

This work is licensed under a <u>Creative Commons Attribution-NonCommercial-ShareAlike License</u>. Your use of this material constitutes acceptance of that license and the conditions of use of materials on this site.

Copyright 2009, The Johns Hopkins University and Saifuddin Ahmed. All rights reserved. Use of these materials permitted only in accordance with license rights granted. Materials provided "AS IS"; no representations or warranties provided. User assumes all responsibility for use, and all liability related thereto, and must independently review all materials for accuracy and efficacy. May contain materials owned by others. User is responsible for obtaining permissions for use from third parties as needed.

Methods in Sample Surveys

140.640

Cluster Sampling

Saifuddin Ahmed Dept. of Biostatistics School of Hygiene and Public Health Johns Hopkins University

Cluster Sampling

Consider that we want to estimate health insurance coverage in Baltimore city. We could take a random sample of *100* households(HH). In that case, we need a sampling list of Baltimore HHs. If the list is not available, we need to conduct a census of HHs. The complete coverage of Baltimore city is required so that all HHs are listed, which could be expensive. Furthermore, since our sample size is small compared to the numbers of total HHs, we need to sample only few, say one or two, in each block (subdivisions). Alternatively, we could select 5 blocks (say the city is divided into 200 blocks), and in each block interview 20 HHs. We need to construct HH listing frame only for 5 blocks (less time and costs needed). Furthermore, by limiting the survey to a smaller area, additional costs will be saved during the execution of interviews.

Such sampling strategy is known as "cluster sampling."

The blocks are "Primary Sampling Units" (PSU) – the clusters. The households are "Secondary Sampling Units" (SSU).

Definition:

In cluster sampling, <u>cluster</u>, i.e., a group of population elements, <u>constitutes the</u> <u>sampling unit</u>, instead of a single element of the population.

The main reason for cluster sampling is "cost efficiency" (economy and feasibility), but we compromise with variance estimation *efficiency*.

Advantages:

- Generating sampling frame for clusters is economical, and sampling frame is often readily available at cluster level
- Most economical form of sampling
- Larger sample for a similar fixed cost
- Less time for listing and implementation
- Also suitable for survey of institutions

Disadvantages:

- May not reflect the diversity of the community.
- Other elements in the same cluster may share similar characteristics.
- Provides less information per observation than an SRS of the same size (redundant information: similar information from the others in the cluster).
- Standard errors of the estimates are high, compared to other sampling designs with same sample size

Need to consider the sampling order:

- Primary sampling units (PSU): clusters
- Secondary sampling units (SSU): households/individual elements
- 1. We may select the PSU's by using a specific *element* sampling techniques, such as simple random sampling, systematic sampling or by PPS sampling.
- 2. We may select **all** SSU's for convenience or **few** by using a specific element sampling techniques (such as simple random sampling, systematic sampling or by PPS sampling).

Simple one-stage cluster sample:

List all the clusters in the population, and from the list, select the clusters – usually with simple random sampling (SRS) strategy. **All units** (elements) in the sampled clusters are selected for the survey.

Simple two-stage cluster sample:

List all the clusters in the population. First, select the clusters, usually by simple random sampling (SRS). The units (elements) in the selected clusters of the first-stage are then sampled in the second-stage, usually by simple random sampling (or often by systematic sampling).

Multi-stage sampling:

when sampling is done in more than one stage. In practice, clusters are also stratified.

Question: Is sampling with probability proportional to size (PPS) a variant of cluster sampling?

Theory:

- 1. It is assumed that population elements are clustered into N groups, i.e., in N clusters (PSUs).
- 2. Let the size of cluster is M_i, for the *i*-th cluster, i.e., the number of elements (SSUs) of the *i*-th cluster is M_i.
- 3. The corresponding number of PSUs (clusters) in sample = n, and the number of elements from the *i*-th PSU =m_i.

Estimation for cluster sampling

Let y_i = measurement for *j*-th element (SSU) in *i*-th cluster (PSU).

