
mov is Turing-complete

Stephen Dolan
Computer Laboratory, University of Cambridge

stephen.dolan@cl.cam.ac.uk

Abstract
It is well-known that the x86 instruction set is baroque, overcom-
plicated, and redundantly redundant. We show just how much fluff
it has by demonstrating that it remains Turing-complete when re-
duced to just one instruction.

The instruction we choose is mov, which can do both loads
and stores. We use no unusual addressing modes, self-modifying
code, or runtime code generation. Using just this instruction (and
a single unconditional branch at the end of the program to make
nontermination possible), we demonstrate how an arbitrary Turing
machine can be simulated.

1. Introduction
The mov instruction on x86 has quite a few addressing modes.
This instruction can be used to do memory loads or stores, as well
as loading immediate constants into registers. Powerful as it is, it
doesn’t do any form of conditional branching or comparison, so it’s
not obvious that it is Turing-complete on its own.

Of course, on an actual x86 processor the mov instruction can
be used to write arbitrary code into memory after the instruction
pointer which the processor will then execute, making it in some
sense trivially “Turing-complete”. We consider this cheating: our
simulating of a Turing machine uses no self-modifying code nor
runtime code generation, and uses no obscure addressing modes.
In fact, the addressing modes used are available as instructions on
most RISC architectures, although RISC machines generally don’t
call them all mov.

Executing a finite sequence of mov instructions will complete in
a finite amount of time. In order to have Turing-completeness, we
must allow for nontermination. So, our Turing machine simulator
consists of a sequence of mov instructions, followed by an uncon-
ditional branch back to the start.

2. Machine model
We work with a simple abstract machine model. Our machine has
a random access memory composed of words. Each word can hold
either a memory address or an offset, where offsets are either 0
or 1 (which are not valid memory addresses). We have n registers
R1, . . . , Rn, which also hold a word each. We assume plenty of

[Copyright notice will appear here once ’preprint’ option is removed.]

registers for now, but later we show how their number can be
reduced without losing expressiveness.

We have the following instructions (if you like RISC) or ad-
dressing modes (if you like CISC). We use Intel x86 syntax, where
the mov instructions have the destination first and the source sec-
ond, and square brackets indicate memory operands.

Instruction x86 syntax
Load Immediate mov Rdest, c

Load Indexed mov Rdest, [Rsrc + Roffset]

Store Indexed mov [Rdest + Roffset], Rsrc

On x86, these are all addressing modes of the same mov in-
struction. However, even on RISC machines these are still single
instructions. For instance, on PowerPC these three operations are
li, ldx and stx.

It would appear that we are cheating slightly by allowing arith-
metic in addresses. However, our “arithmetic” is of a very restricted
form: the indexed instructions may only be used when Rsrc (or
Rdest for stores) is an even-numbered memory addresses. Since
offsets are always 0 or 1, then our “arithmetic” can be implemented
as bitwise OR, or even bitstring concatenation.

From these three instructions, we have a few simple derived
instructions. We can use the load indexed and store indexed in-
structions with a constant offset by using a temporary register. For
instance, the load instruction mov Rdest, [Rsrc] can be imple-
mented as follows, using the register X as a temporary:

mov X, 0
mov Rdest, [Rsrc]

As it happens, these constant-offset instructions are available as
other addressing modes of mov on x86.

Memory is logically divided into cells, which are pairs of adja-
cent words which start on even-numbered memory addresses. Our
load indexed and store indexed operations can be viewed as load
and store to a cell, where the address of the cell is given by one reg-
ister, and which of the two words to access is specified by another
register.

Using just these instructions, we can simulate an arbitrary Tur-
ing machine.

3. Representing Turing machines
A Turing machineM is a tuple

M = (Q, q0,Σ, σ0, δ)

whose components are:

• A finite set of states Q, with a distinguished start state q0 ∈ Q.
• A finite set of symbols Σ, with a distinguished blank symbol
σ0 ∈ Σ.

• A transition table δ, which is a partial function Q × Σ →
Σ× {L,R} ×Q.

1 2013/7/19

q1

q0start q2

0, 1, R

1, 1, L

0, 1, L

1, 1, R

Q0

S0 S1 1 Q1 N

N S1 S1 0 Q1 N

Q1

S0 S1 0 Q0 N

N S1 S1 1 N N

Figure 1. A simple Turing machine and its transition table represented as linked memory cells. Transitions are labelled with their triggering
symbol, new symbol, and direction.

The Turing machine has a tape, which consists of a infinite
sequence of positions each of which contains a single symbol. The
machine has a current state, which is initially q0, and a current
position, which is initially the leftmost position on the tape with
the tape extending infinitely to the right. All tape positions initially
contain σ0.

