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Abstract. The atomic snapshot object is an important primitive used for the design and verifi-
cation of wait-free algorithms in shared-memory distributed systems. A snapshot object is a shared
data structure partitioned into segments. Processors can either update an individual segment or
instantaneously scan all segments of the object. This paper presents an implementation of an atomic
snapshot object in which each high-level operation (scan or update) requires O(n log n) low-level
operations on atomic read/write registers.
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1. Introduction. Wait-free algorithms for shared-memory systems have attract-
ed considerable attention during the past few years. The difficulty of synchronization
and communication in such systems caused many of the algorithms that were devel-
oped to be quite intricate. A major research effort attempts to simplify the design
and verification of efficient wait-free algorithms by defining convenient synchronization
primitives and efficiently implementing them. One of the most attractive primitives
is the atomic snapshot object introduced in [1, 2, 6].

An atomic snapshot object (in short, snapshot object) is a data structure shared
by n processors. The snapshot object is partitioned into n segments, one for each
processor. Processors can either update their own segment or instantaneously scan
all segments of the object. By employing a snapshot object, processors obtain an
instantaneous global picture of the system. This sidesteps the need to rely on “incon-
sistent” views of the shared memory and reduces the possible interleavings of the low
level operations in the execution. Therefore, snapshot objects greatly simplify the de-
sign and verification of many wait-free algorithms. An excellent example is provided
by comparing the recent proof of a bounded concurrent timestamp algorithm using
snapshot objects [15] with the original intricate proof in [10].

Unfortunately, the great conceptual gain of using snapshot objects is often dimin-
ished by the actual cost of their implementation; the best snapshot implementation to
date requires O(n2) read and write operations on atomic registers [1, 4]. Compared
with the cost of simply reading n memory locations, this might seem a high price
to pay for modularity and transparency. Thus, significant effort has been spent on
avoiding snapshots and constructing algorithms directly from read and write opera-
tions.

This paper presents a snapshot object implementation in which each update or
scan operation requires O(n log n) operations on single-writer multireader atomic reg-

∗Received by the editors January 3, 1995; accepted for publication (in revised form) December
18, 1995. An extended abstract of this paper appeared in Proceedings of the 12th Annual ACM
Symposium on Principles of Distributed Computing, Association for Computing Machinery, New
York, 1993, pp. 29–40. This research was supported by grant 92-0233 from the United States–
Israel Binational Science Foundation (BSF), Jerusalem, Israel, by the Technion V.P.R., Argentinian
Research Fund, and by the fund for the promotion of research in the Technion.

http://www.siam.org/journals/sicomp/27-2/27946.html
†Department of Computer Science, The Technion, Haifa 32000, Israel (hagit@cs.technion.ac.il,

fimfam@cs.technion.ac.il).

319



320 HAGIT ATTIYA AND OPHIR RACHMAN

isters. Thus, we dramatically reduce the gap between the trivial lower bound of
Ω(n) and the best known upper bound of O(n2) for atomic snapshots. Consequently,
our snapshot object makes it feasible to design modular and easy to verify wait-free
algorithms, without a great sacrifice in their efficiency.

We start with an algorithm for implementing an m-shot snapshot object, that is, a
snapshot object to which up to m operations can be applied. The algorithm is simple
and requires O(n log m) operations on single-writer multireader atomic registers. The
algorithm is inspired by the algorithm presented in [7] for solving lattice agreement
[4, 7, 11]. However, the algorithm of [7] uses atomic Test&Set operations, while the
current algorithm uses only atomic read and write operations.

We then present ways to transform this algorithm to implement an ∞-shot snap-
shot object, that is, an object that supports an infinite number of operations.

One way is based on general-purpose transformations. In [7], the snapshot ob-
ject was proved to be reducible to the lattice agreement problem. By employing the
transformation of [7], the restriction of our algorithm to solve lattice agreement imme-
diately implies an ∞-shot snapshot object in which each operation requires O(n log n)
read and write operations on atomic registers. Unfortunately, this implementation re-
quires an unbounded amount of memory. The bounded rounds abstraction of [13] can
be used to bound the memory requirements of this implementation.

An alternative path is a direct implementation of an ∞-shot snapshot object, with
O(n log n) operations for each scan or update. This implementation uses a bounded
amount of memory and is based on recycling a single copy of the m-shot object.
This recycling combines in a novel way synchronization techniques such as handshake
bits [6], borrowing views [1] and traceable use techniques [14], and we believe it is
interesting on its own.

The bounded algorithm uses atomic operations on registers that may contain up
to O(n(log n + |V |)) bits, where |V | is the number of bits needed to represent a value
of the snapshot object. (There are also operations on registers of size O(n4 log n), but
these occur infrequently.)

Besides the conceptual contribution to the design of future wait-free algorithms,
our snapshot object immediately yields improvements to existing algorithms that use
the snapshot object by plugging in our more efficient one. These include randomized
consensus [3, 6], approximate agreement [8], bounded timestamping [15], and general
constructions of wait-free concurrent objects [4, 17].

A multiwriter snapshot object is a generalized snapshot object in which any pro-
cessor can update any segment. There is a transformation of Anderson’s [2] which uses
any snapshot object as a black box to construct a multiwriter snapshot object; this
transformation requires a linear number of read and write operations. This transfor-
mation can be used to turn our algorithm into an algorithm for a multiwriter snapshot
object with the same complexity.

Deterministic snapshot implementations have been proposed by Anderson [2]
(bounded memory and exponential number of operations), by Aspnes and Herlihy
[4] (unbounded memory and O(n2) operations), and by Afek et al. [1] (bounded
memory and O(n2) operations). Attiya, Herlihy, and Rachman [7] give an O(n log2 n)
implementation that uses Test&Set registers, and an O(n) implementation that uses
dynamic Test&Set registers. Israeli, Shaham, and Shirazi [23] give a general technique
to transform any snapshot implementation that requires O(f(n)) operations per scan
or update into an (unbounded) implementation that requires O(f(n)) operations per
scan and only a linear number of operations per update (or vice versa). Constructions
of multiwriter snapshot objects appear in [1, 2].
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Introduced in [7] are randomized implementations of the snapshot object
(O(n log2 n) using single-writer multireader registers, and O(n) using dynamic single-
writer multireader registers). Chandra and Dwork [9] also give a randomized imple-
mentation that requires O(n log2 n) operations on atomic single-writer multireader
registers. Weaker variants of the snapshot object were implemented by Kirousis,
Spirakis, and Tsigas [24] (single-scanner snapshot object), and by Dwork et al. [12]
(nonlinearizable snapshot object).

Independent of our work, Israeli and Shirazi [21] constructed a deterministic snap-
shot object that requires O(n3/2 log2 n) operations and uses unbounded memory. Also,
they showed a lower bound of Ω(min{w, r}) low-level operations for any update op-
eration, where w is the number of updaters and r is the number of scanners [22].

As is made clear by the above review, our O(n log n) deterministic snapshot im-
plementation significantly improves all known deterministic implementations that use
only atomic registers and even improves almost all the existing randomized implemen-
tations. Note that by the general technique of [23], our snapshot implementation can
be improved to require O(n log n) operations per update and only O(n) operations
per scan (or vice versa).

Following the original publication of our algorithm, Inoue et al. [19] presented an
atomic snapshot object that requires only a linear number of read and write opera-
tions. However, this algorithm requires multiwriter registers, that is, each processor
can write to each register. In contrast, our algorithms use only single-writer registers.

