
0 7 4 0 - 7 4 5 9 / 9 9 / $ 1 0 . 0 0 © 1 9 9 9 I E E E N o v e m b e r / D e c e m b e r 1 9 9 9 I E E E S o f t w a r e 1 9

ince 1967, when a group of people from a variety of disciplines (most
of whom would now be identified as computer scientists) met to dis-
cuss “Software Engineering”in southern Germany, computer scientists
have discussed SE as if it were a subfield of computer science. Within

CS departments we find people who specialize in automata theory, lan-
guage design, operating systems, theorem proving, software engineering, and many
other areas. Students take courses in a variety of subjects such as compilers, data-
base systems, and, also, software engineering. Usually there is just one course enti-
tled “Software Engineering,” although sometimes we find faddish extras such as
“Object-Oriented Software Engineering”or “Component-Based Software Engineering.”

David Lorge Parnas, MCMASTER UNIVERSITY

Software Engineering
Programs Are Not
Computer Science
Programs

“ S of t ware Engineer ing” programs have b ecome a source o f
content ion in many univers i t ies. Computer Sc ience depar tments,
many o f which have used that phrase to descr ib e ind iv idua l courses
for decades, c la im SE as par t o f the i r d i sc ip l ine. Yet some
engineer ing facu l t ies c la im i t as a new sp ec ia l t y among the
engineer ing d isc ip l ines. Th is a r t i c le d i scusses the d i f fe rences
b et ween t rad i t iona l CS programs and most engineer ing programs,
and argues that we need SE programs that fo l low the t rad i t iona l
engineer ing approach to pro fess iona l educat ion .

S

In this article, I take a different view. Rather than
treat software engineering as a subfield of computer
science, I treat it as an element of the set {Civil
Engineering, Mechanical Engineering, Chemical
Engineering, Electrical Engineering, …}. This is not
simply a game of academic taxonomy, in which we
argue about the parentage or ownership of the field;
the important issue is the content and style of the
education. University programs in engineering are
very different from programs in the sciences, math-
ematics, or liberal arts. These disparities derive from

the differences in the career goals and interests of
the students. I believe that many of our students,
the ones who are destined for careers in software
development, would be better served by an engi-
neering style of education than they are by com-
puter science education.

It is important to stress that I am not comparing
two areas of science. Just as the scientific basis of
electrical engineering is primarily physics, the sci-
entific basis of software engineering is primarily
computer science. Attempts to distinguish two sep-
arate bodies of knowledge will lead to confusion.
This article contrasts an education in a science with
an education in an engineering discipline based on
the same science. Recognizing that the two pro-
grams would share much of their core material will
help us to understand the real differences.

WHY DO WE NEED A NEW TYPE OF
ENGINEER?

Engineers are professionals whose education
prepares them to use mathematics, science, and the
technology of the day to build products that are im-
portant to the safety and well-being of the public.
Because today’s products are so varied that no indi-
vidual can know everything necessary to design
them all, engineering has split into many distinct
specialties focusing on specific types of products.
Civil engineers specialize in physical structures such
as roads, bridges, and buildings. Chemical engineers
are concerned with the design of plants and manu-
facturing processes for the chemical industry.

Electrical engineers specialize in power delivery sys-
tems, electronics, communications devices, and so
forth. Over the past three decades, it has become in-
creasingly common to find that software is a major
component of a wide variety of products includ-
ing many traditional engineering products. Further,
software is used by engineers when designing other
(noncomputerized) products; the correctness of
their designs depends, in part, on the correctness of
the software that they use. Over the same period,
computer scientists have devoted a lot of effort to
studying computers and programming. Today, we
know far more about computing and programming
than we did in 1967. Much of what we can teach to
software developers today was not known to those
who met at the original software engineering con-
ferences sponsored by the NATO Science Committee
in 1968 and 1969.

The increasing importance of software, combined
with our increased knowledge about how to build it,
has resulted in a need for graduates who, like other
engineers, have received an education that focuses
on how to design and manufacture reliable products,
but who specialize in designing, building, testing, and
“maintaining” software products. We can no longer
squeeze what we know into a few courses in tradi-
tional engineering or computer science programs.

Our present approach to education for software
professionals is not satisfactory to anyone. While
many consumers decry the poor quality of software
products, software companies complain about a
shortage of highly qualified personnel. Employers
also complain that they do not know what a gradu-
ate of either a CS program or a traditional engi-
neering program can be expected to know about
software development. Because of a rigid accredi-
tation process (more on this later), there is a well-
documented “core body of knowledge” for each of
the established engineering disciplines. There is no
corresponding body of knowledge for computer sci-
ence. I have not been able to identify a single piece
of knowledge or technique that is always taught in
all CS programs. This article argues that the intro-
duction of accredited professional programs in SE,
programs that are modeled on programs in tradi-
tional engineering disciplines, will help to increase
both the quality and quantity of graduates who are
well prepared, by their education, to develop trust-
worthy software products. I also argue that, just
as the introduction of electrical engineering pro-
grams did not eliminate the need for physicists, we
will continue to need CS programs. In fact, I believe

2 0 I E E E S o f t w a r e N o v e m b e r / D e c e m b e r 1 9 9 9

Attempts to distinguish two separate
bodies of knowledge will lead

to confusion.

that the introduction of SE programs will allow the
development of even better CS programs than we
have now.

