39 )

Using the experimental values (7 .4 .17) and (7 .4 .18), we obtain

le I < 3 x 10—3 ,

	

(7 .4 .40 )

le '1 G 2 .9 x 10—3 .

	

(7 .4 .41 )

We may show tha t

<Kl IK2>

	

_

	

(Ipl 2 - 141 2 )/(1 p12 +
(
g l 2)

	

4

	

2/e1 .

	

(7 .4 .42 )

Thus the states K1 and K 2 are nearly orthogonal, i .e . they have only a small

overlap . From our definition of Ki and of K2, we see that the value o f

(7 .4 .42) is a measure of the CP violation in the K ° - K° system, and it woul d

evidently be zero if there were no CP violation . In (7 .4 .23) and (7 .4 .24) ,

we wroteq
+-

and
00 as the product of a magnitude and a phase . The magnitude s

have been found by measuring the ratio of CP-violating to CP-conserving decay s

(7 .4 .17), (7 .4 .18), and the phases by measuring interference between th e
decays (7 .3 .34) and (7 .3 .35) . The time-dependent interference term i s
proportional to

(0 t - 0+- ) ,

	

(7 .4 .43 )
and thus the determination of 0+ _ is sensitive to the value of Gym . Using

the value (7 .3 .38), experiments give (16 )

(46 2 15)° .

	

(7 .4 .44 )
Studies of interference decay product angular distribution yield (17 )

(46 .6 ± 2.5) ° .

	

(7 .4 .45 )
The value of Re E may be found from measurements of charge asymmetry i n
the reactions

I

	

t ' + 1 ' + vl

	

,

giving (18 )

Re b

	

=

	

(1 .09 *- 0 .18) x 10 —3 .
Assuming

I looi

	

=

	

I'+- 1
we find tha t

G E

	

_

	

(42.7 ± 1 .3) 0

Goo (49

	

*_

	

13)° ,

and we see that the value ofle'I must be small compared withf a

CPT invariance implies the precise equality of the total

(7 .4 .46 )

(7 .4 .47 )

(7 .4 .48 )

(7 .4 .49 )

(7 .4 .50)



K4

	

>37r

	

(7 .4 .51 )

and for

K

	

%3n

	

(7 .4 .52 )

W(K---) IT

	

- n')

	

1 .0004 *— 0 .002 ,

	

(7 .4 .54)

which is consistent with no deviation between the partial rates for (7 .4 .51 )

and (7 .4 .52) . A more satisfactory test of CP invariance in the decay s

K 1 )3n (7 .4 .55 )

is afforded by measuring the final-state energy spectrum . If CP is conserved ,

then this should be identical for the K' and the K—. Experimental measurement

of the slopes in the spectra for the decays (7 .4 .55) yield (20 )

	

(+ + —)

	

=

	

0 .11 1 0.015 ,

	

(7 .4 .56 )

S (— — +)

	

=

	

0 .115'_-0 .02 ,

	

(7 .4 .57 )

which is consistent with CP invariance .

If CP were exactly conserved, then the decay

Ki	 ~C+ + C

	

i

	

(7 .4 .58 )

although not forbidden (see 7 .2), would be inhibited by an angular momentum

barrier factor of order

(0/q` ) 2

	

-

	

1/200 ,

	

(7 .4 .59 )

Q being the disintegration energy of the decay (7 .4 .58) . Such a low rate i s

effectively unobservable because of the large background o f

K2	 ~3r<

	

(7 .4 .60 )

decays . However, the deca y

or

f(++ —)

	

I— (0 0+)

	

_

	

(— (— — +)

	

r 1—( o 0 —) .

	

(7 .4 .53 )

However, the Dalitz plots for the processes (7 .4 .51) and (7 .4 .52) are no t

congruent, because of the existence of a final-state strong interactio n

between the pions. Thus, different rates for the (* e —) mode of the K

and for the (- - +) mode of then decay would constitute evidence fo r

CP but not necessarily for CPT violation . However, simple consideratio n

of the symmetric isoapin state (6 .3 .66) for the final pions also yields a n

equality of the partial rate s4 for (7 .4 .51) and (7 .4 .52), no that thi s

is not a sensitive test of CP invariance . Experimentally (19) ,

W(K—) 7c '+ 7~ -+ 	 —)



K1	 3 .R
0

	

(7 .4 .61 )

is forbidden by CP invariance, since the 'P P' s in the final state are identica l

particles . Writing

(A1 (+ - 0))/(A 2 ( t - 0))

	

= x(+ - 0)

	

+

	

j y(

	

- 0) , (7 .4 .62)

experiments show that (21)

0.32 , (7.4 .63 )x(+

	

-

	

0)

	

= 0 .14 *

y(+

	

-

	

G)

	

= 0 .33 0 .61

	

, (7 .4 .64)

excluding any CP-violating amplitude with greater strength than the CP-coneexvin g

one in (7 .4 .61) . Further experiments (22) yiel d

(9000l
2

	

G

	

1 .2 .

	

(7 .4 .65 )

Alternatively, we might reveal CP violation in charge asymmetry in the deca y

KL	 ++~ +

	

(7 .4 .66 )

However, experiments (23) show tha t

A

	

=

	

i1(T

	

>

	

T,,-)/ (7,,, < T

	

)

	

_ (0 ± 5) % , (7.4 .67 )

which is consistent with GP invariance .

Finally, we consider CY violation in the semileptonic decays of th e

K° . Assuming that

	

LS,'l/ dQ =

	

1 or -1, we have four decays to discuss :

> 7tK°

	

+ 1+

	

+ vi

	

, (7 .4 .60 )

"K° 1

	

+ vl

	

, (7 .4 .69 )

> Ts ' 4K° i + vl

	

, (7 .4 .70 )

K°

	

>

	

+ i'

	

+ vl (7 .4 .71 )Tc

As we saw above, CP violation in hadronic decays does not necessarily involve

E C ; (7.4.72)

but the semileptonic decays, since they have only I = 0 in the final state ,

do demand e

	

0 for GP violation, making them of special interest .

Neglecting the final state interaction between the mc- t and 1*, CPT invarianc e

implies congruent Dalitz plots and equal and opposite /A polarization i n

K
13

and 13 decays. In most experiments, K° and i{ ° beams are allowed t o

propagate in vacuo until the short-lived component es has compl e tely die d

out through 27i decay, so that only K_°'s remain, whose semileptonic decay s
L

(7 .4 .68), (7 .4 .69), (7 .4 .70) and (7 .4.71) ray then be studied . CP violation

in these decays will cause a slight departure from the CP-invariant forms o f



Dalitz plot and muon polarization . Writin g

X

	

=

	

(A(AY/o7

	

-1))/( A ( L Y/OQ = +1)) ,

	

(7 .4 .73 )

CP invariance implie s

i (1+)

	

1 + 4 Re o ~11 +

	

(7 .4 .74 )
w(1- )

neglecting higher powers of 6 . Thus, by studying charge asymmetry, we may

find a value for d so long as we know X from other sources . However ,

even if X = 0, the semileptonic Xo decays should exhibit charge asymmetry

if e

	

0 . The parameter

	

?!(1+ )	 - `(1_ )
(1)

	

_

	

v( 1' ) + i41 )

has been measured experimentally as (24 )

S(e) _

	

(2 .24 f 0.36) x l03

	

(7 .5 .76 )

L (N)

	

(4.05 ± 1 .7 ) x l0 3

	

(7 .4 .77 )

yielding

"(e+)

	

_

	

(1 .0043 1 0 .0007) ,

	

(7 .4 .78 )

_,~w* >
rrc~_)

	

_

	

(l .00el

	

o .00z7)

	

(7 .~+ .79 )

Statistics show that the departure from unity in (7 .4 .78) and (7 .4.79) i s

significant, but that the inequality of electron and muon values is no t

significant, so that electron-muon universality is upheld . An average of the

values (7 .4 .76), (7 .4 .77) give s

1''l-	 iXi
21

L

	

2 Re 11 + API

	

_

	

(2.32 f 0.35) x l0 3

(7 .4 .80 )

However, we see that we cannot determine X and E separately from (7 .4 .80) ,

and thus we need an independent value of X . Assuming X = 0, we hav e

Re rc = (1 .16 ± 0.18) x 10 3 , (7 .4 .81 )

but Re G is very sensitive to the value of X, and measurements on decays suc h

as

Z+	 )n + 1+ t vl

	

(7 .4 .82 )

have only set an upper limit of 0 .1 on I X ) 2 . Thus we must determine th e

magnitude of the complete factor

(7 .4 .75)



	 + IXl

	

(7 .4 .83 )

by experiment . heasurements of the relative intensity of the regenerate d

KS component in a Ko beam give the value of (7 .4 .83) as (25 )

(1 .06 t

	

0 .06)

	

, (7 .4 .84 )

and thus we obtain

Re e-

	

(1 .09 t 0 .18)

	

x

	

10 3, (7 .4 .85)

which is close to the value (7 .4 .81) for which we assumed= C . Thus w e

have established some degree of CP violation in the K semileptonic decays .

	

7 .5	 hodels for CP Violation .

When CP violation was first detected in the decay (7 .4 .1) a number o f

theories were advanced to account for this effect . One was that the Bos e

symmetry used to calculate the CP parity of the two-pion system was incorrect ,

but this was invalidated by the observation of the decay (7 .4 .13) . Another

suggestion was that the decay

	

x2 	 >S + K1

	

>s

	

(7 .5 .1 )

took place, where S is a particle with CP = -1 and with a mass less than th e

Ki - KS mass difference . However, if this were the situation, then n o

interference between the K2 final state yr + n "$ and the K1 final state "'n

would be expected, but this definitely occurs . A further explanation wa s

that the effect was due to a long-range 'galactic' interaction (26) which coupled

with different strength to matter and antimatter and hence to the K o an d

O . Thus, in a region in which matter exists in greater quantities than

antimatter, the 'galactic' interaction would cause the KL and es to be a

mixture of CP eigenstates . However, this theory predicts the rate fo r

the decay (7 .4 .1) to be proportional t o
2 J

	

}~

	

+

	

(7 .5 .2 )

where Y is the Lorentz factor (see appendix A) and J is the spin of th e

quantum or propagator (see chapter 9) of the new field . L7cperiments on

the reaction (7 .4.1) for varying KZ momenta have shown that there is no

observable velocity-dependence for the reaction rate .

We write the total Hamiltonian of the strong, electromagnetic and weak



interactions a s

H

	

=

	

x +

	

a— ,

	

(7 .5 .3 )

where

CP H, (CP)-1 =

	

:

	

.

	

(7 .5 .4 )

From the existence of the decay (7 .4 .1) it is obvious that an interaction wit h

CP = -1 does exist, but its properties are almost unknown . The CP-violatin g

reactions may be classified according to their hypercharge selection rules .

We first consider the case in which H_ is a LsY = 2 operator. We writ e

Ii = HH0 t HW , (7 .5 .5 )

where H0 is the Hamiltonian for the strong and electromagnetic interactions ,

and HW is the normal CP-conserving weak Hamiltonian obeying the selection rul e

I LY 1

	

=

	

1 .

	

(7 .5 .6 )

Since all the weak hadronic decays obey (7 .5.6), H_ cannot be the Hamiltonian

responsible for them . However, H has its effect by giving nonequal off -

diagonal terms to the mass matri x 5, causing p q in (7 .4.26), and hence a

nonvanishing amplitude for the decay (7 .4 .1) . In order to account for th e

observed branching ratios, we find that the contribution to the

	

= 2

amplitude made by H- must be about i

	

times that from second-order

aY = I CP-conserving effects . Thus H - describes an interaction with coupling

constan t

, 10-9 (G 4/4=) ,

	

(7 .5 .7 )
where G is the usual weak coupling constant :

G m

	

6v

	

10- 5 .

