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Partitioning procedures for solving mixed-vatiables
programming problems”

By
J. F. BENDERS™*

I. Introduction
In this paper two slightly differeni procedures are prescated for solving
mixed-variables programming problems of the type

maxicTx + f{y}| Adx + F(y) =, xR, ¥E5], (1.4)
where xR, (the p-dimensional Euclidean space), yER,, and S is an arbitrary
subset of R, Furthermore, 4 is an (m, p) matrix, f{y} is a scalar function and
F(y) an m-component vector function both defined on 5, and & and ¢ are fixed
vectors in R, and R,, respectively.

An example is the mixed-integer programming problem in which certain
variables may assume any value on a given interval, whereas others are re-
stricted to integral values only. In this case & is a set of vectors in R, with
integral-valued components, Various methods for solving this problem have
been proposed by BraLe [/], GodMory [9] and Laxp and Dota [71. The use
of integer variables, in particular for incorporating in the programming problem
4 choice from a set of alternative discrete decisions, has been discussed by
Dantzic {41

Other examples are those in which certain varables occur m a linear and
others in a non-linear fashion in the formulation of the problem (see e.g. GRIFFITH
and STEWART [7!}. In such cases f{y) or some of the components of Fy) are
non-lincar functions defined on a suitable subset S of K.

Obviocnsly, after an arbitrary partitioning of the variables into two mutnaily
exclusive subsets, any linear programming problem can be considered as being
of tvpe {1.1). This may be advantagecus if the structure of the problem indicates
a natural partitioning of the variables. This happens, for instance, if the problem
is actuallv a combination of a general linear programming and a transportation
problem. Or, if the matrix shows a block structure, the blocks being linked only
by some columns, to which also many other block structures can easily be
reduced. A method of solution for linear programming problems etficiently
utilizing such block structures, has been designed by Daxtzic and WOLFE ra.

The basic idea behind the procedures Lo be described in this report 15 a
partitioning of the given problem (1.1} into two sub problems: a programming
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problt'm {which may be linear, non-linear, discrete, ete)) defined on 5, and a
Jinear programming problem defined in R,. Then. in order to aveid the very
jaboricus calculation of a complete set of constraints for the feasible region in
the first problem, two multi-step procedures have been designed both leading,
in a finite number of steps. to a set of constraints determining an optimuxh
olution of problem {1.1}. Eaclh step involves the solution of a general program-
ming problem. The two procedures differ only in the way the linear programming
problem 13 solved.

Earlier versions of these procedures constitute part of the author’s doctoral

dissertation [2]. This paper, however, contains a more detailed description of
the computational aspects.

I1. Preliminaries
We assume the reader to be familiar with the theory of convex polyhedral
sets and with the computational aspects of solving a linear programming liroblem
by the simplex method; see e.g. Tucker [13], GoLbmax (8] and Gass [6].
Throughout this paper #, v and z denote vectors in R, ; #y, x, and z; are
scalars.

For typographical convenience the partitioned column vectors

f:o , (,1:‘)) (_r)' (:&:‘) and {J”u.)
3y SN A € o

are written in the form (x, ¥, ¥}, (¥, ¥), [x, 5). (x, 2) and {ug, ), respectively.

The letter e will always stand for a vector of appropriate dimension with
all components equal to one,

If A is the {m, p} matrix and ¢ the vector in R, both occurring in the for-
mulation of problem (1.1}, we will define

{a} the convex polyhedral cone C in K, by

C={luy, v 2T —cuy =0, 430, uy= 0}, {2.1)
fb] the convex polvhedral cone Oy in R, by
Co={ul ATu 20, uz 0}, (22)
ic} the convex polyhedron P {which may bec empty) in R, by
P=fulATuz e, uz0}. 23]

III. A partitioning theorem
Introducing a scalar variable x,, we write problem (1.1} first in the equi-
valept form ’

max x| xp—cfy —F(ME0, dx L Fiy=h vr20, vI35), (3.1}

ie. (%,. ¥, ¥} is an optimum solution of problem (3.1) if and only if Ty=c7 ¥+ j (3}
and (¥, ¥} is an optimum solution of problem {1.1}. o
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To any pomnt (i, #) = C we adjoin the region in K,.,, defined by

{wa, ¥) oo %= wT F(¥) — s fly) S 0¥ b, v& S3. (3.2)
G will denote the intersection {which mav be empty) of all these regions:
J — X, o H I—-T o= 4 "-"'_“-:'I. Hin .]'.
G MQEC{{M Wty % FuTFy) —ap f{y) S0 b, £ 5! (3.3)

Since C is a pointed convex polvhedral cone, it is the convex hull of {inite}:
many extreme halflines, It follows that therc are H points [#*, o™, h=1, . g
in C so that
G=U
kgyl(’cor )

Wb x4+ WATE) — () S 04T, yES). (4
Theorern 3.1.  (Partitioning theorem for mixed-variables programming
problems).

