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Abstract

While using the direct issue mode, dependent instructions cause issue blockages and thus an

issue bottleneck. Shelving is a technique to avoid this and to increase the sustained issue rate. It takes

advantage of two concepts: (a) the decoupling of dependency checking from instruction issue and (b)

significantly widening the instruction window that is scanned in each clock cycle for executable

instructions. In this paper we identify and explore the design space of shelving. We  first outline its

main dimensions, then we present and discuss feasible design alternatives along three of its crucial

dimensions.  Finally, we point out which design choices have been made in important superscalar

processors. For a concise graphical representation of the design space we make use of DS-trees.

Keywords: Shelving, Dispatching, Instruction issue, Microarchitecture of superscalar

processors, ILP-processing

1. Introduction

Although shelving was introduced more than thirty years ago in scalar supercomputers of that

time, it has come into widespread use only recently in high end superscalars. While pioneering the

basic approaches of parallel instruction execution, that is replication of execution units (EUs) [1] and

pipelining [2], designers of Control Data’s 6600 and IBM’s 360/91 made use of shelving to avoid

instruction issue blockages caused by data dependencies. In this way, the sustained issue rate and the

overall performance of their machines could be increased. Nevertheless, for a number of reasons,

including the complexity of its implementation, and the slight performance gain in scalar processors,

the concept of shelving was itself shelved for a quarter of a century. In recent years, this advanced

technique has been ‘reinvented’ in order to increase the sustained issue rate and consequently, the

performance of superscalar processors [3]-[24]. In Section 2 we first introduce the principle of

shelving. In Section 3 we outline the design space of shelving by indentifying its major dimensions
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and presenting the feasible implementation alternatives as regards three of its dimensions: the scope

of shelving, the layout of shelving buffers and the operand fetch policy. The design space is

represented through the use of DS-trees described in [25], [26], [29]. Throughout our discussion of

the implementation alternatives we identify their actual use in recent superscalar processors and

pinpoint trends. In Section 4, we detail how shelving operates. Finally, in Section 5, we recap how

shelving has spread in recent superscalar processors and indicate the main features of  the shelving

schemes used.

2. The principle of shelving

The limitations of the direct issue mode initially applied in superscalar processors raised the

need for a more sophisticated issue scheme early on. In the direct issue mode, executable instructions

are issued from an issue window directly to the EUs. In an n-way superscalar processor the issue

window comprises the last “n’ entries of the instruction buffer (I-buffer), as shown in Fig. 1. In each

clock cycle decoded instructions in this window are checked for dependencies on previous

instructions still in execution. In the absence of dependencies all ‘n’ instructions are executable and

will be issued directly to the EUs. However, each dependent instruction in the window gives rise to

an issue blockage. Depending on how effectively issue blockages are handled in the processor, they

decrease more or less severely the sustained issue rate and cause an issue bottleneck [26]. For

instance the sustained issue rate of a 4-way superscalar processor is expected to be as low as about 2

while executing a general purpose program [27], [28]. The direct issue mode severely limits the

performance of the processor. Because of this, high performance processors are forced to employ a

more advanced issue mode such as shelving.

Decode/
check/
issue

EUEUEU

Icache

I-buffer

Issue window (n)

Dependent instructions block
Issue instruction issue.

n

Figure 1: Principle of  the direct issue mode.
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(In the figure we assume a 4-way superscalar processor and individual reservation stations).

Shelving, also known as shelved issue or indirect issue avoids the limitations of the direct

issue mode by utilising two ideas at the same time: (a) the decoupling of dependency checking from

instruction issue, and (b) substantially widening the window which is scanned in the processor for

executable instructions in each clock cycle. Shelving is implemented as follows: Instructions are first

issued without checking for dependencies on previous instructions still in execution into special

buffers called shelving buffers, that are provided in front of the EUs, as illustrated in Fig. 2. Thus,

dependent instructions in the issue window do not cause issue blockages and an issue bottleneck is

avoided. During a new subtask of the processing called dispatching, shelved instructions are checked

for dependencies in each clock cycles and up to “m” independent instructions are forwarded to

available EUs. Here “m” is the dispatch rate, which is the maximum number of instructions that can

be forwarded in the same clock cycle to the EUs. Issued instructions held in the shelving buffers can

be considered to be in the dispatch window. If the dispatch window is wide enough, say it comprises

20 to 40 instructions, and there is a wide enough execution bandwith available, it can be expected

that the sustained dispatch rate will approach the issue rate. Thus, through shelving processor

performance can be raised substantially. In Fig. 2, we outline how shelving is carried out, assuming a

specific implementation alternative of the shelving buffers. Other possibilities for their

implementation exist as well and are discussed later in Section 3.3.1.
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Figure 2.: The principle of shelving, assuming a 4-way superscalar proessor and individual
reservation stations in front of each EU

Shelving, however has some peculiarities. First, as far as the instruction issue is concerned,

even with shelving certain resource constraints can restrain the processor from issuing fewer

instructions in a cycle than its issue rate is. There are two typical resource constraints: lack of free

entries in buffers needed, such as in the reservation station, in the rename register file or in the

reorder buffer and data path restrictions. However, issue blockages due to the above mentioned

hardware constraints occur much less frequently  than in the case of the direct issue mode.