SOFTWARE ENGINEERS ARE NOT JUST
GOOD PROGRAMMERS

In many places, for example in job advertise-
ments, “Software Engineer”is used as a euphemism
for “programmer.”Many writers seem to assume that
the sole responsibility of a software engineer is to
write well-structured code. These assumptions re-
flect ignorance about the historical and legal mean-
ing of “Engineer.”An Engineer is a professional who
is held responsible for producing products that are
fit for use. To be sure that a product is fit for use re-
quires an understanding of the environment in
which it is used. Consequently, those who are called
“Software Engineers” need to know many things
that are not part of computer science. Software is
never used in isolation from other engineering prod-
ucts; it is a component in a system containing phys-
ical components and it is used to compute infor-
mation about physical systems. While SE programs
must reflect the fact that their graduates will spe-
cialize in software design, they must also equip their
students with enough knowledge about other areas
of engineering that they will know when to call for
help from other engineers and can work well in a
team with other types of engineers.

A HISTORICAL ANALOG

It has happened before; as an area of science be-
comes more mature, educational institutions develop
an engineering program that is based on that science.
For example, as our understanding of the physics of
magnetic and electric fields improved, a new spe-
cialty within engineering, electrical engineering, was
identified and the corresponding educational pro-
grams were developed. Although some physicists
were heard grumbling that this was all physics and
asserting that they could teach it all in an applied
physics program, most universities developed EE pro-
grams that now flourish alongside physics programs
and previously existing engineering programs.

Questions like the ones that we are now ask-
ing were asked then, for example, “If electrical en-
gineering is based on physics, why do we need
two programs?” “Why don’t EE students just study

physics?” It is clear that two programs are needed,
not because there are two areas of science in-
volved, but because there are two very different ca-
reer paths. One career path is followed by graduates
whose role will be designing products for others to
use. The other career path is that of graduates who
will be studying the phenomena that interest both
groups and extending our knowledge in this area.

I do not wish to suggest that computer science
will become exclusively theoretical or that Software
Engineers will never do mathematical work. Physi-
cists still build things, and many EEs publish highly
mathematical papers. Rather, it is a question of
goals. Physicists are primarily expected, and
trained, to extend our knowledge, while EEs are

expected to develop products or techniques for
product production.

Each career path attracts a distinct type of stu-
dent and requires a distinct educational program.
Most students choose to study EE rather than phy-
sics because they like building things. Those who
study physics are often more excited by learning
than by building. We can all name exceptions to
these rules, but we do not design educational pro-
grams for the exceptions. There are many opportu-
nities for people to deviate from their original plans
later in life.

When the dust settles down and there are two dis-
tinct educational programs (both stable and both
functioning well), we will find that CS and SE com-
plement each other and cooperate in much the same
way that science and engineering departments do.
We will also find that students might want to switch
between CS and SE just as the occasional student
now switches between science and engineering.

HOW DOES SCIENCE EDUCATION
DIFFER FROM ENGINEERING
EDUCATION?

Although few people ever bother to compare and
contrast them, a science education is very different
from that received by engineering students. These
differences are not accidental; they are based on the
different needs of two very different types of careers.

Future scientists, who will add to our knowledge

N o v e m b e r / D e c e m b e r 1 9 9 9 I E E E S o f t w a r e 2 1

Each career path attracts a distinct type
of student, requiring a distinct education.

base, must learn
♦ what is true (an organized body of knowledge

about the phenomena of interest),
♦ how to confirm or refute models of the world,and
♦ how to extend our knowledge of what is true

in their field.
In other words, scientists learn science plus the sci-
entific methods needed to extend it.

Future engineers, who will design trustworthy
products, must learn

♦ what is true and useful in their chosen spe-
cialty (that organized body of knowledge again),

♦ how to apply that body of knowledge,
♦ how to apply a broader area of knowledge

necessary to build complete products that must
function in a real environment, and

♦ the design and analysis discipline that must
be followed to fulfill the responsibilities incumbent
upon those who build products for others.
In other words, engineers learn science plus the
methods needed to apply it.

For science students, keeping up-to-date on the
most recent research in their specialty is essential, but
a research scientist’s knowledge can be very focused.
In contrast, for practicing engineers, it is important
to have relatively broad knowledge, but in most cases
it suffices for them to be aware of only the scientific
knowledge and technology that has already been
proven to be reliable and effective in applications.

An illustration of the difference in emphasis is
provided by a dispute between EE and physics de-
partments in the late ’60s. Some physics depart-
ments wanted to revise the shared physics course,
reducing the coverage of electric and magnetic
fields so that they could add a section presenting
the results of the latest research on atomic particles.
EE departments objected, pointing out that its stu-
dents did not need to know about the newest par-
ticles, but must be competent in designing electric
and electronic devices. Both departments were cor-
rect about the needs of their own students, but the
needs of engineering students and physics students
were not the same.