	

(7 .5 .8 )
Because of its small coupling constant (7 .5.7), the interaction H_ (pY = 2 )
is known as the superweak interaction . It was first postulated by

i,blfstein in 1964 (27) . Neglecting terms of order 1 0-9 , we find that there

will be no other CP-violating weak effect except for those associated wit h

the I( 0 , since it is for this state only that terms of orde r

(F4/477)(0m:/47c) 2

	

10-3

	

(7 .5 .9 )
appear through the existence of the mass matri x 6. The superweak interaction

model assumes that the normal weak Hamiltonian is T invariant, so that th e

amplitudes ai appearing in the definitions (7 .4 .23), (7 .4 .24) and (7 .4 .25 )
must all be real . We now introduce the definitions



=

	

((P - q(-2/a2))/(P } 4))(a /ao ) e' 'x ,

	

(7 .5 .10 )

((P + 9(aja 2 ))/(P * 4))(a 2 /ao ) eCx ,

	

(7 .5 .11 )

where a r now represents the amplitude to the state with I = r (previously ,

it denoted the amplitude for the KT decay into a particular channel) . The

reality of amplitudes thus implie s

E '

	

=

	

E W

	

(7 .5 .12 )

-

	

E

	

=

	

~oo

	

(7 .5 .13 )
From the so-called 'unitarity condition' 7 ,

((amT8 2Re +

	

Im(e-'*W)) _ Re6 tan €e,

	

(7 .5 .14 )

we obtai n

(2Lm)TS Re e

	

=

	

Rea tan eE (1 + IWI 2) ,

	

(7 .5 .15 )
making use of (7 .5 .12) and (7 .5 .13) . Neglecting ta t , (7 .5 .15) yields

tan0E =

	

2 Lm T s ,

	

(7 .5 .16 )

Be

	

=

	

(42 .7 ± 1 .3) 0 .

	

(7 .5 .17 )
Thus, from (7 .5 .13) we predic t

e+ -

	

_

	

000

	

-

	

(42.7 ± 1 .3) 0 ,

	

(7 .5 .18 )

which is correct within experimental error (7 .4 .44), (7 .4 .45), (7 .4 .50) .

However, the predictio n

=

	

(7 .5 .19 )
does not agree with experiment (7 .4 .17), (7 .4 .81) . The final predictio n

oo

	

6

	

(7 .5 .20 )

has not yet been tested, due to lack of satisfactorily-accurate experiments .

The second case which we consider is that when H_ is a L Y = 1

operator . Here ii has the same hypercharge selection rule as the normal

weak Hamiltonian H
w , so that most weak interactions should have CP-violating

amplitudes . Taking the example (7 .4 .1), we find tha t

F/G -- 10-3 ,

	

(7 .5 .21 )

where F is the coupling constant of the CF-violating Hamiltonian H_ .

However, as we have mentioned above, experiments have failed to reveal

definite CP violation in any other weak processes, although the level o f

accuracy is rarely 10-3 . Thus, until further experiments have been performed

we have no method of deciding between the weak and superweak interaction



theories . We now discuss two particular models for the QY = 1 CP-violating

Hamiltonian H_ . The first postulates that CP violation occurs in the

Lll = 3/2 part of the weak hadronic Hamiltonian (28) . If it were definitely

established that

1% 0 1

	

1(4_1

	

, (7 .5 .22 )

then this would favour the 4 I = 3/2 model, since e ' could no longer

be small compared to a , and there would have to be GP violation in the

AI - 3/2 component of the hadronic Hamiltonian . However, if (7 .5 .22) i s

not true, i .e .

I 7ool

	

IrL
I

	

,

	

(7 .5 .2. 33 )

then CP violation must occur exclusively in the a I = 1 part of the

Hamiltonian . Assuming that the CP-violating interaction satisfies an exac t

pI = 3/2 selection rule, while the CP-conserving one satisfies exactl y

pI

	

Z, we find tha t
(p2/q2)

	

(( I - E)/( l * E )) 2 ,

	

(7 .5 .24 )
which may be shown to imp ly that neither the a nor the Ke receive self-energy

contributions from the 27(- channel . From (7 .5 .24) it seems likely tha t

will be very small, so that the decay (7 .4 .1) must occur primarily becaus e

Im (a 2/ao )

	

0

	

(7 .5 .25 )

(isospin definition), indicating that

(7 .5 .26 )

(7 .5 .26) is not favoured by current experimental evidence, sinc e

and

Re E

	

1 .1 x 10-3 ,

so that

1.89 x 10- 3 ,

	

(7 .5 .27 )

(7 .5 .28 )

<

	

E

	

(7 .5 .29 )
Thus we are forced to conclude that the AI = 3/2 model is probably no t
correct .

The second model for the Hamiltonian H- (~Y

	

1) which we conside r

is known as the 'semiweek' model {29) . This is based on the observatio n
that the characteristic amplitude for a first-order CP-conserving weak process



is in the order of

(Gmfj/47x)

	

"as'

	

10-6 ,

	

(7 .5 .30 )

whereas that for a CP-violating one i s
(Cr2

/4n )3/2 ,f 10-9 .

	

(7 .5 .31 )
We then postulate that both CP-conserving and CP-violating hadroni c

processes are due to a fundamental semiweak CP-violating interaction wit h

coupling constant
i

f (c, .!/41t)1 io- 3 . (7 .5 .32 )
By a sutiable choice of conditions, we ensure that all first-order matri x

elements vanish, that all CP-conserving normal weak processes have second-

order tratrix elements, and that the third-order matrix elements describ e

CP-violating processes . We choose the semiweak Hamiltonian :

H ow

	

=

	

f(2 /2 xr ) +;r ,

	

(7 .5 .33)

where N
r

is a neutral current with AY = 0 and )DY1 = 1, but with n o

.aY = 2 co mponents . We find that H
r

can be so constructed that the firet -

order matrix elements vanish because of momentum conservation . However, i n

the second order, we predict

	

= 2, which is inconsistent with experiment .

This problem is overcome by postulating that the AY = 2 part vanishes, which

is found to be equivalent to demanding that a particular commutator vanishes .

The third-order terms give correct predictions for CP-violating reactions .

The 'semiweak' hypothesis may provide the basis for a unified theory of th e

weak interaction .

In the third case, H_ obeys AY = 0 (it contains no leptoni c

component) and violates C and T but conserves P, and thus violates CP .

Here, CP violation occurs as a result of the cross-term Hi ~
-

appearing in
rr

the second-order matrix elements . This means that in both strong and wea k

processes (including electromagnetic interactions), there must exist a C an d

CP-violating amplitude which is about ~? I -a 2 x 10-3 times as large as

the C and CP-conserving one . Thus we may test this model by searching fo r

C and CP (or T) violation in strong and electromagnetic interactions, . Sinc e

the amplitude for the process (7.4.1) is of the same magnitude as the coupling

constant of the electromagnetic interaction, it has been suggested (30) tha t

CP violation might be caused by the electromagnetic interaction . The ratio



Hoo /1t-I

	

(7 .5 .34 )

is consistent with models in which C? violation in weak processes is du e

to CP violation in the electromagnetic interaction, since the final two-pio n

state in the decay (7 .4 .1) may be any admixture of I = 0 and I = 2 states .

To the weak interaction, models with differing values of nY probably appea r

identical, but in the AY = 0 case, we should expect sizeable C- and T-violating

amplitudes in the electromagnetic interaction . ?fie split the total hadroni c

electromagnetic current into two components :
Jem

=

	

jem +
Kem

, (7 .5 . 335 )
r r r

where
C 1

	

=

	

-
.em (7 .5 .36 )C J em

C Kr C 1

	

= Kr (7 .5 .37 )

Thus K is the C-violating amplitude . As usual, the total current must be

conserved :

( ')/Z xr ) Jim

	

0

	

. (7 .5 .30

; ;e now define two types of charge :

QJ

	

=

	

- j

	

j em(x, t) d 3x

	

, (7 .5 .39 )

-j

	

f

	

K 4 (x, t ) d 3x (7 .5 .40 )

The total charge of a system is given by

Qto t

	

QJ

	

+

	

QK (7 .5 .41 )

Obviously, for any known particle

5K

	

Particle>

	

=

	

0

	

, (7 .5 .42)

since the signs of the charges on all known particles are reversed by th e

operator C . It is usually acknowledged that (7 .5 .42) is true for all particles

although there is little justification for this assumption .

In order to test the hypothesis outlined above, we must search fo r

C and T (or CP) violation in electromagnetic processes . The reaction

+It o

	

(7 .5 .43 )
must proceed electromagnetically, since it violates G parity (see 5 .3) . I f

(7 .5 .43) is C-invariant, then the paramete r

A

	

=

	

( N (Kn,> nn .)

	

«(E,' > E,..))/(y(;.

	

,.)

	

.;(c,_> E,c~)



will be zero . A number of experiments have been carried out for the purpos e

of evaluating A, of which we discuss two . In 1966 Larribe et al . (31 )

obtained q particles by the interaction of 0 .82 GeV/c n 1- mesons wit h

liquid deuterium in a bubble chamber according to the reactio n

n 4-+d

	

9+p .

	

(7 .5 .45 )

Eta decays were identified by a short proton recoil, and particle energie s

were found by kinematic fitting . In all, 21 000 events were measured, o f

which 765 fitted the reaction (7 .5 .45) . This experiment yielded

A

	

=

	

-0 .048 ± 0.036 ,

	

(7 .5 .46 )

which is consistent with C invariance. A much larger number of events may be

measured if spark chambers are used instead of bubble chambers, and n n

experiment using spark chambers was performed by Cnops et al . (32) . Here ,

particles were produced in a liquid hydrogen target by inciden t

mesons with momenta of 0 .713 GeV/c according t o

+ p	 in + r) .

	

(7 .5 .47 )

The neutron momentum was measured by time-of-flight analysis in order t o

find the precise 9 o energy . After a specified time interval, two spark

chambers were triggered if and only if they received two oppositely-charged

particles, corresponding to the charged pions of eta decay . In order t o

avoid errors caused by the asymmetry of the magnetic field used to separate

the decay pions, this was reversed half-way through the ex p eriment . By th e

end of the experiment, 10 665 events fitting the reaction (7 .5 .47) had been

studied, yielding

A

	

=

	

(0 .3 ± 1 .1) % .

	

(7 .5 .48 )

Parity conservation may easily be checked for the electromagneti c

interaction by attempting to observe nuclear transitions which violat e

parity. By this method, the upper limit for electromagnetic P violation ha s

been set at l0 3 . P invariance in the strong interaction has been investigate d

in great detail by studying nuclear decays . In 1971, Krane et al . (33 )

polarized hafnium-180 and observed

	

spatial asymmetry in its decay gamm a
rays, demonstrating that a suall component of the strong interaction violate s

parity . Time reversal invariance in the strong interaction has been verified

by measuring the rates for the reactions (34)



p

	

+

	

P.127

	

o< t 1 24

	

(7 .5 .49 )

and these have been shown to be ecuel to an accuracy of better than 0 .35 .

The best test of electromagnetic T invariance is the measurement of a

possible electric dipole moment (ED ; ;) of the neutron . The Hamiltonian fo r

electromagnetic interactions between the electric- and magnetic-dipol e

moments of the neutron may be written

H

	

=

	

6 .Fi

	

C
6 .~

	

, Pm

	

(7 .5 .50 )
I

	

—

	

e - -
where e m and le

are the magnitudes of the magnetic- and electric-dipol e

moments, 6 is the spin vector and H and ] are the magnetic and electri c

field vectors . It is obvious that H and 6 are even under P and odd under T ,

while E is odd under P and even under T . Thus the contribution to th e

Hamiltonian due to the magnetic-dipole moment is invariant under both P an d

T, while that due to the electric-dipole moment changes sign under both of thes e

operations . Hence a nonzero neutron EDH would imply P or T violation in th e

electromagnetic interaction . Writing (X = c

	

1 )

Egg

	

e .f .10 9 /H

	

1019 f (e cm),

	

(7 .5 .51 )

where e is the electronic charge and f is the T or P-violating amplitude ,

we may measure the neutron ED? ; . In the experiment of Dress et al . (35) ,

thermal neutrons from a reactor were 'cooled' by passage through a narro w

tube of polished nickel with radius of curvature 1 m. Since the critical

angle for neutron total internal reflection is inversely proportional to

velocity, only low-energy neutrons were tranmnnitted through the tube t o

strike a magnetized cobalt-iron mirror at grazing incidence . The neutro n

beam was thus 705 spin-polarized transversely to its direction of propagation .

Having traversed a spectrometer, the neutrons impringed upon an analysing

magnet similar to the polarizer, and were reflected to a neutron-sensitiv e

scintillation counter . The tranmooitted intensity is obviously greatest fo r

those neutrons which do not suffer depolarization in the spectrometer . The

spectrometer consisted firstly of a 10 G uniform magnetic field which caused

the neutrons to precess with the Larmor frequency (36 )

vL = )AH/h, (7 .5 .52)

where p. is the neutron magnetic moment and H is the strength of the externa l
magnetic field . Secondly, an HP field with frequency v was applied to the



neutron beam, so that at resonance ,

v

	

vl

	

25 Y ;z

	

(7 .5 .53)

the neutron beam was partially depolarized, changing the transmitted inten ;;ity ,

I . Finally, a reversible electric field E of 100 kV/cm was applied in th e

same direction as the constant magnetic field . The experiment consisted o f

observing the change in I when c was reversed. If the neutron possessed a n

EDE in the same direction as its spin, then E would produce an additiona l

small precession for constant v, thus changing I . No effect of this type wa s

observed, so that

nD"neutron 3 x 10
22

e cm (7 .5 .54 )

Comparing (7 .5 .54) with (7 .5.51), we see that the experimental value for th e

neutron EDN sets an upper limit of 1 0-2 on the T-violating amplitude in th e

electromagnetic interaction . Thus it seams likely that GP violation in th e

weak interaction is not caused by C or T violation in another known interaction .



