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Abstract
The faithful execution of biological processes requires a precise and
carefully orchestrated set of steps that depend on the proper spa-
tial and temporal expression of genes. Here we review the various
classes of transcriptional regulatory elements (core promoters, prox-
imal promoters, distal enhancers, silencers, insulators/boundary el-
ements, and locus control regions) and the molecular machinery
(general transcription factors, activators, and coactivators) that in-
teracts with the regulatory elements to mediate precisely controlled
patterns of gene expression. The biological importance of transcrip-
tional regulation is highlighted by examples of how alterations in
these transcriptional components can lead to disease. Finally, we
discuss the methods currently used to identify transcriptional regu-
latory elements, and the ability of these methods to be scaled up for
the purpose of annotating the entire human genome.
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LCR: locus control
region

Combinatorial
control: the
concerted action of
combinations of
multiple
transcriptional
regulatory elements
and their cognate
transcription factors

INTRODUCTION

The faithful execution of biological processes
such as development, proliferation, apopto-
sis, aging, and differentiation requires a pre-
cise and carefully orchestrated set of steps that
depend on the proper spatial and temporal ex-
pression of genes. As a result, deregulation of
gene expression can often lead to disease. The
completion of the human genome sequence
and its annotation using computational and
comparative genomic methods has led to the
cataloging of ∼20,000–25,000 protein-coding
genes (39). Key questions now relate to un-
derstanding how these genes and their prod-
ucts function, as well as how their spatial and
temporal expression patterns are established
at both the cellular and organismal level.

To understand the molecular mechanisms
that govern specific expression patterns on a
global scale, it is important to identify the
transcriptional regulatory elements associated
with each predicted gene. Moreover, the abil-
ity to identify such elements is an impor-
tant step toward understanding how gene
expression is altered in pathological condi-
tions. Thus, one of the main emerging chal-
lenges for genomics research is to identify all
functional elements in the genome, includ-
ing those that regulate gene expression. The
availability of the complete human genome
sequence, in combination with genome-wide
expression data, will facilitate the comprehen-
sive identification of these transcriptional reg-
ulatory elements. In addition, these resources
serve as a starting point for studying transcrip-
tion regulation of human genes on a global
scale, and provide information regarding the
establishment of spatial and temporal gene
expression patterns and the mechanisms re-
quired for their establishment.

Here we review the various classes of tran-
scriptional regulatory elements and the cur-
rent understanding of how they function. We
begin with an overview of the eukaryotic tran-
scription process and the molecular machin-
ery that drives it. We then focus on the role
of transcriptional regulatory elements in gene

expression and highlight diseases that result
from their alteration. Finally, we review the
methods currently used to identify transcrip-
tional regulatory elements, both experimen-
tally and through bioinformatics approaches.

EUKARYOTIC
TRANSCRIPTION:
AN OVERVIEW

The expression of eukaryotic protein-coding
genes (also called class II or structural genes)
can be regulated at several steps, including
transcription initiation and elongation, and
mRNA processing, transport, translation, and
stability. Most regulation, however, is believed
to occur at the level of transcription initiation.
In eukaryotes, transcription of protein-coding
genes is performed by RNA polymerase II.
Genes transcribed by RNA polymerase II
typically contain two distinct families of cis-
acting transcriptional regulatory DNA ele-
ments: (a) a promoter, which is composed of
a core promoter and nearby (proximal) regu-
latory elements, and (b) distal regulatory el-
ements, which can be enhancers, silencers,
insulators, or locus control regions (LCR)
(Figure 1). These cis-acting transcriptional
regulatory elements contain recognition sites
for trans-acting DNA-binding transcription
factors, which function either to enhance or
repress transcription.

The structure of human gene promot-
ers can be quite complex, typically con-
sisting of multiple transcriptional regulatory
elements. The need for this complexity be-
comes clear when one considers that although
the human genome contains ∼20,000–25,000
genes, each of which may have a unique spa-
tial/temporal expression pattern, it encodes
only ∼1850 DNA-binding transcription
factors—presumably far less than the number
of expression patterns that must be generated
(183). The presence of multiple regulatory el-
ements within promoters confers combinato-
rial control of regulation, which exponentially
increases the potential number of unique ex-
pression patterns. The challenge now is to
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understand how different permutations of the
same regulatory elements alter gene expres-
sion. An understanding of how the combina-
torial organization of a promoter encodes reg-
ulatory information first requires an overview
of the proteins that constitute the transcrip-
tional machinery.

THE EUKARYOTIC
TRANSCRIPTIONAL
MACHINERY

Factors involved in the accurate transcrip-
tion of eukaryotic protein-coding genes by
RNA polymerase II can be classified into three
groups: general (or basic) transcription fac-
tors (GTFs), promoter-specific activator pro-
teins (activators), and coactivators (Figure 2).
GTFs are necessary and can be sufficient for
accurate transcription initiation in vitro (re-
viewed in 141). Such factors include RNA
polymerase II itself and a variety of auxil-
iary components, including TFIIA, TFIIB,
TFIID, TFIIE, TFIIF, and TFIIH. In addi-
tion to these “classic” GTFs, it is apparent that
in vivo transcription also requires Mediator,
a highly conserved, large multisubunit com-
plex that was originally identified in yeast (re-
viewed in 38, 119).

GTFs assemble on the core promoter in
an ordered fashion to form a transcription
preinitiation complex (PIC), which directs
RNA polymerase II to the transcription start
site (TSS). The first step in PIC assembly
is binding of TFIID, a multisubunit com-
plex consisting of TATA-box-binding pro-
tein (TBP) and a set of tightly bound TBP-
associated factors (TAFs). Transcription then
proceeds through a series of steps, including
promoter melting, clearance, and escape, be-
fore a fully functional RNA polymerase II
elongation complex is formed. The current
model of transcription regulation views this
as a cycle, in which complete PIC assembly is
stimulated only once. After RNA polymerase
II escapes from the promoter, a scaffold struc-
ture, composed of TFIID, TFIIE, TFIIH,
and Mediator, remains on the core promoter

Distal regulatory elements

Proximal
promoter
elements

Promoter (   1 kb)

Core
promoter

EnhancerSilencer

Locus control
region Insulator

Figure 1
Schematic of a typical gene regulatory region. The promoter, which is
composed of a core promoter and proximal promoter elements, typically
spans less than 1 kb pairs. Distal (upstream) regulatory elements, which can
include enhancers, silencers, insulators, and locus control regions, can be
located up to 1 Mb pairs from the promoter. These distal elements may
contact the core promoter or proximal promoter through a mechanism that
involves looping out the intervening DNA.

General
transcription factor
(GTF): a factor that
assembles on the
core promoter to
form a preinitiation
complex and is
required for
transcription of all
(or almost all) genes

Coactivators:
adaptor proteins that
typically lack
intrinsic
sequence-specific
DNA binding but
provide a link
between activators
and the general
transcriptional
machinery

PIC: preinitiation
complex

TSS: transcription
start site

(73); subsequent reinitiation of transcription
then only requires rerecruitment of RNA
polymerase II-TFIIF and TFIIB.

The assembly of a PIC on the core pro-
moter is sufficient to direct only low levels of
accurately initiated transcription from DNA
templates in vitro, a process generally referred
to as basal transcription. Transcriptional ac-
tivity is greatly stimulated by a second class
of factors, termed activators. In general, ac-
tivators are sequence-specific DNA-binding
proteins whose recognition sites are usually
present in sequences upstream of the core
promoter (reviewed in 149). Many classes of
activators, discriminated by different DNA-
binding domains, have been described, each
associating with their own class of specific
DNA sequences. Examples of activator fam-
ilies include those containing a cysteine-
rich zinc finger, homeobox, helix-loop-helix
(HLH), basic leucine zipper (bZIP), fork-
head, ETS, or Pit-Oct-Unc (POU) DNA-
binding domain (reviewed in 142). In addition
to a sequence-specific DNA-binding domain,
a typical activator also contains a separable
activation domain that is required for the ac-
tivator to stimulate transcription (149). An
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TBP:
TATA-box-binding
protein

TAF:
TBP-associated
factor

TFBS: transcription
factor-binding site

PIC

TFIIDTFIIA

TFIIB

TFIIF

TFIIH

RNA
polymerase II

TFIIE

?