These differences between science and engineer-
ing programs make sense because of the following:

♦ If you are going to do specialized research, ex-
tending science, you can afford to be narrow but you

cannot afford to be out-of-date. If you are going to
apply science to build reliable products, you rarely
need the very latest scientific research results, but you
must have a broad understanding that makes you
aware of the many factors that should be taken into
account when designing a product.

♦ If you are carrying out scientific research, you
can expect your results to be checked by those who
read and referee your reports and papers. However,
as Richard DeMillo, Richard Lipton, and Alan Perlis1

pointed out many years ago, if you are designing a
product, your work is not likely to undergo that kind
of scrutiny. Engineering educators stress that engi-
neers must accept responsibility for the correctness
of their own designs.

♦ Scientists frequently work on narrow problems
or in teams; licensed professional engineers often
take responsibility for some complete product,
which means that they require extensive knowledge
outside of their engineering specialty. A mechanical
engineer might have to do some electrical power
design, or an electrical engineer might have to look
at the mechanical aspects of a motor or servo-
mechanism. Traditional engineering programs are
designed with this in mind. A Professional Engineer
is required to know when to talk to other engineers
and to know enough to communicate easily with
engineers who have other specialties.

Of course, the availability of well-educated Soft-
ware Engineers will not eliminate the need for com-
puter scientists. While there is a very strong need for
engineers specializing in software design, the field
is young and there is also a need for people who will
experiment with tools and methods that will be
used by the software engineers and extend our
knowledge of how to design computer systems.
Many open issues remain and studying these will
require well-educated scientists, not engineers.

THE ROLE OF ACCREDITATION IN
ENGINEERING

The work of scientists will usually be judged by
other scientists, but engineers often deal directly
with customers who are neither engineers nor sci-
entists. Thus, while nobody has ever felt it necessary
to hold science programs to rigid standards, accred-
itation has always been an important consideration
for engineering programs. In Canada and most US
states, legislation limits those who may practice en-
gineering to those licensed by designated profes-

2 2 I E E E S o f t w a r e N o v e m b e r / D e c e m b e r 1 9 9 9

Engineers learn science plus the
methods needed to apply science.

sional engineering societies. These organizations
have joined to create accreditation boards for uni-
versity programs in engineering. Licenses are issued
primarily to those who have graduated from ac-
credited programs, but individuals who have ob-
tained the requisite knowledge in other ways may
apply for individual examination and, if they pass the
required examinations, be licensed.

Science programs are subject to review by the
universities that offer them because good institu-
tions are always concerned about the quality of their
offerings, but for science programs there is nothing
corresponding to accreditation by the Canadian
Engineering Accreditation Board or the Accrediation
Board for Engineering and Technology. The Can-
adian Information Processing Society does offer a
voluntary accreditation program, but the docu-
mentation describing that program states explicitly
that there are “no rigid stan-
dards.” Many of the stronger CS
departments do not bother
with accreditation, and some of
those that do, don’t take it seri-
ously. In contrast, CEAB and
ABET requirements are quite rigid, and accreditation
visits are major events for all engineering depart-
ments. Because use of the title “Engineer” is re-
stricted by law, the standards are demanding and
are taken seriously by all who offer engineering
programs.

In my experience, the accreditation process for
engineering programs is very effective in raising the
quality of educational programs and in assuring that
all graduates have been exposed to the most im-
portant ideas and how to use them. Software engi-
neering will not achieve the status of a true profes-
sion until it has a similar accreditation system. The
easiest and best path to establishing such a system
is to treat software engineering as just another spe-
cialty within engineering.

WHAT WILL SOFTWARE ENGINEERS
DO?

The first step in developing Software Engineering
will be to do what has been done for other engi-
neering disciplines identify a core body of knowl-
edge. This process must begin with a description
of the tasks that we expect them to be able to
perform. The following are the key steps in the de-
velopment of computer systems. A software engi-

neer should be prepared to participate in each of
these steps.

♦ Analyze the intended application to deter-
mine the requirements that must be satisfied and
record those requirements in a precise, well-orga-
nized, and easily used document.

♦ Participate in the design of the computer sys-
tem configuration, determining which functions will
be implemented in hardware, which functions will
be implemented in software, and selecting the basic
hardware and software components.

♦ Analyze the performance of a proposed de-
sign (either analytically or by simulation) to make
sure that the proposed system can meet the appli-
cation’s requirements.

♦ Design the basic structure of the software, that
is, its division into modules, the interfaces between
those modules, and the structure of individual pro-

grams while precisely documenting all software de-
sign decisions.

♦ Analyze the software structure for complete-
ness, consistency, and suitability for the intended
application.

♦ Implement the software as a set of well-struc-
tured and well-documented programs.

♦ Integrate new software with existing or off-
the-shelf software.

♦ Perform systematic and statistical testing of
the software and integrated computer system.

♦ Revise and enhance software systems,
maintaining their conceptual integrity and keep-
ing all documents complete and accurate.

Like all engineers, software engineers are re-
sponsible for the usability, safety, and reliability of
their products. They are expected to be able to apply
basic mathematics and science (including the rele-
vant computer science), to assure that the system
they design will perform its tasks properly when de-
livered to a customer.