CHAPTER EIGHT :

	

THE WEAK INTERACTION AND SU(3) .

8 .1	 The Group SU(3) .

SU(3) is an infinite group consisting of all unitary and unimodula r

3 X 3 matrices, such tha t

M M+

	

I ,

	

(8 .1 .1 )

det M

	

1 .

	

(8 .1 .2 )

A useful method for studying groups is to employ Lie algebra (1) . By definition ,

any matrix M belonging to a matrix group must possess an inverse
1

.

Thus there exists a matrix A such that

M _

	

e =

	

I + A . (A 2/2!) t (A3/3!)	 (8 .1 .3 )

and hence A is the logarithm of M . The set of all matrices whose exponential s

also belong to the complete group G are said to constitute the Li e

algebra of G . For SU(3), we writ e

e ih .

	

(8 .1 .4 )

The unitarity condition (8 .1 .1) now yield s

MM +

	

=

	

e jh a 3h

	

I ,

	

(8 .1 .5 )

whenc e

M Mt = I ?I* M . (8.1 .6 )

Thus M and M* commute ; it follows that their logarithms also commute, s o

that

ejh a jh

	

eC(h-h

	

e

	

1 ,

	

(8 .1 .7 )

and henc e

h

	

=

	

h + ,

	

(8 .1 .8 )

i .e . h is Hexmitean . Thus we deduce that the Lie algebra of SU(3) consists

of 3 X 3 Hermitean matrices . Since these matrices must have three elements

on their leading diagonals, they must also have zero trace . Obviousl y

any member h of the Lie algebra of SU(3) may be expressed

h

	

=

	

P1 gi + P 2 g2 + P3 g3 +	
Pi g

i ,

	

(8 .1 .9 )

where pi are real parameters and gi are the generators of the Lie group . i



is the number of degrees of freedom of any matrix h . All 3 X 3 complex

matrices initially depend upon 18 real parameters . The condition (8 .1 .8 )

provides three real and three complex relations between the matrix

elements, and the tracelessness condition yields one further relation .

Thus we find that

i •

	

=

	

8 .

	

(8 .1 .10 )

One possible choice for the basis or generators of the Lie algebra of SU(3 )

is (2) :

q 1 0

gl

	

1 0 0

q 0 0

1 0 0

g3

	

0 -1 0

q 0 0

q 0 -f
g5

	

q 0 0

j 0 0

n-. ao

q 0 0

g6

	

0 0 1

q 1 0

1 0

g8

	

T

J

_ 0 1 0

0 0 -2

g7

g2 =

g4

q 0 0

q 0 -j

q j 0_

From (8 .1 .3), we see tha t

M

	

=

	

lim

	

(I

	

A/n)n ,

(8 .1 .11 )

(8 .1 .13 )

(8 .1 .14 )

(8 .1 .15 )

and henc e

A

	

=

	

lim

	

n (M(1/n) - I) .
n+~o

It may be shown that, for large n, the matri x

I + A/n

is an operator of the group G . It is known as an infinitesimal operator .

Similarly, as we shall see, the matrices-jgi form an explicit representation

of the infinitesimal generators of the group SU(3), which we denote by

F
i

.



We now consider the commutation relations between the SU(3 )

generators F i. For this purpose, it suffices to evaluate all commutator s

of the matrices g. , and thus we obtain

[ gi gji
2"k!8

fijk gk ,

	

(8 .1 .16 )

where fijk are the so-called 'antisymmetric structure constants' of SU(3) :

ijk

	

ILA

	

f

123 1 34 5

147 367

	

-

156 4 458 ,(3/ 2

246 .- 678 ,5/2

257 4-

Accordingly, the commutation relations for the generators are

[Fi , F j] =

	

k I3.

	

f ijk Fk ,

	

(8 .1 .17 )

which are the standard relations for the infinitesimal generators of a

group .

Within a given representation of SU(3), it is possible to specify

a particular state by giving the eigenvalues of this state under two

of the generators of SU(3) . Since

[F3 , F8~

	

=

	

0 ,

	

(8 .1 .18 )

the eigenvalues of a state under these two generators will always b e

simultaneously measurable . We immediately notice that g3 is simply th e

third Pauli spin matrix (5 .1 .4) bordered with zeroes in order to make it

a 3 X 3 matrix. Thus the eigenvalue of a particle state under F3 is simply

the I3 assignment of that state . Furthermore, we find that F8 is the hyper-

charge operator Y. However, F8 also commutes with F1 and F2 , so that

we may, in fact, diagonalize and hence measur e2 Z the total isospin operator ,

I 2 =

	

Ii + I2 + 13

	

,

	

(8 .1 .19 )

as well as Y and 1 3,at the same time . At this point, we note that ,

defining the electric charge operator Q in a similar manner as we did i n

5.1 ,

@

	

=

	

F
1 ,

	

(8 .1 .20 )

the Gell-Mann - Nishijima - Nakano relation (5 .3.22) is verified . Sinc e



there exist a number of irreducible representations of the group SU(3) i n

Hilbert or n—dimensional space, it is necessary to assign a further quantu m

number to each particle state in order to describe it unambiguously .

Initially, two numbers are needed to label each SU(3) representation. On e

is given by

F2 • = Z 81

	

F2 ,

	

(8 .1 .21 )

and the other, G, by a complicated third-order polynomial in Fi . The

formula for the number of states in an arbitrary irreducible representatio n3

i s

d(F, G)

	

=

	

-1(F + 1)(G + 1)(F + G rt 2) .

	

(8 .1 .22 )

d(F, G) is often known as the dimensionality of a particular representation .

We now append a table listing the simpler representations of SU(3) .

(F, G) d(F, G) Name

(o,

	

o) 1 singlet

(1,

	

o) 3 triplet

(0, 1) 3' triplet

(2,

	

o) 6 sexte t

(0,

	

2) 6 sextet

(1, 1) 8 octe t

(3,

	

0) 10 decuple t

(0,

	

3) 10 * decuple t

(2,

	

2) 27 27 — plet

The {3'3 representation is obtained by complex conjugation of the {3}

representation. The quantum numbensof the singlet representation {1 }

must obviously all be zero, o r

1

	

=

	

1 3

	

Y

	

=

	

0 .

	

(8 .1 .23 )

Since the group SU(3) was defined in terms of 3 X 3 matrices, there mus t

exist a three-dimensional representation of this group, along with furthe r

representations in higher dimensions . Thus {3} is the smallest non—

trivial representation of SU(3) . In order to find the values of Y and 1 3

for the three states ul , u2 and u3 in {3} , we must solve the two eigenvalu e

equations :



F3 ui

	

= 1 3(i) ui

	

, (8 .1 .24 )

F8 ui

	

= Y i ui , (8 .1 .25 )

where u
i
are the three unit 3-vectors . Multiplying the hypercharg e

operator F8 by J, we obtain

I2

	

Y

ul 1/3

u2 4
1/3 (8 .1 .26 )

u 3 0 -2/3

Thus the representation {3} contains

an

isospinor with Y

	

= 1/3 and

an

isovector with Y = -2/3 . Similarly, we find that the charges of ul , u 2

and u3 are 2/3, -1/3 and -1/3 e respectively . In 1964 Zweig and Gell-Mann

postulated that the states in the representation {3 might, in fact ,

have physical significance . They suggested that there exist so-called

'quarks' with fractional charges, which combine together to form th e

observed hadrons . We shall discuss the quarks in greater detail in th e

following sections . Finally, we note that there is also another representation ,

{ 3 '), whose infinitesimal generators are obtained from Fi by complex

conjugation.

8 .2

	

The Octet .

On multiplying the representation { 3 *3 by {3} , we obtai n

{3}

	

®

	

{3 ' }

	

=

	

{83

	

O

	

{i} ,

	

(8 .2 .1 )

so that we have a trivial singlet and a new irreducible octet representatio n

of SU(3) . Obviously, all particles in this octet must have zero baryo n

number, and hence they are identified with the mesons . We let Pb be th e

field operator representing the octet of spinless or pseudoscalar mesons ,

where the upper index a denotes the column within the 3 X 3 matrix concerned ,

and b the row . Thus we have

I, '> =
P1

10

	

-

	

0, 1, * 1'>

(8.2.2 )

17c> =

	

P 2 ! O>

	

=

	

1 8 ; 0, 1, -1>

(8 .2.3 )



In°>

	

= ( I/ ,r2)( P l -

	

P2 )

	

I0>

	

= 18+ 0, 1, 0>

(8 .2 .4 )

K> Pi 10> = I $; 1, 1, ' 4- '>

(8 .2 .5 )

IK0>

	

= P2 1 0> I 8 ; 1 ,

(8 .2 .6 )

l Ko >

	

= P3 10> 18 ; -1, 4-, '+>

(8 .2 .7 )

1K>

	

= P3 100 -I g ;

(8 .2 .8 )

9 0 >

	

_ (-3/ f) P3 10> 8; 0, 0, 0'>

(8 .2 .9)

The minus sign appears in front of some of the above states because we have

adopted the phase convention

I t I, 1 3 ~ J(I + 1 3 )(I t 1 3 + 1) 11, 1 3 * 1> . (8.2 .10 )

Since in field theory it is customary to talk of the destruction operato r

of the K°rather than of the creation operator of the K0, we now rewrit e

P
b

a
as a destruction operator in matrix form :

( 1/ .5)

	

+ (1/Jj)no

	

n +

	

K t

Pb

	

( 1
/

f6) t o - (1/T)no
Ko

K

	

B

	

(-2/5) r

(8 .2 .11 )

denoting the field operators of particles by their symbols . Alternatively

we may employ the so-called 'octet' notation, so that the particles i n

the pseudoscalar meson octet have wave functions which may be expressed

in terms of i (i = 1, 2, 3,	 8 ) . The conversion between the

matrix and octet notations may be achieved by means of the formula e

Pb (x)

	

=

	

(1/J2)	 i = 8 (gi)ab c i (x) ,

	

(8.2 .12 )
1

	

I)

(x)

	

=

	

(I/f) 2- a,b 31 ( gi ) b Pb (x)

	

(8 .2 .13 )

where gi are the Gell-Mann matrices (8 .1 .11) . Thus, explicitly, we may



write

n' (x)

	

( l /J-2 ) ( 4) 1 (x)

	

v

	

J $ 2 ( x)

	

) , (8.2 .14 )

(8 .2 .15 )O (x)

	

4) 3 ( x )

K '̀ (x)

	

( i/J2) (4) 4 ( x )

	

+

	

3 § 5 ( x )

	

)

	

, (8 .2 .16 )

K ° ( x )

	

( 1Mf2) (4 6(x)

	

-

	

J4> 7 ( x ) ) (8 .2 .17 )

K O (x)

	

(1/T2) (P 6( x )

	

+

	

Jep. 7 ( x )

	

) , (8 .2 .18 )

q ' (x)

	

4) 8( x )

	

(8.2 .19 )

We may obtain another octet by the group multiplication

{3} ® (3} ® {3}

	

_

	

{i0) m (8} © {8) @ {13 .

	

(8 .2 .20 )

It is usually assumed that the fundamental states in { 3} have

B

	

=

	

1/3 ,

	

(8 .2 .21 )

and hence all the particles in the octets of (8 .2.20) must be baryons .