?

?

Activator

Mediator

DBD

AD

Core
promoter

TATA TSS

Co-
activator

Figure 2
The eukaryotic transcriptional machinery. Factors involved in eukaryotic
transcription by RNA polymerase II can be classified into three groups:
general transcription factors (GTFs), activators, and coactivators. GTFs,
which include RNA polymerase II itself and TFIIA, TFIIB, TFIID,
TFIIE, TFIIF, and TFIIH, assemble on the core promoter in an ordered
fashion to form a preinitiation complex (PIC), which directs RNA
polymerase II to the transcription start site (TSS). Transcriptional activity
is greatly stimulated by activators, which bind to upstream regulatory
elements and work, at least in part, by stimulating PIC formation through
a mechanism thought to involve direct interactions with one or more
components of the transcriptional machinery. Activators consist of a
DNA-binding domain (DBD) and a separable activation domain (AD)
that is required for the activator to stimulate transcription. The direct
targets of activators are largely unknown.

extensive discussion of the properties of acti-
vators is beyond the scope of this review; read-
ers are referred to several excellent reviews on
the subject (87 and references therein).

The DNA-binding sites for activators
[also called transcription factor-binding sites
(TFBSs)] are generally small, in the range
of 6–12 bp, although binding specificity is
usually dictated by no more than 4–6 po-
sitions within the site. The TFBSs for a

specific activator are typically degenerate,
and are therefore described by a consen-
sus sequence in which certain positions are
relatively constrained and others are more
variable. Many activators form heterodimers
and/or homodimers, and thus their binding
sites are generally composed of two half-sites.
Notably, the precise subunit composition of
an activator can also dictate its binding speci-
ficity and regulatory action (37).

Although an activator can bind to a wide
variety of sequence variants that conform to
the consensus, in certain instances the precise
sequence of a TFBS can impact the regulatory
output. For example, TFBS sequence vari-
ations can affect activator binding strength
(reviewed in 30), which may be biologically
important in situations such as in early devel-
opment, in which activators are distributed in
a concentration gradient (84, 144). TFBS se-
quence variations may also direct a preference
for certain dimerization partners over others
(37, 124, 142). Finally, the particular sequence
of a TFBS can affect the structure of a bound
activator in a way that alters its activity (69,
104, 108, 154, 163). The best-studied exam-
ples are nuclear hormone receptors, a large
class of ligand-dependent activators. Various
studies have shown that the relative orienta-
tion of the half-sites, as well as the spacing be-
tween them, play a major role in directing the
regulatory action of the bound nuclear hor-
mone receptor dimer (37).

Activators work, at least in part, by in-
creasing PIC formation through a mechanism
thought to involve direct interactions with
one or more components of the transcrip-
tional machinery, termed the “target” (141,
149). Activators may also act by promoting a
step in the transcription process subsequent to
PIC assembly, such as initiation, elongation,
or reinitiation (103). Finally, activators have
also been proposed to function by recruit-
ing activities that modify chromatin structure
(47, 106). Chromatin often poses a barrier
to transcription because it prevents the tran-
scriptional machinery from interacting di-
rectly with promoter DNA, and thus can be
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Transcriptional
synergy: the
greater-than-additive
transcriptional effect
resulting from
multiple
DNA-bound
activators

repressive to activator binding and PIC as-
sembly. Chromatin-modifying activities in-
clude ATP-dependent remodeling complexes,
which use energy to noncovalently modify
chromatin structure, and histone-modifying
complexes, which add or remove covalent
groups (e.g., acetyl groups, methyl groups,
and phosphates) from histone tails (103, 137).

The activity of an activator may be mod-
ulated by the third group of factors required
for eukaryotic transcription: coactivators (re-
viewed in 115, 168). Typically, coactivators
do not exhibit intrinsic sequence-specific
DNA binding; instead, they are recruited by
protein-protein interactions with one or more
DNA-bound activators. Coactivators func-
tion in many of the same ways as activators,
such as by stimulating PIC assembly or modi-
fying chromatin. The specific set of coactiva-
tors present in a cell can play a major role in
determining the regulatory response, as they
can modify an activator’s ability to positively
or negatively regulate transcription (106).

A notable property of activators is that they
can stimulate transcription synergistically, a
phenomenon in which the regulatory effect
of multiple factors working together is greater
than the sum of the activities driven by each
factor individually. This effect can arise from
cooperation between multiple copies of the
same factor (29), or can be “promiscuous”
and result from cooperation between differ-
ent factors (114) (see also the “Enhanceo-
somes” sidebar). Significantly, there are limits
to the promiscuity of activator cooperativ-
ity, and it has been shown that the core pro-
moter can play a role in controlling regulatory
signals from upstream elements (132). Tran-
scriptional synergy presumably arises from
postbinding interactions, as it can be observed
even under conditions of saturated activator
binding.

Although the phenomenon of transcrip-
tional synergy has long been recognized, the
mechanism underlying it has remained elu-
sive (72). One possibility is that each activa-
tor simultaneously interacts with and recruits
different GTFs (or cofactors). Another pos-

Transcriptional
synergy: the
greater-than-additive
transcriptional effect
resulting from
multiple
DNA-bound
activators

ENHANCESOMES

In some specialized cases, cooperating activators form a tight,
stable nucleoprotein complex called an enhanceosome (178).
Enhanceosomes appear to act as central processing units, in-
tegrating regulatory information from multiple signaling cas-
cades and generating one output to the target promoter. These
activators seem to cooperate not in binding, but in activation.
In the case of the interferon beta (IFNβ) promoter, multiple
activators all present their acidic activation domains together
and simultaneously contact the cofactor CBP/p300 (128). Re-
cruitment of the cofactor is most efficient only when all of the
activators in the enhanceosome have their activation domains
present together. Similar clusters can also interact to repress
transcription, and an example of a so-called repressosome has
been described (71). Furthermore, it may also be possible that
an enhanceosome can switch to a repressosome under differ-
ent conditions (99). It appears that enhanceosomes tend to
form at genes that need to be tightly regulated in medically
important pathways, such as wound healing and pathogen de-
fense. Thus, enhanceosome function may be of particular in-
terest for understanding some inherited diseases and how they
relate to normal biological processes.

sibility is that different activators may have
distinct functions: some may work to modify
chromatin structure, whereas others may reg-
ulate different steps of transcription, such as
promoter escape or elongation. Synergy be-
tween identical activators is more difficult to
understand; whether each copy of the protein
interacts with the same target or different tar-
gets remains to be determined.

TRANSCRIPTIONAL
REGULATORY ELEMENTS

Core Promoter

The core promoter is the region at the
start of a gene that serves as the dock-
ing site for the basic transcriptional machin-
ery and PIC assembly, and defines the po-
sition of the TSS as well as the direction
of transcription (reviewed in 166). The first
described core promoter element was the
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TATA Inr

-2 to +4-31 to -26 +28 to +32

DPEBRE

-37 to -32

CGCC
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CCA TATA   AAT     A

A     G
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A    ACG
A
C

+18 to +27

MTE

TBPTFIIB TAF1/2 TAF6/9

DCE

+10 to +40

TAF1

Consensus

Binding
factors

AN   

Consensus

Binding
factors

C   A   C      AACGC
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G
A

C
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N5-7[CTTC]N7-8[CTGT]N7-11[AGC]N1-2
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T T
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Figure 3
Core promoter elements. Metazoan core promoters are composed of a number of elements that may
include a TATA box, an Initiator element (Inr), a Downstream Promoter Element (DPE), a Downstream
Core Element (DCE), a TFIIB-Recognition Element (BRE), and a Motif Ten Element (MTE). The
human consensus sequence of these elements, their relative positions, and the transcription factors that
bind them are shown. The DCE is shown on a separate core promoter for illustration purposes only.
Although the DCE can be present in promoters containing a TATA box and/or Inr, it presumably does
not occur with a DPE or MTE.

