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The great book of Nature lies ever open before our eyes
and the true philosophy is written in it . . . But we cannot
read it unless we have first learned the language and the
characters in which it is written . . . It is written in mathe-
matical language and the characters are triangles, circles,
and other geometrical figures. (Galileo 1623, p. 232)

ABSTRACT. Undergraduate students do not always make a clear distinction between
physics and mathematics, particularly early in their studies. We offer a simple historical
example and show how it can be used to illustrate some of the important differences and
relationships between the two. The example is Galileo’s treatment of motion under uniform
acceleration, in which he uses geometry instead of algebra to represent quantities such as
time and velocity and stresses the need to test the adequacy of the representation by
experiment. The general importance of Galileo’s work in the history of science and the fact
that it is accessible to undergraduates not concentrating their studies in mathematics or the
sciences make it particularly suitable for our purposes. In addition to undergraduate courses
in physics or mathematics, many of the points we make should be useful in courses in the
history and philosophy of science and mathematics.

INTRODUCTION

Beginning physics students sometimes confuse the mathematics used to
do physics with the physics itself. (The Zen aphorism ‘when someone
points at the Moon, you do not look at his finger’ comes to mind.) We
will begin with a look at Galileo’s solution of the problem of motion under
uniform acceleration (Galileo 1638, p. 206). Then we will show how his
discussion can be used to provide students with helpful illustrations of at
least three interesting points about the relationship between mathematics
and physics. First, Galileo’s well known insistence upon experiment as
crucial for testing the adequacy of his geometrical representations, coming
as it does after he has completed his proofs, can be used to illustrate the
fact that claims in physics are not identical with claims in mathematics.
Second, beginning students are typically introduced to Galileo’s kinema-
tics by means of geometrical representations such as v-t diagrams and
required to shift to algebraic representations for purposes of calculating
results and displaying relationships between his kinematics and more
general mechanical principles; and looking at Galileo's own way of
representing physical quantities can provide a vivid and historically impor-
tant demonstration that the physical laws and theories need not be un-
iquely correlated with any particular mathematical representations. Fin-
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ally, a discussion of why, three hundred and fifty years ago, it was appro-
priate for Galileo to use geometry to represent his claims about motion
in his arguments, while now it is best to use algebra for such purposes,
can provide a good illustration of two points: that one mathematical
representation can be better than another,” even where both fit with
experiment and observation; and that, as mathematics provides new tools
to physics, the best ways mathematically to represent physical phenomena
can change.

MOTION UNDER UNIFORM ACCELERATION ACCORDING TO GALILEO

Galileo argues that natural acceleration (the acceleration of falling bodies)
should be identified with uniform acceleration from rest. After arguing
against the Aristotelian idea that this uniform acceleration is to be under-
stood as occurring when velocity receives increases proportional to the
distance traversed,” he states that a body’s motion is uniformly accelerated
when, starting from rest, its ‘momentum’ receives equal increments in
equal times.* He then proves that, if uniform acceleration is defined in
this way, his Theorem I, Proposition I follows:

Theorem I, Proposition I: The time in which any space is traversed by a body starting
from rest and uniformly accelerated is equal to the time in which that same space would
be traversed by the same body moving at a uniform speed whose value is the mean of the
highest speed and the speed just before the acceleration began. (Galileo 1638, p. 205)

Galileo begins his proof by drawing the construction in Figure 1. The
segment CD represents the distance traveled during uniformly accelerated
motion starting from rest at C. The segment AB is chosen to represent
the time taken during the trip CD, and the segment EB represents the
final speed at the end of the fall. Galileo next calls for a line to be drawn
from A to E. Points on the segment AB represent different times during
the fall, and segments starting at those points and drawn between the line
AE and AB are proportional to the speed at that time. He completes his
construction with the segment GF where F is a point which bisects EB
and GF is parallel to AB. Segments between AB and GF are speeds which
correspond to an object moving with uniform velocity (no acceleration).

We note that area AGI is equal to area /EF, since they are similar
triangles with the same base (AG = EF). And this implies that AGFB is
the same area as AEB. If we take area in this diagram to represent
distance traveled, then AGFB represents the distance traveled in the
constant speed case and AEB represents the distance traveled in the
accelerated case; and the fact that AGFB = AEB proves that the distance
traveled in a given time with uniform acceleration equals the distance
traveled with constant speed, if the constant speed (GA) is one half the
maximum speed (EB) of the accelerated case.
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Figure 1.

