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Abstract

The graph removal lemma states that any graph on n vertices with o(nv(H)) copies of a fixed
graph H may be made H-free by removing o(n2) edges. Despite its innocent appearance, this lemma
and its extensions have several important consequences in number theory, discrete geometry, graph
theory and computer science. In this survey we discuss these lemmas, focusing in particular on
recent improvements to their quantitative aspects.

1 Introduction

The triangle removal lemma states that for all ε > 0 there exists δ > 0 such that any graph on n

vertices with at most δn3 triangles may be made triangle-free by removing at most εn2 edges. This

result, proved by Ruzsa and Szemerédi [93] in 1976, was originally stated in rather different language.

The original formulation was in terms of the (6, 3)-problem.1 This asks for the maximum number of

edges f (3)(n, 6, 3) in a 3-uniform hypergraph on n vertices such that no 6 vertices contain 3 edges.

Answering a question of Brown, Erdős and Sós [19], Ruzsa and Szemerédi showed that f (3)(n, 6, 3) =

o(n2). Their proof used several iterations of an early version of Szemerédi’s regularity lemma [110].

This result, developed by Szemerédi in his proof of the Erdős-Turán conjecture on arithmetic progres-

sions in dense sets [109], states that every graph may be partitioned into a small number of vertex

sets so that the graph between almost every pair of vertex sets is random-like. Though this result now

occupies a central position in graph theory, its importance only emerged over time. The resolution of

the (6, 3)-problem was one of the first indications of its strength.

The Ruzsa-Szemerédi theorem was generalized by Erdős, Frankl and Rödl [32], who showed that

f (r)(n, 3r − 3, 3) = o(n2), where f (r)(n, 3r − 3, 3) is the maximum number of edges in an r-uniform

hypergraph such that no 3r − 3 vertices contain 3 edges. One of the tools used by Erdős, Frankl and

Rödl in their proof was a striking result stating that if a graph on n vertices contains no copy of a

graph H then it may be made Kr-free, where r = χ(H) is the chromatic number of H, by removing

o(n2) edges. The proof of this result used the modern formulation of Szemerédi’s regularity lemma

and is already very close, both in proof and statement, to the following generalization of the triangle
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1The two results are not exactly equivalent, though the triangle removal lemma may be proved by their method.

A weak form of the triangle removal lemma, already sufficient for proving Roth’s theorem, is equivalent to the Ruzsa-
Szemerédi theorem. This weaker form states that any graph on n vertices in which every edge is contained in exactly
one triangle has o(n2) edges. This is also equivalent to another attractive formulation, known as the induced matching
theorem. This states that any graph on n vertices which is the union of at most n induced matchings has o(n2) edges.
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removal lemma, known as the graph removal lemma.2 This was first stated explicitly in the literature

by Alon, Duke, Lefmann, Rödl and Yuster [4] and by Füredi [47] in 1994.3 Note that we use v(H) to

denote the number of vertices in a graph (or hypergraph) H.

Theorem 1.1 For any graph H and any ε > 0, there exists δ > 0 such that any graph on n vertices

which contains at most δnv(H) copies of H may be made H-free by removing at most εn2 edges.

It was already observed by Ruzsa and Szemerédi that the (6, 3)-problem (and, thereby, the triangle

removal lemma) is related to Roth’s theorem on arithmetic progressions [91]. This theorem states that

for any δ > 0 there exists an n0 such that if n ≥ n0 then any subset of the set [n] := {1, 2, . . . , n} of

size at least δn contains an arithmetic progression of length 3. Letting r3(n) be the largest integer such

that there exists a subset of the set {1, 2, . . . , n} of size r3(n) containing no arithmetic progression

of length 3, this is equivalent to saying that r3(n) = o(n). Ruzsa and Szemerédi observed that

f (3)(n, 6, 3) = Ω(r3(n)n). In particular, since f (3)(n, 6, 3) = o(n2), this implies that r3(n) = o(n),

yielding a proof of Roth’s theorem.

It was further noted by Solymosi [104] that the Ruzsa-Szemerédi theorem yields a stronger result of

Ajtai and Szemerédi [1]. This result states that for any δ > 0 there exists an n0 such that if n ≥ n0 then

any subset of the set [n]× [n] of size at least δn2 contains a set of the form {(a, b), (a+d, b), (a, b+d)}.
That is, dense subsets of the 2-dimensional grid contain axis-parallel isosceles triangles. Roth’s theorem

is a simple corollary of this statement.

Roth’s theorem is the first case of a famous result known as Szemerédi’s theorem. This result, to which

we alluded earlier, states that for any natural number k ≥ 3 and any δ > 0 there exists n0 such that

if n ≥ n0 then any subset of the set [n] of size at least δn contains an arithmetic progression of length

k. This was first proved by Szemerédi [109] in the early seventies using combinatorial techniques and

since then several further proofs have emerged. The most important of these are that by Furstenberg

[48, 50] using ergodic theory and that by Gowers [53, 54], who found a way to extend Roth’s original

Fourier analytic argument to general k. Both of these methods have been highly influential.

Yet another proof technique was suggested by Frankl and Rödl [42]. They showed that Szemerédi’s

theorem would follow from the following generalization of Theorem 1.1, referred to as the hypergraph

removal lemma. They proved this theorem for the specific case of K
(3)
4 , the complete 3-uniform

hypergraph with 4 vertices. This was then extended to all 3-uniform hypergraphs in [77] and to K
(4)
5

in [89]. Finally, it was proved for all hypergraphs by Gowers [55, 56] and, independently, by Nagle,

Rödl, Schacht and Skokan [78, 88]. Both proofs rely on extending Szemerédi’s regularity lemma to

hypergraphs in an appropriate fashion.

Theorem 1.2 For any k-uniform hypergraph H and any ε > 0, there exists δ > 0 such that any

k-uniform hypergraph on n vertices which contains at most δnv(H) copies of H may be made H-free by

removing at most εnk edges.

2The phrase ‘removal lemma’ is a comparatively recent coinage. It seems to have come into vogue in about 2005 when
the hypergraph removal lemma was first proved (see, for example, [67, 78, 106, 112]).

3This was also the first time that the triangle removal lemma was stated explicitly, though the weaker version
concerning graphs where every edge is contained in exactly one triangle had already appeared in the literature. The
Ruzsa-Szemerédi theorem was usually [40, 41, 46] phrased in the following suggestive form: if a 3-uniform hypergraph
is linear, that is, no two edges intersect on more than a single vertex, and triangle-free, then it has o(n2) edges. A more
explicit formulation may be found in [23].
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As well as reproving Szemerédi’s theorem, the hypergraph removal lemma allows one to reprove the

multidimensional Szemerédi theorem. This theorem, originally proved by Furstenberg and Katznelson

[49], states that for any natural number r, any finite subset S of Zr and any δ > 0 there exists n0

such that if n ≥ n0 then any subset of [n]r of size at least δnr contains a subset of the form a · S + d,

that is, a dilated and translated copy of S. That it follows from the hypergraph removal lemma

was first observed by Solymosi [105]. This was the first non-ergodic proof of this theorem. A new

proof of the special case S = {(0, 0), (1, 0), (0, 1)}, corresponding to the Ajtai-Szemerédi theorem, was

given by Shkredov [102] using a Fourier analytic argument. Recently, a combinatorial proof of the

density Hales-Jewett theorem, which is an extension of the multidimensional Szemerédi theorem, was

discovered as part of the polymath project [81].

As well as its implications in number theory, the removal lemma and its extensions are central to

the area of computer science known as property testing. In this area, one would like to find fast

algorithms to distinguish between objects which satisfy a certain property and objects which are far

from satisfying that property. This field of study was initiated by Rubinfield and Sudan [92] and,

subsequently, Goldreich, Goldwasser and Ron [51] started the investigation of such property testers

for combinatorial objects. Graph property testing has attracted a particular degree of interest.

A classic example of property testing is to decide whether a given graph G is ε-far from being triangle-

free, that is, whether at least εn2 edges will have to removed in order to make it triangle-free. The

triangle removal lemma tells us that if G is ε-far from being triangle free then it must contain at least

δn3 triangles for some δ > 0 depending only on ε. This furnishes a simple probabilistic algorithm for

deciding whether G is ε-far from being triangle-free. We choose t = 2δ−1 triples of points from the

vertices of G uniformly at random. If G is ε-far from being triangle-free then the probability that none

of these randomly chosen triples is a triangle is (1− δ)t < e−tδ < 1
3 . That is, if G is ε-far from being

triangle-free we will find a triangle with probability at least 2
3 , whereas if G is triangle-free we will

clearly find no triangles. The graph removal lemma may be used to derive a similar test for deciding

whether G is ε-far from being H-free for any fixed graph H.

In property testing, it is often of interest to decide not only whether a graph is far from being H-free

but also whether it is far from being induced H-free. A subgraph H ′ of a graph G is said to be an

induced copy of H if there is a one-to-one map f : V (H) → V (H ′) such that (f(u), f(v)) is an edge

of H ′ if and only if (u, v) is an edge of H. A graph G is said to be induced H-free if it contains no

induced copies of H and ε-far from being induced H-free if we have to add and/or delete at least εn2

edges to make it induced H-free. Note that it is not enough to delete edges since, for example, if H

is the empty graph on two vertices and G is the complete graph minus an edge, then G contains only

one induced copy of H, but one cannot simply delete edges from G to make it induced H-free.

By proving an appropriate strengthening of the regularity lemma, Alon, Fischer, Krivelevich and

Szegedy [6] showed how to modify the graph removal lemma to this setting. This result, which allows

one to test for induced H-freeness, is known as the induced removal lemma.

Theorem 1.3 For any graph H and any ε > 0, there exists a δ > 0 such that any graph on n vertices

which contains at most δnv(H) induced copies of H may be made induced H-free by adding and/or

deleting at most εn2 edges.

A substantial generalization of this result, known as the infinite removal lemma, was proved by Alon

and Shapira [12] (see also [75]). They showed that for each (possibly infinite) family H of graphs and

ε > 0 there is δ = δH(ε) > 0 such that if a graph G on n vertices contains at most δnv(H) induced
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copies of H for every graph H in H, then G may be made induced H-free, for every H ∈ H, by adding

and/or deleting at most εn2 edges. They then used this result to show that every hereditary graph

property is testable, where a graph property is hereditary if it is closed under removal of vertices. These

results were extended to 3-uniform hypergraphs by Avart, Rödl and Schacht [14] and to k-uniform

hypergraphs by Rödl and Schacht [86].

In this survey we will focus on recent developments, particularly with regard to the quantitative

aspects of the removal lemma. In particular, we will discuss recent improvements on the bounds for

the graph removal lemma, Theorem 1.1, and the induced graph removal lemma, Theorem 1.3, each of

which bypasses a natural impediment.

The usual proof of the graph removal lemma makes use of the regularity lemma and gives bounds

for the removal lemma which are of tower-type in ε. To be more specific, let T (1) = 2 and, for each

i ≥ 1, T (i+ 1) = 2T (i). The bounds that come out of applying the regularity lemma to removal then

say that if δ−1 = T (ε−cH ) then any graph with at most δnv(H) copies of H may be made H-free by

removing at most εn2 edges. Moreover, this tower-type dependency is inherent in any proof employing

regularity. This follows from an important result of Gowers [52] (see also [24]) which states that the

bounds that arise in the regularity lemma are necessarily of tower type. We will discuss this in more

detail in Section 2.1 below.

Despite this obstacle, the following improvement was made by Fox [38].

Theorem 1.4 For any graph H, there exists a constant aH such that if δ−1 = T (aH log ε−1) then any

graph on n vertices which contains at most δnv(H) copies of H may be made H-free by removing at

most εn2 edges.

As is implicit in the bounds, the proof of this theorem does not make an explicit appeal to Szemerédi’s

regularity lemma. However, many of the ideas used are similar to ideas used in the proof of the

regularity lemma. The chief difference lies in the fact that the conditions of the removal lemma

(containing few copies of a given graph H) allow us to say more about the structure of these partitions.

A simplified proof of this theorem will be the main topic of Section 2.2.