Inr: Initiator

TATA box, the binding site for the TBP
subunit of TFIID. In addition to the TATA
box, metazoan core promoters can be com-
posed of numerous other elements, including:
Initiator element (Inr), Downstream Pro-
moter Element (DPE), Downstream Core El-
ement (DCE), TFIIB-Recognition Element
(BRE), and Motif Ten Element (MTE) (113)
(Figure 3). With the exception of the BRE,
which is specifically recognized by TFIIB, all
other core promoter elements described to
date are TFIID-interaction sites: TAF6 and
TAF9 contact the DPE, TAF1 and TAF2 con-
tact the Inr, and TAF1 contacts the DCE (100,
166).

A statistical analysis of ∼10,000 predicted
human promoters revealed that these known
core promoter sequence motifs may not be
as universal as previously thought (68). Of
the four core promoter elements surveyed
(TATA, Inr, DPE, and BRE), the Inr was the
most common element, occurring in nearly
half of all promoters. By contrast, DPE and
BRE were each found in roughly one fourth

of promoters, and TATA boxes were present
in only one eighth of promoters. Strikingly,
nearly a quarter of all promoters analyzed had
none of these four elements, suggesting that
either additional core promoter elements or
other types of promoter features may yet be
discovered. Consistent with this idea, recent
reports suggest the existence of more unusual
core promoter architectures, such as so-called
ATG deserts (102). Moreover, it was recently
reported that higher-order structural proper-
ties of promoter DNA, which are determined
in part by the nucleotide sequence, can be used
to identify and classify core promoters (59).
Future work may uncover promoter structural
properties that are important for GTF-DNA
interactions. Indeed, nearly all of the GTFs
contact DNA in the core promoter region (re-
viewed in 73). Although many of those inter-
actions appear to be nonspecific, the efficiency
of their function may be affected by struc-
tural properties of the promoter DNA, which
are affected by the underlying nucleotide
content.
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Several significant points arise from the
observation that core promoters are diverse in
their content and organization. First, it is clear
that PIC assembly does not depend on a single
nucleation point, such as a TATA box; rather,
many of the core promoter elements inter-
act with TFIID and stabilize PIC assembly.
Second, although it is generally thought that
TBP is still required at TATA-less promot-
ers, it also appears that various core promoters
may interact preferentially with TFIID com-
plexes having different subunit compositions
(36, 133). Such variation may have functional
significance, as it has also been observed that
different core promoters can limit the up-
stream regulatory inputs to which they will
respond, and thus the core promoter can con-
tribute to the regulatory specificity of a gene
(132, 166).

Proximal Promoter Elements

The proximal promoter is defined as the re-
gion immediately upstream (up to a few hun-
dred base pairs) from the core promoter,
and typically contains multiple binding sites
for activators. Historically, vertebrate pro-
moter elements were characterized using a
technique called linker-scanning mutagenesis
(126). This type of analysis showed that there
are multiple functional transcriptional regula-
tory elements in the region immediately adja-
cent to the TSS. This early study also showed
that regulatory elements acted synergistically,
as mutation of any one site caused a significant
drop in transcription. As mentioned above, ac-
tivators are known to work synergistically, but
this study of the proximal promoter showed
that the synergistic nature of transcriptional
regulation is embodied in the promoter struc-
ture itself.

An interesting feature of ∼60% of human
genes is that their promoter falls near a CpG
island (183), a relatively short stretch of DNA,
typically 500 bp to 2 kb in length, that has
a high G+C nucleotide content and a high
frequency of the CpG dinucleotide compared
to bulk DNA. Many CpG dinucleotides scat-

CpG islands: short
stretches of
unmethylated DNA
that have a high GC
content and are
associated with the
promoters and 5′
ends of most
housekeeping genes
and many regulated
genes

Housekeeping
gene: a gene that is
involved in basic cell
functions, and is
constitutively
expressed in all (or
almost all) cells

tered throughout the genome are methylated
at the fifth carbon position of the cytosine base
(19); these dinucleotides in CpG islands, how-
ever, are normally unmethylated. They are as-
sociated with most housekeeping genes as well
as many regulated genes (19, 67); in fact, the
presence of a CpG island is the most reliable
indicator for predicting the presence of a gene
(see below) (83). Interestingly, correlations ex-
ist between the presence of CpG islands and
certain core promoter elements: TATA boxes
are more common in promoters that do not
have a CpG island nearby, whereas BREs are
more common in promoters associated with
CpG islands (68).

DNA methylation is associated with tran-
scriptional silencing. Methylation at CpG
dinucleotides is believed to repress tran-
scription by blocking the ability of tran-
scription factors to bind their recognition
sequences. In addition, methylation-specific
binding proteins, such as MeCP2, specifically
bind methylated CpG dinucleotides and re-
cruit histone-modifying complexes that estab-
lish a repressive chromatin structure (85). The
refractory nature of CpG islands to methy-
lation suggests that a role for proximal pro-
moter elements may be to block the local
region from being methylated, and therefore
inappropriately silenced.

Enhancers

Enhancers were first identified as regions of
the SV40 tumor virus genome that could
markedly increase the transcription of a het-
erologous human gene containing a promoter
(7, 13, 103). The first human enhancer was
found in the immunoglobulin heavy-chain lo-
cus (12). Over the past 20 years, the iden-
tification of numerous enhancers has shown
that they typically regulate transcription in
a spatial- or temporal-specific manner, and
that they function independent of both the
distance from and orientation relative to the
promoter. Enhancers are also usually mod-
ular, such that a single promoter can be
acted upon by distinct enhancer elements at

www.annualreviews.org • Transcriptional Regulatory Elements 35

A
nn

u.
 R

ev
. G

en
om

. H
um

an
 G

en
et

. 2
00

6.
7:

29
-5

9.
 D

ow
nl

oa
de

d 
fr

om
 a

rj
ou

rn
al

s.
an

nu
al

re
vi

ew
s.

or
g

by
 S

ta
nf

or
d 

U
ni

ve
rs

ity
 R

ob
er

t C
ro

w
n 

L
aw

 L
ib

. o
n 

04
/0

3/
07

. F
or

 p
er

so
na

l u
se

 o
nl

y.



ANRV285-GG07-02 ARI 8 August 2006 1:29

a Enhancer

b Silencer

c Insulator

d Locus control region

X

X

1 21 2

Figure 4
Distal transcriptional regulatory elements. (a, b) Enhancers and silencers
function to activate and repress transcription, respectively. (c) Insulators
function to block genes from being affected by the transcriptional
regulatory elements of neighboring genes. (d ) Locus control regions are
typically composed of multiple regulatory elements that function together
to confer proper temporal- and/or spatial-specific gene expression to a
cluster of nearby genes.

different times or in different tissues, or in
response to different stimuli (reviewed in 7).
Enhancers are typically composed of a rela-
tively closely grouped cluster of TFBSs that
work cooperatively to enhance transcription.
The spatial organization and orientation of
TFBSs within an enhancer can be critical to its
regulatory activity (154, 178); thus, the prop-
erties of distance- and orientation indepen-
dence only apply to the enhancer cluster as a
whole.

Enhancers are functionally similar to prox-
imal promoter elements, and the distinction
between the two classes is somewhat blurred.
In fact, in many cases, the same activators
that bind enhancer elements also bind prox-
imal promoter elements in different genes.
However, unlike most proximal promoter el-
ements, enhancers are typically long-distance
transcriptional control elements that can be

situated quite distally from the core promoter
(Figure 4a). For example, enhancers can re-
side several hundred kilobase pairs upstream
of a promoter, downstream of a promoter in
an intron, or even beyond the 3′ end of the
gene (107 and reviewed in 20).

