
Readahead: time-travel techniques for desktop and
embedded systems

Michael Opdenacker
Free Electrons

michael@free-electrons.com

Abstract

Readahead techniques have successfully been
used to reduce boot time in recent GNU/Linux
distributions like Fedora Core or Ubuntu. How-
ever, in embedded systems with scarce RAM,
starting a parallel thread reading ahead all the
files used in system startup is no longer appro-
priate. The cached pages could be reclaimed
even before accessing the corresponding files.

This paper will first guide you through the
heuristics implemented in kernelspace, as well
as through the userspace interface for preload-
ing files or just announcing file access patterns.
Desktop implementations will be explained and
benchmarked. We will then detail Free Elec-
trons attempts to implement an easy to integrate
helper program reading ahead files at the most
appropriate time in the execution flow.

This paper and the corresponding presentation
target desktop and embedded system devel-
opers interested in accelerating the course of
Time.

1 Reading ahead: borrowing time
from the future

1.1 The page cache

Modern operating system kernel like Linux
manage and optimize file access through the
page cache. When the same file is accessed
again, no disk I/O is needed if the file contents
are still in the page cache. This dramatically
speeds up multiple executions of a program or
multiple accesses to the same data files.

Of course, the performance benefits depend on
the amount of free RAM. When RAM gets
scarce because of allocations from applications,
or when the contents of more files have to be
loaded in page cache, the kernel has to reclaim
the oldest pages in the page cache.

1.2 Reading ahead

The idea of reading ahead is to speed up the
access to a file by preloading at least parts of its
contents in page cache ahead of time. This can
be done when spare I/O resources are available,
typically when tasks keep the processor busy.
Of course, this requires the ability to predict the
future!

1



Fortunately, the systems we are dealing with
are predictable or even totally predictable in
some situations!

• Predictions by watching file read patterns.
If pages are read from a file in a sequen-
tial manner, it makes sense to go on read-
ing the next blocks in the file, even before
these blocks are actually requested.

• System startup. The system init sequence
doesn’t change. The same executables and
data files are always read in the same or-
der. Slight variations can still happen after
a system upgrade or when the system is
booted with different external devices con-
nected to it.

• Applications startup. Every time a pro-
gram is run, the same shared libraries and
some parts of the program file are al-
ways loaded. Then, many programs open
the same resource or data files at system
startup. Of course, file reading behaviour
is still subject to changes, according to
how the program was started (calling en-
vironment, command arguments. . . ).

If enough free RAM is available, reading ahead
can bring the following benefits:

• Of course, reduced system and application
startup time.

• Improved disk throughput. This can be
true for storage devices like hard disks
which incur a high time cost moving the
disk heads between random sectors. Read-
ing ahead feeds the I/O scheduler with
more I/O requests to manage. This sched-
uler can then reorder requests in a more ef-
ficient way, grouping a greater number of
contiguous disk blocks, and reducing the
number of disk head moves. This is much

harder to do when disk blocks are just read
one by one.

• Better overall utilization for both I/O and
processor resources. Extra file I/O is per-
formed when the processor is busy. Con-
text switching, which costs precious CPU
cycles, is also reduced when a program no
longer needs to sleep waiting for I/O, be-
cause the data it is requesting have already
been fetched.

2 Kernel space readahead

2.1 Implementation in stock kernels

The description of the Linux kernel readahead
mechanism is based on the latest stable ver-
sion available at the time of this writing, Linux
2.6.20.

When the kernel detects sequential reading on
a file, it starts to read the next pages in the file,
hoping that the running process will go on read-
ing sequentially.

As shown in Figure 1, the kernel implements
this by managing two read windows: the cur-
rent and ahead one,

While the application is walking the pages in
the current window, I/O is underway on the
ahead window. When the current window is
fully traversed, it is replaced by the ahead win-
dow. A new ahead window is then created, and
the corresponding batch of I/O is submitted.