The rest of the paper is organized as follows. Section 2 includes definitions of the
model and of the snapshot object. In section 3, we present the implementation of the
m-shot snapshot object, which is then used to construct the ∞-shot snapshot object
in section 4. We conclude in section 5 with a discussion of our results.

2. The snapshot object. Our model of computation is standard and follows,
e.g., [8, 16].

An atomic snapshot object is partitioned into n segments, S1, . . . , Sn, where only
processor pi may write to the ith segment. The snapshot object supports two op-
erations, scan and update(v). The scan operation allows a processor to obtain an
instantaneous view of the segments, as if all n segments are read in a single atomic
step. A scan operation returns a view, which is a vector V [1, . . . , n], where V [i] is the
value for the ith segment. The update operation with parameter v allows a processor
to write the value v into its segment.

An implementation of the snapshot object should be linearizable [18]. That is,
any execution of scan and update operations should appear as if it was executed
sequentially in some order that preserves the real time order of the operations.

In more detail, each scan or update is implemented as a sequence of primitive
operations. The nature of the primitive operations depends on the low-level objects
used; in our case, read and write operations of atomic registers. An execution is a
sequence of primitive operations, each executed by some processor as part of some
scan or update operation. We assume that each processor has at most one (high-level)
operation in progress at a time; that is, it does not start a new operation before the
preceding one has completed.

Define a partial order → on (high-level) operations in an execution such that
op1 → op2 if (and only if) the operation op1 has terminated before the operation op2
has started; that is, all low-level operations that comprise op1 appear in the execution
before any low-level operation that is part of op2. The partial order → reflects the
external real time order of nonoverlapping operations in the execution.
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For the snapshot implementation to be correct, we require that scan and update
operations can be linearized. That is, there is a sequence that contains all scan and
update operations in the execution that

a. extends the real time order of operations as defined by the partial order →;
and

b. obeys the sequential semantics of the snapshot operations; that is, if view
is returned by some scan operation, then for every segment i, view[i] is the
value written by the last update to the ith segment which precedes the scan
operation in the sequence.

In this paper, we define one operation that combines both scan and update,
denoted scate(v). Executing a scate(v) operation by pi both writes v into Si and
returns an instantaneous view of the n segments.1 Intuitively, to perform update(v) a
processor invokes scate(v) and simply ignores the view it returns; to perform a scan
the processor invokes scate(v), where v is the current value of its segment.

Another property that we require is wait-freedom; that is, every processor com-
pletes its execution of a scan or an update within a bounded number of its own
(low-level) operations, regardless of the execution of other processors.

3. Implementation of an m-shot snapshot object. In this section we con-
struct an m-shot snapshot object, which is a degenerate instance of the general snap-
shot object. Namely, an m-shot snapshot object is defined exactly as the general
snapshot object, except that the total number of scate operations that may be per-
formed by all processors is at most m.

3.1. Preliminaries. For the construction of the m-shot snapshot object, we
modify each segment of the snapshot object to contain both the value of the segment
in the field value, and some additional information that indicates the number of times
pi performed an operation. The additional fields seq and counter are incremented
with each operation performed by pi. Although the seq and counter fields contain
exactly the same information, they have different roles in the implementation. The
seq field determines which of two values written by pi is more up to date. The counter
field simply counts the number of operations performed by pi. When we present the
general implementation of the snapshot object, we shall see that the information in
these two fields is maintained differently; this is why we separate them here as well.

Note that each scate operation returns a view, which is a vector with three fields
in each entry. All segments are initially (⊥, 0, 0). We now introduce some terminology.

The size of a view V , denoted by |V |, is
∑

i V [i].counter. The size of a view
reflects the “amount of knowledge” that this view contains; that is, the size of a view
counts the total number of operations performed on the snapshot object before this
view was obtained.

A view V1 dominates a view V2, if for all i, V1[i].seq ≥ V2[i].seq. Two views V1
and V2 are comparable if either V1 dominates V2 or V2 dominates V1. Two views V1
and V2 are unanimous, if for all i, V1[i].seq = V2[i].seq implies that V1[i] = V2[i]. A
set {V1, . . . , Vl} of views is unanimous if any pair of views in the set are unanimous.
The union of a unanimous set {V1, . . . , Vl} of views, denoted by ∪{V1, . . . , Vl}, is the
minimal view that dominates all views V1, . . . , Vl. That is, the union is a view Vu

such that for every i, Vu[i] equals Vj [i] with maximal seq field. (All the sets of views
that we use in the paper are trivially unanimous. Therefore we use unions of sets of
views without explicitly stating that the sets are unanimous.)

1Combining the roles of scans and updates was implicitly done in previous works, where update
operations not only write new values but also return views.
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Classifier(K, Ii): returns(Oi) (Code for pi)
0: write Ii to Ri

1: read R1, . . . , Rn

2: if | ∪ {R1, . . . , Rn}| > K then
3: read R1, . . . , Rn and return(Oi = ∪{R1, . . . , Rn})
4: else return(Oi = Ii)

FIG. 1. The classifier procedure.

3.2. The classifier procedure. We start by introducing a procedure called
classifier, with parameter K. Each processor pi starts the procedure with an input
view Ii, and upon termination, returns an output view Oi. The classifier procedure
appears in Figure 1. The processors use a set of single-writer multireader registers
R1, . . . , Rn.

In the classifier procedure each processor pi starts with some local knowledge
that is held in Ii. The goal of the classifier procedure is to update the processors’
knowledge in some organized manner. Roughly speaking, the processors that use the
procedure are classified into two groups such that the processors in the first group
retain their original knowledge, while each processor in the second group increases
its knowledge to dominate the knowledge of all the processors in the first group.
Specifically, processors in the first group are called slaves and are defined as the
processors that terminate the procedure in line 4. Processors in the second group are
called masters and are defined as the processors that terminate the procedure in line
3. The classifying property of the procedure is the crux of the m-shot snapshot object.
Notice that the classifier procedure provides very little guarantee on the number of
masters and slaves. In particular, it is possible that all processors are classified as
masters.

3.3. The implementation. To implement the scate operation for an m-shot
snapshot object, we construct a full binary tree with log m levels and m − 1 nodes.2

The nodes of the tree are labeled by an in-order numbering on the tree, assigning
labels in increasing order from the set {1, . . . , m− 1}. For each node v, we denote the
label of v by Label(v). The labels given by the in-order search can be presented in the
following recursive manner: the root (in level 1) is labeled m

2 ; inductively, if a node
v in level ` is labeled Label(v), then the left child of v, denoted by v.left, is labeled
Label(v)− m

2`+1 , and the right child of v, denoted by v.right, is labeled Label(v)+ m
2`+1 .

(See Figure 2.)
Since each processor may perform several scate operations, we do not identify an

operation with the processor that executes it. In the rest of the section, we refer to
operations as independent entities that “execute themselves.”

Intuitively, each operation traverses the tree downwards starting from the root.
Inside the tree, operations that arrive at some node execute the classifier procedure
using the label of the node as the parameter K. The classifier procedure of each
node separates the arriving operations so that less knowledgeable operations (slaves)
proceed to the left and more knowledgeable operations (masters) proceed to the right.
This process continues throughout the levels of the tree; an operation terminates when
it arrives at a leaf of the tree.

The main idea in this construction is that operations are ordered in the leaves
(from left to right) according to the amount of knowledge they have collected. As we
prove in the following, when two operations are separated by some node, then the final

2We assume m is an integral power of 2. Otherwise, standard padding techniques can be applied.
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FIG. 2. The classification tree.

knowledge of the operation that proceeded to the right dominates the final knowledge
of the operation that proceeded to the left. This guarantees that operations arriving
at different leaves are comparable and are ordered from left to right. In addition, we
prove that if two operations traverse exactly the same path in the tree, then they
have exactly the same final knowledge. Such two operations undergo a “squeezing”
process, where the difference in their knowledge is constantly reduced as they move
toward the leaves of the tree. Finally, when two operations arrive at the same leaf the
difference in their knowledge is squeezed to zero, and they are forced to have exactly
the same knowledge.