How do distal elements function over such
long physical distances? Data are accumu-
lating in favor of a DNA-looping model,
whereby the enhancer and core promoter
are brought into close proximity by “loop-
ing out” the intervening DNA. A number of
recent studies suggest that the DNA-looping
model may in fact be a general mechanism by
which enhancers function (reviewed in 184).
Interestingly, studies have also suggested that
PIC formation may begin at a distal enhancer
(175), not at the core promoter, as is usually
assumed. This would allow for more precise
control of the timing of transcription activa-
tion, and may be more common in cases in
which rapid gene activation is required.

Silencers

Silencers are sequence-specific elements that
confer a negative (i.e., silencing or repress-
ing) effect on the transcription of a target gene
(Figure 4b). They generally share most of the
properties ascribed to enhancers (reviewed in
140). Typically, they function independently
of orientation and distance from the pro-
moter, although some position-dependent si-
lencers have been encountered. They can be
situated as as part of a proximal promoter, as
part of a distal enhancer, or as an indepen-
dent distal regulatory module; in this regard,
silencers can be located far from their target
gene, in its intron, or in its 3′-untranslated re-
gion. Finally, silencers may cooperate in bind-
ing to DNA (74), and they can act synergisti-
cally (164).

Silencers are binding sites for negative
transcription factors called repressors. Re-
pressor function can require the recruitment
of negative cofactors, also called corepres-
sors (148), and in some cases, an activator can
switch to a repressor by differential cofactor
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recruitment (see, for example, 136, 140, 145).
In Drosophila, two classes of silencers have
been observed: short-range silencers, which
generally must reside within ∼100 bp of their
target gene to have a repressive effect, and
long-range silencers, which can repress mul-
tiple enhancers or promoters over a span of
a few kilobase pairs. It has been suggested
that the difference between the two may re-
late to the recruitment of different cofactors
(93).

A number of models have been proposed
for repressor function. In some cases, repres-
sors appear to function by blocking the bind-
ing of a nearby activator (74), or by directly
competing for the same site (see, for example,
110). Alternatively, a repressor may prevent
activators and/or GTFs from accessing a pro-
moter by establishing a repressive chromatin
structure through the recruitment of histone-
modifying activities or chromatin-stabilizing
factors (170). Finally, it was recently sug-
gested that a repressor may block transcrip-
tion activation by inhibiting PIC assembly
(35).

For many genes, the “default” transcrip-
tional state is repression, and activation oc-
curs only under specific conditions. One
important question is how does a promoter
undergo the switch from repression to acti-
vation? Recent findings with an interesting
class of silencing elements, known as Poly-
comb group Response Elements (PREs), may
shed light on this issue. PREs act as either si-
lencers or antisilencers depending on the pro-
tein that is bound, and the switch depends
on the presence of noncoding transcription
across the PRE element (161). Although the
precise mechanism is not understood, the act
of transcribing this sequence is thought to in-
duce chromatin modifications that prevent ac-
cess of repressive complexes to DNA. Non-
coding RNAs with no known function have
recently been found to be more prevalent than
originally anticipated (82), and transcription
at silencer elements might represent a novel
mechanism by which silencing is counteracted
at certain loci.

Insulators

Insulators (also known as boundary elements)
function to block genes from being affected
by the transcriptional activity of neighbor-
ing genes. They thus limit the action of tran-
scriptional regulatory elements to defined do-
mains, and partition the genome into discrete
realms of expression (Figure 4c). Insula-
tors have two main properties: (a) they
can block enhancer-promoter communica-
tion (i.e., enhancer-blocking activity), and (b)
they can prevent the spread of repressive
chromatin (i.e., heterochromatin-barrier ac-
tivity). For at least some insulators, these two
activities can be separable (152). Typically,
insulators are ∼0.5–3 kb in length, and func-
tion in a position-dependent, orientation-
independent manner.

In vertebrates, the most well-characterized
insulator element is the chicken β-globin in-
sulator, 5′HS4 (reviewed in 57); a homolo-
gous element resides in the human β-globin
gene locus (112). Insulator elements have also
emerged as a recurrent feature of a number
of imprinted loci in the human genome (re-
viewed in 64); the most well-characterized ex-
ample is the imprinting control region (ICR)
located upstream of the H19 gene that mod-
ulates allele-specific transcription of H19 and
another gene, Igf2 (11). The number of insu-
lator elements in the human genome is not
known. It is now thought, however, that gen-
uine insulator elements may be less common
than initially envisaged, and found only in re-
gions with a high density of coding or regula-
tory information (64).

Although a number of trans-acting fac-
tors that mediate insulator activity have been
identified in Drosophila (reviewed in 191),
the only known protein to mediate such an
activity in vertebrates is CTCF (CCCTC-
binding factor). CTCF has been implicated
to play a role in many different loci, in-
cluding chicken globin 5′HS4 (17) and the
mammalian H19/Igf2 ICR (16). The activ-
ity of CTCF can be regulated by a num-
ber of means, including DNA methylation,
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post-translational modification, and interac-
tion with cofactors (reviewed in 190).

The precise mechanism(s) by which in-
sulators carry out their enhancer-blocking
and/or heterochromatin-barrier activity is not
known. Models proposed to explain insula-
tor function can be broadly classified into
two categories (28). The first category posits
a link between insulators and the transcrip-
tional regulation machinery; such a model
is supported by documented interactions be-
tween insulators and transcriptional activators
(e.g., see 48). In this model, enhancer-
blocking activity is explained by the inabil-
ity of an insulator-bound activator to interact
with its target promoter. Heterochromatin-
barrier activity is explained by the recruit-
ment of gene-activating factors or histone-
modifying activities, which serve as nucle-
ation sites for a permissive chromatin state
that, in turn, blocks the spread of repressive
chromatin.

The second category associates insula-
tors with the structural organization of chro-
matin. Specifically, this model proposes a
role for insulators in physically separating
chromatin into independent structural do-
mains. This model rests on the assump-
tion that insulators interact with each other
and/or with a nuclear attachment substrate,
thereby tethering multiple insulator elements
to the same foci and resulting in the forma-
tion of physically isolated chromatin loops.
In this model, positioning an insulator be-
tween an enhancer and its target promoter
results in enhancer-blocking activity because
the physical obstruction between the two el-
ements prevents their communication. Like-
wise, flanking a gene with insulator elements
provides heterochromatin-barrier activity due
to the creation of an independent expression
domain.

Locus Control Regions

Locus control regions (LCRs) are groups of
regulatory elements involved in regulating
an entire locus or gene cluster (reviewed in

111) (Figure 4d). They are operationally de-
fined as elements that direct tissue-specific,
physiological expression of a linked transgene
in a position-independent and copy-number-
dependent manner. LCRs are typically
composed of multiple cis-acting elements,
including enhancers, silencers, insulators,
and nuclear-matrix or chromosome scaffold-
attachment regions (MARs or SARs). These
elements are bound by transcription factors
(both tissue-specific and ubiquitous), coacti-
vators, repressors, and/or chromatin modi-
fiers. Each of the components differentially af-
fects gene expression, and it is their collective
activity that functionally defines an LCR and
confers proper spatial/temporal gene expres-
sion. The most prominent property of LCRs,
however, is strong, specific enhancer activity.
LCRs are often marked by a cluster of nearby
DNase I hypersensitive sites (see below for
explanation of DNase I hypersensitivity), and
are thought to provide an open-chromatin do-
main for genes to which they are linked.

The identification of a large number of
LCRs has revealed that, like enhancers and
silencers, LCRs can regulate gene expres-
sion from a distance and that they function
in a position-independent manner. Although
LCRs are typically located upstream of their
target gene(s), they can also be found within
an intron of the gene they regulate, exempli-
fied by the human adenosine deaminase LCR
(5); downstream of the gene, as in the case of
the CD2 (97) or Th2 (101) LCR; or even in
the intron of a neighboring gene, as occurs
with the CD4 LCR (1).

