
STORM CORE Processor System www.opencores.org
by Stephan Nolting

STORM CORE Processor System
by Stephan Nolting

Proprietary Notice

ARM is a trademark of Advanced RISC Machines Ltd.
Xilinx ISE and Xilinx ISIM are trademarks of Xilinx, Inc.
Quartus II is a trademark of Altera corporation.
ModelSim is a trademark of Mentor Graphics, Inc.

The STORM CORE Processor System was created by Stephan Nolting.
Contact: stnolting@googlemail.com, zero_gravity@opencores.org

The most recent version of the STORM Core Processor System and it's documentary can be found at
http://www.opencores.com/project,storm_core

1 Last modified 15.05.2012

mailto:stnolting@googlemail.com
http://www.opencores.com/project,storm_core
mailto:zero_gravity@opencores.org

STORM CORE Processor System www.opencores.org
by Stephan Nolting

Table of content

1. Introduction
1.1 STORM Core Features
1.2 VHDL File Hierarchy
1.3 System Architecture
1.4 STORM_TOP Interface

2. Core Programmer Model
2.1 Differences Between ARM and STORM Core

2.1.1 Critical Differences
2.1.2 Noncritical Differences

2.2 Operating Modes
2.3 Registers
2.4 Exceptions / Interrupts
2.5 Machine Status Register

3. Core Hardware
3.1 Module Description
3.2 Data Flow
3.3 Cache Access

3.3.1 MEM / IO → Cache Coherency
3.3.2 Cache → MEM / IO Coherency

3.4 Example Bus Cycles
3.5 Pipeline conflicts

3.5.1 Local Pipeline Conflicts
3.5.2 Temporal Pipeline Conflicts
3.5.3 Branches
3.5.4 Memory-based Branches

3.6 Stage Control Bus
3.6 Forwarding Bus

4. Internal Coprocessor
4.1 System Coprocessor Register Set

5. Getting Started
5.1 Demo SoC Setup
5.2 Software Setup Using Assembler (arm-elf)
5.3 Software Setup Using C (WinARM)
5.4 STORM SoC

2 Last modified 15.05.2012

STORM CORE Processor System www.opencores.org
by Stephan Nolting

1. Introduction

Welcome to the STORM Core Processor project!

This core started as a personal research project to get into the basic of digital processing circuits. I always
wanted to know how a processor works at the basic gate level. The STORM Core is the result of this
investigation – hopefully someone out there can learn as much from it as I did ;)

The core itself provides native functionality, operation codes and programmer's models to ARM's famous 32-
bit processor family (→ ARMv2 instruction architecture). See chapter 2 for more information.

1.1 STORM Core Features

✔ Opcode and function compatible to ARM's 32-bit instruction set family (ARMv2)

✔ 32-bit RISC open source soft-core processor

✔ Pipelined instruction execution (8 stages)

✔ Single cycle execution of all operations (except for branch and multi-cycle memory operations)

✔ 7 different operating modes with unique register sets and privileges

✔ 4 external interrupt request signals

✔ Internal coprocessor for system management

✔ Internal 32-bit LFSR

✔ System IO port (16x in, 16x out)

✔ Completely described in behavioral VHDL - no instantiated hardware primitives; coded to allow the
synthesis tool to make use of dedicated hardware components (multiplier, memory, carry-chain)

✔ Configurable I-cache and D-cache as well as D-cache coherency strategy

✔ 32-bit pipelined Wishbone bus interface

✔ Up to 80Mhz operating frequency (@ 85% device utilization) on a Xilinx Spartan-3 XC3S400A

✔ Compatible with arm-elf assembler and WinARM tool chain

3 Last modified 15.05.2012

STORM CORE Processor System www.opencores.org
by Stephan Nolting

1.2 VHDL File Hierarchy

All needed files are located in the rtl folder.

STORM_TOP.vhd
- BUS_UNIT.vhd
- CACHE.vhd
- CORE_PKG.vhd
- CORE.vhd
 - OPCODE_DECODER.vhd
 - FLOW_CTRL.vhd
 - MC_SYS.vhd
 - REG_FILE.vhd
 - OPERAND_UNIT.vhd
 - MS_UNIT.vhd
 - MULTIPLY_UNIT.vhd
 - BARREL_SHIFTER.vhd
 - ALU.vhd
 - LOAD_STORE_UNIT.vhd
 - WB_UNIT.vhd

1.3 System Architecture

To increase the performance of the core, the system is equipped with two cache units: A data cache and an
instruction cache. Both caches are full associative and can store data from/to any MEM/IO location. The
number of cache pages as well as the page size and it's coherency strategies can be configured for each cache
independently. Together with a bus unit, which connects the the cache memories via a pipelined Wishbone
interface to the rest of the system, these four blocks (core, i-cache, d-cache, bus unit) form the
STORM_TOP unit.
By default, the processor operates in Big Endian mode. To change to Little Endian mode, set the
USE_BIG_ENDIAN constant in the core package (CORE_PKG.vhd) to FALSE.

