
CrossTalk—March/April 2012 31

SECURING A MOBILE WORLD

Section 1. Introduction
Managing software risk in the supply chain is in large part

about discovering and understanding the vulnerabilities that
might exist in code that you might buy as standalone applica-
tions or integrate into other systems or products. It is also
about vulnerabilities you might build into code that you develop
in-house. Static code analysis can be an effective means for
determining the vulnerabilities in your code.

a. Scope of the Problem
Capers Jones [1] described the results of a survey of the

U.S. software industry as of 2008. Based on those data, Tables
1 and 2 address the number and severity of software vulner-
abilities in several classes of application projects. For military
projects, as one approaches systems the size of typical large
combat systems (expressed as function points), the estimated
number of security vulnerabilities rises to above 3000 and the
probability of serious vulnerabilities rises to 45%. The statistics
are much worse for civilian and commercial systems. These
systems have tended to make much more extensive use of
COTS. As we move more and more into COTS and open source
software for our national defense and critical infrastructure sys-
tems, one might expect that the extent of vulnerabilities in these
critical systems might nearly double.

In a study by Reifer and Bryant [2], 100 packages were
selected at random from 50 public open source and COTS li-
braries. These spanned a full range of applications and sites like
SourceForge. The packages were analyzed by college students
using a variety of tools.

Supply Chain
Risk Management

Paul R. Croll, CSC

Abstract. This paper describes the scope of the problem regarding software
vulnerabilities and the current state of the practice in static code analysis for
software assurance. Recommendations are made regarding the use of static
analysis methods and tools during the software life. Static code analysis touch
points during lifecycle reviews and challenges to automated static code analy-
sis are also discussed.

Understanding Vulnerabilities in
Code You Buy, Build, or Integrate

The objectives were to:
• Determine if the packages were up-to-date with respect to
 vendor identified vulnerabilities and patches
• Assess if packages were free of known viruses, worms,
 Trojans and spyware
• Assess if the packages had weaknesses in the code and
 backdoors, using reverse engineering techniques
• Assess if the packages had potential dead code, malware,
 unwanted behaviors, or undesired functionality

Table 1. Estimated Number of Vulnerabilities in Software Applications

Table 2. Probability of Serious Security Vulnerabilities in Software Applications

© 2011 IEEE. Reprinted, with permission, from the Proceedings of the
5th Annual IEEE Systems Conference, April 2011

32 CrossTalk—March/April 2012

SECURING A MOBILE WORLD

Figure 1 describes the results of this small study. Over 30%
of open source and Government Off the Shelf (GOTS) packages
analyzed had dead code, an anathema to the software safety
community, and a concern of the software security community
as well. Over 20% of the open source, COTS, and GOTS pack-
ages had suspected malware, and over 30% of the COTS
packages analyzed had behavioral problems.

Reifer and Bryant conclude that the potential for malicious
code in applications software is large as more and more pack-
ages are used in developing a system. They have been devel-
oping a tool for analyzing software executables, often the only
thing available from COTS suppliers. They have a method and
tool that is available now. These focus on analyzing software
executables, often the only thing available from COTS suppliers.

b. What is Static Source Code Analysis?
Static analysis is the process of evaluating a system or

component based on its form, structure, content, or docu-
mentation [3]. From a software assurance perspective, static
analysis addresses weaknesses in program code that might
lead to vulnerabilities. Such analysis may be manual, as in code
inspections, or automated through the use of one or more
tools. A static analysis tool is a program written to analyze other
programs for flaws [4]. Such analyzers typically check source
code. There is also a smaller set of analyzers that check byte
code and binary code as well. While testing requires code that is
relatively complete, static analysis can be performed on modules
or unfinished code. Manual analysis, or code inspection, can be
very time-consuming, and inspection teams must know what
security vulnerabilities look like in order to effectively examine
the code. Static analysis tools are faster and do not require the
tool operator to have the same level of security expertise as a
code inspector [5].