LCRs have been identified in a broad
spectrum of mammalian loci (111). The first
LCR identified—and the best-studied one to
date—is the mammalian β-globin LCR (re-
viewed in 34). The human β-globin locus
contains five genes that are differentially ex-
pressed during development, and are arranged
in order of their developmental expression.
The β-globin LCR lies ∼6–25 kb upstream
of the gene cluster, and confers high-level,
erythrocyte-specific expression to the genes
within the locus. The activity of the β-globin
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LCR is orientation-dependent, as inverting
the LCR destroys much of its function (177).

How do LCRs accomplish long-range
transcriptional control of their target genes?
Although a number of models have been pro-
posed (reviewed in 40), a series of recent stud-
ies with the β-globin LCR have provided
substantial evidence for a “looping” model
(reviewed in 15) similar to the enhancer-
looping mechanism discussed above. Such
long-range physical contacts have been pro-
posed to result in the clustering of sequences
into an “active chromatin hub,” the forma-
tion of which is thought to be crucial for es-
tablishing an open-chromatin domain (179).
These long-range interactions are only ob-
served when the locus is transcriptionally ac-
tive, providing support that they play a role in
gene activation. The generality of this mech-
anism for LCR function is supported by the
recent observation that similar long-range in-
teractions also occur at the Th2 LCR (169).

TRANSCRIPTIONAL
REGULATORY ELEMENTS AND
FACTORS IN HUMAN DISEASES

Mutations in transcriptional regulatory ele-
ments have been found associated with nu-
merous human disease, an illustrative subset
of which are listed in Table 1. In many cases,
the specific defect is known. For example, mu-
tations in a proximal promoter element of the
GpIbβ gene result in reduced GATA-1 bind-
ing and GpIbβ gene expression, leading to a
disease known as Bernard-Soulier Syndrome
(117). In other cases, the underlying defect is
less well defined. For instance, a 12-mer re-
peat expansion in the promoter of the cystatin
B gene has been proposed to cause progressive
myoclonus epilepsy, presumably by altering
the spacing of elements in the promoter (95).

Similarly, mutations in components of the
transcriptional machinery have also been as-
sociated with diseases, some of which are
listed in Table 2. For example, mutations in a
subunit of the GTF TFIIH have been associ-
ated with the disease xeroderma pigmentosa

(reviewed in 105). Mutations in the activator
GATA-1 have been associated with a num-
ber of hematopoeitic disorders (reviewed in
27). In addition, mutations in several home-
odomain transcription factors (e.g., LMX1B
and PHOX2B) are known to cause human dis-
eases (2, 185). Notably, mutations in a number
of chromatin-remodeling factors have been
associated with cancer. For example, both
BRG1 and BRM, mammalian homologs of the
SWI/SNF chromatin-remodeling factors, are
mutated in numerous cancer cell lines, lead-
ing to the altered expression of genes that
regulate cell proliferation and metastasis (14).
A more extensive compilation of patholog-
ically relevant mutations in regulatory ele-
ments and transcription factors is available
in the PathoDB database (see link in Related
Resources).

A variety of cancers result from chromo-
somal rearrangements (translocations) involv-
ing either regulatory elements or transcrip-
tion factors. For example, promoter and/or
enhancer elements of one gene may be-
come aberrantly linked to a proto-oncogene,
thereby causing altered expression of an onco-
genic protein. This type of rearrangement is
exemplified by fusion of immunoglobulin or
T-cell receptor genes to the cMYC oncogene,
which leads to activation of cMYC in Burkitt’s
lymphoma and acute T-cell leukemia, respec-
tively (reviewed in 146). Chromosomal rear-
rangements may also lead to the fusion of a
transcription factor and another protein, caus-
ing the production of a chimeric protein hav-
ing a new or altered activity. For example,
the BCR-ABL fusion associated with chronic
myelogenous leukemia brings together the
dimerization domain of BCR to the tyro-
sine kinase ABL, resulting in constitutive
kinase activity (reviewed in 157). A fusion
event may even involve two transcription fac-
tors: for instance, fusion of the transcriptional
activation domain of E2A to either PBX-
1 or HLF results in pre-B-cell acute lym-
phoblastic leukemia (reviewed in 98). Inter-
estingly, although recurrent chromosomal re-
arrangements are characteristic of leukemias
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Table 1 Transcriptional regulatory elements involved in human diseases

Regulatory Element Disease Mutation (bound factor) Affected Gene Reference
Core promoter β-thalassemia TATA box, CACCC box,

DCE
β-globin (4, 94, 109)

Proximal promoter Bernard-Soulier Syndrome 133 bp upstream of TSS
(GATA-1)

GpIbβ (117)

Charcot-Marie-Tooth disease 215 bp upstream of TSS connexin-32 (187)
Congenital erythropoietic
porphyria

70, 90 bp upstream of TSS
(GATA-1, CP2)

uroporphyrinogen
III synthase

(167)

Familial
hypercholesterolemia

43 bp upstream of TSS (Sp1) low density lipoprotein
receptor

(92)

Familial combined
hyperlipidemia

39 bp upstream of TSS
(Oct-1)

lipoprotein lipase (195)

Hemophilia CCAAT box (C/EBP) factor IX (43)
Hereditary persistence of
fetal hemoglobin

∼175 bp upstream of TSS
(Oct-1, GATA-1)

Aγ-globin (62)

Progressive myoclonus
epilepsy

Expansion ∼70 bp upstream
of TSS

cystatin B (96)

Pyruvate kinase deficient
anemia

72 bp upstream of TSS
(GATA-1)

PKLR (120)

β-thalassemia CACCC box (EKLF) β-globin (130)
δ-thalassemia 77 bp upstream of TSS

(GATA-1)
δ-globin (125)

Treacher Collins syndrome 346 bp upstream of TSS
(YY1)

TCOF1 (123)

Enhancer Preaxial polydactyly 1 Mb upstream of gene SHH (107)
Van Buchem disease Deletion ∼35 kb downstream

of gene
sclerostin (116)

X-linked deafness Microdeletions 900 kb
upstream

POU3F4 (46)

Silencer Asthma and allergies 509 bp upstream of TSS
(YY1)

TFG-β (78)

Fascioscapulohumeral
muscular dystrophy

Deletion of D4Z4 repeats 4q35 genes (66)

Insulator Beckwith-Wiedemann
syndrome

CTCF binding site (CTCF) H19/Igf (147)

LCR α-thalassemia 62 kb deletion upstream of
gene cluster

α-globin genes (75)

β-thalassemia ∼30 kb deletion removing
5′HS2–5

β-globin genes (52)

and lymphomas, recent evidence indicates
they may also be involved in solid tumors.
For example, fusions between the androgen-
regulated TMPRSS2 gene and members of the
ETS family of transcription factors were re-
cently found to occur in most prostate cancers
(180).

A number of recent studies have un-
derscored the possibility of modulating
transcription for therapeutic benefit. For
instance, insulators have been used to over-
come chromatin-dependent repression and to
drive high-level, stable expression in gene-
therapy applications (reviewed in 153). There
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Table 2 Transcriptional machinery components involved in human diseases

Component Disease Mutated Factor Reference
General transcription factors Xeroderma pigmentosum, Cockayne syndrome,

trichothiodystrophy
TFIIH (105)

Activators Aniridia PAX6 (86)
Campomelic dysplasia SOX9 (63, 186)
Congenital central hypoventilation syndrome PHOX2B (2)
Congenital heart disease Nkx2–5 (162)
Down syndrome with acute megakaryoblastic leukemia GATA-1 (77)
Nail-patella syndrome LMX1B (185)
Prostate cancer ATBF1 (173)
X-linked deafness POU3F4 (45)
X-linked dyserythropoietic anemia and thrombocytopenia GATA-1 (138)
X-linked thrombocytopenia GATA-1 (65, 127)

Repressors X linked autoimmunity-allergic dysregulation syndrome FOXP3 (18)
Coactivators Parkinson’s disease DJ-1 (23)

Type II diabetes mellitus PGC-1 (53)
Chromatin remodeling factors Cancer BRG1/BRM (14)

Retinal degeneration ataxin-7 (143)
Rett syndrome MeCP2 (3)
Rubinstein-Taybi syndrome CREB-binding

protein
(135)

α-thalassemia myelodysplasia syndrome ATRX (70)

is also great interest in developing engineered
transcriptional activators for use as therapeu-
tic agents in diseases caused by loss of gene
expression (reviewed in 91, 151). In addition
to the selective reactivation of expression of a
specific gene(s), gene expression can also be
more generally activated in diseases caused
by epigenetic silencing. In particular, many
cancers involve the epigenetic inactivation of
tumor suppressor genes. DNA-methylation
and histone-deacetylation inhibitors can acti-
vate epigenetically silenced tumor suppressor
genes and are currently under investigation as
chemotherapeutic agents (55).

