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Abstract

We have developed a novel neural classifier LImited Receptive Area (LIRA) for the image recognition. The classifier LIRA contains three

neuron layers: sensor, associative and output layers. The sensor layer is connected with the associative layer with no modifiable random

connections and the associative layer is connected with the output layer with trainable connections. The training process converges

sufficiently fast. This classifier does not use floating point and multiplication operations. The classifier was tested on two image databases.

The first database is the MNIST database. It contains 60,000 handwritten digit images for the classifier training and 10,000 handwritten digit

images for the classifier testing. The second database contains 441 images of the assembly microdevice. The problem under investigation is

to recognize the position of the pin relatively to the hole. A random procedure was used for partition of the database to training and testing

subsets. There are many results for the MNIST database in the literature. In the best cases, the error rates are 0.7, 0.63 and 0.42%. The

classifier LIRA gives error rate of 0.61% as a mean value of three trials. In task of the pin–hole position estimation the classifier LIRA also

shows sufficiently good results.

q 2004 Elsevier B.V. All rights reserved.
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1. Introduction

The neural networks are widely used for image

recognition [7,13,15]. We distinguish two categories of

neural network classifiers. The first one uses the gradient-

based training process. As a rule such classifiers have

various layers of neurons and all the neurons have

differentiable characteristics [13,15]. During the training

process the synaptic weights of the connections among all

neurons are modified. The second category of neural

networks also has some neuron layers but only two ultimate

layers are connected with the modifiable connections [5,7,

11]. The initial layers contain the binary neurons connected

with no modifiable connections. The synaptic weights of

these connections are determined using a random procedure.

The first category of neural networks is good for the

recognition of general properties of the objects. For

example, if we have to distinguish the letter ‘O’ from

the letter ‘L’ such networks give very good results. The

second category of neural networks is better for recognition

of local properties of the objects. For example, it is good if it

is necessary to recognize the letter ‘O’ from the letter ‘Q’.

For such tasks we propose the neural classifier LImited

Receptive Area (LIRA), which belongs to the second

category of neural networks.

The classifier LIRA is based on Rosenblatt’s perceptron

principles. We proposed two variants of LIRA classifier:

LIRA_binary and LIRA_grayscale. The first one is used for

recognition of binary (black-and-white) images and the

second one is used for recognition of grayscale images. We

made some changes in perceptron structure, training and

recognition algorithms.

Rosenblatt’s perceptron contains three layers of neurons.

The first S-layer corresponds to the retina. In technical terms

it corresponds to the input image. The second A-layer

(associative layer) corresponds to the feature extraction

subsystem. The third R-layer corresponds to the system

output. Each neuron of this layer corresponds to one of the

output classes. In the handwritten digit recognition task this

layer contains 10 neurons corresponding to digits 0,…,9.

0262-8856/$ - see front matter q 2004 Elsevier B.V. All rights reserved.

doi:10.1016/j.imavis.2004.03.008

Image and Vision Computing 22 (2004) 971–981

www.elsevier.com/locate/imavis

* Corresponding author. Tel.: þ52-55-5622-8602; fax: þ52-55-5550-

0654.

E-mail addresses: ekussul@servidor.unam.mx (E. Kussul), tbaidyk@

aleph.cinstrum.unam.mx (T. Baidyk).

http://www.elsevier.com/locate/imavis


The connections between the layers S and A are established

using a random procedure and cannot be changed during the

perceptron training. They have the weights 21 or 1.

Each neuron of the A-layer has connections with all

neurons of the R-layer. Initially, the connection weights are

set to 0. The weights are modified during the perceptron

training. The rule of weights modification corresponds to

the training algorithm. We used the training algorithm

slightly different from Rosenblatt’s one. We also modified a

random procedure of the S-connections arrangement. Our

latest modifications are related to the rule of the winner

selection in the output R-layer, and adaptation of the

classifier for grayscale image recognition.

We tested the classifier LIRA in two applications: digital

recognition and microdevice assembly. There are many

applications, for example, bank checks, custom declaration

automatic reading, etc. which need to recognize handwritten

digits.

Various methods were proposed to solve this problem

[2,3,6,8,9,12]. For estimation of the method effectiveness

the most important parameter is error rate. This parameter

shows which proportion of samples in test database is

recognized incorrectly.

The MNIST database contains 60,000 handwritten digits

in the training set and 10,000 handwritten digits in the test

set. Different classifiers proved on this database [2,4,9,12]

had shown error rate from 1.00 to 0.42% (Table 1).

For testing LIRA in assembly application we used the

second database which contains 441 images of an assembly

microdevice. The problem under investigation is to

recognize the position of the pin relatively to the hole. A

random procedure was used for partition of the database to

training and testing subsets.