{1) Problem {1.1} is not feasible if and only if the programming problem
max {x,] (x5, ¥) EG} (3.5)

is not feasible, i.e if and only if the set & is empty. '

{2) Problem (1.1} is feasible without having an optimum solution, if and
only if problem (3.5} is feasible without having an optimum solution.

(3} If {£4) is an optimum solution of problem (1.1} and % =c'% i-f{3),
then (3, ¥) is an optimum selution of problem (3.5} and ¥ is an optimum solution
of the linear programming problem

max{e’ xfAdx=b— Fy), x = 0}. (3.6}

{4) If {%,,%) 1s an optimum solution ol problem (3.3}, then problem (3.6)
is feasible and the optimum value of the abjective function in this problem is
cqual to Ty~-fF). If ¥ is an optimum solution of problem (3.6}, then (%7
is an optimum selution of problem (1.1), with optimmm value ¥, for the objective
Tunction.

Proof. If x¥ is an arbitrary number and +* i3 an arbitrary point in S, it
follows from the theorem of FArRRas (see TUCKER TI3]) that the linear system

Ax=h- Fy®
T xE—af v i), ¥Z0
iz feasible if and oniy if
o x5+ uTFly) -y fy* ST

for any point (g, #} £ C.

Hence il (23, x*, ¥*) is a feasible solution of problem (3.1}, (xF, ¥*} is a feasible
solution of problem (3.5). Conversely, if (xf, ¥*) is a feasible solution of problem
{3.3), there is a vector x* £ R, so that (x¥, x*, ¥*] is a feasible sotution of problem
(3.1}, Since the problems (1.1) and (3.1) are equivalent, this proves items {1)
and [2) of theorem 3.1. Morcover it follows that if (¥, ¥) is an optimum selution
of problem (1.1) and Fy—=c %+ f(¥), then (%,,¥) is an optimum solution of
problem {3.5). Tinally, if {%,, #) is an optimum solution of problem (3.3}, there
is a vector ¥€R,, so that (¥, %, 3} is an optimum solution of problem {3.1).
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Then _%u=cTi—i—f@j and since c"‘x+f(§}~_f_,'\-0 for any feasible solution {x.¥) of
problem {11} (¥ fixed)) it follows that % is an optimum solution of problem
3.6}. This completes the proof of theorem 34.

The partitioming theorem does not require anv further specification of the
subset 5 and of the functions f(v} and F(v} defined on $. In actual practice,
nowever, S, f(y) and F(3) must have such propertics that problem {3.3) can
pe solved by existing methods, in other words, we must be able to detect whether
this problem is not feasible or feasible without having an optimum solution,
or we must be able to find an optimum seclution if one exists (for special cases,
see section 6}, If these assumptions are satisfied, theorem 3.1 asserts that problem
{1.1) can be solved by a two-step procedure. The first step involves the solution
of problem (3.5}, leading to the conclusion that problem (t.1) iz not feasible,
or that it is feasible without having an optimum solution, or to the optimum
value of the objective function in problem {(1.1) and to an optimum vector 7
in S. In the latter case a second step is required for calculating an optimurﬁ
vector ¥ in R, which is ebtained by solving the Jinear programuming problem (3.6).

The solution of problem (3.5} must be considered in more detail For, even
if a procedure iz available for solving problems of this type, a direct solution
of problem 3.5} wonld require the caleulation in advance of a complete set of
constraints, determining the set ;. According to (3.4} this could be done by
caleulating all extreme half lines of the convex polvhedral cone €. but this is
practically impossible because of the enormous calculating effort required. How-
ever, since we are interested in an optimum solution of problem (3.5} rather
than in the set & itself, 1t would suffice to calculate only those constraints of
G which determine an optimum sclution. In the next section we will derive
an efficient procedure for coleulating such constraints.