Many computer scientists whose specialty is
“Software Engineering” would add other things to
this list. For example, they would point out that soft-
ware engineers must know how to work in teams,
must know how to make schedules, set deadlines,
estimate costs, and other project management func-
tions. At some institutions it is project management

N o v e m b e r / D e c e m b e r 1 9 9 9 I E E E S o f t w a r e 2 3

Why do we need new laws and accredita-
tion mechanisms when the existing ones
can be exploited to meet the need?

that dominates the “Software Engineering”courses.
However, while these activities might distinguish
the work of software developers from that of acad-
emics, they do not distinguish the work of Software
Engineers from that of other engineers. I consider
some courses on these aspects of project work to
belong in the core of all engineering programs; extra
courses may be taken by those who are especially
interested in engineering management.

WHY DOES THE DISTINCTION BETWEEN
COMPUTER SCIENCE AND SOFTWARE
ENGINEERING APPEAR FUZZY?

Many faculty in Computer Science departments
believe that they are already teaching software en-
gineering. Some departments claim that there is no
need for a new program and may offer a “Software
Engineering”track or specialization within computer
science.

As Spinoza wrote, “Nature abhors a vacuum.”2

Faculties of Engineering have ignored software for
far too long. Society in general, and industry in par-
ticular, need software developers and have turned
to several other sources:

♦ Engineers, and others, have learned about
software in ad hoc ways after graduation.

♦ Various educational programs have included

some software courses in their programs, and soft-
ware has also been taught as part of other courses.

♦ Computer Science departments have tried to
fill the gap by including so-called “Systems” or
“Applied Computer Science”courses in their offerings.

Those who are now doing software development
work have followed one of these paths; many now
see a degree in CS as the best preparation for such
careers. There was no other choice! Today’s CS pro-
grams are rarely pure science programs, but neither
are they programs that could win accreditation as
engineering programs.

Following the traditions of education in the sci-
ences, CS programs offer students much more free-
dom than traditional engineering programs. This in

itself would make accreditation very difficult because
accreditation committees look for the “weakest path”
through a program and will not accept a program if
even one possible path does not meet their criteria.
A deeper problem is that, in the tradition of science
programs, where experimental and theoretical sci-
ence are often viewed as competing subfields, there
is often little connection between the theoretical and
practical sides of CS programs. Certain courses
(for example, Denotational Semantics) are identi-
fied as theoretical, others (for example, Compiler
Construction) as practical, and there are few places
where material from one type of course is used or il-
lustrated in another. This is in sharp contrast to en-
gineering programs, where it is considered impor-
tant to teach how to apply theory when solving
practical problems—that is, to integrate, rather than
separate, mathematics and design. Finally, the “prac-
tical”computer scientists have sometimes confused
technology with engineering. Many courses fail to
stress fundamentals and are organized around cur-
rent fads and buzzwords. It is also amazing how
many of these courses teach about very specific sys-
tems or languages and stress material that will be
obsolete before the student graduates.

The need for something like accreditation in the
software area has not escaped the attention of in-
dustry or academics with a practical inclination. For
several years, a US committee of computer scientists
has been asking how a similar mechanism could be
created for software developers.3 However, there is
little visible progress. One must ask why we would
need new laws and accreditation mechanisms when
the existing ones could be exploited to meet the
need. It would be much easier to identify Software
Engineering as a new branch of engineering than
to set up an entirely new accreditation and licens-
ing system.

It is the attempt by many CS programs to fill both
roles that makes it difficult for some to see why we
need a separate SE program. With the benefit of
hindsight, we can see that separating EE and Physics
was a good idea. It allows both programs to do their
job better. Neither has to be a compromise. We will
reach the same conclusion about SE and CS within
the next decade.

It is the isolation of CS and engineering depart-
ments from each other that makes it difficult for
some engineers to understand the need for an SE
program. Few engineers have kept up with com-
puter science, and consequently few realize how
much useful material has been developed in the last

2 4 I E E E S o f t w a r e N o v e m b e r / D e c e m b e r 1 9 9 9

It would be much easier to
identify Software Engineering as a
new branch of engineering than to

set up an entirely new accreditation
and licensing system.

30 years. For many engineers, the shared scientific
base of SE and CS programs includes much mater-
ial that they do not personally know and, conse-
quently, they cannot appreciate the relevance of
that material to engineering.

SOFTWARE ENGINEERING IS NOT JUST
ABOUT SOFTWARE USED BY ENGINEERS

Some people from both computer science and
engineering have the impression that SE programs
emphasize software that is used in traditional engi-
neering applications. Many traditional engineers
and computer scientists seem to believe that the
work of engineers is limited to the construction of
physical products. This has not been true for several
decades. Today many of our most important prod-
ucts are intangible. Thirty years ago, designing a di-
rectional antenna meant “cutting tin”; today, it
means writing programs.

Engineers are taught how to apply science and
mathematics to design products that will be used
by others. This is especially important in those situ-
ations where the safety and well-being of the pub-
lic depends on the correct design of those products.
However, many engineers work on other products
as well. Those products include financial systems
and other systems outside of the traditional engi-
neering areas. Computers are general-purpose tools
and our graduates should be equally flexible. The
basic software design principles and techniques
apply to all kinds of software, and our graduates
should be as prepared to work for banks as for steel
companies.