Second, if renaming is employed along with shelving, instructions in the issue window must

be checked for inter-dependencies, as detailed in [26]. Dependencies that do occur, however affect

only the renaming mechanism, but do not cause issue blockages.

Third, shelving is predominantly used in connection with the advanced superscalar issue

policy. This means that shelving is usually employed along with speculative branch processing and

register renaming (as discussed in [29]). Speculative branch processing reduces a performance

degradation due to control transfer instructions, while renaming removes issue blockages due to false

register data dependencies, that is, due to WAR (Write After Read) and WAW (Write After Write)

dependencies between register data [26]. Two implications follow. First, assuming a high enough

execution and memory bandwidth, the hit rate of the speculative branch processing and the width of

the dispatch window determines to what extent data and control dependencies confine performance.

Thus, superscalar processors strive to increase the hit rate of  branch prediction through introducing

more and more intricate prediction schemes and to widen the width of the dispatch window by

providing more and more shelving capacity. The second implication is that assuming speculative

branch processing, register renaming and shelving, only true data dependencies, that is RAW (Read

After Write) dependencies can prevent instructions held in the shelving buffers from being executed.

In other words a shelved instruction becomes eligible for execution when all its operands are

available. This criterion corresponds precisely to the data flow principle of operation.

A fourth remark concerns the preservation of sequential consistency, which calls for

sustaining the logical integrity of the execution despite the fact that instructions are executed in

parallel. In a sense, shelving makes processing more distributed, since the dispatch window is much

wider than the issue window. To counteract this, shelving is typically used together with an advanced

method of retaining sequential consistency called instruction reordering. For details see [26].

A final comment about terminology is also necessary. We have used two different terms,

instruction issue and dispatch, to express different actions. The term ‘issue’ itself has a different

meaning without shelving and with shelving. In the direct issue mode, ‘issue’ means forwarding of

independent instructions directly to the EUs. When shelving is used it refers to the dissemination of
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both dependent and independent instructions to the shelving buffers. On the other hand, the term

‘dispatch’ is only applied in connection with shelving. It designates the dissemination of independent

instructions from the shelving buffers to available EUs. While useful, this clear distinction is not

common in the literature and both ‘issue’ and ‘dispatch’ are used in either interpretation.

Shelving is clearly a complex topic, and recent superscalar processors implement it in a

variety of ways. The following sections offer a framework for this challenging diversity.
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3. The design space of shelving

3.1 Overview

Shelving has a fairly complex design space. Its main dimensions are: the scope of shelving, the

layout of the shelving buffers used, the operand fetch policy and the instruction dispatch scheme (Fig.

3). The scope of shelving declares whether shelving covers all data types or  is restricted to a few of

them. The layout of the shelving buffers specifies the infrastructural background of shelving. It is the

operand fetch policy that decides whether operands are fetched in connection with issue or, in

contrast, along with instruction dispatch. Finally, the instruction dispatch scheme specifies the details

governing the selection and forwarding of instructions for execution. As instruction dispatch is a

complex issue of its own, we restrict our discussion to the first three dimensions. Those interested

can find more details on instruction dispatch in [24].

Shelving

of the shelving
 Layout

buffers
policy

Operand fetchScope of 
shelving dispatch scheme

Instruction

Figure 3: Design space of shelving

3.2 Scope of shelving

The scope of shelving indicates how comprehensively it is employed in a processor. Partial

shelving is restricted to a few instruction types, whereas full shelving includes all instructions as

shown in Fig. 4.

Partial shelving was employed in the introductory phase of shelving in a few superscalar

processors, such as the Power1, Power2, MC 88110 and the R8000 (see Fig. 4). Three of these

restrict shelving to FP-instructions, whereas the MC 88110 shelves stores and conditional branches.

Partial shelving is clearly an incomplete solution to the problem of eliminating issue blockages

caused by dependencies, thus most recent superscalar processors employ full shelving.
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Scope of shelving

Issue performance, trend

Full shelvingPartial shelving

Shelving is restricted
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MC 88110 (1993)
(shelves only stores and
conditional branches)

Power 1(1990)
Power 2 (1993)

R8000 (1994)
(shelves only FP-instructions)

Shelving covers
all instruction types

Most recent superscalar
processors, such as

Pentium Pro (1995)

PowerPC 603 (1993)
PowerPC 604 (1995)
PowerPC 620 (1996)

R10000 (1996)

only FP-instructions)
(both processors shelve

PA 8000 (1996)
Alpha 21264 (1997)

Figure 4: Scope of shelving

3.3 Layout of the shelving buffers

Shelving buffers hold issued instructions until they can be forwarded for execution to an EU.