However, Galileo’s argument does not proceed in this way because he
needs to make the connection between the effects of uniform speed and
those of uniform acceleration in terms of velocities at instants. To do this
he equates the area of each of the figures to the ‘sum of all the parallels’
contained in it, arguing that ‘the parallelogram AGFB will be equal in
area to the triangle AEB, since . . . the sum of all the parallels contained
in the quadrilateral is equal to the sum of those contained in the triangle’.
The principle he uses here is similar to that in Cavalieri’s theorem,®
familiar from some calculus texts: two solids have the same volume if
corresponding cross-sections have the same area. In the present case,
Galileo argues that the sum of all the parallels in /EF is the same as the
sum of those in GIA, and the sum of the parallels in A/FB is common to
both figures. All the parallels represent the velocities at all the instants of
time during the time interval, and so the sum of them all will represent
the sum of all the momenta (the quantity of motion) of the moving body;
and since this sum is the same in each case, the distance traveled must be
the same.
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Galileo has used geometric properties of his construction to prove quan-
titative relationships among elements of the construction which, he claims,
represent corresponding quantitative relationships among the physical
quantities of time, velocity, ‘momentum’, and distance. By modern stan-
dards he is not always clear in his mathematical reasoning. " But a little
historical imagination makes it is hard to fault him for this since he worked
thirty to fifty years before Newton, and two hundred years before Cauchy’s
definition of a limit; moreover it is possible to correct the proof in a
reasonable way with the help of mathematical tools which have been
developed since Galileo’s time.”

THE MATHEMATICS AND THE PHYSICS DISTINGUISHED

Galileo makes it clear that to grant him the geometrical properties of
his construction does not commit his reader to granting him that the
corresponding quantitative relationships among the physical quantities of
time, velocity, ‘momentum’, distance and natural acceleration hold. After
proving another proposition he states that experiments need to be cited
to show that uniform acceleration as he represents it is indeed ‘that which
one meets in nature in the case of falling bodies’. It is helpful to ask
students to consider a question here: If he has already proven what he
set out to prove, exactly why is experiment needed?” Careful discussion
of this question is, we think, an excellent way to bring students to under-
stand that Galileo is right about the need for experiment because it is
one thing to prove the mathematical relationships, and another thing to
demonstrate that the physical relationships correspond.'® His proof draws
out some of the features of his mathematical map, but to do physics he
needs to show the applicability of his mathematical map to the physical
world: the mathematics itself isn’t physics. Thus his general statement that
‘in those sciences where mathematical demonstration are applied to natu-
ral phenomena . . . The principles, once established by well-chosen experi-
ments [our emphasis], become the foundations of the entire superstruc-
ture’.

TWO MATHEMATICAL MAPS

Galileo’s construction represents a special case of a relation easily recog-
nized by students in its usual algebraic representation: s = v,..t, where s
is the distance, ¢ is time, and v,,. is the average velocity and equals
(v + v)/2 with v being the final speed and v the initial speed. When the
initial velocity is vo =0 we have s = zvt which is the usual algebraic
representation of what Galileo represents with Figure 1. However, Gali-
leo’s representation in Figure 1 is no less accurate than the algebraic one.




GALILEO'S MATHEMATICAL LANGUAGE OF NATURE 453

This point clearly shows that to identify velocities, times, distances and
accelerations with numbers is no more (or less) plausible than to identify
distance with areas or time intervals or velocities with line segments.

HOW ONE OF TWO ACCURATE MATHEMATICAL MAPS CAN BE BETTER
THAN THE OTHER

When one has convinced the student that Galileo’s geometrical representa-
tion is as accurate as the corresponding algebraic one, it is helpful to
consider some of the reasons why it was reasonable for him to represent
the physical relationships the way he did, rather than using algebra as we
would do now. And, on the other hand, why we ought to stick with the
algebraic representation. The explanation we would offer appeals to the
state of mathematics in Galileo’s day and how it has changed since. Thus
it requires something like the following history lesson.

Mathematical researches during Galileo’s time'? largely focused on geo-
metry. In Italy, there seem to have been two trends. One trend, of which
Galileo is representative, concentrated on a revival and expansion of
ancient Greek geometry. Galileo was particularly fond of Euclid and
Archimedes, and he sought in his own work to extend the application of
their techniques to new areas. The other trend was busy working to
develop geometry by the use and development of algebra as imported
from the Arabic world. This movement began in Italy’® and eventually
spread to France and England.

