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Gate sizing is one of the most flexible and powerful methods available for the timing and

power optimization of digital circuits. As such, it has been a very well-studied topic over

the past few decades. However, developments in modern semiconductor technologies have

changed the context in which gate sizing is performed. The focus has shifted from custom

design methods to standard cell based designs, which has been an enabler in the design

of modern, large-scale designs. We start by providing benchmarking efforts to show where

the state-of-the-art is in standard cell based gate sizing. Next, we develop a framework to

assess the impact of the limited precision and range available in the standard cell library

on the power-delay tradeoffs.

In addition, shrinking dimensions and decreased manufacturing process control has led

to variations in the performance and power of the resulting designs. We provide methods

for gate sizing with statistical delay, and compute bounds to show that full statistical power

optimization is not essential. Lastly, to address the complexities of doing in design in a

yet immature process, we provide a method to perform incremental discrete gate sizing

to account for both anticipated and unanticipated changes in the manufacturing process

parameters.
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CHAPTER 1

Introduction

Gate sizing and threshold voltage assignment are widely used to optimize digital circuits,

as tools to explore the tradeoffs in power, timing, area, yield, crosstalk, statistical power,

statistical delay, and soft-errors. They can also be used incrementally as a method for

optimizing post-layout designs after placement and interconnect routing. After over three

decades [RWG77], research is still active in the area.

Of the many variations on the gate sizing and threshold voltage assignment problem,

this work will consider the case of gate sizing and threshold voltage assignment for digital

designs, with following metrics:

• Leakage power

• Dynamic power

• Clock period.

The application most commonly found in literature today is to minimize some combination

of the leakage power and the dynamic power, with a constraint on the clock period. In the

case that timing closure is important, the objective may be to minimize the clock period.

Dynamic power is composed of two components: the power that is used to charge and

discharge capacitances, and the power that is lost due to the short circuit current that

flows when both PMOS and NMOS are conducting during a transition. Thus, if the total

capacitance of a gate is Cg, and the gate switches at a frequency fswitch, then the power

dissipation due to charging and discharging gates (pdynamic(cap)) is approximately:

pdynamic(cap) = fswitch · (
1

2
CgV

2
dd). (1.1)
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As the capacitance of a gate is linearly related to the area of the gate, source, and drain:

Cg ∝ w · l, (1.2)

increasing the gate widths will have a linear effect on the dynamic power due to capacitance

charging.

The other component of dynamic power is the short-circuit power (pdynamic(sc)). This is

the power that is lost when both the PMOS and NMOS are conducting while the gate is

in transition. When the input transition is fast, then the short-circuit power is minimized.

However, a slow input transition can cause a 5X to 10X increase in the short-circuit power,

and using minimum sized devices may hurt overall power [SC95]. From [SN90], a short-

circuit current expression based on the α-power law is:

pdynamic(sc) ∝ τ · VDD
w

l
·
(1− 2( vt

VDD
))α+1

(1− ( vt
VDD

)α
, (1.3)

where τ is the input transition time, and α is a fitting coefficient for the technology library1.

This indicates that the short-circuit current is roughly linear in the input transition time

and the gate length, and is inversely proportional to the gate lengths2.

The leakage power is dominated by the sub-threshold conduction from the source to

the drain. This happens because the transistor is not fully “OFF”, and has a current

proportional to [SSK87]:
w

l
· e

Vgs−vt
vT

(

1− e
−Vds
vT

)

, (1.4)

where vT = 26mV is the thermal voltage and Vgs is the gate-to-source voltage. This expres-

sion shows that the sub-threshold is a linear function of gate-width, but is an exponential

function of the threshold voltage vt.

The relationship between the gate size, length, and vt as a function of the delay can be

approximated to a first-order using an α-power law model [SN90]:

Delay ∝ 1
w
l
(Vgs − vt)α

, (1.5)

1For the 45nm Nangate Library, α ≈ 1.4.
2This is just an approximation; the threshold voltages are also dependent on the gate lengths.
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where w is the gate width, l is the gate length, Vgs is the gate-to-source voltage, and vt

is the threshold voltage. This expression indicates that the gate delay is roughly linear in

the gate length, and inversely proportional to gate widths.

Increasing the gate widths also increases the capacitances of its input pins proportional

to w · l, as in (1.2). Increasing the size will therefore increase the delay of the fanin gates,

and may have a cumulative negative effect on the delay. This is why gate sizing requires

a balancing of the loads in the design, as increasing the sizes may actually hurt efforts to

meet the delay constraints. In contrast, changing the threshold voltages has a milder effect

on the input capacitances, and is generally between ±5% (see Section 3.1.1).

Formally, the gate sizing problem can be expressed as an optimization problem. For ex-

ample, with the vector of cell options ~ω, the delay-constrained power optimization problem

is:

minimize Power(~ω)

subject to Delay(~ω) ≤ Tmax

ω ∈ Ω,

(1.6)

where Tmax is the clock period. Similarly, the power-constrained delay optimization prob-

lem is:

minimize Delay(~ω)

subject to Power(~ω) ≤ Pmax

ω ∈ Ω.

(1.7)

This form helps summarize the objectives and constraints in the optimization process. The

variables ω in the optimization process are the cells used to implement the gates, and is

used as a generalization of gate size w, threshold voltages vt, and other potential design

variables in the optimization problem. The notation ~ω is used to represent a vector of cells,

and the cell option for gate g is denoted ωg.

There are two distinct versions of the gate sizing problem: the continuous gate sizing

problem, when Ω is a continuous, connected set, and the discrete gate sizing problem,

when Ω is a discrete set. Continuous sizing problems were the first to appear in litera-
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ture [RWG77] and formed the bulk of the research in the 1980’s and early 1990’s. Early

research focused on heuristics for the sizing problem [FD85], however with the increase

in computing power, nonlinear programming methods for continuous gate sizing became

dominant in literature [BJ90, CCW99, BKP05]. Continuous gate sizing is still used today

in the context of custom designs [BAB07], and are used for the high-performance circuitry

in these designs. In addition, it is sometimes used as the starting point for discrete sizing

methods [CSH95].

The discrete gate sizing problem gained importance after standard cell library design

became widespread in the 90’s3, and is the most widely used form of gate sizing today.

The popularity of discrete gate sizing comes from the widespread use of electronic design

automation for standard cell designs at the synthesis, placement and routing stages. The

automation of the physical design process provides designers with a method to tackle the

increasing complexities of circuit design [BAB07].

In contrast, the threshold voltage assignment problem is always treated as a discrete

one, as the cost to creating fine-grained vt is prohibitive– each additional threshold voltage

is costly in terms of mask costs, fabrication costs, and production time. In practice, a limit

of three or four threshold voltages is used.

There is extensive literature on each of the gate sizing and threshold voltage assign-

ment methodologies above. Examples of continuous gate sizing research can be found

in [RWG77, FD85, SRV93, CHV96, CCH98, CH99, CCW99, KKS00, KYT02, BVS02,

SMN05, BKP05]. Discrete gate sizing research will be covered in Section 2.3 and can

be found in [Cha90, LH95, CSH95, Cou96, CS96, PDC98, WV98, CS00, WRK00, PRC01,

HO01, CS02, GKS04, SSS05, CK05, HKH07, RHC08, Hel09, WD09, LH09, HKH09, LG10,

ALQ11, LH11, HHS11, OBH11]. Threshold voltage assignment also has a large literature

surrounding it, [WCR99, WRK00, KC00, PRC01, KS02, KYT02, SEO02, NDO03], and

will also be covered in Section 2.3. To summarize the achievements of prior research, there

3See, for example, [TKT84].
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are several topics that can be considered well understood:

1. Methods for modeling continuous sizing problems and vt assignment [FD85, BJ90,

KKS00, BKP05].

2. Optimal methods for the posynomial gate sizing and vt assignment problem [SRV93,

CHV96, CCH98, CH99, KKS00, KYT02, BVS02, SMN05, BKP05].

3. Greedy methods for discrete gate sizing and vt assignment [FD85, CHM96, Cou97,

SEO99, WRK00, GKS04, SEO02, SSB04a].

In contrast, there are still open questions in gate sizing that are related to developments

over the last decade, which caused a shift in the way that physical design is done. The

first set of challenges was motivated by the continuing descent of lithography towards the

diffraction limit, and the increasing effects of threshold voltage variations [Vis03, War11].

Control over transistor specifications has been decreasing, prompting the need for statistical

design methodologies to manage the spread in transistor parameters, and flexible redesign

methodologies to account for the uncertainty in the target manufacturing processes. The

next development is the rising proportion of leakage power as a portion of total power,

putting increasing pressure on the design and algorithms to provide (1) a methodology to

cope with uncertainty, and (2) methods to provide performance benefits through design

methodologies and algorithms that are closer to optimal. This dissertation tackles a few of

these open questions in gate sizing and threshold assignment:

1. Which discrete sizing heuristic is the best?

2. Are there sizing methods that can handle statistical delay directly?

3. What are the potential benefits of optimizing statistical power?

4. What is the effect of novel technologies on the gate sizing problem?

5. What is the impact of the range and precision of standard library cells on the optimal

power?

6. What methods can be used to perform incremental gate sizing for post-layout designs?
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These topics are not only unified by their application, which is gate sizing, but they are

also unified by the approach that is used to tackle these topics. Underlying the field of

gate sizing is optimization– nonlinear programming, convex programming, combinatorial

optimization, dynamic programming– that is used to approach the problem. In addition,

there are fundamental concepts– bounding hyperplanes, convex analysis– that are used to

construct bounds and approximations. These tools are used to answer these open questions,

and to progress the state of a problem over three decades old.

1.1 The physical design process

Gate sizing and threshold voltage assignment are a part of the larger Electronic Design

Automation (EDA) ecosystem that transforms Register Transfer Language (RTL) descrip-

tions into a physical layout. The process of creating the physical layout is called the

physical design process, and consists of six steps:

1. Logic synthesis.

• Input: RTL/HDL design description, library cell information, timing constraint

information.

• Output: Netlist mapped to the library.

Transform the RTL/HDL design description into a gate level netlist, using a given

cell library. Convert state machines, map arithmetic blocks, etc.

2. Floorplanning.

• Input: Synthesized netlist, macro information, library information, standard

cell row information, information on chip inputs and outputs.

• Output: Floorplan with rows for standard cell placement, pads for input and

output, locations for macros.

Create a die for the design, and allocate space for input output ports, macros, and

library gates.
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3. Placement.

• Input: Synthesized netlist, floorplan.

• Output: Locations for each of the cells in the design in a standard cell row.

Places, flips and rotates cells into the rows created by the floorplanning algorithm.

Minimizes the wirelength in the resulting layout, while meeting timing constraints

(timing-driven placement).

4. Clock-Tree synthesis.

• Input: Placed design, clock nets.

• Output: Clock tree to distribute the clock signal to the sequential elements

(flip-flops, latches, etc.).

Creates a clock tree to distribute the clock signal across the design. The goals are to

minimize the size of the clock tree (to minimize power), and the skew at each of the

outputs of the clock tree. Buffers may be added to help distribute the clock signal.

5. Routing.

• Input: Placed design, connection information, metal and via information from

the library.

• Output: Design with cells connected with wires.

Connects cells in the library using metal layers and vias. The objective is to minimize

the amount of interconnect needed, while observing design rules and meeting timing.

6. Physical Verification and Yield Enhancement.

• Input: Placed, routed design.

• Output: Verified design with improved yield.

Improves the yield of the design. Corrects design rules violations, inserts metal fill,

doubles vias, checks connectivity and topology.

A flowchart for the EDA process is shown in Figure 1.1.
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Figure 1.1: Electronic Design Automation flow.

Although gate sizing and threshold voltage assignment are not explicitly in the design

flow above, they are used throughout the design flow to correct timing errors, and to

optimize the design. For example, they are commonly used after placement to resize

gates that violate maximum fanout rules or flip-flop setup time requirements (see, for

example [Cad]). After clock tree synthesis, they are used to further fix rule violations

and setup and hold violations, using the clock information from the clock-tree synthesis.

After routing, they are again used to fix setup and hold violations, along with design rule

violations. At this step, an incremental routing may be needed to account for changes in

the cell sizes, and their corresponding pin locations.

They are also used at different points in the design flow to reduce the power consump-

tion [ALQ11]. While this may reduce the power using the same timing constraint, in other

instances the timing constraints may need to be relaxed to achieve a power reduction.

Gate sizing and threshold voltage assignment are powerful tools for optimization, and

are the most widely used incremental optimization tools. These methods are more powerful

and less intrusive than adjusting the placement or routing of the design. For example,
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fixing setup time violations using placement would require the gates on the violating path

to be moved, and would require rerouting the interconnects. Similarly, fixing setup time

violations using routing would also require the connections between the cells to be rerouted.

In both cases, a significant portion of the design will need to be rerouted to provide benefits.

On the other hand, gate sizing and threshold voltage assignment are less disruptive

than re-placing the cells or re-routing them. For example, the timing of a buffer driving

a large wire load could be improved by increasing its size. This may result in a local

rerouting to accommodate the different pin locations of the larger cell, and if there is no

space around the surrounding cell, then an incremental placement will be needed to create

space for the cell. However, this is preferable to rerouting large sections of the design, or

adjusting the placements of tens or hundreds of cells.

In some cases, when only the gate lengths or threshold voltages change, the disruption is

very minimal. In these cases, the cell dimensions and pin locations are the same, and these

cell alternatives can be swapped without any change in the routing or the placement. The

only verification needed is to ensure that the crosstalk noise, power, and timing constraints

are satisfied.

Another advantage of gate sizing and threshold voltage assignment is that they are ver-

satile, as they can be targeted to different optimization objectives. They have been used for

power and timing optimization [Cou96], to fix noise constraints due to crosstalk [LMK90,

XM01], to harden soft-errors due to radiation [ZM06], to improve yield [DS06, CSS05], and

to minimize statistical power [SSB04b, CGL10].

1.2 Outline

The dissertation is structured as follows. Chapter 2 gives an overview of the principles

needed to understand the gate sizing and threshold assignment problem, and a survey of

gate sizing and threshold assignment methods. Chapter 3 describes the need and efforts
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towards a benchmarking system for standard cell library based discrete gate sizing. Chap-

ter 4 considers the increasing variations in manufactured circuits, and its impacts on delay

and power optimization. Chapter 5 addresses the impact of manufacturing technology on

gate sizing. This dissertation is concluded in Chapter 6.
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CHAPTER 2

Gate Sizing and Threshold Voltage Assignment

Overview

Gate sizing, along with gate-length biasing and vt assignment, works by matching the

drive-strengths of the transistors to the capacitive loads in the design. Faster gates with

larger drive currents are used to charge the larger capacitive loads due to long interconnect

wires, I/O pads, or large fanouts. However, improvements in the delay must be weighed

against increases in the power, and this tradeoff is the central mechanism behind gate

sizing and threshold voltage assignment.

In this chapter, we provide an overview of gate sizing and threshold voltage assignment.

First, the concept of Static Timing Analysis is explained, as it is the de-facto method for

computing the delay. This is followed by a discussion on the tradeoffs between power and

delay, which are explored quantitatively and qualitatively.

Lastly, an overview of the methods for gate sizing and vt assignment is provided. These

methods can be broadly divided as continuous methods and discrete methods. The dis-

tinction is whether the gate sizes and threshold voltages are considered to be a finite set

of discrete values, or are chosen from a continuous range. The continuous methods draw

heavily from mathematical programming methods, while the discrete methods are inher-

ently combinatorial and rely on heuristics. These methods will be described in detail in

this chapter.
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2.1 Static Timing Analysis

Gate sizing and threshold voltage assignment methods that optimize timing or use timing

constraints rely on Static Timing Analysis (STA) based timers. Static timing analysis

computes the delays and arrival times in the graph without requiring data inputs or simu-

lations. This is in contrast to dynamic timing methods which require simulation vectors to

find critical paths. In this section, a broad overview of STA will be reviewed. For readers

new to the subject of STA, we refer the reader to [Sap04] for a comprehensive treatment

of the subject, and [BC09] for a practical introduction.

The principle behind STA is to propagate the best- and worst- case delays through

the circuit. The arrival times (ta) at each node are computed by traversing the circuit in

topological order, starting with the primary inputs, and propagating the delays through

to the primary outputs. The slacks (s) are computed in reverse-topological order, starting

with the required arrival times (tr) at each of the outputs and propagating these times

through to the inputs. In sequential circuits, the inputs of the sequential elements are also

considered to be primary outputs and the outputs are considered to be primary inputs.

When setup or long-path violations are of interest, the STA propagates the worst-case

times through the graph to find the critical, or max path. This is to find whether the signal

will arrive at its destination by the time it is required to arrive.

Similarly, when hold or short-path violations are of interest, the STA propagates the

best-case times through the graph to find the shortest, or min path. This is used to find

whether the signal arrives too quickly at the input of a flip-flop or latch, causing the state

of the flip-flop to be set improperly, potentially causing metastability at the output.

2.1.1 Concepts and terminology

The terminology used to describe the topology and the signal and delay characteristics of

a circuit is presented in this section. The first set of terms is used to describe the topology
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of the circuit. These terms are used to identify the inputs and the outputs of the circuit,

the neighboring gates, and an ordering of the gates that can be used for performing the

timing analysis.

• Primary inputs (PI): input ports in the design that are driven by external sources.

• Primary outputs (PO): output ports in the design.

• Fanins of a gate (fi(g)): the set of gates that drive the inputs of gate g.

• Fanouts of a gate (fo(g)): the set of gates that are driven by gate g.

• Fanin cone of a gate: the set of gates whose outputs have a path to the input of

the given gate. This includes the fanins of the gate, the fanins of the fanins, and so

on.

• Fanout cone of a gate: the set of gates whose inputs have a path from the output

of the given gate. This includes the fanouts of the gate, the fanouts of the fanouts,

and so on.

• Topological order: a way of ordering or numbering the gates where the fanins of

a gate have a number smaller than the fanouts of a gate. When sequential elements

are present, the sequential elements are placed at the top of the list. This ordering

is generally not unique.

The second set of terms is used to describe the output waveform and delay character-

istics. These terms are used to describe the time the signal arrives at a given point, and

the characteristics of the waveform that arrives.

• Cell rise time or rise delay: time from when the input crosses 50% voltage to

when the rising output crosses 50% voltage.

• Cell fall times or fall delay: time from when the input crosses 50% voltage to

when the falling output crosses 50% voltage.

• Cell rise transition or slew: the time elapsed from when the output signal crosses

the 30% voltage to when it crosses 70%.

13



Figure 2.1: Plot of the transition and delay times for an size 1 inverter driving a .05pF

load.

• Cell fall transition or slew: the time elapsed from when the output signal crosses

the 70% voltage to when it crosses 30%.

• Arrival time (ta): the time that the signal crosses the 50% voltage threshold at

a given point in the circuit. The time associated with a rising and falling signal is

called the rise arrival time and the fall arrival time, respectively.

• Required arrival time (tr): the time a signal needs to cross the 50% voltage

threshold at a given point in the circuit to be timing feasible. The required arrival

time associated with a rising and falling signal are called the rise and fall required

arrival time, respectively.

• Slack (s): the difference of the required arrival time and the arrival time, represents

the amount of timing slack available at that point in the circuit.

An example of these concepts is shown in Figure 2.1. This figure shows a falling

transition for an inverter in a 45nm [NANb] process. The input is assumed to be an ideal

ramp, however, the output transition is not ideal. The input slew is .1ns, the fall time is

.2ns, and the output slew is .12ns.
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The 50% threshold for the delay, and the 30% to 70% thresholds for the slew are pa-

rameters that are set by the given timing library. The 50% threshold is generally standard

across libraries, but libraries may differ in the slew thresholds. In libraries today, a 20%

to 80%, or a 30% to 70% threshold are the most common.

At a given point in the circuit, the arrival time (ta) is the time that a signal crosses

the delay threshold. This is the time that the signal is said to arrive at the given point.

Arrival times are a widely used to convert the arriving waveform into a single time. There

are two types of arrival times:

• Minimum arrival time: the fastest time that a signal can arrive. Used to check

for hold-time violations.

• Maximum arrival time: the slowest time that a signal can arrive. Used to check

for setup-time violations and primary output arrival time requirements.

The hold-time requirements ensure that the signal does not arrive too quickly to the input

of a sequential element. The setup-time requirements ensure that the signal does not arrive

too late to be stored in the sequential element.

At a given point in the circuit, the required arrival time (tr) is the time that the signal

is required to arrive to meet the setup time and the output arrival time requirements. This

is computed by subtracting the clock period with the delays downstream from the gate.

Thus, if the signal arrives by the required arrival time, the delay conditions at the primary

output or flip-flop inputs should be met.

The main use of the required arrival time is in computing the slack (s). The slack is

defined as the difference between the required arrival time and the arrival times:

s = tr − ta (2.1)

Thus, it measures the amount of timing “slack” that is available at the point in the circuit

and how much the timing may be increased or must be decreased at that point in the
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design. Timing is infeasible wherever the slack is negative (s < 0), and timing is feasible

wherever the slack is non-negative (s ≥ 0).

The last set of terms is used to relate the signal waveforms and the arrival times between

different adjacent parts of the design.

• Timing arc: a concept used to relate the delay between two adjacent points in the

circuit.

• Positive unate: when a rising input to a gate causes a rising output, or a falling

input causes a falling output.

• Negative unate: when a rising input to a gate causes a falling output, or a falling

input causes a rising output.

The timing arcs are useful abstractions to connect the delays of adjacent points in the

circuit. For example, the delay from an input A to output ZN is a timing arc, and the

delay between an output of a gate to an input of another gate is a timing arc. This helps to

conceptualize the circuit timing in terms of a graph with the delays represented by timing

arcs along the edges.

The terms positive and negative unate are used to describe timing arcs in a cell. They

connect the appropriate rising or falling arrival times with the corresponding rising or

falling arrival time. For example, the timing arcs in an inverter cell are negative unate: a

rising input will always cause a falling output.

2.1.2 Computing arrival times and slacks

Signals are propagated through the design using a series of timing arcs or timing paths.

These timing arcs connect:

1. Primary inputs to gate input pins.

2. Gate input pins to gate output pins.

3. Gate output pins to other gate inputs or primary outputs using interconnects (nets).
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4. Clock signals to input hold and setup conditions.

5. Clock signals to output “clock-to-Q” (C2Q) delays.

STA works through the following method.

1. Compute the delays and arrival times at the primary inputs (PI) and the flip-flop

outputs.

2. In topological order, compute the delays and arrival times for the remainder of the

gates.

3. Compute the arrival times at the primary outputs (PO) and the flip-flop inputs.

4. In reverse-topological order, compute the required arrival times and the slacks.

The arrival times along a path are found by adding the delays of the timing arcs.

However, there is a complication when the multiple inputs combine to form a single

output. This happens in the case of multiple input gates, such as a 3-input AND, a

multiplexer, or a 2-input exclusive-OR. In this case, the maximum of the arrival times at

the output are propagated for a setup time or late-mode analysis, and the minimum of the

arrival times at the output are propagated for a hold-time or early-mode analysis. When

the shortest path is needed to check for hold-time violations is similar, the minimum arrival

times are propagated.

The slack is computed using an extra backwards (reverse topological) pass through the

circuit. In the backwards pass, the required arrival times (tr) are backwards propagated

through the circuit. It starts with the primary outputs and the inputs to the flip-flops,

setting the required arrival time to the latest arrival time that the signal can arrive; this

is generally equal to the clock period, or the clock period minus the setup time. The

required arrival times are propagated backwards by subtracting the delays at each arc

until it reaches the primary inputs to the flip-flops and latches. Once the required arrival

times are set, the slacks are computed as the difference between the required arrival times,
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and the actual arrival times:

s = tr − ta (2.2)

2.1.3 Interconnect delay and slew propagation

As scaling continues, interconnect delay becomes an increasingly large percentage of the

total delay. This has increased the importance of computing accurate wire delays, and has

motivated fast and accurate interconnect delay metrics [CPO02]1.

Interconnects are generally extracted from layouts in the form of parasitic networks.

These parasitic networks model the capacitance and resistance properties of the intercon-

nects and are used to analyze the propagation of the voltages down the wires.

The simplest and most common of these networks is the RC tree. If the restriction

to a tree is dropped and loops are allowed, then the resulting network is called an RC

mesh. When inductors are allowed, the resulting network is called an RLC tree or RLC

mesh. Lastly, a pair of RC trees that are connected together using capacitors is called a

coupled RC tree. There are many variations on this that emerge by mixing the type of

network topology (line, tree, mesh), parasitic elements (resistors, capacitors, inductors),

and coupling (coupled or not coupled).

The challenge in computing interconnect delay is to find the propagation delay and the

transition time at the outputs. The most accurate method is to solve the differential equa-

tions related to the currents, charge, and voltages in the parasitic network. However, this

is computationally prohibitive in large designs, and especially in the context of gate sizing

and threshold voltage assignment, where fast delay estimates are needed for optimization.

The simplest method is the Elmore delay [Elm48]. This method approximates the

delay as the expected value of the unit step response applied to the network. This is also

equal to the first-moment of the impulse response, hence the Elmore delay is also called the

dominant-time constant, or first-order approximation of the delay. This correlates well with

1For a detailed analysis of the subject, please see [CPO02] or [Sap04].
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Figure 2.2: Output transition (slew) dilemma. The input waveforms to a two input gate

are shown.

the actual delay [BKM93] (also see [ANC04]) and can be used for rough delay estimates

or for short interconnect. In [GTP97], the Elmore delay is shown to be an upper bound

on the actual delay, which justifies its use as a conservative estimate.

When accuracy is important, modern timers may employ more accurate methods that

utilize higher order moments to improve the accuracy. Examples of this are the Asymptotic

Waveform Evaluation Method [PR90] and the Krylov subspace methods [FF95, SKW96].

We refer the reader to [CPO02, Sap04] for more details on these methods.

Slew propagation. An important part of static timing analysis is the propagation of the

input transitions, or slews [BC09]. The output waveforms play a major role in determining

the output delay. For example, Table 3.2 shows that the difference in delay between the

minimum and maximum transition is 2 to 7X. Thus, ignoring slew effects will cause inac-

curacies in the delay. Furthermore, ignoring the slew in gate sizing and threshold voltage

assignment eliminates the potential in increasing gate sizes or decreasing the threshold

voltage to improve the downstream slew, and the corresponding downstream delays.

Computing the output slew is a difficult process when there are multiple inputs. This

is because there may be a case where the input signals overlap. For example, Figure 2.2

shows the case of a two-input gate. The input A arrives at the gate later (in terms of the

50% delay threshold), but finishes transitioning faster. The input B arrives at the input
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earlier, but has a much slower transition.

When computing the output slews for max path analysis, the slower slew is usually

propagated. Thus, in Figure 2.2, the arrival time of input A will be used to compute the

output arrival time, and the slew of input B will be used to compute the output slew.

However, most timers can also propagate the slew associated with the greatest arrival time

if specified.

Similarly, for min path analysis, the fastest slew is propagated, as this is the worst case.

Thus, in Figure 2.2, the arrival time of input B will be used to compute the output arrival

time, and the slew of input A is used to compute the output slew.

2.1.4 Additional topics

Incremental Timing Analysis. Gate sizing and other optimization methods rely heav-

ily on incremental timing analysis methods ([LT95, Sap04]). These methods are fast ways

to find the updated timing information after changes in the design, from sources such as

gate sizing, threshold voltage assignment, and routing. The idea is to update only the

arrival times that may change; thus when the changes are relatively small, the speedup

and be substantial. As an example of incremental timing analysis, consider Figure 2.3.

If the gate g5 changes, then the arrival times of its fanout cone, g7, g8, and g9 may be

affected, and must be recomputed, or at least checked to make sure the times are still

valid. However, the change in g5 may also change the arrival times at the output of g2,

and g3. Thus the fanout cone of its inputs should also be recomputed. Furthermore, when

slack estimates are required, the required arrival times must be recomputed, and in this

case, the required arrival times for the fanout cone (the gates whose delays change), and

the fanin cone may need to be updated.

Differences between STA timers. While the basic methodologies that the timers use

are all similar, there is still a difference between the outputs of different timers. Timers
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Figure 2.3: Mesh example from [GKK10]. The optimum sizes for minimum delay are

shown.

used in place and route tools will generally use approximations for variation modeling,

crosstalk and interconnect delay calculations. On the other hand, sign-off quality timers

will use methods that are more accurate, but will require a longer runtime.

The main benefit to using better timing methods is to reduce the pessimism. STA

is designed to be conservative, as the resulting design must meet the timing. However,

a large amount of pessimism may cause over-design, while a timing method that is not

conservative enough may result in catastrophic results.

The difference between the timers used in place and route, and the timers used in

sign-off will be discussed in more detail in Section 3.3.1.

There are several additional concepts that are used in Static Timing Analysis [BC09]

that will not be covered here:

• On-Chip Variations: modeling the variations in operating conditions (tempera-

ture and voltage) and manufacturing process (transistor dimension and threshold

variations, interconnect dimension variations, etc.).

• Crosstalk: the effect of neighboring interconnects due to coupling capacitances.
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• Timing borrowing: utilizing transparent latches to improve performance.

Overviews of these topics can be found in [BC09].

2.2 Continuous sizing methods for gate sizing and vt assignment:

Continuous gate sizing has been well studied [RWG77, FD85, SRV93, CHV96, CCH98,

CH99, CCW99, KKS00, KYT02, BVS02, SMN05, BKP05], and have been applied as

heuristics for discrete gate sizing and threshold voltage assignment. These methods model

the delay and power as continuous functions of the design parameters, and then use the

models to formulate an optimization problem, which returns a set of continuous sizes. This

section will survey methods for continuous sizing.

Modeling for continuous gate sizing and threshold voltage assignment problems has

been well studied [KKS00, BKP05, RCC07]. Common delay models that are used are

the linear models, posynomial models, and general models. The distinction between these

types of problems is the speed in which they can be solved and guarantees of optimality.

Linear and posynomial models have reasonably fast methods that can be used to solve

them (see for example [CCW99, RS08]), and the global optimality of a solution can be

verified. While linear and posynomial methods are the major classes of continuous sizing

methods and models, other models such as device-level models with piecewise constant

current vs. voltage characteristics with general nonlinear programming solvers have been

used [CCH96]. However, these methods generally do not scale well, and are used for smaller

designs. Furthermore, these general models may suffer from converging to local optima

that are different from the global optimum.

Linear models and linear programming The linear model is arguably the fastest to

optimize. Linear models for gate sizing were studied in [BJ90, TMF94]. Power models are
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roughly linear (see Section 3.2), and can be approximated as:

Power =
∑

g∈G

pg,nom · wg, (2.3)

where wg is the width of the gate or the size of the standard library cell, and pg,nom is the

power of a minimum sized gate or library cell.

Gate delay is not linear in the gate size (see Section 3.1.1), thus linear models for the

gate delay require fitting and approximations. In [BJ90], the gate delay is linearized by:

dg = c1 + c2wg − c3
∑

g′∈fo(g)

Cg′wg′ , (2.4)

where c1, c2, and c3 are modeling coefficients, wg is the width of gate g, and Cg is the

input capacitance of g. These models can be improved to be any convex piecewise-linear

function by using a series of inequalities:

dg ≥ c1 + c2wg − c3
∑

g′∈fo(g)

Cg′wg′

dg ≥ c4 + c5wg − c6
∑

g′∈fo(g)

Cg′wg′ (2.5)

dg ≥ c7 + c8wg − c9
∑

g′∈fo(g)

Cg′wg′

...

These inequalities make it possible to use arbitrary convex, piecewise linear functions to

model the delay that may be preferable to geometric programming formulations (see, for

example [RCC07]). The resulting linear program, using the block-based delay formulation

in Section 2.3.1, is:

minimize
∑

g∈G pgwg

subject to ta(g) + dg ≤ ta(g′), ∀g′ ∈ fanout(g)

c1 + c2wg − c3
∑

g′∈fo(g)Cg′wg′ ≤ dg

0 ≤ ta(g) ≤ Tmax, ∀g ∈ G
wmin ≤ wg ≤ wmax,

(2.6)

whose optimum, w⋆, are the optimal continuous sizes.
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2.2.0.1 Posynomial models and geometric programming

An improvement on the linear model is to use posynomial models [FD85] or generalized

posynomials [KKS00]. Posynomials are equations of the form:

∑

k

∏

j

x
αjk

j , (2.7)

where xj is restricted to be positive, but αjk ∈ ℜ can be positive or negative. This form

can handle the basic transistor models2 for delay:

Delayg = Rg

∑

g′∈fo(g)Cg′wg′

wg

(2.8)

= Rgw
−1
g

∑

g′∈fo(g)

Cg′wg′ . (2.9)

This results in the geometric programming problem:

minimize
∑

g∈G pgwg

subject to ta(g) +Rgw
−1
g

∑

g′∈fo(g)Cg′wg′ ≤ ta(g′), ∀g′ ∈ fanout(g)

0 ≤ ta(g) ≤ Tmax, ∀g ∈ G
wmin ≤ wg ≤ wmax.

(2.10)

While this is not convex as written, it is convex when the change of variables wg = exg is

made3. Extensions to these models can be made for vt [CWC05] and gate length assign-

ment. Also, methods to improve the accuracy of these models can be made by including rise

and fall times, wire delays, and estimating slew effects4. These models have the property

that there exists a unique optimum that can be found in polynomial time [BV04, RS08].

Furthermore, there are methods that can solve large posynomial based gate sizing problems

relatively quickly (see for example [CCW99, JB08]).

2For example, the alpha power law model in Equation (1.5).
3Note that the objective is no longer linear under the substitution.
4see [KKS00, BKP05] for a discussion on posynomial models for gate sizing.
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2.3 Discrete gate sizing and vt assignment methods

Discrete gate sizing and threshold voltage assignment methods choose their gates from a

from standard cell library. As the range of gate options is discrete, the problem is inherently

combinatorial, and has been shown to be NP-hard [Li93].

There are many methods that approach the problem of discrete sizing and threshold

voltage assignment using continuous sizing5. The methods that use rounding generally have

at least 8 gate sizes per cell, as in [RHC08]. Other methods use the continuous solution

as a starting point, and then employ heuristics to map the gate to discrete sizes [CSH95,

SSS05, HKH07].