In the simple case of equal-sized clusters (although may be unrealistic), the total number of elements in the population,

 $K = N^*M$, where $M_i = M$ (constant for all the clusters) If the clusters are of unequal sizes, the total number of elements in the population:

$$K = \sum_{i=1}^{N} M_i$$

Total in the *i*-th population:

Estimated sample total for the ith PSU:

$$t_i = \sum_{j=1}^{M_i} y_{ij}$$

$$\hat{t}_i = \sum_{j \in S_i} M_i \frac{y_{ij}}{m_i} = \sum_{j \in S_i} M_i \overline{y}_i$$

Population total:

Estimated sample total for population:

$$t = \sum_{i=1}^{N} t_i = \sum_{i=1}^{N} \sum_{j=1}^{M_i} y_{ij}$$

$$\hat{t} = \sum_{j \in S_i} t_i$$

Estimated (unbiased) total for population:

$$\hat{t}_{unb} = \frac{N}{n} \sum_{j \in S_i} t_i$$

Population mean in the *i*-th cluster:

Sample mean for the *i*-th PSU:

$$\overline{Y}_{i,clu} = \sum_{j=1}^{M_i} \frac{y_{ij}}{M_i} = \frac{t_i}{M_i}$$

 $\overline{y}_{clu} = \frac{1}{K} \sum_{i=1}^{N} \sum_{j=1}^{M_i} y_{ij}$

Population mean:

$$\overline{y}_{i,clu} = \sum_{j \in S_i} \frac{y_{ij}}{m_i} = \frac{\hat{t}_i}{m_i}$$

Sample mean (unbiased):

$$\hat{\overline{y}}_{clu} = \frac{\hat{t}}{\sum_{i \in S} m_i}$$

Variance estimation:

$$\hat{t}_{unb} = \frac{N}{n} \sum_{j \in S_i} t_i = N \frac{\sum_{j \in S_i} t_i}{n} = N \overline{y}_{total} \text{ , where } \overline{y} \text{ is the mean "total" for the clusters}$$

Then, variance:

$$var(\hat{t}_{unb}) = N^{2} \frac{S_{t}^{2}}{n} \left(1 - \frac{n}{N}\right)$$

where,
$$S_{t}^{2} = \frac{\sum_{i=1}^{N} \left(t_{i} - \frac{t}{N}\right)^{2}}{N - 1}$$

Note: Variance of total is likely to be larger with unequal cluster sizes.

The mean (with clusters of equal sizes):

$$\hat{\overline{y}}_{clu} = \frac{\hat{t}}{NM}$$
, (because of the equal size $M_i = m_i = M$)

The variance of mean is then:

$$var(\hat{y}) = \frac{1}{N^2 M^2} var(\hat{t}) = \frac{N^2}{N^2} \frac{S_t^2}{n M^2} \left(1 - \frac{n}{N}\right) = \frac{S_t^2}{n M^2} \left(1 - \frac{n}{N}\right)$$

Intra-class Correlation

Intra-class correlation reflects the homogeneity of sample.

We may decompose the variance into:

$$\sigma^2 = \sigma_w^2 + \sigma_b^2$$
,
that is,
Total variance = variance _ within + variance _ between

Intra-class correlation is defined as:

$$\rho = 1 - \frac{\sigma_w^2}{\sigma^2} = \frac{\sigma_b^2}{\sigma^2} = \frac{\sigma_b^2}{\sigma_b^2 + \sigma_w^2}$$

More specifically:

$$\rho = 1 - \frac{n}{n-1} \frac{\sigma_w^2}{\sigma^2}$$

Minimum: When $\sigma_b^2 = 0$, $\rho = -1/(n-1)$ Maximum: When $\sigma_w^2 = 0$, $\rho = 1$

Derivation of Variance for Cluster Sampling

$$\rho = 1 - \frac{n}{n-1} \frac{\sigma_w^2}{\sigma^2}$$

$$\rho = \frac{(n-1)\sigma^2 - n\sigma_w^2}{(n-1)\sigma^2}$$

$$\Rightarrow n\sigma^2 - \sigma^2 - n(\sigma^2 - \sigma_b^2) = \sigma^2 (n-1)\rho$$

$$\Rightarrow n\sigma_b^2 = \sigma^2 + \sigma^2 (n-1)\rho$$

$$\Rightarrow \sigma_b^2 = \frac{\sigma^2}{n} [1 + (n-1)\rho]$$

$$\operatorname{var}(\overline{x}) = \frac{\sigma^2}{n} [1 + (n-1)\rho]$$

Let consider a single-stage cluster sampling, where n units of sample is selected from N clusters, and the (average) size of cluster is M, then the variance of y is:

$$Var_{clu}(y) = \left(\frac{\sigma_x^2}{nM}\right) [1 + (M-1)\rho]$$

and,

$$Deff = 1 + (M - 1)\rho$$

In cluster sampling, the size of ρ could be quite large, that may seriously affect the precision of estimates.

In general, as cluster size increases ρ decreases, but deff depends on both M and ρ , so in cluster sampling, increase in cluster size make sampling more inefficient.