Section 2. Strategies for Effective Source
Code Analysis

a. What Code Do You Analyze?
How do you prioritize a code review effort when you have

thousands of lines of source code, and perhaps object code
to review? From a software assurance perspective, looking at
attack surfaces is not a bad place to start [6]. A system’s at-
tack surface can be thought of as the set of ways in which an
adversary can enter the system and potentially cause damage.
The larger the attack surface, the more insecure the system
[7]. Higher attack surface software requires deeper review than
code in lower attack surface components. Howard [8] proposes
several heuristics as an aid to determining code review priority,
that is, given a large amount of code to review, what kinds of
code do you emphasize for review. They are summarized below:

Legacy code: Howard points out that legacy code may have
more vulnerabilities than newly developed code because secu-
rity issues likely were not as well understood when the legacy
code was created.

Code that runs by default: Howard suggests that attackers
will often attempt to exploit code that runs by default. He also
suggests that code running by default increases an applica-
tion’s attack surface, which is a product of all code accessible
to attackers.

Code that runs in elevated context: Code that runs with el-
evated privileges, e.g. root privileges, for example, should also be
reviewed earlier and deeper because compromise of such code
can allow attackers to execute commands that are intended only
for privileged users such as a site administrator.

Anonymously accessible code: Howard suggests that
code that permits anonymous access should be reviewed in
greater depth than code that only allows access to valid users
and administrators.

Code connected to a globally accessible network interface:
Howard strongly states that code that interfaces with a network,
especially uncontrolled networks like the Internet, presents sub-
stantial risk. Such code increases the potential attack surface for
the system.

Code written in a language whose features facilitate
building in vulnerabilities: Howard suggest that code writ-
ten in languages like C and C++, have features, like direct
memory access, that allow programmers to inadvertently insert
vulnerabilities, like buffer-overflow vulnerabilities. Howard also
points out other language vulnerabilities, such as SQL-injection
vulnerabilities in Java, or C# code. ISO/IEC TR 24772:2010
[9] specifies software programming language vulnerabilities to
be avoided where assured behavior is required. These vulner-
abilities are described in a generic manner that is applicable to a
broad range of programming languages.

Code with a history of vulnerabilities: Code that has had
a number of past security vulnerabilities should be suspect,
unless it can be demonstrated that those vulnerabilities have
been effectively removed.

Figure 1. COTS Study Findings. Source: D. Reifer and E. Bryant, Software
Assurance in COTS and open source Packages, DHS Software Assurance
Forum, October 2008

CrossTalk—March/April 2012 33

SECURING A MOBILE WORLD

Code that handles sensitive data: Code that handles sensi-
tive data should be analyzed to ensure that weaknesses in the
code not compromise such data by disclosing it to untrusted users.

Complex code: Complex code has a higher bug probability,
is more difficult to understand, and may likely have more secu-
rity vulnerabilities.

Code that changes frequently: Howard points out that
frequently changing code often results in new bugs being
introduced. Not all of these bugs will be security vulnerabilities,
but compared with a stable set of code that is updated only
infrequently, code that is less stable will probably have more
vulnerabilities in it.

b. A Three-phase Code Analysis Process
Howard [8] also suggests a notional three-phase code analy-

sis process that optimizes the use of static analysis tools.
1. Phase 1 – Run all available code-analysis tools
Howard suggests that multiple tools should be used to offset

tool biases and minimize false positives and false negatives. This
makes great sense if your organization can afford it. Strengths
and weaknesses vary from tool to tool [10, 11]. Warnings from
multiple tools may indicate code that needs closer scrutiny
through manual inspection.

Additionally, these tools are most effective when run early in
the lifecycle and run often [12]

Howard also suggests that code should be evaluated early,
and re-evaluated throughout its development cycle.

2. Phase 2 – Look for common vulnerability patterns
Howard recommends that analysts make sure that code

reviews cover the most common vulnerabilities and weaknesses.
Sources for such common vulnerabilities and weaknesses
include the Common Vulnerabilities and Exposures (CVE) and
Common Weaknesses Enumeration (CWE) databases, main-
tained by the MITRE Corporation and accessible on the web
at: <http://cve.mitre.org/cve/> and <http://cwe.mitre.org/>.
MITRE, in cooperation with the SANS Institute, also maintains
a list of the “Top 25 Most Dangerous Programming Errors [13]”
that can lead to serious vulnerabilities. The top three classes
of errors as of December 2010 were cross-site scripting, SQL
injection, and buffer overflows. Static code analysis tool and
manual techniques should at a minimum, address these Top 25.