4 Last modified 15.05.2012

D-cache I-cacheCoredata instr

Bus unit

Data update Control

MEM/IO system

Instruction update

Wishbone bus

STORM CORE Processor System www.opencores.org
by Stephan Nolting

1.4 STORM_TOP Interface

Generic constant Generic type Function
I_CACHE_PAGES natural Number of pages in I-Cache
I_CACHE_PAGE_SIZE natural I-Cache page size (# of 32-bit words)
D_CACHE_PAGES natural Number of pages in D-Cache
D_CACHE_PAGE_SIZE natural D-Cache page size (# of 32-bit words)
TIME_OUT_VAL natural Maximum Wishbone bus cycle length
BOOT_VECTOR std_logic_vector(31:0) Boot vector address
IO_UC_BEGIN std_logic_vector(31:0) First address of not cache-able IO area
IO_UC_END std_logic_vector(31:0) Last address of not cache-able IO are

Port signal Signal size Direction Function
CORE_CLK_I 1 bit Input Core clock signal, triggering on rising edge
RST_I 1 bit Input System rest, high-active, sync to rising edge of core clock
IO_PORT_O 16 bit Output Direct system output port
IO_PORT_I 16 bit Input Direct system input port
WB_ADR_O 32 bit Output Wishbone bus address, word-boundary → bits[1..0] = “00”
WB_CTI_O 3 bit Output Wishbone bus cycle type
WB_TGD_O 7 bit Output Wishbone bus cycle tag
WB_SEL_O 4 bit Output Wishbone bus byte select, always set to “1111”
WB_WE_O 1 bit Output Wishbone bus write enable
WB_DATA_O 32 bit Output Wishbone bus data output
WB_DATA_I 32 bit Input Wishbone bus data input
WB_STB_O 1 bit Output Wishbone bus valid transfer
WB_CYC_O 1 bit Output Wishbone bus valid cycle
WB_ACK_I 1 bit Input Wishbone bus acknowledge signal
WB_ERR_I 1 bit Input Wishbone bus abnormal cycle termination
WB_HALT_I 1 bit Input Wishbone bus halt
IRQ_I 1 bit Input Interrupt request
FIQ_I 1 bit Input Fast interrupt request

For more information about the Wishbone bus, see the Wishbone
data sheet, which can also be found in the “doc” folder.

5 Last modified 15.05.2012

STORM CORE Processor System www.opencores.org
by Stephan Nolting

Information about the configuration generics

• Each cache configuration value (number of pages, page size) must be a power of two.

• Any load/store operation from or to an address, which is not cached, will result in an upload or
download of the corresponding data page from or to the memory/IO system. Especially for IO
devices this might result in inconsistencies and/or bad timing. To avoid this, a specific IO address
area can be configured by using the IO_UC_BEGIN and IO_UC_END generics. When the
CACHED_IO bit in the system control register 0 is set to zero, any access to a device within this
address range will bypass the D-cache and directly access the selected IO device (in single word =
32-bit entry access mode).

! Devices, which are included within the IO area definition (see above) are automatically protected – any
access in unprivileged mode will trigger an interrupt and abort the bus transaction. This functionality
can be disabled by clearing the PRTC_IO bit int the system control register 0.

Information about the interface signals

• All interface signals are STD_LOGIC or STD_LOGIC_VECTOR.

• Since all components of the STORM Core use a synchronous reset, the RST_I must be kept high for
at least one cycle of the core clock to ensure valid reset functionality.

• The IO_PORT_O and IO_PORT_I signals are processor internal IO ports, controllable via
coprocessor registers. They can be used to directly control system functions without implementing
IO controller within the Wishbone network.

• The WB_TGD_O signal gives information about the current processor mode and the bus access type.
Bits 4 downto 0: Current processor mode. Bit 5: '1' instruction transfer, '0' data transfer. Bit 6: '1'
dedicated IO access, '0' standard memory access.

• When the WB_ERR_I signals is set to '1' during a MEM/IO access, the instruction (when loading the
i-cache) or data abort (when loading/flushing the d-cache or when accessing IO) trap is taken.

!
The bus unit only supports pipelined Wishbone cycles. Standard (un-pipelined) Wishbone slaves must
use the WB_HALT_I signal to throttle bus transactions (see the Wishbone specifications for more
information).
Example from the Wishbone specification data sheet:
DEVICE_HALT_O <= DEVICE_STB_I and (not DEVICE_ACK_O);

6 Last modified 15.05.2012

STORM CORE Processor System www.opencores.org
by Stephan Nolting

2. Core Programmer Model

The Storm Core is an ARM native processor system, so you can use most of the ARM's tool chain.
Since the Storm Core is not intended to be an ARM clone, the programmer's model, the hardware itself and
the complete function set differs in some aspects. Important differences between the ARM and the STORM
Core are noted in this chapter.

2.1 Differences between ARM and the STORM Core

Since the STORM Core is a completely new approach of creating an ARM-native processor system, there are
some differences. The noncritical ones do not affect the ARM-compatible behavior of the processor, so no
code adaptions are necessary in most cases. The critical differences may need a code adaption, when running
programs on the STORM Core, which were originally created for an ARM.

2.1.1 Critical Differences

• No multiply-long and multiply-accumulate-long instructions are implemented yet. Executing such an
instruction will trigger the undefined instruction trap.

• Executing BX Rn, where bit 0 of Rn is '1', will trigger the undefined instruction trap, since the
processor does not support a short instruction format. If bit 0 of Rn is '0', BX will behave like a
normal jump to the address stored in Rn.

• The prefetch abort interrupt is used as instruction fetch abort interrupt (IAB).

• The data abort interrupt is used as data fetch abort interrupt (DAB).

• When doing shift operations with a register given shift offset, or when performing MAC operations,
no additional data fetch from the register file is necessary. So, if R15 is an operand, it's value will
always be the address of the corresponding data processing operation plus 8 bytes.

2.1.2 Noncritical Differences

• There are no restrictions for the use of any register as operand/destination for all instructions (for
example all registers in one instruction can be the same; also the PC can be used as operand or
destination for any instruction).

• When performing single memory access operations, the shift value, which is applied to the offset
register value, can also be specified by the content of the data register (not intended in ARM code).

• Data bits 8 and 9 of the machine status register are not undefined/reserved, they are used for
disabling the DAB and IAB external interrupts (when set to '1').