IV. A computational procedure for solving mixed-variables
programming problems

[n this section we assume that the set $ is closed and bounded, and that
{{v} and the components of F(y} arc contimtous functions on a subset S of R
containing 5. These assumptions arc satisfied in most applications and they‘3
rule out complications caused by feasible programming problems which have
no solution. It may happen that S is not bounded explicitly in the formulation
of problem {1.1). Tn that case we can add bounds for the components of the
vector ¥ which are so large that either it is known beforehand that there is an
optimum solution satisfying these bounds or that components of v exceeding
these bounds have no realistic interpretation, ’

Lemma 4.1. If problem (3.3} is feasible and § is bounded, then x, has no
upper bound on & if and only if the polyhedron P is empty.

. P_roof. By assumption, there is at least one point (x5, ¥*)£G. However
if P is empty, then ug==0 for any point {uy, %) €. Hence { assumes the form

G =0 {(r0, W' Fly) S wTh, 35y, (4.1)

and it follows that {%,, *) £ G for any value of %q.
Numer. Math, Bd. 4
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1f I? is not empty, there is at least one point {1, %) £C. Hence, for any feasih),
salution {xr,, ¥) of problem (3.3} we have, by the assumptions imposed on the
set S and on the functions F{y) and t{y):

xoZmax (57 b — @ Fy) + f(n)} < 0. (42

¥
Let ) be a non-empty subset of C and let the subset G (@) of R, ; be defined by,
GlRy=_ 0 _{ixg, 3 |ugxo+u? Fiy) — s f(y) =u’ b, yCSH 4y

T wse

We consider the programming preblem

max ] (%0, ¥ £ (0. (44

If problem {4.4) is not feasible, then, since GG (), problem (3.5} is not
feasible. On the other hand, if (%,, ¥) is an optimum solution of problem (4.4)
we have to answer the question whether (%, %) is also an optimum solution
of problem (3.5} and, if not, how a “better” subset § of € can be obtained.

Lemma 4.2. H (%, ¥ is an optimum selution of problem (4.4}, it is alsg
an optimum solution of problern (3.5) il and only if

min{(b — F#)* u{uc P} =% —{(3). (4.5}

Proof. Since the maximum value of x, on the set G(Q) is assumed to he
finite, if follows from lemma 4.1 that @ contains at least one point {u,, %) for
which #,> 0. Hence the polyhedron P is not empty, i.e. the linear programming
problem

min{{b — FF)T u|uc P} - {4.6)

15 feasible,

Now we observe first that an optimum solution (%,#%) of problem (4.4} is
also an optimum solution of problem (3.5) if and only if (%, %) €G. The necessity
of this condition is obvious. Moreover, since (< €, we have

max {x,l (%, ¥} £G(Q)} = max{x,| (%, ¥) €G], (4.7)
hence the condition is also sufficient.

By the definition of &, the point (%,,%) €6 if and only if

B —FNTut (—%+iHuz=0 (4.8}
for any point {u,, #j&C. This happens if and only if

(b—F@E)Tu=0 forany 4cC,
and
(b — Fg) wzx,— () forany vcP,
le. if and only if
min{(b -—F@})Tu]ug P}; X, — Hy). (4.9)

By the duality theorem for linear programming problems, it follows that
the Unear programming problem

max{cT x| x=b — F(3), x=0} (4.10)

_—..__________——A———
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pas a finite optimum solution ¥ for which
¢ Z=min{(d — F@))" wn:D}. f4.11)

Since (%%} is a feasible solution of problem (1.1} it {ollows from theorem 3.1
and G {(Q) that

"X+ [ ) Zmax {x] (%, ¥} €G} = max x| {ny, WG (D) =F,.  (412)

Finally, it follows from a combination of the relations (4.9), (4.11) and (4.12)
that the inequality (4.9) can be replaced by the equality (4.5). This completes
the proof of lemma 4.2.

If the linear programming problem {4.6) has a finite optimum solution, at
teast one of the vertices of the polyhedron P is contained in the set of optimum
solutions. It is well-known that, in this case, the simplex method leads to an
optimum vertex # of P.

According to lemma 4.2, if (8 —F(3))7ii=%,- {{), we have found an opti-
mum soluticn (%, ¥) of problem (3.5). Furthermore, the simplex method provides
us, at the same time, with an optimum solution % of the dual linear programming
problem (4.10) and it follows from theorem 3.1 that (%, #) is an optimum solution
of problem {1.1}.