Although significant work on algebra dated to the mid 1500s,"* there
are good reasons for thinking that it was insufficiently developed before
the mid 1600s to be useful as a reliable tool for physical investigations.
For one thing, the notation was not standardized and still quite rough."
But a more serious problem was that the theoretical basis for it was still
poorly understood. The modern notion of algebra taken as axioms of a
logical system, so that identities can be proven by formal manipulation,
is a relatively recent idea. In the late 16th and early 17th centuries algebra
was parasitic on pre-algebraic geometry: algebraic statements were
thought of in geometric terms, and algebraic rules were proven using pre-
existing geometrical axiom systems. For example, (a + b)* = a® + 2ab +
b* would be understood as a statement about how a square a + b on a
side could be divided into two squares and two rectangles. Vieta and
Descartes began the use of algebra to solve geometrical problems, and
Descartes appears to have been the first to realize that an expression such
as a” can indicate the length of a line segment as well as an area.

A related difficulty from a modern perspective was that numbers, parti-
cularly irrational numbers, were not well understood, and had tended
themselves to be thought of in pre-algebraic geometrical terms ever since
Pythagoras: thus the square root of 2 was thought of as the diagonal of a
unit square. It had been known since antiquity that not all numbers



454 KYLE FORINASH ET AL.

could be represented as the ratio of two integers, and there was no well-
developed system of notation to handle irrationalities — although they
could be approximated with great precision it was difficult to think of
them except in geometrical terms.

One of the results of all this is the concept of magnitude shared by
Galileo and others of his time. Today we associate magnitude with
numbers, independently of any particular geometrical representation; like-
wise ratios and irrational numbers. Galileo, however, associates magni-
tudes and relations among them with geometrical properties. Given the
state of mathematics in his day, Galileo might reasonably claim to have
used the best tool available to him — pre-algebraic geometry. From this
perspective, as he put it in Il Saggiatore, the characters in the ‘language
of mathematics . . . are triangles, circles, and other geometrical figures’
(Galileo 1623).

Of course, given the state of mathematics in our day, we are, similarly,
under an obligation to use the best tool available to ws; and that is the
algebraic representation: s = svt, rather than Figure 1. But (question to
raise for students to consider) we have already granted that both represen-
tations are accurate, so what justifies the claim that our way is better than
Galileo’s way? The goal is to get students to realize that there are at least
two purposes for which the algebra is better: one would be that for
calculational purposes the algebra is usually simpler to use;'® another
would be that the algebraic representation is embedded in a more powerful
system so that more mathematical consequences can be drawn when we
use the resources of algebra. If we were leading the discussion we would
ask students to struggle with examples such as the following:

Galileo’s construction in Figure 1 corresponds to the algebraic representation s = v,
which is easily derived from the general case represented algebraically as we indicate in
section 4, above: s = v,..t, where s is the distance, 7 is time, and v,,. is the average velocity
and equals (v + vp)/2 with v being the final speed and v, the initial speed. To prove it, we
simply set the initial velocity vo = 0. We ask the student to represent the general case
(including cases of negative initial velocities) using the pre-algebraic methods of representa-
tion and proof which Galileo used to represent the special case.

NOTES

! We wish to thank an anonymous reviewer for Science & Education for helpful critical
remarks on an earlier version of this paper.

% Unless we explicitly state otherwise, when we claim that one mathematical representation
of a purported law or theory is ‘better’ than another we mean that it is better for purposes
of displaying its connections with experimental evidence and with other laws and theories.
* Here we have in mind primarily the late mediaeval Aristotelians who associated natural
acceleration with Av/As. Aristotle himself had argued (Physics 265b10-15) that the natural
rectilinear motion of bodies toward the center of the earth is non-uniform from the starting
point and toward the center, since “the farther they are from the state of rest, the faster
they travel”. The mediaevals followed him in this respect, and added the assumption that
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there is a simple positive correlation between Av and As in natural acceleration. For a good
discussion of this, see Copleston.

% Galileo’s notion of momentum (Galileo 1638, p. 200) does not correspond to our current
notion. It is a concept of the natural ‘quantity of motion’, developed out of work by Jean
Buridan and Nicolas of Oresme. Momentum is proportional to how much stuff is moving
and how fast it is moving. Thus, when the amount of stuff is constant (as in the case Galileo
is considering) changes in the ‘momentum’ are directly proportional to the velocity. For that
reason Galileo describes his definition as ‘the same as saying that in equal time-intervals the
body receives equal increments of velocity'.

* Galileo has previously defined a uniform motion as ‘one in which the distances traversed
by the moving body during any equal intervals of time, are themselves equal’ (Galileo 1638,
p. 197).

© Cavalieri was a student of Galileo.

7 In addition to the difficulties we mention in note 8, below, an anonymous reviewer makes
the interesting pomt that, accepting Galileo’s proof that if uniform acceleration (as he defines
it) occurs, then vz for that occurrance, he does not prove the converse (that every case
in which s = 3vt is a case of uniform acceleration) although that is implicitly assumed in his
experimental verification.