Other methods attack the discrete problem directly. For example, [Cou96] uses an

optimization-derived approach that uses gradient-like functions to minimize the delay or

power. [LH09] uses a dynamic programming and Lagrangian relaxation based heuristics,

and [NDO03] uses slack allocation via linear programming to improve power. This chapter

will survey the field of discrete gate sizing and threshold voltage assignment, however, the

coverage is not exhaustive. Methods that are not covered here include the randomized

exhaustive search based methods [WD09], and graph based methods [CS96, WV98, CS00,

CS02].

In this section, we cover methods for timing-constrained power optimization, although

similar methods are also applicable for other objectives.

2.3.1 Preliminaries

During the optimization process, gate sizing and threshold voltage assignment methods

must find candidate gates to consider for optimization. The “Rank-based” algorithms in

Section 2.3.2 and the slack budgeting methods in Section 2.3.5 use the idea of a sensitivity

5See, for example [CSH95, SSS05, HKH07, RHC08]
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between the power and the delay:

ρd = ∆ta(g, ω;ω0)/∆Power(g, ω;ω0), (2.11)

as in [FD85], where

∆Power(g, ω;ω0) = Power(g, ω)− Power(g, ω0) (2.12)

∆ta(g, ω;ω0) = ta(g, ω)− ta(g, ω0) (2.13)

and Power(g, ω) is the power of gate g using library cell ω, and ta(g, ω) is the arrival time

at the output of gate g using library cell ω. This sensitivity is used as a first-order type

analysis to determine how efficiently the delay can be improved for a change in power.

Thus, the algorithms can prefer gates with better tradeoffs to meet a timing constraint

with a lower power design.

A variant of this method is to use a power vs. slack sensitivity [GKS06]:

ρs = ∆Power(g, ω;ω0)/∆Slack(g, ω;ω0). (2.14)

This does a better job in capturing the effects of the delay, because both downstream

(fanout) and upstream (fanin) effects due to slew will also be accounted for. For example,

downsizing a gate may decrease the arrival time of the input gates, but the decrease in

slew may increase the rise and fall delays in the fanout gates and in the fanout cone –

all gates that downstream from the gate. Thus, this is an improvement on the power vs.

delay sensitivity above.

Computing this sensitivity requires computing both the power and delay for each of the

cell-options ω. This requires multiple calls to the timer to evaluate how the delay changes

over the different cell options. When slacks are involved, this requires recomputing the

required arrival times as well.

Finding and evaluating candidate gate moves is the most time consuming step in gate

sizing and threshold voltage assignment. The challenge is to search the design and find

gates and alternative cell options that: (1) will not violate timing and (2) will improve
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the objective. Many algorithms and most commercial tools use incremental methods to

improve the speed of this process.

Avoiding significantly suboptimal solutions. It is difficult for discrete sizing and

threshold voltage assignment algorithms to measure how far it is from optimal. Due to

this, algorithms terminate whenever the method is unable to optimize any further. This

is a major concern for the quality of the result, as it becomes imperative that when the

algorithm is unable to optimize further, it is at a solution that is relatively close to optimal.

Thus, many algorithms will take a circuit-wide or global approach to gate sizing and

threshold voltage assignment.

One reason that the algorithm terminates in a significantly suboptimal solution is be-

cause the evaluation metrics at the core of these methods are local (see 2.3.1). Candidate

gates and cell options are evaluated by how they individually affect local delay, slacks, or

power. However, the effect of simultaneously changing large groups of gates is what is

needed, and this discrepancy may cause sub-optimality.

Many methods make an effort to incorporate a circuit-wide perspective. For example,

the “global sizing” method from [Cou97] in Section 2.3.2 uses a gradual method, by making

a series of smaller steps to perform the optimization gradually. The justification for this

rests upon the assumption that local metrics are good guides for small changes but they

are not good guides for large changes. Thus, a series of smaller changes can help to

improve the outcome. The slack, slew and delay budgeting methods in Sections 2.3.5

and 2.3.9 incorporate a circuit-wide view by utilizing a pre-processing step to allocate the

slacks and slews. These allocations may take into account the topology of the design, or

the slacks, or the relationship between slacks of neighboring gates. These allocations are

then used to guide optimization at a local level. Lagrange multiplier weighting methods

in Section 2.3.8 also use circuit-wide metrics to guide local optimization. The Lagrange

multipliers are updated according the slack needs across the design. They are iteratively

refined to balance the needs across different parts of the design.

27



Another reason for significantly suboptimal solutions is the large space of solutions

that must be searched. For example, a 100,000 gate design with 5 cell options per gate

yields a search space of 5100,000. While this large search space can be reduced by pruning

methods, the number of options does not reduce down to a manageable size. However,

Dynamic Programming based-heuristics in Section 2.3.7 perform a smart enumeration to

quantify the interactions between different gates in the design, and prune the options that

are suboptimal.

When evaluating discrete sizing and threshold voltage assignment methods, it is helpful

to keep these considerations in mind. Most methods were motivated as an improvement

upon the greedy heuristic in [FD85], and they incorporate specific methods to avoid the

pitfalls of greedy optimization.

Block-based delay formulation In the STA method, the delays are calculated by

propagating the worst-case arrival times and slews at every gate output. This is called

a block-based method, and is in contrast to the path-based method, where the delays and

arrival times are computed independently for each path. While the path-based method

is more accurate, as less pessimism is needed when the actual path is known, it has the

drawback of being computationally expensive, as the number of paths is exponential in the

number of gates.

The block-based delay is essential for incorporating timing into mathematical program-

ming based sizing method. This is done by formulating the delays and arrival times in a

series of inequalities. These inequalities express the arrival time at the output of a gate

as the maximum of the input arrival times, plus the delay through the gate. Thus, at the

output of any gate g:

ta(g′) + dg′ ≤ ta(g), ∀g ∈ fi(g′), (2.15)

or equivalently:

ta(g) + dg ≤ ta(g′), ∀g′ ∈ fo(g). (2.16)
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For primary input gates, we have:

dg ≤ ta(g), ∀g ∈ PI, (2.17)

and for primary outputs, we can write

ta(g) ≤ Tmax, ∀g ∈ PO, (2.18)

where Tmax is a constant representing the maximum delay constraint for timing constrained

problems, or as

ta(g) ≤ ta(max), ∀g ∈ PO, (2.19)

where ta(max) is a variable that can be used to minimize the maximum delay. While these

inequalities can be replaced by using the max functions, e.g.

ta(g) = max
∀g∈fi(g′)

{ta(g′) + dg′}, (2.20)

the expression in terms of inequalities is better suited for use in optimization routines, as

the max operator is generally non-differentiable.

The model can be improved to account for rise and fall times, and the different timing

arcs in each gate. For example, the model in (2.15) can be improved to

ta(g′(rise)) + dg′(rise)→g(fall) ≤ ta(g(fall)), ∀g ∈ fi(g′). (2.21)

In addition, the delays can be written as functions of the gate type, ω, and the input slew:

ta(g′(rise)) + dg′(rise)→g(fall)(ω, τg′(rise)) ≤ ta(g(fall)), ∀g ∈ fi(g′). (2.22)

The differences in the input pins can also be accommodated by adding new variables, such

as ta(g′(rise),in1), ta(g′(rise),in2). As this makes the notation difficult to follow, it will be omitted

in the remainder of the text. However, it should be understood that the block-based delay

formulations can also account for these subtleties.

Hold-time constraints can also be handled using the block-based formulation. In this

case, the minimum arrival time is propagated, and the greater-than operator is used in-

stead:

ta(g′) + dg′ ≥ ta(g), ∀g ∈ fi(g′). (2.23)
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At the primary outputs, the constraint is on the minimum delay:

ta(g) ≥ ta(min), ∀g ∈ PO. (2.24)

Extensions to the hold-time model to handle rise and fall times, input pin dependencies,

and other subtleties can also be made.

2.3.2 Score and Rank algorithms

Score and Rank algorithms (SR)6 for gate sizing and threshold voltage assignment were

developed as fast heuristics for gate sizing. These methods include TILOS [FD85], other

greedy heuristics [LH95, WRK00, PRC01, HO01, GKS04], and its variants [Cou96, DBN97,

SEO99, SEO02, SSB04a]. The defining characteristic of these methods is a scoring method

for each gate that measures its ability to provide a power per timing tradeoff, and a ranking

step to select the best gates for optimization. In this method, the gates are first evaluated

using the scoring method; then the highest ranking gates are evaluated and changed. This

process is iterated until no improvement is possible.

The steps in SR methods are summarized in Algorithms 1 and 2. The two algorithms

are nearly identical but are different in their input design. The Algorithm 1 starts with a

timing feasible design, and trades the extra slack for power savings, choosing the cells that

provide the best power vs. delay tradeoff. On the other hand, Algorithm 2 starts with a

timing infeasible design, and the gates are changed to reduce the negative slack.

While all algorithms in this category share these fundamental steps, they are distin-

guished by their choice in scoring functions:

• TILOS [FD85]7 and [WRK00] use the power vs. delay metric

ρd(g, ω;ω0) = ∆ta(g, ω;ω0)/∆p(g, ω;ω0), (2.25)

6Note that the term “Score and Rank” is ours. We believe that it is a useful category that covers a
large and important class of methods.

7In their paper, the delay vs. size sensitivity is used; however, as we are mainly interested in power,
we present it as the delay vs. power sensitivity.
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Input: Timing Feasible Design

while Slack(G) > 0 do

Step 1: Score the gates and cell options according to a given score function ρ.

Choose the best option for each gate;

Step 2: Choose candidate gate moves by ranking the gates according to the

score. If no power improving options are available, break;

Step 3: Perform optimizations in decreasing order of ranking;

end

Algorithm 1: The general Feasible-Start Score and Rank Algorithm.

Input: Timing Infeasible Design

while Slack(G) < 0 do

Step 1: Score the gates and cell options according to a given score function ρ.

Choose the best option for each gate;

Step 2: Choose candidate gate moves by ranking the gates according to the

score. If no slack improving options are available, break;

Step 3: Perform optimizations in decreasing order of ranking;

end

Algorithm 2: The general Infeasible-Start Score and Rank Algorithm.
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where ∆p(g, ω;ω0) is the change in the power (p(g, ω)− p(g, ω0)), and ∆ta(g, ω;ω0)

is the change in the arrival times at the output of the gate (ta(g, ω) − ta(g, ω0)).

Note that this formulation accounts for changes in the fanin gate delays due to the

changing input capacitances.

• For gate-length biasing, [GKS06] uses the score:

ρs(g, ω;ω0) = ∆p(g, ω;ω0)/∆s(g, ω;ω0), (2.26)

where ∆p(g, ω;ω0) is the change in the power, and ∆s(g, ω;ω0) is the change in the

slack. The change in the slack accounts for timing changes in the fanout cone due to

slew effects. This provides a more complete picture of the timing effects than (2.25).

[PRC01] approximates slew effects using sensitivities instead of using the timer.

• The Duet method [SEO99, SEO02], along with [SSB04b], adapts the scoring function

from [DBN97]:

ρduet(g, ω;ω0) = (2.27)

− 1

∆p(g, ω;ω0)

∑

∀α∈G

∆dα(g, ω;ω0) ·
1

sα − smin + ǫ
(2.28)

where α ∈ G are the timing arcs in the design (see Section 2.1.1), ∆dα(g, ω;ω0) is the

change in the delay, smin is the minimum slack in the entire design, and ǫ is a small

number used for the case sα = smin. Note that in practice, the ∆dα(g, ω;ω0) values

are computed using analytical models and Elmore delay approximations to improve

runtime.

• Coudert [Cou97] uses a relax function to score the gates:

ρRelax(g, ω;ω0) = (α(∆p(g, ω;ω0))− ǫ) · (2.29)

φ

(

∆s(g, ω;ω0)

|s(g, ω0)|+ ǫ

)

where

φ(x) =











1 + x if x ≥ 0

1
1−x

otherwise.

(2.30)
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method input design score application

[FD85] min area (2.25) transistor sizing

[Cou97] min delay (2.29) gate sizing

[WRK00] min area (2.25) vt, gate sizing

[GKS04] min delay (2.26) gate length biasing

[SEO99, SEO02] all gates at high-vt (2.27) vt

Table 2.1: Summary of Score and Rank methods for gate sizing and threshold voltage

assignment.

These methods are summarized in Table 2.1. The variables vary from transistor sizing

to gate length biasing and vt assignment. Also the starting point for each of these methods

varies. Methods [FD85, WRK00, GKS04, SEO99, SEO02] start with a design with timing

violations, with the gates at their minimum area and/or high-vt configurations. These

methods improve the timing until the design is timing feasible, trading power increases

for delay reductions. In contrast, [Cou97, GKS04] start with a timing feasible design that

meets the timing constraints. In these cases, positive slacks are traded for power reductions.

These methods will be discussed in greater detail below.

2.3.3 Greedy methods

Although Greedy methods were first applied to gate sizing over two decades [FD85] ago,

they are still widely in use [CK07]. These methods have the benefit of being scalable,

easy to implement, and they perform reasonably well (see Chapter 3). They use a locally

optimal choice at each step in the algorithm, which gives these methods the title greedy.

The well-known TILOS method [FD85] was motivated as a fast heuristic to solve the

continuous gate-sizing method. Their paper notes that the problem has a convex formula-
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tion and can therefore be solved optimally; however, due to runtime reasons, they provide

a heuristic for approximate sizing.

The TILOS method for timing constrained area minimization starts with a design at

minimum size (all gates sized down to their lowest power sizes), and then scores each

gate on the critical paths using (2.25). The gate with the greatest score is chosen for

optimization and is set to the cell option with minimum delay. This continues until the

timing constraint is met. As this algorithm starts with a timing-infeasible design, this is

an instance of a timing-infeasible start greedy algorithm.

This method can also be used for delay minimization. In this case, the method termi-

nates when the delay cannot be further decreased.

TILOS has been adapted to other contexts. [WRK00] applies this method to the

simultaneous gate sizing and threshold voltage assignment problem, by adding multiple vt

options into the optimization process. The method is identical to the TILOS algorithm,

except that the cell options include vt variants along with the different gate width choices.

[GKS04] applies the greedy heuristic to gate-length biasing. This method starts with

a timing feasible design at minimum delay and all gates with nominal gate-lengths. The

gate widths are fixed, and the method scores each of the gates and the cell options with the

different gate length variants. The top ranked gates and options have their gate lengths

increased, and this continues until no slack remains. As a variation on the original delay

vs. power metric however, this method uses a slack vs. power metric to capture delay

changes in the fanout cone due to slew effects.

[SEO99, SEO02, SSB04a] apply a modified score that accounts for the criticality of

each gate– gates with less slack are given greater weights than gates with larger slack (see

Equation (2.27)). Each timing arc and its delay vs. power sensitivity are weighted as:

1

sα −min(slacks) + ǫ
. (2.31)

where ǫ is a small positive constant. For the most critical timing arcs, the weight is 1/ǫ,
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and it decreases as (sα −min(slacks)) increases. Thus, delays in timing critical paths can

be improved even when other delays in non-critical paths are increased.

2.3.4 Global sizing

[Cou97] attempts to improve upon the greedy method. A score function “Relax” (2.29) is

proposed to gradually tradeoff the delay for the power. The rationale for this approach is

given in [CHM96]:

“Optimizing the delay gives plenty of alternatives for power optimization, i.e.,

going far away from the infeasible region makes power optimization less likely

to be trapped in a local minimum.”

“[Timing feasible start optimization works by] relaxing the delay constraints

using a penalty/benefit function, as opposed ... to a greedy method that ...

can give low quality results ... [because] resizing a few nodes to their local

minimal power too “quickly” creates critical paths that can prevent most of

the other nodes from being resized and saving more power.”

GLOBAL SIZING: Relax the timing gradually;

Input: Design with gates optimized for minimum delay

while Power improves and Slack(G) > 0 do

Step 1: Score the gates and cell options according to ρrelax (Equation 2.29);

Step 2: Compute a set of moves: find a maximal ordered subset that minimizes

the Power (rank the gates according to score, and choose the top k gates);

Step 3: Update the scores for changed gates and gates in neighborhood of

changed gates;

end

Algorithm 3: The Global Sizing method [Cou97]
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In effect, the relax function is designed to prevent the algorithm from converging too

quickly to a poor solution, as may be the case with greedy methods. This method gradually

trades the delay for power reductions, until it settles on a good solution.

In the Global Sizing Algorithm (Algorithm 3) there are two main differences from the

TILOS algorithm. Firstly, the method requires the computation of a “maximal ordered

subset of moves that minimizes the cost.” They suggest that this be done using a gradient-

type approach, or conjugate gradient method.

The second difference is the incremental updates to the sensitivities. Unlike the TILOS

algorithm, which only scores the critical gates, the global sizing requires that all gates

are scored. Thus, an incremental method is proposed where after the initial iteration, a

neighborhood around each changed gate, which is defined as the gates a given number of

levels away from it, have their scores updated.

2.3.5 Slack and Delay budgeting methods

Delay budgeting methods [CK91, PDC98, NDO03] were developed as fast, scalable meth-

ods for gate sizing and threshold voltage assignment [CK91]8. These methods are an

improvement over the greedy methods in Section 2.3.2 because they can manage the slack

budget between gates– they understand that the slack used on one gate in the design re-

duces the amount of slack left for other gates. Furthermore, these methods account for the

topology of the design by prioritizing low sensitivity gates that are bottle-necks for many

critical paths.

In this section, we will focus on the recent approach by [NDO03]. This method works

in two phases:

• Phase I: Allocate a slack budget to each gate in the design.

• Phase II: For each gate, use the slack budget to reduce the power used by the gate.

8[DA89] also provides a method for budgeting-based sizing, applied to a single logic gate.
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In Phase I, there is an important consideration. When the design is not timing feasible,

then the algorithm will need to distribute negative slacks, along with positive slacks. When

a gate is allocated a negative slack, the gate must improve its timing. To circumvent this

difficulty, a minimum delay design is used as a starting point, where the slacks are positive

and have been maximized.

In Phase I, the slacks are allocated to the gates. This is done by first computing the

power-delay sensitivities using (2.11). These sensitivities are then used in the objective of a

linear programming method (Algorithm 4). These sensitivities weight the slacks allocated

to the gates, and the solution to the linear program “allocates the optimal delays to gates

depending on their ability to convert slack to power” [NDO03].

In Phase II, the slacks are converted into reductions in power (see Algorithm 4). This

step is done at a local level, whereby each gate uses their slack allocation to reduce their

power. For example, at a gate g, the options with smaller power consumption are evaluated

to see if the change in delay is within the allocated slack budget. After the options are

evaluated, the gate is changed to the least power option that meets the budget.

The biggest limitation to this method is that changing a gate will affect the slacks of

neighboring gates; the sensitivities for each gate may change if any of their fanin or fanout

gates change. An increase in the size of an input gate may provide a greater improvement

in slack, while a decrease may cause an opposite effect. Similarly, an increase in the size

of an output gate will improve the slack improvement of the current gate, and a decrease

will reduce the slack improvement. These interactions are not considered by this method

and are accounted for by performing multiple iterations of this method.

Moreover, due to slew effects, the delay sensitivities may also change if any gates in its

fanin cone had changed. For example, if a change in the fanin cone from a gate improves

the slew dramatically, then this may dampen the improvement seen at the current gate.

Similarly, a decrease in the slew may increase the improvement that comes from increasing

a gate’s size.
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Input: Design with gates optimized for minimum delay

Pbest ←∞;

while Power(G) < Pbest do

Pbest ← Power(G);

Setup: Compute Power vs. Delay sensitivities;

foreach g ∈ G do
Compute ρg =

max
ω∈{CellOptions(g)}

{ρd(g, ω;ω0) = ∆ta(g, ω;ω0)/∆p(g, ω;ω0)} (2.32)

end

Phase I: Allocate slacks to gates using LP;

Solve:

minimize
∑

g∈G ρgsg

subject to ta(g) + sg ≤ ta(g′) ∀g′ ∈ fanout(g)

0 ≤ ta(g) ≤ Tmax

0 ≤ sg ≤ Dg,max

(2.33)

with variables sg, ta(g) to get slack allocations sg.;

Phase II: Use the slacks to reduce the power;

foreach g ∈ G do

Set library cell of gate g to;

argminω∈{CellOptions(g) | s(g,ω)−s(g,ω0)≤sg}{Power(ω)};
end

end

Algorithm 4: Slack budgeting method in [NDO03]
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Thus, this algorithm is sensitive to the order in which the slacks are distributed to the

gates. Furthermore, due to these interactions, positive slack may remain after the first

iteration. Thus, the method is iterated until the entire budget is used.

2.3.6 Methods based on Continuous Sizing

Continuous sizing methods are also used in conjunction with discrete sizing. The contin-

uous sizing problem is first solved using the methods in Section 2.2, followed by a process

whereby the continuous solution is “snapped” to a discrete one.

Continuous sizing methods are attractive as they have fast algorithms, and may have

a global optimum that can be found efficiently. However, there two significant downsides,

as noted above: the modeling errors, and the issues with snapping. Thus, these methods

are used when modeling and snapping errors are tolerable [Cou97, HKH09], but they are

severely limited in post-layout contexts.

2.3.6.1 “Snapping” continuous sizes back to library cells

After the continuous model is optimized, the continuous sizes need to be mapped, or

“snapped”, back to the available library cells. Intuitively, this is challenging when the

number of library cells is sparse9, however, [HKH09] reports that even in dense libraries,

with cell sizes of {1, 2, 3, 4, 6, 8, 12, 16, 24, 32}, snapping to the nearest library cell results

in slack violations and infeasible designs. [WD09] shows the importance of a “snapping”–

the difference between an optimal snapping method and a greedy snapping method can be

up to 51% of the power objective.

Moving from a continuous solution to the discrete sizes is difficult, and not guaranteed

to be optimal. For example, suppose that the continuous solution is used to limit each gate

to two cell choices: the library cell that is larger, and the library cell that is smaller than

the continuous size. This still leaves 2|G| choices, and furthermore the optimal solution may

9See [HGS97, BKK98] for a discussion on selecting library cells
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not be one of these choices [CSH95]; however results in [WD09] show it is within 1% of

optimal for a set of 20 commonly used benchmarks.

Heuristics for snapping continuous sizes are studied in [CSH95, SSS05, MDO05, ZBS08,

RHC08]. Simple snapping to the closest library cell is used in [MDO05, RHC08]; in [SSS05],

the gate sizing is re-performed after the vt is snapped, followed by the snapping of the gate

sizes. In [CSH95] the continuous solution via linear programming is used to limit the size

options. Gates that are set at the minimum size by the continuous sizer are fixed to be

at the minimum; the options for the remainder of the gates are two sizes that are smaller

than, and greater than the continuous size. The algorithm then creates a state-space tree

that is used to enumerate the different possibilities. This process is tractable as the number

of gates that are not at minimum size is “relatively small”.

[HKH09] uses a dynamic-programming like enumeration approach. This approach tra-

verses the graph breadth-first from primary input nodes to output nodes, enumerating all

the possible solution possibilities. When the size of the enumerated space becomes too

large, it is pruned using a locality-sensitive hash that diversifies the set of solutions.

2.3.6.2 Modeling errors

Modeling errors are a large limitation for continuous-sizing based approaches. Even with

posynomial models, errors of up to 10% were reported in [KKS00] for a 0.25µm technol-

ogy. Furthermore, these errors were reported for custom transistors. Using transistors in

standard cells are more difficult to approximate using standard cells. The standard height

of each cell requires the transistors to be packed using transistor folding, and diffusion

sharing, and requires metal pins to connect the pins to the routing layers. This alters the

behavior of the transistor from the properties of an ideal transistor. In [RC05] errors of

5% to 23% were reported for a 0.13µm standard cell library.

While these errors can be reduced by applying corrections to the model, to increase the

accuracy around the current set of sizes, the problem is still significant. Even modeling
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errors of 5% in the delay may introduce a significant suboptimality in the design (see,

for example, Figure 3.14 for an example of the power vs. delay tradeoffs). Furthermore,

modeling errors associated with ignoring slew effect affect gate sizing methods heavily; for

example, Figure 3.10 shows the performance of sizing methods with and without slews.

The performance is very different between the two options.

2.3.7 Dynamic programming based algorithms

Dynamic programming (DP) [Bel57] is an optimization method for problems with stages10.

At each stage, a decision is made with the assumption that all prior decisions were optimal.

For problems where optimal prior decisions can be modeled efficiently, this presents an

effective method for optimization.

In the context of gate sizing and threshold voltage assignment, dynamic programming

methods provide a structure to break apart the problem using decision stages and cost-

to-go functions. At each stage, cost-to-go functions recursively define the cost for the

objective for all prior stages of the design. After all the stages have been traversed, the

final cost-to-go function is used to find the minimum cost solution.

Dynamic programming for gate sizing and threshold voltage assignment has been ap-

plied in both forward topological order [Cha90, HKH09, LH11]11, and reverse topological

order [LH09]. In the forward topological order version, the power and the arrival times are

propagated in the form of cost-to-go functions :

Jg(ta) = (2.34)

min
ω∈CellOptions(g)







Power(g, ω) +
∑

g′∈fi(gk)

Jg′(ta − d(g, ω))







.

The cost function represents the minimum power, as a function of the arrival time at the

gate’s output. It is defined recursively as a function of the cost functions for its fanin gates,

10see [Ber05] for an introduction to the subject.
11Note that [Cha90] does not explicitly refer to itself as Dynamic Programming, but has the character-

istics of DP.
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Figure 2.4: Forward topological order dynamic programming example. A simple delay vs.

power model is used for the gates, where either Delay=1 and Power=2, or Delay=2 and

Power=1.

and the term Jg′(ta − d(g, ω)) is the power needed for the signal to arrive at the input by

the time ta − d(g, ω), which is the given arrival time minus the delay at the current gate.

To simplify notation, we can assume that Jg(ta) =∞ when ta < 0, and thus any infeasible

arrival time will have a cost ∞.

An example of the forward version is shown in Figure 2.4. In this example, a simple

delay model is used with two cell options for each gate: either Delay=1 and Power=2, or

Delay=2 and Power=1. At g1, this means that the arrival time of the output (ta) can be

1 with a power cost of 2 (Jg1(1) = 2), or the arrival time can be 2 with a power cost of 1

(Jg1(2) = 1). At g2 the computation becomes more complex: Jg2 is computed as a function

of its fanin, Jg1 . Jg2(2) can be achieved only using the delay 1 cell option for g2, and using

Jg2(1), for a cumulative power cost of 4. Similar computations can be made for Jg2(3);

however, in this case the minimizer is not unique – either of the two cells, g1 or g2 can be at

the minimum delay option. At the primary output, the cost-function is evaluated with the
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Figure 2.5: reverse topological order dynamic programming example. A simple delay vs.

power model is used for the gates, where either Delay=1 and Power=2, or Delay=2 and

Power=1. The required arrival time at the primary output is assumed to be 4.

delay constraint to yield the optimal power, and the circuit can be traversed backwards to

find the cell options that produce the minimum power design. Note that the computation

of Jg3 was adjusted to avoid double counting the power of g1.

In reverse-topological order, the procedure works from the primary outputs towards the

primary inputs. The power and the required arrival times are propagated in this case, and

the cost-to-go functions are defined recursively, as:

Jg(tr) = (2.35)

min
ω∈CellOptions(g)







p(g, ω) +
∑

g′∈fo(g)

Jg′(tr − d(g, ω))







. (2.36)

An example of the reverse topological version is shown in Figure 2.5. In this case, the

cost functions are simpler than the forward topological case, as the options for negative

required arrival times (tr < 0) can be eliminated12. Once the cost-to-go functions are

12However, this can also be done in the forward topological case – options with delay greater than clock
period can be pruned.
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propagated to the primary input, the cost-to-go function is evaluated with tr = 0 to find

the optimal configuration. Again, note that the computation of Jg1 was adjusted to avoid

double counting the power of g3.

Note that in both cost-to-go functions, (2.34) and (2.35), the costs are computed by

enumerating the different options at each gate. The information needed to store the cost-

to-go functions is usually stored in the form of a table. The size of this table can be

reduced by removing options that are not Pareto-optimal, and this is implicitly done in

the cost-to-go functions. For example, in the forward topological case, ta = 4 and p = 5

are certainly superior to ta = 5 and p = 5 and the latter entry would be removed. This

helps to reduce the complexity of the cost-to-go functions.

Dynamic programming based algorithms suffer from two limitations. The first lim-

itation is the size of the solution space that must be propagated. Even after the non

Pareto-optimal elements are pruned, the number of elements in the table may be very

large. To combat this, [HKH07] uses locality-sensitive hash functions to reduce the num-

ber of entries to the table. In [Cha90, LH09], the slews are ignored, reducing the number

of entries to a manageable size. Furthermore, while [LH09] uses the dynamic programming

methods for slack minimization, they rely on Lagrangian methods to perform the timing

constrained power optimization (see Section 2.3.8).

Secondly, they have difficulty with non-tree structures, e.g. when a gate has multiple

paths that lead to it. This is present in the forward topological case in Figure 2.6; to account

for this, the cost-to-go function must be adjusted. As written in (2.34), Jg4(ta = 4) = 8

because the cost of g1 is double counted – it is present in Jg2 and Jg3 . However, the actual

minimum cost is Jg4(ta = 4) = 6.

There is also an inconsistency in the cell options that are assigned by the DP. In the

example in Figure 2.6, for a delay constraint of 4, the cell options are set by traversing the

graph in reverse topological order. g4 is set to the cell option that minimizes Jg4(ta = 4),

which is Delay=1 / Power=2 option. Next, suppose that g2 is also set to Delay=2 /
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Figure 2.6: Design with reconvergent fanout. This structure is problematic in Dynamic

Programming formulations.

Power=1, but g3 is set to Delay=1 / Power=2 – this is valid in the DP algorithm. When

assigning the size at g3, it does not coordinate with the parallel reconvergent path through

g2, forcing g1 to be Delay=1 / Power=2, and resulting in a total power of 7, which is

greater than the optimal power 6.

[LH09] uses a heuristic to fix this problem by considering the problem in two steps.

In the first step, when the cell options are being assigned, and multiple cell options are

possible (when the minimizer in (2.34) is not unique), all of the cell options are set as viable

candidates for that cell. After this step is over, each gate may have multiple candidate cell

options that it can be assigned to. This is reconciled in the next step, when the algorithm

traverses the graph in topological order, and assigns each gate to the cell option that is

locally optimal.
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2.3.8 Lagrangian relaxation

Lagrangian relaxation is widely used in gate sizing and threshold voltage assignment to

perform continuous sizing with posynomial models (see, for example, [CCW99, ST02,

CWC05, WDZ09]), and it has also been applied directly to discrete gate sizing [LH09,

HHS11, OBH11]. It provides scalable methods for large-scale gate sizing, and they provide

a useful way to convert constrained optimization problems into unconstrained optimization

problems.

Lagrangian relaxation methods convert a constrained optimization problem into an un-

constrained problem by using by using Lagrange multipliers13, also known as dual variables,

to add the constraints to the objective. For the optimization problem:

minimize f0(x)

subject to fi(x) ≤ 0, i = 1, ...,m

gi(x) = 0, i = 1, ..., p

xmin ≤ x ≤ xmax,

(2.37)

the associated Lagrangian is:

L(x, λ, ν) = f0(x) +
m
∑

i=1

λifi(x) +

p
∑

i=1

νigi(x), (2.38)

where λ and ν are the Lagrangian multipliers. Note that the constraints xmin ≤ x ≤ xmax

do not appear in the Lagrangian (2.38). In gate sizing and threshold voltage assignment

problems, it is more efficient to handle these constraints implicitly by restricting the domain

of the function. Thus, the domain of x in (2.38) is restricted to xmin ≤ x ≤ xmax.

The Lagrange dual problem associated with the Lagrangian is:

max
λ≥0,ν∈ℜ

{

min
xmin≤x≤xmax

{L(x, λ, ν)}
}

. (2.39)

This is the result of minimizing the Lagrangian over the primal variables, x, and maximizing

over the dual variables, λ and ν. This formulation is interesting when the minimization

minxmin≤x≤xmax {L(x, λ, ν)} can be performed faster than solving (2.37) directly.

13See [BV04] for a good reference on the subject

46



The main motivation for solving the Lagrange dual problem (2.39) comes from two

theoretical results.

• The solution to the dual problem (2.39) is always less than the primal (2.37).

• The solution to the dual problem (2.39) is equal to the solution of the primal (2.37)

for a wide class of convex continuous problems14.

Using the Lagrange dual problem is said to be using Lagrangian relaxation15, and it is

a useful method to find lower bounds or optimize certain types of problems. Generally

speaking, these methods perform well when there is an efficient way to minimize L(x, λ, ν)

over x for fixed λ and ν.

Gate sizing and threshold voltage assignment benefit from Lagrangian relaxation. In

this case, the associated Lagrangian for (2.10) is:

L(w, ta, λ) =
∑

g∈G

pgwg+ (2.40)

∑

g

∑

g′∈fo(g)

λg,g′(ta(g) + d(g, w)− ta(g′))+ (2.41)

∑

g∈PO

λg(ta(g) − Tmax). (2.42)

The associated Lagrangian dual problem is:

max
λ≥0

{

min
ta,wmin≤w≤wmax

{L(w, ta, λ)}
}

. (2.43)

In this expression, the minimization over ta is equal to −∞ for certain values of λ. This

14A sufficient, but not necessary, condition for equality comes from Slater’s condition:

1. x is continuous, and the domain of x is a convex, connected set.

2. fi is convex ∀i.
3. gj is linear ∀j.
4. There is an x such that fi < 0 ∀i, and xmin < x < xmax.

15See [Lem01] for a good reference on Lagrangian relaxation.
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can be seen by reorganizing the terms in (2.46) as:

L(w, ta, λ) =
∑

g∈G





∑

g”∈fo(g)

λg,g” −
∑

g′∈fi(g)

λg′,g



 · ta(g)+ (2.44)

∑

g∈G

pgwg + (
∑

g∈PO

λg) · Tmax+

∑

g





∑

g′∈fo(g)

λg,g′



 d(g, w)

If any of the coefficients of ta are non-zero, then minimizing L(w, ta, λ) over w and ta would

yield −∞, as the ta are free variables and are unrestricted (the λ are fixed through this

minimization. ta with positive coefficients would have t → −∞ and negative coefficients

would have t → ∞. Thus, to avoid these cases, the λ is restricted to the dual feasible set

that satisfies:
∑

g”∈fo(g)

λg,g” −
∑

g′∈fi(g)

λg′,g = 0, (2.45)

thereby making all the coefficients of ta in (2.44) equal to zero. For these dual feasible λ,

the Lagrangian reduces into a weighted delay-power minimization:

L(w, ta, λ) =
∑

g∈G

pgwg+

∑

g





∑

g′∈fo(g)

λg,g′



 d(g, w)+

(
∑

g∈PO

λg) · Tmax. (2.46)

For continuous gate sizes and vt, there are fast methods to solve this problem (see [RS08])

in linear time by cycling through each gate and choosing the gate width that minimizes

the power and weighted delay combination while keeping all the other gate sizes fixed.