The first of these octets is usually taken to contain the J P = + 4 baryons ,

so that its field operator in matrix form become s

(vfg
) A0 + ( lm)zo

	

p

B b

	

(1/1-6) A° - ( 1fi )x. ° n

(-2/,1-6 ) A °

(8.2 .22) -

The corresponding operator Tat is given by

b
B

	

=

	

(B8)+
V

	

,4
so that

	

d

(11107, 0

	

( l/ J)F °

(i~f ) /- - ( 1/[2)

	

°

(-2/f)
n o

(8 .2 .24) -

The octet notation for baryons may be written down in complete analogy with

that for mesons :

(x)

	

_

	

( 1/f2) ( Iyt1 ( x )

	

J'yf2 (x) ) ,

	

(8.2 .25 )

1-

(8.2 .23 )

Ba
b

P



z o (x)

	

_ V3 (x) , (8.2 .26 )

p( x ) Jg5 (x) ) , (8.2 .27 )( 1/J) ( " 4 4 (x )

	

-

n(x) ( 1/f2 ) ((x)

	

- J17 (x) ) , (8.2 .28 )

(x) (1/1-2) (y4 (x)

	

+ Jlf 5(x) ) , (8 .2 .29 )

_0 ( x )

	

= (1/T2- ) hr 6(x) + J'

	

7 (x)

	

)

	

, (8 .2 .30 )

( x) (x)

	

. (8 .2 .31)

We now consider one of the most important predictions of SU(3 )

symmetry: the mass formulae . We know that the mass-splitting within

isotopic multiplets is caused by electromagnetic self-energy effect s

arising from the differing values of 13 within the multiplet . Similarly ,

the somewhat larger mass splitting within the SU(3) supermultiplets (octets

and so on) was attributed to the so-called 'medium strong' interaction (3) .

Although there is little experimental evidence in favour of a physica l

interpretation of the medium strong interaction, Ne'eman (4) has suggeste d

that its propagator (see chapter 9) might be the

	

(1020) . In (8.2 .20 )

we saw that there must also exist a decuplet representation of SU(3) [10} .

Its isospin and hypercharge content is given by

{10} (I, Y) (3/2, 1), (1, 0), (, -1), (0, -2) . (8.2.32 )

Upon graphing Y against 1 3 , we find that the decuplet forms a triangle .

If we draw an axis at 60 0 to the 1 3 axis, we create an axis of unitary o r

U-spin :

TY

1	 2	 1

0

-2
0

(8 .2 .33 )

We now make the assumption that the strong interaction is scalar in bot h

0

-2 -1
U

0



I- and U-spin, but that the electromagnetic interaction has a scala r

dependence upon U and a vector one upon 1 3 . Thu s

m(I, 13)

	

m° (I)

	

+

	

x (I) 1 3

	

(8 .2 .34 )

gives the charge-splitting within a particular isotopic multiplet .

Similarly, we assume that the mass-splitting between different isotopi c

multipleta is scalar in I and vector in U, so tha t

m(U, U 3 )

	

=

	

mo (U) +

	

y (U) U3 .

	

(8 .2 .35 )

Since

U3

	

=

	

Y - 4- Q ,

	

(8 .2 .36 )

and since Q is constant within any U-spin (or unitary) multiplet, (8 .2.35 )

become s

m(U, U 3 )

	

mo (U)

	

+

	

Y .

	

(8 .2 .37 )

In the decuplet (8 .2 .33), no two different particles occupy the same

position, and hence the masses of particles in the same unitary multiple t

within the decuplet should be linearly related to their values of Y . In

this way, we predict the so-called 'equal-spacing' rule (5) . The particles

in the decuplet are usually identified as follows : the quadruplet consists

of the 0(1232) 'r N resonance, the triplet of the 1E resonance Y " (1383) ,

and the doublet of the I ': '* (1531 .8) resonance. Wnen SU(3) symmetry wa s

first postulated, there existed no particle corresponding to the Y = -2

singlet . It was predicted that a particle, which was named the IC, should

occupy this position, and its mass was tentatively calculated by means o f

the equal-spacing rul e

mn

	

-

	

m_. = m_ . -

	

mY „

	

My, -

	

mA

	

(8 .2 .38 )

as about 1675 MeV/c2. As we saw in 6 .4, the sir" was indeed discovered, an d

its experimental mass assignment (6 .4.16) is in good agreement with tha t

predicted from (8 .2 .38) .

The derivation of a mass formula for the octet is slightly mor e

complicated than for the decuplet, owing to the fact that there exis t

two superposed particle states wit h

1 3 = Y = 0. (8.2.39 )

These states are easily distinguished by isospin as an isosinglet (,\° )

and an isotriplet (.2:°) . However, they behave identically with respect to



U-spin, so that the U 3 = 0 member of the U = 1 triplet will be a mixtur e

of the ° and /\ states . We now introduce the operators U+ and U_ in

analogy to I . and I_ (5 .1 .10), (5 .1 .11), so that

U_ n

	

a /\

	

+

	

b 1 ° .

	

(8 .2 .40 )

From angular momentum (see Appendix B) we know tha t

U_ 1U, u3>

	

f (U(U + 1) - U 3 ( U3 - 1 )) l u, (U 3 - 1)) ,

(8 .2 .41 )

whenc e

u_ 1, I>

	

=

	

J2

	

1, 0>

Combining (8 .2 .40) and (8 .2 .42) ,

U- jn>

	

=

	

2(al.Z+ ibn>) .

	

(8 .2 .43)

We now transform to the 1 1- state by applying the operator I+ :

I+ U_ n>

	

217 J (I(I + 1) - 13 (13 + 1))

	

, (8 .2 .44 )
whenc e

I+ U_ J n>

	

=

	

J2 1
,
Z.>,

	

(8 .2 .45 )
where the term in /\,' has vanished . We may also reach the ' via the

proton, and since I„ and U_ must commute :

U- I+ n>

	

U_ p>

	

=

	

( F. +> .

	

(8 .2 .46 )
Thu s

a

	

=

	

.

	

(8 .2 .47 )
Normalization obviously demands tha t

1 a 1 2 + b 1 2

	

=

	

1 ,

	

(8 .2 .48 )
so that

b =

	

(8 .2 .49)
We arbitrarily choose b to be positive, yielding

~u = 1, U3 = o> 1 1 1E.0/ (8 .2 .50 )
so that we have proved the mixing coefficients in (8 .2 .22) . Substitutin g
in (8 .2 .35) and squaring all coefficients to obtain expectation values ,

we may write down the Gell-Mann - Okubo formula (6 )

(me. +

	

3mA.)/4

	

(8 .2 .42)

(mn

	

=

	

+ m_.)/2

	

=

Experimentally ,

	

(mn + m_.)/2

	

=

	

1127 .2 1 0 .4 MeV/c 2 ,

	

(8 .2 .52)

(8 .2 .51)



(me. + 3m, )/4

	

=

	

1134.8 x 0 .1 MeV/c2 ,

	

(8 .2 .53 )

in near agreement with the prediction (8 .2 .51) . Both (8 .2.38) and (8 .2 .51 )

are, in fact, special cases of the more general mass formula obtained fro m

perturbation theory :

m

	

a + by + c(I(I + 1) - '+y2 ) ,

	

(8 .2 .54 )

where a, b and c are constants depending upon the supermultiplet i n

question. Since the Klein–Gordan equation (2 .2 .1) for bosons contains m 2 ,

whereas the Dirac equation only involves m, it seems reasonable t o

postulate that any SU(3) mass formulae for mesons should contain onl y

the squares of the meson masses . On this hypothesis, we predic t

2

	

=

	

am, + i mnmm

	

,

	

(8 .2 .55 )

in good agreement with experiment . Deviations from the formula (8 .2 .55) in

higher-mass meson octets are caused by the mixing of octet and singlet

states, a strong interaction effect . 01(3) makes a number of useful

predictions concerning magnetic moments, and these are also borne out by

experiment .

8 .3	 Applications of SU(3) to the Structure of the Weak Interaction .

From 5 .3 we recall that the internal symmetry quantum number s

(Q, Y, I) for the LY = 0 hadron currents are identical to those of th e

71 , and that those for the .nY = 1 currents are the same as those of

the K t . Since welmow that the la = and K t are in the same SU(3) octet, we

now postulate that all vector (axial vector) hadron currents also belong

to the same vector (axial vector) octet of currents . We write the total

semileptonic weak Hamiltonian in the standard for m

HS

	

(G/f2) (Jr

	

Er

	

+

	

Herm. conj .) , (8.3.1 )

Jr

	

=

	

Vr

	

+

	

Ar , (8 .3 .2 )

where

(8 .3 .3 )Vr

	

a V

°

	

+ b Vr

a(Vlr

	

+ j V2r)

	

+ b(V4r

	

+ j V5r ) , (8 .3 .4 )

Ar

	

a' A~ b' Al

r
(8 .3 .5 )

a'(Alr rt U A2r)

	

+ b '(A4r + j Ayr ) (8 .3 .6)



adopting the convention that the number in the suffixes corresponds to

the position of the currents in the current octet, in analogy t o

(8 .2 .2) et seq . The current V
r
, for example, may now evidently be written

_
Vr

	

a(V1r

	

j V2r) +

	

b(V4r - j V5r ) .

	

(8 .3 .7 )

In the same notation, the neutral, hypercharge-conserving LI 0, 1

electromagnetic current becomes /
~

J el

	

=

	

V3r

	

+ (1/f) V8r

	

(8 .3 .8 )
r

As a natural extension of the CVC hypothesis for n Y

	

0 current s

discussed in 5 .2, we now make the assumption that Jel , V0 and VI al l

belong to the same octet . The remaining components of the vector octet ,

V6r

	

+

	

j V7r .

	

(8 .3 .9 )

with internal quantum numbers Q = 0, y = 1, I = 4, do not appear to

play any important role in semileptonic weak processes . Similarly, i n

the axial vector octet, neither A6r + j A7r nor Aar + n A8r appear

to be significant . In general, the axial vector currents induce transition s

between different members of the baryon and meson octets and the vacuu m

(as in the decay (6 .3 .4) ) . At this point, we note that we have assumed

that all the axial vector currents transform as members of an octet an d

not of some higher representation of SU(3) . From the baryon fields 1I ,

we may construct an octet of axial vector currents :

Air

	

=

	

-j F fijk (Wj YrY 5Vk ) -k- D dijk ( l41 j j rrr 5 k )

( 8 .3 .10 )

in 'octet' notation, where dijk are the symmetric constants of SU(3) :

Rik

118 1/ 3

146 4

157 4-

228 1/ 3

247 ..3-

256

338 1/ 3

344 '



355 i-

366 4

377 4

448 - ( 1/2,5 )

558 -(1/2,5)

668 -(1/2f )

778 -(1/2f )

888 -(1/15 )
(8.3 .11 )

It is usual to normalize the coupling constants F and D

D + F

	

=

	

1 ,

	

(8 .3 .12 )

g7c

	

g(D + F) .

	

(8 .3 .13 )

We may now deduce that, due to its conservation, the vector current is o f

the pure F type in the limit of exact SU(3) (i .e . where all SQ(3)-violating

interactions do not exist) . The axial vector current, however, must be

divided into an F- and a D-coupling .

We now examine the matrix elements for V . and A. between different

states within sU(3) representations . Obviously we must concentrate on th e

octets, since these are the best-known of the supermultiplets . According to

the Wigner-Eckart theorem (7), the matrix element between two octe t

states O j and Ok is given by
V
'A

	

+

	

dijk DT'A<
Ok 1 Vir ' Air I

	

Oj>

	

fijg Fr

(8 .3 .14 )

where FV ' A
r

q

	

=

	

0

and DV'A are reduced matrix elements . We assume
r

(8 .3 .15)

and hence our matrix elements FV , F A , DV and DA each contain only one
r

	

r

	

r

	

r
form factor . Making an explicit matrix element calculation, we find tha t

we have six arbitrary parameters in the final expression : a, b, a', b' ,

gg(0) and g
A

(0) . a and b are basically vector coupling constants, and

similarly a' and b' are axial vector ones . In order to reduce the numbe r

of arbitrary constants, we now assume a hypothesis known as 'parallelism' .

We denote the field operators for the three quacks by "A", "B" and "C" .



If we impose the condition that quarks and leptons must enter symmetricall y

into the total weak current, then the latter become s
j a ►►A►► Y r (1

	

Y 5 ) ►► B►►

	

+

	

j b ►►A►► Y r (1 .r r 5 ) ►►C~►

	

+

+

	

v e Y r (1 + ~' S } e

	

+

	

j vf,, i r(1 + 1 5 ) y, ,

	

(8 .3 .16 )

where lepton symbols represent wave functions . From (8 .3 .16), we see that ,

if the quark model is indeed correct, then

b'/a'

	

=

	

b/a .

	

(8 .3 .17 )

We now recall the Cabibbo hypothesis from 5 .6 . First, we attempt t o

justify the condition (5 .6 .5) . If (5 .6 .5) is true, then

Jr

	

=

	

cos 9 (J lr + j J2r)

	

+

	

sin e (J4r +

	

j J5r ) ,

(8 .3 .18 )

Jir

	

Vir +

	

A ir .