If

(b —FO) &<z~ (4.13)

the point {1,#) of C does not beleng to Q. In this case we form a new subset
0* of C by adding the point (1,a) to Q.

If the linear programming problem (4.6} has no finite optimum solution,
the simplex method leads to a vertex # of P and to a direction vector 7 of one
of the extreme halflines of Cy so that the value of the objective function (b — F(3))T
tends to infinity along the halfline '

{ulu=a4 v, A=0}l.

Morcover we have the inequality

—-FE'v<o, {4.14)
from which it follows that the point (0, %} of € does not belong to (. In this
case we form a new subsct §* of C by adding the point (e, #) to Q.

In any case, let (x5, y*) be an optimum solution of the programming problem

max{x,| (%, y) €G (0*)}. (4.15)
Then, in the first case we have
(O —Fly*))Taz «f —i{y%), (4.16)
and in the second case
(—Fy") szo. (4.17)

From this in combination with {4.13) and ({4.14) it follows that

(63, ¥*) = (%,, 5} (4-18)
17%
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Furthermore, since %7 0, we have G{0*) <G {Q), hence

EHE

{4.19)

In case the lincar programming problem (4.6) has ne finite solation. it gy
be that the above-mentioned vertex # satisfies the inequality [4.13). They
both the point {1, &) and {6, %) do not belong to Q and the new subset Q= 0%
C may be obtained by adding both points to Q. It is also important to note
that the constrained set G{Q*) is obtained from G{Q) by adding the constrains

%+ 87 F() — {(5) S 77
andjor the constraint
TTF =7"h

to the set of constraints determining this set G ().

We are now prepared {or the derivation of a finite multi-step procedure for
solving mixed-variables programming prablems of type (1.1).

Pracedure 4.1. The procedure starts from a given finite subset Q07 C.

Fnitial step. If w,o=0 for at least one point {z,, 4} € Q% go to the first part
of the iterative step.

If 2,0 for any point {u,, #) & Q0 put xp=-+oe, take for ¥* an arbitrary
point of G{Q% and go to the second part of the iterative step.

If G{Q% is empty, the procedure terminates: problem (1.1) is not feasible.

Tterative step, first parf. If the »-th step has to be performed, solve the
programming problem

max {xy| (x5, ¥) £ GO}

If problem (4.20) is not feasible, the procedure terminates: problem (1.1)
is not feasible.

If {xf, ") is found to be an optimum solution of problem {4.20), go to the
second part of the iterative step.

(4.20)

Tierative step, second part. Solve the linear programming problem

min{ (b —FiyNTuldTuzc, #=0}. (4.21)

If problem (4.21) is not feasible, problem {1.1) is either not feasible, or it
has no finite optimum solution. (This situation can only be encountered in the
first iterative step!)

Lf problem (4.21) has a finite optimum solution #” and

(b— EM)T W = 25— (), (4.22)
the procedure terminates. In this case, if 2" is the optimum solution for the
dual problem of problem (4.21), then (x, ¥°) is an optimum selution of problem
(1.4) and x} is the optimum value of the objective function In this problem.
Then if

(b - Fy) T < 25— (),

gt = Q" {1, w1},

replace the step counter » by »+ 1 and repeat the first part of the iterative step.

{4.23)
form the set
(4.24)

R

Solving mixed-variables program ming problems 2453

1f the value of the objective function in problem (4.21) tends to influitv
along the halfline K

{uji=0"+ 2", 12 0.
& being a vertex of P and +* the direction of an extreme halfline of €,, while

(& ) Wz = fy),

{4.25)
form the set
@t =0 {0 ). (4.26)
However, if {4.25) is not satisfied, i.e. if
(b= FOM) T < x5~ 10, (4.27)
form the set '
Q= o{(,w), (0.9 (4.28)

In either case replace the step counter » by » i 1 and repeat the first part of the
jterative step.

This? prgcedure terminates, within a finite number of steps, either with the
conclusion that problem {1.1) is not feasible, or that this problem is {casible

without a finite optimum solution, or becanse an optimum solution of problem
(1.1) has been obtained.

This procedure is finite, since at each step where it does nof terminate the
preceding subset ¢ is extended by the divection vector of at least one extreme
haliline of the polyhedral cone €, which does not belong already o ©°. Hence,
within a finite number of steps either the procedure would terminate or a complete
set of copstraints determining the set G would have been obtained and by
theorem 3.1 the procedure would stop after the nest step.