7 Last modified 15.05.2012

STORM CORE Processor System www.opencores.org
by Stephan Nolting

2.2 Operating Modes

Six different operation modes are supported by the STORM Core. After reset, the processor starts operation
always in System mode. To change to a different mode, the corresponding MODE code has to be written to
the lowest 5 bit of the CMSR (CPSR in ARM). This is only possible when the processor is in privileged
mode (any other mode than user mode).

Mode Interrupt base address Mode code
User, USR - “10000”
System, SYS 0x00000000 “11111”
Undefined Instruction, UND 0x00000004 “11011”
Supervisor, SVP 0x00000008 “10011”
(Instruction) Abort, ABT (IAB) 0x0000000C “10111”
(Data) Abort, ABT (DAB) 0x00000010 “10111”
reserved 0x00000014 -
Interrupt Request, IRQ 0x00000018 “10010”
Fast Interrupt Request, FIQ 0x0000001C “10001”

2.3 Registers

Each operation mode has a unique register set, including data registers (see table below) implying a link
register (LR, always R14), the program counter (PC, always R15), the current machine status register
(CMSR (CPSR in ARM)) and a saved machine status register (SMSR_<mode> (SPSR_<mode> in ARM)).

Mode Accessible data registers Accessible machine registers
USR R0, …, R14 PC, CMSR
SYS R0, …, R14 PC, CMSR, SMSR_SYS
FIQ R0, …, R07, R08_FIQ, …, R14_FIQ PC, CMSR, SMSR_FIQ
IRQ R0, …, R12, R13_FIQ, R14_FIQ PC, CMSR, SMSR_IRQ
SVP R0, …, R12, R13_SVP, R14_SVP PC, CMSR, SMSR_SVP
ABT R0, …, R12, R13_ABT, R14_ABT PC, CMSR, SMSR_ABT
UND R0, …, R12, R13_UND, R14_UND PC, CMSR, SMSR_UND

Note: User mode (USR) and System mode (SYS) share the same data registers, but System mode has a
unique saved machine status registers (SMSR_SYS). Also, System mode is a privileged mode.

Note: Writing to R15 (PC) will result in a jump to the written value (address).
When reading from R15, the result is the program counter value (address) of the corresponding
operation, which is reading from R15, plus 8 bytes.

8 Last modified 15.05.2012

STORM CORE Processor System www.opencores.org
by Stephan Nolting

All data registers (R0 - R14) are located in the main register file, but only a special set of those is available at
one time (depending on the current processor operation mode). The mapping of the data registers to memory
block addresses is listed below:

00: USR32 R00 08: USR32 R08 16: FIQ32 R09 24: ABT32 R13
01: USR32 R01 09: USR32 R09 17: FIQ32 R10 25: ABT32 R14
02: USR32 R02 10: USR32 R10 18: FIQ32 R11 26: IRQ32 R13
03: USR32 R03 11: USR32 R11 19: FIQ32 R12 27: IRQ32 R14
04: USR32 R04 12: USR32 R12 20: FIQ32 R13 28: UND32 R13
05: USR32 R05 13: USR32 R13 21: FIQ32 R14 29: UND32 R14
06: USR32 R06 14: USR32 R14 22: SVP32 R13 30: Dummy Reg
07: USR32 R07 15: FIQ32 R08 23: SVP32 R14 31: Dummy Reg

Note: R14 of each mode is used as the corresponding Link Register to store the jump-back address.
R13 of each mode is commonly used as Stack Pointer.

Note: Since the PC is not located in the main register file, writing to R15 (PC) will perform a write to a
dummy register. Reading the PC will not fetch the value from this dummy registers but will fetch
data from the PC directly (plus 8 bytes offset).

2.4 Exceptions / Interrupts

Some processor modes can also be entered by special events (listed below). In this case, an interrupt is
executed / respectively an exception trap is taken (external interrupts must be enabled in CMSR).

Mode How to get there
UDI Execute an undefined instruction
FIQ Set the FIQ pin to '1'
IRQ Set the IRQ pin to '1'
ABT Set the instruction fetch abort pin (I-Abort) or the data fetch abort pin (D-Abort) to '1'
SVP Execute the “SWI” instruction

Whenever a valid interrupt is taken, the processors does the following operations:

➔ Save the jump-back (link) address to the new mode's link register

➔ Copy the current machine status register (CMSR) to the corresponding saved machine status
register (SMSR) of the new mode

➔ If the source of the interrupt is an external pin (IRQ, FIQ, IAB, DAB), disable the corresponding
interrupt-enable-bit in the CMSR

➔ The processor resumes operation at the corresponding interrupt base address

9 Last modified 15.05.2012

STORM CORE Processor System www.opencores.org
by Stephan Nolting

Internal interrupts, such as software and undefined instruction interrupts, are always triggered by specific
opcodes (e.g. the SVP trap is entered when executing the SWI instruction). So this type of interrupt is
already synchronous to the STORM Core pipeline and needs no further synchronization.

External interrupts (DAB, IAB, FIQ, IRQ) can occur at any time and asynchronous to the pipeline.
When a valid external interrupt request appears, the instruction fetch of the core is stopped and the pipeline
continuous operation until all instruction, which are currently in the pipeline, have terminated. Afterwards,
the processor changes the operation mode and executes the branch-and-link operation to resume operation at
the corresponding entry of the interrupt vector table.

When there are several interrupt requests at the same time, the one with the highest priority is executed. All
other pending interrupt requests (which are valid) are stored, so they can be executed after the interrupt
handler has finished.

1 (highest priority) - DAB: Data fetch abort
2 - FIQ: Fast interrupt request
3 - IRQ: interrupt request
4 - IAB: instruction fetch abort
5 - UND: Undefined instruction abort
6 (lowest priority): - SVP: Software interrupt

Note: All external interrupts (except for the data- and instruction fetch abort) should be deactivated before
accessing the memory/IO system. Otherwise unintended bus-time-out interrupts may occur.

