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Background

The �eld of statistics has seen many well-meaning crusades against threats from metaphysics
and other heresy. In its founding prospectus of 1834, the Statistical Society of London has
resolved \... to exclude carefully all Opinions from its transactions and publications|to
con�ne its attention rigorously to facts." This clause was o�cially struck out in 1858, when
it became obvious that facts void of theory could not take statistics very far [Annals, 1934,
p. 16]

Karl Pearson launched his own metaphysics \red-scare" about causality in 1911: \Beyond
such discarded fundamentals as `matter' and `force' lies still another fetish amidst the in-
scrutable arcana of modern science, namely, the category of cause and e�ect" [Pearson, 1911,
p. iv]. Pearson's objection to theoretical concepts such as \matter" and \force" was so �erce
and his rejection of determinism so absolute that he consigned statistics to almost a century
of neglect within the study of causal inference. Philip Dawid was one of a handful of statisti-
cians who boldly protested the stalemate over causality: \Causal inference is one of the most
important, most subtle, and most neglected of all the problems of statistics" [Dawid, 1979].

In the past two decades, owing largely to progress in counterfactual, graphical, and struc-
tural analyses,1 causality has been transformed into a mathematical theory with well-de�ned
semantics and well-founded logic, and many practical problems that long were regarded as ei-
ther metaphysical or unmanageable can now be solved using elementary mathematics. In the
paper before us, Professor Dawid welcomes the new progress in causal analysis but expresses
mistrust of the quasi-deterministic methods by which this progress has been achieved.

Attitudes of suspicion toward counterfactuals and structural equation models are cur-
rently pervasive among statisticians, and Professor Dawid should be commended for bring-
ing such concerns into the open. By helping to dispel misconceptions about counterfactuals

1See Pearl (2000) for a gentle introduction to the counterfactual, graphical, and structural-equation
approaches to causality.
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Dawid's paper may well have rescued statistics from another century of stagnation over
causality.

The empirical content of counterfactuals

The word \counterfactual" is a misnomer. Counterfactuals carry as clear an empirical mes-
sage as any scienti�c laws, and indeed are fundamental to them. The essence of any scienti�c
law lies in the claim that certain relationships among observable variables remain invariant
when the values of those variables change relative to our immediate observations. For ex-
ample, Ohm's law (V = IR) asserts that the ratio between the current (I) and the voltage
(V ) across a resistor remains constant for all values of I, including yet unobserved values
of I. We usually express this claim in a function, or hypothetical sentence:2 \had the cur-
rent in the resistor been I (instead of the observed value I0) the voltage would have been
V = I V0

I0
," knowing perfectly well that there is no way to simultaneously measure I and

I0. Such sentences appear to be counterfactual, because they deal with unobserved quanti-
ties that di�er from (hence seem to contradict) those actually observed. Nonetheless, this
circumstantial nonobservability and apparent contradiction do not diminish whatsoever our
ability to submit physical laws to empirical test. Scienti�c methods thrive on attempts to
con�rm or falsify the predictions of such laws.

The same applies to stochastic processes (or data-generation models), usually written in
the form of functional relations y = f(x; u), where X and U stand for two sets of random
variables, with joint distribution P (x; u), and f is a function (usually of unknown form) that
determines the value of the outcome Y = y in terms of observed and unobserved quantities,
X = x and U = u. To see how counterfactuals and joint probabilities of counterfactuals
emerge from such a stochastic model, let us consider a simple case where Y and X are binary
variables (e.g., treatment and response) and U an arbitrary complex set of all other variables
that may in
uence Y . For any given condition U = u, the relationship between X and Y

must be one of the (only) four binary functions:

f0 : y = 0 or fY0 = 0; Y1 = 0g f2 : y 6= x or fY0 = 1; Y1 = 0g

f1 : y = x or fY0 = 0; Y1 = 1g f3 : y = 1 or fY0 = 1; Y1 = 1g (1)

As u varies along its domain, the only e�ect it can have on our model is to switch the
relationship between X and Y among these four functions. This partitions the domain of
U into four equivalence classes, where each class contains those points u that correspond
to the same function. The probability P (u) thus induces a probability function over the
potential-response pairs fY0; Y1g shown in Eq. (1). This construction is the inverse of the
one discussed in (Dawid's) section 13; we start with genuine concomitants U , and they turn
into jointly distributed counterfactual concomitants fY0; Y1g that Dawid calls metaphysical
and fatalistic.