Lagrangian relaxation was also applied to discrete problems in [LH09, HHS11, OBH11].

In this case, idea is to solve the discrete version of the Lagrangian dual problem:

max
λ≥0

{

min
ta,ω∈CellOptions

{L(ω, ta, λ)}
}

, (2.47)
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where the discrete cell options ω replace the continuous variables. This is done with two

loops. An inner loop is used to minimize L over the ω, e.g. the cell options are chosen to

minimize L. The outer loop adjusts λ to maximize L.

There are two challenges to this discrete Lagrangian relaxation. The first challenge is in

the minimization over ω. While the problem is now unconstrained, the minimization is still

combinatorial. [LH09] uses a reverse-topological dynamic programming method to perform

this minimization, but this method is limited in that it does not account for slews, and the

reconvergent fanout (see Section 2.3.7) limit the ability to apply dynamic programming.

[OBH11] extracts a “Critical Tree” from the circuit before the dynamic programming is

applied, thus avoiding the problems related to reconvergent fanout.

The other issue associated with discrete Lagrangian relaxation is updating of the mul-

tipliers λ. Traditionally, the multipliers are updated according to the sub-gradient (a

generalized gradient).

∆λ =
∂

∂λ
(L(ω, ta, λ)) . (2.48)

λ next updated using two steps as

1. λ = λ+ α∆λ

2. λ is projected to satisfy (2.45) and λ ≥ 0.

As the inner minimization over ω is likely to be suboptimal, the choice of λ and the

method that it is updated affects the resulting solution. Furthermore, large changes in

λ will cause the solutions to oscillate. [HHS11] finds an improved method to update the

multipliers by storing the results of prior values λ for each gate, and the related arrival

times at the gate. The stored results are then used to prevent overshoot when updating λ.

2.3.9 Slew targeting methods

Slew targets [Hel09] are also used for gate sizing. This works on the idea that the delay is

a monotonically increasing function of the slew; thus improving the slew will also improve
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the delay. This is an interesting perspective on the timing closure problem to use the slews

targeting as a proxy for timing closure.

Using slew targets is a well-known method used by designers and some commercial tools

to perform optimizations. The work in [Hel09] formalizes the slew-based optimization for

large scale timing closure. This method is also one of the few discrete sizing methods

that deal with slew directly. Most other methods ignore slew, because it creates long

range interactions between gates that are difficult to model (see Section 2.1). However, as

slew has a large effect on the delays, ignoring slews may introduce sub-optimality into the

design.

[Hel09] works by alternating between assigning slew targets, and optimizing the gates

for the given slew targets. These slew targets are assigned as a function of the slacks.

Gates with negative slack will have their slack targets increased, while gates with positive

slacks will have their slack targets decreased.

Central to the slack adjustment is the concept of local criticality, lc(g). This is defined

as the difference between the slacks of the input pins, and the minimum of the slacks of

its fanins:

lc(g) = max
g′∈fi(g)

{s(g)− s(g′), 0}. (2.49)

A value lc(g) = 0 means that the gate is at least as critical as any of its fanins. However,

a value of lc(g) > 0 implies that there is a fanin gate that is more critical and thus the

current gate does not contribute to the worst case slack.

Following this rationale, in Step 1 of Algorithm 5, gates with negative slack and lc(g) =

0 have their slew targets decreased, or tightened, to reduce timing violations. All other

gates have their slew targets increased, to help recover power. These increases or decreases

are changed as a function of the local criticality lc(g), slack s(g), damping factor Θk, and a

constant γ, which is related to ∂τ(g)
∂s(g)

. Θk starts with value ≈ 1, indicating that target values

and estimates are used in the algorithm. As the algorithm progresses, Θk → 1, prompting

the algorithm to use the true slew values in place of the estimates for increased accuracy.
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Θk = step size & approximation parameter; lc = local criticality;

foreach k ∈ {1, ..., kmax} do
Step 1: Update the slack targets;

Θk = 1
log(k+1) ;

foreach g ∈ G do

lc(g) = maxg′∈fi(g){s(g)− s(g′), 0};
if (s(g) < 0) & (lc(g) == 0) then

∆τtarget = −min
{

(Θk · γ · |sg|),∆τ targetmax

}

;

else

sm = max{s(g), lc(g)};
∆τ target = min

{

(Θk · γ · |sm|),∆τ targetmax

}

;

end

τ targetg = τ targetg +∆τ targetg ;

Project the slew target to feasible range τ targetg = max{τ targetg ,∆τmin
g };

τ targetg = min{τ targetg ,∆τmax
g };

end

Step 2: Apply the slack targets;

foreach g ∈ G in reverse topological order do

foreach ∀g′ ∈ fi(g) do

Create input slew estimates τ̂(g′) = Θk · τ targetg′ − (1−Θk) · sg′

end

Using the estimated input slews τ̂(g′) set ωg as:

the minimum power cell option ω that satisfies τ(g, ω) > τ targetg

end

Step 3: Refine slew targets;

foreach g ∈ G in topological order do

τ̂(g′) = Θk · τ targetg′ − (1−Θk) · sg′

sp = max{g′| sg′=sfig}
{τ̂(g′)}

τ targetg = τ targetg + (λ) · (sp − τ targetg )

end

end

Algorithm 5: Slew targeting method in [Hel09].
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Next, in Step 2 of the algorithm, the slew targets are applied to each gate in reverse

topological order. This is done by first estimating the slews at the input of the gate, as

the output slew depends on the input slews. Next, the minimum power cell option that

satisfies the output slew target is chosen, and this process repeats for each gate in the

design.

In Step 3 of the algorithm, the slew targets are refined. This is to reduce slack targets

that are unnecessarily high, when “cells cannot be enlarged further, or to locally non-

critical cells that cannot be downsized sufficiently because of too large successors” [Hel09].

To fix this, the slew target is reduced by a factor of λ times the difference between the

estimated slew of the most critical input pin:

τ targetg = τ targetg + (λ) · (sp − τ targetg ). (2.50)

The author reports that this method is very fast; 5.8 million cells are sized within 2.5

hours on a 3.0 GHz Xeon Server. Furthermore, they report good results for timing closure

with an average worst negative slack of 6% reduced to 2% after applying their algorithm.

2.3.10 Linear programming based assignment methods

Linear programming can also be used to assign gates to specific cell options [CK05, LG10,

ALQ11]. This is in contrast to the continuous sizing methods in Section 2.2, where the

variables represent the continuous gate sizes. In linear programming based assignment,

each variable in this context is a binary variable, ygω, where:

ygω =











1 if gate g is assigned to cell ω

0 otherwise.

(2.51)

A value of ygω = 1 means that gate g is implemented by the library cell ω, and a value

of ygω = 1 means that the gate g is implemented by a cell other than ω. These options ω

can vary in sizes, threshold voltages, gate lengths, etc. The variables ygω are referred to as
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assignment variables as they assign gates to library cells. The power objective is written

in terms of these assignment variables as:

∑

∀g∈G

∑

ω∈Ωg

∆p(g, ω;ω0) · ygω (2.52)

where

∆p(g, ω;ω0) = p(g, ω)− p(g, ω0). (2.53)

The p(g, ω) refers to the power consumption of gate g when implemented by the library

cell ω (ω0 is the current implementation of the gate). This power can be the leakage power

or the dynamic power, or a weighted combination of the two. As the short circuit portion

of the dynamic power is dependent on the input slew and output load, the current slew

and load values are used to evaluate the ∆p terms. Although this may introduce modeling

errors if the gate’s inputs change, this is still a good proxy for the actual power.

The delay constraints are written in the linear program using the block-based formula-

tion:16

ta(g) +
∑

ω∈Ωg

∆d(g, ω;ω0) · ygω ≤ ta(g′), ∀g′ ∈ fanout(g)

0 ≤ ta(g), ∀g (2.54)

ta(g) ≤ Tmax, ∀g ∈ PO. (2.55)

The ta(g) are variables that are used to model the arrival times at the input of gate g and

the ∆d(g, ω;ω0) term is the change in delay when the gate is changed from cell option ω0 to

ω. This can be computed by trying the cell option and computing the change in the arrival

times. To improve accuracy, the change in slack may also be used to model downstream

effects on the delay [LG10].

16See Section 2.3.1 for more information on the block-based delay formulation. For simplicity, the
difference between the rise and fall times is omitted, as well as the difference in delay for different input-
output paths in a gate. However, they can are commonly incorporated by adding separate rise and fall
arrival-time variables and additional delay models for different the input-output paths in a gate.
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Combining the power and delay terms results in the linear programming problem:

minimize
∑

∀g∈G

∑

ω∈CellOptions(g)∆p(g, ω;ω0) · ygω
subject to ta(g)+

∑

ω∈CellOptions(g)∆d(g, ω;ω0) · ygω ≤ ta(g′)

∀g′ ∈ fanout(g)

0 ≤ ta(g) ≤ Tmax, ∀g ∈ G
0 ≤ ygω ≤ 1, ∀g, ω ∈ CellOptions(g)
∑

ω∈CellOptions(g) ygω ≤ 1, ∀g.

(2.56)

Note that the assignment variable was originally intended to be binary – the variable

should only be 0 or 1. However, to improve the runtime of this problem, it is relaxed

so that the assignment variable is continuous between 0 and 1. [CK07] notes that the

incremental benefit of solving the {0, 1} integer linear program is negligible, and may

sometimes provide worse results.

Once (2.56) is solved, then the next step is to map the ygω into gate cell changes.

In [CK05], the authors apply any ygω > .99. However, due to the delay interactions, this

may cause timing violations. They correct these timing violations by running a linear

programming assignment for minimizing timing:

minimize max{ta(output), Tmax}+ ...

ǫ
∑

∀g∈G

∑

ω∈Ωg
∆p(g, ω;ω0) · ygω

subject to ta(g) +
∑

ω∈Ωg
∆d(g, ω;ω0) · ygω ...

≤ ta(g′) ∀g′ ∈ fanout(g)

0 ≤ ta(g) ≤ ta(output), ∀g ∈ G
0 ≤ ygω ≤ 1, ∀g, ω ∈ Ωg

∑

ω∈Ωg
ygω ≤ 1, ∀g

(2.57)

where ǫ is a small constant used to give more weight to the timing objective. In the

minimizing timing case, values of ygω > .01 are applied.

The main limitations with this method concern the delay model. This model does not

account for the interactions in the delays between gates in two ways. To understand the
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first limitation, suppose that an input gate to gate g has decreased in size, diminishing its

ability to drive its output gates. If the size of gate g is then increased, then the resulting

delay improvement will be worse than if the input gate had not changed. This is because

the input gate is less able to handle the increase in the output capacitance from an increase

in the gate size of g.

The other limitation is the interaction between the transition times (slews). Decreasing

the slew of an input gate will improve the delays downstream, while increasing the slew will

have the opposite effect on the delay. Thus, any gate change may affect the ∆d(g, ω;ω0)

downstream from it.

Due to these limitations, [LG10] uses this approach for incremental gate sizing. The

model has a better accuracy when the number of changes is not too large, thus it is

well suited for finding a small number of gate changes that can be used to implement an

Engineering Change Order (ECO).

2.3.11 Summary of methods

There is a wide diversity of methods used to tackle the discrete gate sizing and threshold

assignment problem. There are mathematical programming methods, dynamic program-

ming methods, greedy methods, and heuristics that try to find the best tradeoff between

power and delay. The methods presented in this chapter are summarized in Table 2.2. This

chart indicates whether the method is well-suited (X), applicable (⋆), or not applicable (–)

in a given context.

Pre-layout means that the method is well-suited for optimization before the layout is

fixed, such as after synthesis. Generally, this means that method can make large changes

to the design and inaccuracies in the delay modeling can be tolerated. In contrast, post-

layout indicates that the method can be used incrementally when large changes to the

design are to be avoided. Post-layout methods must be able to modify the current design,

rather than start from scratch, and being close to tape-out, accurate delay modeling is
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pre post power timing closure

layout layout optimization optimization

Score and Rank X X X X

Slack and Delay X ⋆ X –

Budgeting

Continuous X – X X

sizing based

Dynamic X – X X

Programming

Lagrangian X – X X

relaxation

Slew targeting ⋆ X – X

LP-based ⋆ X X X

assignment

Table 2.2: Summary of discrete gate sizing and threshold voltage assignment methods.

important. Generally, methods that are not incremental do not work well in post-layout

settings.

Power optimization indicates that the method can be used to minimize power given a

timing constraint. The timing closure optimization column indicates that the method can

be used to improve timing, whether to find a minimum delay design, or to meet a timing

constraint.
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CHAPTER 3

Benchmarking Discrete Gate Sizing and Threshold

Voltage Assignment Methods

The largest barrier in advancing the field of gate sizing and threshold voltage assignment

methods is the difficulty in comparing competing methods. Recent publications in gate siz-

ing do not use common benchmarks, setups, or technologies; thus the question of whether

recent research (see, for example [LH09, ALQ11, OBH11]) provides an improvement over

current methods is questionable. The essential questions such as, “What is the best dis-

crete gate sizing method,” and “What are the deficiencies of current methods,” are not

understood, making it impossible to quantify when a significant improvement to the field

is made. This chapter will explain challenges behind comparing competing methods, and

will explain attempts to benchmark methods.

Surveying the literature does not provide insight into the state-of-the-art. The compar-

isons reported in the gate sizing and threshold voltage assignment literature are difficult

to navigate. Most vt assignment papers ([SEO99, WRK00, SEO02, NDO03, SSB04a]) re-

port improvements over no vt assignment. Similarly, [GKS04] shows improvements over no

gate-length biasing, and the improvements are those gained by adding additional thresh-

old voltages and gate-length variants. A summary of the reported results are shown in

Table 3.1. However, while this does show that a few methods may be better than others,

it does not show what the best method is.

An interesting set of comparisons is found in [WD09]. A branch-and-bound solver is

implemented, which provides the optimal sizing solutions for ISCAS ‘85 [HYH99] bench-
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improvement

method comparison min max avg

DP+LP [LH10] Budgeting [NDO03] 1% 31% 21% w, vt

LSH [HKH09] Greedy [Cou97] 9% 31% 18% w

Continuous based [SSS05] Greedy [SEO02] 6% 62% 31% w, vt

Global sizing [Cou97] Greedy [SSF88] 5.3% 57.3% 11% w

Continuous based [CSH95] Greedy [LMK90] 0% 12% 5% w

Continuous based [RHC08] Com.1 1% 39% 11% w

LP assignment

[CK05] Com.1 -3.6% 44.9% 15.3% w

1 These methods were compared against the results of a commercial synthesis tool.

Table 3.1: Improvements reported in literature.

marks and ISCAS ‘89 [BBK89] benchmarks. For these benchmarks, the greedy method

achieves between 2% to 35% of the optimum, with an average suboptimality of 11%. A

simulated-annealing method is also compared, which achieves between .5% to 28% of the

optimum, with an average suboptimality of 7%. The large range between min and max

indicates that the performance of an algorithm is highly benchmark dependent, and while

the greedy method provides reasonable performance for a simple algorithm, the large max-

imum suboptimality shows that there is room for improved algorithms.

Comparisons between methods are also complicated by the importance of the exper-

imental setup. In contrast to the placement benchmarks, which have well-defined exper-

imental setups, the results in Table 3.1 vary heavily in their technology, wire models,

synthesis options, range and granularity of their gate sizes, types of logic cells available,

and timing constraints. For example, a small library granularity tests a method’s ability

to handle only a few cells that are available of each type. Benchmarks without sequen-

tial elements (combinatorial benchmarks) generally have different distributions of critical
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paths than sequential benchmarks. Tighter timing constraints may test a method’s ability

to create timing feasible designs. These make it unfair to compare the results between

papers.

Compounding the complexity is the context in which these methods are used:

• Post-synthesis: after the design is mapped to logic blocks.

• Post-placement: after the locations of the cells are known, along with approximate

information on the lengths of connecting wires.

• Post-layout: after routing and placement are completed. At this step, the layout,

along with information on wire parasitics, is known.

Each context has different flexibilities and accuracy requirements. For example, post-

synthesis gate sizing and threshold voltage assignment has the most flexibility, as the gates

are not yet placed (given locations), and also have the loosest timing accuracy require-

ment. In contrast, post-layout gate sizing and threshold voltage assignment has the least

flexibility, as each change in the cell may require moving and/or rerouting other cells. Fur-

thermore, there is a high accuracy requirement; after this stage, the design must be timing

feasible.

The recent gate sizing and threshold voltage assignment contest at the International

Symposium of Physical Design [OAA12] attempts to answer this question by providing a

common framework for gate sizing benchmarking. However, the results from the contest

showed that there is no “best” method. Of the top three methods that were submitted,

no method performs the best on all benchmark suites. The first place method did not

perform consistently well– on one benchmark it performed 75% worse than the best result,

with the other methods having a similar range. This is in light of the fact that these

methods incorporated a wide range of concepts, from network flow, dynamic programming,

simulated annealing, Lagrangian relaxation, and hybrid approaches. This suggests that

there is more work needed to develop the state-of-the-art.

59



This chapter focuses on making progress in determining the state-of-the-art. This

chapter considers the different factors involved in comparing gate sizing and threshold

voltage assignment methods, and provides comparative results.

3.1 The standard cell library

The standard cell library contains logic cells such as inverters, ands, not-ands (nands), and

x-ors that implement Boolean logic functions. There are also sets of sequential cells such as

flip-flops, latches, and their variants with capabilities for setting, resetting and reading in

scan-chains. These sequential cells provide memory, allowing pipe-lining, state machines,

and a memory for computations. Lastly, there are utility cells, such as filler cells, antenna

cells, and buffer cells, which are tools to help with the physical implementation of the

design.

The library generally provides several gate options for each logic function. Each of the

options are logically equivalent – they implement the same boolean function – but have

varying electrical characteristics, due to differences in their gate lengths, widths, PMOS-

NMOS width ratios and threshold voltages vt. These alternative options can be used

to optimize the design. For example, critical paths can be sped up by swapping high-vt

cells by low-vt cells, and gates with fanout violations can be fixed using alternatives with

larger-transistor widths and smaller effective resistances at the gate outputs.

Two library files that are used for sizing and threshold voltage assignment are:

1. Physical library information.

(usually expressed in Library Exchange Format (LEF)):

• Cell information: dimensions of the cell and locations of the pins.

• Interconnect information: dimensions, pitch, capacitance, and resistances for

each metal layer.

• Via information: dimensions, resistance, and layers that are connected.
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2. Timing library information.

(usually expressed in Liberty Format):

• Library characterization information: temperature, voltage and process.

• Parameters used in the library: slew thresholds, input thresholds, output thresh-

olds, and measurement units.

• Cell information: delays, area, logic function, short-circuit power, switching

power, and leakage power. For flip-flops the hold and setup time requirements

are also given.

• Cell pin information: capacitances, maximum loads.

The geometry information in the LEF file is used for placement and routing. This in-

formation tells the program how to create standard cell rows for floorplanning, and the

dimensions of each cell for placement. Next, the pin locations, interconnect geometries,

and via dimensions are used for routing, and once routing is complete, the capacitance and

resistance information is used to extract information about the wire parasitics.

The timing and power information from the Liberty file is used for the timing and

power analysis of the design. The timing information is used in conjunction with the

wire parasitic information to create delay estimates and power estimates with interconnect

loading modeling. Understanding the basics of these models is helpful in understanding

the operation of the gate sizing methods, and will be described below.

3.1.1 Delay

The relationship between the gate size, length and vt as a function of the delay can be

approximated using an α-power law model [SN90] in 1.5. For a 45nm commercial library, a

sample of the effects of the delays is given in Figure 3.11. α for this library is approximately

1In this table, the rise and fall transition thresholds are 20% and 80%, and the delay threshold is 50%.
For example, the rise transition time is the time measured from when the signal passes 20% of the supply
voltage, to when it reaches 80% of the voltage. The pull-up delay is the time from when the signal reaches
the input of the gate (at 50%) to the time that the output pin voltage reaches 50%.
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Figure 3.1: Normalized inverter gate delays for a commercial 45nm library.

1.4.

Notice that the gate widths in this library are geometrically spaced – there are 10 gates

sized 2.5 and under, and there are 10 gates between 3 and 16. This is because of the inverse

relationship between the gate delay and the gate width: reducing the delay by a factor of

2 requires the gate width to double in size.

The gates in the library are spaced to cover a wide range of delays. Increasing to the

next gate size will lead to a 10 to 15% reduction in the output delay, and the difference

between the delay of the minimum size and maximum size is 12X. In the case of threshold

voltages, changing from vt0 to vt1 or vt1 to vt2 increases the delay by about 10%. However,

increasing the threshold voltage from vt2 to vt3 increases the delay by the larger margin of

35%.

Increasing the gate widths also increases the capacitances of its input pins proportional

to W ·L. For example, Figure 3.2 shows that this capacitance is roughly linear in the size

of the gate. Increasing the size will therefore cause the delay of the fanin gates to increase,

and may have a cumulative negative effect on the delay.

Changing the threshold voltages has a milder effect on the input capacitances. Fig-

ure 3.2 shows that the capacitance is a weak function of the threshold voltage. Moving
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Figure 3.2: Normalized inverter input pin capacitances in a commercial 45nm library.

from vt0 to vt1 gives a 3% decrease in the capacitance, while moving from vt1 to vt2 gives

a 4.5% decrease in the capacitance. Thus, although the input capacitance changes, the

overall delay effect is very likely to be a decrease. In contrast, increasing the gate size

may not decrease the overall delay – the increasing input capacitance may cause a larger

increase at the fanins than the decrease in the output.

3.1.2 Delay models

The most accurate gate delay models are in the form of spice level netlists. These netlists

contain transistor level information that can be used by transistor-level timing methods

for static timing analysis2. These methods use fast Spice-like simulations without the use

of input vectors to create timing estimates that are comparable to Spice simulations.

However, only a small percentage of designs are able to utilize transistor-level timing,

as most designs are too large for transistor level simulation. Furthermore, these methods

are too slow to be used in the process of optimizing large designs.

The library modeling standard that is used is the Synopsys Liberty modeling for-

2For example, the Synopsys NanoTime [Synb]
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mat [Syna]3. Currently, Liberty uses two different methods, the Nonlinear Delay Models

(NLDM) and the current-source models, which include the Synopsys Composite Current

Source (CCS) and the Cadence Effective Current Source Model (ECSM). The NLDM for-

mat is a legacy format introduced in 1992, and the CCS/ECSMmethods are newer methods

from 2004 that were introduced to improve accuracy.

3.1.2.1 The Nonlinear Delay Model (NLDM)

The NLDM has long been the de facto standard for static timing analysis methods, though

it is slowly being replaced by the newer current-source methods. It utilizes tables that store

rise and fall times, and output rise and fall transitions (slews), as a function of the input

transition and the output capacitance load. The model also contains the capacitances for

all of the input pins in the library.

The parameters that define the cell rise, fall, and transition times are given at the top

of the Liberty file. The most common numbers in modern libraries are a 50% rise/fall

threshold and a 20% to 80% or 30% to 70% slew rate.

A table for rise delay, fall delay, rise transition, and fall transition is provided for each

cell in the library. Each of these tables is indexed by the input transition time, and the

output capacitance. Table 3.2 provides a small example of the cell rise times for a nominal

sized inverter gate. The delays are increasing functions of the input transition and the

output load, and both the input transition and output capacitance have a large effect on

the output delay.

There are also tables for the clock hold time and setup time of sequential elements.

The hold and setup times are given for rise and fall transitions, as a function of the input

transition (slew), and the clock slew. Table 3.3 shows a small example of the setup time

for a nominal sized D-flip flop.

3See http://www.opensourceliberty.org for information on the format, technical papers, and an open
source parser. Also, see [Tri08] for the motivation for current-source methods.
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output capacitance (fF)

0.4 0.8 1.6 3.2 6.4 12.8 25.6

output rise delay

in
p
u
t
sl
ew

0.0075 0.018 0.022 0.032 0.051 0.089 0.164 0.315

0.0375 0.032 0.038 0.048 0.066 0.104 0.179 0.330

0.1500 0.059 0.069 0.087 0.117 0.164 0.239 0.388

0.6000 0.129 0.145 0.174 0.224 0.305 0.433 0.628

output rise transition

in
p
u
t
sl
ew

0.0075 0.012 0.016 0.025 0.043 0.079 0.151 0.294

0.0375 0.018 0.021 0.027 0.043 0.079 0.151 0.294

0.1500 0.036 0.042 0.052 0.067 0.092 0.152 0.294

0.6000 0.095 0.100 0.114 0.139 0.183 0.252 0.353

Table 3.2: Rise times (delays) and transitions (slews) in ns for a nominal inverter gate as

a function of the input transition time and the output capacitance.
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clock transition (ns)

0.005 0.0141 0.0281 0.056 0.113 0.225 0.450

setup time

in
p
u
t
sl
ew

0.0075 0.038 0.033 0.028 0.022 0.017 0.017 0.028

0.0375 0.050 0.046 0.041 0.035 0.030 0.031 0.041

0.1500 0.087 0.083 0.078 0.071 0.067 0.067 0.075

0.6000 0.181 0.176 0.170 0.162 0.155 0.153 0.159

hold time

in
p
u
t
sl
ew

0.0075 0.009 0.013 0.018 0.022 0.023 0.018 0.002

0.0375 0.045 0.048 0.051 0.051 0.047 0.031 -0.004

0.1500 0.300 0.304 0.308 0.310 0.308 0.298 0.265

0.6000 1.383 1.386 1.391 1.395 1.398 1.388 1.364

Table 3.3: Setup times for a rising input to a nominal D-Flip Flop as a function of the

input transition and the clock transition.
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Figure 3.3: Example of effective capacitance: an inverter driving an RC tree. The effec-

tive capacitance is less than the total capacitance of the tree: Ceff <
∑4

i=1 Ci. Adapted

from [Sap04].

One limitation of this model is that the load capacitance is not well-defined at the

output of a gate. Gates usually drive other gates through a series of interconnect that

have their own intrinsic resistances. However, this has the effect of “resistive shielding” as

the resistance hides some of the capacitance from the gate. Essentially, this resistance will

cause the capacitances closer to the gate to be charged faster than the ones downstream

from the gate. Thus, the waveform at the output of the gate will be faster than having the

total capacitance present at the output of the gate.

STA timers account for the resistive shielding by computing the effective capacitance

of the gate (see [QPP94, MM98, BC09, FA08]) to predict accurate delays. Figure 3.3

shows an example of this resistive shielding effect. Due to the resistors R1-R4, the effective

capacitance seen at the output of the inverter is strictly less than the total capacitance of

the tree. As the resistances increase, the effective capacitance decreases.

Another limitation is the one-parameter model of the input and output waveforms [FA08].

The input and output waveforms are characterized only by their transition time. This lim-

its the amount of flexibility and introduces modeling errors. However, many tools will

re-model the NLDM library to approximate a current-source model (see, for example,
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[KLX06]). The NLDM tables are used to estimate the input-output current and voltage

relationships. This helps to mitigate the limitations of the NLDM.

In the context of gate sizing and threshold voltage assignment, the NLDM has been

the standard timing information for these algorithms for over a decade, and has heavily

influenced these algorithms. Most algorithms estimate the gate delays to be functions of

the input slew and output capacitance.

3.1.2.2 Current source models

Current source models were introduced to increase the accuracy of the gate models [Tri08,

FA08, KTK08]. They use enhanced driver models, which model the output of the gates

as function of time, and receiver models, which model both the loading and the Miller

coupling effects. These libraries are generally much larger than the NLDM libraries, as

they need to store voltage or current information over multiple time points, for each input

load and slew value.

The driver models provide an output waveform for each input slew and output ca-

pacitance combination. In the CCS models, the current is given as a function of time,

and in the ECSM model, the voltage is given as a function of time. This reduces the

error of the timing simulation to approximately 2% for a single stage, when compared to

HSPICE [Tri08].

The receiver models are used to capture the nonlinear characteristics of the receiver [Tri08,

KTK08]. These models use two tables that give the receiver capacitance as a function of

the input transition and the output load. The first table gives the input pin capacitance

for the first half of the input waveform, and the second table gives the capacitance for the

second half of the waveform. The capacitances vary greatly; for example the nominal sized

inverter in the Nangate library has capacitances that range from .43fF to .78fF.
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3.2 Power tradeoffs

Power is an important concern in gate sizing and threshold voltage assignment [CGL10,

ITR]. Power dissipation has increased super-linearly with decrease of transistor dimensions,

and the power consumption is increasing faster than the ability to remove the heat from the

devices. Furthermore, there is an increasing focus on low power and mobile applications.

Power consumption is divided into static power and dynamic power. The static power

is composed of the leakage power, while the dynamic power is composed of the power used

to switch the voltages within the gates. Recently, the focus on power has been shifting from

dynamic power to static power. At the 45nm technology node, static power is comparable

to the dynamic power consumption, and the static power consumption will continue to

increase at a much faster rate than the dynamic power [Nar05].

Dynamic power. Dynamic power is related to the energy used to switch logic states.

This requires charging and discharging the interconnect and gates (pdynamic(cap) in (1.1))

and also includes the internal energy that is lost in the process of switching (pdynamic(sc) in

(1.3)). The total dynamic power is thus

pdynamic = pdynamic(cap) + pdynamic(sc). (3.1)

Figure 3.4 gives the relative internal power dissipation for the inverter gates. The

internal power refers to the power that is dissipated inside the boundaries of the cell itself,

and does not include the power dissipated by charging the output load. The figure shows

that the switching power is indeed a linear function of the size. When comparing threshold

voltages, the vt0 gate has the highest internal power dissipation. Switching from vt0 to vt1

or from vt1 to vt2 gives an internal power savings of about 20%. The reduction from vt2 to

vt3 is smaller, at 10%.

Leakage power. The leakage power comes from the current that flows when there is

no change in the inputs. It is also referred to as the static power to contrast it with the
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Figure 3.4: Normalized inverter gate internal powers a commercial 45nm library.

Figure 3.5: Sources of leakage power.

dynamic power. Leakage became a significant source of power dissipation from the 130nm

technology node and at 45nm it is comparable to the dynamic power dissipation.

There are several sources of leakage power (see Figure 3.5). There is gate leakage from

the gate to the substrate due to tunneling effects, leakage from the source to the drain due

to sub-threshold conduction, and leakage from the wells to the substrate.

The main source of leakage is due to sub-threshold conduction from the source to

the drain. This happens because the transistor is not fully “OFF”, and is governed by

(1.4) [SSK87].

The leakage power is a strong function of the gate inputs for multi-input gates. This

is because the inputs affect the internal voltages of stacked transistors. For example,

70



state leakage

(nW)

A1 & A2 & A3 19.78

A1 & A2 & !A3 14.72

A1 & !A2 & A3 7.41

A1 & !A2 & !A3 .48

!A1 & A2 & A3 15.59

!A1 & A2 & !A3 1.63

!A1 & !A2 & A3 7.15

!A1 & !A2 & !A3 1.27

Table 3.4: Leakage power for a NAND3 cell as a function of its inputs.

Table 3.4 shows the leakages for the nominal sized NAND3 cell as a function of the input.

The leakage values range from .48 nW to 19.78 nW– a range of over 40X. This range causes

significant modeling error, as it is very difficult to predict the probabilities for each of the

input states.

The exponential relationship between the leakage and the threshold voltage is the mo-

tivator for multiple-vt cells. Figure 3.6 shows the relative change in the leakage power as

a function of the size (note that the powers are plotted on a logarithmic scale). While the

relationship between leakage and gate size are linear, the leakage is exponentially depen-

dent on the threshold voltage. Thus, high vt cells enable order of magnitude reductions

that are not available using sizing alone.

Gate length biasing [GKS04] is another tool for optimization. The idea is to increase the

lengths of gates with positive slack. The increase in gate length will have linear increases

on the delay, but near exponential effects on the leakage power.

Figure 3.7 shows how the delay and leakage power change as a function of the gate-

length bias. Increasing the gate-length by 5% gives an approximately 35% reduction in the
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Figure 3.6: Normalized inverter gate leakage powers in a commercial 45nm library.

Figure 3.7: Plot of (a) the gate-length bias vs. power and (b) gate-length bias vs. delay.

The data is for a nominal sized inverter in a commercial 45nm process, with a nominal

gate length of 40nm.
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when value

!A1 & !A2 1017.82

!A1 & A2 7340.61

A1 & !A2 1204.57

A1 & A2 10286.09

Table 3.5: Leakage powers for the NAND2 X1 gate. A1 and A2 are the two input pins.

leakage power while creating a 3 to 11% increase in the delay. Adjusting the gate-lengths

also provides a finer resolution than the vt-assignment.

3.2.1 Power models

All Liberty models provide leakage power information in the maximum or average leakage

power for the cell, and may additionally provide the leakage power for the different input

combinations. For example, Table 3.5 shows the leakage information for the NAND2 X1

gate from the 45nm Nangate Library as a function of the inputs.

The Nonlinear Power Model (NLPM) is the power analog to the NLDM. This model

provides a series of tables for the rise and fall internal power of the cell, as a function of the

input transition and the output load. This internal power model gives the internal energy

used at each transition, but excludes the power that is needed to charge the output load.

The most important factor in gate sizing and threshold voltage assignment experiments

is the standard cell library. This is an even larger factor than the benchmark itself; the

performance of an algorithm will vary on the same benchmark under two different standard

cell libraries.

The two major qualities of a library that impact the gate sizing and threshold voltage

assignment experiment are the range of the cells and the number of the cells. The range

of the cells determines the range for the method. Gates that have a small range, such as
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those with cells of 1X to 2X of the minimum gate width, can provide only small impacts,

as the sizing method can increase gate sizes to just 2X for large fanout loads. Similarly the

range in the threshold voltages also plays a big role in the performance of the algorithm.