Though still of tower-type, Theorem 1.4 improves substantially on the previous bound. However, it

remains very far from the best known lower bound on δ−1. The observation of Ruzsa and Szemerédi

[93] that f (3)(n, 6, 3) = Ω(r3(n)n) allows one to transfer lower bounds for r3(n) to a corresponding

lower bound for the triangle removal lemma. The best construction of a set containing no arithmetic

progression of length 3 is due to Behrend [16] and gives a subset of [n] with density e−c
√

logn. Trans-

ferring this to the graph setting yields a graph containing εc log ε−1
n3 triangles which cannot be made

triangle-free by removing fewer than εn2 edges. This quasi-polynomial lower bound, δ−1 ≥ ε−c log ε−1
,

remains the best known.4

The standard proof of the induced removal lemma uses the strong regularity lemma of Alon, Fischer,

Krivelevich and Szegedy [6]. We will speak at length about this result in Section 3.1. Here it will

suffice to say that, like the ordinary regularity lemma, the bounds which an application of this theorem

4It is worth noting that the best known upper bound for Roth’s theorem, due to Sanders [95], is considerably better

than the best upper bound for r3(n) that follows from triangle removal. This upper bound is r3(n) = O
(

(log logn)5

logn
n
)

.

A recent result of Schoen and Shkredov [99], building on further work of Sanders [96], shows that any subset of [n] of

density e
−c( log n

log log n
)1/6

contains a solution to the equation x1 + · · ·+ x5 = 5x6. Since arithmetic progressions correspond
to solutions of x1 + x2 = 2x3, this suggests that the answer should be closer to the Behrend bound. The bounds for
triangle removal are unlikely to impinge on these upper bounds for some time, if at all.
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gives for the induced removal lemma are necessarily very large. Let W (1) = 2 and, for i ≥ 1,

W (i + 1) = T (W (i)). This is known as the wowzer function and its values dwarf those of the usual

tower function.5 By using the strong regularity lemma, the standard proof shows that we may take

δ−1 = W (aHε
−c) in the induced removal lemma, Theorem 1.3. Moreover, as with the ordinary removal

lemma, such a bound is inherent in the application of the strong regularity lemma. This follows from

recent results of Conlon and Fox [24] and, independently, Kalyanasundaram and Shapira [61] showing

that the bounds arising in strong regularity are necessarily of wowzer type.

In the other direction, Conlon and Fox [24] showed how to bypass this obstacle and prove that the

bounds for δ−1 are at worst a tower in a power of ε−1.

Theorem 1.5 There exists a constant c > 0 such that, for any graph H, there exists a constant aH
such that if δ−1 = T (aHε

−c) then any graph on n vertices which contains at most δnv(H) induced

copies of H may be made induced H-free by adding and/or deleting at most εn2 edges.

A discussion of this theorem will form the subject of Section 3.2. The key observation here is that the

strong regularity lemma is used to prove an intermediate statement (Lemma 3.2 below) which then

implies the induced removal lemma. This intermediate statement may be proved without recourse to

the full strength of the strong regularity lemma. There are also some strong parallels with the proof

of Theorem 1.4 which we will draw attention to in due course.

In Section 3.3, we present the proof of Alon and Shapira’s infinite removal lemma. In another paper,

Alon and Shapira [11] showed that the dependence in the infinite removal lemma can depend heavily

on the family H. They proved that for every function δ : (0, 1) → (0, 1), there exists a family H of

graphs such that any δH : (0, 1) → (0, 1) which satisfies the infinite removal lemma for H satisfies

δH = o(δ). However, such examples are rather unusual and the proof presented in Section 3.3 of the

infinite removal lemma implies that for many commonly studied families H of graphs the bound on

δ−1
H is only tower-type, improving the wowzer-type bound from the original proof.

Our discussions of the graph removal lemma and the induced removal lemma will occupy the bulk

of this survey but we will also talk about some further recent developments in the study of removal

lemmas. These include arithmetic removal lemmas (Section 4) and the recently developed sparse

removal lemmas which hold for subgraphs of sparse random and pseudorandom graphs (Section 5).

We will conclude with some further comments on related topics.

2 The graph removal lemma

In this section we will discuss the two proofs of the removal lemma, Theorem 1.1, at length. In

Section 2.1, we will talk about the regularity lemma and the usual proof of the removal proof. Then,

in Section 2.2, we will consider a simplified variant of the second author’s recent proof [38], showing

how it connects to the weak regularity lemma of Frieze and Kannan [44, 45].

2.1 The standard proof

We begin with the proof of the regularity lemma and then deduce the removal lemma. For vertex

subsets S, T of a graph G, we let eG(S, T ) denote the number of pairs in S×T that are edges of G and

5To give some indication, we note that W (2) = 4, W (3) = 65536 and W (4) is a tower of 2s of height 65536.
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dG(S, T ) = eG(S,T )
|S||T | denote the fraction of pairs in S×T that are edges of G. For simplicity of notation,

we drop the subscript if the graph G is clear from context. A pair (S, T ) of subsets is ε-regular if,

for all subsets S′ ⊂ S and T ′ ⊂ T with |S′| ≥ ε|S| and |T ′| ≥ ε|T |, we have |d(S′, T ′) − d(S, T )| ≤ ε.

Informally, a pair of subsets is ε-regular with a small ε if the edges between S and T are uniformly

distributed among large subsets.

Let G = (V,E) be a graph and P : V = V1 ∪ . . .∪ Vk be a vertex partition of G. The partition of P is

equitable if each pair of parts differ in size by at most 1. The partition P is ε-regular if all but at most

εk2 pairs of parts (Vi, Vj) are ε-regular. We next state Szemerédi’s regularity lemma.

Lemma 2.1 For every ε > 0, there is K = K(ε) such that every graph G = (V,E) has an equitable,

ε-regular vertex partition into at most K parts. Moreover, we may take K to be a tower of height

O(ε−5).

Let q : [0, 1] → R be a convex function. For vertex subsets S, T ⊂ V of a graph G, let q(S, T ) =

q(d(S, T )) |S||T ||V |2 . For partitions S : S = S1 ∪ . . . ∪ Sa and T : T = T1 ∪ . . . ∪ Tb, let q(S, T ) =∑
1≤i≤a,1≤j≤b q(Si, Tj). For a vertex partition P : V = V1 ∪ . . .∪Vk of G, define the mean-q density to

be

q(P ) = q(P, P ) =
∑

1≤i,j≤k
q(Vi, Vj).

We next state some simple properties which follow from Jensen’s inequality using the convexity of q.

A refinement of a partition P of a vertex set V is another partition Q of V such that every part of Q

is a subset of a part of P .

Proposition 2.1 1. For partitions S and T of vertex subsets S and T , we have q(S, T ) ≥ q(S, T ).

2. If Q is a refinement of P , then q(Q) ≥ q(P ).

3. If d = d(G) = d(V, V ) is the edge density of G, then, for any vertex partition P ,

q(d) ≤ q(P ) ≤ dq(1) + (1− d)q(0).

The first and second part of Proposition 2.1 show that by refining a vertex partition the mean-q density

cannot decrease, while the last part gives the range of possible values for q(P ) if we only know the

edge density d of G.

The convex function q(x) = x2 for x ∈ [0, 1] is chosen in the standard proof of the graph regularity

lemma and we will do the same for the rest of this subsection. The following lemma is the key claim

for the proof of the regularity lemma. The set-up is that we have a partition P which is not ε-regular.

For each pair (Vi, Vj) of parts of P which is not ε-regular, there are a pair of witness subsets Vij , Vji
to the fact that the pair of parts is not ε-regular. We consider the coarsest refinement Q of P so that

each witness subset is the union of parts of Q. The lemma concludes that the number of parts of Q is

at most exponential in the number of parts of P and, using a Cauchy-Schwarz defect inequality, that

the mean-q density of the partition Q is substantially larger than the mean-q density of P . Because

it simplifies our calculations a little, we will assume, when we say a partition is equitable, that it is

exactly equitable, that is, that all parts have precisely the same size. This does not affect our results

substantially but simplifies the presentation.
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Lemma 2.2 If an equitable partition P : V = V1 ∪ . . .∪ Vk is not ε-regular then there is a refinement

Q of P into at most k2k parts for which q(Q) ≥ q(P ) + ε5.

Proof: For each pair (Vi, Vj) which is not ε-regular, there are subsets Vij ⊂ Vi and Vji ⊂ Vj with

|Vij | ≥ ε|Vi| and |Vji| ≥ ε|Vj | such that |d(Vij , Vji)− d(Vi, Vj)| ≥ ε. For each part Vj such that (Vi, Vj)

is not ε-regular, we have a partiton Pij of Vi into two parts Vij and Vi \ Vij . Let Pi be the partition

of Vi which is the common refinement of these at most k − 1 partitions of Vi, so Pi has at most 2k−1

parts. We let Q be the partition of V which is the union of the k partitions of the form Pi, so Q has

at most k2k−1 parts. We have

q(Q)− q(P ) =
∑
i,j

(q(Pi, Pj)− q(Vi, Vj))

≥
∑

(Vi,Vj) irregular

(q(Pi, Pj)− q(Vi, Vj))

≥
∑

(Vi,Vj) irregular

(q(Pij , Pji)− q(Vi, Vj))

=
∑

(Vi,Vj) irregular

∑
U∈Pij ,W∈Pji

|U ||W |
|V |2

(d(U,W )− d(Vi, Vj))
2

≥
∑

(Vi,Vj) irregular

|Vij ||Vji|
|V |2

(d(Vij , Vji)− d(Vi, Vj))
2

≥ εk2
( ε
k

)2
ε2

= ε5,

where the first and third inequalities are by noting that the summands are nonnegative and the second

inequality follows from the first part of Proposition 2.1, which shows that the mean-q density cannot

decrease when taking a refinement. In the fourth inequality, we used that |Vij | ≥ ε|Vi| ≥ ε
k |V | and

similarly for |Vji|. Finally, the equality in the fourth line follows from the identity∑
U∈Pij ,W∈Pji

|U ||W |d(Vi, Vj) =
∑

U∈Pij ,W∈Pji

|U ||W |d(U,W ),

which counts e(Vi, Vj) in two different ways. This completes the proof. 2

The next lemma, which is rather standard, shows that for any vertex partition Q, there is a vertex

equipartition P ′ with a similar number of parts to Q and mean-square density not much smaller than

the mean-square density of Q. It is useful in density increment arguments where at each stage one

would like to work with an equipartition. It is proved by first arbitrarily partitioning each part of Q

into parts of order |V |/t, except possibly one additional remaining smaller part, and then arbitrarily

partitioning the union of the smaller remaining parts into parts of order |V |/t.

Lemma 2.3 Let G = (V,E) be a graph and Q : V = V1 ∪ . . . ∪ V` be a vertex partition into k parts.

Then, for q(x) = x2, there is an equitable partition P ′ of V into t parts such that q(P ′) ≥ q(Q)− 2 `t .

Combining Lemmas 2.2 and 2.3 with t = 4ε−5|Q| ≤ ε−5k2k+2, we obtain the following corollary.
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Corollary 2.1 If an equitable partition P : V = V1∪ . . .∪Vk is not ε-regular then there is an equitable

refinement P ′ of P into at most ε−5k2k+2 parts for which q(P ′) ≥ q(P ) + ε5/2.

We next show how Szemerédi’s regularity lemma, Lemma 2.1, can be quickly deduced from this result.

Proof: To prove the regularity lemma, we start with the trivial partition P0 into one part, and

iterate the above corollary to obtain a sequence P0, P1, . . . , Ps of equitable partitions with q(Pi+1) ≥
q(Pi) + ε5/2 until we arrive at an equitable ε-regular partition Ps. As the mean-square density of each

partition has to lie between 0 and 1, after at most 2ε−5 iterations we arrive at the equitable ε-regular

partition Ps with s ≤ 2ε−5. The number of parts increases by one exponential in each iteration,

giving the desired number of parts in the regularity partition. This completes the proof of Szemerédi’s

regularity lemma. 2

The constructions of Gowers [52] and the authors [24] show that the tower-type bound on the number

of parts in Szemerédi’s regularity lemma is indeed necessary. In particular, the construction in [24]

shows that K(ε) in Lemma 2.1 is at least a tower of twos of height Ω(ε−1). The constructions are

formed by reverse engineering the upper bound proof. We construct a sequence P0, . . . , Ps of partitions

with s = Ω(ε−1). As in the upper bound proof, each partition in the sequence uses exponentially more

parts than the previous partition in the sequence. We may choose the edges using these partitions

and some randomness so as to guarantee that none of these partitions (except the last) are ε-regular.

Furthermore, we can guarantee that any partition that is ε-regular must be close to being a refinement

of the last partition in this sequence. This implies that the number of parts must be at least roughly

|Ps|.
We next prove the graph removal lemma, Theorem 1.1, from the regularity lemma.