3. Phase 3 – Use manual analysis for risky code
Howard also suggests that analysts should also use manual

analysis (e.g. code inspection) to more thoroughly evaluate any
risky code that has been identified based on the attack surface,
or based on the heuristics described earlier. Manual analysis
allows detailed tracing of code paths and data usage.

Section 3. The Assurance Case
An Assurance Case is a set of structured assurance claims,

supported by evidence and reasoning that demonstrates how
assurance needs have been satisfied [14].
• It shows compliance with assurance objectives.
• It provides an argument for the safety and security of the
 product or service.
• It is built, collected, and maintained throughout the lifecycle.
• It is derived from multiple sources.

As shown in Figure 2, the Assurance Case should be used
to document claims about the security of a software product or
system. Those claims must be supported by arguments regard-
ing the security characteristics of the software, and those argu-
ments must be firmly supported by evidence.

The results obtained from static code analysis provide evi-
dence regarding vulnerabilities in code, and should be docu-
mented as part of the Assurance Case.

The Sub-parts of an assurance case include:
• A high level summary
• Justification that product or service is acceptably safe,
 secure, or dependable
• Rationale for claiming a specified level of safety and security
• Conformance with relevant standards and regulatory
 requirements
• The configuration baseline
• Identified hazards and threats and residual risk of each hazard
 and threat
• Operational and support assumptions

An Assurance Case should be part of every acquisition in
which there is concern for IT security. It should be prepared
by the supplier and describe the assurance-related claims for
the software being delivered, the arguments backing up those
claims, and the hard evidence supporting those arguments.

The details of how static code analysis was used in the devel-
opment process and the results of such static analysis should
be included to support assurance arguments.

Section 4. Static Code Analysis in the Software Lifecycle
Project Managers (PMs) have a responsibility to ensure that

security requirements are addressed throughout the software
lifecycle. This responsibility includes conducting risk assess-
ments; documenting system threats and vulnerabilities, including
test and remediation plans on a continuing basis. Static code
analysis contributes to documenting system weaknesses
and vulnerabilities.

Figure 2. The Assurance Case

http://cve.mitre.org/cve/
http://cwe.mitre.org/
http://cve.mitre.org/cve/
http://cwe.mitre.org/

34 CrossTalk—March/April 2012

SECURING A MOBILE WORLD

Static code analysis should be applied at several points in the
software acquisition and development lifecycle.

The reviews that are associated with software are shown in
Figure 3 [15]. The following discussion addresses the objectives
and expected outcomes of these reviews, describing the touch
points for static code analysis in the software lifecycle review
process [16].

a. System Requirements Review (SRR)
1. Objectives
The SRR helps the PM understand the scope of the software

assurance landscape (assurance requirements, elements to be
protected, the threat environment) in which context static code
analysis should be applied.

2. Outcomes
• Establishment of the System Assurance Case
The Assurance Case both sets the context for static code

analysis and provides a repository for analysis results. As
discussed earlier and emphasized here, the Assurance Case
should include:

-Specification of the top-level system assurance claims that
address identified threats.

-Identification of the approach for developing the system as-
surance case.

-Identification of all critical elements to be protected.
-Identification of all relevant system assurance threats and

their potential impact on critical system assets.
-Identification of high-level potential weaknesses in the system.
-Determination and derivation of system assurance require-

ments (as a subset of the system requirements).
• Test and Evaluation Master Plan (TEMP) addressing

system assurance.
The TEMP or establishes the test strategy for testing

throughout the development lifecycle.
-Examine the TEMP to ensure testing processes are suf-

ficient for system assurance. This may include planning for static
code analysis.

• Support and Maintenance Concepts
Support and Maintenance concepts addresses the need to

address assurance concerns beyond development, throughout
the life of the system. Outcomes include:

-Documentation of the support and maintenance concepts
including a description of how assurance will be maintained.

-Description of what static code analysis tools will be used
post deployment and how and when they will be applied.

b. Preliminary Design Review (PDR)
1. Objectives
The PDR is a multi-disciplined technical review to ensure that

the system under review can proceed into detailed design, and
can meet the stated performance requirements within cost (pro-
gram budget), schedule (program schedule), risk, and specific
assurance requirements and constraints.