Their layout can be distinguished by: the type and capacity of the buffers used and the number of

their input- and output ports, as Fig. 5 shows.

input and output ports
Number of the

shelving buffer
Number of

entries

Type of
the shelving buffers

Layout of the shelving buffers

Figure 5: Layout of the shelving buffers

3.3.1 Types of shelving buffers

We distinguish between two generic types of shelving buffers: reservation stations and
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combined shelving buffers. Reservation stations are used exclusively for shelving. In contrast,

combined buffers are also used for reordering, and in some cases, for renaming as well, as shown in

Fig. 6.

Type of the shelving buffers

Combined buffersReservation stations

Buffers are used
exclusively for shelving

Buffers are used at the same 
time for shelving, reordering

and possible also for renaming

Figure 6: Types of shelving buffers

Shelving buffers are in most cases implemented as reservation stations, a term which needs

classification. When using the term shelving buffer we refer to all possible implementations,

including reservation stations or combined buffer schemes. If we specifically use the term reservation

stations we refer to the particular type of implementation.

In superscalar processors reservation stations are implemented according to one of three basic

schemes, as indicated in Fig. 7.
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EUEU

Alpha 21264 (1997)

Figure 7.: Basic variants of reservation stations

In the simplest case, individual reservation stations are used in front of each EU. Here,

instructions which are scheduled to be executed in a particular EU are first transferred into the

associated reservation station preceding that EU. Usually, individual reservation stations provide

enough space to hold only a small number of instructions, say 2 to 4. For example, in the PowerPC

620 the reservation stations in front of the three integer units and before the single FP-unit can hold

two instructions each, whereas those associated with the load/store unit and the branch processing

unit have places for three and four instructions, respectively.

Both the early implementations of shelving employed individual reservation stations. The

CDC 6600 provided one-entry stations before each EU, whereas in the IBM 360/91 the FP-Add unit

was equipped with a two-entry station and the FP-Multiply unit with a three-entry station. Further

examples of superscalar processors using individual reservation stations are shown in Fig. 7.

In an alternative approach, reservation stations are implemented as group stations. Here, the

same reservation station holds instructions for a whole group of EUs, which execute instructions of

the same type. For instance, the R10000 has three group stations, one of these serves two FX-ALUs,

another a single address unit, while the third supports four FP-units.

Evidently, group stations need to have more available buffer space than individual stations.

For instance, the R10000 has three group stations with 16 positions each, or the PM1 (Sparc 64) has

four group stations with 8 or 16 entries each. Since group stations serve more than one EU, they
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should be capable of  receiving and dispatching more than one instruction in each cycle in order to

avoid performance bottlenecks. As an example, each group station of the R10000 can accept 4

instructions in each cycle. Two of these stations (FX-RS and FP-RS) can dispatch two instructions,

whereas the third one (Address RS) can only dispatch one instruction per cycle.

Group stations have an edge over individual stations since they are more flexible in

dispatching instructions to EUs than individual stations. Thus, well designed group stations are better

utilised than individual stations, assuming the same number of entries provided in both cases. The

price for this is an increased complexity caused by multiple input and output ports and by the

associated logic.

 The last alternative is when a central reservation station serves all EUs. Clearly, a central

station needs to have a higher capacity than group stations. Furthermore, it should be able to accept

and dispath a larger number of instructions per cycle than group stations. A central station does,

however, have some implementation disadvantages. First, it must have a word length equal to the

longest possible data word. Second, as central stations are expected to be able to accept and dispatch

more instructions per cycle than group stations, they are more expensive to implement. Nevertheless,

PentiumPro opted for a central station. In the PentiumPro a 20 entry central reservation station serves

all available EUs (10 altogether).

A quite different approach to the implementation of shelving buffers is to use a combined

buffer for shelving and renaming, or for shelving and reordering, or for shelving, reordering and

renaming, as shown in Fig. 8.

Combined buffers 

EUEU

Reorder buffer also used
for shelving

PA 8000 (1996)

Combined buffers for

shelving and reordering

EUEU

Reorder buffer also used
for renaming and shelving

Combined buffers for

shelving, reordering and renaming

Lightning (1991)

(This buffer is called DRIS
    Deferred Scheduling, Register Renaming,

Instruction Shelve)

Figure 8.: Use of combined buffers for shelving
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In the first case, the reservation station is utilised also for renaming. For this reason, its entries

are extended to hold the results of the instructions as well, until the instruction completes and the

results will be written into the architectural registers, (see section 4.5). Clearly, all three types of

reservation stations are suitable for a combined use with renaming. The IBM 360/91 employed this

concept with individual reservation stations.

In both other cases, the reorder buffer (ROB), which assures the logical integrity of the

program execution is extended to provide shelving, as in the PA8000 or even to provide both shelving

and register renaming as well. A unique example of the latter is the Metaflow Lightning processor

(1991), which was announced but never reached the market. In the Lightning, the combined structure

was designated as DRIS (Deferred Scheduling, Register Renaming, Instruction Shelve). Despite its

complexity, the combined buffer approach is efficient and in the future we expect further processors

to use this design option.