Proof: Let m denote the number of edges of H, so m ≤
(
h
2

)
. Let γ = εh

4h and δ = (2h)−2hεmK−h,

where K = K(γ) is as in the regularity lemma. We apply the regularity lemma to G and obtain an

equitable, γ-regular partition into k ≤ K parts. If the number n of vertices of G satisfies n < δ−1/h,

then the number of copies of H in G is at most δnh < 1 and G is H-free, in which case there is

nothing to prove. So we may assume n ≥ δ−1/h. We obtain a subgraph G′ of G by removing edges of

G between all pairs of parts which are not γ-regular or which have edge density at most ε. As there

are at most γk2 ordered pairs of parts which are not γ-regular and each part has order at most 2n/k,

at most (γk2/2)(2n/k)2 = 2γn2 edges are deleted between pairs of parts which are not γ-regular. The

number of edges between parts which have edge density at most ε is at most εn2/2. Hence, the number

of edges of G deleted to obtain G′ is at most 2γn2 + εn2/2 < εn2. If G′ is H-free, then we are done.

Assume for contradiction that G′ is not H-free. A copy of H in G′ must have its edges going between

pairs of parts which are both γ-regular and have density at least ε. Hence, there is a mapping from

V (H) to the partition of V (G) so that each edge of H maps to a pair of parts which is both γ-regular

and have edge density at least ε. But the following standard counting lemma (see, e.g., Lemma 3.2

in Alon, Fischer, Krivelevich and Szegedy [6] for a minor variant) shows that the number of labeled

copies of H in G′ (and hence in G) is at least 2−hεm(n/2k)h > h!δnh. This contradicts that G has at

most δnh copies of H, completing the proof. 2

Lemma 2.4 If H is a graph with vertices 1, . . . , h and m edges and G is a graph with not necessarily

disjoint vertex subsets W1, . . . ,Wh such that |Wi| ≥ γ−1 for 1 ≤ i ≤ h and, for every edge (i, j) of

H, the pair (Wi,Wj) is γ-regular with density d(Wi,Wj) > ε and γ ≤ εh

4h , then G contains at least

2−hεm|W1| × · · · × |Wh| labeled copies of H with the copy of vertex i in Wi.

8



The standard proof of this counting lemma uses a greedy embedding strategy. One considers embed-

ding the vertices one at a time, using the regularity condition to maintain the property that at each

step where vertex i of H is not yet embedded the set of vertices of G which could potentially be used

to embed vertex i is large.

2.2 An improved bound

A partition P : V = V1 ∪ . . . ∪ Vk of the vertex set of a graph G = (V,E) is weak ε-regular if, for all

subsets S, T ⊂ V , we have∣∣∣∣∣∣e(S, T )−
∑

1≤i,j≤k
|S ∩ Vi||T ∩ Vj |d(Vi, Vj)

∣∣∣∣∣∣ ≤ ε|V |2.
That is, the density between two sets may be approximated by taking a weighted average over the

densities between the sets which they intersect.

The Frieze-Kannan weak regularity lemma [44, 45] states that any graph has such a weak regular

partition.

Lemma 2.5 Let R(ε) = 2cε
−2

, where c is an absolute constant. For every graph G = (V,E) and every

equitable partition P of G into k parts, there is an equitable partition P ′ which is a refinement of P

into at most kR(ε) parts which is weak ε-regular.

Unlike the usual regularity lemma, the bounds in Lemma 2.5 are quite reasonable.6 It is therefore

natural to try to apply it to prove the removal lemma. However, it seems unlikely that this lemma is

itself sufficient to prove the removal lemma, since it only gives control over edge densities of a global

nature.

However, as noted by Tao [111] (see also [87]), one can prove a stronger theorem by simply iterating

the Frieze-Kannan weak regularity lemma.7 Tao developed this lemma to give an alternative proof of

the regularity lemma8 which extended more easily to hypergraphs [112]. Here we use it to improve

the bounds for removal.

Lemma 2.6 Let q : [0, 1]→ R be a convex function, G be a graph with d = d(G), f : N→ [0, 1] be a

decreasing function and r = (dq(1) + (1− d)q(0)− q(d)) /γ. Then there are equitable partitions P and

Q with Q a refinement of P satisfying q(Q) ≤ q(P ) + γ, Q is weak f(|P |)-regular and |Q| ≤ tr, where

t0 = 1, ti = ti−1R(f(ti−1)) for 1 ≤ i ≤ r and R(x) = 2cx
−2

as in the Frieze-Kannan weak regularity

lemma.

The proof of Lemma 2.6 is quite similar to the proof of Szemerédi’s regularity lemma discussed in the

previous subsection. One starts with the trivial partition P0 of V into one part. We then apply Lemma

6They are also sharp, that is, there are graphs for which the minimum number of parts in any weak ε-regular partition

is 2Ω(ε−2). This was proved in [24] (see also [5]).
7We will say more about this sort of iteration in Section 3.1 below.
8More recently, Conlon and Fox [24] showed that it is also closely related to the regular approximation lemma.

This lemma, which arose in the study of graph limits by Lovász and Szegedy [74] and also in work on the hypergraph
generalization of the regularity lemma by Rödl and Schacht [85], says that by adding and/or deleting a small number of
edges in a graph G, we may find another graph G′ which admits very fine regular partitions. We refer the reader to [24]
and [87] for further details.
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2.5 repeatedly to construct a sequence of partitions P0, P1, . . . so that Pi+1 is weak f(|Pi|)-regular. If

q(Pi+1) > q(Pi) + γ, then we continue with this process. Otherwise, q(Pi+1) ≤ q(Pi) + γ, so we set

Q = Pi+1 and P = Pi and stop the process. This process must stop within r iterations as the third

part of Proposition 2.1 shows that the mean-q density lies in an interval of length rγ.

Rather than using the usual q(x) = x2, we will use the convex function q on [0, 1] defined by q(0) = 0

and q(x) = x log x for x ∈ (0, 1]. This entropy function is central to the proof since it captures the

extra structural information coming from Lemma 2.8 below in a concise fashion. Note that the last

part of Proposition 2.1 implies that d log d ≤ q(P ) ≤ 0 for every partition P .

The next lemma is a counting lemma that complements the Frieze-Kannan weak regularity lemma.

As one might expect, this lemma gives a global count for the number of copies of H, whereas the

counting lemma associated with the usual regularity lemma gives a means of counting copies of H

between any v(H) parts of the partition which are pairwise regular. Its proof, which we omit, is by a

simple telescoping sum argument.

Lemma 2.7 ([18], Theorem 2.7 on page 1809) Let H be a graph on {1, . . . , h} with m edges. Let

G = (V,E) be a graph on n vertices and Q : V = V1 ∪ . . . ∪ Vt be a vertex partition which is weak

ε-regular. The number of homomorphisms from H to G is within εmnh of

∑
1≤i1,...,ih≤t

∏
(r,s)∈E(H)

d(Vir , Vis)

h∏
a=1

|Via |.

Let P and Q be vertex partitions of a graph G with Q a refinement of P . A pair (Vi, Vj) of parts of

P is (α, c)-shattered by Q if at least a c-fraction of the pairs (u, v) ∈ Vi × Vj go between pairs of parts

of Q with edge density between them less than α.

One of the key components of the proof is the following lemma, which says that if P and Q are vertex

partitions like those given by Lemma 2.6, then there are many pairs of vertex sets in P which are

shattered by Q.

Lemma 2.8 Let H be a graph on {1, . . . , h} with m edges and let α > 0. Suppose G is a graph on

n vertices for which there are less than δnh homomorphisms of H into G, where δ = 1
4α

m(2k)−h.

Suppose P and Q are equitable vertex partitions of G with |P | = k ≤ n and Q is a refinement of P

which is weak f(k)-regular, where f(k) = 1
4mα

m(2k)−h. For every h-tuple V1, . . . , Vh of parts of P ,

there is an edge (i, j) of H for which the pair (Vi, Vj) is (α, 1
2m)-shattered by Q.

Proof: As |P | = k ≤ n, we have |Vi| ≥ n
2k for each i. Let Qi denote the partition of Vi which consists

of the parts of Q which are subsets of Vi. Consider an h-tuple (v1, . . . , vh) ∈ V1 × · · · × Vh picked

uniformly at random. Also consider the event E that, for each edge (i, j) of H, the pair (vi, vj) goes

between parts of Qi and Qj with density at least α. If E occurs with probability at least 1/2, as Q

is weak f(k)-regular, Lemma 2.7 implies that the number of homomorphisms of H into G where the

copy of vertex i is in Vi for 1 ≤ i ≤ h is at least

1

2
αm

h∏
i=1

|Vi| −mf(k)nh ≥
(

1

2
αm(2k)−h −mf(k)

)
nh = δnh,

10



contradicting that there are less than δnh homomorphisms of H into G. So E occurs with probability

less than 1/2. Hence, for at least 1/2 of the h-tuples (v1, . . . , vh) ∈ V1 × · · · × Vh, there is an edge

(i, j) of H such that the pair (vi, vj) goes between parts of Qi and Qj with density less than α. This

implies that for at least one edge (i, j) of H, the pair (Vi, Vj) is (α, 1
2m)-shattered by Q. 2

We will need the following lemma from [38] which tells us that if a pair of parts from P is shattered

by Q then there is an increment in the mean-entropy density. Its proof is by a simple application of

Jensen’s inequality.

Lemma 2.9 ([38], Lemma 7 on page 570) Let q : [0, 1]→ R be the convex function given by q(0) = 0

and q(x) = x log x for x > 0. Let ε1, . . . , εr and d1, . . . , dr be nonnegative real numbers with
∑r

i=1 εi = 1

and d =
∑s

i=1 εidi. Suppose β < 1 and I ⊂ [r] is such that di ≤ βd for i ∈ I and let s =
∑

i∈I εi.

Then
r∑
i=1

εiq(di) ≥ q(d) + (1− β + q(β))sd.

We are now ready to prove Theorem 1.4 in the following precise form.

Theorem 2.1 Let H be a graph on {1, . . . , h} with m edges. Let ε > 0 and δ−1 be a tower of twos

of height 8h4 log ε−1. If G is a graph on n vertices in which at least εn2 edges need to be removed to

make it H-free, then G contains at least δnh copies of H.

Proof: Suppose for contradiction that there is a graph G on n vertices in which at least εn2 edges

need to be removed from G to delete all copies of H, but G contains fewer than δnh copies of H. If

n ≤ δ−1/h, then the number of copies of H in G is less than δnh ≤ 1, so G is H-free, contradicting that

at least εn2 edges need to be removed to make the graph H-free. Hence, n > δ−1/h. Note that the

number of mappings from V (H) to V (G) which are not one-to-one is nh−h!
(
n
h

)
≤ h2nh−1 < h2δ1/hnh.

Let δ′ = 2h2δ1/h, so the number of homomorphisms from H to G is at most δ′nh.

The graph G contains at least εn2/m edge-disjoint copies of H. Let G′ be the graph on the same

vertex set which consists entirely of the at least εn2/m edge-disjoint copies of H. Then d(G′) ≥
m · ε/m = ε and G′ consists of d(G′)

m n2 edge-disjoint copies of H. We will show that there are at least

δ′nh homomorphisms from H to G′ (and hence to G as well). For the rest of the argument, we will

assume the underlying graph is G′.

Let α = ε
8m . Apply Lemma 2.6 to G′ with f(k) = 1

4mα
m(2k)−h and γ = d(G′)

2h4 . Note that r as in

Lemma 2.6 is

r = d(G′) log(1/d(G′))/γ = 2h4 log(1/d(G′)) ≤ 2h4 log ε−1.

Hence, we get a pair of equitable vertex partitions P and Q, with Q a refinement of P , q(Q) ≤ q(P )+γ,

Q is weak f(|P |)-regular and |Q| is at most a tower of twos of height 3r ≤ 6h4 log ε−1. Let V1, . . . , Vk
denote the parts of P and Qi denote the partition of Vi consisting of the parts of Q which are subsets

of Vi.

Suppose that (Va, Vb) is a pair of parts of P with edge density d = d(Va, Vb) ≥ ε/m which is (α, 1
2m)-

shattered byQ. Note that α ≤ d/8. Arbitrarily order the pairs Ui×Wi ∈ Qa×Qb, letting di = d(Ui,Wi)

and εi = |Ui||Wi|
|Va||Vb| , so that the conditions of Lemma 2.9 with β = 1/8 are satisfied. Applying Lemma

11



2.9, we get, since q(β) = −1
8 log 8 = −3

8 , that

q(Qa, Qb)− q(Va, Vb) ≥ (1− β + q(β))
1

2m
d(Va, Vb)|Va||Vb|/n2 ≥ 1

4m
e(Va, Vb)/n

2.