Many human diseases are not caused by a
mutation in a single gene, but rather by com-
plex interactions of multiple genes and vari-
ants residing therein that may affect, for ex-
ample, disease susceptibility or progression.
Key to understanding the allelic variations
that underlie such diseases is categorizing
the single-base differences among individuals,
known as single-nucleotide polymorphisms

SNP:
single-nucleotide
polymorphism

(SNPs). SNPs are the most common type of
sequence variants, occurring roughly once in
every 1000 bp in the human genome, and are
found in both coding and noncoding regions.
Thus far, more than four million SNPs in
the human genome have been identified and
validated (131), and are being used to con-
struct comprehensive variation maps of the
human genome (1a). A series of studies an-
alyzing the distribution of SNPs in human
promoters found that functional SNPs (i.e.,
those that result in altered gene expression)
occur in 30–60% of human promoters (e.g.,
see 79, 156) and, moreover, that they tend
to cluster in close proximity—within ∼100
bp—of the TSS (25). These data indicate that
transcriptional regulatory elements, particu-
larly promoters, may represent a major site
where mutations contribute to human dis-
ease. Clearly, annotating all functional tran-
scriptional regulatory elements in the human
genome will be valuable for future medical
studies.
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EXPERIMENTAL APPROACHES
TO IDENTIFYING
TRANSCRIPTIONAL
REGULATORY ELEMENTS

Functional Assays that Measure
Transcriptional Regulatory Element
Activity

One of the more versatile methods for iden-
tifying and analyzing transcriptional regu-
latory element activity is based on the use
of a reporter-gene assay. Although tradition-
ally used for directed studies, this method
holds the promise of being adapted for use
in genome-wide screens. In this assay, the
region of DNA to be tested for regulatory
activity is cloned into a plasmid upstream
of an easily assayable reporter gene, such as
the chloramphenicol acetyltransferase (CAT),
β-galactosidase, green fluorescent protein
(GFP), or luciferase gene. For the purposes of
large-scale screens, the genomic segments can
be generated randomly either by enzymatic
or physical means. The resulting construct
is then transfected (either transiently or sta-
bly) into cultured cells, and the activity of the
reporter is measured to determine if the test
segment contains elements that alter reporter
gene expression. The precise configuration of
the reporter construct depends on the regula-
tory element to be identified. For instance, if
the genomic segment is being tested for core
promoter activity, then it is placed immedi-
ately upstream of a reporter gene lacking an
endogenous promoter (Figure 5a). Proximal
promoters can be assayed in a similar manner,
if they are cloned upstream of a reporter gene
driven by a weak heterologous core promoter
that allows increases in transcription to be de-
tected (Figure 5b). This basic reporter system
can also be used to test for enhancers and si-
lencers, if the appropriate strength promoter
is used to detect these activities (Figure 5c,d ).
After a genomic segment harboring a regu-
latory activity is identified, serial deletions,
linker-scanning mutagenesis, or site-directed
mutagenesis can be employed to more accu-
rately delineate the functional element(s).

Functional assays that measure insulator
or LCR activity require more complex re-
porter constructs and assay systems. Insula-
tor activity can be measured using one of two
methods, depending on whether enhancer-
blocking or heterochromatin-barrier activity
is being assayed (Figure 5e). In assays that
measure enhancer-blocking activity, the ge-
nomic segment containing a putative insulator
is positioned between an enhancer and a pro-
moter that are known to interact; if present,
an insulator should interfere with enhancer-
promoter communication when positioned
between the two elements. By contrast, meth-
ods that measure heterochromatin-barrier ac-
tivity require a transgenic reporter assay, in
which the reporter gene is stably integrated
into the genome. When flanking a transgenic
reporter gene, a genomic segment containing
an insulator would shield the transgene from
position effects, particularly from the repres-
sive effects of heterochromatin, allowing for
position-independent reporter gene expres-
sion (25a). Similarly, the definitive identifica-
tion of an LCR requires analyzing the ability
of a genomic segment containing an LCR to
overcome position effects in a transgenic re-
porter assay (Figure 5f ) (72b).

There are several challenges in using func-
tional assays to identify transcriptional reg-
ulatory elements. First, regulatory elements
can be widely dispersed, and it can be diffi-
cult to capture them all in a single reporter
construct. Thus, a genomic segment contain-
ing only a portion of a promoter element will
likely not recapitulate the expression of its cor-
responding gene. Second, the in vivo activity
of a reporter gene may fail to duplicate the
expression pattern of its endogenous counter-
part due to differences in chromatin context.
Third, a given upstream regulatory element
may, in reality, only be used in very limited
contexts, such as in a specific tissue, develop-
mental stage, or physiological response path-
way. If the cell culture system used to assay
the reporter gene activity does not match the
physiological conditions under which the reg-
ulatory element is normally active, then the
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Genomic segment

Genomic segment

Reporter gene

TATA TSSGenomic segment

Reporter construct

Reporter construct

Reporter construct

Reporter construct

Reporter construct
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Enhancer-
blocking
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activity
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f
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Figure 5
Functional assays that measure transcriptional regulatory element activity. Traditional methods for
analyzing the activity of a transcriptional regulatory element are based on the use of plasmid-based or
transgenic-reporter gene assays. (a) To assay core promoter activity, the genomic segment to be tested
(light blue) is cloned into a plasmid, immediately upstream of a reporter gene that lacks an endogenous
promoter. (b–d) Proximal promoters, enhancers, and silencers can be assayed by similar methods, when
the genomic segment is cloned upstream of a reporter gene driven by an appropriate promoter. (e)
Insulator enhancer-blocking activity can be measured using a plasmid-based assay that monitors the
ability of a cloned insulator to interfere with enhancer-promoter communication, whereas methods that
measure heterochromatin-barrier activity require a transgenic reporter assay to determine the ability of
the insulator to shield the transgene from repressive effects of heterochromatin. ( f ) The ability of a locus
control region to overcome position effects and confer proper spatial and/or temporal expression is
measured by transgenic reporter assay.
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Chromatin im-
munoprecipitation
(ChIP): an
experimental method
in which a
crosslinked,
DNA-bound protein
is purified by
antibody affinity, and
the associated DNA
is recovered and
analyzed

ChIP-chip:
chromatin
immunoprecipitation
combined with
microarray (chip)
analysis; theoretically
allows the
determination of the
entire spectrum of in
vivo binding sites for
a given protein

element may not be detected. One way to
overcome this challenge is by injecting re-
porter constructs into embryos of model
organisms, such as frogs or zebrafish, and
following the expression of the reporter
gene through development (134, 193). Al-
though these experiments can accurately re-
veal developmental-specific expression pat-
terns, they are limited by instability and dilu-
tion as the embryonic cells multiply; thus, only
early developmental events can be reliably as-
sayed in this manner. In addition, the reporter
constructs do not become integrated in the
host genome, and thus the effects of local
chromatin structure on the endogenous gene
are not revealed. More sophisticated testing
of upstream regulatory elements can be per-
formed by constructing transgenic lines and
following reporter gene expression through
the entire development of the organism (54,
139). Such a transgenic system overcomes
most of the problems associated with sim-
pler reporter gene assays, but is less amenable
to large-scale screening. Despite these limi-
tations, however, reporter gene assays remain
the most accurate means available to verify
the functionality of a transcriptional regula-
tory element.