3.3.2 Number of shelving buffer entries

The progression from individual to group and then to central reservation stations brings with it

the need to provide an increasing number of shelving places. Typically, individual reservation

stations can shelve 2 - 4 instructions, group stations have 6, 12 or 16 entries, while the only

implementation so far of a central reservation station, the PentiumPro, can hold 20 instructions.

Clearly combined buffers have the same shelving capacity requirement as reservation stations do. The

total number of entries in reservation stations provided account for the width of the dispatch window.

Recent processors typically have a dispatch window of 15 and 40 entries, as Table 1 indicates.

Processor Width of the

dispatch window

PowerPC 603 (1993) 3

PowerPC 604 (1995) 12

PowerPC 620 (1996) 15

Nx586 (1994) 42

K5 (1995) 14

PM1 (Sparc64) (1995) 36

PentiumPro (1995) 20

R10000 (1996) 48

PA8000 (1996) 56

Alpha 21264 (1997) 35
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Table 1: Width of the dispatch window in recent superscalar processors

3.3.3 Number of input  and output ports

The last component of the layout of shelving buffers is the number of input and output ports.

This element specifies how many instructions may be written into or read out from a particular

shelving buffer in a single cycle.

First, let us consider the expected number of output ports (read ports). Obviously, individual

reservation stations need only to forward a single instruction per cycle. A group or a central

reservation station, on the other hand, needs to deliver multiple instructions per cycle, ideally as

many as EUs are connected to it. It follows that individual reservation stations have a single output

port, each group station is expected to provide multiple output ports, and central reservation stations

are expected to have even more output ports.

Individual, group and central reservation stations require increasingly more input ports (write

ports) as well. Processors with individual reservation stations often allow only one instruction per

cycle to be issued into any one reservation station. Examples of this are the PowerPC 604 or the Nx

586. In contrast, recent superscalar processors with group reservation stations permit to transfer more

than one or even all issued instructions into any of the reservation stations. For instance, the PM1

(Sparc64), which is a four-issue processor, can issue any combination of up to 2 FP-, 2 load/store-, 1

branch and 4 integer instructions into the corresponding group reservation stations. But no more than

two integer instructions of these can may be complex ALU operations such as shifts, multiplications

or divisions. In the four-issue R10000, even all four instructions issued can be forwarded into any of

the three group stations. As far as combined shelving buffers are concerned they have similar input

and output port requirements as corresponding reservation stations do.

3.4 Operand fetch policies

3.4.1 Overview

Closely connected with shelving is the policy governing how processors fetch operands. The

fetch policy is either issue bound or dispatch bound, as indicated in Fig. 9.
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Operand fetch policy
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source operand values
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Issue bound Dispatch bound
fetch fetch

Alpha 21264 (1997)

Figure. 9: Operand fetch policies

The issue bound fetch policy means that operands are fetched during instruction issue. In this

case shelving buffers basically hold instructions with their operand values, requiring that the buffers

be quite long to provide space for all the source operands. The other basic alternative is when

operands are fetched during dispatching, called the dispatch bound fetch policy. In this case, shelving

buffers can be much shorter, since they contain instructions with their register identifiers.

In the following, we describe both operand fetch policies mentioned. In our discussion we

assume individual reservation stations and a common register file for both FX- and FP-data.

Furthermore, we assume that no register renaming is used. These assumptions do not affect the

principles discussed, but allow us to focus on the vital points. Subsequently, we extend our

discussion to the split register scenario and to the case when renaming is used as well.

3.4.2. The issue bound fetch policy

Fig. 10 shows the principle of the issue bound operand fetch policy. In this case, while issuing

the instructions, the referenced source register numbers are forwarded to the register file in order to

fetch the source operands. In addition, the operation codes (OC), the destination register numbers of

the issued instructions (Rd), and the fetched operand values (Op1 and Op2) are written into the
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allocated reservation stations.

EU

Source reg. identifiers

Decode/Issue

I-buffer

  Opcodes, 

Source 1 operands

Source 2 operands

Issue

OC Rd Op2Op1

RS

OC Rd Op2Op1

RS

OC Rd Op2Op1

RS

Reg. file

EUEU

 destination reg. identifiers

Figure 10.: The principle of issue bound operand fetching. In the figure we assume a common register

file for both FX- and FP-data and individual reservation stations
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3.4.3. The dispatch bound operand fetch policy

An alternative to the issue bound fetch policy we have discussed is the dispatch bound

operand fetch policy. In this case operands are fetched in connection with instruction dispatch rather

than with instruction issue.

As Fig. 11 shows each entry of the reservation station holds the operation code (OC), the

destination register (Rd) and the source register numbers (Rs1, Rs2). During dispatch, the operation

codes and destination register identifiers of the dispatched instructions are forwarded from the

reservation stations to the associated EUs, and the source register identifiers are passed to the register

file. After fetching, the source operands are gated into the inputs of the corresponding EUs.