The termination rules are justified by:

(1} G{@) <G in combination with theorem (3.1), item {(1): problem (1.4} is
not leasible,

{2) Lemma (4.1} and theorem {3.1}, item (2): problem (1.1} has no finite
gptimum solution.

(3} Lemma (4.2} and theorem (3.1}, item {4): optimum solution for problem
{1.1].

Since
G >G> G,
the sequence {x3} is non-decreasing and
max {xy| (%, ¥} CC} = x5 forany »20. {4.29)
If problem (4.21) has an optimum solution %", then its dual prablem
max{c’ x| Ax=p —F(y, x =0}
has an optimum solution x*, while
(B—FiyNTuw=c"x (4.31)

Sim‘.e {«7, ¥') is a feasible solution of problem {1.1}, it follows from theorem (3.1
item (3) that o

(430}

(b - F(yw))T1;”+ = max{xo] {%g. ¥} %(;}_ (4.32)
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Hence, at the end of each step. we have upper and lower bounds for the maximyry,
value of x, on the set f;, or what is the same, for the maximm value of the
ubjective {unction in problem (1.4}

Tﬁﬁ@ffwm”ﬁ%ﬁfﬁémubmuwweﬂé
Here, {b- -P{y"))ru":— s il problem (4.21) in the B-th iterative step has no
{inite optimum solution; otherwise it is the optimum value of the objective
fupetion in this problem.

The determination of an initial set Q° will depend much on the actual problem
to be solved. lu amny case one may start from the set QP containing only the
origin of K41, which always belongs to the cone . The procedure then starts
with the second part of the jterative step from an arbitrary point 42 5, while
3 is put equal to --co.

(433)

V. An alternative version of procedure 4.1
In actual practice it is often more convenient to solve the dual problem

{3.1}

of problem (4.21), rather than this problem itscli. In this section an efficient
way is described of obtaining all information for the performance of procedure
4.4 by solving problem {5.1) instead of problem (4.21)

Tirst we observe that problem {5.1) may not be feasible since problem (4.24)

may have an infinite optimum solution. In order to avoid infeasibility, we
replace the convex polyhedron P by the bournded convex polyhedron

max{cT x| Ax=b —Fy), 52 0}

PMy={u|dTuZe Tu M, w0}, (5.2)

the number M being so large that all vertices of the polyhedron P {if not empty}
are contained in the region

{w]etuz M, w=0}. (5.3
Problem (5.1} is then replaced by the problem
max{cT ¥ — M 2|4 ¥ % <b—TF(), %=0 %= a, (3.4)

which is always feasible.
then:
and only if problem

If M is sufficiently large (see below),

{1} Problem (4.21) iz not feasible if
optimum solution.

{2y If (x*, ) 1s an optimum solution found for preblem (5.4}, and z="0
then («, %) 15 a feasible solution of problem {(1.1}. For the optimum solution
o (M) found at the same time for the dual problem

min { (b —F{y"))rf-skriru?:c, Tu<M, uz=0}

{5.4) has an infinite

(5.5}
we have the relation ]

(b — Fiy) w (M) = cf & {5.6)

Sinee w*{(M) is also a feasible solution of problem (4.21), it follows from

{(3.6) and the duality theorem for linear programming problems that it 15 also

e ————————————————
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an optimum solution of problem {4.21). Then, applying lemma 4.2 and theorem
3.1 we find that (¥, ¥ is an optinum salution of problem (1.1} if and only i

{3.7)

1f £, —=0, but relation {5.6) is not satisfied, or if = 0, we constder the optimum
solution #" (M) in more detail.

It is well-known that the components of ' {M} are equal to the components
of the “'d-row” {known also as the “'z;—¢; Tow", see (yass [#1) in the optimum
simplex tablean, corresponding to the initial slack variables. It follows from
the definition of the ‘drow” that it is a linear form in M, ie.

o7 4 ) = x.

& (M) =d4 - M {5.8}
with d**= 0 {otherwise the number M wowld be too small, see below).
It follows that 2 is also a linear form in M-
& (M) = a7 2 M ™’ (5.9

- . g , :
he vectors 4%’ and 47, hence also the vectors w® and «%® are obtained

by teplacing the objective function T x— Mz, in the optimum simplex tableau
by ¢’x and —Z, respectively and recalculating then the “d-row”. We wil
rofer to d and d%” as to the “M-components”’ of the d-row; similarly
and u®” are the *'M-components” of the optimum solution of the dual pr(;blenl.
For any given optimum simplex tableau the M-components are independent
of M.