2. Outcomes
• Information security technology evaluation of all critical

COTS/GOTS elements.
As discussed earlier, COTS/GOTS components might present

security risks. As part of the analysis of alternatives process,
candidate components should be vetted with respect to their
security characteristics. The Assurance Case should also be
updated based on the components selected, and any new
weaknesses and vulnerabilities identified.

The	outcomes	from	the	evaluation	of	COTS/GOTS	elements	
should	include:

-Specification of assurance-specific static analysis and
assurance-specific criteria to be examined during code reviews.

-Documentation of the results of static code analyses per-
formed on GOTS/COTS components.

-Documentation regarding which tools were used to perform
static code analysis.

-Documentation of weaknesses and vulnerabilities that
were discovered.

-Documentation of code reviews performed during implementation.
• Configuration management.
The preliminary configuration management plan must support

protection of each configuration item, addressing vulnerabilities
that might creep in during the change process. This includes
requirements, architectures, designs, and code. The outcomes
associated with configuration management include:

-Discussion regarding at which stages of the configuration
management process static code analysis will be applied.

-Discussion of what configuration change events will trigger
code analysis.

-Description of which components will be analyzed.
-Description of how the results of the analyses will be docu-

mented.
The Assurance Case should also be updated with relevant

evidence as a result of the PDR.
3. Other Considerations
Use of COTS and open source presents a supply chain as-

surance challenge. As part of an analysis of the supplier and its
processes, the following should be determined.

• Will the supplier perform static code analysis as part of its
code development and/or code integration processes?

• Which components will be analyzed? Which will not?
• What tools do they plan to use?
• What are the details of their code inspection process for

manual security analysis?
• How will they mitigated any discovered vulnerabilities

Figure 3. Reviews in the Software Lifecycle

CrossTalk—March/April 2012 35

SECURING A MOBILE WORLD

or weaknesses?
COTS source code is rarely available to the acquirer for inde-

pendent code review.
PMs should request COTS vendors provide Assurance Cases

for their COTS products detailing both the vendor’s secure cod-
ing practices and the results of internal static code analysis or
third party assessment (e.g. Common Criteria certification).

In cases where such information is unavailable, and there is
still a desire to use the COTS component, the PM should con-
sider analyzing the executables using binary code analysis.

c. Critical Design Review (CDR)
1. Objectives
The CDR is a multi-disciplined technical review to ensure that

the system under review can proceed into system fabrication,
demonstration, and test, and can meet the stated performance
requirements within cost (program budget), schedule (program
schedule), risk, and specific assurance requirements and con-
straints.

From a software perspective, the CDR focuses on the com-
pleteness of the detailed design and how it supports functional,
performance, and assurance requirements.

2. Outcomes
With	respect	to	software	security	and	code	analysis,	the	

CDR	should	document:
• Identification and use of the selected static analysis tools for

source code evaluation.
• Selection of additional development tools and guidelines to

counter weaknesses and vulnerabilities in the system elements
and development environment(s), including:

-Definition and selection of assurance-specific static analyses
and assurance-specific criteria to be examined during peer
reviews performed during implementation.

-Planning for training for assurance-unique static analysis
tools and peer reviews.

The Assurance Case should also be updated with relevant
evidence as a result of the CDR.

d. Test Readiness Review (TRR)
1. Objectives
The TRR is a multi-disciplined technical review to ensure that

the subsystem or system under review is ready to proceed into
formal test. The TRR also examines lower-level test results, test
plans, test objectives, test methods, and procedures to verify the
traceability of planned tests to program requirements.

2. Outcomes
•Verification of static code analysis.
Verification regarding static code analysis determines if

assurance-specific static analyses and peer reviews of assur-
ance criteria have been completed. Such verification includes:

-Documentation of evidence that static analysis has been
performed (both source and binary) to identify weaknesses and
vulnerabilities such as cross-site scripting, SQL injection, and
buffer overruns.

-Verification that another party other than the developer (such
as a peer) performed static analysis and peer review.

-Documentation regarding the selection of any additional stat-

ic analysis tools to identify or verify weaknesses and vulnerabili-
ties in the system elements and development environment(s).