Decode/Issue

I-buffer

Source register identifiers

Op. codes,
destination reg.
identifiers

Reg. file

Source1 operands

Source2 operands

Instructions

Dispatch

Issue

OC Rd Rs2Rs1

RS

OC Rd Rs2Rs1

RS

OC Rd Rs2Rs1

RS

EUEUEU

Figure 11: The principle of dispatch bound operand fetching. In the figure we assume a common register

file for both FX- and FP-data and individual reservation stations

3.4.4. Operand fetching assuming split register files for FX- and FP-data

In our introduction of operand fetch policies we assumed a common register file for both FX-

and FP-data. However, most recent architectures such as the x86, R, PA, Alpha and PowerPC

architectures, use distinct register files for FX- and FP-data. Accordingly, the corresponding lines of

processors implement distinct FX- and FP-register files. There are only a few recent processors which

have a single FX register file, such as the Am 29000 architecture, which supports only FX-data.
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Another exception is the Nx586 which implements only the FX-part of the architecture in the main

processor, while the FP-part is realized by an FP-coprocessor chip, called the Nx587.

In the following we revisit both operand fetch policies assuming distinct register files for FX-

and FP-data.

As Fig. 12 and 13 illustrate, when there are distinct FX- and FP-register files the

microarchitecture has a symmetrical internal structure. FX-instructions and FX-data on the one hand,

and FP-instructions and FP-data on the other, are processed now by two distinct and more or less

symmetrical processor parts.

Decode/Issue

I-buffer

FP-source reg. identifiers

FP-source ops.

FP-source ops.

FX-reg. file

FX-source reg. identifiers

FX-source ops.

FX- source ops.

Opcodes, destination reg. identifiers

FP-reg. file

FP-RS FP-RSFX-RS FX-RS

Update
FX-RS

EU

FP-

EU

FP-

EU

FX-

EU

FX-

Update
FP-RS

FX-results, tags FP-results, tags

Figure 12: Issue bound operand fetch assuming split FX- and FP-register files
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I-buffer

FP-instructions

FP-source

FP-source ops.
FP-source ops.

FX-instructions

FX-source

FX-source ops.
FX-source ops.

reg. identifies reg. identifies

EU
FX-

EU
FX-

EU
FP-

EU
FP-

FP-RSFP-RSFX-RSFX-RS

Decode/Issue

FX-results, tags FP-results, tags

FX-opcodes,
dest-reg. identifiers

FP-opcodes,
dest-reg. identifiers

Update FP-RSUpdate FX-RS

FX-reg. file FP-reg. file

Figure 13: Dispatch bound operand fetch  assuming  split FX- and FP- register files

3.4.5. Operand fetching using renaming

In the absence of register renaming, all required register operands are supplied by the

architectural register files. When register renaming is used, however, a quite different situation arises

since in this case intermediate results are held in an additional register space, called the rename

buffer file. Intermediate results are generated by instructions with renamed destination registers. They

become final results and part of the program state when instructions complete in program order. Here,

we note that clearly more than one intermediate result may belong to a particular architectural

register since multiple valid renamings of the same architectural register may happen. Now if

operands are fetched during instruction issue, obviously, for each referenced source operand its latest

renamed value needs to be accessed. This is achieved by a parallel prioritised access to both the

appropriate architectural and the rename buffer file. If the rename buffer file does not hold an

intermediate result belonging to the addressed architectural register, the required (latest) operand

value is held in the architectural register file. Otherwise, the latest value of the required source

register is the youngest renamed value. In accordance with the renaming scheme employed, this

additional register space may be implemented either as rename register files, as a common register

pool for architectural and rename registers or as an extension of the reorder buffer (ROB), as detailed

in [26].
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3.4.6. Comparison of the issue bound and the dispatch bound operand fetch policies

In the absence of register renaming, operand fetch policies can be assessed based on three

aspects: (a) the impact on the time-critical decode-issue path, (b) the complexity of the shelving

buffers and (c) the number of output ports in the register files.

In two of these the dispatch bound operand fetch policy is more advantageous than the issue

bound policy. The critical decode/issue path is shorter, and shelving buffers are less complex, since

register identifiers require considerably less buffer space than operand values. However, the

comparison is far more complex when we look at the number of output ports.

The number of the required output ports (read ports), is a major influence on the floor space

required for the implementation of the registers. In the case of the issue bound operand fetch policy,

register files have to supply the source operands during the issue process. This requires as many

output ports as there may be operands in the issued instruction group. If there are no restrictions on

the issuable instruction mix, then the FX- and the FP-register files each must be able to deliver all

source operands for the maximum number of issuable instructions. For example, in a 4-way

superscalar processor, the FX-register file typically has to offer 8 and the FP-register file 12 output

ports, assuming up to two FX- and three FP-source operands per instruction. If instruction mix

restrictions are in place, for instance if 4-way superscalar processor can’t issue more than two FP-

instructions in the same cycle, the requested number of output ports in the FX- and FP-register files

will be reduced accordingly.

The situation is different when we consider the output port requirements of the dispatch bound

operand fetch policy. In this case each of the FX- and FP-register files has to have as many output

ports as required for  the maximum number of dispatched instructions. If, for example, up to four FX-

instructions and up to two FP-instructions may be dispatched in the same cycle, the FX- and the FP-

register files must have 8 and 6 output ports, respectively, assuming again up to two FX- and three

FP-source operands per instruction.