The machine repeatedly consults the transition table δ. If δ is
not defined for the current state and the symbol at the current
position, then the machine halts. If it is defined as (σ′, d′, q′), then
the current state is set to q′, the symbol at the current position is set
to σ′, and the current position moves leftward one place (if d′ = L)
or rightward one place (if d′ = R), and the machine continues.

We can represent a Turing machine in memory cells. The sym-
bols are represented as cells at addresses S1, . . . , S|Σ|, where each
symbol in Σ corresponds to some Si and the blank symbol σ cor-
responds to S1. The contents of the cells Si are unspecified.

We represent states and the transition table as lists. Our cells
are like Lisp cons cells, and so we may represent lists like Lisp
does: a non-empty list is represented by a cell whose first word
contains contains the first element of the list, and whose second
word points to the rest of the list, represented in the same fashion.
The empty list is represented by a cell at addressN whose contents
are unspecified.

For any state q, we say that its set of outgoing transitions is the
set of tuples (σ, σ′, d′, q′) such that δ(q, σ) = (σ′, d′, q′). Each
state is represented as a list of its outgoing transitions, and each
outgoing transition is represented as a list of four elements: the
triggering symbol σ and the new symbol σ′ are represented as the
addresses of the corresponding cells Si and Sj , the direction d′ is
represented as 0 (if d′ = L) or 1 (if d′ = R), and the new state q′

is represented as the address of its list of outgoing transitions.
In the Turing machine of Figure 1, there are three states q0, q1

and q2. States q0 and q1 have two outgoing transitions each, and
q2 has none. The cell Q0 holds a list representing the outgoing
transitions of q0. Both of these transitions are to the stateQ1, so the
fourth cell of the list representing each transition holds the address
of Q1 (this is not shown by an arrow on the diagram to avoid
clutter). The state q3 has no outgoing transitions, so is represented
by N , the empty list.

All of the other cells of memory form the tape of the Turing ma-
chine. To simulate a Turing machine, we assume the tape is infinite
(although on a real machine it will be bounded by address space),
and so the cell addresses are given by the sequence T1, T2,
These cells are initialised so that the contents of the word at ad-
dress Tn is the address S1, and the contents of the word at address
Tn + 1 is the address Tn+1.

In this way, we can think of T1 as being the start of an infinite
list, where each element of the infinite list initially contains S1.

As is usual when discussing Turing-completeness, we concern
ourselves only with computation, ignoring input and output. We
assume that the input is a sequence of symbols placed in the first
word of the cells T1 to Tn before our program starts, and that
the output of the program is determined by examining the tape
afterwards.

Our version of Turing machines doesn’t have particular accept-
ing or rejecting states, but this is not a loss of power as they can
be emulated by writing an “accept” or “reject” symbol to the tape
before halting.

4. Comparisons and conditionals
A fundamental aspect of computation is branching: choosing which
action to perform next based on a runtime value. So, our machine’s
total lack of conditional branches, computed jumps or anything
that even smells like a comparision instruction might seem like an
impediment.

Yet as it turns out, we can do comparisons using only load
and store instructions. If you store a value into address A and
a different value into address B, then examining the contents of
address A afterwards will tell you whether A and B are equal.
Suppose registers Ri and Rj both point to symbols (that is, their
values are drawn from S1, . . . , S|Σ|). We can compare them as
follows:

mov [Ri], 0
mov [Rj], 1
mov Rk, [Ri]

This clobbers the values at addressesRi andRj , but this doesn’t
matter since symbol cells have unspecified contents. The effect is
that Rk gets the value 1 if Ri = Rj , and 0 otherwise.

We can also compare an arbitrary address against N using the
following code. In this example, Ri is the address being compared,
and we save its value in the scratch register X to avoid clobbering.
We assume the register N contains the address N .

mov X, [Ri]
mov [N], 0
mov [Ri], 1
mov Rj, [N]
mov [Ri], X

After this sequence,Rj is 1 ifRi is equal toN , and 0 otherwise.
This allows us to do a comparison, resulting in either zero or

one. We can then use that result to select between two different
values. Suppose we have two registersRi andRj , and a registerRk

that contains either 0 or 1. We can useRk to select betweenRi and
Rj by using Rk to index a two-element lookup table. The address

2 2013/7/19

N is conveniently available in the register N and has unspecified
contents, so we use that cell to hold our lookup table:

mov [N], Ri

mov [N+1], Rj

mov Rl, [N + Rk]

This sequence causes Rl to get the value of either Ri or Rj

depending on Rk.
With these operations, we are able to simulate an arbitrary

Turing machine, as the next section describes.

5. Simulating a Turing machine
We use a register T to hold the current transition to be tested, and a
register S to hold a cell containing the current symbol. The register
L holds the list representing the part of the tape to the left of the
current position, and the register R holds the list representing the
part to the right.