HOW SHOULD SOFTWARE ENGINEERING
AND COMPUTER SCIENCE PROGRAMS
DIFFER?

With this background, I can outline how SE and
CS programs should differ.

Differences in curriculum philosophy
♦ An SE program should be designed for ac-

creditation as an engineering program. The CS pro-
grams need not be subject to those restrictions.

♦ An SE program will be relatively rigid with few
technical options. CS programs should continue to
offer the traditional possibilities for specialization.

♦ An SE program, like many other engineering

programs, might not require students to pick their
specialty within engineering until second year. It can
share a common first year with the other engineer-
ing programs. CS programs can start presenting spe-
cialized material earlier.

♦ An SE program should stress breadth, that is,
be designed to make sure that its graduates have
some familiarity with the most important engi-
neering topics. The CS program should continue to
offer students a chance to be curiosity-driven when
choosing courses and should allow specialization.

♦ An SE program should include a lot of the
basic material taken by most other engineering stu-
dents (control theory, for example). This material
would not be required for CS students.

♦ An SE program should stress the application
of computer science in a variety of areas. The CS pro-
gram should stress understanding the inherent
properties of computer systems and focus on sup-
port software and program development tools.

♦ CS programs can spend more time discussing
research areas that are not yet routine or even ready
to use (for example, genetic algorithms). SE pro-
grams should place more emphasis on the vast
amount of material that has already been proven
practical.

♦ The SE program, while strong in theory, should
stress the application of that theory. The CS program
should allow students to study theory for its own
sake and prepare them for work that extends or re-
fines the theory.

♦ The SE program should have a strong stress on
end-user applications; CS programs should prepare
their graduates to develop new tools for software
developers to replace the rather primitive and ad
hoc tools that are now available.

♦ In SE courses, theory and practical considera-
tions must be integrated. In CS, I would expect the
traditional specialized courses to continue.

Differences in topic coverage
Many topics in computer science are interesting

and challenging but have not yet found practical
application. The denotational semantics of pro-
gramming languages is one such area. At the risk of
offending some of my favorite people, I venture to

N o v e m b e r / D e c e m b e r 1 9 9 9 I E E E S o f t w a r e 2 5

Thirty years ago, designing a direc-
tional antenna meant “cutting tin”;
today, it means writing programs.

say that one can build sound software systems with-
out any knowledge of this field. In contrast, one
could hardly call oneself a computer scientist with-
out some familiarity with this topic. Again risking
the ire of my colleagues, I could make similar remarks
about neural computation, many parts of artificial
intelligence, and some aspects of computability
and automata theory. Some discussion of those top-
ics must be included in CS programs. In contrast, a
graduate of an SE program should understand as-
pects of communication, control theory, and inter-
face design that are rarely seen in CS programs.

There are many advanced courses in CS where
the most important thing learned by the students is
how to invent new algorithms or design new tools.
Many of these will not be as important in the SE pro-
gram, where the stress will be on selecting from
known algorithms and applying tools and technol-
ogy that were developed by others.

Every educational program is a compromise. Any
topic that is essential in one of these programs
would be of potential interest to the students in the
other program. However, the limited length of uni-
versity programs will force us to make choices based
on priorities. In the SE program, the priority will be
usefulness and applicability; for the CS program it
is important to give priority to intellectual interest,
to future developments in the field, and to teaching
the scientific methods that are used in studying
computers and software development.

Differences in course style and content
Having taught both engineering and computer

science students at several institutions, I see impor-
tant differences between them. I have found most
CS students relatively patient and willing to explore
topics just because they are interesting. In contrast,
most of my engineering students become impatient
if they are not shown how to apply what they are
learning. For many engineering students the remark
“That course is mostly theory”is strong criticism; for
many CS students it is praise. Similarly, when the EE
department head at Carnegie Mellon told a visitor
that my work was “intellectual and very abstract,”
he had chosen a polite way to say “useless.”Had my

CS department head used that same phrase, there
would have been no such negative connotation.
These differences must be reflected in curricula and
course outlines.

Many topics should be covered in both programs,
but we might have to give quite different courses.
For example, I consider mathematical logic to be a
fascinating topic that is obviously important for both
sets of students. In teaching logic to SE students, I
find it essential to emphasize the use of logic to de-
scribe properties of systems and properties of states.
In the SE program, I would also emphasize the role
of logic in checking specifications and programs for
completeness and consistency. Deduction or proof
would be discussed, and students would be given
the opportunity to use theorem-proving software,
but the differences between types of logic would not
get much time. In contrast, in a CS course on logic,
students would learn the differences between vari-
ous kinds of logics, and to discuss issues such as gen-
eralized decision procedures and the meaning of
non-denoting terms for which the SE course would
have little time. Remember that in one program we
are teaching students to apply well-established tech-
niques, in the other we should teach them how to
add new elements to that set of techniques.