Note that

q(Q)− q(P ) =
∑

1≤a,b≤k
(q(Qa, Qb)− q(Va, Vb)),

which shows that q(Q)− q(P ) is the sum of nonnegative summands.

There are at most ε
mn

2/2 edges of G′ going between pairs of parts of P with density at most ε
m . Hence,

at least 1/2 of the edge-disjoint copies of H making up G′ have all its edges going between pairs of

parts of P of density at least ε
m . By Lemma 2.8, for each copy of H, at least one of its edges goes

between a pair of parts of P which is (α, 1
2m)-shattered by Q. Thus,

q(Q)− q(P ) ≥
∑ 1

4m
e(Va, Vb)/n

2 ≥ 1

4m
· d(G′)

2m
=
d(G′)

8m2
> γ,

where the sum is over all ordered pairs (Va, Vb) of parts of P which are (α, 1
2m)-shattered by Q and

with d(Va, Vb) ≥ ε
m . This contradicts q(Q) ≤ q(P ) + γ and completes the proof. 2

3 The induced removal lemma

As in the last section, we will again discuss two different proofs of the induced removal lemma,

Theorem 1.3. In Section 3.1, we will discuss the proof of Alon, Fischer, Krivelevich and Szegedy

[6], which uses their strong regularity lemma and gives a wowzer-type bound. In Section 3.2, we

will examine the authors’ recent proof [24] of a tower-type bound. We will discuss Alon and Shapira’s

generalization of the induced removal lemma, which applies to infinite families of graphs, in Section 3.3.

3.1 The usual proof

For an equitable partition P = {Vi|1 ≤ i ≤ k} of V (G) and an equitable refinement Q = {Vi,j |1 ≤ i ≤
k, 1 ≤ j ≤ `} of P , we say that Q is ε-close to P if the following is satisfied. All 1 ≤ i ≤ i′ ≤ k but at

most εk2 of them are such that, for all 1 ≤ j, j′ ≤ ` but at most ε`2 of them, |d(Vi, Vi′)−d(Vi,j , Vi′,j′)| < ε

holds. This notion roughly says that Q is an approximation of P . The strong regularity lemma of

Alon, Fischer, Krivelevich and Szegedy [6] is now as follows.

Lemma 3.1 (Strong regularity lemma) For every function f : N → (0, 1) there exists a number

S = S(f) with the following property. For every graph G = (V,E), there is an equitable partition

P of the vertex set V and an equitable refinement Q of P with |Q| ≤ S such that the partition P is

f(1)-regular, the partition Q is f(|P |)-regular and Q is f(1)-close to P .

That is, there is a regular partition P and a refinement Q such that Q is very regular and yet the

densities between parts (Vi,j , Vi′,j′) of Q are usually close to the densities between the parts (Vi, Vi′)

of P containing them.

Let f(1) = ε. Here, and throughout this section, we let q(x) = x2 be the square function as in the

proof of Szemerédi’s regularity lemma in the previous section. The condition that Q be ε-close to P

12



is equivalent, up to a polynomial change in ε, to q(Q) ≤ q(P ) + ε. Indeed, if Q is ε-close to P , then

q(Q) ≤ q(P )+O(ε), while if q(Q) ≤ q(P )+ε, then Q is O(ε1/4)-close to P . A version of this statement

is present in Lemma 3.7 of [6]. As it is sufficient and more convenient to work with mean-square

density instead of ε-closeness, we do so from now on. That is, we replace the third condition in the

regularity lemma with the condition that q(Q) ≤ q(P ) + ε.

With this observation, the proof of the strong removal lemma becomes quite straightforward. Note

that we may assume that f is a decreasing function by replacing it, if necessary, with the function given

by f ′(i) = min1≤j≤i f(j). We consider a series of partitions P1, P2, . . . , where P1 is an f(1)-regular

partition and Pi+1 is an f(|Pi|)-regular refinement of the partition Pi. Since Pi+1 is a refinement

of Pi we know that the mean-square density must have increased, that is, q(Pi+1) ≥ q(Pi). If also

q(Pi+1) ≤ q(Pi)+ε then, since f is decreasing and Pi+1 is f(|Pi|)-regular, we see that all three conditions

of the theorem are satisfied with P = Pi and Q = Pi+1 as the required partitions. Otherwise, we have

q(Pi+1) > q(Pi) + ε. However, since the mean-square density is bounded above by 1, this can happen

at most ε−1 times, concluding the proof.

It is not hard to see why this proof results in wowzer-type bounds. At each step, we are applying

the regularity lemma to find a partition Pi+1 which is regular in the number of parts in the previous

partition Pi. The bounds coming from the regularity lemma then imply that |Pi+1| = T (f(|Pi|)−O(1)).

But this iterated tower-type bound is essentially how we define the wowzer function.

That this is the correct behaviour for the bounds in the strong regularity lemma was proved indepen-

dently by Conlon and Fox [24] and by Kalyanasundaram and Shapira [61], though both proofs use

slightly different ideas and result in slightly different bounds. With the function f : N→ (0, 1) taken

to be f(n) = ε/n, the proof given in [24] shows that the number of parts in the smaller partition P

may need to be as large as wowzer in a power of ε−1, while that given in [61] proves that it must be

at least wowzer in
√

log ε−1.

The following easy corollary of the strong regularity lemma [6] is the key to proving the induced graph

removal lemma.

Lemma 3.2 For each 0 < ε < 1/3 and decreasing function f : N → (0, 1/3), there is δ′ = δ′(ε, f)

such that every graph G = (V,E) with |V | ≥ δ′−1 has an equitable partition V = V1 ∪ . . . ∪ Vk and

vertex subsets Wi ⊂ Vi such that |Wi| ≥ δ′|V |, each pair (Wi,Wj) with 1 ≤ i ≤ j ≤ k is f(k)-regular

and all but at most εk2 pairs 1 ≤ i ≤ j ≤ k satisfy |d(Vi, Vj)− d(Wi,Wj)| ≤ ε.

In fact, Lemma 3.2 is a little bit stronger than the original version in [6] in that each set Wi is

f(k)-regular with itself.9 The original version follows from the strong regularity lemma, applied with

f ′(k) = min

(
f(k),

ε

4
,
1

2

(
k + 2

2

)−1
)
,

by taking the partition V = V1 ∪ . . . ∪ Vk to be the partition P in the strong regularity lemma and

the subset Wi to be a random part Vi,p ⊂ Vi of the refinement Q of P in the strong regularity lemma.

Since f ′(k) ≤ 1
2

(
k+2

2

)−1
, it is straightforward to check that all pairs (Wi,Wj) are f(k)-regular with

probability greater than 1
2 . Moreover, the expected number of pairs with 1 ≤ i < j ≤ k for which

9This stronger version may be derived from an extra application of the regularity lemma within each of the pieces
Wi, together with a suitable application of Ramsey’s theorem. This is essentially the process carried out in [6], though
they do not state their final result in the same form as Lemma 3.2.
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|d(Vi, Vj)− d(Wi,Wj)| > ε is at most

ε

4

(
k

2

)
+
ε

4

(
k

2

)
=
ε

2

(
k

2

)
.

Here, the two ε
4 factors come from the definition of f(1)-closeness. The first factor comes from the

fact that at most an ε
4 -fraction of the pairs (Vi, Vj) do not have good approximations while the second

factor comes from the fact that for all other pairs there are at most an ε
4 fraction of pairs (Wi,Wj)

which do not satisfy |d(Vi, Vj) − d(Wi,Wj)| ≤ ε. Therefore, by Markov’s inequality, the probability

that the number of bad pairs is greater than ε
(
k
2

)
is less than 1

2 . We therefore see that with positive

probability there is a choice of Wi satisfying the required weaker version of Lemma 3.2.

If we assume the full strength of Lemma 3.2 as stated, that is, that each Wi is also f(k)-regular

with itself, it is easy to deduce the induced removal lemma. Let h = |V (H)| and take f(k) = εh

4h .

If there is a mapping φ : V (H) → {1, . . . , k} such that for all adjacent vertices v, w of H, the edge

density between Wφ(v) and Wφ(w) is at least ε and for all distinct nonadjacent vertices v, w of H, the

edge density between Wφ(v) and Wφ(w) is at most 1− ε, then the following standard counting lemma

(see, e.g., Lemma 3.2 in Alon, Fischer, Krivelevich and Szegedy [6] for a minor variant) shows that G

contains at least δnh induced copies of H, where δ = 1
h!(ε/4)(

h
2)δ′h. As with Lemma 2.4, the standard

proof of this counting lemma uses a greedy embedding strategy.

Lemma 3.3 If H is a graph with vertices 1, . . . , h and G is a graph with not necessarily disjoint

vertex subsets W1, . . . ,Wh such that every pair (Wi,Wj) with 1 ≤ i < j ≤ h is γ-regular with γ ≤ ηh

4h ,

|Wi| ≥ γ−1 for 1 ≤ i ≤ h and, for 1 ≤ i < j ≤ k, d(Wi,Wj) > η if (i, j) is an edge of H and

d(Wi,Wj) < 1 − η otherwise, then G contains at least
(η

4

)(h2) |W1| × · · · × |Wh| induced copies of H

with the copy of vertex i in Wi.

Hence, we may assume that there is no such mapping φ. We then delete the edges between Vi and

Vj if the edge density between Wi and Wj is less than ε and add the edges between Vi and Vj if the

density between Wi and Wj is more than 1 − ε. The total number of edges added or removed is at

most 5εn2 and no induced copy of H remains. Replacing ε by ε/8 in the above argument gives the

induced removal lemma.

3.2 An improved bound

The main goal of this section is to prove Theorem 1.5, which gives a bound on δ−1 which is a tower

in h of height polynomial in ε−1. We in fact prove the key corollary of the strong regularity lemma,

Lemma 3.2, with a tower-type bound. This is sufficient to prove the desired tower-type bound for the

induced graph removal lemma.

As in Section 2.2, the key idea will be to take a weak variant of Szemerédi’s regularity lemma and

iterate it. The particular variant we will use, due to Duke, Lefmann and Rödl [28], was originally used

by them to derive a fast approximation algorithm for the number of copies of a fixed graph in a large

graph.

A k-cylinder (or cylinder for short) in a graph G is a product of k vertex subsets. Given a k-partite

graph G = (V,E) with k-partition V = V1 ∪ . . . ∪ Vk, we will consider a partition K of the cylinder

V1 × · · · × Vk into cylinders K = W1 × · · · ×Wk, Wi ⊂ Vi for i = 1, . . . , k and we let Vi(K) = Wi.
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We say that a cylinder is ε-regular if all
(
k
2

)
pairs of subsets (Wi,Wj), 1 ≤ i < j ≤ k, are ε-regular.

The partition K is ε-regular if all but an ε-fraction of the k-tuples (v1, . . . , vk) ∈ V1 × · · · × Vk are in

ε-regular cylinders in the partition K.

The weak regularity lemma of Duke, Lefmann and Rödl [28] is now as follows. Note that, like the

Frieze-Kannan weak regularity lemma, it has only a single-exponential bound on the number of parts.

We will sometimes refer to this lemma as the cylinder regularity lemma.

Lemma 3.4 Let 0 < ε < 1/2 and β = β(ε) = εk
2ε−5

. Suppose G = (V,E) is a k-partite graph with

k-partition V = V1 ∪ . . . ∪ Vk. Then there exists an ε-regular partition K of V1 × · · · × Vk into at most

β−1 parts such that, for each K ∈ K and 1 ≤ i ≤ k, |Vi(K)| ≥ β|Vi|.

We would now like to iterate this lemma to get a stronger version, the strong cylinder regularity

lemma. Like Lemmas 2.6 and 3.1, this will yield two closely related cylinder partitions P and Q with

P regular and Q regular in a function of |P |. To state the lemma, we first strengthen the definition of

regular cylinders so that pieces are also regular with themselves.

A k-cylinder W1× · · · ×Wk is strongly ε-regular if all pairs (Wi,Wj) with 1 ≤ i, j ≤ k are ε-regular. A

partition K of V1×· · ·×Vk into cylinders is strongly ε-regular if all but ε|V1|× · · ·× |Vk| of the k-tuples

(v1, . . . , vk) ∈ V1 × · · · × Vk are contained in strongly ε-regular cylinders K ∈ K.

We now state the strong cylinder regularity lemma. Here ti(x) is a variant of the tower function

defined by t0(x) = x and ti+1(x) = 2ti(x). Also, given a cylinder partition K, Q(K) is the coarsest

vertex partition such that every set Vi(K) with i ∈ [k] and K ∈ K is the union of parts of Q(K).