By virtue of the construction of the polyhedron P(M), any vertex of Pis
a vertex of P(M). Furthermore, as proved by Gorpman ([8], corollary 1A}
we have that amy vertex of P(M) is of the form ' )

w{M) =7+ 1é, (5.10}

where #is a vertex of P, ¥18 either zero or it is the direction vector of an extreme
halfline of €, and 1 is some non-negative number. Conversely, if @ 15 such a
direction vector, there is at least one vertex u of F so that

wiM) —ay M8y

p— (5.11)
is a vertex of P{M).
Hence, the vertex {5.9) of P(M} can be written in the form
() = R 542

where 2 is a vertex of P and * is the direction of an extreme halfline of €.

The only problem is to caleulate #* and v* from the M-components ub" and
wh* of w (M)
Obviously

e 2T - 13

. {3.13)

W =0, then u=u", (5.14)
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and, if >0, o' is that point on the haliline
Vit == et = Ma™t, M= 0} {5-15)

which also belongs to P and corresponds to the smallest value of M for which
this happens. _ .

It is a well-known property of the “d-row” of the optimum simplex tableay
of problem {3.4) that this is the minimum value M, of M for which &"{}) -
d* - M d>=0. Hence

AL
Mo = m;_ix{ — ?

2> o). {5.16)

By the duality theorem we have also the relation
(b — FiyNTu = el x’ — Mo 5h.

Now we get the following modification of procedure 4.1.

Procedure 5,1. This procedure starts again from a given finite subset Q8¢ C.
Voreover a suitable value of M must be known (see below).

I'nitial step. The same as in procedure 4.1.

Jterative step, first part. The same as in procedure 4.1.

Iterative step, second pari. Solve the lincar programming problem

max {7 v — Mz|dx —zme=b—Fiy), #20, 2= 0} (347

If problem (5.17) has an infinite optimum solution, problem (1.1) 15 elther not
feasible or it has no finite solution. (This situation can only be encountered
during the first iterative step.) If problem (5.47) has a finite .optimum sollution
(3%, 2) then if =0 and Tt j(3) =2, (.9 is an optimum solution of
problem {1.1) with #j equal to the optimum value of the obicctive [u11ct10r11;
if sp==0 but T’ (W) <xp, or 1 >0, determine the M-components 47
and @ of the “'drow’” in the optimum simplex tableau and the M-components
wb* and #®” of the optimum solution of the dual problerm.

Ii
whro-0, put #==u"’ and ¥ =0. (5.18)
If
u?’ =0, calculate
2Pt | e -
}Imiu: m}ﬂ.x{-— E‘;’T d]‘ = 0} {'J 19)
T
and put )
W= Mo {5.20}
v ="’ (5.21)
Then, if 7% — My a5 x5 —F(3"), form the set
ol Qe il ) 0, v} {5.22}
and if e7 ' — M55z xp— ("), form the set
grt= {0} (5.23)

#

|
|
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Finally, replace the step counter » by ¢ 1 and repeat the first part of the
jferative step.

This procedure lerminates in a finite number of steps, with the conclusion
that problem (1.1} is not feasible or that it is feasible without a finite optimum
golution, or because an optimum solution of problem {1.1) has been obtained.

The inequalities (4.33}, expressing upper and lower bounds for the ultimate
pptimum value of x,, now assume the form:

masx{eT w4 f()] 4 = 0 = max (x| (w0, ¥) £6 S 5. (5.24)

It has heen assumed that a sunitable value of M, ie. a valuc of M so large

fhat all vertices of P are contained in the tegion '

{u|e’w=Z M, w =0},

is known in advance. Such a value certainly exists, but need not to be known
in actual applications. In any case cne can start the second part of the iterative
step with M+ oa, which actually means that this part 1s done in two phases.
In tle first phase one maximizes the objective function - z,. Then, in the
second phase, the objective function ¢” x is maximized under the side conditions
that -z, retains the maximum value it reached during the first phase.