This way, if the process continues to read se-
quentially, and if enough free memory is avail-
able, it should never have to wait for I/O.

Of course, any seek or random I/O turns off this
readahead mode.

2



Current

read offset

When this page is reached:

- the ahead window becomes the current one

- a new ahead window is created

(possibly shorter or larger)

Current read window

(already read ahead)

Offset in the open file

(scale: pages)

Ahead read window

(reading ahead in progress)

Figure 1: Stock kernel implementation

The kernel actually checks how effective read-
ing ahead is to adjust the size of the new ahead
window. If a page cache miss is encoun-
tered, it means that some of its pages were re-
claimed before being accessed by the process.
In this case, the kernel reduces the size of the
ahead window, down to VM_MIN_READAHEAD

(16 KB). Otherwise, the kernel increases this
size, up to VM_MAX_READAHEAD (128 KB).

The kernel also keeps track of page cache hits,
to detect situations in which the file is partly or
fully in page cache. When this happens, reada-
head is useless and turned off.

Implementation details can be found in the mm/
readahead.c file in the kernel sources.1

The initial readahead implementation in Linux
2.6 is discussed in the 2004 proceedings [7] of
the Ottawa Linux Symposium.

2.2 Adaptive readahead patches

Many improvements to the kernel readahead
mechanism have been proposed by WU Feng-
guang through the Adaptive readahead patch-

1A very convenient way of studying kernel source
files is using a Linux Cross Reference (LXR) website
indexing the kernel sources, such as http://lxr.
free-electrons.com.

set, since September 2005 (as announced on
this LWN article [1].

In addition to the standard sequential reading
scenario, this patchset also supports:

• a readahead window which can grow up
to 1 MB, depending on the application be-
haviour and available free memory

• parallel / interleaved sequential scans on
one file

• sequential reads across file open/close

• mixed sequential / random accesses

• sparse / skimming sequential read

• backward sequential reading

• delaying readahead if the drive is spinned
down in laptop mode

At the time of this writing the latest bench-
marks [3] show access time improvements in
most cases.

This patchset and its ideas will be described in
detail by WU Fengguang himself at this 2007
edition of the Ottawa Linux Symposium.

3



3 User space readahead interface

We’ve seen how the kernel can do its best to
predict the future from recent and present ap-
plication behaviour, to improve performance.

However, that’s about all a general purpose ker-
nel can predict. Fortunately, the Linux kernel
allows userspace to let it know its own predic-
tions. Several system call interfaces are avail-
able.

3.1 The readahead system call

#include <fcntl.h>

ssize_t readahead(
int fd,
off64_t *offset,
size_t count);

Given an open file descriptor, this system call
allows applications to instruct the kernel to
readahead a given segment in the file.

Though any offset and count parameters
can be given, I/O is performed in whole pages.
So offset is rounded down to a page bound-
ary and bytes are read up to the first page
boundary greater than or equal to offset+
count.

Note that readahead blocks until all data
have been read. Hence, it is typically called
from a parallel thread.

See the manual page for the readahead sys-
tem call [6] for details.

3.2 The fadvise system call

Several variants of this system call exist, de-
pending on your system or GNU/Linux dis-
tribution: posix_fadvise, fadvise64,
fadvise64_64.

They all have the same prototype though:

#define _XOPEN_SOURCE 600
#include <fcntl.h>

int posix_fadvise(
int fd,
off_t offset,
off_t len,
int advice);

Programs can use this system call to announce
an intention to access file data in a specific pat-
tern in the future, thus allowing the kernel to
perform appropriate optimizations.

Here is how the Linux kernel interprets the pos-
sible settings for the advice argument:

POSIX_FADV_NORMAL: use the default
readahead window size.

POSIX_FADV_SEQUENTIAL: sequential
access with increasing file offsets. Double
the readahead window size.

POSIX_FADV_RANDOM: random access.
Disable readahead.