Lemma 3.5 For 0 < ε < 1/3, positive integer s, and decreasing function f : N→ (0, ε], there is S =

S(ε, s, f) such that the following holds. For every graph G, there is an integer s ≤ k ≤ S, an equitable

partition P : V = V1 ∪ . . . ∪ Vk and a strongly f(k)-regular partition K of the cylinder V1 × · · · × Vk
into cylinders satisfying that the partition Q = Q(K) of V has at most S parts and q(Q) ≤ q(P ) + ε.

Furthermore, there is an absolute constant c such that letting s1 = s and si+1 = t4 ((si/f(si))
c), we

may take S = s` with ` = 2ε−1 + 1.

To prove this lemma, we need to find a way to guarantee that the parts of the cylinder partition

are regular with themselves as required in the definition of strong cylinder regularity. For a graph

G = (V,E), a vertex subset U ⊂ V is ε-regular if the pair (U,U) is ε-regular. The following lemma,

which demonstrates that any graph contains a large vertex subset which is ε-regular, is the first step.

Lemma 3.6 For each 0 < ε < 1/2, let δ = δ(ε) = 2−ε
−(10/ε)4

. Every graph G = (V,E) contains an

ε-regular vertex subset U with |U | ≥ δ|V |.

One way to prove this lemma is to first find a large collection C of disjoint subsets of equal order which

are pairwise α-regular with α = (ε/3)2. This can be done by an application of Szemerédi’s regularity

lemma and Turán’s theorem, but then the bounds are quite weak. Instead, one can easily deduce this

from Lemma 3.4. A further application of Ramsey’s theorem allows one to get a subcollection C ′ of

size s ≥ 2α−1 such that the edge density between each pair of distinct subsets in C ′ lies in an interval

of length at most α. The union of the sets in C ′ is then an ε-regular subset of the desired order.

It is crucial in this lemma that δ−1 be of bounded tower height in ε−1. While our bound gives a double

exponential dependence, we suspect that the truth is more likely to be a single exponential. We leave

this as an open problem.
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Repeated applications of Lemma 3.6 allow us to pull out large, regular subsets until a small fraction of

vertices remain. By distributing the remaining vertices amongst these subsets, we only slightly weaken

their regularity, while giving a partition of any graph into large parts each of which is ε-regular with

itself. This will be sufficient for our purposes.

Lemma 3.7 For each 0 < ε < 1/2, let δ = δ(ε) = 2−ε
−(20/ε)4

. Every graph G = (V,E) has a vertex

partition V = V1 ∪ . . . ∪ Vk such that for each i, 1 ≤ i ≤ k, |Vi| ≥ δ|V | and Vi is an ε-regular set.

We are now ready to prove the strong cylinder regularity lemma.

Proof of Lemma 3.5: We may assume |V | ≥ S, as otherwise we can let P and Q be the trivial

partitions into singletons, and it is easy to see the lemma holds. We will define a sequence of partitions

P1, P2, . . . of equitable partitions, with Pj+1 a refinement of Pj and q(Pj+1) > q(Pj) + ε/2. Let P1 be

an arbitrary equitable partition of V consisting of s1 = s parts. Suppose we have already found an

equitable partition Pj : V = V1 ∪ . . . ∪ Vk with k ≤ sj .

Let β(x, `) = x`
2x−5

as in Lemma 3.4 and δ(x) = 2−x
−(20/x)4

as in Lemma 3.7. We apply Lemma 3.7

to each part Vi of the partition Pj to get a partition of each part Vi = Vi1 ∪ . . . ∪ Vihi of Pi into parts

each of cardinality at least δ|Vi|, where δ = δ(γ) and γ = f(k) · β with β = β(f(k), k), such that each

part Vih is γ-regular. Note that δ−1 is at most triple-exponential in a polynomial in k/f(k). For each

k-tuple ` = (`1, . . . , `k) ∈ [h1]× · · · × [hk], by Lemma 3.4 there is an f(k)-regular partition K` of the

cylinder V1`1 × · · · × Vk`k into at most β−1 cylinders such that, for each K ∈ K`, |Vi`i(K)| ≥ β|Vi`i |.
The union of the K` forms a partition K of V1 × · · · × Vk which is strongly f(k)-regular.

Recall that Q = Q(K) is the partition of V which is the common refinement of all parts Vi(K) with

i ∈ [k] and K ∈ K. The number of parts of K is at most δ−kβ−1 and hence the number of parts of Q

is at most k21/(δkβ). Thus, the number of parts of Q is at most quadruple-exponential in a polynomial

in k/f(k). Let Pj+1 be an equitable partition into 4ε−1|Q| parts with q(Pj+1) ≥ q(Q)− ε
2 , which exists

by Lemma 2.3. Hence, there is an absolute constant c such that

|Pj+1| ≤ t4 ((k/f(k))c) ≤ sj+1.

If q(Q) ≤ q(Pj) + ε, then we may take P = Pj and Q = Q(K), and these partitions satisfy the desired

properties. Otherwise, q(Pj+1) ≥ q(Q) − ε
2 > q(Pj) + ε

2 , and we continue the sequence of partitions.

Since q(P1) ≥ 0 and the mean-square density goes up by more than ε/2 at each step and is always at

most 1, this process must stop within 2/ε steps, and we obtain the desired partitions. 2

Let G = (V,E), P : V = V1 ∪ . . . ∪ Vk be an equipartition and K be a partition of the cylinder

V1× · · ·×Vk into cylinders. For K = W1× · · ·×Wk ∈ K, define the density d(K) = |W1|×···×|Wk|
|V1|×···×|Vk| . The

cylinder K is ε-close to P if |d(Wi,Wj)− d(Vi, Vj)| ≤ ε for all but at most εk2 pairs 1 ≤ i 6= j ≤ k.

The cylinder partition K is ε-close to P if
∑
d(K) ≤ ε, where the sum is over all K ∈ K that are not

ε-close to P . As with the definition of closeness used in the strong regularity lemma, this definition is

closely related to the condition that q(Q) ≤ q(P ) + ε, where here Q = Q(K).

The connection we shall need to prove Lemma 3.2 is contained in the following statement.

Lemma 3.8 Let G = (V,E) and P : V = V1 ∪ . . . ∪ Vk be an equipartition with k ≥ 2ε−1 and

|V | ≥ 4kε−1. Let K be a partition of the cylinder V1 × · · · × Vk into cylinders. If Q = Q(K) satisfies

q(Q) ≤ q(P ) + ε, then K is (2ε)1/4-close to P .
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Proof: It will be helpful to assume that all parts of the equipartition P have equal size - this affects

the calculations only slightly. It will also be helpful to introduce a slight variant of the mean-square

density as follows. Let q′(P ) =
∑

i<j d
2(Vi, Vj)pij , where pij = |Vi||Vj |/

∑
i<j |Vi||Vj |. Thus, q′(P ) is

the mean of the square densities between the pairs of distinct parts. It is easy to check that q′(P ) is

close to q(P ). Indeed, we have q′(P )−q(P ) = 1
k (q′(P )− q̄), where q̄ =

∑k
i=1 d

2(Vi)/k is the average of

the square densities inside the parts. Hence, |q′(P )−q(P )| ≤ 1
k . We similarly have |q′(Q)−q(Q)| ≤ 1

k .

Let

q(K) =

(
k

2

)−1∑
i<j

∑
K∈K

d2(Vi(K), Vj(K))d(K).

We have the following equalities

q(K)− q′(P ) =

(
k

2

)−1∑
i<j

∑
K∈K

(
d2(Vi(K), Vj(K))− d2(Vi, Vj)

)
d(K)

=

(
k

2

)−1∑
i<j

∑
K∈K

(d(Vi(K), Vj(K))− d(Vi, Vj))
2 d(K),

where the last equality uses the identity d(Vi, Vj) =
∑

K∈K d(Vi(K), Vj(K))d(K). This equality shows

that q(K) ≥ q′(P ) as it expresses their difference as a sum of nonnegative terms. Furthermore, it

shows that if K is not β-close to P , then q(K) ≥ q(P ) +
(
k
2

)−1 · βk
2

2 · β
2 · β ≥ q(P ) + β4. In particular,

if q(K) ≤ q′(P ) + 2ε, then K is (2ε)1/4-close to P . So assume for contradiction that q(K) > q′(P ) + 2ε.

A similar equality implies q′(Q) ≥ q(K). We therefore have

q(Q)− q(P ) =
(
q(Q)− q′(Q)

)
+
(
q′(Q)− q(K)

)
+
(
q(K)− q′(P )

)
+
(
q′(P )− q(P )

)
≥ −1

k
+ 0 +

(
q(K)− q′(P )

)
− 1

k
> ε,

contradicting the assumption of Lemma 3.8 and completing the proof. 2

With this in hand, we can readily deduce a tower-type bound for Lemma 3.2.

Lemma 3.9 For each 0 < ε < 1/3 and decreasing function f : N → (0, ε], there is δ′ = δ′(ε, f) such

that every graph G = (V,E) with |V | ≥ δ′−1 has an equitable partition V = V1 ∪ . . . ∪ Vk and vertex

subsets Wi ⊂ Vi such that |Wi| ≥ δ′|V |, each pair (Wi,Wj) with 1 ≤ i ≤ j ≤ k is f(k)-regular and

all but at most εk2 pairs 1 ≤ i ≤ j ≤ k satisfy |d(Vi, Vj)− d(Wi,Wj)| ≤ ε. Furthermore, we may take

δ′ = 1
8S2 , where S = S( ε

4

2 , s, f) is defined as in Lemma 3.5 and s = 2ε−1.

Proof: Let α = ε4

2 , s = 2ε−1, and δ′ = 1
8S2 , where S = S(α, s, f) is as in Lemma 3.5. We apply

Lemma 3.5 with α in place of ε. We get an equipartition P : V = V1 ∪ . . . ∪ Vk with s ≤ k ≤ S and a

strongly f(k)-regular partition K of V1 × · · · × Vk into cylinders such that the refinement Q = Q(K)

of P has at most S = S(α, s, f) parts and satisfies q(Q) ≤ q(P ) + α. Since |V | ≥ δ′−1 = 8S2, and

P is an equipartition into k ≤ S parts, the cardinality of each part Vi ∈ P satisfies |Vi| ≥ |V |
2S . By

Lemma 3.8, as (2α)1/4 = ε, the cylinder partition K is ε-close to P . Hence, at most an ε-fraction of

the k-tuples (v1, . . . , vk) ∈ V1 × · · · × Vk belong to parts K = W1 × · · · ×Wk of K that are not ε-close

to P . Since Q(K) has at most S parts, the fraction of k-tuples (v1, . . . , vk) ∈ V1× · · ·×Vk that belong
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to parts K = W1 × · · · ×Wk of K with |Wi| < 1
4S |Vi| for at least one i ∈ [k] is at most 1

4S · S = 1
4 .

Therefore, at least a fraction 1− f(k)− ε− 1
4 > 0 of the k-tuples (v1, . . . , vk) ∈ V1× · · ·×Vk belong to

parts K = W1 × · · · ×Wk of K satisfying K is strongly f(k)-regular, |Wi| ≥ 1
4S |Vi| ≥ δ′|V | for i ∈ [k]

and K is ε-close to P . Since a positive fraction of the k-tuples belong to such K, there is at least one

such K. This K has the desired properties. Indeed, the number of pairs 1 ≤ i 6= j ≤ k for which

|d(Wi,Wj) − d(Vi, Vj)| > ε is at most εk2 and hence the number of pairs 1 ≤ i ≤ j ≤ k for which

|d(Wi,Wj)− d(Vi, Vj)| > ε is at most εk2/2 + k ≤ εk2. This completes the proof. 2

By using the induced counting lemma, Lemma 3.3, we may now conclude the proof as in Section 3.1

to obtain the following quantitative version of Theorem 1.3.

Theorem 3.1 There exists a constant c such that, for any graph H on h vertices and 0 < ε < 1/2,

if δ−1 = tj(h), where j = cε−4, then any graph G on n vertices with at most δnh induced copies of H

may be made induced H-free by adding and/or deleting at most εn2 edges.

3.3 Infinite removal lemma

In order to characterize the natural graph properties which are testable, the induced removal lemma

was extended by Alon and Shapira [12] to the following infinite version. For a family H of graphs, a

graph G is induced H-free if G does not contain any graph H in H.