-For COTS/GOTS software products with no source code,
identification of industry tools and test cases to be used for the
testing of any binary or machine-executable files.

The Assurance Case should also be updated with relevant
evidence as a result of the TRR.

Even for those with less formal lifecycle review processes,
there will generally be a requirements development phase, one
or more design phases, and implementation and testing phases.
For some organizations there will be operations and mainte-
nance phases as well. The objectives and outcomes of the
lifecycle touch points described above for static code analysis
should provide guidance and help set expectations, no matter
how formal or informal the lifecycle review process.

Section 5. Challenges to Automated Static Code Analysis
There are two challenges to the effective uses of automated

static code analysis.

a. Procurement and Maintenance of Tools
The better static code analysis tools are expensive. However,

the best results are obtained when multiple tools are used to
offset tool biases and minimize false positives and false nega-
tives. Use of multiple tools can quickly become cost prohibitive
for a single project.

In addition, maintenance agreements to ensure a tool is up to
date with respect to the spectrum of threats, weaknesses, and
vulnerabilities add long term costs.

The concept of “buy it once, use it often” provides the most
bang for the buck. Pooled resources analysis labs that sup-
port multiple projects within organizations may make the most
economic sense.

b. Training
Static code analysis is not for sissies, although it may be for

CISSPs® (Certified Information System Security Professionals).
This tongue-in-cheek statement belies the difficulty in using
static code analysis tools to their best advantage.

Chandra, Chess, and Steven [17] point out that when static
code analysis tools are employed by a trained team of code
analysts, false positives are less of a concern; the analysts be-
come skilled with the tools very quickly; and greater overall audit
capacity results.

In addition, in order to determine the validity of static code
analysis results, it is important for PMs to understand the level
of training that code analysts have had with the tools employed
for static code analysis as well as their understanding of code
weaknesses and vulnerabilities. Even a good tool in the hands
of a poorly trained or inexperienced code analyst can produce
misleading results. A tool is just a tool. How it is used and how
its results are interpreted are key to useful and valid results.

Section 6. Useful Links
a. NIST Software Assurance Metrics and Tool Evaluation

(SAMATE) Static Analysis Tool Survey
The NIST SAMATE project provides tables describing cur-

rent static code analysis tools for source, byte, and binary code

36 CrossTalk—March/April 2012

SECURING A MOBILE WORLD

analysis <http://samate.nist.gov/>.
b. DHS Build Security In Web Site
This site contains a wealth of software and information assur-

ance information, including white papers on static code analysis
tools. More information on Build Security In can be found at:

<https://buildsecurityin.us-cert.gov/daisy/bsi/home.html>

c. CWE
This	site	provides	a	formal	list	of	software	weakness	types	

created	to:
• Serve as a common language for describing software security
 weaknesses in architecture, design, or code.
• Serve as a standard measuring stick for software security
 tools targeting these weaknesses.
• Provide a common baseline standard for weakness identification,
 mitigation, and prevention efforts. <http://cwe.mitre.org/>

d. CWE/SANS Top 25 Most Dangerous Software Errors
The 2010 CWE/SANS Top 25 Most Dangerous Software Errors

is a list of the most widespread and critical programming errors that
can lead to serious software vulnerabilities. They are often easy to
find, and easy to exploit. They are dangerous because they will fre-
quently allow attackers to completely take over the software, steal
data, or prevent the software from working at all.

<http://cwe.mitre.org/top25/archive/2010/2010_cwe_
sans_top25.pdf>

Section 7. Summary
This paper has described the scope of the problem regarding

vulnerabilities in the code we buy, build, or integrate. As more
and more COTS and open source components are integrated
into our systems, the problem becomes ever more exacerbated.

The paper has also discussed strategies for effective static

code analysis as a means to understand an manage supply
chain risk, and has described the expected outcomes regard-
ing such analysis at appropriate touch points in the software
lifecycle. Although the lifecycle reviews described were fairly
formal, the activities associated with those reviews apply to
any software development, integration, or maintenance effort.
In addition, the paper has described the Assurance Case, the
repository for, among other things, the empirical results of
static analysis.

Lastly, the paper touched on challenges to automated static
code analysis, regarding the procurement and maintenance of
tools and the training required for tool users in order to facilitate
accurate results. Such analysis is most effective when multiple
tools are used to offset tool biases, and are employed by ana-
lysts with proper training in both tool use and in security-related
code inspection.