This basic information allows us to compare the output port requirements of the issue bound

and dispatch bound operand fetch policies. Assuming that there are no issue mix restrictions, for high

end superscalar processors the following estimation can be made. Using the issue bound fetch policy,

the FX- and FP-register files should each be able to deliver operands for as many instructions as the

issue rate. In other words, the FX- and FP-register files together should be able to serve twice as

many instructions as the issue rate. By contrast, in the case of the dispatch bound fetch policy the FX-

and FP-register files together should serve as many instructions as the dispatch rate. Since the
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dispatch rate is usually higher than the issue rate, but less then twice the issue rate (see Table 2), in

the absence of issue mix restrictions we expect the dispatch bound fetch policy to require altogether

fewer output ports than the issue bound fetch policy. In a typical situation where the dispatch rate is

six and the issue rate is four, the FX- and FP register files need to serve six instructions using the

dispatch bound fetch policy and eight using the issue bound fetch policy.

Processors/Year of volume

shipment

Issue rate

instr./cycle

Dispatch rate1

instr./cycle

PowerPC 603 (1993) 3 3

PowerPC 604 (1995) 4 6

PowerPC 620 (1996) 4 6

Power2 (1993) ���Þ 10

Nx586 (1994) 3/43.4 3/43.4

K5 (1995) 44 54

PentiumPro (1995) 4 54

PM1 (Sparc 64) (1995) 4 8

PA8000 (1996) 4 4

R10000 (1996) 4 5

Alpha 21264 (1997) 4 6

Comments:
1 Because of address calculations performed separately, the given numbers are usually to be interpreted

as operations/cycle. For instance, the Power2 performs maximum 10 operations/cycle, which
corresponds to 8 instructions/cycle.

2 The issue rate is 4 for sequential mode and 6 for target mode.
3 Both rates are 3 without an optional FP-unit (labelled Nx587) and 4 with it.
4 Both rates are related to RISC operations (rather than to the native CISC operations) performed by the

superscalar RISC core.

           Table 2. Comparison of issue and dispatch rates of recent superscalar processors

If renaming is employed there are two opposite implications. On the one hand, as far as the

output port requirements are concerned, the issue bound operand fetch policy turns out to be even

more disadvantageous. The reason is that the issue bound policy requires more output ports than the

dispatch bound policy not only in the architectural register files but in the rename buffers as well. On

the other hand, if renaming is implemented by a merged architectural and rename file, or by separate

FX- and FP-rename register files, the issue bound operand fetch policy has an edge over the dispatch

bound policy since in this case the reclaiming of rename buffers is more straightforward than when

using the dispatch bound fetch policy.

The output port requirements of the issue bound fetch policy can be reduced if some issue
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restrictions are instituted, which of course impede performance. Then in a typical situation we expect

no significant difference concerning the output port requirements of the issue bound and the dispatch

bound operand fetch policies. Obviously, in a given case a more precise statement can easily be made

by inspecting the specifications involved.

In summary, based on our foregoing assessment, the dispatch bound fetch policy seems to be

more benefitial than the issue bound policy.

4. Detailed operation of shelving

4.1. Overview

In this section we describe in detail how shelving is carried out. For simplification however,

our description is based on an example and assumes a straightforward scenario, as indicated in Fig.

14a-14f. Our scenario consists of a common register file, a single individual reservation station and

issue bound operand fetching. Furthermore, we presume an ROB for preserving the sequential

consistency of instruction execution and register renaming within the ROB (as done in the Am29000

superscalar and in the K5).

 The sequential consistency of the program execution is preserved by the ROB in the

following way: (a) All issued instructions are written into the ROB in program order. They are stored

into subsequent free entries pointed to by the Head pointer. (b) Instructions may complete, that is

write their results into the architectural register file, or into the memory again only in program order.

The instruction which comes next in the program order, as indicated by the Tail pointer.

In our example we assume that register renaming is performed within the ROB. This means

that the results of the instructions are first written into the ROB-entry which is allocated to the

instruction generating the result, rather than into the specified architectural register. Accordingly,

each ROB-entry must have three fields, as indicated in Fig. 14a-14f. These fields are as follows: (a)

the ‘Rd’ field, which holds the number of the destination register of the associated instruction, (b) the

‘Value’ field,  which is provided to store the generated result, and (c) a status bit (‘E’) indicating

whether the associated instruction has already been executed. Clearly, the ‘Value’ field is valid only

if the E-bit is set. In addition, we extend the ROB-entries with a further field (‘OC’). Although not

required for the operation of the ROB, this field, which indicates the operation codes, is a helpful

reference to the instructions held in the ROB.
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The overall operation is as follows. First, instructions are issued into the reservation station

and into the ROB. While instructions are issued into the reservation station referenced source

operands are fetched and their availability is marked in the allocated entries of the reservation station.