2.5 Machine Status Register

CMSR bit # Name Default Function
0 … 4 SREG_MODE_x 11111 Mode register, SYS after reset
6 SREG_FIQ_DIS 1 Fast interrupt request disable
7 SREG_IRQ_DIS 1 Interrupt request disable
8* SREG_DAB_DIS 1 Data fetch abort disable
9* SREG_IAB_DIS 1 Instruction fetch abort disable
28 SREG_O_FLAG 0 Overflow flag
29 SREG_C_FLAG 0 Carry flag
30 SREG_Z_FLAG 0 Zero flag
31 SREG_N_FLAG 0 Negative flag

*) Note: This functionality is not ARM-compatible. In ARM processors, these bits are reserved and
the corresponding interrupts are always enabled.

10 Last modified 15.05.2012

STORM CORE Processor System www.opencores.org
by Stephan Nolting

3. Core Hardware

This chapter is about the internal RTL structure of the STORM Core processor.
All parts of the architecture are written using behavioral VHDL. Even if no dedicated hardware components
are instantiated, the coding style allows the synthesizing tools to map some modules to dedicated hardware
blocks (e.g. memories, multiplier, adders, ...).

3.1 Module Description

File name Functional description

ALU.vhd The ALU holds the primary data operation unit. All address operations are
calculated here (except for the program counter increment). Furthermore it
handles the data access to/from the machine control registers and to/from the
system coprocessor.

BARREL_SHIFTER.vhd This unit performs the barrel-shifting of the data in ALU data path B.
The shift value can either be an immediate value directly from the opcode or
a register value.

BUS_UNIT.vhd The bus unit presents the Wishbone bus interface. Data and instruction fetch
to or from the cache memories are coordinated by this unit. It can operate
with a different clock than the core itself.

CACHE.vhd This is the basic component for the instruction (IC) and data cache (DC). The
cache is fully associative and can be mapped to dedicated memory blocks.

CORE.vhd The CORE.vhd is the top entity of the STORM processing units.

CORE_PKG.vhd This file is the main package file, where all necessary modules and
parameters are defined.

FLOW_CTRL.vhd The flow control generates the control signals for each stage and every
module within the pipeline. The decoded instruction data is brought to this
unit where it triggers all internal operations. Furthermore the instruction
arbiter, the cycle arbiter, which solves temporal pipeline conflicts, the branch
arbiter and the condition check system are located here.

LOAD_STORE_UNIT.vhd The load-store unit generate the address and the control signals for the data
cache access port.

11 Last modified 15.05.2012

STORM CORE Processor System www.opencores.org
by Stephan Nolting

File name Functional description

MC_SYS.vhd The MC system holds the machine control circuits, which include the
program counter, the current and saved machine status register as well as the
interrupt handler, the branch system and the context change system. Also the
internal system control coprocessor is located here.

MS_UNIT.vhd This “multishifter” performs either a multiplication or a barrel shift and
outputs the data onto the ALU's secondary data path. Due to the three
operand slots, a shift or a multiplication needs no additional data fetch
cycles.

MULLTIPLY_UNIT.vhd The multiply unit calculates a 32x32 bit operation and outputs the lower 32
bits of the result to the ALU data path B.

OPCODE_DECODER.vhd This unit decodes the ARM 32-bit opcodes into processor control signals.

OPERAND_UNIT.vhd This unit performs the operand fetch for all the 3 operand-slots. It loads
register values from the register file and immediate values from the
instruction decoder. Also the pipeline data conflict detector and the
forwarding system are located here.

REG_FILE.vhd This unit contains the main data register file. It consists of 32 registers,
whereof 16 are accessible at one time, depending on the current operating
mode. The registers are mapped to three memory blocks to create three read
data read ports while efficiently using the hardware.

STORM_TOP.vhd This is the top entity of the complete processor system. It inlcudes the
processing core, data and instruction cache and a Wishbone compatible bus
interface.

WB_UNIT.vhd The write-back unit performs the data write back to the register file and also
accepts the read data from the data cache interface.

12 Last modified 15.05.2012

STORM CORE Processor System www.opencores.org
by Stephan Nolting

3.2 Data Flow

The STORM pipeline consists of 8 stages:

1. IA: Instruction access (program counter)
2. IF: Instruction fetch (I-cache access)
3. ID: Instruction decode
4. OF: Operand fetch
5. MS: Multiplication / Shift
6. EX: Execution
7. MA: Memory access
8. WB: Data write back

Stage Functional description
1. IA A new instruction cycle starts with the output of the new value for the the program counter,

which is old_value + 4, since all instructions are 32 bit wide and have to be aligned.
2. IF The instruction cache accepts the instruction request and outputs the requested data (if

available). If the requested cache line is not available, a new cache page gets updated with the
needed data set (see next chapter for more information).

3. ID In the next cycle, the instruction is loaded into the instruction register and the instruction
decoder decodes the applied opcode into internal control signals.

4. OF The decoded control information loads the needed registers from the register bank. Also the
forwarding system takes action in this cycle to fetch operand if there are any data conflicts.

5. MS In this stage, a multiplication or a shift of the operands can be applied.
6. EX The following stage is the main execution stage. The arithmetical and logical operations take

place in this module. Also, values from the machine status registers or the coprocessors can be
loaded here and also the condition check is done in this stage.
So all instructions, even with a not fulfilled condition code, are valid until this stage, if they were
not marked as invalid by the instruction arbiter or the branch control.

7. MA The next stage performs the memory access and also can update the machine status registers, the
PC and the coprocessor registers. The data address and all needed control signals are send to the
D-cache. Furthermore the write-data gets aligned if necessary and is also brought to the data
memory interface.