	

(8 .3 .19 )
Since (8 .3 .18) belongs to an SU(3) octet, it is possible to perform a

transformation in SU(3) space under which its CiY = 1 component will

vanish (8) . This transformation is found to be
e2j 0 F7

	

(8 .3 .20 )

which is equivalent to a rotation about the 7-axis in SU(3) space . We

must rotate through the angle 2e because the components of (8 .3 .18 )

form a U-spin doublet, and transform into each other by rotation through

the angle 9 . We note that the charge operato r

Q

	

=

	

F 3

	

+ (i0 ) F8

	

(8 .3 .21 )

commutes with (8 .3 .20) and is hence invariant under this transformation .

I f

b/a

	

=

	

tan e ,

	

(8 .3 .22 )

then the octet commutation relation (see 8 .4 )

Fi(t), jr '
J(xt)]

	

j f ijk Jkr(x, t)

	

(8 .3 .23 )

yields

exp (2j 9 F7 ) (a(Jlr + j J2r) -t- b(J4r

	

j J5r) ) exp (-2j e F7 )

1a2

	

b2 (Jlr

	

j )

	

(8 .3 .2.4 )2 r
Since it is thought that the strong interaction does not discriminat e

between different directions in SU(3) space, the L3 Y = 0 curren t

on the right-hand side of (8 .3 .24) should have the same strength as the



lepton currents in (8 .3 .16), which, by the CVC hypothesis, are of th e

same strength as (J ir +

	

j J2r ), so that

2

	

b2a +

	

1 .

Thus we finally are left with three parameters : 0 , gA(0) and gA(0), s o

that the matrix elements are

01, yr Bj~

	

(j/(2 ) 3 )(,/((mj m)/(P O pt)) ) x

u(p') Yr (i cos

	

fl+i2, jk

	

j sine
f4+i5,jk) n(P) '

(8 .3 .26 )

(8 .3 .25 )

<Bk (A=, I Bj>

	

(j/(2n)3)( ./((mi mk)/(PO P,;)) )

u(p') yr'5 ((j cos 9 fl+i2,jk t j sin g

x

f4+i5,jk) gA( 0 )

(cos e dl+i2,jk + sin 9 d4 .ti5,jk ) 4(0) ) u(P )

(8 .3 .27 )

We now discuss various tests of the 'octet current' hypothesis .

We append a table of the matrix elements for beta decays predicted by

(8 .3 .26) and (8 .3 .27) :

-A,..
	 V	 B .

Z
n	 >p

	

cos ca

>h

	

0

	 >-cos 0

A	 > p

	

-(3/,) sin e
-sin 9

-(l/f-2') sine

	 >/\

	

(3/f~ sin e

(1/5) sin O

sinO

	 A	 B .

coose(Ft D )

(2/J) cose D

cosg(-F +D )

(1/IC) sinO(-3F - D )

sin 0 (-F+ D )

(1/f) sine (-F + D )

(1/f) sine(3F - D )

(1/f) sin 0 (F+ D )

sine (F + D )

Hadrons in decay,

(8 .3 .28 )

where F denotes 4(0) and D 4(0) . Since

(8 .3.29 )gA (0)/gV (0) ti 1 .22 ,

D +

	

F ti 1 .22 . (8 .3 .30)
Thus, assuming



Gn/G,.

	

=

	

0.978 f 0.002 ,

	

(8 .3 .31 )

we obtai n

sine

	

=

	

0 .209 ± 0 .016 .

	

( 8 . 3 . 31 )

However, the value of (8 .3 .31) is very sensitive both to radiative

corrections and to the so-called 'weak interactio n ' cut-off ' energy

(see chapter 9), so that a better estimate for sine is that fro m

observed hyperon decay rates : (9 )

sin e

	

=

	

0.24 *- 0 .01 .

	

( 8 .3 . 3 2 )

Further experiments on hyperon decay rates yiel d

F

	

=

	

0 .43 t 0 .04 ,

	

( 8 .3 .33 )

D = 0.79 ± 0.04. (8.3.34 )

Using the values (8 .3.32), (8 .3.33) and (8 .3.34) we may predict the rat e

for any hyperon decay . Comparison with experiment demonstrates that th e

Cabibbo three-parameter model is very satisfactory . For example, theory

yields the rate for the beta decay

p + e

	

°e

	

(8 .3 .35 )

as

0.32

	

x

	

10
-2

,

	

(8 .3 .36 )

normalized to the neutron decay rate, and experiments give (10 )

(0.32 ± 0 .05)

	

x

	

10-2 ,

	

( 8 .3 .37 )

in excellent agreement with theory .

8 .4	 The Algebra of Currents .

We recall that when we arrived at the CVC hypothesis in 5 .2, w e

identified the current V~ with the isospin current :

Vr(x)

	

(Jlr(x) +

	

J J 2r (x) ) ,

	

(8 .4 .1 )

and the isovector component of the electromagnetic interaction :

V3r(x)

	

=

	

J 3r (x) .

	

(8 .4 .2 )

In the absence of electromagnetism, all three components of Vir(x) ar e

exactly conserved, so that the generators of isospin rotations are give n

purely by

Ii

	

=

	

- j 3 d3x Vi4(x)

	

(i = 1 , 2, 3) ,

(8 .4 .3)



which implies that these generators satisfy the equal—time commutatio n

relations :

[I i(t), Ij (t)]

	

=

	

jE ijk Ik ( t )

	

(i = 1, 2, 3) ,

(8 .4 .4 )

where E ijk is the Levi—Civita symbol, such tha t

ijk =

	

+ 1

	

(8 .4 .5 )

for ijk an even permutation of 123, and

E ijk

	

=

	

— 1

	

(8 .4 .6 )

if ijk is an odd permutation of 123 . At this point, we note that th e

generators I
r

are the infinitesimal generators of the isospin grou p

SU(2), with basis matrices (1 .7 .18) . We discussed them in 5 .1 . In th e

presence of electromagnetism, the components I 1 and 12 of the isospi n

current are no longer conserved, although 13 is unaffected by electromagnetism ,

resulting in the CVC hypothesis . Thus SU(2) is not a symmetry

of the total weak Hamiltonian, due to radiative effects. If we no w

take A
0
(x) to be the (1 a j2) component of an isovector axial vector curren t

r
A? (x) in analogy to (8 .4 .1), (8 .4 .3) becomes (Ii = Y5 I i )
I i (t)

	

_

	

—j

	

d x3

	

5

	

Ai4(2;, t) .

	

(8 .4 .7 )

Since the Air(x) are not conserved, the I 5i (t) are now time—dependent, and

as Ii (t) is an isovector, we obtain the equal—time commutation relations :

[Ii (t), I ( t )]

	

=

	

j b ijk 1Z(t)

	

(i = 1, 2, 3) .

(8 .4 .8 )

We now make the assumption that, although (8 .4 .8) is, at present, onl y

provable in the absence of electromagnetism, it also applies in the presenc e

of electromagnetism . We then require

[11(t), 1 'j (t)3

	

=

	

j E ijk Ik ( t ) ,

	

(8 .4 .9 )

although this has little justification . (8 .4.4), (8 .4 .8) and (8 .4 .9) constitute

the basic relations of SU(2) ® SU(2) current algebra . Strictly, sinc e

we are concerned with time rather than space integrals, our above discussio n

should be known as 'charge' algebra . We note that (8 .4 .9) is th e

fundamental relation involved in the Adler—Weissberger formula (11) ,

which may be used to calculate the axial vector coupling constant i n

neutron decay to an accuracy of up to 95% by means of the form factors



involved in -17N scattering . GA may also be obtained by the Goldberger-

Treiman relation (12) deduced from dispersion theory :

	

( g/„[-2) GA

	

=

	

-f
g8.

	

,

	

(8 .4 .10 )

where m is the nucleon mass, g R is the 7C-N coupling constant, f i s

a further strong interaction constant and g is the total weak couplin g

constant. To conclude our discussion of SU(2) Q SU(2) charge algebra, w e

mention the so-called 'chiral' SU(2) ®SU(2) algebra . By taking the

linear combinations of I . and 15 :
1L,R

	

=

	

''( Ii ±

	

Ii) ,

However, since Ar(x) is not conserved, chiral SU(2) ® sU(2) is not a n

exact symmetry of the weak Hamiltonian . It has, nevertheless, bee n

suggested that the commutation relations (8 .4 .12) and (8 .4.13) still hol d

good despite PCAC .

We now examine SU(3) ® sU(3) current algebra . In the limit o f

exact SU(3) symmetry, there exist eight conserved currents Vir(x )

(i = 1, 2, 3,	 8), and thus the SU(3) generators are given b y

Fi ( t )

	

-j J Vi4 (x, t ) d3x

	

( i = 1 , . . ., 8 ),

(8 .4 .14 )

satisfying the commutation relation s

[Fi ( t ), F j (t):J

	

=

	

j fijk Fk ( t )

	

(i = I, . . .,8) ,

(8 .4 .15 )

where the fijk were given in 8 .1 . The generators Fi(t) are usually known

as the vector charges . In exact SU(3) all the F
i
(t) are time-independent ,

but in the presence of the strong interaction, only PI , F 2 , F3 and

F8 are time-independent, and when the electromagnetic interaction i s

also included, only

F3

	

_ 13

	

, (8 .4 .16 )

F8 (f/2)Y (8 .4 .17)

remain independent of time . At this point, we make the assumption that

we obtain
Cli'R 1j,R3

	

E ijk Ik ' R

~Ii , I R '

	

=

	

0

(8 .4 .11 )

(i ° 1, 2, 3), (8 .4 .12 )

(i = 1, 2, 3) . (8 .4 .13 )



even when SJ(3) symmetry is no longer exact, the relation (8 .4 .14) stil l

remains true . As before, we assume that the AY = 0 and AY = 1 component s

of the current Vir(x) may be taken as the (1 + j2) and (4 * j5) part s

of a vector current octet . Similarly, we postulate that the hypercharge-

conserving and hypercharge-violating components of the axial vector hadron

current are also the (1 + j2) and (4 + j5) parts of an axial vector

current octet . Defining

Fi( t )

	

- j J d3x Ai 4 (x, t )

	

(i = 1, . . ., 8 ) ,

(8 .4 .18 )

we obtai n

[Fi ( t ), F5j ( t )1

	

=

	

j fijk Fk ( t )

	

( i

	

1 , 8 ) ,

	

(8 .4 .19 )

which is analogous to the statement (8 .4.8) for Su(2) ® Su(2) curren t

algebra. Without proof, we adapt (8 .4.9) for m(3) :

[F .
5

	

5

	

( t ), Fj(t)]

	

j f ijk Fk(t)

	

(8 .4 .20 )

We now examine the so-called 'triplet' model for Vir(x) and Air (x) ,

in which the conditions (8 .4.15) and (8 .4.19) are fulfilled . We se t

(the first suffix is the unitary index, the second the Lorentz index )

Vir( x )

	

=

	

j

	

( x ) 'r ( gi /2) 4(x) ,

	

(8 .4 .21 )

Air ( x )

	

=

	

j 1{(x) Yr Y S ( gi/2) 41 (x) ,

	

(8 .4 .22 )

where 1.l(x) is a unitary triple t
, (x) ,

41(x )

	

w 2 ( x )

	

(8 .4 .23 )

3(x )
We find (13) that, if we may integrate over all of three-space, then th e

so-called 'Schwinger terms' dependent upon the gradient of the three-spac e

normalization I function vanish from the equal-time commutators of 1+1(x) ,

so that only the relations

	

fijk Vkm(x, t ) ,

	

(8 .4 .24 )

fijk Akm (x, t) ,

	

(8 .4 .25 )

fijk A. (x, t ) ,

	

(8 .4 .26 )

fijk Vk0i (x, t )

	

( 8 .4 .27 )

[ Fi ( t ), V j m (x, t)]

	

=

[ F i ( t ), Ajm (x, t)]

	

=

[4( .0 , Vjm(x, t)J

	

=

[Fi ( t ), Ajm(x, t)J

	

=



remain . The equations (8 .4 .24), (8 .4 .25), (8 .4 .26) and (8 .4 .27) hol d

for any triplet model, such as the quark, Sakata (14) or Maki-Hara (15 )

models . The Sakata model postulates that the observed hadrons are boun d

states of the 'fundamental' particles p, n and /\° . The Maki-Hara mode l

is based on the same principle, but assumes the 'fundamental' particles

to be =:°, -17 -, and A° . However, the commutation relations of the x (space )

components of the axial vector and vector currents with the electromagneti c

current do tend to vary from model to model . The reason for this is that

the electromagnetic current itself :

J er!''