2. Rosenblatt perceptron and RSC classifier

The classifier LIRA was developed on the base of the

Rosenblatt perceptron [14] and the Random Subspace

Classifier (RSC) classifier [11]. The 3-layer Rosenblatt

perceptron contains the sensor S-layer, the associative

A-layer and the reaction R-layer. Many investigations

were dedicated to perceptrons with one neuron in the R-

layer [14]. Such perceptron can recognize only two classes.

If output of the R neuron is higher than the predetermined

threshold T, the input image belongs to class 1. If it is lower

than T, the input image belongs to class 2. The sensor

S-layer contains two-state elements {21,1}. The element is

set to 1 if it belongs to the object and set to 21, if it belongs

to the background.

The associative A-layer contains neurons with 2-state

outputs {0,1}. The inputs of these neurons are connected

with the outputs of the S-layer neurons with no modifiable

connections. Each connection may have the weight 1

(positive connection); or the weight 21 (negative

connection). If the threshold of such neuron equals to

number of its input connections, this neuron is active only

in the case if all positive connections correspond to the

object and negative connections correspond to the

background.

The neuron R is connected with all neurons of the

A-layer. The weights of these connections are changed

during the perceptron training. The most popular training

rule is increasing the weights between active neurons of the

A-layer and the neuron R if the object belongs to class 1. If

the object belongs to class 2 the corresponding weights are

decreasing. It is known that such perceptron has fast

convergence and can form nonlinear discriminating sur-

faces. The complexity of discriminating surface depends on

the number of A-layer neurons.

The RSC was developed for general classification

problem in parameter spaces of limited dimensions. The

structure of this classifier is presented in Fig. 1.

This classifier contains four neural layers:

the input layer X ¼ x1; x2;…; xK

the intermediate layer GROUP ¼ group1; group2;…;

groupN

the associative layer A ¼ a1; a2;…; aN

the output layer Y ¼ y1; y2;…; ym:

Each neuron xi of the input layer corresponds to the

component of the input vector to be classified. Each

groupi of the intermediate layer contains some quantity P

of neuron pairs pij: Each pair pij contains one ON-neuron

and one OFF-neuron (Fig. 1). The ON-neuron is active if

xr . TONij: Each OFF-neuron is active if xr , TOFFij;

where TOFFij is the threshold of the OFF-neuron, TONij is

the threshold of the ON-neuron. Each pair pij is connected

with a randomly selected neuron of the input layer X. All

neuron thresholds of the layer GROUP are selected

randomly under condition TONij , TOFFij in each pair.

All the neurons of groupi are connected with one neuron

ai of the associative layer A. A neuron ai is active if and

only if all the neurons of groupi are active. The output of

Table 1

Recognition rate of different classifiers

Methods % of

error rate

References

Reduced set SVM poly 5 1.0 [12]

LeNet-5 (neural net) 0.95 [12]

Virtual SVM poly 9

[distortions]

0.8 [12]

LeNet-5 [distortions]

(neural net)

0.8 [12]

Boosted LeNet-4 [distortions]

(neural net)

0.7 [12]

Shape matching þ 3-NN 0.63 [2,3]

Proposed classifier LIRA_grayscale

(neural net)

0.61 New

SVC-rbf_grayscale 0.42 [4]
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active neuron equals to 1. If the neuron is not active, its

output equals to 0. Each neuron of the A-layer is

connected with all neurons of the output layer Y. The

training process changes the weights of these connections.

The training and the winner selection rules are the same

as in the classifier LIRA.

The main difference of the classifier LIRA from the

RSC classifier is the absence of the group layer. Instead of

each pair of the neurons in the layer GROUP, the

classifier LIRA uses one connection ON-type or OFF-type

which could be active or inactive. This modification

permits to increase the classification speed. Other

difference is related with the way of applications of this

classifiers. We applied the RSC classifier for the texture

recognition and other problems where the activities of the

input neurons were calculated with a special algorithm of

the feature extraction. The classifier LIRA is applied

directly to a raw image.

3. Description of the Rosenblatt perceptron

modifications for the LIRA-binary

We proposed several changes to the perceptron structure

to create the neural classifiers for handwritten digit

recognition. To examine them we used the MNIST database

[12], which was created from the NIST database, composed

from black and white images. The original black and white

digit images were size normalized to fit in a 20 £ 20 pixels

box. The resulting images contain gray levels as a result of

the antialiasing (image interpolation) technique used by the

normalization algorithm. The images were centered in a

28 £ 28 image by computing the center of mass of the

pixels, and translating the image so as to position this point

at the center of the 28 £ 28 field [12].