The procedure may be expected to be more efficient, however, if M 1s not
ton large. Omne can start with any positive value of M. If, for fixed M, an
optimum sclution of problem (5.4) is obtained, but some components of A% are
still negative, the value of M must be increased until at least one of the corres-
ponding components of & becomes negative. Then the simplex calculations are
continued with this new value of M. If one attains an infinite solution, the
compenents of @%*, corresponding to columns with ne positive elements in the
actual simplex tablean, must be checked. If all these components are positive,
the value of M must be increased until the corresponding components of & (M)
becorne positive and then the simplex caleulations are continued. If at least
one of these components of 4° is negative, or equal to zero but the correspond-
ing component of 4-* is negative, an increase in the value of 3 does not change
this situation and the conclusion that problem {4.21) is not feasible is justified.
In this wav, in a finite number of simplex iterations a sufficiently large value
of M is obtained.

An important modification of procedure 5.4 is obtained if we replace the
upper bound inequality e7 ¥ =M in (5.2) by the vector inequality »<Me. Then
problem (5.4} assumes the form

max{e’ x —MeTzldx —z2b—F(y), x=0, =0}, {5.23

ie. the single variable z; in {5.4} is replaced by the vector z. The justification
of this modification is slightly more complicated than for procedure 5.1 but
easily accomplished. From a computational point of view problem {5.23) is
somewhat more flexible than problem (5.4}

In many applications the system of inequalities

Ax+F(M<h (5.26)
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assumes the form
4 vo il -
A x=d (3-2.7]
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i.e. the vector v does not occur explicitly in some of the constraints determining

the feasible region in problem {1.1}. In this casc problem {3.23) may be replacey
convenicntly by

Wi

max{c? ¥ — MeTz|d v £, dox — 220 B} 220, ¢

Ol [5.08

This means that an auxiliary variable z; has to be introduced only if the
vector 4 occurs explicitly in the corresponding inequality of the system (5.4,

Problem (5.28) may be not feasible because the system of inequalities 4, x=g
x=0 may be not feasible. This will be detected however during the first step
of procedure {5.1). The procedure can then be ferminated, since this meaps
that the original problem (1.1) is not feasible.

V1. Applications

The crucial peint in the application of the procedures 4.1 and 5.1 to the
solution of actnal problems is the cxistence of efficient procedures for solving
the programming problem (4.20). We will consider in this section several special
cases where this requirement is fulfiled.

(a) If S=R, {or a convex polyhedran in Ry, EF{y)=RBy, B being an {m, g
matrix and f(y}=r"y, r=R,, problem (4.20} becomes a lincar programming
problem which can be solved by the simplex method. Since in each step new
constraints are added to the feasible region of problem (4.20) in the preceding
step, the dual simplex procedure seems to be most suitable. Another possibility
is to apply the primal simplex method to its dual problem. The procedures 4.1
and 5.1 are now special versions of the well-known decomposition procedutre
for linear programming problens, developed by DaxTziG and WOLFE [5].

(b) If S=R, and f(y} and the components of F{v) are convex and differen-
tiable functions defined on S, problem (4.20) becomes a COnVeX Progrargming
problem that can be solved by well-known methods e.g. by WELLEY's cutting
plane technique 201, by RosEx’s gradient projection 12! or by ZoUTEXDIJK'S
methods of feasible directions [14].

{c) If S is the set of all vectors in K, with non-negative integral-valued
components, ¥(y) =By, B being an (m, g} matrix and f{y}=rTy, r£ K, problem
f1.1} is the well-known mixed-integer lnear programming problem. Problem
{4.20) now becomes an integer programming problem of a special type. Since
the feasible region in problem (4.20} in the (v 1)-th step is obtained by adding
cutting planes to the feasible region in this problem in the »-th step the cutting
plane technique of Gosory (9] seems to be very snitable for solving the integer
sub-problems.

Of particular importance for applications is the case where § constitutes
the sct of vertices of the unit cube, 1.e. where the components of the vector ¥
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may assame the valies zero and one only. For these problems a slight modi-
fication of the combinaterial procedure for solving pure “zero-one’ problems
developed by BENDERS, CATCHPOLE and Kulkes {3] can be applied for Solvingl‘
problemn {4.20). The computational effort for solving pure “zerc-one’ probiems
in this way depends exponentially on the number of integer variables involved
so that this procedure is only of limited use. From a number of experimentg
on 2 F.erranti Mark I* computer, it has been found that the calculating timme
is within reasonable bounds provided the number of “zero-one” variables does
ot exceed 30 to 40, for present day computing equipment available, This
requirement is satisfied, however, in many applications,