To be sure, there are other means for assessing and managing
supply chain risk with respect to software, but at the bottom line,
it is all about the code and the vulnerabilities it might contain.

The Software Assurance Community Resources and Infor-
mation Clearinghouse contains links to free Pocket Guides on
other aspects of supply chain risk management, including:
• Software Assurance in Acquisition and Contract Language
• Software Supply Chain Risk Management and Due Diligence
• Key Practices for Mitigating the Most Egregious Exploitable
 Software Weaknesses
• Software Security Testing
• Secure Coding
Guides on other aspects of software assurance include:
• Requirements and Analysis for Secure Software
• Architecture and Design Considerations for Secure Software
• Software Assurance in Education, Training & Certification
All of these guides can be found at:

<https://buildsecurityin.us-cert.gov/swa/pocket_guide_series.html>

CALL FOR ARTICLES
If your experience or research has produced information that could be useful to others,
CrossTalk can get the word out. We are specifically looking for articles on software-

related topics to supplement upcoming theme issues. Below is the submittal schedule for
three areas of emphasis we are looking for:

Resilient Cyber Ecosystem
Sept/Oct 2012 Issue

Submission Deadline: Apr 10, 2012

Virtualization
Nov/Dec 2012 Issue

Submission Deadline: June 10, 2012

Please follow the Author Guidelines for CrossTalk, available on the Internet at
<www.crosstalkonline.org/submission-guidelines>. We accept article submissions on

software-related topics at any time, along with Letters to the Editor and BackTalk. To see
a list of themes for upcoming issues or to learn more about the types of articles we’re

looking for visit <www.crosstalkonline.org/theme-calendar>.

http://samate.nist.gov
https://buildsecurityin.us-cert.gov/daisy/bsi/home.html
http://cwe.mitre.org
http://cwe.mitre.org/top25/archive/2010/2010_cwe_sans_top25.pdf
http://cwe.mitre.org/top25/archive/2010/2010_cwe_sans_top25.pdf
https://buildsecurityin.us-cert.gov/swa/pocket_guide_series.html
http://samate.nist.gov/
https://buildsecurityin.us-cert.gov/daisy/bsi/home.html
http://cwe.mitre.org/
https://buildsecurityin.us-cert.gov/swa/pocket_guide_series.html
http://www.crosstalkonline.org/submission-guidelines
http://www.crosstalkonline.org/theme-calendar

CrossTalk—March/April 2012 37

SECURING A MOBILE WORLD

ABOUT THE AUTHOR

1. Jones, Capers. Overview of the United States Software
 Industry Results Circa 2008, DHS Software Assurance
 Forum working paper, June 20, 2008.
2. Reifer, D, and Bryant, E. “Software Assurance in COTS and
 Open Source Packages,” Proceedings of the DHS Software
 Assurance Forum, October 14-16, 2008.
3. ISO/IEC JTC1/SC7. ISO/IEC 24765:2009, Systems and
 software engineering vocabulary.
4. Black, P. Static “Analyzers in Software Engineering,”
 CrossTalk, The Journal of Defense Software Engineering,
 pp. 16-17, March-April 2009.
5. McGraw, G. “Automated Code Review Tools for Security,”
 Computer, vol. 41, no. 12, pp. 108-111, Dec. 2008.
6. Howard, M. Mitigate Security Risks by Minimizing the Code
 You Expose to Untrusted Users, <http://msdn.microsoft.com/
 msdnmag/issues/04/11/AttackSurface, November, 2004>.
7. Manadhata, P., Tan, K, Maxion, R, and Wing, J. An Approach
 to Measuring a System’s Attack Surface, CMU-CS-07-146,
 Carnegie Mellon University, August 2007.
8. Howard, M. “A Process for Performing Security Code
 Reviews,” IEEE Security & Privacy, pp. 74-79, July-August 2006.
9. ISO/IEC TR 24772:2010, Guidance to avoiding vulnerabilities in
 programming languages through language selection and use.
10. U.S. Department of the Navy, Software Security Assessment
 Tools Review, March 2009, <https://buildsecurityin.us-cert.
 gov/swa/downloads/NAVSEA-Tools-Paper-2009-03-02.pdf>