Another example might be courses on operat-
ing systems. I have found it interesting (and useful)
to teach a taxonomy of operating systems, classify-
ing them by features and properties in much the
way that a biologist might classify insects. One can
even get insight from evolutionary studies, looking
at how ideas moved (often with people) from one
operating system to another. Such a course would
be very important to someone who is going to in-
vestigate how to build new operating systems or
develop new models and theories. However, that
course would not be the best way to teach SE stu-
dents what they need to know about operating sys-
tems. They would be less interested in the history or
comparative anatomy of the systems; they want to
know how to select a system to use and how to use
it. No sound engineering program can afford to
stress the details of one particular system because
that system might be out-of-date before the students
graduate, but we can teach basic principles that help
the student to make good choices and to use any
system effectively. It is also true that few engineer-
ing graduates will end up designing new operating
systems; they are much more likely to use existing
ones. However, much of what is often taught as part
of a course on the design of operating systems is rel-

2 6 I E E E S o f t w a r e N o v e m b e r / D e c e m b e r 1 9 9 9

Most of my engineering students
become impatient if they are not

shown how to apply what
they are learning.

evant to the design of many other interactive and
real-time systems. That material should be included
in an advanced software design course.

Finally, many CS programs, like other science pro-
grams, prepare students to continue their studies in
a graduate program. In contrast, traditional engi-
neering programs focus on preparing students to
enter the workforce immediately after completing
their undergraduate program.

A SKETCH OF A SOFTWARE
ENGINEERING CURRICULUM

If I were to design a program that would add
Software Engineering to the family of engineering
programs, it would comprise

♦ basic courses taken by all other engineering
disciplines,

♦ courses for software engineers that provide an
overview of basic engineering issues,

♦ courses on the mathematical foundations of
software engineering (stressing applications in soft-
ware development), and

♦ software design courses.
In addition, all engineers would take the usual set
of “complementary studies”courses. Below is a pos-
sible curriculum. Each item would be a one-semes-
ter course.

Courses shared with most other
engineering disciplines

Many SE graduates will work in teams with other
engineers and should share a common knowledge
base with them. Most of the following courses are
part of the core engineering program and are taken
in the first year.

G1. General Chemistry for Engineering
G2. Engineering Mathematics Ia (linear sys-

tems, matrices, complex numbers)
G3. Engineering Mathematics Ib (continuation

of above)
G4. Calculus for Engineering I
G5. Introductory Mechanics
G6. Engineering Design and Communication
G7. Safety Training (1 unit)
G8. Calculus for Engineering II
G9. Waves, Electricity, and Magnetic Fields
G10. Engineering Mathematics IIa (differential

equations, transforms)
G11. Engineering Mathematics IIb (vector cal-

culus, coordinate systems)

G12. Introductory Programming for Engineers
G13. Engineering Economics

Courses introducing other engineering
areas to software engineers

The software engineer cannot be a universal en-
gineer; the program cannot deal with certain engi-
neering topics in the same depth as other programs.
However, it should provide a good overview of en-
gineering materials, control, heat transfer, and com-
puter engineering.

E1. Introduction to the Structure and Properties
of Engineering Materials

E2. Introduction to Dynamics and Control of
Physical Systems

E3. Digital System Principles and Logic Design
for Software Engineers

E4. Architecture of Computers and Multi-
processors

E5. Introduction to Thermodynamics and Heat
Transfer

Applied mathematics
Each of these courses introduces an area of math-

ematics that is important for software engineering
and not always taught to other engineers. In each
of these courses, examples and assignments will
show how mathematics can be used when design-

ing software. Moreover, where possible, mathemat-
ical packages will be used to give students practical
experience in using the concepts.

M1. Applications of Mathematical Logic in
Software Engineering

M2. Applications of Discrete Mathematics in
Software Engineering

M3. Statistical Methods for Software Engineers

Software courses
These are the “core” of the program, presenting

computer science material and showing how it can
be used to design successful software products.

S1. Software Design I: Programming to Meet
Precise Specifications

S2. Software Design II: Structure and Docu-
mentation of Software

N o v e m b e r / D e c e m b e r 1 9 9 9 I E E E S o f t w a r e 2 7

Products containing software and
products designed by software are
important to the public’s safety
and well-being.

S3. Design and Selection of Computer Algo-
rithms and Data Structures

S4. Machine-Level Computer Programming
S5. Design and Selection of Programming

Languages
S6. Communication Skills: Explaining Software
S7. Software Design III: Designing Concurrent

and Real-Time Software
S8. Computational Methods for Science and

Engineering
S9. Optimization Methods, Graph Models,

Search, and Pruning Techniques

S10. Data Management Techniques
S11. Software and Social Responsibility
S12. Design of Real-Time Systems and Compu-

terized Control Systems
S13. Fundamentals of Computation
S14. Performance Analysis of Computer Systems
S15. Design of Human–Computer Interfaces
S16. Design of Parallel and Distributed Comp-

uter Systems and Computations
S17. Software in Communications Systems
S18. Computer Networks and Computer Security
S19. Senior Thesis I
S20. Senior Thesis II
S21. Technical Elective I
S22. Technical Elective II

The ideas in this article can be summarized by
the following observations.