Theorem 3.2 For every (possibly infinite) family of graphs H and ε > 0, there are n0, h0, and δ such

that the following holds. If a graph G = (V,E) on n ≥ n0 vertices has at most δnh induced copies of

each graph H ∈ H on h ≤ h0 vertices, then G can be made induced H-free by adding and/or deleting

at most εn2 edges.

Proof: The proof is a natural extension of the proof of the induced removal lemma and similarly

uses the key corollary, Lemma 3.2, of the strong regularity lemma. The main new idea is to pick an

appropriate function f to apply Lemma 3.2. The choice of the function f will depend heavily on the

family H.

For a graph H and an edge-coloring c of the edges of the complete graph with loops R on [k] with

colors white, black and grey, we write H →c R if there is a mapping φ : V (H)→ [k] such that for each

edge (u, v) of H we have that c(φ(u), φ(v)) is black or grey and for each pair (u, v) of distinct vertices

of H which do not form an edge we have that c(φ(u), φ(v)) is white or grey. We write H 6→c R if

H →c R does not hold.

Let P : V = V1 ∪ . . . ∪ Vk be a vertex partition of G. A key observation is that if we round G by the

partition P and the coloring c to obtain a graph G′ on the same vertex set as G by adding edges to

make (Vi, Vj) complete if (i, j) is black, deleting edges to make (Vi, Vj) empty if (i, j) is white and we

have that H 6→c R, then G′ does not contain H as an induced subgraph.

For any (possibly infinite) family of graphs H and any integer r, let Hr be the following set of colored

complete graphs with loops: a colored complete graph with loops R belongs to Hr if and only if it has

at most r vertices and there is at least one H ∈ H such that H →c R. For any family H of graphs

and integer r for which Hr 6= ∅, let

ΨH(r) = max
R∈Hr

min
H∈H:H→cR

|V (H)|.
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If Hr = ∅, define ΨH(r) = 1. Note that ΨH(r) is a monotonically increasing function of r. Let

f(r) =
εΨH(r)

4ΨH(r)
.

Note that the function f only depends on ε and H.

Let δ′ = δ′(ε, f) be as in Lemma 3.2, which only depends on ε andH. Also let k0 = 2δ′−1, h0 = ΨH(k0),

n0 = 1/ (δ′f(k0)) and δ = 1
h0!(ε/4)h

2
0δ′h0 . We have that k0, h0, n0 and δ > 0 only depend on ε and H.

By assumption, G has n ≥ n0 vertices.

We apply Lemma 3.2 to G. We get an equitable vertex partition P : V = V1∪ . . .∪Vk of G and subsets

Wi ⊂ Vi with |Wi| ≥ δ′|V | such that, for 1 ≤ i ≤ j ≤ k, the pair (Wi,Wj) is f(k)-regular and all but

at most εk2 pairs 1 ≤ i ≤ j ≤ k satisfy |d(Vi, Vj)− d(Wi,Wj)| ≤ ε. As δ′|V | ≤ |Wi| ≤ |Vi| ≤ 2n/k, we

have k ≤ 2δ′−1 ≤ k0.

Consider the coloring c of the complete graph with loops R on [k] where a pair (i, j) of vertices is black

if d(Wi,Wj) ≥ 1− ε, white if d(Wi,Wj) ≤ ε and grey if ε < d(Wi,Wj) < 1− ε. Suppose, for the sake

of contradiction, that there is a graph H with H →c R. From the definition of Ψ, there is a graph H

on h ≤ ΨH(k) vertices with H →c R. As k ≤ k0, the number of vertices of H satisfies h ≤ h0. As

each pair (Wi,Wj) is f(k)-regular and |Wi| ≥ δ′|V | ≥ f(k)−1, applying the induced counting lemma,

Lemma 3.3, with γ = f(k), we get at least

1

h!

( ε
4

)(h2)
(δ′|V |)h ≥ δnh

induced copies of H in G, contradicting the supposition of the theorem. Thus, there is no graph H

with H →c R.

We round the graph G by the partition P and the coloring c as described earlier in the proof to obtain

a graph G′. By the key observation, for each graph H with H 6→c R, the graph G′ does not contain

H as an induced subgraph. Hence, G′ is induced H-free.

Moreover, not many edges were changed from G to obtain G′. Indeed, as there are at most εk2 pairs

1 ≤ i ≤ j ≤ k which satisfy |d(Vi, Vj) − d(Wi,Wj)| > ε, the number of edge modifications made

between such pairs is at most εk2 · (2n/k)2 = 4εn2. Between the other pairs we have made at most

2ε
(
n
2

)
≤ εn2 edge modifications. In total, at most 5εn2 edge modifications were made to obtain G′

from G. Replacing ε by ε/5 in the above argument completes the proof. 2

4 Arithmetic removal

The notion of arithmetic removal was introduced by Green [57]. By establishing an appropriate variant

of the regularity lemma in the context of abelian groups, he proved the following result.

Theorem 4.1 For any natural number k ≥ 3 and any ε > 0, there exists δ > 0 such that if G is an

abelian group of order n and A1, . . . , Ak are subsets of G such that there are at most δnk−1 solutions to

the equation a1+a2+· · ·+ak = 0 with ai ∈ Ai for all i then it is possible to remove at most εn elements

from each set Ai to form sets A′i so that there are no solutions to the equation a′1 + a′2 + · · ·+ a′k = 0

with a′i ∈ A′i for all i.
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It is an exercise to show that Green’s result implies Roth’s theorem. While Green’s proof of this result

relied on Fourier analytic techniques, an alternative proof was found by Král’, Serra, and Vena [70],

who showed that the following more general result follows from an elegant reduction to the removal

lemma in directed graphs.

Theorem 4.2 For any natural number k ≥ 3 and any ε > 0, there exists δ > 0 such that if G is a

group of order n, g ∈ G and A1, . . . , Ak are subsets of G such that there are at most δnk−1 solutions

to the equation a1a2 · · · ak = g with ai ∈ Ai for all i then it is possible to remove at most εn elements

from each set Ai to form sets A′i so that there are no solutions to the equation a′1a
′
2 · · · a′k = g with

a′i ∈ A′i for all i.

This is stronger than Theorem 4.1 in two ways. Firstly, it applies to all groups and not just to abelian

groups. Secondly, it applies to non-homogeneous equations, that is, a1a2 · · · ak = g for a general g,

whereas Green only treats the homogeneous case where g = 1. To give some idea of their proof, we

will need the following definition.

A directed graph is a graph where each edge has been given a direction. Formally, the edge set may be

thought of as a collection of ordered pairs. We will always assume that the directed graph has no loops

and does not contain parallel directed edges, though we do allow anti-parallel edges, that is, both the

edge ~uv and the edge ~vu. The following analogue of the graph removal lemma for directed graphs was

proved by Alon and Shapira [9] as part of their study of property testing in directed graphs.

Theorem 4.3 For any directed graph H and any ε > 0, there exists δ > 0 such that any directed

graph on n vertices which contains at most δnv(H) copies of H may be made H-free by removing at

most εn2 edges.

We will show how to prove Theorem 4.2 with g = 1 using Theorem 4.3. Suppose that G is a group of

order n and A1, . . . , Ak are subsets of G such that there are at most δnk−1 solutions to the equation

a1a2 · · · ak = 1 with ai ∈ Ai for all i. Consider the auxiliary directed graph Γ whose vertex set is

G×{1, 2, . . . , k}. We place an edge from (x, i) to (y, i+ 1), where addition is taken modulo k, if there

exists ai ∈ Ai such that xai = y. It is easy to see that any directed cycle in Γ corresponds to a solution

of the equation a1a2 · · · ak = 1. Moreover, every such solution will result in n different directed cycles

in Γ, namely, those with vertices (x, 1), (xa1, 2), (xa1a2, 3), . . . , (xa1 · · · ak−1, k).

Since G has at most δnk−1 solutions to a1a2 · · · ak = 1, this implies that there are at most δnk directed

cycles in Γ. By Theorem 4.3, for an appropriately chosen δ, we may therefore remove at most ε
kn

2 edges

to make it free of directed cycles of length k. In Ai, we now remove the element ai if at least n
k edges of

the form (x, i)(xai, i+1) have been removed. Note that this results in us removing at most εn elements

from each Ai. Suppose now that the remaining sets A′i are such that there is a solution a′1a
′
2 . . . a

′
k = 1

with a′i ∈ A′i for all i. Then, as above, there are at least n cycles (x, 1), (xa′1, 2), . . . , (xa′1 · · · a′k−1, k)

corresponding to this solution. Since we must have removed one edge from each of these cycles, we

must have removed at least n
k edges of the form (y, i)(ya′i, i + 1) for some i. But this implies that

a′i 6∈ A′i, yielding the required contradiction.

It was observed by Fox [38] that δ−1 in Theorem 4.3 may, like the graph removal lemma, be taken to

be at most a tower of twos of height logarithmic in ε−1. This may in turn be used to give a similar

bound for δ−1 in Theorem 4.2.

In [70], Král’, Serra and Vena also showed how to prove a removal lemma for systems of equations

which are graph representable, in the sense that they can be put in a natural correspondence with a
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directed graph. An example of such a system is

x1x2x
−1
4 x−1

3 = 1

x1x2x
−1
5 = 1.

This idea of associating a system of linear equations with a directed graph representation was extended

to hypergraphs independently by Král’, Serra and Vena [71] and by Shapira [100, 101] in order to prove

the following theorem (some partial results had been obtained earlier by Král’, Serra and Vena [69],

Szegedy [108] and Candela [20]).

Theorem 4.4 For any natural numbers k and ` and any ε > 0, there exists δ > 0 such that if F is

the field of size n, M is an ` × k matrix with coefficients in F , b ∈ F ` and A1, . . . , Ak are subsets

of F such that there are at most δnk−` solutions a = (a1, . . . , ak) of the system Ma = b then it is

possible to remove at most εn elements from each set Ai to form sets A′i so that there are no solutions

a′ = (a′1, . . . , a
′
k) to the equation Ma′ = b with a′i ∈ A′i for all i.

An easy application of this result shows that a removal lemma for systems of linear equations holds in

the set [n], confirming a conjecture of Green [57]. We remark that this result easily implies Szemerédi’s

theorem. Both proofs use a colored variant of the hypergraph removal lemma due to Austin and Tao

[13], though the representations which they use to transfer the problem to hypergraphs are different.

It would be interesting to know whether an analogous statement holds for all groups. A partial

extension of these results to abelian groups is proved in [72] (see also [108]) but already in this case

there are technical difficulties which do not arise for finite fields.

5 Sparse removal

Given graphs Γ and H, let NH(Γ) be the number of copies of H in Γ. A possible generalization of the

graph removal lemma, which corresponds to the case Γ = Kn, could state that if G is a subgraph of Γ

with NH(G) ≤ δNH(Γ) then G may be made H-free by deleting at most εe(Γ) edges. Unfortunately,

this is too much to hope in general. However, if the graph Γ is sufficiently well-behaved, such an

extension does hold. We will discuss two such results here.

5.1 Removal in random graphs

The binomial random graph Gn,p is formed by taking n vertices and considering each pair of vertices

in turn, choosing each connecting edge to be in the graph independently with probability p. These

graphs were introduced by Erdős and Rényi [33, 34] in the late fifties10 and their study has grown

enormously since then (see, for example, the monographs [17, 60]).

Usually, one is interested in finding a threshold function p∗ := p∗(n) where the probability that the

random graph Gn,p has a particular property P changes from o(1) to 1− o(1) as we pass from random

graphs chosen with probability p � p∗ to those chosen with probability p � p∗. For example, the

threshold for the random graph to be connected is at p∗(n) = lnn
n .

10The notion was also introduced independently by several other authors at about the same time but, quoting Bollobás
[17], “Erdős and Rényi introduced the methods which underlie the probabilistic treatment of random graphs. The other
authors were all concerned with enumeration problems and their techniques were essentially deterministic.”
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One theme that has received a lot of attention in recent years is the question of determining thresholds

for the appearance of certain combinatorial properties. One well-studied example is the Ramsey

property. Given a graph H and a natural number r ≥ 2, we say that a graph G is (H, r)-Ramsey if

in any r-coloring of the edges of G there is guaranteed to be a monochromatic copy of H. Ramsey’s

theorem [82] is itself the statement that Kn is (H, r)-Ramsey for n sufficiently large. The following

celebrated result of Rödl and Ruciński [83, 84] from 1995 (see also [60], Chapter 8) determines the

threshold for the appearance of the Ramsey property in random graphs.