¥ In Galileo’s work we find the germ of the idea of infinitesimals; and it is worth mentioning
to students, at least in passing, some of the very serious problems that this idea presented.
Difficulties had been present since ancient times. The classic formulations of them are the
familiar paradoxes of Zeno. An example is the Achilles paradox: Achilles cannot overtake
a tortoise in a race, for as soon as he runs to a point where the tortoise was, the tortoise
has advanced to a point further along the track. In the Two New Sciences, Galileo uses an
argument from Aristotle’s Physics to deal with a variant of this paradox: the infinite series
of runs can be completed because there is an infinite series of time intervals available for its
completion. Sometimes it is claimed that this and other paradoxes presented by Zeno are
resolved by the use of the idea of an infinite convergent series. However, students who take
this line of reasoning can be shown that difficulties remain, by citing another of Zeno's
paradoxes known as the Plurality: suppose a spatial distance is thought of as consisting of
an infinite number of indivisible points. If each point has finite length, then the distance is
infinite in extent; but if each point (instant) has zero length, then the distance is zero. This
way of looking at distances can be applied to the situation of Achilles and the tortoise by
querying the size of his last run: if it is of finite positive length, then each of the infinite
number of runs preceding it is larger than it, and the distance Achilles must cover before
making the last run is infinite in extent; but if his last run is of zero size, it is not the last
run since he has already caught the tortoise; and if there is no last run (no run at the
termination of which he has caught up with the tortoise) then he does not complete the
series and so does not catch the tortoise. A modern solution to the paradoxes which avoids
this difficulty has been offered by Adolph Grunbaum (Grunbaum 1967, esp. chapters 2 &
3; 1969). But Grunbaum’s solution uses heavy equipment unavailable to Galileo or Newton:
superdenumerable infinite aggregates, modern topology, and measure theory.

It is important to separate two different questions here First, if we grant Galileo his
mathematical proofs, why is it necessary to verify that s = §vr by experiment at all? A clear
answer to this question depends upon a clear distinction between mathematics and physics.
Second, once it is clear that experimental verification is necessary, how can one do that?
Galileo’s handling of the problem of designing an experiment to verify that s = 3vt, when he
had no way of measuring the velocity directly, is worth discussing as illustrating some of the
difficulties involved in working out ways to test hypotheses by observation. But discussion
of the first question is less common in introductory physics texts, and that is the one we
refer to here.

' For mathematics to be applicable to the natural world, not only numbers but also the
formal properties of the symbolic operations of mathematics must represent physical proper-
ties and physical operations. During this century, the investigation of the properties which
physical magnitudes must have in order to be representable and systematically elaborated
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by the use of mathematical representations has come to be known as measurement theory.
For full discussion of this point, and measurement theory in general, see, eg., Nagel (1932)
and Suppes (1951).

' A more recent example of two different mathematical maps would be Schrédinger’s wave
mechanics and Heisenberg’s matrix mechanics. Both are accurate representations of quantum
mechanics.

12 Galileo lived from 1564 to 1642. As a young man, following the wishes of his father, he
attended the University at Pisa to study medicine. However, he soon showed an interest in
mathematics and eventually he left the University without receiving a degree. After a period
of time in which he tutored privately in mathematics Galileo returned to the University of
Pisa as a member of the faculty; and during his stay there he did much of his work on falling
bodies. In 1592 he was appointed professor of mathematics at the University of Padua for
a term of six years which was eventually extended to a lifetime position. The Two New®ciences
appeared near the end of his life, in 1638 (Geymonat 1965; McMullin 1967; Kline
1972).

3 In the decades before Galileo’s move to Padua, the University there was a leading center
for the development of algebra.

" Cardan’s Ars Magna, which contained the first published solution of the cubic polynomial
equation, appeared in 1545, and Vieta's Zeteticoum Libri Quinque in 1593.

15 Vieta wrote a@® + 3a°h + 3ab® + b* = (a + b)* as a cubus + b in a quadr. 3 + a in b quad.
3+ b cubo aequalia a + b cubo. Descartes was the first to use letters at the end of the
alphabet to refer to unknowns in his work on geometry published in 1637 as an appendix to
his Discourse on Method.

! The example of Schrodinger’s wave mechanics and Heisenberg’s matrix mechanics (see
note 11, above) provides an illustration of this practical aspect of mathematical representa-
tions: which system a physicist uses will depend upon the quantum mechanical problems
being addressed.
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