	

=

	

al V3r

	

+

	

a 2 ( 1/ 3) V8r

	

+

	

a3 1(2/3) V0 r

(8 .4 .28 )

contains three arbitrary constants al , a2 and a3 . We now append a tabl e

giving the values of these parameters for different models :

Model Charge on triplet a1 a 2 .2

Quark 2/3 -1/3 -1/3 1 1 0
(Q2 ,Q2 ,Q3 )

Sakata
(p , n, I\ )

1 0 0 1 1 1

Maki-Hara
A° )

0 -1 0 1 -1 -1

Marshak (16) 0 -1 -1 1 1 -2

At present, there is no way to ascertain the constants a i , and thus i t

is not possible to discriminate between the various triplet model s

proposed . At this point, we mention the scalar and pseudoscalar curren t

densities equivalent to (8 .4 .21) and (8 .4 .22) :

Si ( x )

	

y(x ) gi/2 y(x) ,

	

(8 .4 .29 )

P i ( x )

	

=

	

i(x)y 5 (gi/2)

	

(x) .

	

(8 .4 .30 )
The associated equal-time commutation relations are

[Fi5 ( t ), S j ( x , t )~

	

=

	

j d iJ• k Pk (g, t ) ,

	

(8 .4 .31 )

[Fi( t ), P J. (x, t)1

	

_

	

- j d
iJ

• k SS(x , t ) ,

	

( 8 .4 .32 )



r F i (t), Sj (x, t)]

	

f ijk Sk (x, t ) ,

	

(8 .4 .33 )

[̀ Fi ( t ), P j (x, t)]

	

=

	

j fijk Pk (R, t ) .

	

(8 .4 .34)

using a triplet model . It has been suggested that the scalar and pseudo -

scalar interactions may contribute a few terms to the hadronic Hamiltonian ,

but there is good evidence to show that their amplitude must be ver y

small (see Chapter 6) .

8 .5

	

Applications of SU(3) Symmetry in Hyperon Decays .

Since the amplitude fo r

pI

	

=

	

3/2

	

(8 .5 .1 )

decays is definitely nonzero, we are forced to conclude that the hadronic AY = 1

Hamiltonian Hh receives contributions not only from octd ^urrents, but

also from currents transforming as members of the repree tation

{27) formed in

{8 ® {8} = {1} O {8 S } e
{8A}

8 {lo} e {lo * } G {273 ,

(8 .5 .2 )

where the index S denotes a representation formed by the symmetri c

combination of the components of the representations 4-. 8} on the left -

hand side of the reduction, and A one formed by their antisymmetri c

combination . The usual current octet is of the form {- Ss ) . The octet

current hypothesis implies that only octet currents exist, and hence ,

if this is correct, then there must exist some mechanism for enhancin g

octet currents over 27-plet ones. We now examine some of the phenomenologica l

predictions of the octet current theory . We write a typical hadron decay

as

	

-INB

	

>B' +

	

+

	

S ,

	

(8 .5 .3 )

where S is a spinless spurion with zero four-momentum. With the formalism

(8 .5 .3) we may write all interactions as SD(3) invariants, and, b y

considering the properties of the spurion, we may deduce those of th e

Hamiltonian responsible for the reaction . We represent our octet spurion

by the Hermitean 3 X 3 matrix S
r
. (i . 1, 8) . Since the spurion has the

same transformational properties as the Hamiltonian Hh, we must examine

the behaviour of components of current octets under the charge conjugation



operator in order to ascertain its effect on the spurion . Most octets

0 i are self-conjugate under the C operator, and henc e

C(oi )	 > PC E i 0i '

	

(8 .5 .4 )

where

6 i

	

=

	

+1

	

(i = 1, 3, 4, 6, 8) ,

	

(8 .5 .5 )

E i

	

=

	

-1

	

(i = 2, 5, 7) ,

	

(8 .5 .6 )

P C denoting the C-parity of the neutral components,3 and 8,of 0 i (17) .

(8 .5 .4) may be deduced from the behaviour of the generators F
i
under the

matrix transposition operator . Thus the spurion may have either PC = +1 or

-1. Similarly, since both parity-conserving (p .c .) and parity-violating

(p.v.) weak hadron decays do occur, the spurion may also have eithe r

even or odd parity, P . Initially, therefore, we must c c

cases for the spurion parities :

der fou r

P

	

= -1 ( p . v .) C

	

= 1

	

, (8 .5 .7 )

P

	

= -1 (p .v .) C -1

	

, (8 .5 .8 )

P

	

= +1 (p .c .) C

	

= +1

	

, (8 .5 .9 )

P +1 (p .c .) C -1

	

. (8 .5 .10)

Since CP invariance holds to a high degree in the weak interaction (se e

Chapter 7), we find that dh and hence S must have

CP

	

= + 1 .

	

(8 .5 .11 )

(8.5.11) requires that the spurion in the case (8 .5 .7) transforms a s

g7 under SU(3), since

S7

	

. - 67 S7 (8 .5 .12 )

Similarly, the spurion in (8 .5 .8) transforms like g6 , that in (8 .5 .9 )

also as g 6 , and that in (8 .5 .10) as g7 . We thus consider the cases

(8 .5 .8) and (8 .5 .9), in which the Hamiltonian is of the type g 6 . Thus the

matrix element for these processes i s

Bb Pd

	

g6

	

Bf > ,

	

(8 .5 .13 )

using the matrix notation for the baryons and mesons involved . The mos t

general form of the matrix element (8 .5 .13) may be obtained by evaluating

traces (see 2 .8) in the product

Bb Bd
Pf S

	

(8 .5 .14 )

while the indices in (8 .5 .14) are permuted in all possible ways . Since



all the So(3) octets must have vanishing trace, the general matri x

element (8 .5 .13) may be writte n

M

	

= Z 9

	

C!

	

i
i

	

, (8 .5 .15 )

where

M1

	

= Tr (E B P S) (8 .5 .16 )

M 2

	

-= Tr (B S B P) ( 8 .5 . 17 )

M 3

	

= Tr (B P S B) (8 .5 .18 )

M4 Tr (Ti P B S) ( 8 .5 . 1 9 )

N5

	

= Tr (B B S P) (8 .5 . 20 )

M6

	

= Tr (B S P B) (8 .5 .21 )

M7 Tr (B P)

	

Tr (B S) (8 .5 .22 )

M8

	

= Tr (B S)

	

Tr (B P) (8 .5 .23)

M9

	

=

	

Tr (13' B) Tr (P S) ,

	

(8 .5 .24 )

and the CI are scalar coefficients. However, we may decompose our matrix

element still further . Each term (8 .5 .16) through (8 .5 .23) consists o f

a p and an s wave component, so that, for example ,

M 6

	

=

	

M6a +

	

M6p

	

= Tr (B B P S) -* Tr (B Y 5 B P S) .

(8 .5 .25 )

(8 .5 .27 )

(8 .5 .28 )

S6

	

C

	

-E6 S6

	

_

	

- S 6 ,

	

(8 .5 .29 )

It has been demonstrated that (18 )

? 7 + M 8 + M9

	

=

	

2
i_1 AIi

	

(8 .5 .26 )

and, by an explicit calculation, we may verify that none of the trace s

M5 , M6 , M7 , or M9 contribute to observed processes, so that there

exist five linearly independent coupling constants C! in the general hadroni c

matrix element. We now recall the effect of the C operator on the variou s

components of our matrix element :

Bb	 C	 B a

P c	 C	 >
Pd

	

c



and under C we may show tha t

MI <	 7 M5 (8 .5 .30 )

(8 .5 .31 )> M6r5<
(8 .5 .32 )

rib<

M 12<—~ M2 (8 .5 .33 )

(8 .5 .34 )M4
( >M4

(8 .5 .35 ))X9M9<

	

.

Writing the decay Hamiltonian in the standard form

(Bb(A B r 5 ) Bd ) P f , (8 .5 .36 )

we see that the term in the coupling constant A has odd parity, wherea s

that in B has even parity . Imposing rigid CP invariance, we may deduc e

that only the combination s

ills M5s (8 .5 .37 )

MIp

	

+ M5p (8 .5 .38 )

M3s

	

_ M6s (8 .5 .39 )

Map

	

+ M6p (8 .5 .40 )

s

	

— M8s (8 .5 .41 )

M7p

	

+ M8s
(8 .5 .42 )

r; 2p (8 .5 .43)

Mop

	

(8 .5 .44 )

ever enter into the matrix element, and always separately . (8 .5 .37 )

through (8 .5 .43) in turn indicate that

a2

	

a4

	

a9

	

0

al

	

a 5

a3

	

—a6

a7

	

a8

bl

	

b5

(8 .5 .45 )

(8 .5 .46 )

(8 .5 .47 )

(8 .5 .48 )

(8 .5 .49 )



b3

	

=

	

b6

	

(8 .5 .50 )

b7

	

=

	

b8 ,

	

(8 .5 .51 )

where a, and b . are the coupling constants for the parity-conserving and
1

	

1
parity-violating components of the total matrix element respectively . Thus

the total parity-violating matrix element is of the form

al (Tr( B P g6 ) - Tr(B B g6 P)) + a3(Tr(B P g6 P) - Tr(B g6 P B)) +

+ a7(Tr(5 P) Tr(B g6 ) - Tr(B g6 ) Tr(B P) ) ,

	

(8 .5 .52 )

and the parity-conserving one of the type

bl (Tr(B 5 B P g6)

	

Tr(B Y5 B g6 P)) + b2 Tr(B )( 5 g6 B P) t

+ b3(Tr(B Y 5 P g6 B) + Tr(5 Y 5 g 6 P B)) + b4(B Y 5 P B g 6 ) +

+ b7(Tr(B P)d 5 Tr(B g6 ) + Tr(B g6 ) Y 5 Tr(B P) ) .

	

(8 .5 .53 )

Thus far, we have tacitly assumed that decays of the types (8 .5 .7) and (8 .5 .10 )

do not occur, but we could equally have formulated matrix elements on th e

hypothesis that the spurion transforms as g7 under SU(3) . However, there

exists good evidence in favour of a low OP-violating amplitude in th e

weak interaction, and hence, although rare, it is still possible for the

spurion to be of the form g7 rather than g6 .

Using (8 .5 .52) and (8 .5 .53), we obtain the following relations

for the parity-violating and parity-conserving amplitude s

A(/\ o ) _ - IC A(no)

	

= 1/~ al - 1(2/3) a3 (8 .5 .54 )

A(Z;) _ - a7 (8 .5 .55 )

A(z -) = al

	

-

	

a7 (8 .5 .56 )

A(Zo) _+‘ - 1/fi al (8 .5 .57 )

A(= - ) 2 A(=a)

	

_ -

	

(2/3) a l + ,)((1/6) a3

(8 .5 .58 )

B(A°) - .[

	

B(A 00 )

	

_ - 1 /,IV ( b 3 - b4 )

	

-

	

1/16- ( b3 - b1 )

(8 .5 .59 )

B(1 :) b4

	

b7 (8 .5 .60 )

B(1 - ) = b1 +

	

b7 (8 .5 .61)



B( -)

	

=

	

b1 + b7

	

(8 .5 .62 )

B(! o )

	

=

	

1 /1 2 ( b 4 - b1)

	

(8 .5 .63 )

B(~

	

-

	

B(1': :)

	

=

	

1/J (b 3 - b1 ) - 1/X ( )D1 - b2 )

(8 .5 .64 )

where the suffixes on the left-hand side denote the chargeson the deca y

pions. Solving for the amplitudes ai in (8 .5 .54) through (8 .5 .58), we

obtain the Lee-Sugawara (L-S) (19) relation for the s-wave amplitudes :

2A(= - ) + A(/\ o )

	

=

	

J> A(Fo)

	

(8 .5 .65 )

Similarly, solving in (8 .5 .59) through (8 .5 .64), we find that

2B(=_) + B(A°)

	

3 B( o )

	

(8 .5 .66 )

Experimentally ,

(2-:

	

+

	

A o)/~ :

	

A = -1.440 - 0 .037,

	

B

	

14.03 ± 0.657 ,

(8 .5 .67 )

Zo

	

A = -1.155± 0 .187

	

B = 15.713`-1.42 ,

(8 .5 .68 )

in good agreement with the Lee-Sugawara relations (8 .5 .65) and (8 .5 .66) .

There exist a number of alternative methods for deducing (8 .5 .65) . The

first employs dispersion theory and a number of properties of th e

octet . In addition to the L-S relation, this approach yield s

A(Z-)/A(no)

	

(J/B ( mz - :N)/( m,

	

- DIN )

	

=

	

1 .19

(8 .5 .69 )

A(=_)/A(~0)

	

- (m_

	

- mN)/(m n

	

mN )

	

- 1 .2 3

(8 .5 .70 )

A(S" :)

	

=

	

0 .