8. WB The final stage is the data write back stage. Read-data from the D-cache is read into this stage,
where it gets aligned, depending on the read data quantity and the address offset. Data from the
WB stage - either the read memory data or the stage output data of the previous stage - is
directly written on the next rising clock edge to the destination register in the data register file.
The data flow resumes in the operand fetch stage.

13 Last modified 15.05.2012

STORM CORE Processor System www.opencores.org
by Stephan Nolting

3.3 Cache access

If a requested data entry is not available in a cache memory, a new cache page will be downloaded from the
memory/IO system. This can take several cycles, depending on the cache's page size, the speed of the bus
system and the speed of the accessed device (e.g. memory).

When the device access takes longer than a maximum value, that can be specified using the system
coprocessor, the IAB interrupt is taken (only when the bus unit was fetching instructions (data for i-cache).
When it was fetching data (data for the d-cache) the DAB interrupt is taken). Maximum value for
max_cycle_length (maximum bus cycle length) = x”FFFF”.

Re-updating (invalidating all cache entries to get the most recent data from the memory/IO system) and
flushing (copying all cache pages to the memory/IO system) the cache manually can be done by using the
system control coprocessor. The page replacement strategy is “least used”.

3.3.1 MEM / IO → Cache coherency

If there are other devices than the STORM Core, that can access the memory system, he user has to take
care, that the cache has always the recent data from this memory system. For example by using an external
interrupt (IRQ), other master devices can show that data within the memory system was changed.
IO devices, such as communication devices (UART, SPI, ...), should not be cached, because this might lead
to incoherent data. Use the IO area definition generics (IO_UC) to define the address space, where IO
devices are located. Nevertheless, IO devices can be cached (DC_CIO bit in sys_cp system control register)
to support an increase in data transport speed for streaming devices.

Note: For cache “read-through”, set the IC_AUTOPR/DC_AUTOPR bit in the sys_cp system control register.

3.3.2 Cache → MEM / IO coherency

When using “Write-Thru” coherency strategy, any modification of a cache entry (of course only within the d-
cache) leads to a write back of the complete corresponding cache page to the memory/IO system. This might
cause problems for IO devices (e.g. UART), which trigger their operation on write-access bus cycles. To
avoid this problem, IO devices should be mapped to a specific address area, which is defined by the IO_UC
generics.
Disabling the “Write-Thru” strategy in the system control coprocessor introduces the standard coherency
strategy, where a modified cache page is only written back to the memory/IO system when it is going to be
replaced by the bus unit.

!
If there are unused address areas within the valid memory/IO address space, which can be cached, a
time-out might occur during a page upload/download, because the bus unit is waiting for an
acknowledge from addresses, which are not used. Ensuring a whole-less memory map is crucial. Insert
simple dummy registers to close those address gaps within the cache-able address area.

14 Last modified 15.05.2012

STORM CORE Processor System www.opencores.org
by Stephan Nolting

3.4 Example Bus Cycles

-- D-cache page download, burst transfer (page size = 8) --

-- D-cache page upload, burst transfer (page size = 8) --

-- dedicated IO access --

15 Last modified 15.05.2012

STORM CORE Processor System www.opencores.org
by Stephan Nolting

3.5 Pipeline Conflicts

When executing linear programs (no branches) without any dependencies between instructions in the
pipeline, there are no pipeline conflicts. For all other cases, an arbitration logic is needed, which solves this
conflicts. There are two different types of conflicts: Just to differentiate between them, they will be called
“local” and “temporal” pipeline conflicts.

3.5.1 Local Pipeline Conflicts

Local pipeline conflicts occur, when data, that is needed for further processing, has not yet reached the end
of the pipeline (register file), so it is still somewhere else in the pipeline.

Program example: ADD R1, R2, #1 (R1 = R2 + 1)
ADC R5, R4, #2 (R5 = R4 + Carry + 2)
SUB R3, R1, #1 (R3 = R1 – 1)

The SUB needs the result of the ADD. But when the SUB is in the operand fetch stage, the ADD just has
reached the EX stage. Since the ADD instruction needs no further processing, the result is already correct.
To avoid wait cycles until the result is written back to the register file, the forwarding unit loads the data
directly from the EX stage into the operand fetch unit, where the forwarded result is used instead of the
actual data from R1.

The forwarding system can forward data from the EX stage, the MA stage and the WB stage, where earlier
pipeline stages have higher priority than later ones. The unit itself is based within operand_unit.vhd file.

3.5.2 Temporal Pipeline Conflicts

Temporal pipeline conflicts occur, when the processor is trying to forward a result, that has not been
completely computed yet. So the conflict cannot be solved by forwarding data from some other pipeline
stage, since the correct data does not exist yet.

Program example: ADD R1, R2, #1 (R1 = R2 + 1)
SUB R3, R1, #1 (R3 = R1 – 1)

When the SUB instruction is in the operand fetch stage, the ADD is in the MS stage, so no addition has taken
place yet. The processor can detect this conflict and stalls the instruction fetch for one cycle. That means, the
ADD instruction can resume processing in the pipeline, while the SUB instruction is freezed in the OF stage
until the needed data is available. The empty “slots” between this instruction (OF: SUB, MS: NOP, EX:
ADD) are filled with “NOPs”. This “no-operation” instruction does not perform any data manipulation.

Temporal data dependencies can occur in the OF, the MS and the EX stage, when trying to get not yet
calculated data. The unit, which solves this conflicts, is the “Temporal Data Dependence Detector” in the
operand_unit.vhd file, which communicates via the “halt_bus” directly with the instruction cycle arbiter in
the flow_ctrl.vhd file.