Genomic Analysis of Transcription
Factor Binding Sites

Several techniques have been developed to
identify TFBSs on a genome-wide scale. For
example, DNase I hypersensitive site mapping
is a technique based on the finding that re-
gions of genomic DNA in which the chro-
matin state has been perturbed, as can occur
due to binding of transcription factors, are
more sensitive to DNase I digestion than bulk
chromatin. DNase I hypersensitive site map-
ping has also been used to detect silencers,
insulators, and LCRs (72a). Recently, a tech-
nique was developed for high-throughput
genome-wide detection of DNase I hyper-
sensitive sites (42). Such an approach is pow-
erful in its capacity to detect any regulatory
element associated with chromotin perturba-

tion; however, it is limited because the pres-
ence of DNase I hypersensitivity at a site
implies—but does not demonstrate—an un-
derlying functional transcriptional regulatory
element.

Recent experimental analyses of transcrip-
tion factor binding have taken advantage of
the powerful technique of chromatin im-
munoprecipitation (ChIP), which allows de-
tection and identification of DNA sequences
bound by a given protein. DNA purified by
ChIP can be either be hybridized to a DNA
microarray (ChIP-chip, 155) or cloned to cre-
ate a “ChIP library” (189) to identify the ge-
nomic binding sites of a transcription factor.
These methods are powerful because they are
unbiased—every TFBS could theoretically be
detected. Depending on the protein factor
that serves as the immunoprecipitation tar-
get, the technique can detect enhancers (24,
80) as well as core promoters (89); it should
also be possible to use the technique to iden-
tify silencers, insulators, and LCRs. These
methodologies, however, have certain limi-
tations. Most notably, ChIP-based methods
require a highly specific antibody for each
transcription factor of interest. In addition,
ChIP-chip experiments are currently limited
by the microarray coverage of many genomes
of interest. At present, “promoter arrays,”
such as those that cover ∼10-kb regions sur-
rounding the TSSs from ∼18,000 known
genes (Agilent Technologies), are in use; pre-
sumably microarrays covering entire mam-
malian genomes (e.g., human and mouse) will
soon be widely available. By contrast, ChIP
cloning is not limited by microarray availabil-
ity; however, it is more labor-intensive than
ChIP-chip, and there is a relatively high back-
ground inherent to the cloning procedure that
makes it challenging to find bona fide TFBSs.

The data emanating from such large-scale
genomic methods must be cautiously inter-
preted. Although experiments like this show
that a transcription factor binds to a certain
site in the genome, they do not demonstrate
that each and every site is a functional element
that regulates transcription of a target gene. In
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fact, recent studies suggest that this is highly
unlikely. Based on a study of the binding of
Sp1, cMyc, and p53 along human chromo-
somes 21 and 22, an extrapolation to the entire
genome predicts a minimum of 12,000 Sp1
binding sites, 25,000 cMyc sites, and 1600 p53
sites (33). Similar results have been obtained
for CREB (56) and NF-κB (122). These high
numbers are not entirely surprising consid-
ering the statistical probability of having a
TFBS present by chance; a given 4–6 bp se-
quence is predicted to occur every ∼250–4000
bp in the human genome. Currently, there
is no straightforward method to determine
the functional contribution of each candidate
TFBS to the regulation of a target gene.

Clearly, one of the challenges in annotat-
ing the entire human genome for functional
regulatory elements is the sheer magnitude
of the task. Indeed, many of the experimen-
tal tools that work well for analyzing small
regions of DNA are not suitable for high-
throughput studies on a genome-wide scale.
Toward this end, efforts are under way to
adapt existing methods for high-throughput
applications, and to develop new methodolo-
gies. Much of this is being performed under
the auspices of the the ENCODE Project (see
sidebar).

COMPUTATIONAL
APPROACHES FOR
IDENTIFYING
TRANSCRIPTIONAL
REGULATORY ELEMENTS

Ab Initio Identification of Promoters

As the sequencing of the human genome
neared completion, it was clear that com-
putational tools would be required to ana-
lyze the enormous amount of newly gener-
ated sequence data. Identifying the promoter
of a specific gene poses a challenge quite dis-
tinct from identifying potential coding re-
gions themselves, as core promoters are often
distantly located from the first coding exon
due to the presence of 5′-untranslated regions

THE ENCODE PROJECT

In September 2003, the National Human Genome Research
Institute (NHGRI) launched the ENCODE (ENCyclopedia
of DNA Elements) Project, the goal of which is to anno-
tate the entire human genome for all functional elements. In
addition to transcriptional regulatory elements, ENCODE
also aims to identify, for example, determinants of chromo-
some structure and function (such as origins of replication),
sequences that affect/control chromosome biology (such as
recombination hot spots), and sites of epigenetic changes
(such as DNA methylation and chromatin modifications). Ini-
tially, ENCODE has focused on a selected 1% (∼30 Mb)
of the human genome, and this pilot phase will test and
compare a diverse set of new and existing experimental pro-
cedures, computational tools, and technologies to identify
functional elements. All data generated by ENCODE are be-
ing released into public databases. For more information, see
http://www.genome.gov/encode.

and introns. In addition, because promoters
can contain any one of a number of combi-
nations of core promoter elements [and, con-
versely, many promoters have only one or no
such elements (68)], simply searching for the
co-occurrence of known core promoter motifs
has had only limited success (58). The most
successful promoter prediction programs are
instead based on the analysis of training data
sets (i.e., known core promoters) to look for
functionally undefined sequence contexts that
are common to all promoters, and then scan-
ning genomic sequences for new occurrences
of such sequence contexts. This method has
been implemented alone (PromoterInspector;
160), in combination with the modeling of
promoter features, such as relation to a CpG
island and a potential first exon (FirstEF; 44),
and by building a sequence- and positionally
constrained promoter model from the train-
ing data set (Eponine; 51).

Although much improved over earlier pre-
diction programs, these methods still have
limited sensitivity and specificity when ap-
plied to genome-scale sequence data (6, 9),
primarily resulting from two limitations: first,
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the programs depend on the quantity and
quality of the available data used for their
training; and second, they are limited to find-
ing core promoters that are similar to ones
that have already been identified. Toward
this end, experimentally verified core promot-
ers and TSSs were recently compiled into
high-quality databases [EDP (32) and DbTSS
(174)]. Further experimental work aimed at
both identifying novel transcripts (31) and
testing computational predictions (50) will
provide ample data from which to discover
novel promoter structures and construct bet-
ter models of core promoters.

Significantly, there is a major difference in
the accurate ab initio identification of pro-
moters with and without an associated CpG
island. Recent experiments have confirmed
the long-held observation that proximity to a
CpG island correlates strongly with a broad,
nonspecific pattern of expression, as com-
monly found with housekeeping genes (194).
Consistent with the fact that approximately
half of the genes in the human genome fall
near CpG islands, a recent critical compar-
ison of promoter-prediction programs found
that there is generally good success at predict-
ing this class of promoters (9). Unfortunately,
for the other half of genes not associated with
CpG islands, whose tissue-specific regulation
is arguably more interesting and complex, ab
initio promoter predictions are much less re-
liable.