Theorem 5.1 For any graph H that is not a forest consisting of stars and paths of length 3 and every

positive integer r ≥ 2, there exist constants c, C > 0 such that

lim
n→∞

P
(
Gn,p is (H, r)-Ramsey

)
=

{
0, if p < cn−1/m2(H),

1, if p > Cn−1/m2(H),

where

m2(H) = max

{
e(H ′)− 1

v(H ′)− 2
: H ′ ⊆ H and v(H ′) ≥ 3

}
.

The threshold occurs at the largest value of p∗ such that there is some subgraph H ′ of H for which the

number of copies of H ′ is approximately the same as the number of edges. For p significantly smaller

than p∗, the number of copies of H ′ will also be significantly smaller than the number of edges. This

property allows us (by a rather long and difficult argument [83]) to show that the edges of the graph

may be colored in such a way as to avoid any monochromatic copies of H ′. For p significantly larger

than p∗, every edge of the random graph is contained in many copies of every subgraph of H. The

intuition, which takes substantial effort to make rigorous [84], is that these overlaps are enough to

force the graph to be Ramsey.

Many related questions were studied in the late nineties. In particular, people were interested in

determining the threshold for the following Turán property. Given a graph H and a real number

ε > 0, we say that a graph G is (H, ε)-Turán if every subgraph of G with at least(
1− 1

χ(H)− 1
+ ε

)
e(G)

edges contains a copy of H. The classical Erdős-Stone-Simonovits theorem [35, 36, 115] states that

the graph Kn is (H, ε)-Turán for n sufficiently large. Resolving a conjecture of Haxell, Kohayakawa,

 Luczak and Rödl [58, 65], Conlon and Gowers [25] and, independently, Schacht [98] proved the following

theorem. It is worth noting that the result of Conlon and Gowers applies in the strictly balanced case,

that is, when m2(H ′) < m2(H) for all H ′ ⊂ H, while Schacht’s result applies to all graphs. However,

the class of strictly balanced graphs includes most of the graphs one would naturally consider, such

as cliques or cycles.

Theorem 5.2 For any graph H11 and any ε > 0, there exist positive constants c and C such that

lim
n→∞

P
(
Gn,p is (H, ε)-Turán

)
=

{
0, if p < cn−1/m2(H),

1, if p > Cn−1/m2(H).

11Note that if H = K2, we take m2(H) = 1
2
.
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The results of [25] and [98] (see also [43]) allow one to prove thresholds for the appearance of many

different combinatorial properties. For example, the results extend without difficulty to prove ana-

logues of Theorems 5.1 and 5.2 for hypergraphs. The results also apply to give thresholds in different

contexts - one example is an extension of Szemerédi’s theorem to random subsets of the integers.

Perhaps surprisingly, the methods used in [25] and [98] are very different and have different strengths

and weaknesses. We have already mentioned that Schacht’s results applied to all graphs while the

results of Conlon and Gowers only applied to strictly balanced graphs. On the other hand, the results

of [25] also allowed one to transfer structural statements to the sparse setting, including the stability

version of the Erdős-Stone-Simonovits theorem [103] and the graph removal lemma. More recently,

Samotij [94] modified Schacht’s method to extend this sparse stability theorem to all graphs. The

result is the following theorem.

Theorem 5.3 For any graph H and any ε > 0, there exist positive constants δ and C such that if

p ≥ Cn−1/m2(H) then the following holds a.a.s. in Gn,p. Every H-free subgraph of Gn,p with at least(
1− 1

χ(H)−1 − δ
)
p
(
n
2

)
edges may be made (χ(H)− 1)-partite by deleting at most εpn2 edges.

Recently, a third method was developed by Balogh, Morris and Samotij [15] and, simultaneously and

independently, by Saxton and Thomason [97] for proving sparse random analogues of combinatorial

theorems. One of the results of their research is a proof of the K LR conjecture of Kohayakawa,

 Luczak and Rödl [65]. This is a technical statement which allows one to prove an embedding lemma

complementing the sparse regularity lemma of Kohayakawa [63] and Rödl. A variant of this conjecture

has also been proved by Conlon, Gowers, Samotij and Schacht [26] using the methods of [25, 98]. One

of the applications of this latter result is the following sparse random analogue of the graph removal

lemma (this was already proved for triangles in [64] and for strictly balanced graphs in [25]).

Theorem 5.4 For any graph H and any ε > 0, there exist positive constants δ and C such that if

p ≥ Cn−1/m2(H) then the following holds a.a.s. in Gn,p. Every subgraph of Gn,p which contains at

most δpe(H)nv(H) copies of H may be made H-free by removing at most εpn2 edges.

Note that for any ε there exists a positive constant c such that if p ≤ cn−1/m2(H), the removal lemma

is trivial. This is because, for c sufficiently small, the number of copies of the densest subgraph H ′ of

H will a.a.s. be smaller than εpn2. Theorem 5.4 shows that it also holds for p ≥ Cn−1/m2(H). This

leaves a small intermediate range of p where it might also be expected that a sparse removal lemma

a.a.s. holds. That this is so was conjectured by  Luczak [76].

For balanced graphs H, we may close the gap by letting δ be sufficiently small depending on C, ε and H.

Indeed, as p ≤ Cn−1/m2(H), the number of copies of H is a.a.s. on the order of pe(H)nv(H) ≤ Ce(H)pn2.

Therefore, taking δ < εC−e(H), we see that the number of copies of H is a.a.s. less than εpn2. Deleting

one edge from each copy of H in the graph then makes it H-free.

A sparse random analogue of the hypergraph removal lemma was proved in [25] when H = K
(k)
k+1. This

result also extends to cover all strictly balanced hypergraphs.12 It would be interesting to extend this

result to all hypergraphs.

It is worth noting that the sparse random version of the triangle removal lemma does not imply a

sparse random version of Roth’s theorem. This is because the reduction which allows us to pass from

12We note that for k-uniform hypergraphs the relevant function is mk(H) = max
{
e(H′)−1
v(H′)−k

}
, where the maximum is

taken over all subgraphs H′ of H with at least k + 1 vertices.
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a subset of the integers with no arithmetic progressions of length 3 to a graph containing few triangles

gives us a graph with dependencies between its edges. This issue does not occur with pseudorandom

graphs, which we discuss in the next section.

5.2 Removal in pseudorandom graphs

Though there have long been explicit examples of graphs which behave like the random graph Gn,p,

the first systematic study of what it means for a given graph to be like a random graph was initiated

by Thomason [113, 114]. Following him,13 we say that a graph on vertex set V is (p, β)-jumbled if, for

all vertex subsets X,Y ⊆ V ,

|e(X,Y )− p|X||Y || ≤ β
√
|X||Y |.

The random graph Gn,p is, with high probability, (p, β)-jumbled with β = O(
√
pn). This is also

optimal in that a graph on n vertices with p ≤ 1/2 cannot be (p, β)-jumbled with β = o(
√
pn). The

Paley graph is an example of an explicit graph which is optimally jumbled. This graph has vertex set

Zp, where p ≡ 1(mod 4) is prime, and edge set given by connecting x and y if their difference is a

quadratic residue. It is (p, β)-jumbled with p = 1
2 and β = O(

√
n). Many more examples are given in

the excellent survey [73].

A fundamental result of Chung, Graham and Wilson [22] states that for graphs of density p, where p

is a fixed positive constant, the property of being (p, o(n))-jumbled is equivalent to a number of other

properties that one would typically expect in a random graph. For example, if the number of cycles

of length 4 is as one would expect in a binomial random graph then, surprisingly, this is enough to

imply that the edges are very well-spread.

For sparser graphs, the equivalences are less clear cut, but the notion of jumbledness defined above is

a natural property to study. Given a graph property P that one would expect of a random graph, one

can ask for the range of p and β for which a (p, β)-jumbled graph satisfies P.

To give an example, it is known that there is a constant c such that if β ≤ cp2n then any (p, β)-jumbled

graph contains a triangle. It is also known that this is sharp, since an example of Alon [2] gives a

triangle-free graph with p = Ω(n−1/3) which is optimally jumbled, so that β = O(
√
pn) = O(p2n).

As in the previous section, one can ask for conditions on p and β which guarantee that a (p, β)-jumbled

graph satisfies certain combinatorial properties. For the property of being (K3, ε)-Turán, this question

was addressed by Sudakov, Szabó and Vu [107] (see also [21]), who showed that it was enough that

β ≤ cp2n for an appropriate c. This is clearly sharp, since for larger values of β we cannot even

guarantee that the graph contains a triangle. More generally, they proved the following theorem.14

Theorem 5.5 For any natural number t ≥ 3 and any ε > 0, there exists c > 0 such that if β ≤ cpt−1n

then any (p, β)-jumbled graph is (Kt, ε)-Turán.

Except in the case of triangles, there are no known constructions which demonstrate that this theorem

is tight. However, it is conjectured [107] that the bound on β in Theorem 5.5 is the correct condition

for finding copies of Kt in a (p, β)-jumbled graph. This would in turn imply that Theorem 5.5 is tight.

13Strictly speaking, Thomason considered a slightly different notion, namely, that |e(X)−p
(|X|

2

)
| ≤ β|X| for all X ⊆ V ,

but the two are closely related.
14Their results were only stated for the special class of (p, β)-jumbled graphs known as (n, d, λ)-graphs. These are

graphs on n vertices which are d-regular and such that all eigenvalues of the adjacency matrix, save the largest, have
absolute value at most λ. The expander mixing lemma implies that these graphs are (p, β)-jumbled with p = d

n
and

β = λ. However, it is not hard to verify that their method applies in the more general case.
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For the triangle removal lemma, the following pseudorandom analogue was recently proved by Ko-

hayakawa, Rödl, Schacht and Skokan [68].

Theorem 5.6 For any ε > 0, there exist positive constants δ and c such that if β ≤ cp3n then any

(p, β)-jumbled graph G on n vertices has the following property. Any subgraph of G containing at most

δp3n3 triangles may be made triangle-free by removing at most εpn2 edges.

The condition on β in this theorem is stronger than that employed for triangles in Theorem 5.5. As

a result, Alon’s construction does not apply and it is an open problem to determine whether the

condition β ≤ cp3n is optimal or if it can be improved to β ≤ cp2n. Kohayakawa, Rödl, Schacht and

Skokan conjecture the latter, though we feel that the former is a genuine possibility.

In a recent paper, Conlon, Fox and Zhao [27] found a way to prove a counting lemma for embedding

any fixed small graph into a regular subgraph of a sufficiently pseudorandom host graph. Like the K LR

conjecture for random graphs, this serves to complement the sparse regularity lemma of Kohayakawa

[63] and Rödl in the pseudorandom context. As corollaries, they extended Theorems 5.5 and 5.6 to

all graphs and proved sparse pseudorandom extensions of several other theorems, including Ramsey’s

theorem and the Erdős-Simonovits stability theorem.

To state these theorems, we define the degeneracy d(H) of a graph H to be the smallest nonnegative

integer d for which there exists an ordering of the vertices of H such that each vertex has at most d

neighbors which appear earlier in the ordering. Equivalently, it may be defined as d(H) = max{δ(H ′) :

H ′ ⊆ H}, where δ(H) is the minimum degree of H.15

The pseudorandom analogue of the graph removal lemma proved in [27] is now as follows.16

Theorem 5.7 For any graph H and any ε > 0, there exist positive constants δ and c such that if

β ≤ cpd(H)+ 5
2n then any (p, β)-jumbled graph G on n vertices has the following property. Any subgraph

of G containing at most δpe(H)nv(H) copies of H may be made H-free by removing at most εpn2 edges.

It is not hard to show, by using the random graph, that there are (p, β)-jumbled graphs with β =

O(p(d(H)+2)/4n) which contain no copies of H. We therefore see that the exponent of p is sharp up to a

multiplicative constant. However, in many cases, we expect it to be sharp up to an additive constant.

For certain classes of graph, Theorem 5.7 can be improved. For example, if we know that the degen-

eracy of the graph is the same as the maximum degree, such as what happens for the complete graph

Kt, it is sufficient that β ≤ cpd(H)+1n. In particular, for K3, we reprove Theorem 5.6. For cycles, the

improvement is even more pronounced, since β ≤ cpt`n, where t3 = 3, t4 = 2, t` = 1 + 1
`−3 if ` ≥ 5 is

odd and t` = 1 + 1
`−4 if ` ≥ 6 is even, is sufficient for removing the cycle C`.