A shelved instruction is launched for execution if all of its source operands are available. Execution

results are used to update both the reservation station and the ROB. Finally, when an instruction

comes next in the logical order of program execution (that is it completes), its result is written to the

architectural register file to update the program state.

In our following description of the operation we distinguish among the following subtasks:

a, instruction issue,

b, instruction dispatch,

c, updating of the reservation station and of the ROB, and

d, completing of the instructions.

In our example we assume that the following two instructions are issued and processed:

i1: mul r1, r2, r3; //r1 ⇐ (r2) * (r3)

i2: div r4, r1, r3; //r4 ⇐ (r1) - (r3)

4.2. Instruction issue

Assuming at least a two-way superscalar processor, instructions are issued at the same cycle

both into the ROB and into the reservation station. While issuing i1 and i2 into the ROB, their

destination register numbers (r1 and r5) are written into the appropriate fields of the next two free

entries, pointed to by the Head pointer, and the associated E-bits (Executed bits) are reset, as
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illustrated in Fig. 14a.

Instructions i1 and i2 are also written into the reservation station and their operands are

fetched. As shown in Fig. 14a, each entry of the reservation station holds the operation code (OC),

the number of the destination register (Rd), the operand values (Op1 and Op2) and two status bits

indicating the availability of the associated operands (V1 and V2). Accordingly, the operation codes

(‘mul’ and ‘div’) and the destination register numbers (r1 and r5) of the issued instructions are stored

in  the associated fields. However, fetching of the operands is a more complicated task, since for each

source operand its latest value needs to be fetched, as described in Section 3.4.5. For this reason both

the architectural register file and the rename buffer file, in our case this is the ROB, need to be

accessed at the same time. Let us assume that the ROB looks for the latest values of the operands in

an associative way. (We note that other possibilities for accessing the operands exist as well and are

discussed in [26]). During accessing of both files three different cases may occur: (a) a referenced

operand is not found in the ROB, (b) a referenced operand is held in the ROB and is available, and

(c) a referenced operand is held in the ROB but not available.

(a) A referenced operand does not exist in the ROB

 If the ROB does not hold an entry for the referenced source register, the latest value of that

source register is stored in the corresponding architectural register. In our example we assume that no

ROB entry contains the destination register r3. Than it’s latest value has to be fetched from the

corresponding architectural register, which is ‘30’.

(b)  A referenced operand is held in the ROB and is available

If the referenced register number is found in the ‘Rd’ field of one or more ROB entries, it is

always the latest value that needs to be fetched. For instance, in our example r2 occurs twice  in the

ROB. From these, the value of  ‘20’ is the latest. This value is available, as indicated by the

associated E-bit, thus the value of ‘20’ will be fetched for r2.

(c) A referenced operand is found in the ROB but is not available

Clearly, it can happen that the latest value of a referenced operand needs to be accessed from

the ROB but is not yet available, since its calculation is still in progress. In this case, instead of the

requested value, a unique identifier is forwarded to the reservation station, which is usually the index

of the rename buffer. In our case this is the same as the ROB index of the instruction which generates

the requested value. In our example r1 is held in entry no12 of the ROB, but its value is not yet

available. Thus, instead of its value the ROB index (‘12’) needs to be written into the reservation

station. However, to allow a better distinction between data values and tags, in the figures we identify

this tag symbolically by its register number (‘r1’).

4.3. Instruction dispatch
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Instructions shelved in the reservation station are scanned in each clock cycle to check for

executable ones. If an instruction has all of its operands available, it is executable and can be

forwarded to an available EU. In Fig. 14b. the ‘mul’ instruction has both of its operands available and

will be forwarded to the associated EU.

4.4. Updating of the reservation station and of the ROB

If an EU produces a result both the reservation station and the ROB need to be updated. To

update the reservation station the generated result value and its  tag (in our example ‘600’ and ‘r1’),

are forwarded to it, as indicated in Fig. 14c. Updating requires an associative search in all entries of

the reservation station to see whether any of their source operand fields holds the result tag received.

All matching tags are then replaced with the actual result value and the associated V-bits are set. In

our case the only hit is the first source operand of the ‘div’ instruction. As a consequence the

corresponding value of ‘600’ will be written into the Op1 field and its V-bit set. Subsequently, in the

next cycle when the reservation station is checked for executable instructions, this operand will

appear as already available and instruction i2 can be dispatched in the same way as discussed before

for i1 (see Fig. 14d.).

We point out that reservation stations must be updated globally since an operand value not

available in a reservation station is not necessarily produced by the associated EU. Thus, for

updating, all results must be forwarded along with their tags to any reservation station which may

hold instructions of the same type (e.g. FX-, FP- or L/S-instructions), as shown in Fig. 15.
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It follows that in the case of multiple reservation stations as many result buses are required as

there are EUs executing the same type of instructions, and that in each reservation station multiple

associative searches must be carried out, one for each tag supplied by one of the result buses.

Updating of the ROB is  more straightforward, since the tags which accompany the generated

results are the ROB indices. Thus, to update the ROB a simple indexed access is needed for each

finished instruction. This means in our example, (see Fig. 14c)  that ROB entry no. 12 is updated by

writing the result ‘600’ into the ‘Value’ field and setting the associated E-bit to indicate that the

instruction is executed already and its result is available.