Ab Initio Identification of Upstream
Regulatory Elements

A number of bioinformatics approaches can
be used for ab initio identification of pre-
viously unidentified upstream transcriptional
regulatory elements. Classically, an unan-
notated sequence can be scanned for se-
quence motifs that match known TFBSs,
which have been experimentally identified
from other promoters/regulatory sites. Ex-
perimental data regarding the specific bind-
ing sites of most well-characterized transcrip-

tion factors have been compiled in databases
such as TRANSFAC (192). Multiple exam-
ples of experimentally determined TFBSs are
then used to build a position-specific scoring
matrix for each factor (172). Programs such
as MatInspector (150) and, more recently,
MATCH (88) compare a genomic sequence
input to all the matrices in TRANSFAC, and
return a list of potential TFBSs based on a
statistical match between a region in the se-
quence and a site matrix. This analysis is often
hampered by the prediction of a large num-
ber of sites, a significant fraction of which are
likely false positives. This may be due, at least
in part, to the quality of the data used to build
the TFBS matrices (60). Recently, databases
such as JASPAR (158) were developed that
use more sophisticated statistical models of
TFBSs. In addition to the false-positive prob-
lem, the completeness of these databases is
also an issue; it is likely that not all DNA-
binding transcription factors have been iden-
tified, and even for some known factors, their
binding specificity has not yet been fully char-
acterized.

Use of a priori expression knowledge. An
alternative analysis technique used to over-
come the above-mentioned challenges is to
amass genes that are suspected to be coregu-
lated (or experimentally determined to be co-
expressed, such as from a microarray analy-
sis), and search for common sequence motifs
in their upstream regions. This not only al-
lows for the possibility of discovering novel
TFBSs, but also for reducing the number of
predictions generated. To date, many differ-
ent programs have become available that im-
plement different algorithms for motif discov-
ery in this setting; AlignACE (81) and MEME
(8) are two of the most well known. The
plethora of programs available can be over-
whelming; to this end, the field is becoming
more self-critical and finding ways to eval-
uate and compare the performance of such
programs (181). It is clear that there is room
for improvement, especially when analyzing
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metazoan sequences, in which transcription
factor cooperativity is much more widespread
than in yeast and lower eukaryotes. In fact, fur-
ther improvement in the success of predicting
TFBSs has come from algorithms that search
for clustered binding sites (182 and citations
therein).

Comparative genomics approaches. An-
other strategy that has become widely ex-
ploited to refine searches for TFBSs involves
the use of comparative genomics, specifically
comparative sequence analysis. In one form
of this, known as phylogenetic footprinting
(176), genomic sequences from species sepa-
rated by large evolutionary distances are com-
pared, and those sequences found to be in
common (i.e., conserved) are regarded as can-
didates for being functionally important. This
approach is based on the expectation that
functional TFBSs will be conserved through
evolution, and can thus be detected when or-
thologous sequences from distantly related
species are aligned. A number of programs
have been developed to perform such anal-
yses, such as FootPrinter (21) and PhastCons
(165). As with the other prediction tools dis-
cussed above, a recent analysis of the accu-
racy of some of these programs suggests that
they are acceptable, but imperfect, in cor-
rectly identifying known functional sites (90).
Two thorough reviews have covered the grow-
ing field of comparative genomics (129) and
the challenges faced in the statistical imple-
mentation of comparative sequence analyses
(171). The comments below are thus lim-
ited to a broader perspective on the use of
comparative genomics for finding functional
TFBSs.

Comparative genomics approaches are of-
ten complicated by two factors. First, al-
though there is ample evidence that conserved
regions do, indeed, often contain functional
regulatory motifs (121, 139, 193), this corre-
lation does not always hold (10), and other
explanations for observed conservation have
been suggested (26). The lack of a precise cor-

Phylogenetic
footprinting:
multispecies
comparative
sequence analysis
method used to
identify highly
conserved sequences
present in
evolutionarily
diverse species

Phylogenetic
shadowing: an
approach for
comparative
sequence analyses
that compares closely
related sequences
rather than distantly
related sequences

relation between conservation and function
results, in part, from the presence of a large
amount of highly conserved noncoding se-
quences in the human genome. Genome-wide
comparisons have revealed surprising statis-
tics about the frequency of such sequences,
some that span >1 kb, which do not follow
the pattern expected for any of the known
types of transcriptional regulatory elements
or clusters of elements (41, 165). It remains
to be determined if these conserved regions
contain elements relevant to transcriptional
regulation, or if they perhaps serve an as-yet
defined other role.

The second problem is that not all TFBSs
are conserved among species. For example, it
has been estimated that roughly one third of
TFBSs are not conserved between human and
rodents (49). This could be due to a num-
ber of reasons. First, due to the degeneracy of
TFBSs, perfect sequence conservation of a site
is not required; as a result, the same factor may
bind to sequence variants of the TFBS that
are present in different species. Second, al-
though gene-expression patterns may be con-
served across species, a specific regulatory el-
ement may not be conserved (61, 118, 188);
this can occur because of redundancy of reg-
ulatory elements (76, 159) that allows a single
element to be gained or lost without affecting
the overall expression of the gene.

Finally, some of the most important tran-
scriptional regulatory elements relevant to
normal human development and disease may
not be highly conserved, but rather might
be found only in humans or shared with a
small group of our primate relatives. Indeed,
it has also been hypothesized that weakly con-
served TFBSs may be medically important
(171). Detecting these sites by computational
methods will likely depend on advances in
comparative genomics; this may require new
analytical approaches, such as phylogenetic
shadowing (22) that analyzes closely related
sequences (e.g., those from primates), and in-
creasing the total number of species for which
genomic sequence data are available.
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CONCLUSIONS

The picture that is emerging suggests that
transcriptional regulation is a much more
dynamic process than was once perceived. In-
terplay between the entire suite of core pro-
moters, proximal regulatory elements, and
distal regulatory elements, as well as their
binding factors and cofactors, contribute to
the precise nature of the transcriptional out-
put of a given promoter. Regulatory systems
are robust and redundant, and yet highly sen-
sitive as well: Even single-nucleotide differ-
ences in a regulatory sequence can have sig-
nificant effects on gene expression. These re-
sults suggest that transcriptional regulation
can cover a broad, continuous spectrum of
regulatory control, such that it is likely that
discrete models of regulatory action may ap-
ply to only limited sets of promoters.

Current endeavors aiming to annotate all
of the transcriptional regulatory elements in
the human genome face considerable chal-
lenges. TFBSs are small and degenerate, are
often located distantly from the promoter
upon which they act, and are not always
conserved through evolution. These prop-
erties make regulatory elements difficult to
identify through computational means alone.
Many experimental methods show binding
of a transcription factor at a given site, but
do not assess the functional significance of
that binding. Functional assays that directly
assess the regulatory capacity of a site are
the best available tools, and the current chal-
lenge is to adapt these methods for their high-
throughput usage to screen the entire human
genome.

SUMMARY POINTS

1. The concerted action of multiple different transcriptional regulatory elements, along
with their cognate activators and coactivators, contributes to the overall spatial and
temporal regulation of a gene’s expression pattern.

2. The modular nature of promoters confers combinatorial control of gene expression;
that is, the number of possible gene expression patterns far exceeds the total number
of transcription factors.

3. Although an activator can bind to a wide variety of sequence variants within a regula-
tory element that conform to the consensus, in certain instances, the precise sequence
of a TFBS can modulate the activity of an activator.

4. Long-range transcriptional regulatory elements, including enhancers, silencers, in-
sulators, and LCRs, may function through a DNA-looping mechanism that brings
regulatory elements into proximity by “looping out” the intervening DNA.

5. Numerous human diseases and disorders have been associated with mutations in both
transcriptional regulatory elements and various components of the transcriptional
machinery.

6. A major challenge for genomics research is to identify all functional elements in the
human genome, including those that regulate gene expression.

7. Both experimental and computational approaches are being developed to identify
transcriptional regulatory elements on a genome-wide scale.

8. A predicted TFBS is not necessarily a bona fide binding site, and binding does not
necessarily demonstrate a functional role for that site; it is likely that bioinformatics
methods will not replace the need for experimental verification of regulatory elements.
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FUTURE DIRECTIONS/UNRESOLVED ISSUES

1. Elucidate the precise mechanisms of action of transcriptional activators and repressors.

2. Develop methods to determine the functional contribution of each TFBS to the
regulation of its target gene.

3. Determine whether there are rules for the specific combinations of activators that
underlie combinatorial control of gene expression.

4. Develop approaches for identifying functional transcriptional regulatory sites on a
genome-wide scale.
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