The binary image is obtained from a gray-level image by

the following procedure. The threshold th is computed as

th ¼

2
XWS

i¼1

XHS

j¼1

bij

0
@

1
A

WSHS

; ð1Þ

where HS is the number of rows of the image; WS is the

number of columns of the image; bij is the pixel brightness

of a grayscale image; sij is the pixel brightness of the

resulting binary image:

sij ¼
1; if bij . th;

21; if bij # th:

(
ð2Þ

For the MNIST database HS ¼ WS ¼ 28:

For the first modification of the Rosenblatt perceptron

10 neurons were included into the R-layer. In this case it is

necessary to introduce the rule of winner selection. In the

first series of experiments we used the simplest rule of

winner selection. The neuron from the R-layer having the

highest excitation determines the class under recognition.

Using this rule we obtained error rate of 0.79%.

After that we modified the winner selection rule and

achieved the error rate of 0.63%. We will describe this

selection rule later.

The second modification was made in the training

process. Let the neuron-winner have excitation Ew; its

nearest competitor has excitation Ec: If

ðEw 2 EcÞ=Ew , TE ð3Þ

the competitor is considered as a winner. Here, TE is the

superfluous excitation of the neuron-winner.

The third modification is concerned with connections. As

distinct from the Rosenblatt perceptron our neural classifier

has only positive connections between the A-layer and the

R-layer. In this case the training procedure is the following:

1. Let j correspond to the correct class under recognition.

During the recognition process we obtain excitations

of R-layer neurons. The excitation of neuron Rj

Fig. 1. The structure of the Random Subspace Classifier.
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corresponding to the correct class is decreased by the

factor ð1 2 TEÞ: After this the neuron having maximum

excitation Rk is selected as winner.

2. If j ¼ k; nothing to be done.

3. If j does not equal k

wijðt þ 1Þ ¼ wijðtÞ þ ai; ð4Þ

where wijðtÞ is the weight of the connection between the

i-neuron of the A-layer and the j-neuron of the R-layer

before modification, wijðt þ 1Þ is the weight after

modification, ai is the output signal (0 or 1) of the

i-neuron of the A-layer

wikðt þ 1Þ ¼ wikðtÞ2 ai; if ðwikðtÞ . 0Þ;

wikðt þ 1Þ ¼ 0; if ðwikðtÞ ¼ 0Þ;
ð5Þ

where wikðtÞ is the weight of the connection between the

i-neuron of the A-layer and the k-neuron of the R-layer

before modification, wikðt þ 1Þ is the weight after

modification. More detailed description of the training

procedure will be done further.

The perceptron with these changes is termed the LImited

Receptive Area classifier for binary images (LIRA_binary)

(Fig. 2). More general case of such classifier was developed

and termed RSC [11] and was based on the Random

Threshold Classifier [7,10].

Each A-layer neuron of the LIRA classifier has random

connections with the S-layer. To install these connections it

is necessary to enumerate all elements of the S-layer. Let the

number of these elements equal to NS: To determine the

connections of the A-layer neuron we select the random

number from the range ½1;NS�: This number determines the

S-layer neuron, which will be connected with the mentioned

A-layer neuron. This rule is used to determine the

connections between all A-layer neurons and the S-layer

neurons. Frank Rosenblatt proposed this rule [14]. Our

experience shows that it is possible to improve the

perceptron performance due to the modification of this rule.

The fourth modification is the following. We connect the

A-layer neurons with the S-layer neurons randomly selected

not from the whole S-layer but from the rectangle ðhwÞ;

which is located in the S-layer (Fig. 2).

The distances dx and dy are random numbers selected

from the ranges: dx from ½0;WS 2 w�and dy from ½0;HS 2 h�;

where WS; HS stand for width and height of the S-layer.

3.1. Mask design

The associative neuron mask is a set of the positive and

negative connections of the A-layer neuron with the retina.

To design the mask the procedure of random selection of

connections is used. This procedure begins from choice of

the upper left corner of the rectangle in which all positive

and negative connections of the associative neuron are

located. The following formulas are used

dxi ¼ randomiðWS 2 wÞ; ð6Þ

dyi ¼ randomiðHS 2 hÞ;

where i is the neuron position in the associative layer A;

randomiðzÞ is the random number from the range ½0; z�:

After that each positive and negative connection position

within the rectangle is defined by couple of numbers

xij ¼ randomijðwÞ; ð7Þ

yij ¼ randomijðhÞ;

where j is the number of the ith neuron connection with

retina.