11. Okun, V., Delaitre, A, Black, P. The Second Static Analysis
 Tool Exposition (SATE) 2009, NIST Special Publication 500-
 287, National Institute of Standards and Technology, June 2010.
12. Goertzel, K., Winograd, T., Enhancing the Development Life
 Cycle to Produce Secure Software, Rome, NY: DACS Data &
 Analysis Center for Software, 2008.
13. Cristey, S. 2010 CWE/SANS Top 25 Most Dangerous
 Software Errors. The MITRE Corporation, 2010, <http://cwe.
 mitre.org/top25/archive/2010/2010_cwe_sans_top25.pdf>
14. ISO/IEC/IEEE 15026-2:2010, Systems and software
 engineering — Systems and software assurance —
 Part 2: Assurance case.
15. Program Executive Office (PEO) Integrated Warfare
 Systems (IWS) Technical Review Manual (TRM) (Draft),
 Department of the Navy, Naval Sea Systems Command,
 Program Executive Office, Integrated Warfare Systems,
 December 2008.
16. National Defense Industrial Association (NDIA) System
 Assurance Committee. Engineering for System Assurance,
 Version 1.0, 2008.
17. Chandra, P., Chess, B., and Steven, J. “Putting the
 Tools to Work: How to Succeed with Source Code Analysis,
 “IEEE Security & Privacy, pp. 80-83, May-June 2006.

REFERENCES

Paul Croll is a Fellow in CSC’s
Defense Group and Chief
Scientist of the Defense &
Maritime Enterprise Technology
Center, where he is responsible
for researching, developing and
deploying systems and software
engineering practices, including
practices for cybersecurity.

 Paul has over 35 years experience in mission-criti-
cal systems and software engineering. His experience
spans the full life cycle and includes requirements
specification, architecture, design, development, verifi-
cation, validation, test and evaluation, and sustainment
for complex systems and systems-of-systems. He has
brought his skills to high profile, cutting edge technol-
ogy programs in areas as diverse as surface warfare,
air traffic control, computerized adaptive testing, and
nuclear power generation.

Paul is also the IEEE Computer Society Vice Presi-
dent for Technical and Conference Activities, and has
been an active Computer Society volunteer for over 25
years, working primarily to engage researchers, educa-
tors, and practitioners in advancing the state of the
practice in software and systems engineering. He was
most recently Chair of the Technical Council on Soft-
ware Engineering and is also the current Chair of the
IEEE Software and Systems Engineering Standards
Committee. Paul is also the past Chair and current
Vice Chair of the ISO/IEC JTC1/SC7 U.S. Technical
Advisory Group (SC7 TAG).

Paul is also active in industry organizations and is
the Chair of the NDIA Software Industry Experts Panel
and the Industry Co-Chair for the National Defense
Industrial Association (NDIA) Software and Systems
Assurance Committees. In addition, Paul is Co-Chair
of the DHS/DoD/NIST Software Assurance Forum
Processes and Practices Working Group advancing
cybersecurity awareness and practice.

E-mail: pcroll@csc.com

© 2011 IEEE. Reprinted, with permission, from
the Proceedings of the 5th Annual IEEE Systems
Conference, April 2011

http://msdn.microsoft.com/msdnmag/issues/04/11/AttackSurface
http://msdn.microsoft.com/msdnmag/issues/04/11/AttackSurface
https://buildsecurityin.us-cert.gov/swa/downloads/NAVSEA-Tools-Paper-2009-03-02.pdf
NAVSEA-Tools-Paper-2009-03-02.pdf
http://cwe.mitre.org/top25/archive/2010/2010_cwe_sans_top25.pdf
mailto:pcroll@csc.com
https://buildsecurityin.us-cert.gov/swa/downloads/NAVSEA-Tools-Paper-2009-03-02.pdf
https://buildsecurityin.us-cert.gov/swa/downloads/NAVSEA-Tools-Paper-2009-03-02.pdf
http://cwe.mitre.org/top25/archive/2010/2010_cwe_sans_top25.pdf
http://cwe.mitre.org/top25/archive/2010/2010_cwe_sans_top25.pdf
http://www.navair.navy.mil/