POSIX_FADV_WILLNEED: the specified
data will be accessed in the near future.
Initiate a non-blocking read of the speci-
fied region into the page cache.

POSIX_FADV_NOREUSE: similar, but the
data will just be accessed once.

POSIX_FADV_DONTNEED: attempts to free
the cached pages corresponding to the
specified region, so that more useful
cached pages are not discarded instead.

Note that this system call is not binding: the
kernel is free to ignore the given advise.

Full details can be found on the manual page
for posix_fadvise [5].

4



3.3 The madvise system call

#include <sys/mman.h>

int madvise(
void *start,
size_t length,
int advice);

The madvise system call is very similar to
fadvise, but it applies to the address space
of a process.

When the specified area maps a section of a file,
madvise information can be used by the ker-
nel to readahead pages from disk or to discard
page cache pages which the application will not
need in the near future.

Full details can be found on the manual page
for madvise [4].

3.4 Recommended usage

As the readahead system call is binding, ap-
plication developers should use it with care,
and prefer fadvise and madvise instead.

When multiple parts of a system try to be smart
and consume resources while being oblivious
to the others, this often hurts overall perfor-
mance. After all, resource management is the
kernel’s job. It can be best to let it decide what
to do with the hints it receives from multiple
sources, balancing the resource needs they im-
ply.

4 Implementations in GNU/Linux
distributions

4.1 Ubuntu

Readahead utilities are released through the
readahead package. The following descrip-
tion is based on Ubuntu 6.10 (Edgy).

Reading ahead is started early in the system
startup by the /etc/init.d/readahead
init script. This script mainly calls the /sbin/
readahead-list executable, taking as in-
put the /etc/readahead/boot file, which
contains the list of files to read ahead, one per
line.

readahead-list is of course started as a
daemon, to proceed as a parallel thread while
other init scripts run. readahead-list
doesn’t just readahead each specified file one
by one, it also orders them first.

Ordering files is an attempt to read them in
the most efficient way, minimizing costly disk
seeks. To order two files, their device numbers
are first compared. When their device numbers
are identical, this means that they belong to the
same partition. The numbers of their first block
are then compared, and if they are identical,
their inode numbers are eventually compared.

The readahead-list package carries an-
other utility: readahead-watch. It is used
to create or update the list of files to reada-
head by watching which files are accessed dur-
ing system startup.

readahead-watch is called from /etc/
init.d/readahead when the profile
parameter is given in the kernel command line.
It starts watching for all files that are accessed,
using the inotify [8] system call. This is a
non trivial task, as inotify watches have to

5



be registered for each directory (including sub-
directories) in the system.

readahead-watch eventually gets stopped
by the /etc/init.d/stop-readahead
script, at the very end of system startup. It
intercepts this signal and creates the /etc/
readahead/boot file.

For the reader’s best convenience, C source
code for these two utilities and a copy of
/etc/readahead/boot can be found on
http://free-electrons.com/pub/
readahead/ubuntu/6.10/.

4.2 Fedora Core

Readahead utilities are released through the
readahead package. The following descrip-
tion is based on Fedora Core 6.

The readahead executable is /usr/sbin/
readahead. Its interface and implementation
are similar. It also sorts files in order to mini-
mize disk seeks, with more sophisticated opti-
mizations for the ext2 and ext3 filesystems.

A difference with Ubuntu is that there are two
readahead init scripts. The first one is /etc/
init.d/readahead_early, which is one
of the first scripts to be called. It preloads files
listed in /etc/readahead.d/default.
early, corresponding to libraries, executa-
bles, and files used by services started by init
scripts. The second script, /etc/init.d/
readahead_later, is one of the last exe-
cuted scripts. It uses /etc/readahead.d/
default.later, which mainly corresponds
to files used by the graphical desktop and user
applications in general.