The absolute coordinates of the connection on the retina

are defined by a couple of numbers:

Xij ¼ xij þ dxi; ð8Þ

Yij ¼ yij þ dyi:

3.2. Image coding

Any input image defines the activities of the A-layer

neurons in one-to-one correspondence. The binary vector

which corresponds to the associative neuron activities is

termed the image binary code A ¼ a1;…; an (where n is the

number of the A-layer neurons). The procedure, which

transforms the input image to the binary vector A, is termed

the image coding.

In our system the ith neuron of the A-layer is active only if

all the positive connections with retina correspond to the

object and all negative connections correspond to the

background. In this case ai ¼ 1; in opposite case ai ¼ 0:

From the experience of the work with such systems it is

known that the active neuron number m in the A-layer must

be many times less than whole neuron number n of this layer.

In our work we usually use the following expression m ¼

c
ffiffi
n

p
;where c is the constant, which belongs to the range fromFig. 2. LImited Receptive Area (LIRA) classifier.

E. Kussul, T. Baidyk / Image and Vision Computing 22 (2004) 971–981974



1 to 5. This ratio corresponds to neurophysiological facts.

The active neurons number in the cerebral cortex is hundreds

times less than the total number of neurons.

Taking into account the little number of active neurons it

is convenient to represent the binary vector A not explicitly

but as a list of active neuron numbers. Let, for example, the

vector A be:

A ¼ 00010000100000010000:

The corresponding list of the active neuron numbers will be

4, 9, and 16. This list is used to save the image codes in

compact form and for fast calculation of the neuron

activities of the output layer. Thus, after the coding

procedure execution every image has corresponding list of

active neuron numbers.

3.3. Training procedure

Before the training all weights of the connections

between the neurons of the A-layer and the R-layer are set

to zero.

1. The training procedure begins from the input of the

first image to the perceptron. The image is coded and the

R-layer neuron excitation Ei is computed. The excitation

Ei is defined as

Ei ¼
Xn

j¼1

ajwji ð9Þ

where Ei is the excitation of the ith neuron of the R-layer;

aj is the excitation of the jth neuron of the A-layer; wji is

the connection weights between the jth neuron of the

A-layer and the ith neuron of the R-layer.

2. We want the recognition to be robust. After the

calculation of all neuron excitations of the R-layer the

correct name of input image is read from the mark file of

the MNIST database. The excitation E of the correspond-

ing neuron is recalculated according to the formula:

Ep
k ¼ Ekð1 2 TEÞ: ð10Þ

After that we find the neuron (winner) with the maximal

activity. This neuron presents the recognized handwritten

digit.

3. We denote the neuron-winner number as iw; and the

number of neuron, which really corresponds to the input

image, as ic: If iw ¼ ic nothing to be done. If iw – ic

ð;jÞðwjic
ðt þ 1Þ ¼ wjic

ðtÞ þ ajÞ

ð;jÞðwjiw
ðt þ 1Þ ¼ wjiw

ðtÞ2 ajÞ

if ðwjiw
ðt þ 1Þ , 0Þ wjiw

ðt þ 1Þ ¼ 0;

ð11Þ

where wjiðtÞ is the weight of the connection between the

j-neuron of the A-layer and the i-neuron of the R-layer

before modification, wjiðt þ 1Þ is the weight after

modification.

The training process is carried out iteratively. After the

input of all images from the training subset the total number

of training errors is calculated. If this number is higher than

1% of the total number of images then the next training

cycle is doing. If the error number is less than 1% the

training process is stopped. The training process is also

stopped when the cycle number is more than preestablished

value. In previous experiments this value was 10 cycles, and

in final ones—40 cycles.

It is obvious that with every new training cycle the image

coding procedure is repeated and gives the same results as in

previous cycles. Therefore in final experiments we

performed the image coding process only once and recorded

the lists of active neuron numbers for each image on hard

drive. Later for all cycles we used not the images but the

corresponding lists of the active neurons. Due to this

procedure the training process was accelerated approxi-

mately by an order of magnitude.

It is known [12] that the handwritten symbol

recognition rate may be increased essentially if during

the training cycle the images are input not only in initial

state but also with shifting and with changing the image

inclination (so called distortions). In final experiments in

addition to the initial image we used 16 variants of each

image, i.e. 16 distortions.

The distortions can be used to increase the effective size

of a data set without collecting more data. We used 16

distortions (Fig. 3): 12 shifts and 4 skewing. The skewing

angles selected were 226, 213, 13 and 268.

3.4. Recognition procedure

To examine the recognition rate the test set of the MNIST

database was used. This test set contains 10,000 images. The

coding and calculation of neuron activity were made with

the same rules as during the training process, but the value

TE (reserve of robustness) was 0.