By following the proof of Král’, Serra and Vena [70], these bounds on the cycle removal lemma in

pseudorandom graphs17 allow us to prove an analogue of Theorem 4.2 for pseudorandom subsets of

any group G. The Cayley graph G(S) of a subset S of a group G has vertex set G and (x, y) is an edge

of G if x−1y ∈ S. We say that a subset S of a group G is (p, β)-jumbled if the Cayley graph G(S) is

15In [27], a slightly different parameter, the 2-degeneracy d2(H), is used. Though there are many cases in which this
parameter is more appropriate, the degeneracy will be sufficient for the purposes of our discussion here.

16For other properties, such as that of being (H, r)-Ramsey or that of being (H, ε)-Turán, an exactly analogous theorem

holds with the same condition β ≤ cpd(H)+ 5
2 n. Any of the improvements subsequently discussed for specific graphs H

also apply for these properties.
17Rather, a colored or directed version of this theorem.
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(p, β)-jumbled. When G is abelian, if
∣∣∑

x∈S χ(x)
∣∣ ≤ β for all nontrivial characters χ : G→ C, then S

is ( |S||G| , β)-jumbled (see [68, Lemma 16]).

Theorem 5.8 For any natural number k ≥ 3 and any ε > 0, there exist positive constants δ and c

such that the following holds. Suppose B1, . . . , Bk are subsets of a group G of order n such that each

Bi is (p, β)-jumbled with β ≤ cptkn. If subsets Ai ⊆ Bi for i = 1, . . . , k are such that there are at most

δ|B1| · · · |Bk|/n solutions to the equation x1x2 · · ·xk = 1 with xi ∈ Ai for all i, then it is possible to

remove at most ε|Bi| elements from each set Ai so as to obtain sets A′i for which there are no solutions

to x1x2 · · ·xk = 1 with xi ∈ A′i for all i.

This result easily implies a Roth-type theorem in quite sparse pseudorandom subsets of a group. We say

that a subset B of a group G is (ε, k)-Roth if, for all integers a1, . . . , ak which satisfy a1+· · ·+ak = 0 and

gcd(ai, |G|) = 1 for 1 ≤ i ≤ k, every subset A ⊆ B which has no nontrivial solution to xa1
1 x

a2
2 · · ·x

ak
k = 1

has |A| ≤ ε|B|.

Corollary 5.1 For any natural number k ≥ 3 and any ε > 0, there exists c > 0 such that the following

holds. If G is a group of order n and B is a (p, β)-jumbled subset of G with β ≤ cptkn, then B is

(ε, k)-Roth.

Note that Roth’s theorem on 3-term arithmetic progressions in dense sets of integers follows from the

special case of this result with B = G = Zn, k = 3 and a1 = a2 = 1, a3 = −2. The rather weak

pseudorandomness condition in Corollary 5.1 shows that even quite sparse pseudorandom subsets of

a group have the Roth property.

6 Further topics

6.1 The Erdős-Rothschild problem

A problem of Erdős and Rothschild [30] asks one to estimate the maximum number h(n, c) such that

every n-vertex graph with at least cn2 edges, each of which is contained in at least one triangle, must

contain an edge that is in at least h(n, c) edges. Here, and throughout this subsection, we assume

c > 0 is a fixed absolute constant. The fact that h(n, c) tends to infinity already follows from the

triangle removal lemma.18

To see this, suppose that G is an n-vertex graph with cn2 edges such that every edge is in at least one

and at most h := h(n, c) triangles. The total number of triangles in G is at most hcn2/3. Therefore,

if h does not tend to infinity, the triangle removal lemma tells us that there is a collection E of o(n2)

edges such that every triangle contains at least one of them. Since each edge in G is in at least one

triangle, we know that there are at least cn2/3 triangles. It follows that some edge in E is contained

in at least ω(1) edges.

Using Fox’s bound [38] for the triangle removal lemma, this implies that h(n, c) ≥ ea log∗ n, where

log∗ n is the iterated logarithm. This is defined by log∗ x = 0 if x ≤ 1 and log∗ x = log∗(log x) + 1

otherwise. This improves on the bound h(n, c) ≥ (log∗ n)a which follows from Ruzsa and Szemerédi’s

original proof of the triangle removal lemma.

18Even the statement that h(n, c) > 1 is already enough to imply Roth’s theorem.
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On the other hand, Alon and Trotter (see [31]) showed that for any positive c < 1
4 there is c′ > 0 such

that h(n, c) < c′
√
n. The condition c < 1

4 is easily seen to be best possible since any n-vertex graph

with more than n2/4 edges contains an edge in at least n/6 triangles [29, 62]. Erdős conjectured that

perhaps this behaviour is correct. That is, that for any positive c < 1
4 there exists ε > 0 such that

h(n, c) > nε for all sufficiently large n. This was recently disproved by Fox and Loh [39] as follows.

Theorem 6.1 For n sufficiently large, there is an n-vertex graph with n2

4 (1− e−(logn)1/6
) edges such

that every edge is in a triangle and no edge is in more than n14/ log logn triangles.

To give some idea of the construction, consider a tripartite graph between sets A, B and C, each of

which is a copy of a lattice cube with appropriate sidelength r and dimension d. We join points in

A and B if their distance is close to the expected distance between random points in A and B. By

concentration, this implies that the density of edges between A and B is close to 1. We join points in

C to points in A or B if their distance is close to half the expected distance. It is not hard to see that

every edge between A and B is then contained in few triangles. At the same time, every edge will be

in at least one triangle, as can be seen by considering the midpoint of any two connected points a and

b. This yields a construction with roughly n2

9 edges but the result of Fox and Loh may be obtained

by shrinking the vertex set C (or blowing up A and B) in an appropriate fashion.

6.2 Induced matchings

Call a graph G = (V,E) an (r, t)-Ruzsa-Szemerédi graph ((r, t)-RS graph for short) if its edge set can

be partitioned into t induced matchings in G, each of size r. The total number of edges of such a

graph is rt. The most interesting problem concerns the existence of such graphs when r and t are both

relatively large as a function of the number of vertices. The construction of Ruzsa and Szemerédi [93]

using Behrend’s construction demonstrates that such a graph on n vertices exists with r = e−c
√

lognn

and t = n/3. The Ruzsa-Szemerédi result on the (6, 3)-problem is equivalent to showing that no

(r, t)-RS graph on n vertices exists with r and t linear in n.

For r linear in the number n of vertices, it is still an open problem if there exists an (r, t)-RS graph

with t = nε. The best known construction in this case, due to Fischer et al. [37], is an example with

r = n/3 and t = nc/ log logn. However, for r = n1−o(1), substantial progress was made recently by Alon,

Moitra and Sudakov [8] by extending ideas used in the construction of Fox and Loh [39] discussed

in the previous subsection. They give a construction of n-vertex graphs with rt = (1 − o(1)
(
n
2

)
and

r = n1−o(1). That is, there are nearly complete graphs, with edge density 1 − o(1), such that its

edge set can be partitioned into large induced matchings, each of order n1−o(1). They give several

applications of this construction to combinatorics, complexity theory and information theory.

6.3 Testing small graphs

A property of graphs is a family of graphs closed under isomorphism. A graph G on n vertices is ε-far

from satisfying a property P if no graph which can be constructed from G by adding and/or removing

at most εn2 edges satisfies P . An ε-tester for P is a randomized algorithm which, given the quantity

n and the ability to make queries whether a desired pair of vertices spans an edge in G, distinguishes

with probability at least 2/3 between the case that G satisfies P and the case that G is ε-far from

satisfying P . Such an ε-tester is a one-sided ε-tester if when G satisfies P the ε-tester determines that
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this is the case. The property P is called testable if, for every fixed ε > 0, there exists a one-sided

ε-tester for P whose total number of queries is bounded only by a function of ε which is independent

of the size of the input graph. This means that the running time of the algorithm is also bounded by a

function of ε only and is independent of the input size. We measure query-complexity by the number

of vertices sampled, assuming we always examine all edges spanned by them. The infinite removal

lemma, Theorem 3.2, of Alon and Shapira [12] shows that every hereditary graph property, that is, a

graph property closed under taking induced subgraphs, is testable. Many of the best studied graph

properties are hereditary.

If the query complexity of an ε-tester is polynomial in ε−1, we say that the property is easily testable.

It is an interesting open problem to characterize the easily testable hereditary properties. Alon [3]

considered the case where P = PH is the property that the graph does not contain H as a subgraph.

He showed that PH is easily testable if and only if H is bipartite. Alon and Shapira [10] considered

the case where P = P ∗H is the property that the graph does not contain H as an induced subgraph.

They showed that for any graph H except for the path with at most four vertices, the cycle of length

four and their complements, the property P ∗H is not easily testable. The problem of determining

whether the property P ∗H is easily testable for the path with four vertices or the cycle of length four

(or equivalently its complement) was left open. The case where H is a path with four vertices was

recently shown to be easily testable by Alon and Fox [7]. The case where H is a cycle of length four

is still open. Alon and Fox also showed that if P is the family of perfect graphs, then P is not easily

testable and, in a certain sense, testing for P is at least as hard as testing triangle-freeness.

6.4 Local repairability

The standard proof of the regularity lemma contains a procedure for turning a graph which is almost

triangle-free into a graph which is triangle-free. We simply delete the edges between all vertex sets

of low density and between all vertex sets which do not form a regular pair. This procedure can be

made more explicit still by using an algorithmic version of the regularity lemma [4].

A surprising observation of Austin and Tao [13] is that this repair procedure can be determined in

a local fashion. They show that for any graph H and any ε > 0 there exists δ > 0 and a natural

number m such that if G is a graph containing at most δnv(H) copies of H then there exists a set A

of size at most m such that G may be made H-free by removing at most εn2 edges and the decision

of whether to delete a given edge uv may be determined solely by considering the restriction of G to

the set A ∪ {u, v}.19

The key point, first observed by Ishigami [59], is that the regular partition can be determined in a

local fashion by randomly selecting vertex neighborhoods to create the partition. Since a finite set

of points determine the partition, this may in turn be used to create a local modification rule which

results in an H-free graph.

Similar ideas may also be applied to show that any hereditary graph property, including the property

of being induced H-free, is locally repairable in the same sense. This again follows from the observation

that random neighborhoods can be used to construct the partitions arising in the strong regularity

lemma.

Surprisingly, Austin and Tao show that, even though all hereditary hypergraph properties are testable,

19Strictly speaking, Austin and Tao [13] consider two forms of local repairability. Here we are considering only the
weak version.
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there are hereditary properties which are not locally repairable. On the other hand, they show that

many natural hypergraph properties, including the property of being H-free, are locally repairable.

6.5 Linear hypergraphs

A linear hypergraph is a hypergraph where any pair of edges overlap in at most one vertex. For this

special class of hypergraphs, it is not necessary to apply the full strength of hypergraph regularity to

prove a corresponding removal lemma [66]. Instead, a straightforward analogue of the usual regularity

lemma is sufficient. This results in bounds for δ−1 in the linear hypergraph removal lemma which are

of tower-type in a power of ε−1.

While this is already a substantial improvement on general hypergraphs, where the best known bounds

are Ackermannian,20 it can be improved further by using the ideas of [38]. This results in a bound of

the form T (aH log ε−1).

A similar reduction does not exist for induced removal of linear hypergraphs. Because we need to

consider all edges, whether present or not, between the vertices of the hypergraph, we must apply the

full strength of the strong hypergraph regularity lemma. This results in Ackermannian bounds.

It is plausible that an extension of the methods of Section 2.2 could be used to give a primitive

recursive, or even tower-type, bound for hypergraph removal. We believe that such an improvement

would be of great interest, not least because it would give the first primitive recursive bound for the

multidimensional extension of Szemerédi’s theorem. Such an improvement would also be likely to lead

to an analogous improvement of the bounds for induced hypergraph removal.

Acknowledgements. The authors would like to thank Noga Alon, Zoltan Füredi, Vojta Rödl and
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[47] Z. Füredi, Extremal hypergraphs and combinatorial geometry, in Proceedings of the International
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[78] B. Nagle, V. Rödl and M. Schacht, The counting lemma for regular k-uniform hypergraphs,

Random Structures Algorithms 28 (2006), 113–179.

33
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[90] V. Rödl and J. Skokan, Applications of the regularity lemma for uniform hypergraphs, Random

Structures Algorithms 28 (2006), 180–194.

[91] K. F. Roth, On certain sets of integers, J. London Math. Soc. 28 (1953), 104–109.

[92] R. Rubinfield and M. Sudan, Robust characterization of polynomials with applications to program

testing, SIAM J. Comput. 25 (1996), 252–271.
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[110] E. Szemerédi, Regular partitions of graphs, in Colloques Internationaux CNRS 260 - Problèmes
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