Another difference with Ubuntu is that the
above lists of files are constant and are not

automatically generated from application be-
haviour. They are just shipped in the pack-
age. However, the readahead-check util-
ity (available in package sources) can be used
to generate these files from templates and check
for non existing files.

Once more, the readahead.c source code
and a few noteworthy files can be found on
http://free-electrons.com/pub/
readahead/fedora-core/6/.

4.3 Benchmarks

The below benchmarks compare boot time with
and without readahead on Ubuntu Edgy (Linux
2.6.17-11, with all updates as of Apr. 12, 2007),
and on Fedora Core 6 (2.6.18-1.2798.fc6, with-
out any updates).

Boot time was measured by inserting an init
script which just copies /proc/uptime to a
file. This script was made the very last one to
be executed.

/proc/uptime contains two figures: the raw
uptime in seconds, and the amount of time
spent in the idle loop, meaning the CPU was
waiting for I/O before being able to do anything
else.

Disabling readahead was done by renaming
the /sbin/readahead-list (Ubuntu) or
/usr/sbin/readahead programs, so that
readahead init scripts couldn’t find them any
more and exited at the very beginning.

The Fedora Core 6 results are surprising. An
explanation is that readahead file lists do not
only include files involved in system startup,
but also files needed to start the desktop and
its applications. Fedora Core readahead is thus
meant to reduce the execution time of programs
like Firefox or Evolution!

6



boot time idle time
Ubuntu Edgy without readahead average: 48.368 s average: 29.070 s

std deviation: 0.153 std deviation: 0.281
Ubuntu Edgy with readahead average: 39.942 s (-17.4 %) average: 22.3 s (-23.3 %)

std deviation: 1.296 std deviation: 0.271
Fedora Core 6 without readahead average: 50.422 s average: 28.302 s

std deviation: 0.496 std deviation: 0.374
Fedora Core 6 with readahead average: 59.858 s (+18.7 %) average: 35.446 (+20.2 %)

std deviation: 0.552 std deviation: 0.312

Table 1: Readahead benchmarks on Ubuntu Edgy and Fedora Core 6

As a consequence, Fedora Core is reading
ahead much more files than needed (even if we
disable the readahead-later step) and it
reaches the login screen later than if readahead
was not used. The eventual benefits in the time
to run applications should still be real. How-
ever, they are more difficult to measure.

4.4 Shortcomings

The readahead implementations that we have
just covered are fairly simple, but not perfect
though.

4.4.1 Reading entire files

A first limitation is that these implementa-
tions always preload entire files, while the
readahead system call allows to fetch only
specific sections in files.

It’s true that it can make sense to assume that
plain data files used in system startup are of-
ten read in their entirety. However, this is not
true at all with executables and shared libraries,
for which each page is loaded only when it is
needed. This mechanism is called demand pag-
ing. When a program jumps to a section of
its address space which is not in RAM yet, a

page fault is raised by the MMU, and the ker-
nel loads the corresponding page from disk.

Using the top or ps commands, you can check
that the actual RAM usage of processes (RSS
or RES) is much smaller than the size of their
virtual address space (VSZ or VIRT).

So, it is a waste of I/O, time, and RAM to load
pages in executables and shared libraries which
will not be used anyway. However, as we will
see in the next section, demand paging is not
trivial to trace from userspace.

4.4.2 Reading ahead too late

Another limitation comes from reading ahead
all files in a row, even the ones which are
needed at the very end of system startup.

We’ve seen that files are preloaded according to
their location on the disk, and not according to
when they are used in system startup. Hence,
it could happen that a file needed by a startup
script is accessed before it is preloaded by the
readahead thread.

7



5 Implementing readahead in em-
bedded systems

5.1 Embedded systems requirements

Embedded systems have specific features and
requirements which make desktop implemen-
tations not completely appropriate for systems
with limited resources.

The main constraint, as explained before, is that
free RAM can be scarce. It is no longer appro-
priate to preload all the files in a row, because
some of the read ahead pages are likely to be re-
claimed before being used. As a consequence,
a requirement is to readahead files just a little
while before they are used.