When evaluating the procedures 44 and 5.4 for practical purposes one is
interested also in the number of steps required for reaching an optimum solution
and in the calculating time for each separate step. Since usefal theoretical
estimates d(.) not yet exist, experiments with actual preblems are necessary for
getting pertinent information. ’

Our experimental work is mainly restricted to the mixed-integer linear
programming problem with all integer variables of the “zerc-one’ type. In
the small number of test cases considered up to now we have used procedure 5.1
with problem {5.17) replaced by the more flexible problem (5.25). The integm,‘
sub-problems have been solved exclusively by the above mentioned combina-
torial procedure.

A typical test case involved 29 “continuous” variables, 27 integer variables
and 34 linear constraints. The total number of steps required for reaching an
optimum solution was eleven. The Table shows the upper and lower bounds
for the wltimate optimum value of %, obtained in each step. In all our experi-
ments these bounds were very instructive for estimating the “'rate of convergence’’,

The npumber of steps
required for reaching an Table. Swuccessive wpper and lower bownds for the
optimum  solution was en- wltimale optimum value of x,

couragingly small in all test  cyes |Uprer boundiLover bound [ o\ Wpper baund|Lower houad
cases. The calculating time P foram  fora §UTF a0 o
per step was mainly wsed ol rfe | e P 18330 | 176,19
for solving the linear program- 1 23337 152.58 7 13:2:;5 ' 1;9'4'5
ming sub-problerm. 2019137 15238 3 ' 180.53 } 1?9:45
A reduction of the total 3 = 19043 | 17609 | o 13047 | 4795
number of steps and hence i oo ¢ 17649 110 . 18025 | 17945
513495 17619 |1t | 179.75 | 17973

of the total calculating time
may be obtained by adding move than one or two new constraints per
step to the integer sub-problem (4.20). Procedure 4.4 [or application of the
dual simpiex method for solving the problem {5-47) or {5.25} in procedure 5.1°
seetns to be most suitable for doing this since, when solving the linear programmi.n;:r
problem ({4.24), at the end of each simplex iteration a hasic feasible solution is
available correspunding to an extreme half line of the polyhedral cone €. Hence
at the end of each simplex iteration a constraint for thevreg'ion & can be caleu-
lated. An efficient way of doing this, while avoiding the addition of redundant

constraints for determining the set G as much as possible, has not vet been
worked out completely. i

e
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Numerical Treatment of the Initial Value Problem
for Systems of Quasilinear Partial Differential Equations
of First Order

By
RUDOLF ALBRECHT and WOLFRAM URICH *

1. Method

[n this paper we describe the practical implementation of a method for the
approxtmate solution of the initial value problem for a system of e quasilinear
partial differential equations of first order in m dependent and » | | independent
variabtes. We will consider only real functions and real variables. The importance
of such swstems stems from the fact that a properly posed, non characteristic
initial value problem for an arbitrary system of partial differential equations
ean be reduced to a problem of the above mentioned type [1]. The feasibility
of the method which we describe in the following has first becn pointed out
by R ALBrECHT [2]. A theoretical investigation of the method in the case of
semilinear systems was given by the authors in a previous paper [§]. In what
follows we generalize the method to the case of guasilinear systems and give
an error cstimate.

[n No.2 we describe three devices which make our method suitable for
digital computing and which may be interesting in themselves: namely an inter-
polation formula, a procedure to make maximum use of the given data, and
a storage allocation technique.

In the Enclidean space with coordinates x"=:, »* p=1, 2, ..., u, #*
1,2, ..., m, we consider the system

duk

. : Hpk
a{¢ w0 L — a(t, ) cue

T Bt x,u),

T=1,2, ..., x> {1}
Here, x stands for {x', 2%, . ., a* and u for (1, w2, <o, uw™. Let ¥ denote the
set of points in x-space with || €x, a0, »=1,2, ..., , and et § denote the
interval 0454, 80,

In the following, we define a function f to be continuously differentiable
on the closure ® of a domain T if § is continuously differentiable on T and if
f as well as the partial derivatives of f, which all exist and arc continuous on T,
have a unique and continuous extension onto 3.

On X let the twice continuously differentiable functions w* =#" {x) be given
as initial values. Furthermore, we assume the functions %= (£, x) to be twice
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** With respect to indices not enclosed in brackets summation will be understood.