Most cell libraries provide large ranges for popular gates and those used for buffering large

fanouts (such as inverters and buffers). However, less popular gates (such as the AND-

OR-INVERT) may have a small range, and the flexibility at these cells is very limited.

The granularity of a library impacts different algorithms differently. A library that is

dense, with many gate sizes and threshold voltages for each gate footprint, will generally

work better on methods that are derived from continuous sizing methods. This is because

the increased granularity reduces the penalty for rounding and snapping – rounding from

5.2X to 5X is much better than rounding down to 4X.

In contrast, other methods may fare poorer on dense libraries. Dynamic programming

based algorithms may suffer from significant slowdowns due to the increased number of

cell options. Greedy methods, which are heuristics, may fare poorer than their continuous

sizing based counterparts. The granularity question, whether the library is sparse or dense,

may cause one method to perform better than another.

However, there is no typical library density or range. One 65nm commercial library

provides 11 versions of the buffer and inverter cells, and 4 versions of other cells. The

Nangate Library [NANb], which is used for testing and research, provides 5 versions of the

buffer and inverter cells, and 3 versions of other cells. In contrast, another 45nm library

provides 20 versions of the buffer and inverter cells (ranging from .5X to 16X), and between

5 to 11 versions of other cells (ranging from .5X to 6X). In addition, there are 3 threshold

voltage options for each cell. Therefore, it is important to understand the library that will

be targeted before developing a gate sizing and threshold voltage assignment method.
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Tmax |G| Tmax |G| Tmax |G| %∆Tmax %∆|G|

c432 0.431 118 0.494 137 0.619 93 43.6% 47.3%

c499 0.477 586 0.612 322 0.881 189 84.7% 210.1%

c880 0.408 346 0.562 237 0.871 212 113.5% 63.2%

c1355 0.473 598 0.599 356 0.850 222 79.7% 169.4%

c1908 0.802 676 0.863 571 0.990 533 23.4% 26.8%

c2670 0.610 1041 0.787 791 1.140 748 86.9% 39.2%

c3540 1.096 1615 1.289 1359 1.675 1107 52.8% 45.9%

c5315 1.090 2019 1.226 1867 1.498 1766 37.4% 14.3%

c6288 1.845 3089 4.127 1656 8.692 1780 371.1% 86.5%

c7552 0.866 2894 0.977 2640 1.200 2481 38.6% 16.6%

Table 3.6: Effect of synthesis on the ISCAS ‘85 benchmarks [HYH99] (adapted

from [LG10]). All times are in ns.

3.2.2 Benchmarks and synthesis options

The type of benchmark and the synthesis options are the second most important factor

in comparing gate sizing and threshold voltage assignment methods. The benchmarks

are usually designs that have interesting sizes and topologies. For example, the ISCAS

‘85 benchmarks were combinatorial designs representing controllers, arithmetic logic units,

and error correcting circuits [HYH99]. The ISCAS ‘89 benchmarks are sequential designs4

and are sections of real designs, traffic light controllers, and digital fractional multipli-

ers [BBK89].

At a high level, these benchmarks differ by the number of gates, the depth of their

logic, the delay distributions of their paths, and the average number of fanouts and fanins

for each of the gates. These metrics, however, cannot predict what kind of method will

work, or how difficult the design will be to size.

4e.g., these designs include flip-flops.
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A complicating factor is the effect of the synthesis tool on the design. Table 3.6 shows

the effect of different timing constraints on the resulting netlist. The leftmost columns

represent synthesis for minimum delay, and the rightmost columns represent synthesis for

minimum power. The delay spread between fastest and slowest synthesis outputs vary from

0.188ns (c432) to 6.847ns (c6288), depending on the benchmark. The size of the resulting

netlists vary from 25 gates (c432) to 1309 gates (c6288), which means that the number of

gates can double, depending on the design!

The difference between the synthesized netlists is the amount of buffering, and the type

of gates that are used. When the timing constraint is generous, more complex gates are

used, such as full adders, half-adders, or-and-inverts, and-or-inverts, etc. These gates are

more power and area efficient than their lower level representations, but they do not offer

the kind of flexibility that can be used to improve the delay. Conversely, tighter timing

constraints will result in designs with many more inverters and buffers, and also more basic

building blocks, such as nands.

An odd consequence of this effect is that synthesizing designs for minimum delay pro-

vides the largest examples for gate sizing and threshold voltage assignment. These designs

not only have the most number of gates, but the most gates that have multiple cell options.

For example, while there may only be 1 full-adder size, there might be several inverter and

nand cell sizes to play with. However, the effect of the synthesis timing constraint on the

end design after place and route and additional optimizations is not clear. Table 3.7 shows

the effect of a variety timing constraints used during synthesis given in [JK10] on the final

design. A tighter timing constraint at synthesis does not always lead to a faster design,

nor is the relationship is not well-behaved.

3.3 Post-layout considerations

Post-layout discrete gate sizing and threshold voltage assignment are done after cell place-

ment, interconnect routing, and clock tree synthesis (see [LG10]). They are performed
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Timing With a 2.0ns Clock

Constraint After Place and Route @ sign-off

used Optimizations

@ synthesis Tmax slack Tmax slack

1.60 1.829 0.171 2.249 -0.249

1.80 1.912 0.088 2.196 -0.196

1.90 1.888 0.112 2.195 -0.195

1.95 1.926 0.074 2.449 -0.449

2.00 1.912 0.088 2.252 -0.252

2.10 1.912 0.088 2.214 -0.214

2.20 1.88 0.120 2.281 -0.281

2.40 1.838 0.162 2.081 -0.081

Table 3.7: Effect of different timing constraints used during synthesis on the final layout

(adapted from [JK10]) for an AES encryption circuit from [OPE]. After synthesis, a

timing constraint of 2.0ns is used to perform placement, routing and incremental timing

optimizations.
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to eliminate violations and modify the design to meet specifications. For example, they

may be performed to fix timing violations, signal integrity issues, maximum capacitance

violations, or hold time violations [HO01], as well as to recover power with accurate timing

models.

3.3.1 Post-layout timing considerations

As placement and routing have been performed, post-layout timing estimates may utilize

(see Section 2.1):

1. information about the interconnect, and interconnect parasitics;

2. the clock distribution tree with its associated skews;

3. the metal fills, effects of lithography on the gate length, and stress parameters;

4. complex timing models including variability and crosstalk effects.

These models generally do not have convexity properties, nor do they have simple analytical

expressions. Thus, commercial timers use detailed approximations to ensure that the

resulting delays are accurate.

Timing engines used at the place and route stage use a faster (albeit less accurate)

timing engine than that used at sign-off. Furthermore, the parasitic extraction used at

place and route generally is not as detailed as the sign-off parasitic extraction [JK10]. This

mismatch may result in iterating between design modification and sign-off, as the timer

used to modify the design is often different from the timer used at sign-off.

An example of this mismatch is shown in Figure 3.8. Though the timing estimates

correlate well, the values differ by a substantial margin. The error is as large as .2ns,

and in many cases the place and route timer underestimates the delay, which may lead to

multiple cycles of validation. This deviation increases the difficulty of the timing closure

problem, as the tool used for cell optimization, placing and routing does not match with

the tool that is used for verification. Thus, iterations of design changes in the form of
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Figure 3.8: Mismatch between the timing estimates at place and route and at sign-off.

The gray line indicates when the two estimates match. Data adapted from, and courtesy

of [JK10].

an Engineering Change Order (ECO), and sign-off may need to be performed to create a

timing feasible design.

Another problem that arises from this mismatch is the potential for suboptimality.

While the sign-off and verification may be successful, the design tool may be overly pes-

simistic if the timing estimates of the place and route timer are significantly worse than

the sign-off timer. There may be pessimism in the timing for each path, as well as the total

worst-case delay, and minimum cycle time. This pessimism translates into suboptimality

due to over-design, and as this discrepancy grows, the potential for this suboptimality also

grows.

At this point in the design, it is important to consider slew. Figure 3.10 shows how the

sizing algorithms differ when slews are disabled; it is important that post-layout methods

handle slew effects, and that post-layout sizing comparisons have slew effects enabled in

the timer to be realistic.
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3.3.2 Incremental placement and routing considerations

Another consideration is the need for incremental placement and routing. This may be

needed if the cells increase in size or the connection pins change location. While this is not

important in the vt assignment or gate-length biasing contexts, it is important in the gate

sizing context where the cell size and the pin locations may change.

Incremental placement and routing is usually done after a series of gate sizing changes5,

and may affect other aspects of the design. The changes made by gate sizing may change

the locations of the pins and require rerouting. This may also require neighboring gates to

be moved, which in turn may also require rerouting. After the incremental placement and

routing, the design may again become timing-infeasible, and require an additional iteration

of gate sizing. An example of the change in timing after incremental placement and routing

is shown in Figure 3.9.

3.4 Comparisons

In this section, we provide three attempts to benchmark gate sizing methods. These

efforts focus on methods for post-layout gate sizing that utilize standard cell libraries

with a limited availability of gate sizes and threshold voltages. In addition, the effects of

interconnect delay, and slew are considered. The first benchmarking attempt is based on

a open-source static timing software. The next attempt utilizes artificially created circuits

with known optima. The last attempt uses scripts built on top of a commercial tool, which

provides realistic timing and power estimates.
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Nangate 45nm Commercial 65nm

w w w, vt

LP LR LP LR LP LR

c1355 0.20% -0.56% 1.21% -1.15% 0.41% 0.19%

c1908 0.47% 1.41% 1.90% -0.40% 2.71% 0.56%

c3540 -0.20% 0.40% 1.70% -0.24% 0.63% -0.21%

c432 -0.20% 0.07% -0.85% -0.68% 0.60% -0.35%

c5315 0.11% 1.08% 0.57% -0.23% -0.07% -0.27%

c7552 0.37% 0.27% 0.52% -0.14% 0.20% -0.13%

b15 8.55% 8.54% 0.44% -0.07% 0.10% -0.11%

b17 6.50% 6.50% 0.21% -0.06% 0.00% -0.01%

b18 10.46% 10.46% 0.05% 0.05% 0.01% 0.00%

b20 0.30% 0.23% 0.39% -0.04% 0.08% -0.02%

AVERAGE 2.66% 2.84% 0.61% -0.30% 0.47% -0.04%

Table 3.8: Comparisons using UCLA timer. Percentages denote improvements over a

feasible-start greedy algorithm (see Section 2.3.3).
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Figure 3.9: Histogram of the change in the timing after incremental placement and routing.

There are 64 different examples. The majority of the cases have a zero change in timing,

and most of the changes increase the timing (the change is positive). The maximum

decrease and increase are -.007ns and .057ns, respectively.

3.4.1 Comparisons using UCLA Timer

Comparisons of gate sizing and threshold voltage assignment methods can be found in [Mok10].

In this comparison, an LP assignment [NDO03] and the LR+DP method [LH09] are com-

pared against a feasible-start greedy algorithm (see Algorithm 1) that uses a ∆Power/∆Slack

sensitivity function to convert the slack in a minimum delay design into power savings. The

experiments are run on the Nangate Open Cell Library [NANb] and a commercial 65nm

library. The static timing analysis tool used in this work is the UCLA Timer [Mok11]6,

which is an open source project based on Open Access7 and the defunct OA Gear8. The

open-source nature of this timer provides flexibility in implementing the sizing methods

5While it can be done after each gate is changed, it is more efficient to handle these changes at one
time by performing an incremental placement, followed by an incremental routing after a series of changes
are made.

6Available at http://www.nanocad.ee.ucla.edu/Main/DownloadForm.
7See http://www.si2.org.
8http://www.si2.org/openeda.si2.org/projects/oagear.
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Figure 3.10: The effects of disabling slew in sizing experiments; the performance im-

provement is relative to the timing-feasible greedy method. Disabling slew increases the

difference between sizing methods.

and also increased access to timing information.

The results are shown in Table 3.8. In this table, positive values denote improvement

over a timing-feasible greedy method. The improvements are generally small, on the order

of 1%, with a maximum improvement of 10.46% on the b18 benchmark using the Nangate

Library. The small sizes of these improvements suggest that more sophisticated sizing

and threshold voltage assignment methods provide only modest benefits. An interesting

comparison is to see how disabling the slew affects the results. Figure 3.10 shows that

disabling slew increases the difference between the sizing methods.

3.4.2 Comparisons using eyecharts

Eyecharts9 [GKK10] were developed as a benchmarking tool for gate sizing and thresh-

old voltage assignment, and are artificially constructed circuits that have known optimal

solutions. These circuits are constructed using combinations of the basic structures in

Figure 3.11, which have the property that the optimal solution can be computed using a

dynamic-programming-like optimization.

9Eyecharts are available for download at http://www.nanocad.ee.ucla.edu/Main/DownloadForm.
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Figure 3.11: The basic structures used in the eyechart benchmarks.

The appeal of Eyecharts is that the optimal solutions are known. This makes it useful

as a benchmarking tool for sizing methods. Their performance relative to the absolute

minimum can be judged, as opposed to the majority of prior work where only the relative

performance between algorithms could be compared.

In [GKK10], two commercial tools, (Comm1) and (Comm2), the LP slack allocation

in [NDO03] (LP), a greedy sizing method using ρd from equation (2.25) (GS), and a greedy

sizing using ρs from equation (2.26) (SBS) are compared.

Figure 3.12 show the results of the comparisons. The LP method performs the best in

the gate sizing context (Figure 3.12(a)), while the commercial tool (Comm2) performs the

best in the vt (Figure 3.12(b)) and the gate-length contexts. In contrast, the LP method

performs poorly in the vt context.

The difference between the methods is significant, over 10% in some cases, indicating

that there can be substantial improvements to be gained from good gate sizing heuristics.

Furthermore, the results show a suboptimality gap; the sizing methods are approximately

5% to 15% from optimal.

Figure 3.13 shows the impact of the number of sizes on the resulting suboptimality. The

suboptimality decreases overall as the number of sizes for each gate increase. However, this

is not true for the commercial tools (Comm1) and (Comm2) – they perform as well on

libraries with two cells as they do with libraries with 10 cells.
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Figure 3.12: Eyechart comparisons of different gate sizing and threshold voltage assign-

ment methods. (a) represents a gate-sizing comparison, (b) represents a vt assignment

comparison with 3 threshold voltages, (c) represents a gate length assignment with 3 gate

lengths.
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Figure 3.13: The effect of the number of gate sizes available in the library on the subopti-

mality of the gate sizing method.

3.4.3 Comparisons using commercial tools

Sizing and threshold voltage assignment methods were also compared using TCL scripts im-

plemented in Cadence Encounter [Cad]10. Implementations of four gate sizing and thresh-

old voltage assignment methods were compared:

1. TILOS [FD85].

2. Feasible-start greedy method (Algorithm 1).

3. LP based slack assignment (Section 2.3.5).

4. LP assignment method (Section 2.3.10).

Experiments were run on the Nangate Open Cell Library [NANb] and a commercial 65nm

library, and the benchmarks were originally synthesized, placed and routed for minimum

delay, with all optimization effort flags set to high. In the implementation of [NDO03],

∆Power/∆Slack was used in place of ∆Power/∆ta, and in the implementation of TILOS

and the greedy method, the ∆Power/∆Slack sensitivity function was used.

Results are shown in Figures 3.14, 3.15, and 3.16 for the Nangate Library, the com-

mercial 65nm library with gate sizing only, and the commercial 65nm with vt assignment.

The plots show the relative leakage power suboptimality of each of the method with the

10These scripts are available at http://www.nanocad.ee.ucla.edu/Main/DownloadForm.
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Figure 3.14: Comparison between sizing methods using the Nangate 45nm Library. The

y-axis gives the % suboptimality relative to the best solution found. The x-axis is the delay

constraint – 0.0 is the minimum delay and 1.0 is the maximum delay. When the data point

is omitted, it indicated that algorithm did not return a timing-feasible solution.

87



best solution found for that benchmark and timing constraint. Overall, the LP assignment

method performs the best, followed by the TILOS method, and then the feasible-start

greedy method. The details of the results vary by library; in the Nangate Library results

in Figure 3.14, the LP assignment provides results that are within 2% of the best solutions,

followed by TILOS (within 7.1%), feasible-start greedy (within 10%), and LP Slack Allo-

cation (within 32%). The average relative suboptimalities are .25%, 1.1%, 2%, and 11%,

respectively.

The results for the commercial 65nm with gate sizing (Figure 3.15) are different from

the Nangate Library results. This library has more available gate size options; for example,

the nand cell has 10 options in this library, compared to 3 options in the Nangate Library.

In this case, the LP assignment has a couple poor solutions (s35932 and s38584 with delay

constraint .2). In this case, the TILOS method is the best, with a relative suboptimality of

1.3% on average, and a maximum of 4.4%. The suboptimalities for the remaining methods

are 2.3% (avg) and 8% (max) for the LP assignment, 4% (avg) and 28% (max) for the

feasible-start greedy, and 34% (avg) and 142% (max) for the LP slack allocations.

The commercial 65nm with vt assignment has the most dramatic results (see Fig-

ure 3.16). This is because vt assignment can provide order-of-magnitude type power re-

ductions per gate, which exaggerates the difference between good and bad solutions. The

LP slack assignment and the feasible-start greedy methods perform very poorly in this

situation for the combinatorial circuits. However, the results for the sequential circuits

(s13207, s35932, s38417, and s38584) are better; for these cases, the suboptimality is a

maximum of 26% with the LP slack assignment and the feasible start greedy. The LP

assignment method works very well in this case, with an average relative suboptimality of

less than 1%, and maximum of 2%. The TILOS method was next in performance, with an

average relative suboptimality of 5% and a maximum of 23%.
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Figure 3.15: Comparison between sizing methods using a Commercial 65nm Library=.

The y-axis gives the % suboptimality relative to the best solution found. The x-axis is the

delay constraint – 0.0 is the minimum delay and 1.0 is the maximum delay. When the data

point is omitted, it indicated that algorithm did not return a timing-feasible solution.
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Figure 3.16: Comparison between vt assignment methods using a Commercial 65nm Li-

brary. The y-axis gives the % suboptimality relative to the best solution found. The x-axis

is the delay constraint – 0.0 is the minimum delay and 1.0 is the maximum delay. When the

data point is omitted, it indicated that algorithm did not return a timing-feasible solution.
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CHAPTER 4

Parametric Variation and Gate Sizing

In nanometer designs, the effects of variability are too large to ignore [Nar05]. This is

best seen by examining the ITRS Roadmap 2009 [ITR], which is a report sponsored by

semiconductor companies designed to identify future challenges. This report predicts that

in 2011:

• 11%: Effects of parametric variation on sign-off delay.

• 20%: vt variation.

• 60%: Performance variability.

• 88%: Total power variability.

• 255%: Leakage power variability.

Furthermore, this variability is projected to increase. Figure 4.1 shows the variability data

through the year 2016. The increases are the greatest for the leakage power variability,

which is projected to increase at a rate of 24% per year! This has motivated statistical

gate sizing methods to mitigate the “soaring leakage variability” [ITR]. These methods use

statistical models for delay and power to create designs that are robust against variation.1.

Parametric variations are generally divided into two types [SSB05]: (1) within-die, or

intra-die variations, where each device in a die will see different values of the variation,

and (2) die-to-die, or inter-die variations, where each device on a die has the same value

of the variation. These variations may come from many sources [LLP06], such as dishing,

diffraction effects, line-edge roughness, lens aberrations, and dopant fluctuations.

1For an in-depth discussion of statistical variations and modeling, see [LLP07].
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Figure 4.1: Projected variability in key design parameters (adapted from [ITR]).

This parametric variability has motivated statistical design paradigms in the new mil-

lennium, which have come with the optimism that these methodologies would provide

improvements over deterministic methods [Vis03]. Methods to reduce the impact of these

variations will be outlined in this chapter. First, motivating examples on the effects of

statistical variation will be provided. Next, an analysis of the importance of statistical

power optimization is given, and bounds provided to quantify the benefits of full statistical

power optimization. Lastly, methods to optimize the statistical delay will be presented.

4.1 Motivating examples

4.1.1 The slack wall

An excellent motivational example for statistical design is the “slack wall” [BVS02]. In

regular deterministic design, there is an incentive to make the delay for each path equal to

the maximum allowed delay because:

1. Paths slower than the maximum delay violate the timing and are therefore not al-
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Figure 4.2: Effects of a “slack wall” on statistical slack. The PDF for the worst-case slack

is shown for 1, 10, 50 and 100 paths. The delay of each path is Gaussian with variance

100ps.

lowed.

2. Paths faster than the maximum delay are not optimal– they can be slowed down to

save power.

This has the effect of creating a “slack wall”, a large number of paths having a small

positive slack.

While these slack walls are optimal from a deterministic point of view, they are subop-

timal from a statistical point of view because the minimum slack over all the paths will be

worse than the slack of each one of its paths. For example, suppose that a 300ps guard-

band is used to ensure a high yield. Also suppose that the delay variation of each path

has a standard deviation of 100ps. Thus, the yield would be expected to be the 3-σ value

99.98%.

This is true when the paths are completely dependent, but it underestimates when the

paths are not completely dependent. For example, Figure 4.2 plots the statistical slack
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corner temperature supply voltage process

fast 0C 1.25V FastFast

typical 25C 1.1V TypicalTypical

slow 125C 0.95V SlowSlow

Table 4.1: Corners in the Nangate 45nm library [NANb].

probability density distribution (PDF) as a function of the number of independent paths.

As the number of independent paths increases, the slack distribution shifts towards the

negative slack direction. When there are 100 independent paths, the yield drops to 92% –

a huge decrease from 99.98%.

This example shows that deterministic optimization may be overly optimistic and result

in under-design. However, there are also cases where deterministic optimization may result

in over-design [Vis03].

4.1.2 Worst-case corners and over-design

Most earlier design methods relied on corner based methods for design [NSD86, TGW87,

Naj05]. The corners were process and operating condition parameters that were used

for validation. For example, a fast corner might be at a low temperature, have a high

supply voltage, and use a fast process. Conversely, a slow corner might operate at a high

temperature, have a low supply voltage and use a slow process. An example of the corners

in the Nangate 45nm Library is shown in Table 4.1.

When the variations become large, as in Figure 4.1, the parametric variability of the

transistors cause variations in the timing and power that are on par with the fluctuations in

the operating conditions. Due to this, the fast and slow process corners become inadequate

for characterizing the design. One example of this inadequacy is the notion of a worst-case

corner. Traditionally, this corner is taken as a 3-σ value of the variations. However, when

there are n independent sources of variation, each with standard variations {σ1, ..., σn},
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the corner must be fitted to provide an overall 3− σ value. Using the 3-σ value for each of

these parameters will result in a
√
n · 3σ value [GVV05], which is much more conservative

than is needed.

Even if a correct 3 − σ value for the delay can be found, it may still be conservative

due to intra-die random variations. Intra-die variations may have a smaller impact on the

size of the variation than inter-die variations. For example, consider an inverter chain with

N gates, whose delays are random variables, D1, ...,DN that can be generated from N +1

IID N (0, 1) random variables X1, ...,XN as:











D1

...

DN











= 1 +

















α 0 . . . 0 (1− α)

0 α . . . 0 (1− α)
...

. . .
...

0 0 . . . α (1− α)



























X1

...

XN+1











. (4.1)

The parameter α is used to examine the effect of varying the proportion of the variation

caused by inter-die and intra-die variations. The total delay of the inverter chain is the ran-

dom variable defined by D =
∑N

i=1 Di. When α = 1 (no intra-die variations are present),

D is mean N and standard deviation
√
N . On the other hand, when α = 0 (only intra-die

variations are present), D is still mean N but the standard deviation is N . For general α,

the mean is always equal to N , but the standard deviation varies as
√

N2(1− α)2 +Nα2.

The main idea here is that the correlation between gates is important, as it impacts the

variance. However, the impact of the correlation is also dependent on the number of stages,

N , as the difference between the correlated and uncorrelated cases is N −
√
N and grows

as the stages grow. However, this is difficult to incorporate into corners, as the number of

stages is design dependent.

The last motivation for statistical methods is due to the difference in the sensitivities of

gates to the variation sources. Different library cells may respond differently to variations

in gate lengths, oxide thicknesses, doping, line-edge roughness, etc. This difference may

make the parameters that make the worst-case for one cell different from another. In other
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words, it may be impossible for two cells to be at the worst-case scenario at the same time!

Thus, characterizing them at their 3-σ points may be overly pessimistic.

These criticisms are not uncontested. In [Naj05] the author argues that the drawbacks

of corner based analysis may be exaggerated. He argues that corners can account for the

correlations between gates by adjusting the corner to be less conservative. Furthermore,

he argues that corner based analysis may not be overly conservative for the reasons shown

in Figure 4.2. A larger number of critical paths will cause the yield to decrease, and thus

a conservative approach may be needed.

4.2 Statistical power optimization

While there are many papers that explore the benefits of adding statistical delay data into

the optimization process [MO04, PYK05, SNL05, CSS05, GVV05, SSZ05, DS06], and there

are also a number of papers that use a statistical power measure [SSB04b, CSS05, MDO05,

BV05, YZL07, CLV08], there is no publication, to the best of our knowledge, that shows

the benefits of using the statistical power measure alone [CGL09, CGL10]. This brings up

an interesting question:

How much of the improvement should be attributed to the use of a statistical

delay model, and how much should be attributed to the use of a statistical

power model?

This question is part of a growing skepticism over the benefits of statistical optimization,

and whether they outweigh its costs. Adopting statistical analyses and optimization involve

considerable overhead in terms of the engineering effort involved as well as the turn-around

time. It requires an almost complete overhaul of process modeling, circuit simulation and

also a modification to the algorithms for statistical optimization. It is therefore important

to do a thorough cost-benefit analysis of statistical optimization compared to conventional

deterministic optimization methods.
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In this section we focus on the amount of improvement that can be made by using

a statistical power measure as an objective for gate sizing, leff and vt assignment, when

compared to the deterministic power measure. The key contributions are as follows.

• We develop a mathematical programming based framework to estimate the subopti-

mality gap between different power measures.

• For the common case of discrete gate sizing, we give an intuitive explanation of the

suboptimality using solution rank orders.

• We show that for certain sizes of variations, the deterministic power measure is a

provably good approximation for the statistical power measures, which means that

the deterministic power measure can be used in place of the statistical power measures

with very similar optimization results.

• We present a simplified measure of statistical power that can be used as a proxy for

full statistical power optimization.

It is important to mention that the analysis in this section is independent of the model

for the delay. This research does not give judgments on the difference between statistical

delay optimization and deterministic delay optimization, or the difference between static

timing analysis and statistical static timing analysis. The delay is only used to generate

examples for the suboptimality bounds.

The approach in this section intends to remove the dependence on timing feasibility,

which is a consideration that makes the problem of finding bounds difficult. To remove

this dependence, we rely on the structure of the power objective to create a relaxation of

the timing feasible region. This can be done because a power optimum inherently contains

information about the timing feasible region, as this optimum is the minimum power point

in the region. Once this is done, the relaxation can be used to find bounds without any

further dependence on the timing feasible region.

The rest of the section is organized as follows. The following section outlines the

leakage power measures and models used in this section. Section 4.2.2 describes the test
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Table 4.2: Notations

symbol meaning

wi, ~w width of gate i / vector of gate widths

li,~l length of gate i / vector of gate lengths

vti , ~vt threshold voltage of gate i / vector of threshold voltages

~z ‘adjusted gate widths’, zi = wie
αl2i+βlie−γvti

Lw Within-die gate length variation random variable

Ld Die-to-die gate length variation random variable

Vtw Within-die vt variation random variable

Vtd Die-to-die vt variation random variable

circuits that are used. Section 4.2.3 gives an intuitive explanation of the suboptimality

gap using rank orders. Section 4.2.4 develops the mathematical framework to estimate

the suboptimality gap incurred from using the deterministic power measure in place of

the statistical power measures. Section 4.2.6 introduces a simplified measure of statistical

power that can be used as a proxy for full statistical power optimization, followed by a

summary in Section 4.2.7.

4.2.1 Preliminaries

In this dissertation, we follow the convention uppercase bold symbols represent random

variables (e.g., X), and uppercase non-bold symbols represent commonly used constants

(e.g., Vdd). Vector quantities will have arrows above them (e.g., ~x) to avoid confusion, and

scalar quantities will be lowercase non-bold (e.g., p). The principal symbols are summarized

in Table 4.2.

4.2.1.1 Variations

In this section, the gate length and the threshold voltage are assumed to be the sources of

power variations. These variations are assumed to be Gaussian in both the length and the
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measure symbol expression

deterministic pd(·)
∑

κi

mean pm(·) ∑

κi exp((λ
2
w(i)σ

2
Lw(i)

+ λ2
d(i)σ

2
Ld

+ ...

τ2w(i)σ
2
Vtw(i)

+ τ2d(i)σ
2
Vtd

)/2)

mean+3σ pm3σ(·) pm(·) + 3pσ(·)
99.87%– pq(·)

∑

κi exp(3(λd(i)σLd
+ τd(i)σVtd

))

quantile1

standard pσ(·) (see eqn (4.4))

deviation, σ

1For inter-die variation only

Table 4.3: Measures of statistical leakage power

threshold voltage. The standard deviations in vt are 4.714% in both die-to-die (dtd) and

within-die cases (wid); the within-die variations are uncorrelated and they affect each gate

independently. Three different standard deviations for the length are used in this section:

• 1nm (dtd) and .5nm (wid)

• 1.6nm (dtd) and 1.15nm (wid)

• 2nm (dtd) and 0nm (wid)

These are representative of the variations for 45nm given in the ITRS Roadmap 2007.

The effects of the variation are simulated for the gates in the Nangate Open Cell Library

v1.2 [NANa] using PTM 45nm and HSpice 20072. We assumed that the input combinations

to each gate are equi-probable and the measured leakage power is the average power over

all the input combinations.

2For reference, the channel length used in the HSpice models was 50nm. Also, note that this simulation
tool is different from the one in [CGL09]. It was changed because the version of the tool in [CGL09] could
not simulate the effects of vt variation.
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4.2.1.2 Models

The leakage power is modeled as a log-normal random variable, as in [RSB04]:

PL =
∑

κie
λd(i)∆Ld+λw(i)∆Lw(i)eτd(i)∆Vtd+τw(i)∆Vtw(i) (4.2)

=
∑

PLi
.

κi is the nominal power for the gate i; ∆Lw(i), ∆Ld, ∆Vtw(i), ∆Vtd are independent

Gaussian random variables; and λd(i), λw(i), τd(i) and τw(i) are coefficients that are used to fit

the mean and the standard deviation of the Spice simulated data. In equation (4.2) above,

the variations in the threshold voltage and the gate length are assumed to be Gaussian,

and the relationship between these parameters to the leakage power is exponential.

To model the change in the leakage as a function of the size, threshold voltage and the

length (see Section 4.2.4), we use the approximation:

κi ≈ κ′
iwie

αil
2
i+βilie−γivti (4.3)

= κ′
izi

where κ′
i, αi, βi and γi are parameters that are fitted to the data. The variable zi denotes

the “adjusted gate width”, which incorporates the effect of w, l and vt on the power into

an equivalent gate width. The z variables cannot be re-mapped to a unique w, l and vt,

but this is not a problem, as z is used only to compute lower bounds and is not used for

design purposes. The nonlinear mapping from w, l, and vt to z has the effect of shifting

the nonlinear relation of pd on vt to a linear one in z (which is in turn nonlinear in vt),

creating a useful abstraction for computing bounds.

4.2.1.3 Measures of statistical leakage power

In this section we will cover the statistical measures summarized in Table 4.3: the deter-

ministic, mean, mean + 3σ, and the quantile power measures. The mean + 3σ measure

refers to the mean + 3σ of the total leakage power of a design. When there is no within-die
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variation, the 99.87% quantile measure, which corresponds to the 3 sigma quantile of a

Gaussian distribution, will be used as well.

In the table, pσ(·) is the measure of the standard deviation of the power, which can be

expressed as:

p2σ =
∑

i

∑

j

EPLi
PLj
− EPLi

EPLj
(4.4)

The quantile measure pq is used when only inter-die variation is present. When intra-

die, or within-die, variation is present, there is no closed form expression for pq.

The power measures above have useful mathematical properties. pd, pm and pq are all

linear in κi, and are thus concave and convex in zi. pm3σ is convex in ~z.

4.2.1.4 Increasing variations

It is also interesting to examine how the sensitivities change as the variations increase. We

can use expression (4.2) for a first-order analysis of how the sensitivities will change as the

variations change.

We reconsider the case with inter-die length variation only. Doubling the variations

results in:

pq =
∑

κie
3λd(i)(2σ∆Ld

) (4.5)

=
∑

(e3λd(i)σ∆Ld )2κi.

This will increase the difference in the scaling factors between gates. This is seen in

Figure 4.4, where the increase in the variations changes the sensitivities for each gate.

Notice that the sensitivities do not increase uniformly for each gate. The growth of the

sensitivities depends on the topology of the design, and how much effect the variations will

have on the gate.
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Figure 4.3: Power sensitivities for the different gates in the Nangate Library. The power

vs. size sensitivities of the deterministic power measure (∂pd/∂z), the mean power mea-

sure (∂pm/∂z) and the quantile measure (∂pq/∂z) for σL = 2nm (dtd)/0nm (wid) and

σVt = 4.7% (dtd)/0% (wid) are shown. The sensitivities are sorted by the pd. Notice that

a sorting by pm would be very similar, while a sort by pq would be significantly different.
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Figure 4.4: The percentage increase in the quantile power vs. size sensitivity (∂pq/∂z) as

σL = 1nm increases to 2nm is shown. The increase in the sensitivity is not seen equally

for all the gates.
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Figure 4.5: Visual representation of the power vector for deterministic power and statistical

power. Each axis represents the power for a different gate type. The vectors have different

magnitude and direction, but the angle between them Θ is very small.

4.2.1.5 Why do we expect the optimizations to be similar?

The statistical power and deterministic power are not similar. For example, the statistical

leakage power can be larger than the deterministic leakage by 10% to 500%. It is natural

to expect that the influence of these measures will also be different, and that optimizing

statistical power will yield different results compared to deterministic power.

In optimization however, it is not the magnitude of the power, but the relative magni-

tude which matters. If the statistical power is a scaled version of the deterministic power,

then the optima will be the same. To see this mathematically, we examine the optimality

condition for an optimum x⋆: x⋆ is optimal if for any feasible x⋆ +∆x,

f(x⋆) ≤ f(x⋆ +∆x). (4.6)

This condition will also hold for any positive scaling of f(x).