The recognition process for the new classifier differs

from the previous ones. In this version we use distortions in

recognition process too. There is the difference between

implementation of distortions during the training session

and the recognition session. In the training session each new

position of initial image produced by distortions is

considered as a new image, which is independent of other

image distortions. In the recognition session it is necessary

to introduce a rule of the decision-making. All results of one

image and its distortions recognition must be used for

obtaining one result, which gives the class name of the

image under recognition. We have developed two rules of

the decision-making.

Rule 1. According to this rule all excitations of the

R-layer neurons are sum for all the distortions

Ei ¼
Xd

k¼1

Xn

j¼1

akjwji; ð12Þ
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where Ei is the excitation of the ith neuron of the R-layer; akj

is the excitation of the jth neuron of the A-layer in the kth

distortion; wji is the connection weight between the jth

neuron of the A-layer and the ith neuron of the R-layer. And

after that the neuron-winner is selected as a recognition

result.

Rule 2. The second rule consists in calculations of the

R-layer neurons excitations and selection of the neuron-

winner and its nearest competitor for each distortion. For the

kth distortion the ratio rk of the neuron-winner excitation

Ewk to its nearest competitor excitation Eck is calculated

rk ¼
Ewk

Eck

: ð13Þ

After that we select the distortion with the maximal rk. The

neuron-winner of this distortion is considered to be the

recognition result.

4. Description of the Rosenblatt perceptron

modifications for the LIRA-grayscale

To adapt the LIRA classifier for grayscale image

recognition we have added the additional neuron layer

between the S-layer and the A-layer. We termed it the

I-layer (intermediate layer, see Fig. 4).

Each input of the I-layer neuron has one connection with

the S-layer. Each output of this neuron is connected with the

input of one neuron of the A-layer. All the I-layer neurons

connected to one A-layer neuron form the group of this

A-layer neuron. The number of neurons in one group

corresponds to the number of positive and negative

connections between one neuron of the A-layer and the

retina in the LIRA_binary structure. The I-layer neurons

could be ON-neurons or OFF-neurons. The output of the

ON-neuron i is ‘1’ when its input is higher than the

threshold ui and in opposite case it equals to ‘0’. The OFF-

neuron j output is ‘1’ when its input is less than the threshold

uj and in opposite case it equals to ‘0’.

The ON-neuron number in each group corresponds to the

number of the positive connections of one A-layer neuron in

the LIRA_binary structure. The OFF-neuron number in each

group corresponds to the number of the negative connec-

tions. In our case we selected three ON-neurons and five

OFF-neurons. The rule of connection arrangement between

the retina and one group of the I-layer is the same as the rule

of mask design for one A-layer neuron in the LIRA_binary.

The thresholds ui and uj are selected randomly from

the range ½0;hbmax�; where bmax is maximal brightness of

the image pixels; h is the parameter from [0,1], which is

selected experimentally.

The output of the A-layer neuron is ‘1’ if all outputs of its

I-layer group are ‘1’. If any neuron of this group has the

output ‘0’ the A-layer neuron has the output ‘0’.

5. Handwritten digit recognition results

for LIRA-binary

We carried out preliminary experiments to estimate the

performance of our classifiers. On the basis of these

preliminary experiments we selected the best classifiers

and carried out final experiments to obtain the maximal

recognition rate. In the preliminary experiments we changed

the A-layer neuron number from 1000 to 128,000 (Table 2).

These experiments showed that recognition error number

has been decreased approximately by the factor 8 with

Fig. 3. The scheme of 16 distortions.

Fig. 4. LIRA_grayscale scheme.
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increasing of the A-layer neuron number. The main

disadvantages of the large A-layer are the increasing of

train and recognition time and memory capacity.

We also changed the ratio p ¼ w=WS ¼ h=HS from 0.2 to

0.8. The parameter TE was 0.1. In these experiments we did

not use the distortions in either training or recognition

sessions.

For each set of parameters we made 10 training cycles on

the MNIST training set. After that we estimated the recog-

nition rate on the MNIST test set. The recognition rates

obtained in the preliminary experiments are presented in

Table 2.

In the preliminary experiments we generated 3 positive

and 3 negative connections for each A-layer neuron. In the

final experiments we generated 3 positive and 5 negative

connections. The number of the A-layer neurons was

256,000. The windows parameters were w ¼ 10 and h ¼

10 and the retina size was 28 £ 28. The training cycle

number was 40.

The coding time was 20 h and the training time was 45 h.