Software Engineering is different from Computer
Science. An examination of the program I just out-
lined shows that an educational program that treats
SE as a branch of engineering is quite different from
the specialized computer science programs entitled
“Software Engineering.”Classical CS courses such as
compilers and operating systems are missing from
this program (because the graduates are unlikely to
design those products), but the material that can be
used in other applications (for example, scanning
algorithms, machine representation of data struc-
tures, synchronization of concurrent activities) has

been distributed among other courses. CS programs
tend to focus on “core” software areas, but there is a
growing need for people to develop software for
new applications and applications where software
is replacing or supplementing traditional engi-
neering technologies. Approximately half of the re-
quired courses present material that is not taught
to computer science students, but is important for
a growing number of software applications. The
program presented earlier focuses on fundamental
design principles that are applicable in both the clas-
sic CS areas and the broad class of applications
where well-educated developers are badly needed.

Software Engineering programs should be accred-
ited. Products containing software and products de-
signed by software are so important to the safety
and well-being of the public that we must have
some assurance that those practicing software en-
gineering have graduated from a program in which
the most important basic material has been covered.
Licensing of Software Engineers who are in private
practice is just as important as the licensing of Civil
Engineers.

Software Engineering education can, and must,
focus on fundamentals. When I began my EE educa-
tion, I was surprised to find that my well-worn copy
of the RCA Tube Manual was of no use. None of my
lecturers extolled the virtues of a particular tube or
type of tube. When I asked why, I was told that the
devices and technologies that were popular then
would be of no interest in a decade. Instead, I learned
fundamental physics, mathematics, and a way of
thinking that I still find useful today. Clearly, practi-
cal experience is essential in every engineering ed-
ucation; it helps the students learn how to apply
what they have been taught. I did learn a lot about
the technology of the day in laboratory assign-
ments, in my hobby (amateur radio), as well as in
summer jobs, but the lectures taught concepts of
more lasting value that, even today, help me to un-
derstand and use new technologies.

Readers familiar with the software field will note
that today’s “important” topics are not mentioned.
“Java,”“Web technology,”“component orientation,”
and “frameworks” do not appear. The many good
ideas that underlie these approaches and tools must
be taught. Laboratory exercises and other projects
should provide students with the opportunity to
use the most popular tools and to experiment with
some new ones. However, we must remember that
these topics are today’s replacements for earlier fads
and panaceas and will themselves be replaced. It is

2 8 I E E E S o f t w a r e N o v e m b e r / D e c e m b e r 1 9 9 9

We must have some assurance that those
practicing software engineering have

graduated from a program in which
the most important basic

material has been covered.

the responsibility of educators to remember that
today’s students’careers could last four decades. We
must identify the fundamentals that will be valid
and useful over that period and emphasize those
principles in the lectures. Many programs lose sight
of the fact that learning a particular system or lan-
guage is a means of learning something else, not a
goal in itself.

We will need new courses, not a new combination
of existing courses. At some institutions, the debate
about “Software Engineering” was treated as a ju-
risdictional dispute between the CS and ECE de-
partments. The dispute is sometimes “resolved” by
including some courses from each department in a
new program. This type of compromise will produce
graduates that are neither engineers nor computer
scientists. It is essential that the CS material be
taught in the engineering style.

Teaching style and course organization must
change. It is also important that the software courses
be taught differently from conventional CS courses.
In science courses, it is quite reasonable to teach
about things, but in engineering courses, students
are taught how to do things. With engineering stu-
dents one cannot simply fill the board with deriva-
tions and proofs. Each course must integrate theory
and practice and stress how to apply the theory
when designing.

Most of us teach what we were taught and teach
it in the way that we were taught it. Since nobody
has yet graduated from an SE program of this type,
we will have to teach unfamiliar material or teach fa-
miliar material in unfamiliar ways. Until programs like
this one are well established,
there will have to be very careful
and detailed course content
specifications as well as careful
coordination and supervision.

Staffing will be the most critical problem. Finding
appropriate teachers for this type of program will
be critical and difficult. Students who choose engi-
neering as a career path are people who want to
learn how to design and analyze real systems. It is
important that their teachers be people who know
how to do those things and who are interested in
building products. Too many of today’s computer
scientists, even those who identify their area of in-
terest as software engineering, are interested in ab-
stractions, and are reluctant to get involved in prod-
uct design or even to look closely at what is being
done in practice today. On the other hand, few of
today’s engineers know enough computer science

to teach these courses properly.
Since experience producing software products

is essential, and we all have a limited amount of time,
we are going to have to use different standards
when recruiting. It takes much longer to produce a
software product than to write a paper. We can’t
compare paper counts for people with practical ex-
perience with those for people who have been pure
researchers. In some cases, experience and insight
might be worth more than an advanced degree.
In engineering, practical experience is valued more
highly than it is in some of the sciences. This will
lead to serious conflicts in “mixed” appointment
committees.