To implement this intuitive idea, we associate with each node a separate area
in the shared memory that contains a set of n single-writer multireader registers
R1, . . . , Rn. These registers are initialized to empty views that contain (⊥, 0, 0) in
each entry and are used to execute the classifier procedure at that node. In addition,
each processor pi has a local variable currenti that is initialized at the beginning
of each operation by pi. This local variable stores the accumulated knowledge of pi

during the execution of the operation. For ease of exposition, we add a (log m + 1)th
level to the tree, which now contains the leaves of the tree. These leaves have no labels
and no associated registers, and they serve only as “final stations” for the operations
that traverse the tree.

All scate operations, up to m, are executed on the tree constructed above. A scate
operation op by pi is executed as follows: first, op writes the value of the operation
into Si. Second, op reads the n segments S1, . . . , Sn, and sets currenti to hold the
view that contains the values read from the segments. Then op starts traversing the
tree by entering the root. In general, when op enters some node v, it uses the value of
currenti as an input vector Ii, executes a classifier(Label(v), currenti) procedure at
v, and updates its currenti variable to hold the value returned by the procedure. If
pi terminates the classifier procedure in v as a master, it enters v.right; otherwise it
enters v.left. When op enters a leaf, it terminates and returns the value of currenti as
its final view. For clarity, we denote by currenti,` the value of currenti as op enters
level `. The precise code for a scate operation (by pi) appears in Figure 3.

3.4. Correctness proof. We start by stating the properties of the classifier
procedures that are executed in the various nodes of the tree. We first introduce
some notation. For each node v, Ops(v) denotes the set of operations that traverse
through v. At each node v, each operation in Ops(v) is classified either as a master
or as a slave. The set of operations that are classified as masters at v is denoted by
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scate(value) (Code for pi)
1: Si := (value, incremented seq and counter)
2: for j := 1, . . . , n currenti,1[j] := Sj

3: v := root
4: for ` := 1, . . . , log m do
5: currenti,`+1 :=Classifier(Label(v), currenti,`)
6: if master then v:=v.right
7: if slave then v:=v.left
8: return(currenti,log m+1)

FIG. 3. The code for a scate operation.

M(v), and the set of operations that are classified as slaves at v is denoted by S(v). In
addition, we denote the input view of an operation opi for the classifier procedure at
level ` by Ii,`. (If pj is the processor that executes opi, then Ii,` is the value assigned
to currentj,` during opi.)

LEMMA 3.1. Let v be some node at level `. Let L and H be nonnegative integers
such that L ≤ Label(v) ≤ H. If L < |Ii,`| ≤ H for every opi ∈ Ops(v), and
| ∪ {Ii,` : opi ∈ Ops(v)}| ≤ H, then

(b1) for every opi ∈ M(v), Label(v) < |Ii,`+1| ≤ H,
(b2) for every opi ∈ S(v), L < |Ii,`+1| ≤ Label(v),
(b3) | ∪ {Ii,`+1 : opi ∈ M(v)}| ≤ H,
(b4) | ∪ {Ii,`+1 : opi ∈ S(v)}| ≤ Label(v), and
(b5) for every opi ∈ M(v), Ii,`+1 dominates ∪{Ij,`+1 : opj ∈ S(v)}.

Proof. Properties (b1)–(b3) are immediate from the code.
Property (b4) is proved by contradiction. Assume that |∪{Ii,`+1 : opi ∈ S(v)}| >

Label(v). Since for each opi ∈ S(v) we have Ii,`+1 = Ii,`, it follows that |∪{Ii,` : opi ∈
S(v)}| > Label(v). Let opj be the last operation in S(v) that executes line 0 in the
classifier procedure of v. When opj executes line 1 of the procedure, all Ii,` such that
opi ∈ S(v) are already written in the registers of v. Since the value in any register
of any node is overwritten only with values that dominate it, opj collects a view with
size greater than Label(v). This contradicts the assumption that opj ∈ S(v).

To prove (b5), we show that when opi ∈ M(v) starts to execute line 3 in the
classifier procedure of v, all {Ij,` : opj ∈ S(v)} are already written in the registers of
v. Otherwise, if some opj ∈ S(v) has not yet written Ij,`, then when opj executes line
1 of the procedure it reads registers’ values that dominate the registers’ values that
opi read in line 1. This contradicts the assumption that opj ∈ S(v).

Using the properties of the classifier procedure as stated in the above lemma, we
now prove that all the views returned in scate operations are comparable. To show
that, we first prove that the views returned by operations that terminate in different
leaves of the tree are comparable. The following two simple lemmas are implied by
the code.

LEMMA 3.2. Let opi be an operation that returns Vi. Let v be a node such that
opi ∈ S(v) and let ` be v’s level. Then Vi is dominated by ∪{Ij,`+1 : opj ∈ S(v)}.

LEMMA 3.3. Let opi be an operation that returns Vi. Let v be a node such that
opi ∈ M(v) and let ` be v’s level. Then Vi dominates Ij,`+1 for any opj ∈ S(v).

The next lemma uses Lemmas 3.2 and 3.3 to prove that the views returned by
operations that terminate in different leaves are comparable.

LEMMA 3.4. Let opi and opj be two operations that terminate in leaves vi and vj,
respectively, where vi 6= vj. Then the views returned by opi and opj are comparable.
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Proof. Let v be the node with maximal level (closest to the leaves) such that both
opi and opj belong to Ops(v), and let ` be its level. Since vi 6= vj , ` < log m + 1,
that is, v is an inner node. Since v is not a leaf, one of opi and opj is a master in v,
and the other is a slave at v. Assume, without loss of generality, that opi ∈ S(v) and
opj ∈ M(v).

By Lemma 3.2, the view returned by opi is dominated by ∪{Ik,`+1 : opk ∈ S(v)}.
By Lemma 3.3, the view returned by opj dominates each Ik,`+1, if opk ∈ S(v), and
therefore dominates ∪{Ik,`+1, opk ∈ S(v)}. Thus, the view returned by opj dominates
the view returned by opi.

To complete the comparability proof, we show that the output views of operations
that terminate in the same leaf are comparable. The next lemma formally captures
the intuitive idea of the “squeezed” difference in knowledge. The lemma bounds the
size of the inputs Ii,` and their union at some node v of some level ` as a function of
Label(v) and `.

LEMMA 3.5. Let v be an inner node of level `. Then,
(1) for every opi ∈ Ops(v), Label(v) − m

2` < |Ii,`| ≤ Label(v) + m
2` , and

(2) | ∪ {Ii,` : opi ∈ Ops(v)}| ≤ Label(v) + m
2` .

Proof. The proof is by induction on `. For the induction base ` = 1, the lemma is
straightforward since the total number of operations is at most m. For the induction
step, assume the lemma holds for all nodes in level ` − 1 and consider an arbitrary
node v in level ` > 1. Let v′ be the parent of v and consider the classifier procedure
with parameter K = Label(v′) that is executed by Ops(v′) in v′. By the induction
hypothesis we have
(1) Label(v′) − m

2`−1 < |Ii,`−1| ≤ Label(v′) + m
2`−1 , for any opi ∈ Ops(v′), and

(2) | ∪ {Ii,`−1 : opi ∈ Ops(v′)}| ≤ Label(v′) + m
2`−1 .