Admittedly, when u stands as the identity of a person, the mapping of u into the pair
fY0; Y1g appears horridly fatalistic, as if that person is somehow doomed to react in a pre-
determined way to treatment (X = 1) and no-treatment (X = 0). However, if we view u

2Every mathematical function is interpreted hypothetically, and the study of counterfactuals is merely a
study of standard mathematical functions.
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as the sum total of all experimental conditions that might possibly a�ect that individual's
reaction, including biological, psychological and spiritual factors, operating both before and
after the application of the treatment, then the mapping is seen to evolve reasonably and
naturally from the functional model y = f(x; u). This quasi-deterministic functional model
mirrors Laplace's conception of nature [Laplace, 1814], according to which nature's laws are
deterministic, and randomness surfaces merely due to our ignorance of the underlying bound-
ary conditions. (The structural equation models used in economics, biology and stochastic
control are typical examples of Laplacian models.) Dawid detests this conception. This is
not because it ever failed to match macroscopic empirical data (only quantum-mechanical
phenomena exhibit associations that might con
ict with the Laplacian model), but because
it appears to stand contrary to \our familiar statistical framework and machinery" (Section
7). I fail to see why a framework and machinery that did not exactly excel in the causal
arena should be deprived of enhancement and retooling.

Empiricism versus identi�ability

Dawid's empiricism is summarized in the abstract of his paper:

\By de�nition, we can never observe such [counterfactual] quantities, nor can we
assess empirically the validity of any modeling assumption we may make about
them, even though our conclusions may be sensitive to these assumptions."

This warning isn't entirely accurate. Many counterfactual modeling assumptions do have
testable implications: for example, exogeneity (or ignorability) (Yx??X) and monotonicity
(Yt(u) � Yc(u)) can each be falsi�ed by comparing experimental and nonexperimental data
[Pearl, 2000, Chapter 9]. More importantly, the warning is either empty or self-contradictory.
If our conclusions have no practical consequences, then their sensitivity to invalid assump-
tions is totally harmless, and Dawid's warning is empty. If, on the other hand, our conclusions
do have practical consequences, then their sensitivity to assumptions automatically makes
those assumptions testable, and Dawid's warning turns contradictory.

The two queries about aspirin and headache, which Dawid uses to distinguish e�ects-
of-causes from causes-of-e�ects (\sheep" from \goats"), may serve well to illustrate the
inconsistency in Dawid's philosophy. The two queries are:

I. I have a headache. Will it help if I take aspirin?

II. My headache has gone. Is it because I took aspirin?

Letting X = 1 stand for \taking aspirin" and and Y = 1 stand for \having headache"
(after half hour, let us say), the counterfactual expressions for the probabilities of these two
queries read:

QI = P (Y1 = 0)� P (Y0 = 0)
QII = P (Y0 = 1jX = 1; Y = 0)

(2)

In words, QII stands for the probability that my headache would have stayed had I not
taken aspirin (Y0 = 1), given that I did, in fact, take aspirin (X = 1) and the headache
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has gone (Y = 0). (We restrict the population to persons who have headaches prior to
considering aspirin). Dawid is correct in stating that the two queries are of di�erent types,
and the language of counterfactuals displays this di�erence and its rami�cations in vivid
mathematical form. By examining their respective formulas, one can immediately detect
that QII is conditioned on the outcome Y = 0, whereas QI is unconditioned. This implies
that some knowledge of the functional relationship (between X and Y ) must be invoked in
estimatingQII [Balke and Pearl, 1994]. I challenge Dawid to express QII , let alone formulate
conditions for its estimation in a counterfactual-free language.3 However, what is puzzling
in Dawid's paper is that he considers QII to be, on one hand, valid and important (Section
3) and, on the other hand, untestable (Section 11); the two are irreconcilable. If QII is valid
and important, then we should expect the magnitude of QII to a�ect some future decisions,
and we can then use the correctness of those decisions as a test (hence, interpretation) of
the empirical claims made by QII . What are those claims and how can we test them?

According to the interpretation given in the previous section, counterfactual claims are
merely conversational shorthand for scienti�c predictions. Hence, QII stands for the prob-
ability that a person will bene�t from taking aspirin in the next headache episode, given
that aspirin proved e�ective for that person in the past (i.e., X = 1; Y = 0). Therefore,
QII is testable in sequential experiments where subjects reaction to aspirin is monitored
repeatedly over time. (We need to assume that a person's characteristics do not change over
time, an assumption that is testable in principle.) In such tests we can easily verify whether
subjects who have had one positive experience with aspirin (X = 1; Y = 0) have a higher
than average probability of bene�ting from aspirin in the future.