As an example, for a size of cluster 20, if $\rho = 0.1$, the *deff* = 1+(20-1)*0.1 = 2.9 suggesting that the actual variance is 2.9 times above what it would have been with variance from SRS with same sample size. However, if the size of cluster is large, say m=200, *deff*=1+(200-1)*0.1=20.9!

When $\rho = 0.0$, deff=1.

This relationship has important implications for cluster sampling strategies.

Consider a sampling scenario: we need to draw 300 samples. We may draw 10 clusters with 30 elements, or draw 3 clusters with 100 elements. We have said earlier, the principal reason of conducting cluster sampling is to reduce costs. Obviously, the 2nd option is cheaper as we need to go to only 3 clusters. However, as we have shown above, larger the m size (cluster size), larger the deff. As a result, the first option should be implemented (take more clusters with fewer elements) as a balance between "cost efficiency" and "variance efficiency."

Lessons for Cluster Sampling

- Use as many clusters as feasible.
- Use smaller cluster size in terms of number of households/individuals selected in each cluster.
- Use a constant "take size" rather than a variable one (say 30 households from each cluster).

Example:

Let us see an example.

list area age, clean

	area	age
1.	1	15
2.	1	16
3.	1	17
4.	1	18
5.	1	19
6.	1	20
7.	1	21
8.	1	22
9.	1	23
10.	1	24
11.	1	25
12.	2	25
13.	2	26
14.	2	27
15.	2	28
16.	2	29
17.	2	30
18.	2	31
19.	2	32
20.	2	33
21.	2	34
22.	2	35

. sum age

Variable		Mean	Std. Dev.	Min	Max
age		25	6.055301	15	35
. ci age					
Variable	Obs	Mean	Std. Err.	[95%	Conf. Interval]

25

. oneway age area

age |

22

Source	Analysis SS	of Va: df	riance MS	F	Prob > F
Between groups Within groups	550 220	1 20	550 11	50.00	0.0000
Total	770	21	36.6666667		

1.290994

22.31523

27.68477

```
*SE under SRS
    . disp sqrt((770/21)/22)
    1.2909944
    UNDER CLUSTER SAMPLING:
svyset, psu(area)
psu is area
. svymean age
Survey mean estimation
pweight: <none>
                                 Number of obs = 22
                                                  1
                                 Number of strata =
Strata: <one>
                                 Number of PSUs =
                                                   2
PSU: area
                                 Population size =
                                                  22
_____
  Mean | Estimate Std. Err. [95% Conf. Interval] Deff
_____
age | 25 5 -38.53102 88.53102 15
*Direct estimation of SE under cluster sampling design
. disp sqrt((550/1)/22)
5
*Estimation of deff:
```

. di 5²/1.290994² 15.00001

Use of STATA to estimate intra-class correlation

1. loneway

. loneway age area

One-way Analysis of Variance for age:

		Number of obs = R-squared =				
Source	SS	df	MS	F	Prob > F	
Between area Within area	550 220	1 20	550 11	50.00	0.0000	
Total	770	21	36.666667			

Intraclass correlation	Asy. S.E.	[95% Conf.	Interval]
0.81667	0.22140	0.38274	1.25059
Estimated SD Est. reliabi	of area effec within area lity of a area ted at n=11.00	a mean	7 3.316625 0.98000

In loneway command, $icc(\rho)$ is estimated by:

Rho= (MSB-MSW)/(MSB+(m-1)MSW)

MSB=Mean square between MSW=Mean square within M=(average) size of the cluster

. di (550-11)/(550+(11-1)*11) .81666667

2. xt – command:

```
xtreg age, i(area)
Random-effects GLS regression
                          Number of obs =
                                         22
Group variable (i): area
                          Number of groups =
                                          2
R-sq: within =
   between =
                          Obs per group: min =
                                         11
                                       11.0
                                  avg =
   overall = 0.0000
                                  max =
                                         11
Random effects u_i ~ Gaussian
                          Wald chi2(0) = 0.00
corr(u_i, X) = 0 (assumed)
                          Prob > chi2
                                    =
                                          .
_____
         Coef. Std. Err. z P>|z| [95% Conf. Interval]
    age
                               ------
_cons 25 5 5.00 0.000 15.20018 34.79982
sigma_u |
             7
  sigma_e | 3.3166248
   rho | .81666667 (fraction of variance due to u_i)
_____
```

*How icc (rho) is measured: di 7^2/(3.3166248^2+7^2) .81666667

However, estimating ICC from binary outcome is done differently:

. ta area a	dversehealth, adversehe						
area		eaith 1 +	Total				
1	3 27.27	8	11 100.00				
2	8 72.73	3 27.27	11 100.00				
Total	11	•					
	50.00	50.00	100.00				
. xtlogit ad	verse, i(area))					
	arison model: log likelih	nood = -15.2	249238				
Fitting full	model:						
	ts logistic re le (i): area	egression			of obs of groups		
Random effec	ts u_i ~ Gauss	sian		Obs per	a		11 11.0 11
Log likeliho	od = -14.7306			Prob >	chi2	=	
adversehea~h	Coef.	Std. Err	. Z	P> z	[95% C	onf.	Interval]
_cons	-+	.7128713	-0.00	1.000	-1.3972		
/lnsig2u	5081339					277	3.025009
sigma_u rho	.1545983	.6991063			.13257 .00531		4.538082 .8622567
Likelihood-r	atio test of 1	rho=0: chiba	ar2(01) =	1.04	Prob >= c	hiba:	r2 = 0.154

If the error term is considered to have standard logistic distribution, the variance of error term is $\pi^2/3$

So, rho= $\frac{{\sigma_u}^2}{{\sigma_u}^2 + \frac{{\pi}^2}{3}}$ di .7756399^2/(.7756399^2+_pi^2/3) .15459836

SAMPLE SIZE ESTIMATION under CLUSTER SAMPLING:

The major issue: DEFF >1.0

Solutions:

1. Increase the sample size estimated under SRS by multiplying with an estimated *DEFF* (from published source, or estimate from the formula as stated below):

Consider the comparison between:

 $\frac{\sigma^2}{n}$... variance under SRS vs. $\frac{\sigma^2}{nm}[1+(m-1)\rho....$ variance under clster sampling

So, transform sample size estimation formula,

$$n = \frac{(z_{\alpha/2} + z_{\beta})^2 \sigma^2}{(d)^2}$$

to:

$$nm = \frac{2 * (z_{\alpha/2} + z_{\beta})^2 \sigma^2}{(d)^2} [1 + (m-1)p] \dots total \dots sample \dots of \dots individuals (n clusters of m size)$$

In practice, m ~30 and, ρ is kept very (very) small. The *deff* values are available from published reports (e.g., Demographic and Health Survey reports). Usually a value of 1.5 to 2.0 for *deff* is considered for sample size estimation.

