
Combinatorics in Space
The Mariner 9 Telemetry System



Mariner 9 Mission

Launched: May 30, 1971
Arrived: Nov. 14, 1971
Turned Off: Oct. 27, 1972

Mission Objectives:
(Mariner 8): Map 70% of Martian surface.
(Mariner 9): Study temporal changes in Martian atmosphere and 
surface features.



Live TV

A black and white TV camera was used to broadcast “live” 
pictures of the Martian surface.

Each photo-receptor in the camera measures the brightness of a 
section of the Martian surface about 4-5 km square, and outputs a 
grayness value in the range 0-63. This value is represented as a 
binary 6-tuple.

The TV image is thus digitalized by the photo-receptor bank and is 
output as a stream of thousands of binary 6-tuples.



Coding Needed

Without coding and a failure probability p = 0.05, 26% of the 
image would be in error ... unacceptably poor quality for the 
nature of the mission.

Any coding will increase the length of the transmitted message. 
Due to power constraints on board the probe and equipment 
constraints at the receiving stations on Earth, the coded message 
could not be much more than 5 times as long as the data.

Thus, a 6-tuple of data could be coded as a codeword of about 30 
bits in length.



Other concerns
A second concern involves the coding procedure. Storage of data 
requires shielding of the storage media – this is dead weight aboard 
the probe and economics require that there be little dead weight. 
Coding should therefore be done “on the fly”, without permanent 
memory requirements.

Finally, decoding needs to be done rapidly. The Jet Propulsion 
Laboratory in Pasadena, California will process the signals and 
reconvert them to picture images for the press which will be 
gathered at JPL.

Besides this NASA priority, rapid decoding is needed so that 
feedback to the probe becomes viable – redirecting the camera 
based on what is seen.



The Code
The 5-repeat code would satisfy the mission specs, but it is only 
2-error correcting ... leaving 1% of the image in error.

The actual code selected is 7-error correcting and this reduced the 
probability of error in the image to only 0.01%.

The decision on which code to use was based primarily on the 
decoding algorithm. The algorithm was carried out by a fairly 
simple piece of specialized circuitry called “The Green Machine.”

The code selected was a particular Reed-Muller Code. We will 
examine this code later.



Results

            Inca City:
      -80 Lat., 64 Long.

"Inca City" is the informal name given by Mariner 9 
scientists in 1972 to a set of  intersecting, rectilinear 
ridges that are located among the layered materials   
of the south polar region of Mars. Their origin has 
never been understood; most investigators thought 
they might be sand dunes, either modern dunes or,  
more likely, dunes that were buried, hardened, then 
exhumed. Others considered  them to be dikes 
formed by injection of molten rock (magma) or soft 
sediment into subsurface cracks that subsequently 
hardened and then were exposed at the surface by 
wind erosion.



Inca City

The Mars Global Surveyor (MGS) Mars Orbiter
Camera (MOC) has provided new information 
about the "Inca City" ridges, though the camera's 
images still do not solve the mystery. The new 
information comes in the form of a MOC red 
wide angle context frame taken in mid-southern
spring. The MOC image shows that the "Inca 
City" ridges, located at 82°S, 67°W, are part of a 
larger circular structure that is about 86 km (53 
mi) across.



Inca City

It is possible that this pattern reflects an origin related to an ancient, 
eroded meteor impact crater that was filled-in, buried, then partially 
exhumed. In this case, the ridges might be the remains of filled-in 
fractures in the bedrock into which the crater formed, or filled-in cracks 
within the material that filled the crater. Or both explanations could  be 
wrong. While the new MOC image shows that "Inca City" has a larger 
context  as part of a circular form, it does not reveal the exact origin of 
these striking and unusual martian landforms.



Inca City



Recursive Definition of Reed-Muller 
Codes

Reed-Muller codes are among the oldest known codes and have 
found widespread applications. They were discovered by Muller 
and provided with a decoding algorithm by Reed in 1954.

Definition: The (first order) Reed-Muller codes R(1,m) are binary 
codes defined for all integers m ≥ 1, recursively by:

        (i) R(1,1) = {00,01,10,11} = ℤ
2
2.

        (ii) for m > 1,
   R(1,m) = {(u,u), (u,u+1): u ∈ R(1,m-1) and 1 = all 1 vector}.  



Examples
Thus, 

    R(1,2) = {0000, 0101, 1010, 1111, 0011, 0110, 1001, 1100} and

    R(1,3) =
      { 00000000, 00001111,
         01010101, 01011010,
         10101010, 10100101,
         11111111, 11110000,
         00110011, 00111100,
         01100110, 01101001,
         10011001, 10010110,
         11001100, 11000011 }



Linear Codes
     V[n,q] denotes a vector space of dimension n defined over a 
field with q elements (q is a prime or prime power). Any subset of 
V[n,q] is a code.