Therefore, files should be preloaded according
to the order in which they are accessed. More-
over, most embedded systems use flash instead
of disk storage. There is no disk seek cost ac-
cessing random blocks on storage. Ordering
files by disk location is futile.

Still because of the shortness of free RAM, is it
also a stronger requirement to preload only the
portions of the files which are actually accessed
during system startup.

Last but not least, embedded systems also re-
quire simple solutions which can translate in
lightweight programs and in low cpu usage.

5.2 Existing implementations

Of course, it is possible to reuse code from
readahead utilities found in GNU/Linux distri-
butions, to read ahead a specific list of files.

Another solution is to use the readahead
applet that we added to the Busybox toolset
(http://busybox.net), which is used in

most embedded systems. Thanks to this applet,
developers can easily add readahead commands
to their startup scripts, without having to com-
pile a standalone tool.

5.3 Implementation constraints and plans

Updates, code, benchmarks, and documenta-
tion will be available through our readahead
project page [2].

5.3.1 Identifying file access patterns

It is easy to identify files which are accessed
during startup, either by using inotify or by
checking the atime attribute of files (last ac-
cess time, when this feature is not disabled at
mount time). However, it is much more diffi-
cult to trace which sections are accessed in a
given file.

When the file is just accessed, not executed,
it is still possible to trace the open, read,
seek, and close system calls and deduce
which parts of each file are accessed. However,
this is difficult to implement.2

Anyway, when the file is executed (in the case
of a program or a shared library), there doesn’t
seem to be any userspace interface to keep track
of accessed file blocks. It is because demand
paging is completely transparent to processes.

That’s why we started to implement a kernel
patch to log all file reads (at the moment by

2Even tracing these system calls is difficult. System
call tracing is usually done on a process and its children
with the strace command or with the ptrace system
call that it uses. The problem is that ptrace cannot be
used for the init process, which would have allowed
tracing on all running processes at once.

Another, probably simpler solution would be to use C
library interposers, wrappers around the C library func-
tions used to execute system calls.

8



tracing calls to the vfs_read function), and
demand paging activity (by getting information
from the filemap_nopage function). This
patch also tracks exec system calls, by watch-
ing the open_exec function, for reasons that
we will explain in the next section.

This patch logs the following pieces of infor-
mation for each accessed file:

• inode number,

• device major and minor numbers,

• offset,

• number of bytes read.

Code and more details can be found on our
project page [2].

At the time of this writing, this patch is just
meant to assess the usefulness of reading ahead
only the used sections in a file. If this proves to
be profitable, a clean, long term solution will be
investigated with the Linux kernel development
community.

5.3.2 Postprocessing the file access dump

We are developing a Python script to postpro-
cess file access information dumped from the
kernel.

The main need is to translate inode and device
numbers into file paths, as the kernel doesn’t
know about file names.

This is done by identifying the filesystem the
inode belong to thanks to major and minor
number information. Then, each filesystem
containing one of our files is exhaustively tra-
versed to build a lookup table allowing to find
a file path for a given inode.

Of course, this can be very costly, but neither
data gathering nor this postprocessing is meant
to be run on a production system. This will only
be done once during development.

5.3.3 Improving readahead in GNU/Linux
distributions

Our first experiment will be to make minor
changes to the utilities used in GNU/Linux dis-
tributions, so that they can process files lists
also specifying which parts to read ahead in
each file.

5.3.4 Towards a generic and efficient im-
plementation

While preloading the right file sections is easy
once file access information is available, an-
other requirement is to perform readahead at
the right time in the execution flow. As ex-
plained before, reading ahead mustn’t happen
too early, and mustn’t happen too late either.

Once more, the challenge is to predict the fu-
ture by using knowledge about the past.