	

(8 .5 .71 )

Experiments give (20 )

A(Z _)/A(no )

	

=

	

1 .203 ± 0 .708 ,

	

(8 .5 .72 )

A('-)/A(/\o)

	

=

	

- 1 .307 ± 1 .208 ,

	

(8 .5 .73 )

A(L :)

	

=

	

0 .016 ± 0 .034 ,

	

(8 .5 .74 )

in good agreement with the predictions of dispersion theory . Curren t

algebra constitutes an alternative approach to the theory of weak hyperon



decay . Using the Born approximation (see 5 .4), we perform a number o f

explicit calculations according to the octet current hypothesis . We the n

calculate the contribution to the Hamiltonian from currents transforming a s

components of a 27-plet. This yield s

A(^ o ) + 2 A(= -) A(I o) + j(3/2) A(E :.), (8.5 .75 )

which is equivalent to the Lee-Sugarawa relation (8 .5 .65) if and only if

(8 .5.71) is correct .



CHAPTER NINE :

	

THE INTERMEDIATE VECTOR BOSON HYPOTHESIS .

9 .1	 The Non-Local Theory of the Weak Interaction .

In 1935, Yukawa (1) postulated that, in analogy to his theor y

of the strong interaction, weak beta decay might occur via an intermediat e

particle, which he denoted by W. Thus nuclear beta decay would be a

two-stage process :

(A, Z)

	

> W + (A, Z -- 1)

	

> e + v ® + (A, Z + 1) ,

(9 .1 .1 )

so that the W particle itself must undergo beta decay . Following its

discovery in 1936 (see 4 .1), it was immediately suggested that the muo n

could be identified with the W particle, since it beta decayed in th e

required manner (2) . However, in 1947 it was shown that muons were

produced predominantly in the decay (see 6 .1 )
-rT

	

> }'`

	

-t-

	

vj,,

	

(9 .1 .2 )

implying that the pion was initially the intermediate particle in beta

decay . Moreover, the pion was already thought to be the mediator of th e

strong interaction, and thus its properties were incompatible with those

predicted for the W particle . In Chapter Six, we saw that the pion doe s

contribute to the coupling constant in hypercharge-conserving wea k

processes via the form factors, but these vanish whe n

q

	

=

	

0 ,

	

-

	

(9 .1 .3 )
and the weak coupling constant does not . Nevertheless, it is possibl e

to account for particular weak hadronic processes in terms of the vecto r

mesons (' , Al , K ' and so on, but this hypothesis predicts incorrec t
selection rules .

Iri (4 .4 .33) we demonstrated that the cross-section for electron-

neutrino scattering was given by

6 ve

	

=

	

6 o (2E2 ) /(1 + 2E) ,

	

(9 .1 .4 )
so that



(9 .1 .5 )

as

E

	

> 00 ,

	

(9 .1 .6 )

in clear contradiction with experimental facts (3) . In obtaining (9 .1 .4) ,

we made two major assumptions : first, the weak interaction is local, i .e .

it occurs at a single distinct point in space-time ; and second, it i s

correct to apply first-order perturbation theory . From the unitarity

of the S-matrixl, we may deduce that the upper limit on the a-v cross-

section is of orde r

4-r\
X2/2 ,

	

(9 .1 .7 )

where )\ is the de Broglie wavelength of the incident particle . Thus ,

at a given critical or 'cut-off' energy, the formula (9 .1 .4) will violat e

the unitarity of the matrix element . At this energy, making an approximation

in the extreme relativistic limit ,

6

	

(G2
2,c

r2

	

=

	

(4R
j\~

r)~2 ,

	

(9 .1 .8 )

so that

.,J((2 ' n )/G)

	

_

	

4(2 f2 r-(-T.0 5 ) m

	

103 GeV .

	

(9 .1 .9 )

In 1936 Heisenberg pointed out that (4) that at energie s

n

	

Ecr '

	

(9 .1 .10 )

first-order perturbation theory is no longer applicable, and hence we must

take into account such diagrams as

(9 .1 .11 )

However, the loop in (9 .1 .11) and other associated diagrams gives rise to

a divergenceless integral, yielding an infinite value . This fact is, at

present, an unsolved problem in field theory, although Weinberg's suggestion

(5) that they may be avoided by postulating a neutral W particle appear s

E
cr



plausible . Nevertheless, we see that diagrams such as (9 .1 .11) imply a

definite non-local weak interaction, since there are two weak vertice s

which are spatially separated . Ecr cora.ponds, according to th e

uncertainty relatio n

!gyp

	

Ds

	

,

	

(9 .1 .12 )

to a length of about 10 19 in, which is thus assumed to be the lower limi t

of the effective range of the weak interaction . A further possibility i s

that the fundamental four-fermion coupling is itself non-local, and i n

fact has a range of up to 1 0-15 m. A larger range than this may be exclude d

because of muon decay data . One suggestion is that normal spacetime law s

cease to be applicable at distances smaller than about 1 0—15 m, although

this hypothesis appears unlikely in view of a number of experiment s

performed to check the validity of quantum electrodynamics (electromagneti c

field theory) over small distances . Thus we are forced to conclude that

Yukawa's hypothesis for the weak interaction is essentially correct, an d

that there must exist an intermediate boson which is responsible fo r

weak interactions .

We write our new interaction Hamiltonian as (6 )

HI

	

=

	

g W Jr(x) Wr(x) +

	

Henn. conj .,

	

(9 .1 .13 )

where Jr(x) is the standard weak current and r(x) is the charged W particl e

wave function . Since the prescence of an intermediate particle implies tha t

all observed weak processes are second-order 'semiweak' processes, the

basic coupling of the W particle with the weak current must be of order

.IG-W , where G yi is the normal first-order weak coupling constant . Recallin g

the definition (2 .6.22), we find that the second-order effective Hamiltonia n

arising from (9 .1 .13) is given b y

HI

	

=

	

- j gw

	

d3x'

	

4.r
(x - x') T (J r (x) 5 ( x' )), (9 .1 .14 )

which is simply a non-local version of the standard current-curren t

Hamiltonian

HI

	

=

	

- G/ 2

	

Jr( x ) Jr (x) . (9 .1 .15 )

In (9 .1.14), the term

Q W

	

(x - x') T
q,r (9 .1 .16)

is known as a propagator . Its basic effect is to create a W particle at a



point x, and to destroy it again at x' . The matrix element for th e

process is T . We find that, with a suitable choice of quantum number s

for the W particle, the current—current and intermediate boson Hamiltonians

are identical in the limit (9 .1 .3) if and only if their coupling

constants obey the relation

(4/m)

	

=

	

G/f .

	

(9 .1 .17 )

Thus the existence of the W particle will become important in wea k

processes only when the momentum transferred exceeds mw , the mass of the

W particle .

Since the weak current

JW(x)

	

=

	

L r(x) + J r(x)

	

=

	

L r(x) + cose J0(x) + sine Jl (x )

(9 .1 .18 )

to which we assume the W particle particle to couple is charged, we are

forced to conclude that the W must also be charged . Furthermore, th e

weak current is a Lorentz vector, and hence the W must also be a vector,

resulting in its alternative name : the intermediate vector boson (IVB) .

However, there have also been attempts to show that the W particle is (7) a

scalar rather than a vector particle . We write the muon decay Hamiltonian

— G/ 2 ( e Irr (1 * Y5 )r) ( vr Yr (1 + y 5 ) v e ) +

+

	

Herm. conj .,

	

(9 .1 .19 )

or, applying the Fierz reordering matrix (3 .3 .40) ,

_

	

— G/ 2 ()^ c Yr( 1 + Y 5 ) ve ) (v r (1 — Y 5 ) e ° ) +

+ Heim. conj. (9.1.20 )

However, the interaction (9 .1.20) may also arise in second order from an

intermediate scalar boson interaction :

I SB =

	

gl c (1
+ Y 5 ) ve B + g2 ~, (1 — y 5 ) e c B + +

+ Herm. conj., (9.1.21 )

where B denotes the scalar boson wave function . (9 .1 .21) yields the sam e

matrix element as (9 .1 .20) if and only i f

( gl g 2 )/m B

	

=

	

Gt[f

	

(9 .1 .22 )

One advantage of the ISB theory over the IVB one is that the former i s

renoxmalizable , whereas the latter is not . However, the ISB hypothesis



requires a nonzero lepton number assignment for the W particle, and ,

unless we accept the existence of more than one type of intermediate boson ,

does not allow a satisfactory unification of all weak processes .

9 .2	 Effects of the W Particle on Weak Processes .

We first consider the pure leptonic weak interactions . We not e

that the Hamiltonian (9.1.14) predicts self-current terms in th e

leptonic weak interaction of the same strength as the muon decay tens .

Failure to observe self-current processes would constitute a good argument

against the existence of the IVB. The usual semiweak leptonic Hamiltonian

is written

HI

	

=

	

g ar (L e +

	

LT) Wr

	

Hens. conj .

	

(9 .2 .1 )

However, there is now no reason to assume that no derivatives of the basi c

lepton fields occur in the Hamiltonian, and hence we may write, for example ,

HI

	

=

	

gW (ve ( x )(a l + bl Y 5 ) o ( x ))

	

/ a xr Wr ( x) +

+ gw ('re(x) Y r (1 + Y 5 ) e(x))

	

,( x ) +

+ ' gj ( v e ( x ) 6

	

(a2 + b2 Y 5 ) e ( x )) ( a / a xr q
(x) - a /a 'cc, Wr ( x) )

(9 .2 .2 )

including scalar and tensor as well as vector lepton currents . The effec t

of the derivative couplings in (9 .2.2) is to introduce momentum-dependen t

terns of the form 6qr qq and qr (6 P is the gamma matrix anticommutator )

in addition to the pure vector Yr term into the electron and muon curren t

matrix elements . However, since most weak processes involve small couplin g

constants and low momentum-transfer, q, the derivative terms in th e

Hamiltonian will be almost unobservable, and hence we usually disregard

them .

We now discuss the effect of the IVB on the asymmetry parameter s

in muon decay . Recalling e (4 .2.26) and

	

(4 .2 .28), an explici t

calculation yields the corrected values of these parameters as

e

	

(1

	

(4/9) (my, /ml,) 2 ) ,

0 ( 1

	

-

	

(2/5) (mr /mjti,) 2 ) ,

(9 .2 .3 )

(9 .2 .4)



where f' o and j 0
are their values assuming point interaction . Taking the

tentative experimental estimat e

m W

we find that

2 GeV , (9 .2 .5 )

- Co (1 +

	

2 .8 x to 6 ) , (9 .2 .6 )

- J 0 (1
-

	

2 .5 x 10 6 )

	

, (9 .2 .7)

so that the effects of the IVB in muon decay are unobservable . A further ,

more sensitive, test of the IVB hypothesis is afforded by studying th e

rates of processes such as

ve + e	 >ve
4. e-

-

v , + e	 ve + y.

	

.

As we saw above (9 .1 .4), the local weak interaction theory predict s

infinite cross-section for these reactions at high energy . The IVB model ,

however, yield s
d IVB

=

	

(8 4 p2)/(w 4 (mw

	

4p2 ) ) ,

	

(9 .2 .10 )

where p is the incident particle momentum . (9 .2 .10) predict s

6 I~	 > G 2/1N

	

mw

	

(9 .2 .11 )

a s

P

	

Oo ,

	

(9 .2 .12 )

in agreement with the preliminary results obtained in high-energy

neutrino-scattering experiments at NAL Batavia (8) .

In the neutron decay matrix element (5 .5 .3), (5 .5 .4), the extra

term added because of the IVB is undetectable, since we do not know enoug h

about the form factors involved . Furthermore, at high q2, the form factors

decrease considerably, reducing the value of the matrix elemen t

significantly, thus rendering accurate measurement very difficult .

The pure hadron processes are also comparatively , insensitive to the possibl e

existence of the IVB. However, using the soft pion and soft kao n

approximations 3 , the Weinberg sum rules 4 and PCAC, we may derive an

expression for the T matrix element in the process

es

	

> 7V+ + n-

	

(9 .2.13 )

according to the IVB model (9) :

(9 .2 .8 )

(9 .2 .9 )



T(KS—>

	

+

	

=

	

10–7 laic (5.46 loge(mlmp ) – 4.68), (9 .2 .14 )

and, substituting the experimental value

T(KS— 4 n'+ n - )

	

=

	

7 .8 x 10
7

laic

	

(9 .2 .15 )

in (9 .2 .14), we obtain

mw ---. 8 GeV. (9.2.16 )

However, it seems very possible that one or more of the approximation s

used in the derivation of (9 .2.14) is unjustified, and hence the resul t

(9.2.16) is inconclusive .