4.5. Completing of instructions

The ROB allows only the instruction which comes next in program order to complete. During

completion an instruction updates the program state by writing its result into the architectural register

file or into the memory. For this reason, the ROB maintains a Tail Pointer that points to the

instruction, which is next in the program order. This instruction is allowed to complete, if it has been

finished (E=1). When this instruction has been completed, the associated ROB-entry is released and

the Tail Pointer is stepped to check the next instruction.

In our example let us assume that in a particular clock cycle instruction i1 is next to be

completed, since the Tail pointer points to it as shown in Fig. 14e. It follows that during completion
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the generated result of r1 (‘600’) is written into the register file as illustrated in Fig. 14f and the Tail

pointer of the ROB is increased by one.

So far, we have discussed the operation of shelving assuming the use of the issue bound fetch

policy. When the dispatch bound fetch policy is employed shelving is carried out in essentially the

same way. The main difference is that in this case the reservation station holds the source register

identifiers rather than the operand values.

5.  The use of shelving in superscalar processors

5.1. Spread of shelving

As we alluded to earlier, the concept of shelving has had a somewhat checkered past. After its

invention in the late 60s, shelving slept like Sleeping Beauty for more than 25 years. It was only in

1990 when shelving appeared again in the RS/6000, later renamed to Power1, as shown in Fig. 16.

Not surprisingly Power1 implemented shelving only partially, since it shelved only FP-intructions. In

1993-95 three further processors followed which also employed partial shelving; the MC88110, the

Power2 and the R8000. Full shelving was first introduced in 1992 by IBM in its high end models of

the ES/9000 line of mainframe processors, and subsequently in the PowerPC 603. Finally, shelving

came to widespread use between 1995 and 1997 in all major lines ultimately also in the Alpha family.

5.2 Basic shelving schemes and their use in recent superscalar processors

In the design space discussed each feasible combination of design choices results in a possible

shelving scheme. This yields a large number of possible schemes. However, we can simplify our

discussion by taking into account that (a) most recent superscalar processors employ full shelving,

and (b) in a qualitative discussion we can omit quantitative aspects of the design space. Thus in our

subsequent discussion of shelving schemes we consider a reduced design space which consists only

of two crucial design aspects; which are the type of shelving buffers used and the operand fetch

policy employed. The associated shelving schemes will be designated as basic shelving schemes and

are depicted in Fig. 17. In the figure, we also indicate which basic shelving scheme is used in recent

superscalar processors.
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At first glance no clear trend is visible concerning the design choices made in recent

superscalar processors. Nevertheless, for reasons discussed previously we expect future processors to

employ predominantly either group reservation stations or combined buffers used at the same time for

shelving and for reordering and possible for renaming as well. Furthermore, we expect the dispath

bound operand fetch policy to become predominant over the issue bound fetch policy.

 5.3 The efficiency of microarchitectures

Over the years the enhancements introduced including shelving, raised the efficiency of

superscalar microarchitectures. In Fig. 18 we indicate this by showing the relative integer

performance of processors. We calculated the given performance figures by subdividing the

SPECInt95 performance values of a particular processor by its clock frequency, given as a multiple of

100 MHz. In this way we are able to compare the performance of microarchitectures as if they were

operating at the same clock frequency. As Fig. 18 shows, superscalar processors without shelving

(and renaming) remain basically in the 1.5 to 3 relative performance region. It is clear that partial

shelving contributes to medium range performance figures whereas full shelving and further

enhancements are a prerequisite to achieve a higher relative performance.



30

α�����

α�����

α�����$α �����

33&���

33&���

33&���

33&���

3$����

3$����

3$����3$����

6SDUF��

8OWUD6SDUF

6XSHU6SDUF

3RZHU�

3RZHU�

3HQWLXP�3UR

3HQWLXP

5�����

5�����

5����

�

�

�

�

�

�

�

�

�

���� ���� ���� ���� ���� ���� ���� ���� ����

)LUVW�YROXPH�VKLSPHQW

$OSKD

33&

3$�5,6&

6SDUF

3RZHU

3HQWLXP

0,36

3DUWLDO�VKHOYLQJ

)XOO�VKHOYLQJ

Figure 18: Efficiency of microarchitectures

 (In the figure PowerPC is abbreviated to PPC)   



 6. Conclusions

Shelving has been recognized as an inevitable concept for increasing the performance of

superscalar processors. In this paper, we identified the design space of shelving, which is spanned by

the following four dimensions: the scope of shelving, the layout of the shelving buffers, the operand

fetch policy used and the instruction dispatch scheme. In the first three dimensions feasible

implementation alternatives have been outlined and assessed. It has been shown that full shelving,

both group reservation stations and combined shelving buffers as well as the dispatch bound operand

fetch policy are the most favorable design options. Furthermore, through appropriate reduction of the

design space the basic shelving schemes could be identified.
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