A very basic approach would be to collect
time information together with file access data.
However, such information wouldn’t be very
useful to trigger readahead at the right time, as
reading ahead accelerates time. Furthermore,
as processes spend less time waiting for I/O,
the exact ordering of process execution can be
altered.

Thus, what is needed is a way to follow the
progress of system startup, and to match the ac-
tual events with recorded ones.

A simple idea is to use inotify to get access
notifications for executables involved in sys-
tem startup, and match these notifications with
recorded exec calls.

9



This would be quite easy to implement, as this
would just involve a list of files, without hav-
ing to register recursive directory based notifi-
cations.

As shown in the example in Figure 2, our idea is
to manage readahead windows of a given data
size. In this example, when event11 is recog-
nized, we create a new readahead window start-
ing from this event, corresponding to 1 MB of
recorded disk access starting from this event.

Actually, we would only need to start new
readahead I/O from the end of the previous
window to the end of the new one. This as-
sumes that the window size is large enough to
extend beyond the next event. Otherwise, if
readahead windows didn’t overlap, there would
be parts of the execution flow with no reada-
head at all.

Within a given window, before firing readahead
I/O, we would of course need to remove any
duplicate read operations, as well as to merge
consecutive ones into single larger ones.

Here are the advantages of this approach:

• Possibility to readahead the same blocks
multiple times in the execution flow. This
covers the possibility that these blocks are
no longer in page cache.

• For each specific system, possibility to
tune the window size according to the best
achieved results.

• The window size could even be dynami-
cally increased, to make sure it goes be-
yond the next recorded event.

• If window size is large enough, we expect
it to compensate for actual changes in the
order of events.

5.3.5 Open issues

Several issues have not been addressed yet in
this project.

In particular, we would need a methodology to
support package updates in standard distribu-
tions. Would file access data harvesting be run
again whenever a package involved in system
startup is updated? Or should each package
carry its own readahead information, requiring
a more complex package development process?

5.4 Conclusion

Though the proposed ideas haven’t been fully
implemented and benchmarked yet, we have
identified promising opportunities to reduce
system startup time, in a way that both meets
the requirements of desktop and embedded
Linux systems.

If you are interested in this topic, stay tuned
on the project page [2], join the presentation
at OLS 2007, discover the first benchmarks on
embedded and desktop systems, and share your
experience and ideas on accelerating the course
of Time.

References

[1] Jonathan Corbet. Lwn article: Adaptive
file readahead. http:
//lwn.net/Articles/155510/,
October 2005.

[2] Free Electrons. Advanced readahead
project.
http://free-electrons.com/
community/tools/readahead/.

10



Present

Previous readahead window: 1 MB

of data access recorded after event10.

New readahead window: 1 MB

of data access recorded after event11.

event11: second

execution

of /bin/grep.

event10: first

execution of

/sbin/ifconfig.

Past Future

event12: first

execution of

/usr/bin/dillo

Figure 2: Proposed readahead implementation

[3] WU Fenguang. Linux kernel mailing list:
Adaptive readahead v16 benchmarks.
http:
//lkml.org/lkml/2006/11/25/7,
November 2006.

[4] Linux Manual Pages. madvise(2) - linux
man page. http:
//www.die.net/doc/linux/man/
man2/madvise.2.html.

[5] Linux Manual Pages. posix_fadvise(2) -
linux man page. http:
//www.die.net/doc/linux/man/
man2/posix_fadvise.2.html.

[6] Linux Manual Pages. readahead(2) - linux
man page. http:
//www.die.net/doc/linux/man/
man2/readahead.2.html.

[7] Ram Pai, Badari Pulavarty, and Mingming
Cao. Linux 2.6 performance improvement
through readahead optimization. In
Ottawa Linux Symposium (OLS), 2004.
http://www.linuxsymposium.
org/proceedings/reprints/
Reprint-Pai-OLS2004.pdf.

[8] Wikipedia. inotify. http://en.
wikipedia.org/wiki/Inotify.

11