If we denote L = Label(v′) − m
2`−1 and H = Label(v′) + m

2`−1 , then these are
exactly the conditions of Lemma 3.1. We have two cases.

Case 1. If v = v′.right, then K = Label(v′) = Label(v)− m
2` , and Ops(v) = M(v′).

We have by (b1) and (b3) of Lemma 3.1 that
(1) for any opi ∈ Ops(v), Label(v) − m

2` < |Ii,`| ≤ Label(v) + m
2` , and

(2) | ∪ {Ii,` : opi ∈ Ops(v)}| ≤ Label(v) + m
2` ,

which are the required conditions for the operations in Ops(v).
Case 2. If v = v′.left, then K = Label(v′) = Label(v) + m

2` , and Ops(v) = S(v′).
In this case, the same equations are implied by (b2) and (b4) of Lemma 3.1.

The next lemma proves that the views returned by two operations that terminate
at the same leaf are equal, and in particular, comparable.

LEMMA 3.6. Let opi and opj be two operations that terminate in the same leaf v.
Then the views returned by opi and opj are equal.

Proof. Let v′ be the parent of v. Assume, without loss of generality, that v =
v′.right; the proof if v is the left child of v′ follows in the same manner. By Lemma 3.5,
since v′ is in level ` = log m,
(1) Label(v′) − 1 < |Ik,log m| ≤ Label(v′) + 1, for any opk ∈ Ops(v′), and
(2) | ∪ {Ik,log m : opk ∈ Ops(v′)}| ≤ Label(v′) + 1.

The operations opi and opj execute the classifier procedure in v′ with parame-
ter K = Label(v′) and both terminate as masters and proceed to v. If we denote
L = Label(v′) − 1, and H = Label(v′) + 1, then conditions (1) and (2) above are
the required conditions for applying Lemma 3.1 to the classifier procedure that is
executed in v′. Thus, by Lemma 3.1(b1), since opi and opj are in M(v′), we have
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|Ii,log m+1| = |Ij,log m+1| = Label(v′) + 1. In addition, by Lemma 3.1(b3), we have
| ∪ {Ii,log m+1, Ij,log m+1}| = Label(v′) + 1. Therefore, Ii,log m+1 = Ij,log m+1, which
implies that the output views of opi and opj are equal.

Lemmas 3.4 and 3.6 prove that the views returned by the scate operations are
comparable. We now use these comparable scate operations to implement the lin-
earizable scan and update operations of the snapshot object.

To execute an update(v) operation, a processor simply executes a scate(v) opera-
tion and ignores the view it returns. To execute a scan operation, a processor executes
a scate(v) operation using the current value of its segment. Notice that although the
same value is used, the seq and counter values are incremented. Thus, a scan oper-
ation by pi changes the sequence number of Si but does not change the value of Si.
Also notice that both scan and update operations return views. These views are later
used for the linearization of the scan and update operations.

In order to define the linearization of operations on the snapshot object, we first
order the scan operations and then insert the update operations. Consider any two
scan operations sci and scj that return Vi and Vj , respectively. If Vi 6= Vj and Vj

dominates Vi, then sci is linearized before scj and vice versa if Vi dominates Vj . If
Vi = Vj , then we order them first by the partial order →, and if the operations are not
ordered with respect to →, then we break symmetry by the identities of the processors
that execute the operations. This ordering of scans is well defined since a processor
has only one operation outstanding at a time, and hence two operations by the same
processor are always ordered by →.

Next, we insert the update operations between the linearized scan operations.
Consider an update operation that wrote a value (v, seq) to some segment Si. The
update operation is linearized after the last scan operation that returns a view that
does not contain (v, seq) and before the first scan operation that contains (v, seq).
Since scan operations are ordered by their views, each update operation fits exactly
between two successive scan operations. We break symmetry between update opera-
tions that fit between the same two scan operations in the same manner as in the scan
operations, that is, first by the partial order → and then by processors’ identities. We
now prove that this sequence is a linearization.

The next lemma follows immediately from the way update operations are lin-
earized between scan operations.

LEMMA 3.7. For any scan operation sc and for all segments Si, the value returned
by sc for Si is the value written by the last update operation by processor pi that is
linearized before sc.

Therefore, the linearization sequence we constructed preserves the semantics of
the snapshot object. We now prove that it extends the partial order →.

LEMMA 3.8. For any two (scan/update) operations opi and opj, if opi → opj then
opi is linearized before opj.

Proof. There are four cases, according to operation types.
Case 1. Let sci and scj be two scan operations such that sci → scj . By the code

of the algorithm, the view returned by sci does not dominate the view returned by scj

and hence the view returned by scj dominates the view returned by sci. Since scan
operations are linearized by their views, this implies that sci is linearized before scj .

Case 2. Let sci be a scan operation and upj be an update operation such that
sci → upj . By the code of the algorithm, the view returned by sci does not contain
the value written by upj , and therefore, upj is linearized after sci.
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Case 3. Let upi be an update operation and scj be a scan operation such that
upi → scj . By the code of the algorithm, the view returned by scj contains the value
written by upi (or a value written by a later update operation by pi,) and therefore,
upi is linearized before scj .

Case 4. Let upi and upj be two update operations such that upi → upj . If
upi and upj fit exactly between the same two scan operations, then due to the way
symmetry is broken upi is linearized before upj , and the claim follows.

Otherwise, assume by way of contradiction that there exists a scan operation
sc such that upj is linearized before sc and sc is linearized before upi. Thus, sc
returns a view that contains the value written by upj and does not contain the value
written by upi. Consider the scate operation that is executed to implement upi. This
scate operation returns a view that contains the value written by upi but does not
contain the value written by upj . Therefore, this scate operation returns a view that is
incomparable to the view returned by sc. This contradicts the comparability property
of the views returned by the scate operations (Lemmas 3.4 and 3.6).

Lemmas 3.7 and 3.8 prove that the scate operation of Figure 3 implements an m-
shot snapshot object. The complexity analysis is obvious, and we have the following
theorem.

THEOREM 3.9. Each operation on the m-shot snapshot object implemented by
the scate operation of Figure 3 requires O(n log m) operations on atomic single-writer
multireader registers.

Note that each processor has a view for each level of the classification tree. Denote
by B the number of bits required to represent a view. Since the tree has O(m) nodes,
and for each node we have a view for each processor, it follows that the algorithm
requires a total of O(mnB) bits.

4. A general snapshot object.

4.1. An unbounded algorithm. A straightforward way to transform the m-
shot snapshot object into an ∞-shot one is via the lattice agreement decision problem
[4, 7, 11]. In this problem, processors start with inputs from a complete lattice and
have to decide (in a nontrivial manner) on comparable outputs (in the lattice). It is
fairly simple to use an n-shot snapshot object to solve lattice agreement and there
is a general transformation that converts any lattice agreement algorithm into an
implementation of an ∞-shot snapshot object [7]. The overhead of this transformation
is O(n) reads and writes per scan or update operation. Therefore, the m-shot snapshot
object of the previous section can be converted into an ∞-shot snapshot object in
which a scan or update operation requires O(n log n) operations.

Unfortunately, the general transformation of [7] extensively uses unbounded mem-
ory. That is, the transformation (possibly) replicates the memory area required for
one lattice agreement algorithm, for each operation on the snapshot object. This is a
consequence of the generality of the transformation, which does not assume anything
about the lattice agreement algorithm. In tailoring the transformation to our m-shot
snapshot object, the memory requirements can be reduced. That is, the number of
registers can be bounded, and only their values increase by one with each new op-
eration of the snapshot object. (The details, which are straightforward, will not be
discussed here.) While these memory requirements are sufficient for any practical
purpose, it is theoretically interesting to construct an ∞-shot snapshot object that
requires only a bounded amount of shared memory.