The recognition time (for 10,000 samples) was 30 min

without distortions, 60 min for 4 distortions and 120 min for

8 distortions. We made different experiments with different

number of distortions during the recognition session

(4 and 8). We created distortions only with shifting (the

first four or eight cases in Fig. 3). For comparison we made

experiments without distortions in recognition session.

For statistical comparison purposes we made three

experiments for each set of parameters. The difference

between the experiments consists in using different random

structure of connections between the S-layer and the

A-layer. In Table 3 each row corresponds to one of such

experiments. The column title ‘Rule 1’ corresponds to the

first rule of the winner selection (Formula 12) and ‘Rule 2’

corresponds to the second rule of the winner selection

(Formula 13).

The error number 63 corresponds to 99.37% of

recognition rate. Serge Belongie et al. [2] has the same

result on the MNIST database.

6. Handwritten digit recognition results

for the LIRA_grayscale

The recognition rates obtained in the experiments with

the LIRA_grayscale are presented in Table 4. In this case we

also made three experiments for statistical comparison

purposes. The difference between the experiments consists

in the use of the different random structures of connections

between the S-layer and the A-layer. In Table 4 each column

is marked by the number of concrete experiment.

We obtained the minimal number of errors, 59. To our

knowledge at present this result is one of the best from

known results.

7. Application of the LIRA classifier for flat image

recognition in the process of microdevice assembly

One of the assembly tasks is to install the pin into the hole

(Fig. 5). For this purpose it is necessary to know the

displacements ðdx; dy; dzÞ of the pin tip relative to the hole.

It is possible to evaluate these displacements with stereovision

system, which resolves 3D problems. Stereovision system

demands two TV cameras. To simplify the control system we

propose to transform 3D into 2D images, preserving all the

information about mutual location of the pin and the hole. This

approach makes it possible to use only one TV camera [1].

To perform 3D ! 2D transformation we use the shadows

of the pin. Four light sources are used to obtain pin shadows.

Fig. 5. Mutual location of the pin and hole.

Table 2

The recognition rates of classifier in the preliminary experiments

A-layer neuron number Error number

p ¼ 0:2 p ¼ 0:4 p ¼ 0:6 p ¼ 0:8 p ¼ 1

1000 3461 1333 1297 1355 1864

2000 1705 772 772 827 1027

4000 828 452 491 532 622

8000 482 338 335 388 451

16,000 330 249 247 288 337

32,000 245 205 207 246 270

64,000 218 186 171 190 217

128,000 207 170 168 190 195

Table 3

Error numbers in the final experiments

Number of

experiments

Without

distortions

Rule 1 Rule 2

4 dist. 8 dist. 4 dist. 8 dist.

1 72 68 63 75 75

2 86 65 65 72 67

3 83 66 62 68 72

Mean value 80 66 63 72 71

Table 4

Error numbers in the final experiments

Number of experiments 1 2 3

Number of errors 60 59 64

Mean number of errors 61.33
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Mutual location of these shadows and the hole contains all

the information about displacements of the pin relative to

the hole. The displacements in the horizontal plane ðdx; dyÞ

could be obtained directly by displacements of shadows

center points relative to the hole center. Vertical displace-

ment of the pin may be obtained from the distance between

the shadows. To calculate the displacements it is necessary

to have all the shadows in one image. We capture four

images corresponding to each light source sequentially.

After this it is necessary to extract contours and superpose

contour images.

We can consider the resulting image as a ‘symbol’ which

can be interpreted and treated as ‘letter’ or ‘digit’.

The example of real image with one of the light sources

is shown in Fig. 6. They were made with the system

presented in Fig. 7.

The contour extraction procedure was applied to these

images and after that the corresponding contour images

were superimposed. The results are shown in Fig. 8.

The different relative pin–hole positions are shown in

Fig. 8. In Fig. 8a the pin is elevated relative to the hole. And

the distance between shadows is large. In Fig. 8b the pin is

put down to the hole and the shadow contours are connected

to the contours of the pin and the hole. In Fig. 8c the pin is

shifted to the left from the hole. In Fig. 8d the pin is centered

and slightly elevated.

Two data sets were made with different positions of the

pin. The first dataset contains 23 images corresponding to

the displacements of the pin along the X and Y-axis with the

step of 0.5 mm.

The second dataset contains 441 images corresponding to

X;Y-displacements of the pin. The step of the displacements

was 0.1 mm. The third coordinate Z of the pin was constant

in the both datasets.

For the first dataset two classifiers were created to

recognize the pin positions. The first classifier has three

outputs corresponding to the X-displacements: Xpin , Xhole;

Xpin ¼ Xhole; Xpin . Xhole: The second classifier has three

outputs corresponding to the Y-displacements: Ypin , Yhole;

Ypin ¼ Yhole; Ypin . Yhole: Twelve randomly selected images

from the first dataset were used for the classifiers training

and the residuary 11 images—for the classifier testing. After

the training both the classifier recognized all images

correctly (error number ¼ 0).