16 Last modified 15.05.2012

STORM CORE Processor System www.opencores.org
by Stephan Nolting

3.5.3 Branches

There are three causes for a non linear change of the program counter:
• unconditional/conditional branches
• interrupts/exceptions
• manual writing to R15

All these operations result in a branch to a new PC value. The PC gets updated with non-linear data (= when
the new PC value is not “old_value + 4”) on a rising edge between EX and MA stage.
(Branch “prediction” is 'always taken'.)

Example program: CMP R0, R3 (compare R0 <=> R3)
BEQ subroutine (branch if equal)
ADD R3, R0, R1 (obsolete)
EOR R5, R0, R1 (obsolete)
SUB R2, R0, R1 (obsolete)

When the branch instruction BEQ reaches the EX stage, the ADD is in the MS stage, the EOR is in the OF
stage and the SUB is in ID stage. All the instructions, which are in earlier stages than the BEQ in the EX
stage, have to be invalidated by the branch arbiter (“branch cycle arbiter” → flow_ctrl.vhd file).

Until the processing can resume at the new position, the new address hast to be moved into the PC, send to
the memory and the new opcode needs to be stored in the instruction register, so the instruction processing -
starting in the IA stage – needs to be disabled for the next 3 cycles, which are necessary to fetch the next
valid instruction until the OF stage.

3.5.4 Memory-based Branches

Memory-based branches are a special form of (manual) branches. Here, the new value for the program
counter does not come from a data register, but from the external memory/IO system.

Example program: LDR PC, [R0] (PC = MEM[R0])
ADD R3, R0, R1 (obsolete)
EOR R5, R0, R1 (obsolete)
SUB R2, R0, R1 (obsolete)

The program counter gets it's update after the EX stage. But since the update value comes from the memory
system, it is not available until the LDR instruction reaches the WB stage. The problem is, that a single
instruction (the LDR in this case) needs data, which is generated at the end of the pipeline, already at an
early pipeline stage. This conflict cannot be solved by forwarding or stalling alone: Only the LDR is allowed
to process within the pipeline, the instruction fetch is halted. So two empty instructions between the LDR
and the next valid instruction are created. When the LDR reaches the WB stage, the data is passed via a
special bus towards the PC, which can be updated without any conflicts since the instruction in the EX stage
(and the MA stage) is invalid (→ empty instruction = “bubble”).

17 Last modified 15.05.2012

STORM CORE Processor System www.opencores.org
by Stephan Nolting

3.6 Stage Control Bus

The main control bus (CTRL) is generated by the opcode decoder and contains all the signals, which are
needed to determine the single operations of an instruction. For each pipeline stage, the bus is registered in
the FLOW_CTRL. Some signals, like the enable signal, are recomputed during the pipeline flow.
To keep the design flexible for future changes, all signals are carried throughout the end of the pipeline.

Bit # Signal name Function
0 CTRL_EN Enable signal, all other signals are valid when set to '1'
1 CTRL_CONST Second operand is an immediate
2 CTRL_BRANCH Is branch operation
3 CTRL_LINK Is link operation
4 CTRL_SHIFTR Use register value for shift positions
5 CTRL_WB_EN Enable write-back to register file
6 CTRL_RD_0 Destination register address
7 CTRL_RD_1
8 CTRL_RD_2
9 CTRL_RD_3
10 CTRL_SWI Is software interrupt instruction
11 CTRL_UND Is undefined instruction
12 CTRL_COND_0 Condition code
13 CTRL_COND_1
14 CTRL_COND_2
15 CTRL_COND_3
16 CTRL_MS Use shifter ('0') or multiplier ('1')
17 CTRL_AF Alter ALU flags /

reload CMSR
*) Signals are re-used for the processor
operating mode after MEM stageCTRL_MODE_0*

18 CTRL_ALU_FS_0 ALU function select
CTRL_MODE_1*

19 CTRL_ALU_FS_1
CTRL_MODE_2*

20 CTRL_ALU_FS_2
CTRL_MODE_3*

21 CTRL_ALU_FS_3
CTRL_MODE_4*

22 CTRL_MEM_ACC Data cache access

18 Last modified 15.05.2012

STORM CORE Processor System www.opencores.org
by Stephan Nolting

Bit # Signal name Function
23 CTRL_MEM_DQ_0 Transfer data quantity

“00” → Word, “01” → Byte, “10”/”11” → Half word24 CTRL_MEM_DQ_1
25 CTRL_MEM_SE Use sign extension for data cache read
26 CTRL_MEM_RW Data cache read ('0') / write ('1') access
27 CTRL_RD_USR Read data from USER register bank
28 CTRL_WR_USR Write data to USER register bank
29 CTRL_MREG_ACC Access machine register file (MREG)
30 CTRL_MREG_M Access CMSR ('0') / SMSR ('1')
31 CTRL_MREG_RW MREG read ('0') / write ('1') access
32 CTRL_MREG_FA Full access ('0') / flag access only ('1')
33 CTRL_CP_ACC Access coprocessor
34 CTRL_CP_RW Coprocessor read ('0') / write ('1') access
35 CTRL_CP_REG_0 Coprocessor source / destination register address
36 CTRL_CP_REG_1
37 CTRL_CP_REG_2
38 CTRL_CP_REG_3
39 CTRL_SHIFT_M_0 Barrelshifter shift mode
40 CTRL_SHIFT_M_1
41 CTRL_SHIFT_V_0 Barrelshifter shift value (immediate)
42 CTRL_SHIFT_V_1
43 CTRL_SHIFT_V_2
44 CTRL_SHIFT_V_3
45 CTRL_SHIFT_V_4
46 CTRL_BX Is branch-and-exchange instruction

19 Last modified 15.05.2012

STORM CORE Processor System www.opencores.org
by Stephan Nolting

3.7 Forwarding Bus

A unique forwarding bus is generated by each data processing stage within the pipeline.
So there is one forwarding bus for the MS stage, one for the EX stage, one for the MA stage and one for the
WB stage. They are used to detect pipeline conflicts. This is done by the operand unit.