A method to bound the memory requirements of the general transformation ap-
pears in [13]. Here we show a direct approach for combining the ideas of the m-shot
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snapshot object with synchronization mechanisms to obtain a bounded implementa-
tion of a general snapshot object.

4.2. Bounded ∞-shot snapshot object. As mentioned before, the transfor-
mation of [7] employs an infinite number of copies of a lattice agreement algorithm
so that each processor executes at most one operation on each copy. The algorithm
presented here uses similar ideas but with a single copy of the m-shot snapshot object
of the previous section.

Recall that in the construction of the m-shot snapshot object, each segment Si has
two additional fields, seq and counter. The counter field indicates how many operations
were performed by pi, while seq distinguishes, for any two values of pi, which is more
up to date. For the bounded implementation, we maintain this information using only
bounded memory. Intuitively, the seq field is maintained using bounded sequential
timestamps; the details are discussed in section 4.4. The more difficult task is to
maintain the counter field, used for the classification process, using bounded memory.

In the general algorithm, we use the same tree of height log m+1 which is traversed
by the operations, as in the m-shot object. In order to allow one tree to support an
unbounded number of operations, instead of only m, the operations are divided into
virtual rounds, each containing exactly m operations.

By appropriate control mechanisms, we separate operations from different rounds
so that they are not interleaved. In this way, the behavior of operations of the same
round correspond to executing m operations on a separate m-shot snapshot object.

4.2.1. The bounded counter mechanism. In the m-shot object, the counter
field associated with each segment specifies how many times the segment was updated;
summing the counter fields over all segments yields the total number of operations
that were performed on the snapshot object. In the general implementation, the
counter field associated with a segment specifies the number of times the segment
was updated modulo m; in this way, summing the counter yields the total number
of operations that were performed on the object modulo m. (Although this sum is
actually in the range 1, . . . , nm, we only refer to its value modulo m.)

We use the following terminology. The counter fields are called the local counters.
The sum of the local counters modulo m is the global counter. The values of the local
counters, as well as the global counter, are in the range 0, . . . , m − 1.

For the sake of the proof, it is convenient to consider the unbounded values of these
counters as well. That is, with each local counter we associate a virtual counter with
the real (unbounded) value of that counter. Summing the virtual counters defines the
real value of the global counter. The real values of the counters are not used within
the code but only for the analysis.

4.2.2. The handshake mechanism. In the algorithm, we need to know the
chronological order of operations by different processors. Specifically, for any two
processors, pi and pj , we wish to know how many operations pi started since a certain
point in pj ’s last operation (and vice versa). Clearly, we cannot maintain the exact
number of operations since it is inherently unbounded. Therefore, we only want to
know if the number of operations that pi started is either 0, 1, 2,. . . , k − 1, or strictly
more than k − 1 (for some constant k). This is done with a handshake mechanism
that was introduced in [6].

For every two processors, pi and pj , there are two handshake variables Hi,j and
Hj,i. Hi,j is written by pi and read by pj , while Hj,i is written by pj and read by pi.
An intuitive way to describe the functionality of the handshake variables is to consider
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Handshakei(j)
0: temp = Hj,i

1: if Dist(Hi,j , temp) = 0 then return(Hi,j + 1)
2: if Dist(Hi,j , temp) ≤ k then return(temp)
3: if Dist(Hi,j , temp) > 2k then return(Hi,j + 1)

FIG. 4. The handshakei(j) procedure.

Takeoveri(j) Invoked with every read from pj ’s variable
1: if Dist(Hi,j , Hj,i) = k then goto Takeover by pj code

FIG. 5. The takeoveri(j) procedure.

a directed cycle with vertices numbered 0, . . . , 3k, where the direction is defined from
t to (t + 1) mod (3k + 1). The variables Hi,j and Hj,i represent the positions of pi

and pj on this cycle. To handshake with pi, pj checks the values of Hi,j and Hj,i and
updates its own position on the cycle accordingly.

More precisely, the function handshakei(j) is called by pi in order to update Hi,j

(Figure 4). Using the procedures handshakei(j) and handshakej(i) by pi and pj ,
respectively, maintains the invariant that the directed distance from Hi,j to Hj,i on
the cycle, denoted Dist(Hi,j , Hj,i), is either in the range [0, . . . , k] or in the range
[2k, . . . , 3k]. This invariant is used to determine who is the more advanced of the two
processors. If the distance from Hi,j to Hj,i is at most k (but not zero), then pj is
more advanced, and if the distance is between 2k and 3k then pi is more advanced.
(If the distance is zero then pi and pj are equally advanced.)

4.2.3. The failure detection mechanisms. In the implementation we present,
a scate operation may temporarily fail in one of two ways. The first kind of failure
occurs if some processor, say pj , performs several operations while pi traverses the
classification tree. This kind of failure is called a takeover failure; when it occurs, we
say that pi was overtaken by pj . The second kind of failure is a wraparound of the
global counter, which occurs when the value of the global counter goes from m to 0
while pi traverses the classification tree. We now describe the failures in more detail
and explain the failure detection mechanisms we employ.

Takeover failures are detected by a mechanism that is constantly being operated
(see Figure 5). Whenever a processor pi reads a register of some other processor, say
pj , it checks the value of Hj,i with respect to Hi,j . If Dist(Hi,j , Hj,i) = k, that is, pj

executed k or more handshakes since pi executed its last handshake, then a takeover
failure by pj is detected. In this case, pi jumps directly to a place in the code that
handles this situation.

Wraparound failures are detected by a different mechanism. Before pi traverses
the tree, it collects the values of the local counters and computes a value for the global
counter. Later, pi checks for a wraparound by using the procedure check-wraparound.
The procedure receives the global counter’s value that pi computed earlier and reads
the local counters again to obtain a new value for the global counter. If this value is
smaller than the previous one, then a wraparound has occurred, and pi jumps directly
to a place in the code that handles this situation. Note that a wraparound may occur,
but the global counter’s value obtained by the procedure is greater than the earlier
value of the global counter and the wraparound failure is not detected. We will show
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check-wraparoundi(counter)
1: temp :=

∑
i Si.counter mod m

2: if temp ≤ counter then goto Wraparound code

FIG. 6. The check-wraparoundi procedure.

that when a wraparound failure occurs but is not detected, a takeover failure must
be detected by the handshake mechanism.

4.2.4. Data structures. For simplicity, we assume that the shared memory
consists of only n single-writer multireader registers, R1, . . . , Rn. All the information
written by processor pi is stored in its register Ri, which contains the following fields:

Si. pi’s segment, with three fields: value, (unbounded) seq, and (modulo m)
counter.

Treei. pi’s registers in the classification tree of the m-shot object (one register
per node). Each register holds the same three fields as above.

Hi,1, . . . , Hi,n. The handshake variables of pi with respect to all of the other
processors. For simplicity, we assume pi holds handshake variables also with
respect to itself.

Last[1, 2]. Last[1] holds the view returned by the last scate operation by pi.
Last[2] holds the view returned by the penultimate scate operation by pi.

In the code and throughout the correctness proof, we refer to the various fields of
the registers R1, . . . , Rn separately. Any read operation from some field of a register
implies that the whole register is read. Any write operation to some field means
writing some new value to that specific field and rewriting the current values to the
other fields.