Although the values of the statistical power and the deterministic powers may be quite

different, the trends are similar– the mean power is larger than the deterministic power

for all of the gates, as is the quantile power, etc. For example consider Figure 4.3, which
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shows the power vs. size sensitivities. The sensitivities for the different gates follow the

same trend. This suggests that the optimizations will be similar as well.

To see why this happens for statistical power, we take as an example the quantile power

expression with inter-die length variation:

pq =
∑

κie
3λd(i)σ∆Ld . (4.7)

If the λd(i) are all equal, then the effect of variation will be seen equally for each gate and

the objective will be a scaled version of the deterministic power:

pq =
∑

κie
3λd(i)σ∆Ld (4.8)

= e3λdσ∆Ld

∑

κi

= e3λdσ∆Ldpd

In actuality, the values of e3λd(i)σ∆Ldtd are different for different gates. Figure 4.4 plots

the percentage increase in the power vs. size sensitivities, ∂pq/∂z, from σL = 1nm to 2nm.

The percentage increase is not uniform across the different gates, indicating that the λd(i)

are not equal. The larger variations thus magnify the discrepancies between the different

gates.

Surprisingly, the effect of the scaling leaves the orientation of the power sensitivities

mostly intact. The magnitude changes significantly, but the direction of the vector re-

mains similar. We can plot a power vector where each gate is a separate dimension, and

the magnitude along the dimension is the leakage power for that gate. We can compute

the difference in the angle of the corresponding statistical power vector and the determin-

istic power vector, θ, as shown in Figure 4.5. For σ∆L = 2nm (dtd) / 0nm (wid) and

σ∆Vt = 4.7% (dtd & wid), the difference between the vectors is very small, at Θ ≈ 1◦. In

Section 4.2.4 we will see that the effects may not be large enough to make a significant

difference in the optimized powers.
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v1 v2 v3 v4

c432 118 (431) 137 (494) 93 (557) 81 (619)

c499 586 (477) 322 (612) 189 (746) 174 (881)

c880 346 (408) 237 (562) 212 (716) 176 (871)

c1355 598 (473) 356 (599) 222 (724) 174 (850)

c1908 676 (802) 571 (863) 533 (923) 528 (990)

c2670 1041 (610) 791 (787) 748 (964) 723 (1140)

c3540 1615 (1096) 1359 (1289) 1107 (1482) 1046 (1675)

c5315 2019 (1090) 1867 (1226) 1766 (1362) 1717 (1498)

c6288 3089 (1845) 1656 (4127) 1780 (6410) 1189 (8692)

c7552 2894 (866) 2640 (977) 2481 (1089) 2425 (1200)

alu 12598 (896) 5190 (8460) 5271 (16025) 3237 (23652)

Table 4.4: Number of gates in test circuits and the corresponding delay target in parenthesis

(in ps)

Gates Sizes

HA, FA, OAI33 1x

MUX2, XNOR2, XOR2 1x-2x

AND2/3/4, AOI211/21/221/222/22, 1x-4x

NAND2/3/4, NOR2/3/4,

OAI211/21/221/222/22, OR2/3/4

BUF, INV 1x-32x

Table 4.5: Gate sizes in the Nangate Library

106



4.2.2 Circuit examples

In this section, we use the ISCAS ‘85 benchmarks and a 128-bit Arithmetic Logic Unit

(ALU) [OPE] as examples. The Verilog RTL of these benchmarks are synthesized to four

different target speeds using the Encounter RTL compiler [Cad07] to the Nangate Open

Cell Library v1.2 [NANa], which uses the 45nm technology node and has the sizes given

in Table 4.5. The synthesized speeds are the maximum speed, the minimum speed, and

two speeds in-between. The fastest speed is labeled v1, and the slower synthesized speeds

have higher cardinality (e.g., the slowest speed is v4). A table listing the number of gates

in each design and the target delays is given in Table 4.4. The tighter delay constraints

result in larger designs, as these designs utilize more buffering to meet the delay constraint.

These larger synthesized designs are also more interesting from a sizing point of view, as

the space of possible solutions is larger.

All the optimization routines in this section are solved using the Matlab Optimization

Toolbox [The08].

4.2.3 Analysis via rank correlations

The major difficultly in estimating the difference between statistical optimization and

deterministic optimization is due to the difficulty in gate sizing itself. With discrete sizes

(e.g., ~w ∈ {1, 2, 4, 8}n and ~l ∈ {1, 2, 3}n), the problem is NP-complete [Li93] and it is

tremendously difficult to find an optimal solution. However, there is some intuition that

can be gained by examining the statistical and deterministic powers of points even if timing

feasibility is ignored. Namely, we can consider (1) how does a sorting of configurations (w, l

and vth assignments) change when ordered statistically, instead of deterministically, and (2)

how does the statistical power vary for configurations with the same deterministic power.

To circumvent this difficulty, the issue of timing feasibility is ignored in this section.

Instead, we generate random gate size, vt and l assignments and compare the rankings (e.g.

orderings) of the deterministic power and the statistical power, and show that ranking /
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pm pm3σ

v1 v2 v3 v4 v1 v2 v3 v4

c432 .989 .986 .985 .985 .653 .591 .603 .604

c499 .990 .988 .990 .990 .685 .605 .516 .524

c880 .989 .989 .989 .987 .658 .651 .649 .585

c1355 .995 .987 .987 .991 .684 .603 .504 .537

c1908 .988 .987 .987 .987 .671 .624 .608 .606

c2670 .991 .991 .991 .992 .712 .647 .646 .651

c3540 .991 .990 .989 .989 .702 .668 .619 .602

c5315 .991 .991 .991 .991 .675 .659 .641 .634

c6288 .989 .999 .999 .999 .680 .894 .913 .922

c7552 .990 .990 .990 .990 .686 .660 .637 .642

alu .997 .999 .999 .999 .894 .899 .885 .905

Table 4.6: Rank correlation τ

ordering by the deterministic power is a good ranking / ordering by the statistical power.

In these examples, we assumed that σL = 0nm (wid)/2nm (dtd) and σVt = 4.7% (wid/dtd).

As an experiment, the deterministic and statistical powers were computed for 10,000

randomly generated widths, lengths and vt, for each design. Three different vt values were

used (low, high and normal), and four different gate lengths were used

({+0nm,+1nm,+2nm,+3nm}). In these examples, we assumed that σL = 2nm(dtd) /

0nm(wid) and σVt = 4.7% (dtd & wid).

Figure 4.6 plots the deterministic power vs. the statistical power for the c1355 v2

circuit. From the plot, it is clear that the pd and the pm measures correlate more than

the pd and the pm3σ. We can measure the correlation between the ranks using Kendall’s

τ [Ken38]. Sequences that are perfectly correlated (e.g. have the same ranking) have a

τ = 1 and sequences that are perfectly anti-correlated (e.g. are reverses of each other)

have a τ = −1. The values for the different designs are given in Table 4.6.
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From this table, we can see that the pm rankings are near perfect (≈ 1). This indicates

that the optimizations will be very similar. However, the pm3σ rankings range from .5− .9.

In this case it is not clear from the rankings whether the statistical power is a good surrogate

for the deterministic power.

Why the pm rankings correlate better than the pm3σ measures can be seen from Fig-

ure 4.3, which plots the power vs. size sensitivities for the pd, pm and pq measures (the

pm3σ can be thought of as a rough approximation of the pq measure). Notice that a sorting

of the gates by sensitivity would be very similar for the pd and the pm measures. However,

the sorting by pq, and hence the relations of the sensitivities of different gates, is very

different.

In the analysis above, it is difficult to tell exactly how large the gap will be between

the deterministic and statistical sizing solutions. To get a direct idea of the difference

between the deterministic power compared to the statistical power, we can make a useful

assumption. Suppose we know the value of the minimum deterministic power (p⋆d) that

is timing feasible. Then we can estimate the difference between the best statistical sizing

and the worst sizing for the given deterministic power as in Figure 4.6(c).

There is inherent error in this process because it depends on the number of samples. As

the number of samples grows, the gap will increase as more extreme points are sampled.

In the following section, we will compute these bounds without needing to sample the

distribution.

4.2.4 Suboptimality bounds

The central question in this section is whether the deterministic power solution is a good

approximation for the statistical power optimum. This generally requires information

about the space of timing-feasible solutions (T ), which is difficult to describe, and is highly

problem dependent, making it hard to give an exact answer. However, there is a way to

solve a simpler problem with no assumption on the structure of T , instead, relying on the
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(a)

(b)

(c)

Figure 4.6: Plot of the deterministic power (x-axis) vs. statistical power (y-axis) for the

c1355 v2 circuit for width sizing only. (a) Shows the plots for the pd vs. the pm measure,

whose relation is nearly linear. In contrast, the pd vs. pm3σ measure in (b) has more noise.

In (c), a region of the pd vs. pm3σ plot is chosen around pd = 4.2 · 10−6. The difference in

pm3σ between the upper and lower bounding lines (approx 2.6 · 10−7 or about 3.5%) is an

estimate of the suboptimality bound. Compare this with the bounds in Table 4.8.
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structure of the deterministic power objective.

In this section we consider the following question: suppose we approximate the solution

to the statistical power optimization problem:

minimize ps(~w) (statistical power)

subject to ~w ∈ T (timing constraint

& discreteness)

~w ∈ B (upper and lower)

(size bounds on ~w)

(S)

using the deterministic power optimum, ~w⋆
d, which is the solution to the problem:

minimize pd(~w) (deterministic power)

subject to ~w ∈ T (timing constraint

& discreteness)

~w ∈ B (upper and lower).

(size bounds on ~w).

(D)

How good of an approximation will this be, and what is a bound for the suboptimality of

this solution?

In the following, we will describe a method for creating suboptimality bounds. First

a simple set T ′ is constructed that contains T . Optimizing the statistical power over this

simpler set will return a lower bound on the statistical power optimum. This lower bound

is then compared with the statistical power of the approximate solution, ps(~w
⋆
d), to bound

the accuracy of the approximation. This is described in detail below.

4.2.4.1 Relaxed constraints, enclosing sets and lower bounds

The difficult part of w, l and vt optimization is the timing constraint and the discreteness

constraint. Thus, to find a quick lower bound, we must first relax the timing constraint

with a looser constraint. In other words, we would like to relax the constraints, by enclosing

the timing feasibility and discreteness condition in a simple, convex set.
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Relaxing the constraints of a problem turns the resulting solution into a lower bound

for the true solution. For example, consider the sets T0 ⊆ T1 ⊆ ... ⊆ Tk and the sequence

of problems:

(Pi) minimize ps(~w)

subject to ~w ∈ Ti
~w ∈ B ⊆ R

n.

(4.9)

If the optimal solution of problem (Pi) is ~w⋆
i , then we have the property that:

ps(~w
⋆
0) ≥ ps(~w

⋆
1) ≥ ... ≥ ps(~w

⋆
k). (4.10)

In other words the optimal value for the relaxed problem is a lower bound for the original

problem.

The intuition for this is the fact that the constraints in the relaxed problem enclose the

constraints on the original problem. Thus, the optimal solution in the original problem is

also feasible for the relaxed problem. In the process of solving the relaxed problem, the

solver is free to choose a better point in the larger space, making the resulting optimum a

lower bound for the original problem.

4.2.4.2 Linear functions, optimum solutions and enclosing sets

For certain classes of functions, it is easy to find a simple set that encloses the optimum.

The following analysis will derive a set using the properties of linear functions, but the

results also hold for more general functions.3

The key to finding an enclosing set for the constraints is to start with an optimal

solution and leverage the fact that any other feasible point cannot be better. For example,

3Specifically, equation (4.15) holds whenever pd(~w) satisfies:

{~w | pd(~w⋆) ≤ pd(~w)} ⊆ {~w | 0 ≤ ∇pd(~w⋆)T (~w − ~w⋆)}. (4.11)

Mathematically, this is equivalent to saying that 0 ≤ ∇pd(~w⋆)T (~w− ~w⋆) defines a supporting hyperplane for
the super-level sets pd(~w

⋆) ≤ pd(~w). This includes functions that are linear, concave and quasi-concave.
This does not necessarily hold for convex functions or posynomial functions, and in these cases, other
properties of the timing-feasible region must be assumed for the results in this section to hold.
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if ~w⋆
d is optimal for problem (D), then

∀~w ∈ (T ∩ B) : pd(~w
⋆
d) ≤ pd(~w). (4.12)

For linear functions, the inequality on the right side can be rewritten in a simple form. This

is because any linear function f(x) can be expressed in the form f(x) = f(x0)+ sT (x−x0)

(where s = ∇f(x))4. Thus expanding about the minimum x⋆ of f gives:

f(x⋆) ≤ f(x⋆) + sT (x− x⋆) (4.13)

0 ≤ sT (x− x⋆) (4.14)

Applying this to (4.12) with s = ∇pd(~w⋆
d) shows that

(T ∩ B) ⊆ T ′ = {~w | 0 ≤ sT (~w − ~w⋆
d)}. (4.15)

Note that T ′ is a continuous, connected set. This gives the relaxed problem:

minimize pd(~w)

subject to ~w ∈ T ′

~w ∈ B ⊆ R
n

(4.16)

4.2.4.3 Creating lower bounds for related problems

The above analysis seems a little circular – the optimum is required to create a lower bound

for the optimum. However, the utility emerges when we use the same enclosing sets to find

lower bounds for related problems.

Suppose the solution for problem (D) is known, and we would now like to find the lower

bound for problem (S), which has a different objective function, but identical constraints.

This can be done by leveraging the solution ~w⋆
d for problem (D) to compute a simple,

enclosing set for the constraints, as in the subsection above. The relaxed problem is then

4Note that s is constant over x for linear functions.
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solved:

minimize ps(~w)

subject to ~w ∈ T ′

~w ∈ B ⊆ R
n.

(4.17)

The problem is solved over the continuous set T ′, and the continuous upper and lower

bound constraints in B. The corresponding solution ~w′ can be used as a lower bound on

the true optimum w⋆
s (ps(~w

′) ≤ ps(~w
⋆
s)). In the case of ps = pd and ps = pq, this is a linear

programming problem, and for ps = pm3σ, this is a nonlinear convex optimization problem.

Using this lower bound, we can now find a bound for how well the deterministic solution

approximates the solution for the statistical problem. The suboptimality gap between this

approximation ~w⋆
d, and the true optimum, ~w⋆

s is bounded by:

δso = 100 · ps(~w
⋆
d)− ps(~w

′)

ps(~w⋆
d)

(4.18)

Smaller values indicate that ~w⋆
d is a good approximate solution for ~w⋆

s , and larger values

indicate that it is a bad approximation. For example, if

δso ≤ 5% (4.19)

then ~w⋆
d is a 5% approximate solution for ~w⋆

s . In other words, using ~w⋆
d in place of the real

optimum ~w⋆
s , would cost at most 5% (it is suboptimal by at most 5%).

This process also works with optimization over w, l and vt. This is exactly similar to

the above example, with w replaced by z, the adjusted gate widths.5

5This gives the problem:
minimize ps(~z)
subject to 0 ≤ ∇pd(~z⋆d)T (~z − ~z⋆d)

zmin ≤ ~z ≤ zmax

(4.20)

Here, z is a continuous variable, which represents the effect of the widths, lengths and vt on the power.
zmin and zmax are the minimum and maximum values of ~z. For example, for the ith entry, they are:

zi,min = wi,mine
αl2i,max

+βli,maxe−γvti,max and

zi,max = wi,maxe
αl2i,min

+βli,mine−γvti,min .

Interestingly, the actual values of ~l, ~w and vth do not play a direct role in the optimization above. They
affect the optimization by determining a range for the values of zi. In fact, the corresponding values of wi,
li and vt may not be unique; it is only important that there is a least one combination of wi, li and vt that
satisfies zi = wie

αl2i+βlie−γvti . Thus, z acts as a proxy for w, l and vth and a corresponding value is not
important, as z is used solely to find a lower bound on the power, and not a minimum power configuration.
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A surprising fact is that no properties of ps(~w) are assumed. It may be non-convex or

it may be non-linear, as in the case of the pm3σ measure. The only assumption is that the

problem (4.17) is solvable.

Another interesting fact is that the deterministic optimum is only used to determine

(1) the minimum deterministic power that is timing feasible, and (2) its corresponding

statistical power. The delay of the design is thus important in determining the deterministic

optimum, but does not play any other role in the bounding process. This highlights the

independence of this method on the timing feasible region.

A visual example of the lower bounding process is shown in Figure 4.7. The figure

shows that the suboptimality bound is more related to the geometry of the problem than

the actual difference between the statistical and deterministic optima.

4.2.5 Experiments

4.2.5.1 Width-sizing experiment

In this subsection we compute suboptimality bounds for width sizing. The bounds (δso)

are computed for each circuit in Section 4.2.2 and the results are presented in Tables 4.7

and 4.8.

The Nangate Library is modeled using the expression in (4.3). The synthesized widths

from the Cadence RTL compiler are assumed to be the optimal deterministic widths6, ~w⋆
d.

These tables show that the bounds grow larger as the proportion of die-to-die variation

increases. Note that this is in spite of the fact that the total σL per gate is roughly the

same, e.g.

σ2
L,total ≈ 1.152 + 1.62 ≈ 22. (4.21)

This is because the die-to-die variations affect the power more efficiently than within-die

variations, which may cancel each other out (e.g. see the expression in (4.4)). The case

6We will drop the assumption that the synthesized widths are optimal in Section 4.2.5.2
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(a)

(b)

(c)

Figure 4.7: Suboptimality examples for the two gates in (a). The examples in (b) and (c)

have the same optimal solutions for both the statistical and deterministic measures, which

means that the actual suboptimality is zero. However, the two examples have different

suboptimality bounds.
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σL = 1nm (dtd)/.5nm (wid) and σVt
= 4.7% (dtd & wid)

pm pm3σ

v1 v2 v3 v4 avg v1 v2 v3 v4 avg

c432 .34% .31% .39% .42% .37% 3.7% 3.5% 4.5% 4.9% 4.1%

c499 .33% .33% .25% .2% .28% 3.6% 3.6% 2.7% 2.2% 3%

c880 .28% .28% .29% .29% .29% 3.1% 3.3% 3.3% 3.2% 3.2%

c1355 .34% .25% .29% .15% .26% 3.7% 2.8% 3.3% 1.6% 2.8%

c1908 .37% .36% .38% .38% .37% 4.1% 4.1% 4.2% 4.2% 4.1%

c2670 .43% .4% .4% .39% .4% 4.6% 4.3% 4.3% 4.1% 4.3%

c3540 .42% .46% .42% .4% .43% 4.5% 5% 4.6% 4.3% 4.6%

c5315 .34% .36% .37% .36% .36% 3.7% 3.8% 4% 3.9% 3.8%

c6288 .25% .26% .31% .34% .29% 2.8% 2.9% 3.5% 3.8% 3.3%

c7552 .39% .38% .37% .37% .38% 4.2% 4.1% 4% 4% 4.1%

alu .3% .27% .29% .21% .27% 3.3% 3% 3.2% 2.4% 3%

σL = 1.6nm (dtd) / 1.15nm (wid) and σVt
= 4.7% (dtd & wid)

c432 .64% .6% .76% .83% .71% 5.9% 6.2% 8.1% 8.7% 7.2%

c499 .63% .58% .42% .35% .5% 5.7% 5.4% 4% 3.4% 4.6%

c880 .52% .5% .52% .53% .52% 4.9% 5% 5.2% 5.1% 5.1%

c1355 .65% .45% .49% .25% .46% 5.9% 4.3% 4.8% 2.4% 4.3%

c1908 .71% .69% .71% .71% .71% 6.8% 6.9% 7% 7.1% 6.9%

c2670 .82% .74% .73% .72% .75% 7.4% 6.6% 6.5% 6.4% 6.7%

c3540 .82% .87% .79% .76% .81% 7.4% 7.9% 7.3% 6.9% 7.4%

c5315 .65% .67% .67% .66% .67% 5.9% 6.1% 6.1% 6% 6%

c6288 .46% .47% .56% .6% .52% 4.5% 4.4% 5.3% 5.5% 4.9%

c7552 .72% .69% .66% .67% .68% 6.5% 6.2% 6% 6% 6.2%

alu .55% .5% .53% .4% .49% 5.2% 5.1% 5.2% 4% 4.9%

Table 4.7: Suboptimality (δso) for Leakage Optimization with l and Vt variations
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σL = 2nm (dtd)/0nm (wid) and σVt
= 4.7% (dtd & wid)

c432 1.1% 1.1% 1.4% 1.5% 1.2% 8.3% 9.7% 13% 14% 11%

c499 1.1% .91% .64% .54% .79% 8.1% 7.1% 5.1% 4.5% 6.2%

c880 .85% .82% .86% .88% .85% 6.8% 7.2% 7.8% 7.4% 7.3%

c1355 1.1% .73% .73% .39% .74% 8.3% 5.9% 6.1% 3.1% 5.9%

c1908 1.2% 1.2% 1.2% 1.2% 1.2% 9.8% 10% 10% 10% 10%

c2670 1.4% 1.2% 1.2% 1.2% 1.2% 10% 8.8% 8.7% 8.6% 9.1%

c3540 1.4% 1.5% 1.3% 1.2% 1.3% 10% 11% 10% 9.7% 10%

c5315 1.1% 1.1% 1.1% 1.1% 1.1% 8.2% 8.5% 8.3% 8.1% 8.3%

c6288 .76% .75% .88% .91% .83% 6.4% 6% 7% 7.1% 6.6%

c7552 1.2% 1.1% 1.1% 1.1% 1.1% 8.8% 8.3% 7.9% 8% 8.3%

alu .9% .86% .88% .7% .84% 7.3% 7.6% 7.5% 6.4% 7.2%

Table 4.8: Suboptimality (δso) for Leakage Optimization with l and Vt variations

σL = 1nm (dtd) /.5nm (wid) is given for comparison with [CGL09].

Another interesting thing is that adding vt variations does not necessarily increase

the suboptimality bound. When the length variations are small, the bounds do tend to

increase. However, for large σL, the effect of vt variations is unpredictable and small.

4.2.5.2 Assumption free bounds

The biggest weakness of the analyses above is that the deterministic optimum is not avail-

able, as the problem is too difficult to solve exactly for real circuits. In this part, we derive

bounds that do not rely on an initial deterministic solution. This works by exploiting the

geometry of the deterministic power measure.

We begin by assuming that only the value of the deterministic power measure p′d is

known. Thus, the actual deterministic optimum is one of the configurations that has a

corresponding power p′d. Out of these possible configurations, the worst case statistical
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Figure 4.8: The worst-case suboptimality for the example c432 v4 as a function of the

assumed deterministic power value p′d.

power can be found by solving the problem:

maximize ps(~w)

subject to p′d = pd(~w)

wmin ≤ ~w ≤ wmax.

(4.22)

Denoting the optimal solution of the above as ~wub, the worst-case suboptimality bounds

can be found as:

δwc = 100 · ps(~wub)− ps(~wlb)

ps(~wlb)
(4.23)

where ~wlb is found using equation (4.17). Note that in (4.17), only the value p′d and not

the actual sizes of the deterministic optimum are used. As an experiment, we chose 20

equally spaced values for p′d (between the minimum power and the maximum power), and

computed the worst case suboptimalities using (4.23). Running these examples for the

mean + 3σ measure gives the values in Table 4.9, which are approximately 3x-4x the

values in Tables 4.7 and 4.8. Note that these numbers are for width sizing only.

It is interesting to note how the suboptimality changes as a function of p′d. This is

shown for the c432 v4 circuit in Figure 4.8. At the minimum value of p′d, there is only one
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σL = 1.6nm (dtd) / 1.15nm (wid)

σVt = 4.7% (dtd & wid)

v1 v2 v3 v4

c432 19.1% 19.5% 21.3% 21.1%

c499 18.1% 15.1% 10.2% 8.9%

c880 17.7% 16.5% 16.4% 15.2%

c1355 18.0% 16.4% 11.6% 6.6%

c1908 20.1% 18.5% 17.4% 17.7%

c2670 15.3% 13.1% 12.3% 12.2%

c3540 16.3% 14.5% 13.7% 13.3%

c5315 13.9% 12.7% 12.1% 11.8%

c6288 18.2% 13.6% 13.5% 9.4%

c7552 15.5% 14.8% 14.3% 14.0%

alu 17.8% 15.4% 14.6% 13.6%

Table 4.9: Worst-case Suboptimality for pm3σ

possible sizing (e.g. all gates at minimum size), so the suboptimality is zero. Similarly, for

the maximum value of p′d, there is also only one size, so the suboptimality is also zero. For

the remainder of the values, the suboptimality grows to a peak at a third of the way, and

decreases for the remainder of the values. This implies that the suboptimality is larger for

more aggressive designs, and smaller for low power designs.

4.2.5.3 Relating maximum gate size to suboptimality bounds

In this subsection we use expressions (4.2) and (4.3), which model the power as a function of

the gate size, to see how the bounds would change if the maximum gate sizes are increased

for all gates.

Table 4.10 shows how the upper bounds in Tables 4.7 and 4.8 (Section 4.2.5.1) increase
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Figure 4.9: The change in the suboptimality as a function of the maximum gate size in

c1355 v4. Changing the maximum gate size from 2 to 128 increases the suboptimality by

8.6 percentage points.

when the gate size upper bounds are removed. In this case, the optimal deterministic

power value is fixed. The values are given for the case σL = 1.6nm (dtd)/1.15nm (wid)

and σVt = 4.7% (dtd & wid). When compared to Tables 4.7 and 4.8, the suboptimalities

for pm increase by .05 to .75 percentage points, and the suboptimalities for pm3σ increase

by .5 to 8.6 percentage points.

The suboptimalities increase because a better lower bound is found when larger gates

available in (4.17). This is because the maximum size bounds limit the sizes of the gates

with the best deterministic power vs. statistical power tradeoff. As the maximum sizes

increase, more of the power is used on the gates with the best tradeoffs. However, once

the maximum gate size is large enough to use the entire power budget on the gates with

the best tradeoff, the suboptimality will not increase any further.

The relation between suboptimality and the maximum size can be seen in Figure 4.9.
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Figure 4.10: The change in the worst-case suboptimality (δwc) as a function of the maximum

gate size in c1355 v4 for the case in Section 4.2.5.2 with the same range of p⋆d as in Table 4.9.

The worst-case suboptimality δwc reaches its limit of 20.58% for large maximum gate sizes.

The increase in suboptimality from a maximum size of 4 to 8, and from 8 to 16, is ap-

proximately 3.5 percentage points. However the increase tapers off – the increase from 16

to 32 is 1.48 percentage points and the increase from 32 to 64 is 0.01 percentage points.

The suboptimalities for 64 and 128 are identical. This happens because the maximum size

bound no longer plays a role in determining the lower bound7.

Results for the “assumption free bounds” in Section 4.2.5.2 can also be analyzed to see

how the maximum gate size affects the worst-case suboptimality δwc. Recall that in this

case, the bounds are computed for a range of values for p⋆d and not just one value. Using

the same range of values as used in Table 4.9, the suboptimality also reaches a limit as the

maximum gate size increases, as in Figure 4.10. The values for a maximum gate size of 64

7In the terminology of Section 4.2.4.3, increasing the maximum sizes ceases to change the optimum in
(4.17). This is because the optimum has sizes strictly less than the maximum gate size, and therefore the
upper bounds do not affect the solution.
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σL = 1.6nm (dtd)/1.15nm (wid) and σVt = 4.7% (dtd & wid)

pm pm3σ

v1 v2 v3 v4 avg v1 v2 v3 v4 avg

c432 .93% .74% .81% .89% .84% 9.9% 8.5% 8.8% 9.6% 9.2%

c499 .92% .88% .93% .92% .91% 9.8% 9.8% 10% 10% 10%

c880 .77% .7% .75% .82% .76% 8.8% 8.2% 8.6% 9.1% 8.7%

c1355 .94% .74% .77% 1% .88% 10% 8.4% 8.7% 11% 9.5%

c1908 .96% .9% .91% .9% .92% 11% 10% 10% 10% 10%

c2670 1.1% 1% 1% .78% .97% 12% 11% 10% 7.8% 10%

c3540 1.1% 1.2% 1.2% 1.2% 1.2% 12% 13% 13% 13% 13%

c5315 1.1% 1% 1% 1% 1% 11% 11% 11% 11% 11%

c6288 .68% .72% .76% .72% .72% 8.2% 8% 8.7% 6.6% 7.9%

c7552 1% .99% .96% .97% .99% 11% 11% 11% 11% 11%

alu .84% .79% .82% .63% .77% 10% 9.4% 9.5% 7.4% 9.1%

Table 4.10: Suboptimality (δso) for Leakage Optimization with l and Vt variations and no

size upper bounds

and 128 are identical.

The explanation for this trend is similar to the case in Figure 4.9. However, in this case,

an upper bound is also computed in (4.22). This upper bound can also take advantage of

the increasing maximum gate size by enabling it to use more of the power on the gates

with the worst deterministic power vs. statistical power tradeoff.

It is important to note that in realistic libraries, gate sizes will not go beyond 64X,

with most cells being limited to 16X. As a result, numbers presented in this subsection are

somewhat exaggerated.
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4.2.5.4 Suboptimalities for w, vt and l sizing

In this section, we extend these results to w, vt and l assignment. Because we do not

have designs with optimal w, vt and l assignment (and hence an optimal z⋆), we follow a

methodology that is similar to Section 4.2.5.2. 10 equally spaced values of the deterministic

power are chosen ({pd1 , ..., pd10}), where pd1 is the power with all gates at the minimum

power cell, and pd10 , is the power with all gates at the maximum power cell. For each

deterministic power, a corresponding lower bound is found (zlb, as in the prior sections)

and a corresponding upper bound is found (zub). The lower bound is computed by using

a variation of (4.20) that uses a given deterministic power value pdi :

minimize ps(~z)

subject to pdi ≤ pd(~z)

zmin ≤ ~z ≤ zmax

(4.24)

The upper bound is computed by using a variation of (4.24) as a maximization problem:

maximize ps(~z)

subject to pdi = pd(~z)

zmin ≤ ~z ≤ zmax

(4.25)

The latter problem finds the maximum statistical power configuration that has a determin-

istic power equal to pdi . Thus, we find the maximum statistical power that can also be an

optimal deterministic power solution. Combining the two results, the max suboptimality

is computed as:

δmax = 100 · ps(~z
⋆
ub)− ps(~zlb)

ps(~zlb)
(4.26)

This results in a more conservative bound than in Section 4.2.5.1, because a worst case

lower bound and a worst case upper bound are computed. These values are computed for

width sizing (δw,max ), and full w, vt and l assignment (δfull,max ). The ratios δfull,max /δw,max

are shown in Table 4.11.

The ratios in Table 4.11 can be used to relate the suboptimality bounds from Sec-

tion 4.2.5.1 to the case of full w, vt and l assignment. This table indicates that the values
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σL = 1.6nm (dtd) /1.15nm (wid)

σVt = 4.7% (dtd & wid)

v1 v2 v3 v4 avg

c432 2.1 1.9 1.7 1.7 1.8

c499 1.7 1.8 2.9 3.6 2.5

c880 2 1.9 2 1.8 1.9

c1355 1.7 1.6 2.5 4.3 2.5

c1908 2 1.9 1.8 1.8 1.9

c2670 1.8 1.9 2 2 2

c3540 2.1 2 2.1 2.2 2.1

c5315 2.3 2.1 2.2 2.2 2.2

c6288 2 1.9 2.5 3 2.4

c7552 2 1.8 2 1.9 1.9

alu 1.8 1.7 2.1 1.4 1.7

Table 4.11: Suboptimality ratios δfull,max /δw,max
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Figure 4.11: The difference between the sizes that are synthesized for deterministic power

(wd), and the sizes that are used to compute the lower bound (wlb). The c1355 v2 circuit

is shown.

will roughly double in most of the cases, but may increase up to 6.6x.

Note that in the process above, w, l and vth are not used. This is because the effect on

the power is central to the bounding process, and the effect of w, l and vth on the power

can be summarized by the variable z. Using the actual w, l and vth cannot be done as pd

is not quasi-concave in w, l and vth.

4.2.5.5 How conservative are these bounds?

A natural question to ask about the bounds above is “How conservative are they?” This

is because the bounds for the larger length variations are significant, and it may be useful

to perform statistical optimization to see what the actual suboptimality is for those cases.

One indication of how conservative these bounds are comes from looking at the sizes

that are used to compute the lower bound. In Figure 4.11, the sizes of the deterministic

optimum are plotted against the sizes that are used to compute the lower bound. The

difference in the sizings is large – many of the minimum sized gates become large gates,
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and vice-versa.

The effect of flipping the gates will generally violate timing. Gates are usually sized

larger because they need to drive larger fanouts, and smaller gates are smaller because

they have smaller fanouts. Thus, by flipping the sizes of these gates, small gates will need

to drive larger fanouts, and there will be large gates with small fanout load.

Another intuition can be gained by re-examining Figure 4.7. In both cases (b) and

(c), the actual suboptimality is 0%. However, due to the geometry of the sets and the

sensitivities, the suboptimality bounds are very different. This indicates that the bounds

may be very loose in some cases.

A final comment is related to the mathematical procedure used to create the bounds.

The space was relaxed to be continuous, and the lower bound is found by finding a con-

tinuous sizing that is a bound. Adding in the discreteness constraints can only make the

suboptimalities smaller.

To test the bounds, we made several small circuit examples:

• 7 gate fanout tree: 1 primary input gate, 4 primary output gates

• 7 gate fanin tree: 4 primary input gates, 1 primary output gate

• 9 gate diamond: 1 primary input gate, 1 primary output gate, with 2, 3 and 2 gates

at logic depth 2, 3, 4, respectively

• 13 gate star: (there is one gate in the middle at depth 3, and the fanout and fanin

cones are both trees with root at this node)

• 14 gate, 2-bit adder

We randomly assigned the gates to these examples, and used enumeration to compute the

suboptimality. A variation of σL = 1.6nm (dtd)/1.15nm (wid) and σVt = 4.7% (dtd &

wid) is used. After running an optimization however, we found that all of these designs

have suboptimality of 0%.

To find examples with suboptimalities we randomly generated circuits according to the
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following rule:

1. With an N gate circuit

2. j is a fanout of i with probability p if j > i, probability 0 otherwise.