Computer Science maturity allows us to offer SE
programs. It is only because of the maturity of CS,
because of the many results that have been ob-
tained in the last 30 years of CS research, that we can
now start SE programs. Without the research carried
out since the first NATO-sponsored SE conferences,
we would not have enough teachable knowledge
to justify starting a new branch of engineering.
Because computer science must continue to de-
velop, it is important to have both an engineering
program and a science program. By developing two
complementary programs—one for scientists, the
other for engineers—we have a unique opportu-
nity to do both jobs well. Neither program will need
to make uncomfortable compromises to do the
work of the other.

Only real cooperation will serve the students prop-
erly. In speaking on this subject elsewhere, and in
my own institution, I have encountered deep, sin-

cere, and determined opposition to the idea that SE
be treated as a new branch of engineering. On the
engineering side, I see lack of recognition of the
large body of knowledge that has been accumu-
lated about how to write software. Many engineers
seem to believe that programming is simply learn-
ing language and operating-system conventions.
Some argue that any engineer who writes programs
is a software engineer, and believe that you need no
special expertise or experience to establish and run
a SE program. Others believe strongly that you can-
not have an engineering discipline whose scientific
base is outside the physical sciences. Programs such
as that proposed here are seen as “narrow”—that is,

N o v e m b e r / D e c e m b e r 1 9 9 9 I E E E S o f t w a r e 2 9

Most of us teach what we were taught and
teach it in the way that we were taught it.

too heavy on programming. Most of the engineers
who have reviewed the program have told me I
should replace many of the S (software) courses with
additional E courses (introducing other engineer-
ing areas to software engineers). In other words,
they do not view software engineering as an engi-
neering discipline.

On the computer science side, the reaction is no
less negative but the reasons are more complex. A
major factor seems to be computer scientists’ (mis-
taken) fear that something is being stolen from
them; they feel that they, not the Faculty of
Engineering, should design and control any SE pro-
grams. Equally serious is a lack of understanding of
the ways that engineering education differs from
the education that they received. Several people
who have successfully made the transition from
teaching in other disciplines (such as physics or
mathematics) to teaching in an engineering pro-
gram have told me how much their teaching style
and course content had to change. Few computer
scientists have made this transition or recognize the
need to make it. Finally, few CS faculty seem to rec-
ognize that to be a good Software Engineer, you
must be much more than a good programmer.

Consequently, most of the CS graduates who have
reviewed the program have told me that much of
the material in the E courses (designed to introduce
other engineering areas to software engineers) is ir-
relevant and should be replaced by additional S
(software) courses.

Educating software engineers who are prepared
to work as Professional Engineers cannot be done
by either computer scientists or engineers working
alone. It is our responsibility to our students to work
together, and each group must be prepared to learn
from the other. ❖

ACKNOWLEDGMENTS
So many people have provided both interesting and

helpful comments on earlier versions of this article that I can-
not list them all. The members of the Ad Hoc Curriculum
Committee for Software Engineering at McMaster University
(SanZheng Qiao, Paul Taylor, Ryszard Janicki, and ZhiQuan
Luo) helped in developing the curriculum. I am most thank-
ful to all who have argued directly with me, making it pos-
sible for me to understand their positions and improve my
own.

This article was originally published as “Software Engineering
Programmes Are Not Computer Science Programmes” on pp.
19–37 of the Software Engineering Education special issue of
Annals of Software Engineering, Vol. 6, Apr. 1999, edited by
N.S. Coulter and N.E. Gibbs. More information can be found
at http://manta.cs.vt.edu/ase.

REFERENCES
1. R.A. DeMillo, R.J. Lipton, and A.J. Perlis, “Social Processes and

Proofs of Theorems and Programs,” Fourth ACM Symp. Principles
of Programming Languages, 1977, pp. 206–214. Also published
in Comm. ACM, Vol. 22, No. 5, May 1979, pp. 271–280.

2. B. Spinoza, The Ethics of Spinoza, Part I, Carol Publishing Group,
New York, 1982.

3. B.K. Boehm, “The IEEE–ACM Initiative on Software Engineering
as a Profession,” IEEE Computer Soc. Software Eng. Tech. Council
Newsletter, Vol. 13, No. 1, Sept. 1994, p. 1.

3 0 I E E E S o f t w a r e N o v e m b e r / D e c e m b e r 1 9 9 9

David Lorge Parnas is the NSERC/Bell Industrial Research Chair
in Software Engineering in the Department of Computing and
Software, Faculty of Engineering, at McMaster University. He is
a fellow of the ACM and the Royal Society of Canada and a se-
nior member of the IEEE.

Parnas has a BS, MS, and PhD in electrical engineering
from Carnegie Institute of Technology. He also has honorary
doctorates from the ETH in Zurich and the University of
Louvain in Belgium.

Contact Parnas at the Dept. of Computing and Software,
Faculty of Engineering, McMaster Univ., Hamilton, ON L8S4K1,
Canada.

About the Author

Coming in the
JANUARY/FEBRUARY 2000 Issue:
• The TEN BEST Software

Engineering Innovations!
• The TEN BIGGEST Dead Ends!
• The TEN MOST PROMISING

Developments!
in the Last 50 Years
AND: Cross-Pollinating Disciplines

IEEE

REVIEW FOR US!
Would you like to review articles for IEEE Software?

Do you have expertise in project management?
Contact us at

software@computer.org!