4.2.5. Code description. The code appears in Figure 7.
In the code, pi starts by recording the sequence number of its last operation and

then incrementing its local sequence number and counter variables. Then, pi performs
the handshake procedure for each processor and then calculates the global counter.
At this point, pi writes the value of the operation into its segment Si. Notice that it is
possible that this line is not executed at all, since pi may detect a takeover failure while
collecting the values of the local counters (in line 4). In this case, pi jumps directly
to line 17 to handle the takeover failure and writes the value of the operation into Si

there. (Failure handling is explained later.) pi proceeds by performing a wraparound
check. If a wraparound is detected, pi jumps to line 23. If no wraparound is detected,
pi collects a local view of the segments and starts to traverse the classification tree.
This part of the operation is performed almost exactly as in the m-shot snapshot
object, except that the calculations regarding the sizes of views, performed in the
classifier procedures, are done modulo m. If pi traverses the tree without detecting
any takeover failure, it obtains some temporary result. Then, pi performs another
wraparound detection procedure. If during this procedure no failure is detected, pi

returns the temporary result as the result of the operation (and updates Ri.Last[1, 2]).
Otherwise, pi jumps to handle the detected failure.

Both kinds of failures, takeover and wraparound, are handled in a similar man-
ner. When pi detects that it was overtaken by pj , it tries to copy pj ’s last returned
view. However, pi is allowed to do so only if the last view returned by pj contains pi’s
current operation value. If not, pi starts the operation all over again. When pi detects
a wraparound failure, it tries to find a sufficiently recent view that was returned by
some operation and copies it. More precisely, pi tries to find a penultimate view of
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scate(value) (Code for pi)
0: first-seq := sequence-number

Start:
1: sequence-number := sequence-number+1
2: my-counter := (my-counter + 1) mod m
3: for j = 1 to n do Hi,j := Handshakei(j)
4: g-counter :=

∑
i Si.counter mod m

5: Si := (value,sequence-number,my-counter)
6: check-wraparound(g-counter)
7: ini := read S1, . . . , Sn

8: v := root, currenti,1 := ini

9: for ` = 1... log m do
10: currenti,`+1 := Classifier(Label(v), currenti,`)
11: if master then v := v.right
12: if slave then v := v.left
13: temp-result := currenti,log m+1
14: check-wraparound(g-counter)
15: Ri.Last[1, 2] := 〈temp-result, Ri.Last[1]〉
16: return temp-result

Takeover by pj code:
17: Si := (value,sequence-number,my-counter)
18: temp-result := Rj .Last[1]
19: if temp-result[i].seq > first-seq then
20: Ri.last[1, 2] := 〈temp-result, Ri.Last[1]〉
21: return temp-result
22: else goto Start

Wraparound code:
23: if ∃Rj .Last[2][i].seq > first-seq then
24: Ri.Last[1, 2] := 〈Rj .Last[1], Ri.Last[1]〉
25: return Rj .Last[1]
26: else goto Start

FIG. 7. The scate operation.

some processor that contains pi’s current operation value. If pi finds such a processor,
it copies its last view; otherwise, pi starts the operation all over again.

As a consequence of the failure handling technique, a scate operation may consist
of several attempts. (Each time a processor arrives at the label Start is the beginning
of a new attempt.) For every scate operation, only its last attempt is successful
and returns a view. The successful attempts can either return a view through the
failure handling procedures or not. Therefore, we partition attempts into three types:
unsuccessful attempts, which do not return a view; indirect attempts, which return a
copied view in line 21 or 25; and direct attempts, which return a view in line 16.

Note that different attempts of the same operation have different sequence num-
bers. Therefore, the unsuccessful attempts may be thought of as independent opera-
tions that are “cut off” before completion. On the other hand, the same first-seq is
used by all attempts of the same operation. The value of first-seq is used in order to
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decide whether to copy another processor’s view in the failure procedures. That is,
the conditions in lines 19 and 23 are satisfied if the found view contains the sequence
number of any of the attempts of the current operation.

4.3. Correctness proof. We first show that views returned by scate operations
are comparable. Since only successful attempts return views, it suffices to prove
comparability for them.

Define an ordering on attempts according to the order they update the segments.
(This order has nothing to do with the linearization of scans and updates which will
be presented later.) Specifically, for each attempt we consider the first time that it
writes to Si, either in line 5 or in line 17. This write is called the actual update of the
attempt. Since writes are atomic, the ordering of actual updates defines an ordering
among the attempts.

Based on the ordering of the attempts, we divide them into “virtual rounds” of
size m. The first round contains the first m attempts, and in general, the ith round
contains attempts (i − 1)m + 1, . . . , im.

Recall that k is the constant for the handshake mechanism, and m is a con-
stant that determines the height of the classification tree. These constants were left
unspecified, and we now fix k = 8 and m = (k + 2)n = 10n.

The following lemma implies that in order to prove the comparability of views
returned by successful attempts, we can consider only the direct attempts.

LEMMA 4.1. A view returned by an indirect attempt is also returned by some
direct attempt.

Proof. Toward a contradiction, let ati be an indirect attempt that copies a view
from some Rj .Last[1] such that this view is not a direct view. Consider all the
attempts that return the same view as ati, and from these attempts let atk be the
attempt whose write before returning its view (in lines 20 or 24) is the first in the
execution. The view returned by atk must be direct; otherwise, there was some
other attempt that returned this view and wrote it before atk did, which is a contra-
diction.

We next show that the views returned by direct attempts can be organized by
the virtual rounds.

LEMMA 4.2. Let ati be a direct attempt in round ri, and let atj be a (direct or
indirect) attempt in round rj > ri. Then ati starts to execute its wraparound test in
line 14 before atj executes its actual update step.

Proof. We slightly abuse notation and denote the processors that execute ati and
atj by pi and pj , respectively. Note that pi and pj may be the same processor, while
ati and atj are not the same attempt. This should not cause any confusion.

Consider the execution of line 4 in ati, and let c be the value of g-counter. Since
ati is in round ri, the value of the global counter is still less than (ri + 1)m when
pi completes line 4. Now pi executes its actual update step. Since ati is direct, pi

continues without detecting any failure and arrives in line 14.
Assume, by way of contradiction, that pj executes its actual update step in atj

before pi starts line 14. Therefore, the value of the global counter is greater than
(ri + 1)m when pi starts line 14, since atj is in round rj > ri. Since pi does not
detect a wraparound in line 14, the value it reads is c′ ≥ c. This can happen only if
the local counters were incremented at least m = (k + 2)n times since pi started to
execute line 4. In particular, at least one processor pl incremented its counter at least
(k + 2) times since pi has started to execute line 4. Thus, pl performs handshakel(i)
at least (k +1) times since pi started to execute line 4, which implies that pl performs
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handshakel(i) at least (k + 1) times since pi performed handshakei(l) in ati. By the
properties of the handshake mechanism, pi will detect a takeover failure by pl while
executing line 14, which is a contradiction.

This implies the following corollary.
COROLLARY 4.3. Let ati be a direct attempt in round ri. The view returned by

ati does not contain any values written by attempts in rounds strictly greater than ri.
By the definition of rounds, when pi reads S1, . . . , Sn in line 7 it observes all the

values from previous rounds. Furthermore, it is immediate from the code that any
direct attempt returns a view which contains at least the values it reads in line 7.
Therefore, we have the following corollary.

COROLLARY 4.4. Let ati be a direct attempt of round ri. The view returned by
ati contains all the values written in rounds strictly smaller than ri.