We used N = 10 and p = .5. All the possible width combinations were enumerated, and

the best designs for a series of delay targets were recorded. Figure 4.12 shows one example

case. The statistical and deterministic optima are the same for the majority of the cases,

but they depart for a few different delay targets. In this case, the maximum suboptimality

is 10.1%. This example circuit has logic depth 5, and the non-primary output gates have

fan-outs of {6, 5, 5, 4, 3, 2, 1}, respectively.

We generated 500 of these random circuits, and computed the worst-case suboptimality

for each circuit across all delay targets. Most of the circuits that were generated have 0%

suboptimality (see the histogram in Figure 4.13), however the worst-case suboptimality was

16.6% which correlates with the numbers in Table 4.9. This shows that the suboptimality

is likely to be 0%, although the worst-case numbers may be significant.

4.2.6 Bridging the suboptimality gap

The suboptimality bounds for large l variations cause some reason for concern. Some of

the bounds are over 10%, which is a significant amount that is too large to ignore. In this

section we present ways to bridge the suboptimality gap using simpler measures.

There is a significant cost to using the pm3σ(·) measure. It is significantly more compli-

cated than the other power measures. While the deterministic (pd(·)) or the mean (pm(·))
power measures are linear in z, the pm3σ(·) is nonlinear in z (although it is convex in z).

Linear measures have the advantage that the total power is the sum of the individual pow-

ers. Thus, these measures can be used in existing optimization methods by replacing the

power values in the library files with the statistical power values.

Fortunately, there is a simple linear approximation that we can use to bridge the sub-
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Figure 4.12: Suboptimality plot for a 10 gate circuit (computed by enumeration). The

x-axis is the delay constraint, while the y axis is the statistical power. The ’x’ denote

statistical minima and the ’o’ denote deterministic optima. When the black and gray lines

diverge, there is a suboptimality gap, which is the difference between the two lines. The

maximum gap in this plot is 10.1%. Note that for the majority of the delay constraints,

the deterministic and statistical optima are the same.
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Figure 4.13: Histogram of the suboptimalities for 500 randomly generated circuits. The

majority of the examples have suboptimality of 0%.

optimality gap. The idea is to use the variation information to construct a linear measure

that has a low suboptimality gap. This would result in a measure that is a provably good

approximation to the full statistical optimization, and can be used by replacing the deter-

ministic power values by these approximate values. We define this approximation to the

pm3σ measure as:

papprox =
∑

κi exp
(

λw(i)σLw(i)
+ λd(i)σLd

+ ... (4.27)

√
2(τw(i)σvtw(i)

+ τd(i)σvtd
)/2

)

The derivation of this approximation is purely empirical– this measure was found to

give very small suboptimality bounds. It can be interpreted as using the 1-σ value of the

random variables vtw(i)
, vtd , Lw(i), and Ld. The

√
2/2 factor used to account for intra-die

cancellation. This measure performs better than the pm measure and it is also better than

using the 3-σ value of the random variables.

Worst-case suboptimality bounds for this approximation are given in Table 4.12 for full

w, vth, and l assignment (as in Section 4.2.5.4), 1-32x sized gates (as in Section 4.2.5.3),

and the same range for p⋆d as used in Table 4.9. This measure is very effective, as it
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σL = 1.6nm (dtd) / 1.15nm (wid)

σVt = 4.7% (dtd & wid)

v1 v2 v3 v4 avg

c432 2.2% 1.9% 1.6% 1.4% 1.8%

c499 2.0% 2.1% 2.0% 1.4% 1.9%

c880 2.1% 2% 2% 1.9% 2.0%

c1355 2.1% 2.2% 1.7% 1.6% 1.9%

c1908 2.2% 2.2% 2.2% 2.2% 2.2%

c2670 1.9% 1.7% 1.6% 1.6% 1.7%

c3540 2.1% 2.2% 2.1% 2.1% 2.1%

c5315 1.8% 1.7% 1.7% 1.6% 1.7%

c6288 2.1% 3.1% 2.7% 1.4% 2.3%

c7552 1.7% 1.6% 1.6% 1.6% 1.6%

alu 2.2% 3.5% 3.0% 3.5% 3.0%

Table 4.12: Worst-case suboptimality (δwc) of papprox as an estimate of pm3σ for a maximum

size of 32, and w, l, vth assignment
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reduces the suboptimality gap to 3.5% and less. This is around an 80% reduction in the

suboptimalities. This indicates that although the pm3σ measure may be different from the

deterministic measure, the sensitivities can be well approximated by a linear measure.

In contrast pm is not as good of a linear approximation to pm3σ. The resulting subop-

timality bounds give about a 10% reduction in the suboptimalities.

4.2.7 Summary

In this section we compared deterministic solutions of sizing problems with statistical so-

lutions of sizing problems. The rankings of the solutions coincide very well for the mean

power measure, indicating that good deterministic solutions will be equally good mean

power solutions. However, the other measures have significant discrepancy in their rank.

These findings were substantiated by computing the worst-case bounds on the suboptimal-

ity gap. The bounds are always insignificant for the mean-power measure pm, but they

may become significant for the pm3σ measure when the inter-die component of the length

variations is large. As a way to bridge the suboptimality gap, we present a proxy mea-

sure for the pm3σ measure which is an excellent approximation, and has an insignificant

suboptimality.

4.3 Statistical delay optimization

The related question of statistical delay optimization vs. deterministic delay optimiza-

tion has been studied in [Naj05, GVZ05, BKM07]. In [BKM07] the authors quantify the

difference between corner based methodologies and full statistical optimization methods.

They find that with a 5% variation in stage delay, the full-blown statistical analysis and

optimization gives a mere 2% improvement, and a 12% variation gives a 6% improvement

over a statistical worst-case corner that employs a guardband. In [GVZ05], the tradeoff

between yield and circuit delay, and the improvements in slack are examined. Significant
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improvements are shown for a set of benchmark circuits. This shows that methods that

use statistical delay provide significant benefits over deterministic methods.

In this section we use circuit sizing to improve the timing robustness of a design. This

is not a new area, and several approaches to this problem already exist. In [DS06] the

bin-yield loss function, defined as the expected loss or penalty for circuits that exceed a

given delay threshold, is minimized using stochastic optimization. Other groups have used

slack redistribution to reallocate the statistical slack of each of the paths [SSZ05]. The

most popular method in literature estimates a worst-case scenario for each gate, and then

sizes the circuit according to this estimate [MO04, SNL05, PYK05]. These methods add a

“padding” that is proportional to the standard deviation of the gate delay. For the sake of

simplicity, these methods will be referred to as “padded delay methods.” The deficiency of

the padded delay methods is that it uses a conservative estimate and it cannot distinguish

between correlated and uncorrelated variations.

In this chapter we propose theMean Excess Delay (MED) as a statistical measure of the

delay in the presence of parameter variations. This measure is used in the finance industry

to minimize the risk associated with the value of an investment portfolio [RU00]. In the

context of circuits, we show that MED is a convex function of the logarithm of the gate

sizes, and therefore well-suited for minimization. We also discuss a numerical algorithm

for mean excess delay gate sizing, and present some encouraging numerical results.

In summary there are two main contributions in this section:

1. The introduction of the Mean Excess Delay as a statistical measure of circuit delay.

The mean excess delay preserves the convexity of the underlying delay model, and is

therefore well-suited for minimization.

2. Numerical results that compare the padded delay method with the mean-excess delay

method for gate sizing.

The remainder of the section is organized as follows. Section 4.3.1 gives a background on

the circuit sizing problem in its nominal and statistical forms. In Section 4.3.2 we introduce
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the Mean Excess Delay function, and explain its mathematical properties. Section 4.3.3

briefly outlines the minimization algorithm we use. Results are shown in Section 4.3.4.

4.3.1 Statistical delay models

In the circuit sizing problem, the sizes of each gate are selected to minimize the delay of a

circuit with constraints on the power and area.

4.3.1.1 The nominal case

In the nominal case, the variations in delay are ignored, resulting in the following problem

minimize T nom(x)

subject to A(x) ≤ Amax

P (x) ≤ Pmax

x ≥ 0.

(4.28)

Here, the optimization variable x is a vector of the log-gate sizes (or more accurately,

the log of the normalized gate scaling factors). The functions T nom(x), A(x) and P (x)

represent the nominal delay, area and power of the circuit as a function of the log-gate

sizes x. We assume the functions A(x), P (x) and T nom(x) are posynomials in convex

form [BV04]. This problem has been studied extensively, and can be solved efficiently via

geometric programming [CCW99, JB08]. For a good tutorial on circuit optimization via

geometric programming, see [BKP05].

4.3.1.2 The statistical delay

The effects of the process variations on the delay are often modeled as follows [DS06]:

dk(x, v) = (1 + vk) d
nom
k (x). (4.29)

In the above, dnomk (x) is the nominal delay, dk(x, v) is the gate delay with the process

variations, and v is a vector of zero-mean random variables with the same dimension as x
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(vk denotes the kth element of the vector v). The random variables vi are not restricted

to be independent or Gaussian, and may have correlations that are “gate by gate”, “die-

to-die”, or by location. This model preserves convexity of dnomk (x). That is, if dnomk (x) is

convex, then dk(x, v) will be convex as well for fixed v.

Note that the distribution and the correlations of the random variable are unrestricted,

making this model general enough to handle a large class of variations. For example,

correlations between the gate length or doping can be included in the random variable

vi. The only restriction is that the effect on the delay is multiplicative, and the standard

deviation of the variations is independent of the size of the gate. This last restriction is

discussed below.

A modification of this model makes the variance of the random variables vi a function

of the corresponding gate size:

dk(x, v) = (1 + vke
−αxk) dnomk (x) (4.30)

where vk is a random variable that is scaled by the function e−αxk . Here α is a modeling

parameter that is 0.5 in Pelgrom’s model [PDW89] or 0.3 according to recent work in

[WAN07]. The intuition behind this model is that the saturation current Isat is better

controlled as gate is made larger. Note that if vk ≥ 0 then this dk(x, v) is convex for

fixed v. However, if vk < 0, the expression is not convex, and does not have a posynomial

representation.

To distinguish between the two models, we will call model (4.29) the size independent

variation model, and model (4.30) the size dependent variation model. The net effect of

both models above is to make the total delay of the circuit a function of the gate-scaling

factors and the random variables. This turns the total delay itself into a random variable.
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4.3.1.3 The statistical sizing problem

To convert the nominal problem (4.28) into one that minimizes the statistical delay, we

need to decide what it means to minimize a random variable. One obvious definition is to

focus on the β-quantile qβ(x), defined as:

qβ(x) = inf {t | Prob (T (x, v) ≤ t) ≥ β}.

In the context of circuits, the β-quantile is the delay specification that will give a yield of

β-percent.

Reformulating the deterministic problem with a β-percent yield gives the following

problem

minimize qβ(x)

subject to A(x) ≤ Amax

P (x) ≤ Pmax

x ≥ 0.

(4.31)

This problem, however, is difficult to solve. First, the cost function qβ is difficult to

evaluate, because in practice there is no closed-form expression for the distribution of

T (x, v), although there are many ways of approximating it [VRK04, CZN05, WKO06,

ZSL05]. A further difficulty is that the problem (4.31) is generally not convex, even when

the nominal problem (4.28) is convex.

4.3.2 The Mean Excess Delay

The β-Mean Excess Delay (β-MED) is a measure that is closely related to the β-quantile.

For continuous distributions, it is the expected value of the tail of the delay, when the tail

is measured past the β-quantile.

mβ(x) = E [T (x, v) |T (x, v) ≥ qβ(x)] . (4.32)
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A graphical interpretation of the mean excess delay is shown in Fig. 4.14. In this graph,

we plot the probability density function (pdf) of T (x, v). q0.95(x) is the 95% quantile, and

the shaded area to the right is the tail of T (x, v). The center of mass of this shaded region

is the mean excess delay of the distribution, m0.95(x).

This measure is used in the finance industry to manage risk. In this context, T (x, v)

is the loss of a portfolio, qβ is the value-at-risk, and mβ is the conditional value-at-risk

[RU00].

4.3.2.1 Properties of the Mean-Excess Delay

By definition, mβ(x) ≥ qβ(x), i.e. , the β-mean excess delay is an upper bound on the

β-quantile. Thus, minimizing mean excess delay will indirectly minimize the β-quantile,

and it makes sense to consider the problem

minimize mβ(x)

subject to A(x) ≤ Amax

P (x) ≤ Pmax

x ≥ 0.

(4.33)

The important feature of this measure is that it can be minimized via convex optimization,

if T (x, v) is convex in x for fixed v [RU00].

To show this, we define the function

gβ(x, t) = t+
1

1− β
Ev[T (x, v)− t]+ (4.34)

where

[u]+ =







u

0

if u ≥ 0

otherwise

and Ev is expectation with respect to v, i.e. , if v is a continuous random vector in R
n with

pdf p(v),

Ev[T (x, v)− t]+ =

∫

v∈Rn

[T (x, v)− t]+p(v)dv. (4.35)
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It follows from standard properties of convex functions that gβ(x, t) is convex in x and

t if T (x, v) is convex in x for fixed v [BV04]. We can also note that for fixed t, the

function (4.35) is the binning yield-loss discussed in [DS06], i.e. , a linear penalty on delays

that exceed a timing budget. However, although the mean-excess delay and the binning

yield-loss achieve different goals, they can be implemented using similar algorithms.

The following theorem, due to Rockafellar and Uryasev [RU00], relates (4.34) to the

mean-excess delay.

Theorem 4.3.1. If v is a continuous random vector, then the minimum value of gβ(x, t)

over t is equal to the mean-excess delay:

mβ(x) = inf
t∈R

gβ(x, t).

In effect, this theorem states that the mean-excess delay can be minimized by minimiz-

ing the function gβ(x, t) over the design variables x and the additional variable t.

Another interesting fact is that the minimizer of (4.34) over t is the β-quantile of the

distribution T (x, v):

qβ(x) = inf {t | gβ(x, t) = mβ(x)}

This gives us the resulting quantile for free as a by-product of the optimization.

In summary, for continuous distributions, we have the following properties:

1. qβ(x) ≤ mβ(x)

2. mβ(x) = inf
t

gβ(x, t)

3. qβ(x) = inf {t | gβ(x, t) = mβ(x)}

4. gβ(x, t) is jointly convex in t and x if T (x, v) is convex in x.

These properties are illustrated in Fig. 4.14. Here, the minimum of g0.95(x, t) is m0.95(x)

with a minimizer q0.95(x).

In the case of a discrete distribution, properties 1, 3 and 4 hold. However in this case,

the mean-excess delay is defined to be inft gβ(x, t), and it can still be used as an upper

bound on the quantile.

138



t

4p(t)

g0.95(t)

q0.95 m0.95

Figure 4.14: The pdf of the delay T (x, v) for a Gaussian distribution is plotted above.

q0.95(x) is the 95% quantile, and m0.95(x) is the 95% mean excess delay. The function

g0.95(t) is plotted to illustrate the properties in Section IIIA. The minimizer of g0.95(t) is

q0.95, and the minimum value, which is reflected across the diagonal line, is m0.95.
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Using the properties above, we can now reformulate (4.33) as:

minimize gβ(x, t)

subject to A(x) ≤ Amax

P (x) ≤ Pmax

x ≥ 0

(4.36)

with variables x and t.

Because the preceding discussion is not unique to circuit sizing, the mean-excess delay

can be applied to other problems where the delay is a convex function of the design vari-

ables, for a fixed variation. Furthermore, the same type of analysis can be used to combine

power and delay minimization.

4.3.3 Minimization algorithm

In the case of a discrete probability distribution and model (4.29), problem (4.36) can be

expressed as a geometric program. This can be solved using a general purpose solver such

as Mosek [MOS], but for large problems and a large set of discrete variations, a specialized

algorithm must be used. The case of continuous distributions can be approximated as a

discrete case by taking a fixed number of samples. This is referred to as a Sample Average

Approximation (SAA) of the problem.

We solve the sample average approximation of the problem (4.36) using the Analytic-

Centering Cutting Plane Method (ACCPM) [AV95]. In this method, we start with a

polyhedral set S0 that contains the optimum gate size. At each step of this method, the

approximate “center” of the polyhedron is found, and the set of possible solutions Sk is

reduced by adding a cutting plane through this center. The cutting plane cuts away the

part of the region where the optimum cannot lie, reducing the set of possible solutions. In

the ACCPM, this is achieved as follows.

1. Find the analytic center xck of the current set of possible solutions Sk using Newton’s

method
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c432 c499 c1355 c1908

Method q0.95 dnom q0.95 dnom q0.95 dnom q0.95 dnom

Nominal 3.9ns 2.9ns .73ns .50ns .79ns .57ns 1.9ns 1.3ns

Padded 3.9ns 2.9ns .73ns .50ns .79ns .57ns 1.9ns 1.3ns

MED 3.9ns 2.9ns .68ns .51ns .72ns .58ns 1.8ns 1.3ns

c2670 c3540 c5315 c7552

Method q0.95 dnom q0.95 dnom q0.95 dnom q0.95 dnom

Nominal .82ns .63ns 1.5ns 1.0ns 1.1ns .89ns .96ns .77ns

Padded 1.3ns 1.1ns 1.5ns 1.0ns 1.1ns .89ns .95ns .77ns

MED .79ns .69ns 1.4ns 1.0ns 1.0ns .93ns .93ns .83ns

Table 4.13: Sizing Results - Size independent variations

2. Evaluate the gradient ∇gβ(x, t) of the Mean-Excess Delay at the point xck

3. Use the cutting plane to reduce the set of possible solutions:

Sk+1 = Sk ∩ {x | ∇gβ(x, t)(x− xck) ≤ 0} .

The analytic center of a set of linear inequalities is defined as the minimizer of the

log-barrier function:

xc = argmin
x

{

−
m
∑

i=1

log(bi − aTi x)

}

where the vectors ai and scalars bi define the cutting planes. This centering process is done

in an effort to maximize the region that will be cut away by the cutting plane.

4.3.4 Results

We sized the ISCAS ‘85 benchmark circuits using 3 different sizing methods:

1. Nominal Sizing: variations are ignored

2. Padded Delay Sizing: a conservative robust sizing method [PYK05]

3. Mean Excess Delay Sizing.
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Figure 4.15: The delay pdfs of benchmark c1355 are plotted for each of the three sizing

methods. The MED sizing gives the best pdf, followed by the padded delay sizing and the

nominal sizing, which are nearly identical.

The standard deviations of each random variable were set to 0.25 and are split evenly

between the “die-to-die” and “gate-by-gate” variations. These variations are made to

be independent of each other, and they are assumed to be Gaussian. The nominal and

padded delay sizing problems were solved using the general purpose commercial solver

MOSEK [MOS], and the mean-excess delay sizing was done using the ACCPM with 2000

samples of the distribution.

With the size independent variations in (4.29), the Mean-Excess Delay Sizing always

results in a better quantile than the nominal or padded delay sizings, but the magnitude of

this difference depends on the structure of the circuit. This is summarized in Table 4.13.

Here, q0.95 denotes the 95% quantile and dnom denotes the delay associated with the nominal

case, where the variations are ignored. In the case of c432, the numbers were nearly

identical for each of the three sizings, however in the case of the larger c1355, the difference

was approximately 10%.

With the gate-size dependent variations in (4.30) the problem is no longer convex, and

it loses the tractability that is associated with convex problems. However, a few runs
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c880 c1355 c2670 c3540

Method q0.95 dnom q0.95 dnom q0.95 dnom q0.95 dnom

Nominal .86ns .49ns .73ns .56ns .70ns .64ns 1.2ns 1.1ns

Padded .73ns .50ns .62ns .58ns .67ns .66ns 1.1ns 1.1ns

MED .73ns .50ns .61ns .58ns .66ns .64ns 1.1ns 1.1ns

Table 4.14: Sizing Results - Size Dependent Variations

Figure 4.16: The delay pdfs of benchmark c2670 with size dependent variations are plotted

for each of the three sizing methods. The MED gives the best delay distribution, followed

by the padded delay sizings. These methods give very good results with significant gains

over the nominal.
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were made to compare these methods under this model. We use the setting α = .3 and

the variations were set to be the same as above. In this case, the MED sizing can still

give better results (see Table 4.14), however the improvements on the quantile are not as

large, dropping to 2%. A closer look at the pdfs in Fig. 4.16 shows that although the

95% quantiles are competitive, the pdf of the MED sizing has a significantly faster average

delay than the padded delay sizing.

There are three conclusions that can be drawn from these results. First, there is a

significant gain when the statistical problem is solved over the nominal problem. With

size independent variations, this can be up to 10% and with size dependent variations, the

difference grows to 15%. Secondly, the padded delays usually give results that are similar

to the nominal sizing, and in our experience, we find this approximation to be useful when

there is a large spread in path delays, such as large adder circuits. In contrast, the padded

delay method does an excellent job when a size-dependent variation model is used, but

there is still some improvement that can be made by using the MED sizing.

The runtime of this method scales similarly to the interior point solver used to perform

the nominal and padded delay sizings when the number of samples is fixed. This is because

both methods use Newton’s method at each iteration to solve the subproblems. Further-

more, the same techniques that are used to improve scalability in the nominal sizing, as in

[JB08], might apply to MED sizing with SAA sampling.

4.3.5 Summary

In this section we introduced the mean excess delay as a statistical measure for circuit

delay in the presence of random parameter variations. The β-mean excess delay is defined

as the expected delay of the circuits whose delay exceed the β-quantile. Thus, minimizing

mean excess delay indirectly reduces the β-quantile. This technique is known in finance

as conditional value-at-risk optimization [RU00]. Compared with other popular methods

(such as the padded delay sizing method [PYK05]), MED sizing has the important advan-
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tage that it takes into account the type of correlation in the gate delay variations. The

results show a significant improvement can be made by using the mean-excess delay over

the padded and nominal methods.
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CHAPTER 5

Manufacturing Processes, Gate Sizing and Threshold

Assignment

The introduction of multi-gate devices for the 22nm technology node introduces new chal-

lenges in creating standard cell libraries. The gate sizes can no longer be arbitrary widths,

and instead must come in multiples of the fins, e.g. as 1x, 2x, 3x, 4x, etc. [PAS06]. To

compound the problem, a wide array of threshold voltages may not be possible [War11].

Thus, to understand the impact of these restrictions on the power and delay tradeoffs for

gate sizing and threshold voltage assignment, we examine the impact of the range and

precision on standard cell-based designs in this chapter.

In addition, with the aggressive production schedules in the semiconductor industry,

integrated circuits are often designed before the manufacturing process is mature. As

a result, substantial changes in the specifications may cause timing infeasibility. These

timing errors are corrected using Engineering Change Orders, commonly referred to as

ECOs. The use of incremental gate sizing to correct for changes in the manufacturing

process specifications is also developed in this chapter.

5.1 Impact of precision and range in standard cell libraries

Standard cell libraries offer a wide variety of both logical functions and sequential elements.

In addition to the variety of functions, a range and selection of cell parameters are provided,

including changes in the threshold voltages, transistor sizes, and P/N ratios. This provides
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flexibility for the designer, allowing them to fine tune power, delay, robustness and noise

characteristics during circuit design.

Choosing the threshold voltages, transistor sizes, transistor lengths, and P/N (“beta”)

ratios from the values allowable by the technology is a tradeoff between maintaining a man-

ageable and supportable library, and providing flexibility to the circuit designer. Large

libraries require substantial time to design, tune, and characterize. Commercial design

teams often use libraries with hundreds of cells, and these cells must be re-characterized

periodically to match silicon measurements, and changes in manufacturing process param-

eters.

This section examines the suboptimality associated with any given selection of gate sizes

and threshold voltages. The suboptimality is relative to the case where a continuous range

gate sizes and threshold voltages are given. More formally, the problem is: given a design,

delay target (or target clock period), and standard cell library, estimate the suboptimality

in power, relative to a case where a continuous set of sizes are available.

Note that this question is a stronger question than the library cell selection problem.

That is, if the suboptimality is known, then this information can be used to select a set

of library cells, or even the technology that should be used to implement the design. In

contrast, research on library cell selection [BKK98, SG06, ART09] has proceeded without

a means to quantify this suboptimality.

Prior work on this subject uses quantization error, and experimental results to guide

library cell selection. In [BKK98], the authors take an error based approach that mini-

mizes the error incurred from snapping continuous gate sizes. The gate sizes are chosen to

minimize the expected error in cell area (“size-match”), delay (“delay-match”) or power

(“power-match”). More specifically, let s represent the gate size, cL represent the capacitive

load of a gate, Prob (s) represent the probability distribution for the optimal continuous

sizes, and Prob (s, cL) represent the joint probability distribution for the optimal contin-

uous sizes and the capacitive loads. If the set of gate sizes is given as {s1, ..., sn}, then the
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errors are:

soQ(delay) =min
si
|d(si, cL)− d(s, cL)| (5.1)

soQ(size) =min
si
|si − s| (5.2)

soQ = soQ(power) =min
si
|p(si)− p(s)| (5.3)

where soQ(delay) is the delay-match, soQ(size) is the size match, soQ(power) is the power match,

d is the delay of the gate, and p is the power of the gate. The work in [BKK98] focuses

on minimizing the expected value of these errors over the distribution of s and cL. These

metrics accurately measure the quantization, or the errors associated with snapping to the

discrete sizes. However, these metrics are not related to design metrics, such as power

or delay suboptimality, and it does not explain why matching the sizes (“size-match”)

produces the best results.

[SG06] examines which geometric size progression provides the best tradeoffs. They

find that a ratio of 1.3 with cells of size {1×, 1.3×, 1.32×, ...} provides results very close to

that with an infinite set of gate sizes. [ART09] provide experimental results that evaluate

different types of library selection. The experiments are performed using their continuous

sizing plus branch-and-bound sizing method to evaluate different sets of gate sizes. They

conclude that a compact library with sizes {0.5×, 1×, 2×, 3×, 4×} and 3-4 beta values

work the best.

However, while prior work provides some insight into creating libraries, they lack an

analytical framework to consider the power vs. delay tradeoff. The question of how the

library cell selection affects delay constrained power optimization is still an open question

that is very relevant with the increasing constraints on standard cell libraries and the

increasing importance of power minimization.

This work shows how the library cells in a design affect the suboptimality of a delay

constrained, power optimized design. In this section, we focus on leakage power, but the
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Figure 5.1: An inverter chain example.

framework can be used to estimate the dynamic power suboptimality as well. We also

provide experimental results that show our estimates are useful in practice.

This section will cover the following topics:

• Framework for analyzing the suboptimality in power of a design due to the range

and precision of vt and sizes.

• Experimental results that show the usefulness and accuracy of these methods.

• Extensions to library cell selection and applications in multi-terminal gate based

design.

• A study of the impact of the range in sizes or vt on the achievable power and delay.

5.1.1 Suboptimality of vt Assignment

Threshold voltage assignment is a very useful tool to optimize designs for power. Increasing

the threshold voltage provides an exponential decrease in leakage, with an effect on the

delay proportional to (1.5) [SN90]. For example, in the Nangate Open Cell Library [NANb],

Vdd = 1.1 and α ≈ 1.4.

The rationale in selecting threshold voltages is can be governed by Equations (5.1),

(5.2), and (5.3). However, this is inadequate to estimate suboptimality. Consider the

example in Figure 5.1, which has N inverters tied as a chain. Suppose a very simple model

for the delay and power as a function of vt, given by:

Delay = vt, Power = 3− vt, 1 ≤ vt ≤ 2.

For a delay target of T (with T > N), an optimal set of continuous vt is one with all gates
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at vt = T/N , and a corresponding power 3N − T .

Equations (5.1), (5.2), and (5.3) suggest that the suboptimality associated with choos-

ing a discrete set of sizes is related to the quantization error. In the above case, this is

accurate for N = 1, where the optimal continuous value, vt = T , is rounded down to the

nearest available discrete vt. This gives a power suboptimality of 3− (T − vt).

However, the interaction between gates is overlooked in this case. As N grows larger,

the suboptimality can decrease – even with just two values: vt ∈ {1, 2}. The idea is that the
suboptimality incurred by snapping down a vt can be mitigated by snapping up in the next

stage. Surprisingly, with this model, the difference in power between the optimal discrete

and continuous solutions is at most 1, and as a percentage it is at most 1/N . Thus, as N

increases, the difference between the quantized and continuous solutions, as a percentage

of the total power, continues to decrease to zero. Also in the limit, as N increases, the

effective delay vs power tradeoff is linear when this effect is taken into account.

In contrast, consider the case where the delay and power are given by:

Delay = vt, Power = 4 · exp(− ln(2) · vt) = 2−vt+2

where the power as a function of vt is slightly different. In this case, the values of delay

and power at vt ∈ {1, 2} are identical to the earlier example, but the power at the points in

between is different. This leads to the situation in Figure 5.2. In this case, by mixing the

options vt ∈ {1, 2}, the points along the upper linear tradeoff can be achieved. However,

using continuous vt values can provide the tradeoff values along the lower curve. The

difference between the two curves contributes to the suboptimality, and the vt should be

selected in a way to minimize this difference for a majority of designs.

Thus, in general, the suboptimality for a gate is proportional to the difference between

the curves in Figure 5.2. For example, for a given gate, the required delay is first determined

and the point on the continuous tradeoff curve is identified. Next, the vertical distance to

the upper tradeoff line is computed, and this is the suboptimality for the gate. Note that
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Figure 5.2: Suboptimality for a single gate with two threshold voltages.

the available vt determines the upper tradeoff line. Mathematically, the difference between

the upper tradeoff line p̂(vt, τ, cL), and the continuous power vs. delay tradeoff curve, p(vt)

is computed as:

soc(vt, τ, cL) = p̂(vt, τ, cL)− p(vt). (5.4)

Here, τ is the set of slews or input transition of the gate, and cL are the capacitive loads

for the gate. The upper tradeoff line p̂(vt, τ, cL) is defined as the line between the two

neighboring vt that are available in the cell library:

p̂(vt) = λ(vt) · p(Q−(vt)) + (1− λ(vt)) · p(Q+(vt)) (5.5)

with

λ(vt) =
d(vt)− d(Q−(vt))

d(Q+(vt))− d(Q−(vt))
, (5.6)

and Q+ and Q− are the round-up and round-down quantization functions, respectively,

defined as:

Q+(vt) = min
i
{vt,i | vt,i ≥ vt} (5.7)

Q−(vt) = max
i
{vt,i | vt,i ≤ vt}. (5.8)

The “c” in soc denotes that this suboptimality is related to the convexity of the delay vs.

power curve. soc > 0 (e.g. there is a suboptimality) if the curve is strictly convex; as
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seen earlier, a linear delay vs. power tradeoff has a soc = 0. An interesting consequence is

that if the curve is concave then a better tradeoff can be achieved using the linear tradeoff

curve, which will lie below the continuous tradeoff curve. Note that this estimate is less

pessimistic than assuming that the vt is snapped down.

This model can be improved to handle slew and other timing effects and interactions

by using the slacks instead of the delays. In this case, we have:

λ(vt) =
s(vt)− s(Q−(vt))

s(Q+(vt))− s(Q−(vt))
, (5.9)

This improved expression will be used for the remainder of this section.

5.1.1.1 Suboptimality expressions

The total suboptimality of a design can be expressed in terms of soc:

so(~vt, ~τ , ~cL) = γc
∑

∀gates g

soc(g)(vt(g), τ(g), cL(g)) (5.10)

where vt above is the optimal continuous size, τ is the set of slews or input transitions in

the design, and cL are the capacitive loads for each gate in the design. γc ≈ 1 is a fitting

term used to improve the fit of the bounds.

When the optimal continuous vt are not available, but the design is available, the

suboptimality for each gate can be taken to be the worst-case by taking the worst-case

over the slews, τ , and vt:

so(cL) = max
vt,τ
{γcsoc(vt, τ, cL)} . (5.11)

If the bounds are relative to a given library, the expression for the suboptimality of

each gate can be rewritten to provide the maximum over all the possible loads as well:

so = max
vt,τ,cL

{γcsoc(vt, τ, cL)} . (5.12)
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5.1.1.2 Small circuit experiments

To better understand the effects of vt selection on the suboptimality, 30 circuit examples

were randomly generated using the method in [SVC00], each having 30 gates. The delay

and power functions were modeled using a 65nm commercial library, and fit to posynomial

models. These circuits were small enough to solve optimally, using a branch-and-bound

method.

The optimal continuous power and discrete powers were computed for ten different

delay targets between the minimum delay and maximum delay (the delay associated with

the minimum power configuration). Next, the value γc in (5.10) is fit to its least-squares

value, yielding γc = .974, which shows that the γc ≈ 1 and that the preceding analysis

is an accurate predictor of the suboptimality. The resulting fit, and errors, are shown in

Figure 5.3.

The results are very good. The standard deviation in errors are 5.3%, 2.5%, 1.9% and

.9%, for 1, 2, 3 and 4 vt options, respectively (the errors are given as a percentage of the

discrete optimum). In contrast, using the quantization errors in (5.1), (5.2), and (5.3)

provide much larger errors, at 16%, 34%, 27% and 14%, respectively.

5.1.1.3 Effects on Post-layout Threshold Voltage Assignment

An experiment to measure the effect of threshold voltage assignment on post-layout designs

(where the wire loads are known) was performed. Libraries with several different vt choices

were used (the percentages denote the deviation from the nominal vt):

• vt-L1: {−20%, 20%}
• vt-L2: {−20%, 0%, 20%}
• vt-L3: {−20%, 0%, 10%, 20%}
• vt-L4: {−20%, 0%, 10%, 20%}
• vt-L5: {−20%, 10%, 0%, 10%, 20%}
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Figure 5.3: Histogram of the errors in predicting the discrete optimum, from a given

optimal continuous solution. The errors are given as a percentage of the discrete optimum.
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and they were compared to values for a dense library (e.g. a library with all vt values

between −20% and 20% of the nominal vt, in increments of .1%. The library is a 32nm

library from a leading EDA company where the {−20%, 0%, 20%} data points are included

in the library. The remaining points are created by fitting each table entry in the Liberty

file using exponential models to interpolate the power and (1.5) to fit the delay. The

libraries vt-L1, vt-L2, vt-L3, vt-L4, vt-L5 have 2, 3, 4, 4, and 5 vt options, respectively.