Bit # Signal name Function
0
...
31

FWD_DATA_LSB
...
FWD_DATA_MSB

Operand data bus

32
...
35

FWD_RD_LSB
...
FWD_RB_MSB

Destination register address

36 FWD_WB Data value will be written back to register file
37 FWD_MCR_MOD Machine register file may get modified
38 FWD_FLAG_MOD Status flags may get modified
39 FWD_MCR_R_ACC Memory read access
40 FWD_MEM_R_ACC Machine register file read access
41 FWD_MEM_PC_LD PC load from memory (memory-based branch)

20 Last modified 15.05.2012

STORM CORE Processor System www.opencores.org
by Stephan Nolting

4. Internal Coprocessor

The STORM Core provides no interface for external coprocessors yet. But nevertheless, it is equipped with
an internal coprocessor unit to give access to different system control features and internal peripherals. This
coprocessor is mapped to coprocessor number 15. When trying to access any other coprocessor than CP 15
or if any other coprocessor instruction than coprocessor-register-transfer is executed, the undefined
instruction trap will be taken. Also, a write access to the coprocessor, which is not done in privileged mode,
triggers the undefined instruction trap.

Program example (flush d-cache): MCR P15, 0, R3, C6, C6
ORR R3, R3, #1
MRC P15, 0, R3, C6, C6, 0

Note: The operation bit-fields (here set to 0) in MCR and MRC instructions are ignored by the processor.

Register number Register name R/W Function
0 ID_REG_0 r Core update date

1 ID_REG_1 r Core ID

2 ID_REG_2 r Core ID

3 reserved r reserved
4 reserved r reserved
5 reserved r reserved
6 SYS_CTRL_0 r/w This register gives access to different system control functions

7 reserved r reserved
8 CSTAT r Current cache hit-rate statistics

9 ADR_FB r Address feedback from bus unit

10 reserved r reserved
11 LFSR_POLY r/w Internal LFSR: Polynomial register

12 LFSR_DATA r/w Internal LFSR: Data register

13 SYS_IO r/w Direct IO register

14 reserved r reserved
15 reserved r reserved

21 Last modified 15.05.2012

STORM CORE Processor System www.opencores.org
by Stephan Nolting

4.1 System Coprocessor Register Set

ID Register 0, 1, 2

This registers present basic information about the STORM Core Processor.

CP Reg Register Bits r/w default Function
0 ID_REG_0 31 .. 16 r 2012 Core version update date, year

15 .. 08 r 5 Core version update date, month

07 .. 00 r 13 Core version update date, day

1 ID_REG_1 31 .. 00 r “StNo” ID_0, 4 ASCII symbols

2 ID_REG_2 31 .. 00 r “4788” ID_1, 4 ASCII symbols

System Control Register 0

The system control register 0 gives access to advanced system configuration options.

CP Reg Bit(s) Name Def Function
6 0 DC_FLUSH 0 Flush (write back) D-cache, auto-reset to '0' after execution

1 DC_CLEAR 0 Clear D-cache (reload cache), auto-reset to '0' after execution

2 IC_CLEAR 0 Clear I-cache (reload cache), auto-reset to '0' after execution

3 DC_WTHRU 0 Enable write-through coherency strategy for D-cache

4 DC_AUTOPR 0 Auto pre-reload accessed D-cache page (→ “read-through”)

5 IC_AUTOPR 0 Auto pre-reload accessed I-cache page (→ “read-through”)

6 CACHED_IO 0 Enable cached IO

7 PRTC_IO 1 Devices within IO area can only be accessed in privil. modes

8 DC_SYNC 0 D-Cache is sync when '1' (read-only)

9 reserved 0 reserved
10 reserved 0 reserved
11 reserved 0 reserved
12 reserved 0 reserved
13 LFSR_EN 0 Enable internal LFSR

14 LFSR_M 0 New data after core clock ('0') or after data reg read-access ('1')

15 LFSR_D 0 LFSR shift direction ('0': right, '1': left)

16..31 MBC 256 Maximum Wishbone bus cycle length

22 Last modified 15.05.2012

STORM CORE Processor System www.opencores.org
by Stephan Nolting

Cache Hit Rate Statistics Register

This register gives basic information about the D/I-cache hit statistics. Every hit access increments the
corresponding counter. A miss access resets the corresponding counter.

CP Reg Bits Function
8 31 .. 16 D-Cache hit statistics, Hex FFFF is maximum value → D-Cache hit rate is one

15 .. 00 I-Cache hit statistics, Hex FFFF is maximum value → I-Cache hit rate is one

Bus Unit Address Feedback

Via this register the core can get access to the last used Wishbone address. This can be used to examine the
reason for a data / instruction abort (DAB/IAB exception).

CP Reg Function
9 Last accessed Wishbone address

Internal Linear Feedback Shift Register (LFSR)

An internal LFSR is also supported by the system coprocessor. LFSR_POLY contain the
polynomial for the feedback. LFSR_DATA represents the shifted data f the LFSR. The LFSR is
activated by the LFSR_EN bit. It's shift direction can be set by the LFSR_D bit.
An update (next LFSR value) can either be generated on every core clock tick (setting LFSR_M
to '0') or after every read-access to the LFSR_DATA register (setting LFSR_M to '1').

CP Reg Register Function
11 LFSR_POLY Polynomial register for internal LFSR

12 LFSR_DATA Internal LFSR data register

System IO Port

Two 16 bit IO signals are provided by the STORM Core to directly control system functions without using
an extra IO controller.