The above corollaries indicate that a direct attempt in round r observes all the
values of rounds smaller than r, plus some subset of the values of round r, and nothing
from rounds greater than r. Thus, for any two direct attempts in different rounds, it
is clear that the view returned by the later attempt dominates the view returned by
the earlier one. Consequently, in order to prove comparability of all the direct views,
we need only prove comparability of attempts in the same round. This is done in the
next lemma.

LEMMA 4.5. Let ati and atj be two direct attempts of round r. The views returned
by ati and atj are comparable.

Proof. By Lemma 4.2, until both ati and atj arrive at line 14, no value of round
greater than r is written in the segments and certainly not in the registers of the
tree. In addition, when either ati or atj reads the segments before starting to traverse
the tree (at line 7), all (r − 1)m values of rounds 1, . . . , r − 1 are already written
in the segments. Thus, the contribution of these values to the calculations that are
performed in the classifier procedures that are executed throughout ati and atj is
cancelled out.

This implies that the process of traversing the tree by ati and atj has exactly the
same properties of the m-shot object construction. The comparability of the views
returned by ati and atj is implied by the same arguments as in the m-shot object (in
the proofs of Lemmas 3.4 and 3.6).

Combining the above lemma with Lemma 4.1 implies the following corollary.
COROLLARY 4.6. The views returned by any two scate operations are comparable.
Comparable scate operations are used to implement scans and updates exactly in

the same way as in the m-shot object. That is, to execute an update(v) operation,
a processor executes scate(v) operation and ignores the value it returns; to execute
a scan operation, a processor executes a scate(v) operation with the current value of
its segment.

We now linearize the scan and update operations. First we identify each (update
or scan) operation with the unique pair (v, seq) that is written by the first attempt
of the operation. Scans and updates are linearized as in the m-shot object. That
is, the scans are linearized according to the (comparable) views they return, and the
updates are linearized between the scans according to the values they write. Clearly,
by the way updates are linearized between scans, we have the following lemma.

LEMMA 4.7. For every scan sc and for every Si, the value returned by sc for Si

is the value written by the last update by pi that is linearized before sc.
Therefore, the sequence preserves the semantics of the snapshot object. To show

it is a linearization, it remains to prove that the above sequence is consistent with the
real time order of operations, →.



ATOMIC SNAPSHOTS IN O(n log n) OPERATIONS 335

The proof is similar to the corresponding proof for the m-shot object, but it is
more complicated since in the m-shot object all the returned views were direct, while
here the proof must consider both direct and indirect views. We start by introducing
some terminology.

We say that an operation op (scan or update) returns a direct view if the successful
attempt of op is direct, and similarly for indirect view. In addition, we sometimes
classify op itself as direct or indirect.

The origin of an operation op is the attempt that directly returned the view
returned by op. Formally, the origin of an operation op is defined inductively as
follows. If op is direct, then the origin of op is the last attempt executed in op.
Otherwise, if op is indirect and copies the view returned by op′, then the origin of
op is the origin of op′. In a similar manner, we define the depth of an operation op,
which specifies the distance of op from its origin. If op is direct, then its depth is zero.
Otherwise, if op is indirect and copies the view returned by op′, then the depth of op
equals the depth of op′ plus one.

An interval is a subsequence of consecutive primitive operations in the execution.
The interval of an operation is the interval starting with the execution of the first
statement of the operation and ending with the execution of the last statement of
the operation (not including the Return statement). The interval of an attempt is
defined similarly.

An interval is unsafe if some processor starts and terminates two consecutive
unsuccessful attempts in this interval. Otherwise, the interval is safe.

To show that the sequence defined above is consistent with →, it suffices to
prove that any indirect operation starts before its origin. This implies that the view
copied from the origin is sufficiently up to date, and thus, the indirect operation is
linearized within its interval. The intuitive proof argues that if an operation fails (due
to either takeover or wraparound), then during the time interval of the operation many
other operations were performed. At least some of these operations are completely
contained in the interval, and therefore, the view copied by the indirect operation
must be sufficiently up to date.

Unfortunately, the above intuition is not accurate since the failure mechanisms
guarantee only that during the interval of an indirect operation there are many at-
tempts. However, it is possible that not many of the attempts are successful, and
therefore, not many operations are completed during this interval. This means that
there are no up to date views to be copied. To overcome this problem we must show
that an operation does not contain many attempts. This will imply that if there are
many attempts in some interval, then there are many operations as well. To prove
that an operation does not contain many attempts, we have to show that after a
small number of unsuccessful attempts, an operation will find its value in some al-
ready existing view (or penultimate view). In turn, this relies on the fact that when a
failure is detected, there are sufficiently up to date views that were obtained by other
operations. On the face of it, this argument seems circular.

Put another way, the difficulty arises because the proof of partial correctness (pro-
cessors return values that are up to date) relies on the assumption that operations
terminate, and vice versa. We sidestep this circularity by first proving partial correct-
ness if the operation’s interval is safe, that is, all operations inside it terminate after
(at most) two attempts. Using this fact, we then prove that any interval is safe, i.e.,
all operations terminate after (at most) two attempts. This implies that the claim
holds for any operation.

LEMMA 4.8. If op’s interval is safe, then op’s origin starts after op starts.
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Proof. The proof is by induction on d, the depth of op. The base case, d = 0,
follows since the last attempt of op is the origin of op. For the induction step, let op
be an operation with depth d > 0, and assume the lemma holds for any operation of
depth d − 1 whose interval is safe. Since d > 0, op is indirect, and it copies the view
of some operation op′ of processor p′ with depth d − 1. Let at and at′ denote the
successful attempts of op and op′, respectively. There are two cases.

Case 1. op copies the view of op′ due to a takeover failure. Since takeover failures
are detected by the handshake procedure, p′ has executed its handshake procedure
at least k ≥ 6 times while at was executed. Therefore, p′ starts and completes at
least four consecutive attempts during at’s interval. Since at’s interval is safe, at least
two of these attempts are successful. Therefore, p′ completes at least two operations
while at is executed. The attempt at copies the view returned by op′, which is the
last preceding view returned by p′. The above implies that op′ starts after at starts.
By the induction hypothesis, the origin of op′ starts after op′ starts. Since this is also
the origin of op, it follows that the origin of op starts after op starts.

Case 2. op copies the view of op′ due to a wraparound failure. Let op′′ be the
operation of p′ that precedes op′. By the condition for copying the view of op′, the view
returned by op′′ contains the value written by op. Therefore, op′′ does not terminate
before op starts. In particular, op′ starts after op starts. By the induction hypothesis,
the origin of op′ starts after op′ starts. Since this is also the origin of op, it follows
that the origin of op starts after op starts.

We now prove that all intervals are safe, by showing that every operation termi-
nates after at most two attempts.

LEMMA 4.9. Every operation contains at most two attempts.
Proof. Assume, by way of contradiction, that there is an operation opi by proces-

sor pi that contains two consecutive unsuccessful attempts, at1, at2. Assume that the
interval from the start of at1 to the completion of at2 is minimal, that is, all intervals
contained in it are safe. (Such a minimal interval exists because the execution is a
sequence.) We prove that at2 must be successful. There are two cases.

Case 1. at2 fails due to a takeover failure by processor pj . In this case, pj executes
its handshake procedure at least k ≥ 6 times during at2’s interval. This implies that in
this interval pj starts and completes at least four attempts. Since any interval strictly
contained in at2’s interval is safe, at least two of these attempts are successful. Let
opj be the last operation completed by pj in at2’s interval. It follows that opj starts
after at2 starts, and therefore after the actual update of opi to Si (since at2 is not
the first attempt of opi). Since opj ’s interval is safe, Lemma 4.8 implies that opj ’s
origin starts after opj starts, and therefore after the value of opi is written in Si. This
implies that the view returned by opj contains the value written by opi. Therefore,
when pi discovers a takeover by pj in at2, it can copy the view of opj , and hence at2
is successful, which is a contradiction.