All optimizations are performed using the widely-known and simple to implement cir-

cuit optimization method TILOS [FD85] (see Section 2.3.3). While this method is not

optimal, even for the dense library, it is derived from an optimal algorithm, and therefore

should provide reasonable results. In addition, [LG12] and Section 3.4.3 show that this

method provides results that are robust – they perform well over a range of benchmarks.

In this section, the dense library is used as a proxy for a continuous library.

The benchmarks used in this study are widely used gate sizing and vt assignment

benchmarks, from the ISCAS ‘85 and ISCAS ‘89 benchmark suites. They are initially

synthesized, placed and routed with all optimization flags set to high-effort and minimum

delay. Once the sizing is complete, the suboptimality estimate for each library choice can

be computed in a matter of seconds. A common value of γc = .87 was used to estimate

the suboptimality for all benchmarks.

Table 5.1 show the statistics for the suboptimality prediction errors (max, average,

and standard deviation) for this work (soc), and as a reference we provide estimates (soQ)

derived from work in [BKK00]. The results show that using the soc metric is a better

predictor than the soQ, providing much smaller errors in the worst cases, such as the c6288

vt-L1 library. In the c7552 vt-L1 case, the errors seem worse, however, Figure 5.4 shows

that these numbers are misleading – the fit using the soc is qualitatively better than the

fit using the soQ. Figure 5.5 shows that this is true in general– the fit using soQ on the

left does not follow the trend well, and the fit on the right using soc is clearly superior.

Overall, the soc has an average error nearly half of the soQ estimates – a mean error of
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ǫ-soQ(power) ǫ- soc ǫ-soQ(power) ǫ- soc

max avg std max avg std max avg std max avg std

c6288 s35932

vt-L1 712% 197% 249% 390% 100% 123% vt-L1 231% 69% 94% 144% 35% 48%

vt-L2 33% 12% 14% 20% 5.5% 6.7% vt-L2 22% 6.8% 8.9% 17% 3.6% 5.4%

vt-L3 42% 5.5% 9.2% 17% 2.6% 4.3% vt-L3 26% 3.6% 8.6% 16% 2.2% 4.7%

vt-L4 47% 14% 19% 31% 6.9% 9.7% vt-L4 12% 5.4% 6.4% 9.7% 3.1% 4.0%

vt-L5 8.5% 1.9% 2.4% 8.5% 1.6% 2.3% vt-L5 7.2% 1.4% 2.2% 10% 1.5% 2.9%

c7552 s38417

vt-L1 103% 39% 39% 142% 40% 37% vt-L1 48% 3% 7.2% 48% 1.5% 4.6%

vt-L2 23% 7.2% 9.3% 14% 4.7% 6.2% vt-L2 6.3% .3% 1.0% 5.1% .2% .8%

vt-L3 41% 4.3% 9.4% 11% 1.6% 2.8% vt-L3 3.9% .1% .5% 3.6% .1% .5%

vt-L4 17% 7.3% 8.7% 15% 5.1% 6.8% vt-L4 3.6% .3% .6% 2.7% .1% .4%

vt-L5 7.0% 1.4% 2.1% 6.1% 1.6% 1.7% vt-L5 1.1% .03% .1% 1.1% .04% .1%

s38584

vt-L1 20% 2.9% 4.1% 13% 3.3% 4.2%

vt-L2 4.3% .2 .59% 3.9% .2% .5%

vt-L3 3.9% .1% .44% 3.9% .1% .4%

vt-L4 1.4% .1% .27% 1.1% .1% .2%

vt-L5 .9% .01% .13% 1.1% .1% .1%

*minimum error for all designs is 0%

Table 5.1: Errors in vt suboptimality estimation (as a percentage of the total power).

Statistics are over the range of delays.
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Figure 5.4: Error prediction on the c7552 benchmark, in the vt-L1 case. The soc and the

soQ predictions are made using the data from the dense library result.

8.8%, compared to 15%.

In viewing these results, it is important to remember two things. First, the suboptimal-

ity estimates are predicted from the dense vt assignment. Figure 5.4 shows that the dense

assignment is nearly an order of magnitude smaller than the discrete power, yet both the

value and the trends are predicted well.

The next thing to remember is that these results are for practical optimization tools–

TILOS method is not an optimal method, and the optimization results have some addi-

tional suboptimality involved. However, the estimates still predict the suboptimality well,

showing that this method is applicable to practical optimization methods.

5.1.2 Suboptimality in gate sizing

Computing the suboptimality in gate sizing is substantially different than that of vt. This

is for two reasons:

• The delays between different gates are coupled – changing the size of a gate will affect

the delays of its neighboring gates due to the changing capacitive loading.

• The power tradeoff between different gates is not as dramatic. The change in leakage
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power as a function of vt is exponential, while the change in leakage power as a

function of size is linear.

The coupling of the delay between gates results in cases where increasing a gate’s size

decreases the delay at its output while increasing the delay at its inputs, because the

gate’s input pins increase in size and therefore in capacitance. For example, Figure 5.6

plots the cumulative delay at the output of gate 2 (from Figure 5.1), as a function of the

input gate size (s1), the size of gate 2 (s2) and the size of the output gate 3 (s3) with the

model:

Delay = (
∑

j∈fanout(i) sj)/si, Power = si

The tradeoff curves vary heavily as the input gate size changes. This is in contrast to the

case in Figure 5.2, where the cumulative delay is not affected by the input gate size.

An important difference between Figures 5.2 and 5.6 is that the minimum cumulative

delay does not always occur at the maximum or minimum sizes – the maximum size does

not always result in the minimum delay. For example, suppose that in Figure 5.8 only
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gate sizes s2 = 1 and s2 = 4 are available. In this case, gate size s2 = 4 may be used

even though it is not Pareto-optimal on the continuous curve, and does not provide the

best delay relative to other continuous sizes. As another example, consider the plot in

Figure 5.7, which has the delay as the x-axis, and power as the y-axis. Delay values less

than three require sizes between (1, 2), and therefore the choice of intermediate sizes affect

whether a particular delay is achievable. When the required delay cannot be achieved by

a set of library sizes, it results in a delay penalty that must be corrected by sizing multiple

gates.

This results in two cases:

1. A size within the library is able to provide the required delay.

2. No size in the library can provide the required delay.

In the first case, an analogue of (5.4) can be used to estimate the effect on suboptimality.

This is done by finding the difference between the piecewise linear tradeoff function of the

available sizes with the tradeoff curve of the continuous sizes. In Figure 5.8, this is the

difference in power between the gray piecewise linear tradeoff function and the black curve.

Mathematically, this is:

soc(s, τ, cL) = p̂(s, τ, cL)− p(s) (5.13)

where

p̂(s, τ, cL) = λ(s, τ, cL) · p(F−(s, τ, cL))+ (5.14)

(1− λ(s, τ, cL)) · p(F+(s, τ, cL)) (5.15)

λ(s, τ, cL) =
s(s, τ, cL)− s(F−(s, τ, cL))

s(F+(s, τ, cL))− s(F−(s, τ, cL))
. (5.16)

where F+ and F− are generalizations of the quantization functions Q+ and Q− for sizing,

that are used to handle the case where there is no available size that meets the required
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slack, and are defined as:

F+(s, τ, cL) = min{si | s(si, τ, cL) ≥ s(s, τ, cL)} (5.17)

F−(s, τ, cL) = max{si | si < F+(s)}. (5.18)

When there are no sizes that provide the needed slack, the convention F+(s) =∞ is used.

The slacks are used here to account for the cumulative effect on the delay, as sizing affects

both the delay at the output of the gate, and the delay at the input of the gate.

In the next case, the effect on suboptimality is much more difficult to characterize. Not

only is the current gate affected, but the resulting delay penalty (due to the gate’s inability

to achieve the required delay) requires the sizes of other gates to be adjusted to achieve

the required delay. This is approximated as a function of the power penalty incurred when

rounding up to the nearest size.

Combined, these two cases are:

soc+(s, τ, cL) =











soc(s, τ, cL) if F+(s) <∞

γQ(p(Q
+(s))− p(s)) otherwise

(5.19)

where p(Q+(s))− p(s) is the power penalty for rounding up to the nearest size, with

Q+(s) = min
i
{si | si ≥ s}. (5.20)

In the first case, the suboptimality is characterized by the convexity of the power vs. delay

curve, and when this cannot be applied, it is characterized by the power penalty of snapping

the next higher size.

The suboptimality over the whole design can then be estimated as:

soc+(~s, ~τ , ~cL) =
∑

∀gates g

soc+(g)(s(g), τ(g), cL(g)) (5.21)
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5.1.3 Post-layout experiments

Gate sizing suboptimality estimates for post-layout designs (where the wire loads are

known) were performed. Libraries with several different gate size choices were used:

• s-L1: 1x, 8x

• s-L2: 1x, 2x, 8x

• s-L3: 1x, 4x, 8x

• s-L4: 1x, 2x, 4x, 8x

• s-L5: 1x, 2x, 3x, 4x, 5x, 6x, 7x, 8x

and they were compared to values for a dense library (e.g. a library with all sizes between

1x and 8x, in increments of .1x. The library is derived from a commercial 45nm library.

The sizes that are not in the library are created by fitting each table entry in the Liberty

file using linear models to interpolate the power and posynomial models to fit the delay.

As in Section 5.1.1.3, all optimizations are performed using TILOS [FD85], and the same

benchmarks are used. The designs are synthesized, placed and routed with all optimization

flags set to high-effort.

Table 5.2 shows the errors in the suboptimality estimates for this work (soc+), and as a

reference we provide estimates (soQ) derived from work in [BKK00]. The table shows that

the soc+ provides an excellent estimate of the suboptimality. Compared to predicting the

error using soQ(power), the soc+ is clearly better. Overall, the soc has an average error less

than a tenth of the soQ estimates – a mean error of .47%, compared to 7%.

In these results, γQ is fit separately for each of the benchmarks, unlike the case of vt

assignment, where the same value of γc is used for all benchmarks. This is because it

is difficult to predict the power penalty when no gate size can provide the needed slack.

While the same γQ can be used, the error rates jump significantly– for example, in the

c7552 s-L2 case, the average error becomes 3.9% with a standard deviation of 2.9%. The

optimal fitted values for γQ vary as well, with γQ = .71 for the c6288 to γQ = .94 for the
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Figure 5.9: Estimation results for c7552. The estimate is predicted using from the dense

sizing using the suboptimality results in this section, and the actual power refers to the

actual power achieved by the TILOS method.

s35932 case. Determining the proper γQ for a given benchmark a priori is an interesting

question for future research.

As in the vt case, the estimates are also good qualitatively. Figure 5.9 shows the

estimates with the actual values for the c7552 case. The estimates are very good and

follow the trend well.

The analysis in this section shows why the size match library in [BKK00] performed

the best. In the above analysis on sizing, the correct sizes are needed to provide the needed

slacks in the circuit, otherwise the penalty related to p(Q+(s))− p(s) is incurred, which is

generally larger than the penalty when a size is available. Thus, it better done by matching

the continuous sizes, which is a proxy for finding gates that provide the needed slacks, than

in matching the delays at the output of the gate (note that in [BKK00], the delay match

only matches the delay at the output of each gate, and ignores the impact on the delays

at the inputs). This is why the size-match library in [BKK00] provides the best results.
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Figure 5.10: Effect of adding an additional minimum size of .5x on the s35932 benchmark

in a 32nm library. The overall power decreases significantly, without affecting the delay

range.

5.1.4 Dynamic range and precision selection

The theory developed in Sections 5.1.1 and 5.1.2 is useful in understanding the question

of dynamic range – what should the maximum and minimum gate sizes and vt values that

should be used? – and the question of library precision selection – which vt and sizes should

be used?

The minimum size and maximum vt should be set to the minimum values allowable by

the technology. This is due to three reasons:

1. The power vs. delay tradeoff is convex and decreasing, thus lower power options

improve the achievable power because they have a better power vs. delay tradeoff.

2. In most designs, there are a significant number of gates with positive slack and at

their minimum power option. Thus, improving the power of these gates will create

significant power savings, without a delay penalty. However, increasing the vt and

size choices can incur a technological as well as a library design cost.

3. In gate sizing, reducing a gate to a smaller gate size can reduce the capacitive load

of the fanin gates.

For example, Figure 5.10 shows the effects of adding an additional gate with size 0.5x.

The power drop is dramatic, and it is clear that smaller gate sizes make a large impact.
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This power drop can be roughly estimated by assuming that the gates at minimum size

(or maximum vt) are switched to the newly available lower power option. A more accurate

estimate can be found by performing the optimization itself, using a greedy method such

as [GKS04].

The maximum size should be chosen to improve the delay range. The need for large

gate sizes is largely dictated by the amount of capacitive loads in the design, in the form

of wireloads and gate fanouts. This load dictates the power vs. delay tradeoff curve, as in

Figure 5.6. When there are large load, the need for larger gate sizes increases (as in the

s1 = 2, s3 = 4 case), but when larger loads are not present, then large gate sizes are not

needed (as in the s1 = 1, s3 = 1 case).

However, it is important to note that the maximum gate size does not itself dictate the

delay range. This is because a wide selection of gate sizes is needed to achieve the minimum

delay, as shown in Figures 5.7 and 5.8. The maximum size may not provide the minimum

delay, and it is important to have the right size to achieve the delay that is necessary.

The effects of different granularities on the delay range are shown in Figure 5.11(b). The

achievable range using just 1x and 8x is quite poor.

The minimum vt should be selected mainly for delay feasibility. Providing a lower

vt decreases the delay that is achievable in a design by providing faster gates. However,

because the power tradeoff is convex and decreasing, adding a lower vt is unlikely to improve

the power, as the power vs. delay tradeoff is worse for lower vt cells. However, the power

may be improved in cases where there are cells that fanout to many other cells that are all

critical.

Regarding library precision, the analysis in this section shows how to compute the

suboptimality from a given design. This can be done using a continuous model of the

library, or by creating a dense library. Once information from a dense solution is created,

library choices can be analyze quickly – each library choice can be analyzed in a matter

of seconds. Also, the dense library need not contain a large range of sizes and vt; it must
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Figure 5.11: Effects of library cell granularity on the achievable delay range for vt assign-

ment (a) and gate sizing (b). The optimization results for the s35932 benchmark in a 32nm

library are shown.
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only contain the candidate sizes and vt that are under consideration.

If a design optimization is not possible, or not desired, then the library precision can be

selected by using the expressions (5.12) and (5.19) for the expected input slews and output

loads. The library designer can use the expressions to either minimize the worst-case

suboptimalities or the average suboptimalities.

5.1.5 Multi-gate library considerations

FinFETs and other multi-gate devices are considered to be an alternative for conven-

tional CMOS devices as they offer improved leakage power, reduced parasitic capacitances,

and improved resistance to parametric variability [War11, PAS06]. These devices feature

fully-depleted channels, and have gates that surround the channel on three sides, offering

superior control of the channel.

However, these novel devices pose two challenges to standard library cell designers.

Firstly, the gate widths must be quantized– different gate widths are created by placing

multiple “fins” in parallel. This means that gate widths will only be available at multiples

of the minimum gate width, and that fine granularities, such at 1.3x, may not be possible.

From the results above, this should not pose a large problem. As shown in Figure 5.11

the power penalty between a fully dense library and one with integer sized gates is not

large. This is because the power vs. gate width tradeoff is linear, and therefore the power

penalty of omitting fractional gate sizes will not be large. However, this may limit the

achievable delay range, as in Figure 5.11, though this is minor.

On the other hand, it is not clear what kinds of vt options will be available in FinFETs

and multi-gate device. The vt can be adjusted by changing the gate workfunction [War11],

or by using the device as a three terminal device [MMJ10]. Researchers at the commer-

cial foundry state that multi-vt options can be provided by the FinFET family [YCL10],

however the limited availability of vt options to a designer will limit the design space very

significantly, as in Figure 5.11(a).

169



Delay

P
o
w

e
r

Device 1

Device 2

Achievable Tradeoff

Figure 5.12: Achievable power delay range using two different types of devices. By mixing

the device types, a better power vs. delay tradeoff can be achieved than by either of the

device types alone.

5.1.5.1 Mixing technologies

The results in this section provide an interesting perspective on mixing technologies in a

design. Consider the case in Figure 5.12, where there are two technologies with different

power vs. delay curves. Device 1 provides a better tradeoff for large delays, and Device

2 provides better tradeoffs for smaller delays. The benefits of using both technologies

can be analyzed in three cases: (1) when the technologies are used independently, (2) the

technologies are mixed but optimized independently, and (3) the technologies are mixed

and optimized interchangeably.

In the first case of using a single technology, either of the Device 1 or Device 2 tradeoff

curves can be achieved, but not a mix of the two. In other words, once the device type is

chosen, then the design is restricted to using that device alone. This can lead to a large

suboptimality in when Device 1 is used near its minimum delay or Device 2 is used at its

maximum delay. This suboptimality is avoided in case two, where the technologies are

mixed. The mixture of technologies can achieve the pareto-frontier– the left-hand portion

of Device 2 and right-hand portion of the Device 1’s tradeoff curve.

However, there is a third case, where the devices are mixed and optimized interchange-
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ably. In this case, gates in a single critical path can use devices from either technology,

and this can provide a power savings that is greater than if each technology was used

individually. For example, in Figure 5.12, this can provide the bottom dotted-tradeoff line.

The tradeoff provided by this type of optimization is better than the best tradeoff of either

technology, and there is an interesting synergy than can be exploited by mixture.

5.1.6 Summary

This section examined the impact of the range and precision in standard cell libraries by

proposing methods for estimating the suboptimality in power. It is interesting that the

suboptimality is primarily due to the convexity of the power vs. delay tradeoff. Compared

to a method derived from literature [BKK00], our method provides a nearly 2x better

estimate for vt assignment and 10x improvement for gate sizing. This has interesting

implications on selecting the range and precision of the standard cell libraries, especially

with the new advances in multi-gate devices. For example, the minimum size and maximum

vt should be set to the least power option possible. Furthermore, the precision should be

set with regards to the metrics (5.12) and (5.19), to minimize the potential suboptimality

in the derivative design.

5.2 ECO Gate sizing for Manufacturing Process Changes

With the aggressive production schedules in the semiconductor industry, the design of

integrated circuits runs concurrently with the development of the manufacturing process

itself. As a result, the exact manufacturing specifications change over the design period.

Substantial changes in the specification may cause timing infeasibility issues, which require

Engineering Change Orders, commonly referred to as ECOs, to fix. As a tool for ECOs,

gate sizing is commonly used to incrementally update designs, as it is generally less intrusive

than adjusting the placement or performing buffer insertion on the design, and can be more

powerful than rerouting the design.
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Figure 5.13: Comparison of the 2008 and 2010 process specifications for a commercial 45nm

process. The graph plots the percentage increase or decrease for several key parameters.

Figure 5.14: Changed area caused by an ECO; carea = 27µm2, benchmark s38417 (left);

and carea = 277µm2, benchmark mult (right).

The nature of the ECO depends on when the updated information arrives in the prod-

uct’s development cycle. If the information arrives before substantial engineering time is

spent, the product may simply be redesigned. In contrast, if significant time has been spent

on the design, an ECO may be used that affects a minimal fraction of the design. When

the violations are small, the design may be fixed manually; when the violations are large,

they may be fixed using CAD tools in incremental mode, followed by manual tweaking to

correct any remaining timing violations. The design is then verified using sign-off quality

tools to verify the timing, power, crosstalk, and design rules, with more accuracy.
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The change in the specifications can be substantial. For example, Figure 5.13 shows

an example of process parameter change from April 2008 to March 2010, for a commercial

45nm process. The difference in these parameters is not negligible– the transistor off

current (Ioff) increases by over 80%, and the gate capacitance increases by approximately

10%. These two changes alone would have a large impact, by increasing the leakage power

by over 80%, the dynamic power by approximately 10%, and the delay by approximately

10%. These are changes that may require substantial modifications in the design to correct

the design according to its specifications.

In this section, we focus on late-design cycle ECOs when the changes arrive after the

design has been placed and routed, but before it is sent for fabrication. The changes in

parameters may also result from retargeting a design to a different, but design-rule compat-

ible, process1. We would like to (1) minimize the impact of the ECO, while maintaining a

solution that is reasonably optimal after the process change is introduced, and (2) provide

a method to modify designs to be robust against late process changes. In this section,

these goals are achieved by quantifying the ECO cost in terms of its area cost, and then

approximating this relation as a function of layout parameters. The resulting model is fed

into an optimization loop which minimizes the ECO cost and power while meeting the

timing constraints. In comparison to the prior work in [LG10], an improved ECO area

metric and a simplified version of the algorithm is presented in this section, which has

improved performance, and faster runtimes.

5.2.1 ECO Cost

Research on ECO and incremental algorithms has focused on traditional costs such as wire-

length, timing closure, and the number of changed nets (see for example [CFC07, DA06,

RM07]); however, they are too general to be used to distinguish between timing-feasible

solutions with very similar power, but very different implementation cost.

1Such multi-foundry sourcing is fairly common for large-volume designs.
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In practice, the ECO cost is determined by the amount of time, in engineering work

time and in tool hours, that is required to perform the ECO. This is the time is spent in

checking and correcting: (1) timing errors, (2) problems with the layout, and (3) correcting

design rule problems. Note that in modern designs and especially system-on-a-chip (SoC)

designs, a large fraction of this verification may be manual.

As a measure of ECO that correlates to the costs in (1)-(3), we approximate these costs

using an ECO area metric, carea, that is the amount of layout area changed by the ECO.

This area is computed over all layers of the design, and includes the amount of die area,

in µm2 that has been affected by:

• Cell resizing, movement or deletion

• Routing additions and deletions (interconnect and vias).

In this section, these changes are measured using a commercial tool that compares the lay-

out before and after the ECO change, and generates a list of gate changes and movements,

and routing modifications. Next, a map of the changed die area is created, and the regions

that are affected by the ECO (as in Figure 5.14) are marked. After all ECO changes are

considered, the marked regions are added to produce the ECO area cost.

The area ECO cost (carea) is difficult to quantify without performing the ECO itself.

These changes are the result of a chaotic interaction between the incremental design tool

that is used and the current layout. However, there are intuitive rules that can be consid-

ered. The area cost is certainly related to the number of pins that are moved– each one of

these pins require re-routing and reconnection. The difficulty in rerouting and reconnecting

these pins is also related to the amount of free space in the routing layers above the cell. It

is also important to consider the type of cell– some cells are tightly packed, which makes

it difficult to access the pins. These ideas provide rules-of-thumb that designers can use to

target low-ECO area designs.

For the purposes of guiding the optimization, we propose a method to estimate the

effects of these rules-of-thumb on the ECO area cost as (ĉarea) associated with changing a
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cell by performing a quick legalization-like placement check. This method first finds amount

of free space around the current cell that is needed to accommodate the size change, and

computes the required movements of the current cell and neighboring cells. This provides

three pieces of information that are used to find the approximate (ĉarea):
2

• m1: Number of dislocated pins

• m2: Utilized area over pin bounding box (over all layers)

• m3: The routing cost (from [TLA10]).

The information m1 and m2 are related to the effects of this change on routing. The m1

are the pins that are moved by the placement check, whose new and old locations do not

overlap. This measure is important because the change in location will require a rerouting

of the connections to the pins, and ECO area cost. The utilized area over the pin bounding

box (m2) is the area above the pin bounding box, the box containing all of the dislocated

pins, that is used by the metal layers for routing. Intuitively, larger values of m2 indicate

that it will be more difficult to reroute the m1 dislocated pins, as the available space for

routing is low, resulting in larger ECO costs.

The cost m3 is a measure of the routability of a library cell called the cell cost [TLA10],

and is defined as:

[Cell Cost] = [# of pins] +
∑

∀pinsi

2(2−
[Area of pin i]

Θ
)+ (5.22)

1

2

∑

∀pinsi

∑

∀pinsj 6=i

2(2−
[Area of the Bounding Box of pins i, j]

3Θ
).

In the above, Θ is the minimum cell pin width. The total cost m3 is then the sum of

the cell costs for all moved or re-sized cells. These parameters are then used in the linear

model, ĉarea, that estimates the true area cost as ĉarea =
∑3

i=1 aimi + b.

2Other metrics such as congestion, net bounding boxes, number of changed cells, and the congestion on
different metal layers, were also considered for estimating ĉarea. The three measures used in this section,
m1, m2, and m3 provided the best performance in terms of intuitive appeal, and accuracy.
Also note that the metrics used to estimate ECO cost (m1 to m3) differ from [LG10]. These improvements
reduce the average normalized error by 4%.
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Figure 5.15: ECO example to estimate carea. Gate G4 changes from INV size 1 to INV size

2, dislocating cells G2 and G3. There are 6 pins that are moved by the change, but the

number of dislocated pins, m1 = 5, because pin G4/Z still overlaps with its old location.
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Figure 5.16: Error histogram of the difference between the estimated ECO area values

(ĉarea) and the actual ECO area values (carea) for 644 data points over the benchmark

s35932.

A sample of 644 ECO operations over the benchmark s35932 is used to fit the model,

and a least-squares fit of the coefficients ai is made. Each sample operation consists of

changing the size of one gate, and recording the ECO cost, along with the values of mi.

The model parameters are:

a1 = 0.183 µm2/pin a2 = 4.721 a3 = 0.123 b = 0.835 µm2.

The quality of the fit is shown in Figure 5.16, which shows the errors between the estimate

ĉarea and actual carea. We shall see in Section 5.2.2.1 and in Tables 5.4 that the fidelity is

high; minimizing the estimate ĉarea is effective in minimizing the actual ECO area cost.

We can use this information to estimate the cost of changing the size of a given cell.

176



For example, consider the case in Figure 5.15. A quick placement check is done to find the

values of m1 to m3. With the value m1 = 5 (and assuming m2 = 0.25 and m3 = 0.5) the

expression gives the estimate of 2.99µm2.

These estimates are used to guide the ECO process. Gates in congested areas will

result in large estimated ECO costs, as changing the gate will move many neighboring

cells (resulting in large values for m1 and m3), and require re-routing in a congested area

(m2). Relying on changes with small ECO cost will help to make changes where free space

is high and congestion is low.

5.2.2 Solving the redesign problem

Incorporating the ECO cost into the Linear Programming gate sizing framework in [CK05]

(see also Section 2.3.10) results in:

minimize
∑

i,k(eik + γpik)yik

subject to ti + di0 +
∑

k δikyik ≤ tj, ∀j ∈ fo(i)

ti ≤ Tmax , ∀i ∈ po
∑

k yik ≤ 1, ∀i
0 ≤ yik ≤ 1,

(5.23)

which is applied iteratively. The variables are:

yik: Assignment variable of gate i to size k

eik: ECO area cost estimate for yik

ti: Arrival time for gate i di0: Current delay for gate i

δik: ∆ delay for yik pik: ∆ power for yik

We denote this algorithm LPECO-S, a simplified version of the LPECO from [LG10],

that minimizes a weighted objective of power and ECO cost. The variables ti, di0 and δik

are related to the timing of the design, and they propagate the arrival times down the
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graph to enforce setup time constraints.3 γ = .05, and is a factor used to consider the

power, helping to break ties between gates with similar ECO costs. In contrast to [CK05],

to account for the downstream delays due to slew effects, the negative change in the slack is

used as δik in place of the actual delay change. Also, in contrast to [LG10], the restriction

preventing neighboring gates to change is dropped.

The variable yik is an assignment variable that is 1 when gate i is size k in the solution,

and 0 otherwise; the sum
∑

k yik (for each i) is restricted to be less than or equal to 1 to

prevent to assignment of a gate to multiple sizes. Note that for a given i, if all yik = 0,

the current gate size is kept and not changed. The eik is the estimated ECO cost related

to yik, if it were performed one gate at a time. The entire ECO cost is estimated by using

the assumption that the ECO costs are additive.

As the number of gate sizing candidates is very large, we restrict the search to the gates

that have negative slack, and the moves that improve slack (e.g. δik < 0). This means that

the size of the problem is dominated by the number of possible moves, and not the size of

the circuit. Furthermore, to consider the effect of fan-out load, gates are also considered

if they are a fan-out of a critical gate. Fan-ins can also be considered to account for slew

effects but we ignore them in our current experiments as they have little effect on delay

for our benchmarks.

Problem (5.23) may be infeasible when a large number of gate sizings is required to

make the design timing-feasible. In these cases, the slack must be maximized iteratively,

by solving (5.23) with Tmax as the objective.

The solution to (5.23) may have indeterminate assignments, e.g. the yik may be greater

than 0, but less than 1. In these cases, a decision must be made as to whether a gate should

be changed, and if so, which size it should be assigned to. A guideline for the indeterminate

3This formulation can also consider hold time constraints by adding a second set of timing variables,
denoting the earliest arrival time for each gate. Also that design rules such as max transition and max
capacitance can be handled in this formulation, by removing the assignments that violate these rules.
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assignments in the problem (5.23) can be derived from the value of the optimum:

∑

i,k

(eik + γpik)y
⋆
ik. (5.24)

In the worst case, each of the non-zero y⋆ik will be assigned by setting each non-zero yik to

1 (= ⌈y⋆ik⌉):4
∑

i,k

(eik + γpik)⌈y⋆ik⌉ (5.25)

=
∑

∀yik>0

(eik + γpik). (5.26)

The difference between (5.25) and (5.24) provides an approximation for the suboptimality

due to rounding. As this equation is linear, we can approximate the suboptimality for the

case of δik > 05 as
∑

∀yik>0

(eik + γpik)(1− y⋆ik) (5.27)

This suboptimality comes from the difference between the continuous and the integer

solutions to the problem.

We can reduce this gap by considering other sizes that may reduce the suboptimality

in (5.27). Formally, if we are given an indeterminate assignment yik, the suboptimality is

minimized over k by choosing the size s as:

s = argmin{j| δij≥yikδik}
{eij + γpij} , (5.28)

where yikδik is the amount of timing improvement that was allocated by the LPECO-S

algorithm. The idea is to find an alternate size that provides the same timing improve-

ment, with less cost. In LPECO-S, values of y > 0.2 are applied in (5.23).6 As these

approximations may prevent the algorithm from converging in one iteration, it is iterated

until the timing is met.

4These expressions hold for δik < 0, when only delay-improving moves are considered. A similar
expression can be derived for cases where the δik are unrestricted.

5When all δik < 0, only delay-improving moves are considered. A similar expression can be derived for
cases where the δik are unrestricted.

6However in rare cases, a tolerance of y > 0.2 will lead to no changed cells. In these cases, the tolerance
is gradually reduced until an ECO change is made. In the slack maximization analogue of the problem,
values of y > 0.1 are applied.
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5.2.2.1 Experimental Results

This algorithm is tested on the ISCAS ‘85 and ‘89 benchmarks, a 64-bit multiplier, and

the Open Cores ALU [OPE]. These benchmarks are synthesized to the Nangate 45nm

Library [NANb], and placed, routed and optimized7 on different sized dies to provide 70%

and 90% congestion and experiment on the effects of congestion and free space on the ECO.

Table 5.3 gives information about these benchmarks for the nominal process parameters.

The library is then adjusted for the following parameter changes, using the Liberty

NCX tool [Syn10]

vt: nmos -10%, pmos -5% tox: nmos +5%, pmos -5%

cgate: nmos +10%, pmos +10% leff : nmos +5%, pmos +5%.

These changes are derived from a two year change in a commercial 45nm process as

in [LG10], and they create a negative-slack timing violation that is repaired using the

algorithm LPECO-S. For comparison, the algorithm is run without the ECO costs (LP No

Eco Cost), and the commercial design tool is also used to repair the timing violation in the

post-route incremental mode with the optimization effort set to high. The commercial tool

has the ability to add buffers, on top of sizing gates, and while this provides an advantage

over LPECO-S, we show that LPECO-S still performs better. All timing and power data

in this section is generated using this commercial design tool.

The algorithm LPECO-S is implemented using C++ and the linear programming solver

in MOSEK [MOS]. The ECO cost estimates are also programmed in C++, and the final

ECO design is created using the commercial design tool.

Results are shown in Table 5.4. The carea and pl represent the actual ECO area cost

and leakage power, respectively. The “iters” column gives the number of iterations that

the LPECO-S algorithm needs to find a timing-feasible solution. The slacks in the table

are computed after the parameter changes. In all of the cases, the algorithm LPECO-S is

7Note that this is a newer version of the tool used in [LG10]. In comparison to the benchmarks in
[LG10], these benchmarks were more heavily optimized to produce a nominal design.
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70% Congestion 90% Congestion

cells delay power die area cells delay power die area

[ns] [µW ] [µm2] [ns] [µW ] [µm2]

c2670 912 0.589 8.0 1175 887 0.619 7.5 916

c3540 1538 1.118 10.1 1987 1423 1.053 12.6 1549

c5315 2038 1.046 14.5 2716 1899 0.973 16.4 2111

c6288 3451 2.290 23.7 3862 3128 2.226 22.8 2998

c7552 3029 0.925 25.7 3637 2773 0.957 23.1 2825

s13207 1183 0.612 22.8 3620 1083 0.618 22.6 2815

s35932 10570 3.054 144.5 23040 9842 4.899 136.9 17916

s38417 8820 1.793 133.0 21674 7744 1.740 129.7 16861

s38584 7908 4.366 103.7 16886 7131 2.946 98.8 13143

s5378 1286 0.923 14.2 2370 1052 0.881 13.5 1843

alu 13978 3.721 74.0 16242 12022 3.751 69.2 12640

mult 49141 6.095 558.2 54091 46701 7.324 401.3 42059

Table 5.3: Benchmark Information for the nominal process

able to find a timing feasible solution, while the commercial tool is unable to do so in 7 of

the cases.

In the cases where both the LPECO-S and the commercial tool find a timing feasible

solution, the LPECO-S provides significant reductions. On average, the area cost carea

improves by 93%; this performance is affected by the congestion; while the improvement

is 99% for the 70% congestion benchmarks, it is 87% for the 90% congestion benchmarks.8

This is due to the fact that it is more difficult to predict ECO area costs when the congestion

is high, and the interactions between neighboring cells and interconnect increase. The

difference in power between the commercial solution and the LPECO-S solution is very

small (.17%), indicating that the ECO cost is needed to distinguish between solutions that

are similar in power, but have different ECO implementation costs.