We now examine the effects of the IVB on second–order weak

processes . According to the IVB hypothesis, the reaction

yr +

	

p

	

> °r

	

.

	

p

	

(9 .2 .17 )

has a Feynman diagra m

Yr

(9 .2 .18 )

Using the standard Feynman rules (see Appendix D), we may evaluate th e

T matrix element for (9 .2 .18), and, by including an IVB term, we obtain

(gw/mw) (A 2/8~ 2 )

	

(G n2)/(I 8 rc 2) ,

	

(9 .2 .19 )

where A is the so–called 'weak interaction cut–off energy' . This i s

the energy at which we cease to integrate over the momenta of particle s

in loops on Feynman diagrams, and hence avoid infinite and thus physically –

meaningless matrix elements . /\ is sometimes identified with th e

unitarity limit mentioned above, yielding

A

	

--

	

350 GeV .

	

(9 .2 .20 )

Solving for A in (9 .2 .19), we obtai n

/\

	

.~

	

1000 GeV .

It may be shown that the decay

Z

	

>µ*

	

}"

	

(9.2 .21 )

can occur as a combination of first– and fourth–order electromagneti c

interactions . The branching ratio for (9 .2 .21) through this mechanism ha s

rr



been estimated as (10 )

4 x 10-8. (9.2.22 )

However, this decay may also occur as a second- or fourth-order semiwea k

process, the former with Feynman diagram

(9 .2 .23 )

Once again, evaluating the T matrix element for (9 .2 .23) and for it s

fourth-order equivalent, we substitute the experimental branching ratio fo r

the decay (9 .2 .21) :

1.4 x 10 6 ,

	

(9 .2 .24 )

and thus obtai n

n < 75 GeV .

	

(9 .2 .25 )

However, i f

/A <

	

10 GeV ,

	

(9 .2 .26 )

then (9 .2.21) will proceed primarily as a first-order weak and a fourth -

order electromagnetic transition, and hence our information regarding th e

weak interaction 'cut-off' would vanish . The best method for ascertaining

A is to calculate the L - RS mass difference according to the IV B

model. Introducing a propagator term into the expression (7 .3 .41), we

finally deduce (11 )

Am

	

(mK f
K
G sin2 0 cos 20 A2)/(32 1c 2 ) ,

	

(9 .2 .27 )

and substituting the experimental value for

	

m (7 .3 .38), we

predict that

A ^- 4 GeV .

	

(9 .2 .28 )

A standard current-current calculation of m yields (12 )

A.

	

3 GeV ,

	

(9 .2 .29 )

in acceptable agreement with (9 .2 .28) .

There exist a number of further methods of deducing the value o f

K°

	r

V

Y.'



A. The equality of vector coupling constants in neutron and muon deca y

is initially ensured by the CVC hypothesis . However, virtual weak interaction s

tend to violate this equality. In neutron decay, we have basicall y

only one type of second-order diagram, assuming that the contributio n

from virtual baryons is negligible :

(9 .2 .30 )

Using standard techniques, we find that processes of the type (9 .2 .30 )

result in a neutron decay constant of order

(1

	

+

	

a- (A 2 G )/(2 7-C ) 2 ) G .

	

(9 .2 .31 )
In muon decay, there are two distinct kinds of second-order diagram :

(9 .2 .32 )
and

(9 .2 .33 )
We note that the particles in the loop of (9 .2 .32) have vanishing total



lepton number, while those in the loop of (9 .2 .33) have Ltot

	

2 .

Taking into account processes of the form (9 .2 .32) and (9 .2 .33), th e

muon decay coupling constant now read s

(1 +

	

5

	

(n 2 G )/(2n) 2 ) G .

	

(9 .2 .34 )

Thus we obtain

Gn/Gr.

	

1

	

-

	

4

	

(t 2 G)/(2n ) 2 ,

	

(9 .2 .35 )

and substituting the experimental resul t

(G1, – Gn )/Gn

	

G

	

3%

	

(9 .2 .36 )

we find that

l~

	

<

	

140 GeV .

	

(9 .2 .37 )

A more accurate determination of /\ by this method is rendered extremely

difficult by the need for electromagnetic corrections in both neutron

and muon decay . We now examine two decays which are forbi13en by the two

neutrino hypothesis, but which, if the latter were invalid, would furnish

useful information concerning /~ . The proces s

ye + e } + e

has a second-order Feynman diagram of the form

The matrix element corresponding to (9 .2 .39) is equal to
(G2

A2)/(2(2i')2) (u e y r (1 + Y 5 ) uf„ ) ( ue

	

r ( 1 -f- )1 5 ) ue )

(9 .2 .40 )
so that its rate is given by (13 )

W(r --> e + e ' , e )

	

-

	

1/(96 (27r )7 ) G 4

and its branching ratio i s

( G2 /\4)/(2 x)4 .

(9 .2 .38 )

(9 .2 .39 )

4~

	

5/ (9 .2 .41 )

(9 .2 .42 )
The experimental upper limit on the branching ratio of (9 .2 .38) is (14)



1 .5 x 10 7 ,

and substituting this value in (9 .2 .42), we obtain

/\ < 35 GeV .

(9 .2 .43 )

(9 .2 .44 )

If the neutrino loop is found to give zero contribution (15), then (9 .2 .38 )

must occur to third-order in the weak interaction, setting an up per limi t

of a few hundred GeV on .

Finally, we examine the 'forbiden' process

> e

	

-+

	

(9 .2 .45 )

In first-order, this might occur as

(9 .2 .46 )
but it may be shown that the matrix element corresponding to (9 .2 .46 )

and associated diagrams vanishes identically because of the (V-A) theory .

However, second-order graphs of the type

e

(9 .2 .47 )

do produce non-vanishing coupling constants of orde r

e G 2 /\ 2 loge(

	

/mN ) 2 .

	

9 .2 .48 )
From (9 .2 .48), we may calculate that the branching ratio for (9 .2 .47) and

similar diagrams is given by

R

	

=

	

( 8/371,4 ) (e2/4r ) G2 /\4 (loge(//m~,)2)2

	

(9 .2 .49 )

where e is the universal electromagnetic coupling constant . Since

experiments give



R <

	

6 x 10-9 ,

substitution in (9 .2 .49) yields

A

	

< 10 GeV .

(9 .2 .50 )

(9 .2 .51 )

The result (9 .2 .51) might suggest that if we are to assign a smal l

enough value to A, then the decay (9 .2 .45) might have a very small

branching ratio regardless of any electron-muon conservation laws .

However, if we assume the weak interaction to be of a non-local nature ,

then diagrams such as

e

(9 .2 .52 )

must be included in the total branching ratio for (9 .2 .45) . In general ,

it is impossible to calculate the contribution from graphs of the for m

(9 .2 .52), but in this case, assuming that the non-locality of the wea k

interaction results from the existence of a massive charged IVB, th e

calculation is rendered possible . It has been demonstrated that the rat e

for (9 .2 .52) is given by (16 )

R ---- (3e/8n ) f(M/n) (9 .2 .53 )

where f is a form factor and H is the IVB mass, so long as the magneti c

moment of the W particle is precisely unity, as predicted by the Dira c

equation 4 . The form factor in (9 .2 .53) is such that, for
A

	

>

	

M ,

	

(9 .2 .54)
f(M/n ) = loge ( A24.1 2 ) 2 ,

	

(9 .2 .55 )
producing an unphysical result . If
A -~

	

M ,

then we obtain

R

	

1 0

which is more satisfactory than (9 .2.55), but still not correct. If ,

however, we assign non-unit magnetic moment to the IVB, then a t

-4

(9 .2 .56 )

(9 .2 .57)



VB

	

1
.7 -,

	

(9 .2 .58 )
I

R becomes vanishing small . The presence of an 'anomalous magnetic moment '

or G—factor over and above the Dirac prediction of one, is thought t o

be due to the strong interaction . However, as we shall see, the IV B

does not take part in strong interactions, and hence it appears unlikel y

that it possesses a nonzero anomalous magnetic moment .

9 .3	 The Production and Decay of the W Particle .

The charged IVB which we have considered above may be produced

either by the electromagnetic interaction on its own, by a combination

of strong and semiweak interactions, or by the electromagnetic and

semiweak interactions . Electromagnetically, the W particle can be produced

in either of the two reactions :

r t Z	 >Z * W ` + w,

	

(9 .3 .1 )
e ' +

	

e	 d * + w .

	

(9 .3 .2)

A possible Feynman diagram for the process (9 .3 .1) i s

Y

	

w'

(9 .3 .3 )
At low energies, scattering of the type (9 .3 .3) will be predominantl y

coherent5 , but at higher energies, incoherent production will begin t o

contribute significantly . We find that we may express the total cross —

section for all processes (9 .3 .1) as (17 )

6 tot

	

=

	

max (6 coh ' Z
6p + (1 — 1/Z) d

coh ) '

	

(9 .3.4 )

where the second tern in the bracket is an approximate expression fo r

the total cross—section when incoherent scattering becomes importan t

(6p denotes the production cross—section on a proton) . If, for example ,

the target nucleus is iron (Z= 26), and the W is assumed to have unit

w



magnetic moment and a mass of 2 GeV, then we obtain the following value s

for 6
tot

with gamma rays of varying energy : (18 )

E 1	 (lab .)	 (GeV)

	

(1/26)6
co l	 (cm2 )

6

	

8 .4

	

x

	

10-4 '

8

	

1 .4

	

x

	

10-42

10

	

9 .6

	

x

	

10-'2

15

	

1 .9

	

x

	

10-37

20

	

1 .6

	

x

	

10- 36

(9.3 .5 )

The possible production reaction (9 .3 .2) will be discussed in Chapter 10 .

According to the Hamiltonian (9 .1.13), the W particle is couple d

to the hadronic current via the semiweak interaction . Thus the IVB may

be produced in any reaction of the form

A	 >B + W I ,

	

(9 .3 .6 )

where A and B are any two hadron states coupled by the hadron current .

The most experimentally-viable processes of the type (9 .3.6) are

7X '-' ) P

	

+

	

, (9 .3 .7 )P

K1

	

+ > P

	

+

	

W

	

, (9 .3 .8 )P

p

	

+ p ~d

	

+

	

W b . (9 .3 .9)

In (9.3 .7), it has been shown that the total cross-section for W productio n

is given by (19 )

6tot

	

=

	

10- 32 x

	

2 (-m
t

)

	

cm2

	

.

	

(9 .3 .10 )

where F is the pion form factor. Assuming that F is dominated by the

e meson pole, we find that

F„ (-.m2)

	

- 1/6 ,

	

(9 .3 .11 )

and substitution of the result (9 .3.11) in (9 .3 .10) yield s

6
tot

	

3 x 10-34 cm 2 .

	

(9 .3 .12 )

Since (9 .3.8) involves the AY = 1 rather than the AY = 0 hadron

current, its cross-section must be less than that for (9 .3 .7) by a facto r

of tan2e , where 0 is the Cabibbo angle (see 5 .6 and 8 .3) . Experimentally,

if the pion decay mode of the IVB were dominant, then the reaction s

(9 .3 .7) and (9 .3 .8) would appear a s



p

	

p

	

n

	

(9 .3 .13 )

K P p (n ), (9.3 .14 )

so that, whereas (9 .3 .13) would pass unobserved because of the man y

similar strong interaction processes, (9 .3 .14) would be conspicuou s

because it does not conserve strangeness . In the case of (9 .3.9), i t

has been calculated (20) that the cross—section for W production shoul d

be

10 cm2, (9.3.15)

assuming an IVB mass of 2 GeV, but this is probably too large, since i t

was calculated in analogy to the proces s

p

	

p

	

d

	

(9 .3 .16 )

where the momentum transfer is much smaller .

Finally, we discuss IVB production via the electromagnetic an d

semiweak interactions . This may occur through any of the reaction s

(K )

	

P

	

P

	

W ,

	

(9 .3 .17 )

p

	

n

	

W ,

	

(9 .3 .18 )

3 Z Z W , (9.3.19 )

where the process (9 .3.17) occurs via photon exchange instead of vi a

pion exchange as above . It has a Feynman diagram

(9 .3 .20 )

It may be shown (21) that the differential cross—section for (9 .3.20 )

has a maximum

d /dq2 4 x 10-35 cm2/(GeV)2 (9 .3 .21 )

for IVB mass 2 GeV and energy 4 GeV in the c .m.s. Using dispersion relation s

we find (22) that the cross-section for (9 .3 .18) is
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