Case 2. at2 fails due to a wraparound failure. Consider the interval from the start
of at1 to the completion of at2. If at1 is unsuccessful due to a takeover failure, then
clearly there is a processor pj that executes its handshake procedure at least k ≥ 8
times during this interval. Otherwise, if both at1 and at2 fail due to a wraparound
failure, then again it is guaranteed that during their interval there is a processor pj

that executes its handshake procedure at least k ≥ 8 times. This implies that in this
interval pj starts and completes at least six attempts. Since this interval is safe, at
least three of these attempts are successful. This implies that pj starts and completes
at least two operations in this interval. As before, since this interval is safe, Lemma
4.8 implies that the last two operations of pj in this interval return views that contain
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the value written by opi. Therefore, when pi discovers a wraparound failure in at2,
it can copy the last view returned by pj , and hence at2 is successful, which is a
contradiction.

Thus, all operation intervals are safe, and therefore Lemma 4.8 can be applied to
any operation to obtain the following corollary.

COROLLARY 4.10. For any operation op, the origin of op starts after op starts.
This implies that indirect operations copy views which are up to date. Since

direct operations clearly observe the value they write, and since indirect operations
copy other processors’ view only if it includes their value, we have the following lemma.

LEMMA 4.11. Any scan or update operation returns a view that contains its own
value.

The following lemma proves that the linearization sequence preserves the real
time order of the operations.

LEMMA 4.12. For any two (scan/update) operations opi and opj, if opi → opj

then opi is linearized before opj.
Proof. There are four cases, according to operation types.
Case 1. Let sci and scj be two scan operations such that sci → scj . By Lemma

4.11, scj returns a view that contains the value it writes. Furthermore, sci does not
return a view that contains the value of scj . Since the views returned by sci and scj

are comparable (Corollary 4.6), it must be that the view returned by scj dominates
the view returned by sci. Therefore, sci is linearized before scj .

Case 2. Let sci be a scan operation and upj be an update operation such that
sci → upj . By the code of the algorithm, the view returned by sci does not contain
the value written by upj , and therefore upj is linearized after sci.

Case 3. Let upi be an update operation and scj be a scan operation such that
upi → scj . By Corollary 4.10, the origin of scj starts after scj does, and therefore
after upi’s actual update. Since the origin is a direct attempt, it reads upi’s value.
Therefore, scj returns a view that contains the value written by upi, and hence scj is
linearized after upi.

Case 4. Let upi and upj be two update operations such that upi → upj . If
upi and upj fit exactly between the same two scan operations, then due to the way
symmetry is broken, upi is linearized before upj , and the lemma follows.

Otherwise, if upj is linearized before upi, then there exists a scan operation sc
such that upj is linearized before sc and sc is linearized before upi. Thus, sc returns
a view that contains the value written by upj and does not contain the value written
by upi. Consider the scate operation that is executed to implement upi. This scate
operation returns a view that contains the value written by upi (Lemma 4.11) but
does not contain the value written by upj (since upi → upj). Therefore, this scate
operation returns a view that is incomparable to the view returned by sc. This contra-
dicts the comparability property of the views returned by scate operations (Corollary
4.6).

Lemmas 4.7 and 4.12 imply that the sequence of scans and updates defined above
is indeed a linearization. By Lemma 4.9, each scate operation contains at most two
attempts. Each attempt requires O(n log m) = O(n log n) operations on atomic single-
writer multireader registers, which implies the following lemma.

LEMMA 4.13. Any scan or update operation terminates after at most O(n log n)
operations on atomic single-writer multireader registers.

Note that, in addition to a single copy of the m-shot classification tree, each
processor maintains n handshake variables (each with O(k) possible values) and two
views. Since k is a constant and m = O(n), the algorithm requires a total of O(n2B)
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bits, where as before, B is the number of bits required for representing a view.
Note that B is still unbounded, since the algorithm still uses unbounded sequence
numbers.

4.4. Bounding the sequence numbers. So far, we presented the ∞-shot snap-
shot object using unbounded sequence numbers to allow every processor to distinguish,
for any set of values of another processor, which one is the most up to date. When se-
quence numbers are unbounded this goal is easily achieved by choosing the value with
the maximal sequence number. To avoid unbounded values we use bounded sequential
timestamps, a concept introduced in [20]. In our case, each processor generates its own
set of timestamps (timestamps of different processors are not compared). Therefore,
we can use ideas of [14] to implement these timestamps. Below, we briefly describe
these ideas; the reader is referred to [14, 13] for further details.

The main idea is to allow a processor to know which of its sequence numbers might
be in use in the system. If this can be done, then a processor can simply choose a new
sequence number to be some value that is not in use; to let other processors know
what is the ordering among its sequence numbers, the processor holds an ordered list
of all its currently used sequence numbers. If the number of sequence numbers that
might be in use is bounded, then the processor can draw its sequence numbers from
a bounded set of values (thus effectively recycling them).

The difficult part of the above idea is keeping track of the sequence numbers that
are in use in the system. The natural idea that comes to mind is that all of the
sequence numbers of a processor that are written somewhere in the shared memory
at some point are the ones that are in use. However, there might be situations where
some processor, pi, reads a certain sequence number, x, and then x is overwritten and
“disappears” from the shared memory. Later on, pi might rewrite x in the shared
memory. The traceable use abstraction of [14] solves this problem of “hidden” values
by forcing a processor that reads a sequence number from the shared memory to
leave evidence that this sequence number was read. This results in a slightly more
complicated mechanism for reading and writing values from the shared memory.

To allow values to be recycled the processor invokes a “garbage collection” of
sequence numbers, whose execution is spread over the duration of several operations
(see further details in [14, 13]).

The number of (low-level read and write) operations required for generating
bounded sequence numbers is linear, and therefore the O(n log n) complexity of the
snapshot algorithm is not affected.

In the implementation of the traceable use abstraction, the number of sequence
numbers that each processor uses is bounded by O(n2) times the total number of
sequence numbers of that processor that may be in the system concurrently (cf. [13]).
In our case, each processor can have at most O(n2) of its own sequence numbers in
the system concurrently. Thus, the total number of sequence numbers that are used
by each processor is O(n4), and the size of the sequence numbers is therefore O(log n).
In addition, each processor must hold an ordered list of all its sequence numbers that
are currently in use. The list requires O(n4 log n) bits per processor.

As was calculated before, the algorithm requires O(n2B) bits, where B is the
number of bits required to represent a view. To calculate B, recall that a view contains
n entries, each with three fields: the actual value of the entry, the counter field
(O(log n) bits), and the seq field (now bounded to require O(log n) bits). Therefore,
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the number of bits required to represent a view is O(n log n), plus n times the number
of bits required to represent an actual values of the snapshot object, which we denote
by |V |. Thus, the total space complexity is O(n3(log n + |V |) + n5 log n) bits.

5. Discussion. We introduced an implementation of a bounded atomic snap-
shot object in which each update or scan operation requires O(n log n) operations
on atomic single-writer multireader registers. (As was previously mentioned, one of
the operations can be made linear by the results of [23].) Obviously, at least Ω(n)
operations are required for implementing the scan operation for an atomic snapshot
object, and by [22] this is also the lower bound for implementing the update opera-
tion. Needless to say, it will be very interesting to close the O(log n) gap between our
implementation and this lower bound.
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