At present we use the second dataset for more detailed

recognition of the pin displacements. The classifier outputs

contain more classes than previous classifiers: 21 classes for

the X-coordinates and 21 classes for the Y-coordinates (i.e.

one R-layer has 21 neurons for the X and the other R-layer

has 21 neurons for the Y). Every neuron from the R-layer

has 64,000 connections with the previous layer (i.e. the

A-layer has 64,000 neurons).

It is known [12] that the recognition rate may be

increased if during the training cycle the images are

represented not only in the initial state but also with shifted

image positions (so called distortions). In case of the

microassembly we did four experiment sets. The first set

had no distortions. The second set had the image shifts by 1

pixel to the right, to the left, up and down. The third set

of experiments had additional diagonal shifts to 1 pixel.

Fig. 6. Example of real image.

Fig. 7. System with camera ‘Sony’.

Fig. 8. Superimposed contour image (binary image).
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The fourth set has additional shifts to the right, to the left,

up and down by 2 pixels.

From 441 images the training and the test sets were

formed with a random procedure. In Table 5 the results of

the classifier investigation are presented.

We investigate the classifier with the different number of

distortions: 1, 5, 9, and 13. Number of correct recognitions

is presented in the first column for the coordinates X and Y .

The recognition rate (%) is in the second column. These

recognition rates are not high. But in our case it is necessary

to analyze the recognition errors in more detail. The error of

position recognition is proportional to the difference

between the numbers of the correct class and recognized

class. If we take into account the recognition with the

precision 0.1 mm we obtain a rather high quality of

recognition (the right part of Table 5).

When we determine the relative pin–hole position it is

necessary to take into account the image discretization. For

small objects comparable with 1 pixel it is impossible to

determine their positions with tolerances less than ^0.5

pixel. But the position of larger objects could be obtained

with smaller tolerances. It is possible to illustrate this fact on

the following example. Let us consider the part of the object

presented in Fig. 9.

The object has the brightness br ¼ 1 (right part of the

image), and the background has the brightness br ¼ 0 (left

part of the image). We suppose that the brightness of the

pixel pij partially occupied by the object has the brightness

proportional to the occupied area of the pixel pij (this

assumption is realistic for TV cameras). In our example

the object has the edge with the angle f relatively to vertical

axis of the raster grid. Let tgðf Þ be 1=n: Let the recognition

system extract the contour using the following rule

cij ¼
1; if ðbrijþ1 2 brijÞ . 0:5

0 if ðbrijþ1 2 brijÞ # 0:5

(
ð14Þ

where cij ¼ 1 corresponds to the contour pixel; brij ð1 $

brij $ 0Þ is the brightness of the pixel pij: The pixel pij

belongs to the contour if the object edge is located to the left

of the central point of the pixel pij and crosses it. The pixel

pijþ1 belongs to the contour if the object edge is located to

the right of the central point of the pixel pij and crosses it

(Fig. 10).

Let the real position dxp of the edge corresponds to the

central point of this edge. In Fig. 9, dxp ¼ j þ 0:5: Let the

position of the gravity center of contour pixels be xc: We

determine the recognized edge position as dx ¼ xc þ 0:5: In

Fig. 10, dx ¼ j þ 0:5: If the edge is displaced from the initial

position showed in Fig. 9 to the position showed in Fig. 11

Table 5

The results of the classifier investigation

Distortions X (%) Y (%) X ^ 0:1 mm

(%)

Y ^ 0:1 mm

(%)

1 112 (50.7) 44 (19.9) 213 (96.2) 171 (77.5)

5 145 (65.9) 40 (18.4) 219 (99.2) 195 (88.2)

9 149 (67.7) 42 (19.5) 220 (99.5) 199 (89.9)

13 138 (62.8) 57 (26.4) 219 (99.3) 192 (86.9)

Fig. 9. Example of the object part in the image.

Fig. 10. The contours of the image.

Fig. 11. Displacement of the initial image.
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the real position of the edge will be j þ 0:5 þ 1=n: The

recognized position (see Fig. 12) will be dx ¼ j þ 0:5 þ 1=n:

Thus in these cases the error will be 0.

Inside this interval the error will change in accordance

with the curve shown in Fig. 13.

This means that the large object position could be

determined with the tolerances smaller than 0.5 pixel.