At program startup, T holds the address Q0, and S holds the
address T1. The register L holds the address N , and R holds the
address T2. The register L holds the portion of the tape to the left of
the current position in reversed order (which is initially the empty
list N). The order is reversed so that the nearest position is always
the first element of the list, so moving left can be done without
processing the entire list.

The register R holds the part of the tape to the right of the current
position, which is initially T2, the list of all but the first position on
the tape. The two lists held in L and R are used as stacks, where
moving rightward means pushing the current cell to L and popping
the next cell from R.

Since we use N a lot, we assume the register N always contains
the address N .

First, we check whether the current transition should fire, by
comparing S and the symbol on the current transition T.

mov X, [T] ;; get transition
mov X, [X] ;; get trigger symbol
mov Y, [S] ;; get current symbol
mov [Y], 0 ;; compare symbols
mov [X], 1
mov M, [Y]

After this sequence, the register M is 1 if the transition matches,
and 0 otherwise. Next, we update S: if the transition matches, we
use the transition’s new symbol, otherwise we leave it unchanged.

mov X, [T] ;; get transition
mov X, [X+1] ;; skip trigger symbol
mov X, [X] ;; load new symbol
mov Y, [S] ;; load old symbol
mov [N], Y ;; select between X and Y
mov [N+1], X
mov Z, [N + M]
mov [S], Z ;; write the new symbol

This updates S if the transition matches. Next, if the transition
matches, we need to advance the tape in the appropriate direction.
We do this in two stages. First, we push the cell S to one of the
tape stacks, and then we pop a new S from the other tape stack.
If the transition does not match, we push and pop S from the same
tape stack, which has no effect. To determine whether the transition
moves left or right, we use the following sequence:

mov D, [T] ;; get transition
mov D, [D+1] ;; skip trigger symbol
mov D, [D+1] ;; skip new symbol
mov D, [D] ;; load direction

After this, the register D holds the direction of tape movement:
0 for left, and 1 for right. If we are to move left, then the cell S

must be added to the tape stack R, and vice versa. Adding the cell
to a tape stack is done by first writing the tape stack’s current top
to [S+1], and then modifying the tape stack register to point at S.

mov [N], R ;; select new value for [S+1]
mov [N+1], L
mov X, [N + D]
mov [S+1], X
mov [N], L ;; select new value for L
mov [N+1], S
mov L, [N + D]
mov [N], S ;; select new value for R
mov [N+1], R
mov R, [N + D]

We must ensure that no movement of the tape happens if the
transition does not match (that is, if M = 0). To this end, we flip the
value of D if the transition does not match, so that we pop the cell
we just pushed.

mov [N], 1 ;; set X = not D
mov [N+1], 0
mov X, [N + D]
mov [N], X ;; select between D and X
mov [N+1], D
mov D, [N + M]

Next, we pop a cell from a direction indicated by D: if D = 0,
we pop a cell from L, and if D = 1 we pop one from R.

mov [N], L ;; select new value of S
mov [N+1], R
mov S, [N + D]
mov X, [S + 1] ;; get new start of L or R
mov [N], X ;; select new value for L
mov [N+1], R
mov L, [N + D]
mov [N], R ;; select new value for R
mov [N+1], X
mov R, [N + D]

So, if the current transition matches, this code writes a symbol to
the tape and advances in the appropriate direction. If the transition
doesn’t match, this code has no effect.

All that remains is to find the next transition to consider. If the
current transition matches, then we should look at the next state’s
list of transitions. Otherwise, we continue to the next transition in
the current state.

mov X, [T + 1] ;; get next transition of this state
mov Y, [T] ;; get current transition
mov Y, [Y + 1] ;; skip trigger symbol
mov Y, [Y + 1] ;; skip new symbol
mov Y, [Y + 1] ;; skip direction
mov Y, [Y] ;; load transition list of next state
mov [N], X ;; select next transition
mov [N + 1], Y
mov T, [N + M]

This finds the next transition our Turing machine should con-
sider. If T has the value N , then this means there are no more tran-
sitions to consider: either we got to the end of a state’s list of tran-
sitions with no matches, or we just transitioned to a state that has
no outgoing transitions. Either way, the machine should halt in this
case. First, we check whether this is the case by setting the register
H to 1 if T is N :

mov X, [T]
mov [N], 0
mov [T], 1
mov H, [N]
mov [T], X

3 2013/7/19

R1 R2 R3 R4

Figure 2. Scratch space as a circular list

If H is 1, we must halt the machine. We do so by reading from
the invalid memory address 0:

mov [N], 0 ;; select between 0 and N
mov [N+1], N
mov X, [N + H]
mov X, [X] ;; load from 0 or N

If this memory access does not halt the program, then we have
successfully found another candidate transition and put a pointer to
it in T, and we have the current symbol cell in S. We are therefore
in a suitable state to run the program again, so we use our single
unconditional jump to loop back to the start:

jmp start

This simultes an arbitrary Turing machine, using only mov (and
a single jmp to loop the program).