I have argued elsewhere [Pearl, 2000, p. 217] that counterfactual queries of type II are the
norm in practical decision making, whereas causal e�ect queries (type I) are the exception.
The reason is that decision-related queries are usually brought into focus by observations
that could be modi�ed by the decision (e.g., a patient su�ering from a set of symptoms). The
case-speci�c information provided by those observations is essential for properly assessing
the e�ect of the decision, and conditioning on these observations leads to queries of type II,
as in QII . The Bayesian approach proposed by Dawid cannot properly handle conditioning
on factors that are a�ected by the treatment,4 and thus deprives us of answering the most
common type of decision-related queries.

I agree with Dawid that certain assumptions needed for identifying causal quantities are
not easily understood (let alone ascertained) when phrased in counterfactual terms. Typical
examples are assumptions of ignorability [Rosenbaum and Rubin, 1983], which involve con-
ditional independencies among counterfactual variables. However, this cognitive di�culty
comes not because counterfactuals are untestable but because dependencies among counter-
factuals are derived quantities that are a few steps removed from the way we conceptualize
cause-e�ect relationships. To overcome this di�culty, a hybrid form of analysis can be used,

3For background information, the identi�cation of QI requires exogeneity (i.e., randomized treatment),
whereas that of QII requires both exogeneity and monotonicity; both assumptions have testable implications
[Pearl, 2000, p. 294]. Epidemiologists are well aware of the di�erence between QI and QII (they usually
write QII = QI=P (Y = 0jX = 1)), though the corresponding identi�cation conditions for QII are often not
spelled out as clearly as they could [Greenland and Robins, 1988].

4Detailed dynamic models or temporally indexed data for every conceivable set of observations would be
needed for specifying the probabilities in the decision trees of such analysis.
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in which assumptions are expressed in the friendly form of functional relationships (or dia-
grams), and causal queries (e.g., QII) are posed and evaluated in counterfactual vocabulary
[Pearl, 2000, p. 215-7, 231-4]. Functional models, in the form of nonparametric structural
equations, thus provide both the formal semantics and conceptual basis for a complete math-
ematical theory of counterfactuals.

In Section 5.4, Dawid restates his empiricist philosophy in the form of a requirement
which he calls Je�reys's Law:

\. . .mathematically distinct models that cannot be distinguished on the basis of
empirical observation should lead to indistinguishable inference."

This requirement reads like a tautology; If two models entail two distinguishable inferences,
and if the di�erence between the two inferences matters at all, then the two models can easily
be distinguished by whatever (empirical) criterion we use to distinguish the two inferences.
Dawid may have meant the following:

\. . .mathematically distinct models that cannot be distinguished on the basis
of past empirical observation should lead to indistinguishable inference regarding
future observation (which may be obtained under new experimental conditions)."

This is none other but the requirement of identi�ability (see e.g., [Pearl, 1995]). It requires,
for example, that if our data are nonexperimental, then two models that are indistinguishable
on the basis of those data entail the same value of the average causal e�ect (ACE) { a quantity
that is discernible in experimental studies. It likewise requires that, if our data come from
static experiments, then two models that are indistinguishable on the basis of those data
entail the same value of QII { a quantity that is discernible in sequential experiments.

If the aim of Dawid's empiricism is to safeguard identi�ability, his proposal would be
welcome by all causal analysts, including adventurous counterfactualists. Unfortunately,
careful reading of his paper shows that David aims at imposing an overly restrictive and
unworkable type of safeguards, a type that has been outmoded in almost every branch of
science.