In the comparison with the ECO cost disabled (LP Without ECO Cost), LPECO-S

8Note that the difference in performance, compared to [LG10], is due to the improvements in the
performance of the commercial tool.
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yields a significantly better ECO area cost in the majority of cases. In the 70% and 90%

congestion cases, the area cost reduction was, on average, 61% and 21% respectively. There

are a couple cases in the 90% where the LP Without ECO Cost performs better than the

LPECO-S; however, these are not shortcomings of the algorithm, and have more to do

with the difficultly in predicting the ECO cost at high congestion. In the s5378 case, the

absolute difference is negligible (.06µm2), and in the mult case, the algorithm is unable to

predict the effects of incremental routing; the LPECO-S changes just one gate, from size

1 to size 2, while the LP Without ECO sizes 9 gates over an area with similar routing

utilization (m2). This difference is primarily due to routing changes, and is a comment on

the difficulty of predicting routing changes.

The LP Without ECO Cost is able to improve the power of the design by an average

of 1.5%. This is because the objective here is to fix the timing violation with the greatest

power benefit. However, this is not ideal for the ECO case, as the focus is on minimal

disturbance, and the greatest power savings may result in larger ECO costs (e.g. c6288

90% congestion). Furthermore, the power difference is negligible in the larger designs.

The runtime for this algorithm is dominated by the interface from the commercial tool

to LPECO, which is needed to transfer timing information and gate sensitivity information.

This sensitivity information is needed for any sizer, as the comparisons between competing

gates must be made in the process of optimization. Each iteration of LPECO-S takes

between 6 and 280 seconds, while solving the linear program in LPECO-S takes between

.02 to 2.1 seconds for all benchmarks (excluding the time used by the commercial physical

design tool). This is significantly faster than in [LG10], which required up to 103 seconds.

In comparison, running the LP (without the ECO cost) takes between 1 and 71 seconds

per iteration. The runtime of the commercial tool is comparable to the runtime needed to

by the same commercial tool to perform the ECO, and ranges between 24 seconds and 23

minutes.
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5.2.3 Creating initial designs

In some cases, there may be several target foundries that may be targeted for production,

or there may be uncertainty in the manufacturing process parameters; there may be an

idea of which parameters may fluctuate, and which parameters would be controlled well

in future. These situations motivate the initial design problem, where an initial design is

created that can tolerate future manufacturing process fluctuations.

We consider the following formulation of this problem. Suppose, as a starting point,

we have an original, optimized design that has undergone placement and routing, and

is timing-feasible in the nominal case, and the information on potential manufacturing-

process changes is available in the form of corners, scenarios, or samples. As designing for

all possible cases results in an overly conservative design with a large power, the goal of

the initial design is: (1) the resulting design is timing feasible in the nominal corner; (2)

the difference between the power of the original design, (pyorig), and the power of the new

initial design is within a tolerance β; and (3) the need for a future ECO is reduced.

As a heuristic to meet these goals, we propose the following linear programming problem

to solve the initial design problem:

minimize tmax

subject to
∑

i,k pikyik ≤ (β · pyorig)
ti+

1
N+1

∑N

n=0(d
(n)
i0 +

∑

k δ
(n)
ik yik) ≤ tj, ∀i ∈ fo(j)

ti ≤ tmax , ∀i ∈ po
∑

k yik ≤ 1, ∀i, 0 ≤ yik ≤ 1.

(5.29)

The meanings of the variables y, δ and t are the same as in the LPECO-S formulation in

(5.23). N is the total number of corners that are used, and n is the index used for the

corners, with n = 0 denoting the nominal corner. The superscript (n) refers to the corner

associated with the delay d
(n)
i0 or change in delay δ

(n)
ik . Cell options that are delay improving

in the nominal process (δ
(0)
ik < 0) are considered as candidate cell changes. This formulation
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is similar in concept to [BKP05], where the delay for each gate is converted to a statistical

delay. In this case, the manufacturing uncertainty is accounted for by adjusting the delay

to be the average over the given scenarios. In contrast to (5.23) where the power plays a

role in the objective, in this formulation it is used as a constraint.

Note that the input to the algorithm is a design that is timing-feasible in the nominal

scenario. Also, as in Section 5.2.2, only moves that are delay-improving in the nominal

process (δ
(0)
ik < 0), are considered.

In the above, the variation information is assumed to be in the form of N corners,

scenarios or samples. This flexible way to describe variations is useful when the informa-

tion on the manufacturing parameters is scarce; there may not be accurate distributions

available for modeling future variations. These corner-type specifications can then describe

the kinds of variations that the designer would like to hedge against.

The algorithm (5.29) is similar to a statistical version of guardband. Given an amount

of power β that the designer is willing to spend, the design maximizes the average slack

over all of the scenarios using gate sizing. In effect, the expected slack is maximized to

decrease the need for future ECO.9 This algorithm is not applied iteratively and is run

only once.

After (5.29) is solved, the yik are mapped to gate sizes by applying the methods

in [LG10]. The indeterminate assignments are remapped if possible, and the candidates

are sorted by sensitivity with values of yik > 0.01 as eligible for change. The changes

are made until the power budget (e.g. the tolerance β) is met. Furthermore, each gate

sizing is checked to ensure that it does not cause timing violations in the nominal process

parameters, and is skipped if timing violations are created.

Note that this work is different from work in statistical gate sizing. In this situation, the

manufacturing process changes may be impossible to predict using distributions, and the

power and timing effects may be impossible to model statistically. This method provides

9While ECO area costs can be added to this formulation, we find that the improvements are not
significant, as improving the slack and the future feasibility is the dominating effect.
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a method to create initial designs with little statistical information, that are robust to

manufacturing process changes, and is also simple enough to implement on top of current

tools.

5.2.4 Experimental results

This algorithm is tested on the benchmarks in Table 5.3. The manufacturing process

changes are assumed to be random variables with zero-mean Gaussian distributions, and

the following standard deviations:

vth: 5% tox: 2.5% Cgate: 2.5% lgate: 2.5%.

The variations are the same across all gates (e.g. all transistors have the same increase in

vth, tox, Cgate and lgate). However, the variations between the PMOS and NMOS transistors

for the vth and tox parameters are considered to be independent. This model may be

pessimistic, as more information may be available, such as the direction of the variation.

For example, the foundry might give the current and target PMOS vth, implying that the

final value would be between the current and the target values.

10 samples (set 1) are randomly generated according to the distribution above and

are used in the LPECO-ID algorithm. These samples, along with the nominal process

parameters, are used to create the initial design. A separate set of 10 different independent

samples (set 2) is generated using the same distribution to evaluate the quality of the

LPECO-ID algorithm. The two sets of samples are generated independently to simulate

a realistic design condition. While a rough idea of the variations for the manufacturing

process parameters may be known, the actual values are unavailable until after the initial

design is set.

This initial design method (LPECO-ID) is implemented using C++ and the linear

programming solver in MOSEK [MOS]. The ECO cost estimates are also programmed in

C++, and the final ECO design is created using the commercial design tool for each of the

manufacturing process variations. As a comparison, the same β budget is used to create a
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Figure 5.17: Results comparing the feasibility of the original design, a modified design using

a β-guardband, and the Initial Design Method (ID). The Initial design method improves

the feasibility substantially.

guardband β-GB by maximizing the slack in the nominal scenario.

The results in Figure 5.17 show that the LPECO-ID method drastically reduces the

need to perform an ECO compared to the commercial tool. An ECO is needed just 13%

of the time ID algorithm, while it is needed 21% of the time with β-GB, and 68% with the

original design. In the s38417 70% congestion case, the β-GB performs slightly better, but

this the only exception. This shows that this method is effective in hedging against future

changes.

5.2.5 Summary

In this section, we present the idea of ECO cost to quantify the amount of time that is

needed to validate an ECO operation. We then propose a novel method for performing ECO

gate sizing, and give models for the ECO that can be incorporated into the optimization

procedure. This leads to results that outperform a leading commercial design tool in

reducing the amount of area that is changed by the ECO by an average of 89%. In

addition, a novel method for creating initial designs is presented that drastically reduces

the probability that a redesign is needed in the future, between 10% and 80%.
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CHAPTER 6

Conclusions

In this dissertation, we have addressed the following questions:

1. Which discrete sizing heuristic is the best?

2. What are the potential benefits of optimizing statistical power?

3. Are there sizing methods that can handle statistical delay directly?

4. What is the effect of novel technologies on the gate sizing problem?

5. What is the impact of the range and precision of standard library cells on the optimal

power?

6. What methods can be used to perform incremental gate sizing for post-layout designs?

The first question was addressed in Chapter 3. A survey of gate sizing methods was

performed, and several discrete gate sizing methods were compared [FD85, NDO03, CK05,

LH09], which collectively cover a variety of methods: dynamic programming [LH09], linear

programming [CK05, NDO03], greedy heuristics [FD85], slack allocation [NDO03], and

assignment methods [CK05]. The results show that one of the oldest algorithms [FD85]

performs competitively with the best method [CK05] that was compared [LG12, MLG].

When taken in conjunction with the results from the recent sizing contest [OAA12], and

the results from [WD09], this suggests that there should be research towards a discrete

sizing method that performs consistently well. Furthermore, with the ease and simplicity

of [FD85], the greedy TILOS algorithm should be used as a common point for comparison

in gate sizing research.
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The second question, whether full statistical power optimization has significant advan-

tages over deterministic power optimization, was addressed in Section 4.2. The intuition is

that while the values of statistical power and deterministic power are very different (nearly

an order of magnitude apart), the power vs. gate size sensitivities of each are similar.

Bounds were derived to quantify the benefits of using full statistical power optimization

which show that with smaller variations (σL = 1nm (dtd)/ .5nm (wid) and σvt = 4.7% (dtd

& wid)), the benefits are less than 5% for a set of commonly used benchmarks [CGL10].

For larger variations, there may be a benefit in optimizing the mean plus three-sigma mea-

sure of the power, but there is a linear proxy measure that can be used in current tools to

optimize within 4% of the true optimum [CGL10]. Thus, we have shown that full statistical

optimization is not necessary.

The third question addresses the statistical delay. With the increased parametric vari-

ability from the decreasing control in gate dimensions, dopant concentrations, and oxide

thicknesses, the variations in the delay are too large to treat deterministically [Vis03]. Prior

art [BVS02, CPR04, MO04, SSZ05, PYK05] relied on heuristics to deal with the statistical

delay quantities, but the question remained as to whether a rigorous formulation of the

statistical delay could be used in mathematical-programming based gate sizing methods.

In Section 4.3.2 we introduced a measure of statistical delay, the mean excess delay, which

is an upper bound on the quantile delay, and also has a convex formulation [CLV08]. This

was used to perform statistical delay minimization, and it performs well compared to the

competing methods [CLV08]. This method can also be used to perform power optimiza-

tion with statistical delay constraints, which is something that the competing “padded”

methods [CPR04, MO04, SSZ05, PYK05] cannot handle directly without fitting.

The fourth and fifth questions were addressed in Section 5.1. Prior art dealt with meth-

ods for choosing library cell granularity [BKK00, BKK98, SG06, ART09], but could not

relate the granularity of a cell library with the resulting power vs. delay tradeoff in a de-

sign. We developed a theory that explains the suboptimality associated with the precision

of gate sizes and threshold voltages in a standard cell library [LGa]. The suboptimality
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is due to the convexity of the power vs. delay tradeoff and can be used to predict the

suboptimalities relative to a given set of library cells; it can also be used to choose both

the range and precision of the library cells [LGa]. An interesting result of this analysis

is that the use of different technologies may be able to provide a better power vs. delay

tradeoff than either of the technologies alone, and this helps to understand the impact of

future technologies, such as multi-terminal devices [LGa].

The sixth and final question was addressed in Section 5.2. While there are many

methods for correcting the timing violations in a design (see, for example, [CK05, Hel09]),

there are no methods that also considered the impact of the changes– how intrusive is the

resulting change and disturbance in the design? We introduced the ECO cost metric, an

intuitive measure of how invasive an engineering change order is [LG10, LGb]. This measure

is used to guide a linear-programming based incremental sizing method. Compared to a

leading commercial design tool, it dramatically reduces the amount of area that is changed

by the ECO by an average of 89% [LGb]. In addition, a novel method for creating initial

designs is presented that drastically reduces the probability that a redesign is needed in

the future, by between 10% and 80% [LGb].
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[Lem01] C. Lemaréchal. “Lagrangian relaxation.” Computational Combinatorial Opti-
mization, pp. 112–156, 2001.

[LGa] J. Lee and P. Gupta. “Impact of Range and Precision in Technology on Cell-
Based Design.” Submitted to the ACM/IEEE International Conference on
Computer-Aided Design.

196



[LGb] J. Lee and P. Gupta. “Incremental gate sizing for late process changes.” ECO
Cost Measurement and Incremental Gate Sizing for Late Process Changes.

[LG10] J. Lee and P. Gupta. “Incremental gate sizing for late process changes.” In
Proc. Int. Conf. Computer Design, pp. 215–221, oct. 2010.

[LG12] J. Lee and P. Gupta. “Discrete Circuit Optimization: Library Based Gate Sizing
and Threshold Voltage Assignment.” Foundations and Trends R© in Electronic
Design Automation, 6(1):1–120, 2012.

[LH95] How-Rern Lin and Ting-Ting Hwang. “Power reduction by gate sizing with
path-oriented slack calculation.” In Proc. Asia and South Pacific Design Au-
tomation Conference, 1995.

[LH09] Yifang Liu and Jiang Hu. “A new algorithm for simultaneous gate sizing and
threshold voltage assignment.” In Proc. Int. Conf. Physical Design, pp. 27–34,
2009.

[LH10] Yifang Liu and Jiang Hu. “A New Algorithm for Simultaneous Gate Sizing
and Threshold Voltage Assignment.” IEEE Trans. on Computer-Aided Design,
29(2):223–234, feb. 2010.

[LH11] C. Liao and S. Hu. “Approximation scheme for restricted discrete gate sizing tar-
geting delay minimization.” Journal of Combinatorial Optimization, 21(4):497–
510, 2011.

[Li93] W.N. Li. “Strongly NP-hard discrete gate sizing problems.” In Proc. Int. Conf.
Computer Design, pp. 468–471, Oct 1993.

[LLP06] X. Li, J. Le, and L.T. Pileggi. “Statistical performance modeling and optimiza-
tion.” Foundations and Trends R© in Electronic Design Automation, 1(4):331–
480, 2006.

[LLP07] Xin Li, Jiayong Le, and Lawrence T. Pileggi. Statistical Performance Modeling
and Optimization. Now Publishers Inc., Hanover, MA, USA, 2007.

[LMK90] S. Lin, M. Marek-Sadowska, and E.S. Kuh. “Delay and area optimization in
standard-cell design.” Proc. Design Automation Conference, pp. 349–352, Jun
1990.

[LT95] Jin-fuw Lee and Donald T. Tang. “An algorithm for incremental timing analy-
sis.” In Proc. Design Automation Conference, pp. 696–701, 1995.

[MDO05] M. Mani, A. Devgan, and M. Orshansky. “An efficient algorithm for statistical
minimization of total power under timing yield constraints.” In Proc. Design
Automation Conference, pp. 309–314, 2005.

197



[MLG] Santiago Mok, John Lee, and Puneet Gupta. “Discrete Sizing for Leakage Power
Optimization in Physical Design: A Comparative Study.” Submitted to the ACM
Transactions on Design Automation of Electronic Systems.

[MM98] R. Macys and S. McCormick. “A new algorithm for computing the effective
capacitance in deep sub-micron circuits.” In Custom Integrated Circuits Con-
ference, 1998. Proceedings of the IEEE 1998, pp. 313–316, 1998.

[MMJ10] P. Mishra, A. Muttreja, and N.K. Jha. “FinFET Circuit Design.” Nanoelectric
Circuit Design, p. 23, 2010.

[MO04] M. Mani and M. Orshansky. “A new statistical optimization algorithm for gate
sizing.” In Proc. IEEE Int. Conf. on Computer Design, pp. 272–277, 2004.

[Mok10] Santiago Mok. “Post-layout sizing for leakage power optimization: A compara-
tive study.”. Master’s thesis, Department of Electrical Engineering, University
of California at Los Angeles, 2010.

[Mok11] Santiago Mok. “Propagation Delay Approximation considering Effective Ca-
pacitance and Slew Degradation.” Technical report, UCLA, 2011. Available at
http://nanocad.ee.ucla.edu/pub/Main/Publications/MSTR4 paper.pdf.

[MOS] MOSEK ApS. “The MOSEK Optimization Tools Version 5.0.” Available from
http://www.mosek.com.

[Naj05] Farid N. Najm. “On the need for statistical timing analysis.” In Proc. Design
Automation Conference, pp. 764–765, 2005.

[NANa] “Nangate Open Cell Library v1.2.” Available from
http://www.si2.org/openeda.si2.org/projects/nangatelib.

[NANb] “Nangate Open Cell Library v1.3.” Available from
http://www.si2.org/openeda.si2.org/projects/nangatelib.

[Nar05] S.G. Narendra. “Challenges and design choices in nanoscale CMOS.” ACM
Journal on Emerging Technologies in Computing Systems (JETC), 1(1):7–49,
2005.

[NDO03] David Nguyen, Abhijit Davare, Michael Orshansky, David Chinnery, Brandon
Thompson, and Kurt Keutzer. “Minimization of dynamic and static power
through joint assignment of threshold voltages and sizing optimization.” In
Proc. Int. Conf. Low Power Electronics and Design, pp. 158–163, 2003.

[NSD86] S.R. Nassif, A.J. Strojwas, and S.W. Director. “A Methodology for Worst-
Case Analysis of Integrated Circuits.” IEEE Trans. on Computer-Aided Design,
5(1):104–113, January 1986.

198



[OAA12] M. M. Ozdal, C. Amin, A. Ayupov, S. Burns, G. Wilke, and C. Zhuo. “ISPD
2012 Discrete Gate Sizing Contest and Benchmark Suite.” In Proc. Int. Conf.
Physical Design, pp. 161–164, 2012.

[OBH11] M.M. Ozdal, S. Burns, and Jiang Hu. “Gate sizing and device technology se-
lection algorithms for high-performance industrial designs.” In Proc. Int. Conf.
Computer-Aided Design, pp. 724–731, nov. 2011.

[OPE] Available from http://www.opencores.org.

[PAS06] C. Pacha, K. von Arnim, T. Schulz, W. Xiong, M. Gostkowski, G. Knoblinger,
A. Marshall, T. Nirschl, J. Berthold, C. Russ, et al. “Circuit design issues in
multi-gate FET CMOS technologies.” In Proc. IEEE Int. Solid-State Circuits
Conference (ISSCC), pp. 1656–1665, 2006.

[PDC98] P. Pant, V.K. De, and A. Chatterjee. “Simultaneous power supply, thresh-
old voltage, and transistor size optimization for low-power operation of CMOS
circuits.” IEEE Trans. on Very Large Scale Integration (VLSI), 6(4):538–545,
1998.

[PDW89] M.J.M. Pelgrom, A.C.J. Duinmaijer, and A.P.G. Welbers. “Matching properties
of MOS transistors.” IEEE Journal of Solid-State Circuits, 24(5):1433–1439,
1989.

[PR90] L.T. Pillage and R.A. Rohrer. “Asymptotic waveform evaluation for timing
analysis.” IEEE Trans. on Computer-Aided Design, 9(4):352–366, 1990.

[PRC01] P. Pant, R.K. Roy, and A. Chattejee. “Dual-threshold voltage assignment with
transistor sizing for low power CMOS circuits.” IEEE Trans. on Very Large
Scale Integration (VLSI), 9(2):390–394, 2001.

[PYK05] D. Patil, S. Yun, S.J. Kim, A. Cheung, M. Horowitz, and S. Boyd. “A New
Method for Design of Robust Digital Circuits.” In Proc. Int. Conf. Quality
Electronic Design, pp. 676–681, 2005.

[QPP94] J. Qian, S. Pullela, and L. Pillage. “Modeling the effective capacitance for the
RC interconnect of CMOS gates.” IEEE Trans. on Computer-Aided Design,
13(12):1526–1535, 1994.

[RC05] Sanghamitra Roy and Weijen Chen. “ConvexFit: an optimal minimum-error
convex fitting and smoothing algorithm with application to gate-sizing.” In
Proc. Int. Conf. Computer-Aided Design, pp. 196–203, 2005.

[RCC07] S. Roy, W. Chen, C.P. Chen, and Y.H. Hu. “Numerically Convex Forms and
Their Application in Gate Sizing.” IEEE Trans. on Computer-Aided Design,
26(9):1637–1647, 2007.

199



[RHC08] Sanghamitra Roy, Yu Hen Hu, Charlie Chung-Ping Chen, Shih-Pin Hung, Tse-
Yu Chiang, and Jiuan-Guei Tseng. “An optimal algorithm for sizing sequential
circuits for industrial library based designs.” In Proc. Asia and South Pacific
Design Automation Conference, pp. 148–151, 2008.

[RM07] JA Roy and IL Markov. “ECO-system: Embracing the Change in Placement.”
IEEE Trans. on Computer-Aided Design, 26(12):2173–2185, 2007.

[RS08] D. Rautenbach and C. Szegedy. “A class of problems for which cyclic relaxation
converges linearly.” Computational Optimization and Applications, 41(1):53–
60, 2008.

[RSB04] R. Rao, A. Srivastava, D. Blaauw, and D. Sylvester. “Statistical analysis of
subthreshold leakage current for VLSI circuits.” IEEE Trans. on Very Large
Scale Integration (VLSI), 12(2):131–139, 2004.

[RU00] R.T. Rockafellar and S. Uryasev. “Optimization of Conditional Value-at-Risk.”
Journal of Risk, 2(3):21–41, 2000.

[RWG77] AE Ruehli, PK Wolff, and G. Goertzel. “Analytical power/timing optimization
technique for digital system.” In Proc. Design Automation Conference, pp. 142–
146, 1977.

[Sap04] S.S. Sapatnekar. Timing. Springer Netherlands, 2004.

[SC95] S.S. Sapatnekar and Weitong Chuang. “Power vs. delay in gate sizing: conflict-
ing objectives?” In Proc. Int. Conf. Computer-Aided Design, pp. 463–466, nov
1995.

[SEO99] S. Sirichotiyakul, T. Edwards, C. Oh, J. Zuo, A. Dharchoudhury, R. Panda,
and D. Blaauw. “Stand-by power minimization through simultaneous threshold
voltage selection and circuit sizing.” In Proc. Design Automation Conference,
pp. 436–441, 1999.

[SEO02] S. Sirichotiyakul, T. Edwards, C. Oh, R. Panda, and D. Blaauw. “Duet: An
accurate leakage estimation and optimization tool for dual-Vt circuits.” IEEE
Trans. on Very Large Scale Integration (VLSI), 10(2):79–90, 2002.

[SG06] V. Singhal and G. Girishankar. “Optimal Gate Size Selection for Standard
Cells in a Library.” In IEEE Workshop on Design, Applications, Integration
and Software, pp. 47–50, 2006.

[SKW96] L.M. Silveira, M. Kamon, J. White, and I. Elfadel. “A coordinate-transformed
Arnoldi algorithm for generating guaranteed stable reduced-order models of RLC
circuits.” In Proc. Int. Conf. Computer-Aided Design, p. 288, 1996.

200



[SMN05] V. Stojanovic, D. Markovic, B. Nikolic, M.A. Horowitz, and R.W. Brodersen.
“Energy–delay tradeoffs in combinational logic using gate sizing and supply
voltage optimization.” In Proc. European Solid-State Circuits Conference (ES-
SCIRC), pp. 211–214, 2005.

[SN90] T. Sakurai and A.R. Newton. “Alpha-power law MOSFET model and its ap-
plications to CMOS inverter delay and other formulas.” Solid-State Circuits,
IEEE Journal of, 25(2):584–594, apr 1990.

[SNL05] J. Singh, V. Nookala, Z.Q. Luo, and S. Sapatnekar. “Robust gate sizing by
geometric programming.” In Proc. Design Automation Conference, pp. 315–
320, 2005.

[SRV93] S.S. Sapatnekar, V.B. Rao, P.M. Vaidya, and S.M. Kang. “An exact solution
to the transistor sizing problem for CMOS circuits using convex optimization.”
IEEE Trans. on Computer-Aided Design, 12(11):1621–1634, 1993.

[SSB04a] A. Srivastava, D. Sylvester, and D. Blaauw. “Power minimization using si-
multaneous gate sizing, dual-Vdd and dual-Vth assignment.” In Proc. Design
Automation Conference, pp. 783–787, 2004.

[SSB04b] A. Srivastava, D. Sylvester, and D. Blaauw. “Statistical optimization of leakage
power considering process variations using dual-Vth and sizing.” In Proc. Design
Automation Conference, pp. 773–778, 2004.

[SSB05] A. Srivastava, D. Sylvester, and D. Blaauw. Statistical analysis and optimization
for VLSI: timing and power. Springer Verlag, 2005.

[SSF88] J.M. Shyu, A. Sangiovanni-Vincentelli, J.P. Fishburn, and A.E. Dunlop.
“Optimization-based transistor sizing.” Solid-State Circuits, IEEE Journal of,
23(2):400–409, 1988.

[SSK87] B.J. Sheu, D.L. Scharfetter, P.K. Ko, and M.C. Jeng. “BSIM: Berkeley short-
channel IGFET model for MOS transistors.” Solid-State Circuits, IEEE Journal
of, 22(4):558–566, 1987.

[SSS05] S. Shah, A. Srivastava, D. Sharma, D. Sylvester, D. Blaauw, and V. Zolotov.
“Discrete Vt assignment and gate sizing using a self-snapping continuous for-
mulation.” In Proc. Int. Conf. Computer-Aided Design, pp. 705–712, 2005.

[SSZ05] D. Sinha, NV Shenoy, and H. Zhou. “Statistical gate sizing for timing yield
optimization.” In Proc. Int. Conf. Computer-Aided Design, pp. 1037–1041, 2005.

[ST02] C. Sechen and H. Tennakoon. “Gate sizing using Lagrangian relaxation com-
bined with a fast gradient-based pre-processing step.” In Proc. Int. Conf.
Computer-Aided Design, pp. 395–402, 2002.

201



[SVC00] D. Stroobandt, P. Verplaetse, and J. van Campenhout. “Generating synthetic
benchmark circuits for evaluating CAD tools.” IEEE Trans. on Computer-Aided
Design, 19(9):1011 –1022, sep 2000.

[Syna] Synopsys. “Liberty Open Source Library Modeling.” Web resource,
http://www.opensourceliberty.org.

[Synb] Synopsys. “NanoTime.” http://www.synopsys.org.

[Syn10] Synopsys. “Liberty NCX D-2009.12-SP3.” http://www.synopsys.com/, 2010.

[TGW87] P. Tuohy, A. Gribben, AJ Walton, and JM Robertson. “Realistic worst-case pa-
rameters for circuit simulation.” In Proc. Communications, Speech and Vision,
volume 134, pp. 137–140, 1987.

[The08] The MathWorks. “MATLAB R2008b.” http://www.mathworks.com/, 2008.

[TKT84] T. Tokuda, J. Korematsu, O. Tomisawa, S. Asai, I. Ohkura, and T. Enomoto.
“A hierarchical standard cell approach for custom VLSI design.” IEEE Trans.
on Computer-Aided Design, 3(3):172–177, 1984.

[TLA10] T. Taghavi, Z. Li, C. Alpert, G.J. Nam, A. Huber, and S. Ramji. “New place-
ment prediction and mitigation techniques for local routing congestion.” In
Proc. Int. Conf. Computer-Aided Design, pp. 621–624, 2010.

[TMF94] Yutaka Tamiya, Yusuke Matsunaga, and Masahiro Fujita. “LP based cell se-
lection with constraints of timing, area, and power consumption.” In Proc. Int.
Conf. Computer-Aided Design, ICCAD ’94, pp. 378–381, 1994.

[Tri08] R. Trihy. “Addressing library creation challenges from recent liberty exten-
sions.” In Proc. Design Automation Conference, pp. 474–479, 2008.

[Vis03] C. Visweswariah. “Death, taxes and failing chips.” In Proc. Design Automation
Conference, pp. 343–347, 2003.

[VRK04] C. Visweswariah, K. Ravindran, K. Kalafala, SG Walker, and S. Narayan.
“First-order incremental block-based statistical timing analysis.” In Proc. De-
sign Automation Conference, pp. 331–336, 2004.

[WAN07] V. Wang, K. Agarwal, S. Nassif, K. Nowka, and D. Markovic. “A Design Model
for Random Process Variability.” In Proc. Int. Conf. Quality Electronic Design,
2007.

[War11] J. Warnock. “Circuit design challenges at the 14nm technology node.” In Proc.
Design Automation Conference, pp. 464 –467, June 2011.

202

http://www.mathworks.com/


[WCR99] L. Wei, Z. Chen, K. Roy, M.C. Johnson, Y. Ye, and V.K. De. “Design and
optimization of dual-threshold circuits for low-voltage low-power applications.”
IEEE Trans. on Very Large Scale Integration (VLSI), 7(1):16–24, 1999.

[WD09] T.H. Wu and A. Davoodi. “PaRS: parallel and near-optimal grid-based cell
sizing for library-based design.” IEEE Trans. on Computer-Aided Design,
28(11):1666–1678, 2009.

[WDZ09] J. Wang, D. Das, and H. Zhou. “Gate sizing by Lagrangian relaxation revisited.”
IEEE Trans. on Computer-Aided Design, 28(7):1071–1084, 2009.

[WKO06] W.S. Wang, V. Kreinovich, and M. Orshansky. “Statistical timing based on
incomplete probabilistic descriptions of parameter uncertainty.” In Proc. Design
Automation Conference, pp. 161–166, 2006.

[WRK00] L. Wei, K. Roy, and C.K. Koh. “Power minimization by simultaneous dual-Vth
assignment and gate-sizing.” In Custom Integrated Circuits Conference, 2000.
CICC. Proceedings of the IEEE 2000, pp. 413–416, 2000.

[WV98] Q. Wang and S.B.K. Vrudhula. “Static power optimization of deep submicron
CMOS circuits for dual VT technology.” In Proc. Int. Conf. Computer-Aided
Design, pp. 490–496, 1998.

[XM01] T. Xiao and M. Marek-Sadowska. “Gate sizing to eliminate crosstalk induced
timing violation.” In Proc. Int. Conf. Computer Design, p. 0186, 2001.

[YCL10] C.C. Yeh, C.S. Chang, H.N. Lin, W.H. Tseng, L.S. Lai, T.H. Perng, T.L. Lee,
C.Y. Chang, L.G. Yao, C.C. Chen, et al. “A low operating power FinFET
transistor module featuring scaled gate stack and strain engineering for 32/28nm
SoC technology.” In IEEE International Electron Devices Meeting (IEDM), pp.
34–1, 2010.

[YZL07] Xiaoji Ye, Yaping Zhan, and Peng Li. “Statistical leakage power minimization
using fast equi-slack shell based optimization.” In Proc. Design Automation
Conference, pp. 853–858, 2007.

[ZBS08] Cheng Zhuo, David Blaauw, and Dennis Sylvester. “Variation-aware gate siz-
ing and clustering for post-silicon optimized circuits.” In Proc. Int. Conf. Low
Power Electronics and Design, ISLPED ’08, pp. 105–110, 2008.

[ZM06] Q. Zhou and K. Mohanram. “Gate sizing to radiation harden combinational
logic.” IEEE Trans. on Computer-Aided Design, 25(1):155–166, 2006.

[ZSL05] Y. Zhan, A.J. Strojwas, X. Li, L.T. Pileggi, D. Newmark, and M. Sharma.
“Correlation-aware statistical timing analysis with non-gaussian delay distribu-
tions.” In Proc. Design Automation Conference, pp. 77–82, 2005.

203


	1 Introduction
	1.1 The physical design process
	1.2 Outline

	2 Gate Sizing and Threshold Voltage Assignment Overview
	2.1 Static Timing Analysis
	2.1.1 Concepts and terminology
	2.1.2 Computing arrival times and slacks
	2.1.3 Interconnect delay and slew propagation
	2.1.4 Additional topics

	2.2 Continuous sizing methods for gate sizing and vt assignment:
	2.3 Discrete gate sizing and vt assignment methods
	2.3.1 Preliminaries
	2.3.2 Score and Rank algorithms
	2.3.3 Greedy methods
	2.3.4 Global sizing
	2.3.5 Slack and Delay budgeting methods
	2.3.6 Methods based on Continuous Sizing
	2.3.7 Dynamic programming based algorithms
	2.3.8 Lagrangian relaxation
	2.3.9 Slew targeting methods
	2.3.10 Linear programming based assignment methods
	2.3.11 Summary of methods


	3 Benchmarking Discrete Gate Sizing and Threshold Voltage Assignment Methods
	3.1 The standard cell library
	3.1.1 Delay
	3.1.2 Delay models

	3.2 Power tradeoffs
	3.2.1 Power models
	3.2.2 Benchmarks and synthesis options

	3.3 Post-layout considerations
	3.3.1 Post-layout timing considerations
	3.3.2 Incremental placement and routing considerations

	3.4 Comparisons
	3.4.1 Comparisons using UCLA Timer
	3.4.2 Comparisons using eyecharts
	3.4.3 Comparisons using commercial tools


	4 Parametric Variation and Gate Sizing
	4.1 Motivating examples
	4.1.1 The slack wall
	4.1.2 Worst-case corners and over-design

	4.2 Statistical power optimization
	4.2.1 Preliminaries
	4.2.2 Circuit examples
	4.2.3 Analysis via rank correlations
	4.2.4 Suboptimality bounds
	4.2.5 Experiments
	4.2.6 Bridging the suboptimality gap
	4.2.7 Summary

	4.3 Statistical delay optimization
	4.3.1 Statistical delay models
	4.3.2 The Mean Excess Delay
	4.3.3 Minimization algorithm
	4.3.4 Results
	4.3.5 Summary


	5 Manufacturing Processes, Gate Sizing and Threshold Assignment
	5.1 Impact of precision and range in standard cell libraries
	5.1.1 Suboptimality of vt Assignment
	5.1.2 Suboptimality in gate sizing
	5.1.3 Post-layout experiments
	5.1.4 Dynamic range and precision selection
	5.1.5 Multi-gate library considerations
	5.1.6 Summary

	5.2 ECO Gate sizing for Manufacturing Process Changes
	5.2.1 ECO Cost
	5.2.2 Solving the redesign problem
	5.2.3 Creating initial designs
	5.2.4 Experimental results
	5.2.5 Summary


	6 Conclusions
	References