In our case, the tolerances of pin–hole displacement was

0.1 mm which corresponds to 1.8 pixels in the X-axis and 1

pixel in the Y-axis and the image objects were much more

large than 1 pixel. So we had a good reserve for the pin–

hole displacements recognition.

The neural classifier permits us to recognize the pin–hole

relative displacement with 2 pixels tolerance. The absolute

values of detectable displacements depend on the optical

channel resolution. In our case, 2 pixels correspond

approximately to 0.1 mm for X-axis and 0.2 mm for

Y-axis. This precision is sufficient for many cases of the

assembly processes.

8. Discussion

The novel neural classifier LIRA was developed. The

classifier LIRA contains three neuron layers: sensor,

associative and output layers. The sensor layer is connected

with the associative layer with no modifiable random

connections and the associative layer is connected with the

output layer with trainable connections. The training

process converges sufficiently fast. This classifier does not

use floating point and multiplication operations. This

property in combination with the parallel structure of

classifier permits to implement it in low cost, high-speed

electronic devices. The classifier LIRA shows good

recognition rate. It was tested on two image databases.

The first database is the MNIST database. It contains 60,000

handwritten digit images for the classifier training and

10,000 handwritten digit images for the classifier testing.

The second database contains 441 images of an assembly

microdevice. The problem under investigation is to

recognize the pin –hole relative position. A random

procedure was used for partition of the database to the

training and testing subsets.

The results which were obtained on the MNIST database

seem to be sufficiently good for applications. But there are

many tasks of handwritten number recognition. If the

number contains, for example, 10 digits and the recognition

rate of one digit is 0.994 (in our case) the whole number

recognition rate could be 0.99410 ¼ 0.942 ¼ 94.2%. This

recognition rate is insufficient for many applications. For

this reason additional investigations are needed to improve a

handwritten digit recognition rate.

The recognition time of each handwritten digit is also an

important parameter. In many cases to estimate the

recognition time the authors of different methods give the

number of multiply accumulate operations for one symbol

recognition. For example, for RS-SVM method it equals

650,000, LeNet-5 is about 60% less expensive [12]. It is

difficult to compare our classifier using this parameter

because our classifier does not use neither multiply

operations nor floating point operations. For one digit

recognition our classifier needs approximately 50,000 fixed

point add operations. It seems to be very fast but it is not the

case. For one image coding it needs approximately

10 £ 256,000 readings from memory and logical operations.

We must code during recognition not only initial image but

also, for example, 4 distortions. All this process demands

near 10 million operations for each digit recognition which

is difficult to compare with the number of floating point

operations. In general our classifier has lower recognition

speed than methods by LeCun and SVM.

The other method of recognition time comparison is the

classifiers testing on the similar computer. Belongie [2]

gives the time of the shape matching as 200 ms on the

computer Pentium III, 500 MHz workstation. Using regular

nearest neighbor method it is necessary to make N matching

for each digit recognition, where N is the size of training set

(Belongie used from 15,000 to 20,000 images). In this case,

the recognition time of one digit could be from 3000 to

4000 s. We tested our latest version of the classifier also on

computer Pentium III, 500 MHz and obtained the recog-

nition time of one digit 0.5 s.

Fig. 12. The contours of the image after displacement.

Fig. 13. The error changing.
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The third important parameter for classifier comparison

is the training time. Belongie used the nearest neighbor

classifiers which practically need no training time [2]. The

training time of LeNet was 2–3 days of CPU to train LeNet-

5 on a Silicon Graphics Origin 2000 server using a single

200 MHz on R10000 processor. Our training time is 55 h on

the computer Pentium III, 500 MHz.

The experiments with microdevice assembly system

showed that the LIRA classifier could estimate the relative

pin–hole position with the tolerances of 1–2 pixels. In

principle it is possible to make such estimation with

subpixel tolerances. This case demands additional investi-

gations which should be made in the future.

9. Conclusions

The novel neural classifier LIRA for an image recognition

task was developed. The classifier was tested in a hand-

written recognition problem and a pin–hole relative position

estimation for an automatic microassembly problem and

showed good results. For a handwritten recognition the

experiments with the MNIST database showed that this

classifier has one of the best recognition rate (99.41%)

among other classifiers proved on this database. In the

microassembly problem the relative pin–hole position was

estimated with 1–2 pixels tolerances. The recognition time

for handwritten digits was 0.5 s on the Pentium III, 500 MHz.

The training time (55 h) is reasonably good. The main

drawback of this classifier is a relatively low recognition

speed. To eliminate this drawback it is possible to implement

the classifier LIRA in special parallel electronic device. This

device could have the low cost because the classifier LIRA

does not use floating point and multiplication operations.

The classifier could be used for handwriting recognition

and for robotic vision.
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