CP Reg Bits Function
13 SYS_IO(31:16) Input port (read-only)

SYS_IO(15:00) Output port

23 Last modified 15.05.2012

STORM CORE Processor System www.opencores.org
by Stephan Nolting

5. Getting Started

Start your evaluation tool (Xilinx ISE, Altera's Quartus II, Model Sim, etc) and create a new project, adding
all files from the project's rtl directory. The file names of all needed files are listed in chapter 1.2.

The STORM_TOP.vhd is the top entity of the complete processor system. Instantiate this component in
your design, configure all the generics and connect the ports to a Wishbone compatible interconnection
fabric.

Note: For advanced simulation and debugging, you can enable a cache-memory-content signal, which
allows an easy (and understandable) representation of the current content of each cache.
Open the CACHE.vhd file and uncomment the GEN_DEBUG_MEM section (lines 552 - 556).
Do this only when you are simulating, otherwise the synthesis tool might not be able to fit the
cache memory blocks into dedicated hardware memory components.

! I recommend the use of the STORM SoC (→ see chapter 5.4) as initial platform for
system designs as well as for advanced simulation/debugging.

5.1 Demo SoC Setup (obsolete!)

A basic setup of a simple SoC, including a compatible Wishbone fabric and bus system, a program/data
memory and an IO controller, can be found within the STORM_core_TB.vhd file (sim folder). When using
Xilinx ISIM, a basic waveform from the “sim/Xilinx ISIM” folder can be used to have a general overview of
all important core signals (register, memories, IO, …).
The memory component already contains a simple demo program (→ “software/C/main.c”) for testing the
Demo SoC. It calculates the first 30 Fibonacci numbers and shows them on the IO controller's output port.

Memory Map
Address Type R/W Device

x”00000000”
…

x”000003FF”

MEM r/w 1024 bytes of internal program / data
memory, preloaded with demo program

x”FFFFE020” IO r/w Parallel output port
x”FFFFE024” IO r/w Parallel input port

24 Last modified 15.05.2012

STORM Core
STORM_TOP.vhd

Wishbone busInternal Memory
MEMORY.vhd

IO Controller
GP_IO_CTRL.vhd

Demo SoC
STORM_core_TB.vhd

STORM CORE Processor System www.opencores.org
by Stephan Nolting

5.2 Software Setup Using Assembler (arm-elf)

>> recommended for simple simulation and debugging only <<

→ arm-elf-as.exe : The arm-elf assembler
→ extract.exe : The program extractor
→ macro.inc : Assembler macros
→ main.asm : Main program file
→ make.bat : Processing batch file

The folder “software/ASM” contains the arm-elf-asm assembler. With this tool, assembler programs can
directly be converted into ARM-compatible opcodes. For easy software processing, the make.bat batch file
can be used. The main.asm is the main program file. It includes the macro.inc, which supports some useful
assembler macros.

To process, execute: make

Executing the “make” batch file will assemble the main.asm and all included project files. It generates the
a.out opcode file, from which the program extractor (extract.exe) extracts the binaries for the program
memory of the processor core. The mnemonic.txt contains the opcodes as VHDL memory initialization
construct, which can be directly copied into the memory's vhdl file (→ MEMORY.vhd). The mnemonic.dat
contains the opcodes in binary format. This file can be used for programming via bootloader.

5.3 Software Setup Using C (WinARM)

>> obsolete, use the STORM SoC instead <<

→ build/STORMcore-RAM.ld : Linker script file
→ storm_extractor.exe : The program extractor
→ main.c : Main program file
→ makefile : Processing makefile
→ storm_core.h : STORM Core register definitions

The folder “software/C” contains the basic pattern for the setup of a C software project for the STORM Core.
If you are using WinARM, simply edit the main.c and execute the make file after wards. Just like the
mnemonic extractor from the ASM project folder, the storm_extractor from the C project folder will ouput a
storm_program.txt for direct VHDL memory initialization and a storm_program.bin, which can directly be
used for bootloader programming.

To process, execute: make clean all

The main.c file contains a simple demo program, which calculates the first 30 Fibonacci numbers. It is
intended to be used within the Demo SoC project / testbench.

25 Last modified 15.05.2012

STORM CORE Processor System www.opencores.org
by Stephan Nolting

5.4 STORM SoC (System on Chip)

The STORM SoC provides a complete FPGA/evaluation board-independent microcontroller
system based on the STORM Core processor.

Download it at: http://www.opencores.com/project,storm_soc

>> STORM SoC Basic configuration <<

Features:

✔ Based on the STORM Core Processor System (ARM native)
✔ Open-source hardware (completely described in VHDL) and software (C/ASM)
✔ 1kb D-cache and 1kb I-cache (both are full-associative)
✔ 32-bit Wishbone bus system (pipelined)
✔ Clock and reset manager
✔ WinARM compatible makefile
✔ Pre-defined driver libraries (C files)
✔ Internal 32 kb RAM for program code and data, 8 kb ROM with pre-installed bootloader
✔ 32-bit system timer
✔ Vectorized interrupt controller (LPC compatible)
✔ 8 general purpose input pins
✔ 8 general purpose output pins
✔ Simple mini UART (9600-8-N-1)
✔ SPI controller providing 3 ports (3/3/2 chip select lines each)
✔ I²C controller (boot from I²C EEPROM supported by processor)
✔ 8 independent PWM output channels

26 Last modified 15.05.2012

Reset
STORM CORE

Reset
Clock

miniUART

PWM Ctrl

UARTSRAM

IO Ctrl 2x8 I/O Port

Boot ROM

Timer

IRQ & FIQ

SPI Ctrl 8x SPI Port

Wishbone bus

8 PWM
channels

VIC

I²C Ctrl I²C Port

PLL

Custom IPCustom IO

http://www.opencores.com/project,storm_soc