			Number	of cases				
		Standard	Un- weighted	Weight- ed	Design effect	Relative error	Confide	nce limit
Variable	Value (R)	error (SE)	(N)	(WN)	(DEFT)	(SE/R)	R-25E	R+25
		WOM	EN					
Urban residence	0.226	0.006	11,440	11,440	1.557	0.027	0.214	0.23
No education	0.412	0.008	11,440	11,440	1.780	0.020	0.396	0.42
With secondary education or higher	0.294	0.008	11,440	11,440	1.787	0.026	0.279	0.31
Currently married	0.925	0.003	11,440	11,440	1.102	0.003	0.920	0.93
Currently pregnant	0.051	0.002	13,543	13,542	1.122	0.041	0.047	0.05
Children ever born	2.998	0.028	10,417	10,436	1.300	0.009	2.941	3.05
Children surviving	2.591	0.022	10.417	10,436	1.240	0.009	2.547	2.63
Children ever born to women 40-49	5.118	0.072	2,263	2,230	1.415	0.014	4.974	5.26
Ever used any contraceptive method	0.828	0.006	10,553	10,582	1.705	0.008	0.815	0.84
Currently using any contraceptive method	0.581	0.007	10,553	10,582	1.433	0.012	0.567	0.59
Eurrently using any contraceptive method	0.473	0.007	10,553	10,582	1.451	0.012	0.459	0.48
Currently using a modern method Currently using pill	0.262	0.006	10,553	10,582	1.352	0.012	0.251	0.27
				P .		0.143		0.0
Currently using IUD	0.006	0.001	10,553 10,553	10,582 10,582	1.154 1.346	0.063	0.004	0.04
Currently using condom	0.042	0.005	10,553	10,582	1.819	0.054	0.086	0.10
Currently using injectables		0.005	10,553	10,582	1.741	0.054	0.066	0.00
Currently using female sterilization	0.052			,				
Currently using periodic abstinence	0.065	0.003	10,553	10,582	1.290	0.048	0.059	0.07
Currently using withdrawal	0.036	0.002	10,553	10,582	1.178	0.059	0.032	0.04
Currently using Norplant	0.008	0.001	10,553	10,582	1.251	0.137	0.006	0.01
Obtained method from public sector source	0.573	0.011	4,994	5,053	1.602	0.020	0.550	0.59
Want no more children	0.628	0.006	10,553	10,582	1.188	0.009	0.617	0.64
Want to delay birth at least 2 years	0.212	0.004	10,553	10,582	1.096	0.021	0.203	0.23
Ideal number of children	2.420	0.013	11,012	11,017	1.840	0.006	2.393	2.44
Mothers received ANC (trained provider)	0.487	0.13	5,366	5,416	1.936	0.027	0.460	0.51
Mothers received tetanus injection (last birth)	0.848	0.009	5,366	5,416	1.837	0.011	0.830	0.86
Mothers received medical care at delivery	0.132	0.006	6,908	7,002	1.447	0.049	0.119	0.14
Child had diarrhea in the last 2 weeks	0.075	0.004	6,424	6,498	1.064	0.048	0.068	0.08
Treated with ORS packets	0.672	0.026	485	486	1.193	0.039	0.619	0.72
Sought medical treatment	0.157	0.018	485	486	1.085	0.117	0.120	0.19
Child having health card, seen	0.494	0.017	1,247	1,265	1.199	0.034	0.460	0.53
Child received BCG vaccination	0.934	0.012	1,247	1,265	1.671	0.013	0.911	0.95
Child received DPT vaccination (3 doses)	0.810	0.017	1,247	1,265	1.576	0.022	0.775	0.8
Child received polio vaccination (3 doses)	0.823	0.017	1,247	1,265	1.554	0.020	0.789	0.85
Child received measles vaccination	0.757	0.019	1,247	1,265	1.600	0.026	0.718	0.79
Child fully immunized	0.731	0.020	1,247	1,265	1.563	0.027	0.692	0.77
Height-for-age (-2SD)	0.430	0.009	6,012	6,005	1.421	0.022	0.411	0.44
Weight-for-height (-2SD)	0.128	0.005	6,012	6,005	1.105	0.038	0.119	0.13
Weight-for-age (-25D)	0.475	0.010	6,012	6,005	1.534	0.022	0.454	0.49
BMI < 18.5	0.343	0.006	10,448	10,431	1.373	0.019	0.330	0.35
Has heard of HIV/AIDS	0.600	0.011	11,440	11,440	2.407	0.018	0.578	0.62
knows about condoms	0.219	0.008	11,440	11,440	1.987	0.035	0.203	0.23
Knows about limiting partners	0.181	0.007	11,440	11,440	1.953	0.039	0.167	0.19
fotal fertility rate (last 3 years)	3.028	0.067	na	38,850	1.497	0.022	2.894	3.10
Neonatal mortality (last 5 years)	41.373	2.861	6,967	7,056	1.149	0.069	35.652	47.09
Post-neonatal mortality (last 5 years)	23.822	2.048	6,978	7,065	1.133	0.086	19.725	27.91
infant mortality (last 5 years)	65.195	3.604	,	7,065	1.133	0.055	57.986	72.40
Child mortality (last 5 years)	23.936	2.434	6,980 7,038	7,133	1.282	0.102	19.068	28.80
Under-five mortality (last 5 years)	23.936	4.327	7,058	7,148	1.202	0.049	78.917	96.2

Source: Bangladesh DHS

Note that DHS (as shown above) reports "deft" which is the "squared of deff", ie., deft=std.error(cluster)/std.error(srs).

2. You may also calculate the number of clusters required for the study utilizing the above formulas.

$$n = \frac{2^{(z_{\alpha/2} + z_{\beta})^2 \sigma^2}}{m(d)^2} [1 + (m-1)p]....no \ of \ clusters$$

Essentially, you need the same sample size formula for "randomized community trial." However, *deff* is called "variance inflation factor" in the randomized community trial (essentially borrowed from survey statistics!).

3. Other methods:

Direct estimation of the number of clusters needed for a survey:

Exact:

$$m = \frac{Z_{1-\alpha/2}^2 M V^2}{Z_{1-\alpha/2}^2 V^2 + (M-1)d^2}$$

Example: M= 100 clusters in the population

Need to know (research question): average number of children in the population, based on 100 clusters, for designing a health care facility needs study with following info:

$$\sigma^2 = 0.5$$

Y(mean): 5.6

$$V^2 = \frac{\sigma^2}{\overline{Y}} = \frac{0.5}{(5.6)^2} = .01594388$$

STATA command:

. di "m = " (9*100*.01594388)/(9*.01594388+99*(.10^2)) m = 12.659512 ~ 13 clusters

Note : (1.96+ 0.84)² ~ 9 {for faster calculation}

Approximate method:

$$m = \frac{Z_{1-\alpha/2}^2 V^2}{d^2}$$

STATA Command: di " m = " (9*.01594388)/(.10^2) m = 14.349492 ~ 15 clusters