     In the V[n,q] setting, an important class of codes are the linear 
codes, these codes are the ones whose code words form a sub-vector 
space of V[n,q]. If the subspace of V[n,q] is k dimensional then we 
talk about the subspace as an [n,k]-code. (Note that the square 
brackets indicate a linear code).

    In the V[n,q] setting, the terms “word” and “vector” are 
interchangeable.

    Linear codes, because of their algebraic properties, are the most 
studied codes from a mathematical point of view. 



Linear Codes
 
   There are several consequences of a code being linear.
   1) The sum or difference of two codewords is another codeword.
   2) The zero vector is always a codeword.
   3) The number of codewords in an [n,k]-code C of V[n,q] is qk.
        There are k vectors in a basis of C. Every codeword is 
expressible as a unique linear combination of basis vectors. Thus, to 
count the number of codewords, we just have to count the number 
of linear combinations. There are q choices for a scalar multiple of 
each basis vector and therefore qk linear combinations in total. 

    Since the number of codewords of a linear code is determined by 
the dimension of the subspace, the (n, M, d) notation for general 
codes is generally replaced by [n, k, d] for linear codes.



Properties
Proposition: For m > 0, the Reed-Muller code R(1,m) is a binary 
[2m, m+1, 2m-1] linear code, in which every codeword except 0 and 
1 has weight 2m-1.

Which means:
     The code words have length 2m.
     There are 2m+1 code words.
     The code has minimum distance 2m-1, which means that it can 
correct 2m-2-1 errors.
     The sum of any two codewords is another codeword (linear).
     The zero vector is in the code and the all 1 vector (of weight 2m) 
is in the code.
     All other codewords have half of their positions 0 and half 1.



Back to Mariner 9
Recall that in the Mariner 9 mission, the data consisted of binary 6-
tuples (64 grayness levels) and transmission restrictions permitted 
coding that would lengthen the transmitted words to about 30 bits.

   The 5-repeat code would satisfy this condition, but it is only 2 
error correcting. 

   The code that was chosen however is R(1,5) which is a [32, 6, 16] 
binary code. Code words are 32 bits long and there are 64 of them. 
Moreover, as the minimum distance is 16, this code is 7-error 
correcting.



Back to Mariner 9
Encoding:
  As there are 64 code words and 64 data types, any assignment of 
code word to data type will work, but the requirement that the 
encoding should require no memory meant that an arbitrary 
assignment would not do.

   Since R(1,5) is a 6 dimensional code, there is a basis with 6 
elements (any linear combination of which gives a code word). The 
data type 6-tuple is used to provide the coefficients for the linear 
combination of the basis vectors ... thus associating a unique code 
word to each data type.

   This simple computation can be hard wired and requires no 
memory.



Back to Mariner 9
Decoding:
  As we have previously mentioned, the real reason for selecting 
this code was that it had a very fast decoding algorithm which we 
now describe.

First, convert all the code words (and the received vector) to ± 1 
vectors by turning the 0's into -1's. Take the dot product of the 
received vector with each of the code words in turn. As soon as the 
result is 16 or greater, decode as that code word.

Suppose no errors have been made in transmission. Then the dot 
product of the received vector with itself will be 32 and with any 
other codeword will be 0 or -32.



Back to Mariner 9
Decoding:
This follows since the distance between two code words is the 
weight of their difference (which is another code word) and so is 
either 0, 16 or 32. If 0, the code words are the same. If 32, the code 
words have no common component and the dot product of the ±1 
form will be -32. In all remaining cases, 16 places are the same and 
16 places are different, giving a dot product of 16 – 16 = 0.

   For each error that occurs, the dot product will decrease by 2 (or 
increase by 2 from an incorrect codeword). If no more than 7 errors 
occur, the dot product with the correct code word decreases to at 
least 18 and  the dot product with incorrect code words increases to 
at most 14 ... so correct decoding will occur. If 8 or more errors 
occur, there will be dot products of at least 16 but correct decoding 
is not possible.



Back to Mariner 9

Decoding:

   Even though this is a rapid decoding algorithm, the 
computations involved can be speeded up by a factor of 3 
by using a Fast Fourier Transform for Abelian groups. This 
is what was actually done by the “green machine”.



Other Missions

The Voyager 1 & 2 spacecraft transmitted color pictures of Jupiter 
and Saturn in 1979 and 1980. Color transmission requires 3 times 
the amount of data, so a different code (the Golay (24,12,8) code) 
was used. It is only 3-error correcting, but its transmission rate is 
much higher. Voyager 2 went on to Uranus and Neptune and the 
code was switched to a Reed-Solomon code for its higher error 
correcting capabilities.