Pragmatic versus dogmatic empiricism

The requirement of identi�ability, as just stated, is a restriction on the type of queries we
may ask (or inferences we may make) and not on the type of models we may use. And
this brings us to the di�erence between pragmatic and dogmatic empiricism. A pragmatic
empiricist insists on asking empirically testable queries, but leaves the choice of theories
to convenience and imagination; the dogmatic empiricist insists on positing only theories
that are expressible in empirically testable vocabulary. As an extreme example, a strictly
dogmatic empiricist would shun the use of negative numbers, because negative quantities
are not observable in isolation. For a less extreme example, a pragmatic empiricist would
welcome the counterfactual model of individual causal e�ects (ICE) (see Section 5.2) as
long as it leads to valid and empirically testable estimation of the quantity of interest (e.g.,
ACE). Dawid rejects this model a-priori because it starts with unobservable unit-based
counterfactual terms, Yt(u) and Yc(u), and thus fails the dogmatic requirement that the
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entire analysis, including all auxiliary symbols and all intermediate steps, \involve only terms
subject to empirical scrutiny". What we gain by this prohibition, according to Dawid, is
protection from asking nonidenti�able queries. His proposal, in the form of Bayesian decision
theory, indeed ensures that we do not ask certain forbidden questions, but unfortunately, it
also ensures that we never ask or answer important questions (such as QII) that cannot be
expressed in his restricted language. It is a sti
ing insurance policy, analogous to banning
division from arithmetics in order to protect us from dividing by zero.5

Science rejected this kind of insurance long ago. The Babylonians astronomers were
masters of black-box prediction, far surpassing their Greek rivals in accuracy and consistency
[Toulmin, 1961, pp. 27{30]. Yet Science favored the creative-speculative strategy of the Greek
astronomers which was wild with metaphysical imagery: circular tubes full of �re, small holes
through which the �re was visible as stars, and hemispherical earth riding on turtle backs. It
was this wild modeling strategy, not Babylonian rigidity, that jolted Eratosthenes (276-194
BC) to perform one of the most creative experiments in the ancient world and measure the
radius of the earth.

This creative speculate-test-reject strategy (which is my understanding of Popperian em-
piricism) is practiced throughout science because it aims at understanding the mechanisms
behind the observations, and thus gives rise to new questions and new experiments, which
eventually yield predictions under novel sets of conditions. Quantum mechanics was invented
precisely because J.J. Thomson and others took deterministic classical mechanics very se-
riously, and boldly asked \metaphysical" questions about physical properties of electrons
when electrons were unobservable. The language of counterfactuals, likewise, enables the
statistician to pose and reject a much richer set of `what if' questions than does the language
of Bayesian decision theory. Giving up this richness is the price we would pay for Dawid's
insurance.

Counterfactuals as instruments

Dawid reports (end of Section 10.2) that the bounds for causal e�ects in clinical trials with
imperfect compliance [Balke and Pearl, 1997] are \sheep-like", namely, valid, meaningful
and safe even for counterfactually-averse statisticians. Ironically, when we examine the
conditional probabilities that achieve those bounds, we �nd that they represent subjects with
deterministic behavior, compliers, never-takers and de�ers, precisely the kind of behavior
that Dawid rejects as \fatalistic" (Section 7.1). The lesson is illuminating: even starting
with the best sheep-like intentions, there is no escape from counterfactuals and goat-like
determinism in causal analysis.

This lesson leads to a new way of legitimizing counterfactual analysis in the conservative
circles of statistics. Researchers who mistrust the quasi-deterministic models of Laplace (i.e.,
y = f(x; u)) can now view these models as limit points of a space of nondeterministic models
P (yjx) constrained to agree with the observed data. Accordingly, the mistrustful analysis of
counterfactuals can now be viewed as a benign analysis of limit points of ordinary probability
spaces, in much the same way that irrational numbers can be viewed as limit points (or
Dedekind cuts) of benign sets of rational numbers.

5Over-protection may also tempt the counterfactual camp; see [Imbens and Rubin, 1995].
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Dawid is correct in noting that many problems about the e�ects of causes can be rein-
terpreted and solved in non-counterfactual terms. Analogously, some of my colleagues can
derive De-Moivre's theorem, cosn� = Re[(cos � + isin�)n], without the use of those mis-
trustful imaginary numbers. So, should we strike complex analysis from our math books?
If we examine the major tangible results in causal inference in the past two decades (e.g.,
propensity scores, identi�cation conditions, covariate selection, asymptotic bounds) we �nd
that, although these results could have been derived without counterfactuals, they simply
were not. This may not be taken as a coincidence if we ask why it was Eratosthenes that
measured the size of the earth and not some Babylonian astronomer, master in black-box
prediction. The success of the counterfactual language stems from two ingredients that
are necessary for scienti�c progress in general: (1) the use of modeling languages that are
somewhat richer than the ones needed for routine predictions, and, (2) the use of powerful
mathematics to �lter, rather than muzzle, the untestable queries that such languages tempt
us to ask.

Dawid is inviting causality to submit to the Babylonian safeguard of black-box mentality.
I dare predict that causality will reject his o�er.
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