6. Register use
While building our Turing machine simulator, we made free use
of many temporary registers. The x86 architecture has never been
accused of having too many registers, and we seem to already have
exceeded the budget of 8 general-purpose registers.

The registers could be allocated more carefully to fit within the
limit, but we take a different approach: we show that any program
that can be implemented using our restricted instruction set can be
translated to an equivalent program using at most four registers.

Suppose the original program uses n registers R1, . . . , Rn. We
represent these in the translated program with n preallocated cells
of scratch space. The second word of each cell in scratch space
points to the next cell, and the second word of the last cell points to
the first, laying them out as a circularly linked list (see Figure 2).

Our four registers are S, which at startup points to the first cell of
scratch space, and three other registers A, B and C. We can advance
S to the next cell as follows:

mov A, 1
mov S, [S + A]

If the instruction mov S, [S + 1] is available directly, then
this can be done without using A. This allows us to load any Ri

value into A, B or C: we load 1 into the destination register, then
advance S to the correct position, and then perform mov A, [S].

We always know during the translation which scratch cell S
points to, so the number of mov S, [S + A] instructions required
to move S to the right scrach register is easily determined. For in-
stance, to loadR2,R4 andR1 into registers A, B and C respectively,
we generate the following code (assuming four scratch cells):

mov A, 1
mov S, [S + A]
mov A, [S]

mov B, 1
mov S, [S + B]
mov S, [S + B]
mov B, [S]

mov C, 1
mov S, [S + C] ;; wraps back to R1
mov C, [S]

Our operations have at most three source operands (for indexed
store), so for any operation we can use a sequence like the above to
load the operands into the registers A, B and C. We generate code to
perform the operation using those registers, and then generate code
to store the result back into the scrach space (if there is a result).
We assume that the result is in register A, but it is trivial to modify
the following for any other result register.

We use B as a scratch register, and cycle S as before:
mov B, 1
mov S, [S + A]

The mov S, [S + B] instruction is repeated as many times as
necessary to reach the desired scratch cell, and then the result is
stored using mov [S], A.

This transformation works for any program that can be imple-
mented in our restricted instruction set, including the Turing ma-
chine simulator of the previous section. It is therefore possible to
simulate an arbitrary Turing machine using only the mov instruction
and four registers.

Thus, while it has been known for quite some time that x86 has
far too many instructions, we can now contribute the novel result
that it also has far too many registers.

7. Discussion
Finding Turing-completeness in unlikely places has long been a
pastime of bored computer scientists. The number of bizarre ma-
chines that have been shown Turing-complete is far too great to
describe them here, but a few resemble what this paper describes.

That a computer can get by with just one instruction was shown
by Farhad Mavaddat and Behrooz Parhami [2]. Their machine uses
a single instruction that takes two memory addresses and a jump
target, and its operation is “subtract and branch if less than or
equal”, combining arithmetic, memory load, memory store and
conditional branching into one instruction.

A single instruction machine using only MOVE was described
by Douglas W. Jones [1], where Turing-completeness is gained by
having memory-mapped arithmetic and logic units (so that other
operations can be performed by moving data a predefined mem-
ory location and collecting the result afterwards). Some machines
based on this principle have been built, and are generally known as
“move machines” or “transport-triggered architectures”.

Raúl Rojas [3] shows that, with self-modifying code, an instruc-
tion set with load, store, increment, zero and unconditional branch-
ing is Turing-complete. In the same paper, he also shows that a
machine without self-modifying code or code generation is Turing-
complete with increment and double-indirect loads and stores. The
double-indirect memory operations use a register as the address of
a memory cell holding the address to access (in pseudo-x86 nota-
tion, the load looks like mov A, [[A]]).

Removing all but the mov instruction from future iterations of
the x86 architecture would have many advantages: the instruc-
tion format would be greatly simplified, the expensive decode unit
would become much cheaper, and silicon currently used for com-
plex functional units could be repurposed as even more cache. As
long as someone else implements the compiler.

References
[1] D. W. Jones. The Ultimate RISC. ACM SIGARCH Computer Architec-

ture News, 16(3):48–55, 1988.
[2] F. Mavaddat and B. Parhamt. URISC: The Ultimate Reduced Instruc-

tion Set Computer. International Journal of Electrical Engineering Ed-
ucation, 25(4):327–334, 1988.

[3] R. Rojas. Conditional Branching is not Necessary for Universal Com-
putation in von Neumann Computers. Journal of Universal Computer
Science, 2(11):756–768, 1996.

4 2013/7/19

