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ABSTRACT 
The drive for low-power, high performance computation coupled 
with the extremely high design costs for ASIC designs, has driven 
a number of designers to try to create a flexible, universal 
computing platform that will supersede the microprocessor. We 
argue that these flexible, general computing chips are trying to 
accomplish more than is commercially needed. Since design NRE 
costs are an order of magnitude larger than fabrication NRE costs, 
a two-step design system seems attractive. First, the users 
configure/program a flexible computing framework to run their 
application with the desired performance. Then, the system 
“compiles” the program and configuration, tailoring the original 
framework to create a chip that is optimized toward the desired set 
of applications. Thus the user gets the reduced development costs 
of using a flexible solution with the efficiency of a custom chip.  
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1. INTRODUCTION 
The result of CMOS technology scaling is growing design 
complexity and thus growing non-recurring engineering (NRE) 
costs associated with the design and verification of the chip. 
Complexity also makes it hard to predict the time-to-market and 
increases the risks of application specific integrated circuit (ASIC) 
design [1]. As a consequence, only IC market segments with large 
volumes can justify the NRE costs of ASIC design. 

One possible approach to improve design productivity, advocated 
by reconfigurable processor IP providers such as Tensilica, is to 
use customized embedded processors as a new fundamental 
building block for complex systems-on-chip (SoC) [2]. Many 
recent ASIC designs are actually chip multi-processors (CMP) 
such as the Silicon Packet Processor of Cisco’s CSR-1 router [3], 
TI’s OMAP platform [4], and Philips’ MSVD [5]. However, the 
design of such SoCs is far more complex than just customization 

of reconfigurable processors and optimization of software. Putting 
together multiple heterogeneous processors and task-specific 
hardware accelerators requires a lot of hardware and software to 
interface the units to each other, making it a challenging design 
and verification problem. 

As a result of the difficulty in designing these SoC chips, 
numerous startups and established companies are trying to create 
the next generation computing platform, by extending FPGAs 
with high-level primitives [6], creating more efficient computing 
for an application domain [7], etc. We argue that there is a middle 
ground in this conflict. To reduce the design NRE costs, we 
should create a flexible/configurable abstract system that has been 
optimized for a broad application domain. The application 
developer will only need to configure this system, and port his 
application code to run on this machine. Since this abstract system 
would have well defined interfaces and high-level primitives, like 
the next generation computing platforms, the complexity of the 
design process should be similar to using a programmable engine.  
The advantage of this approach is two fold. First, and most 
important, it allows a more powerful set of configuration 
operations, like creating a tailored functional unit, than would be 
possible for a reconfigurable hardware solution. Second, it allows 
tools to identify those portions of the architecture that are unused 
or underutilized by the target applications and remove them from 
the implementation. 

Clearly there are many issues that need to be addressed before this 
type of system can be a reality. The most obvious is the 
requirement for an automated backend toolset that could take the 
finished logic (with floor-plan information) and create a chip with 
little manual intervention.  More interesting are the tools that 
perform the optimization of the design.  One can imagine some 
passes that are generic, and that would probably be used in all 
such systems, while others would be domain specific and tied to 
the input abstraction used. 

In this paper we propose a chip multiprocessor generator based on 
a reconfigurable CMP architecture. The basic reconfigurable chip 
architecture is described in the next section. How this system can 
improve chip efficiency is described in Section 3. 

2. RECONFIGURABLE CMP 
Our reconfigurable CMP design framework grew out of an earlier 
effort to build a flexible chip multiprocessor [8]. It is a modular, 
scalable hierarchical architecture, which integrates a large number 
of processors and memory blocks on a single die. The system 
consists of Tiles, each with two Tensilica cores, several 
reconfigurable memory blocks, and a crossbar connecting them. 
Tiles are placed in groups of four, forming Quads. Tiles in the 
Quad are connected to a shared protocol controller. Quads are 
then connected to each other and to the off-chip interfaces using 
an on-chip network. 
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The memory blocks inside the Tile contain dual-ported meta-data 
storage, and logic that can perform atomic read-modify-write 
operations on meta-data bits, FIFO pointers and logic, and a 
comparator that is used for a single cycle read-compare operation 
[9].  This allows the memory blocks to be configured to work as 
caches, local scratchpad memories, or FIFOs. The Tile uses a 
general crossbar to connect the memory blocks to the access ports 
of the processors, allowing different cache parameters (including 
associativity, block size, and coherence) to be set by the user.  

The quad protocol controller is a programmable message engine 
that can perform all the required communication between the 
Tiles, from cache refills and cache coherence protocol to complex 
DMA requests. We have already mapped conventional multi-
threaded models with shared memory and cache coherence, 
streaming [10] and transactional memory [11] on this platform. 

3. CMP GENERATOR 
While CMP architecture described in the previous section was 
designed to be directly implemented as a reconfigurable chip this 
approach had two significant shortcomings. The first was that the 
resulting system, while flexible, would not provide the end user 
the efficiency that was possible had the system been hard-wired. 
The second was that we could not take full advantage of the 
customization potential of the Tensilica processor to really match 
the memory system and the processor to the application. 

In thinking more about the efficiency problem, it became clear 
that we should consider the system we constructed as being used 
for design input, and not as the RTL for the final design.  Between 
the design input and output we could perform a number of 
optimization steps to improve the overall efficiency of the design. 
In addition to the obvious advantage of customizing the size and 
type of memories (e.g. using a CAM if needed) and using the 
Tensilica system to optimize the functional units of the processors 
to the applications, this two step process would also allow the user 
to compile out much of the flexibility that was in the original 
design framework.  The crossbar between the processor and all 
the memory mats becomes a set of wires; extra meta-data bits that 
are not used are removed, buffers can be sized to meet the actual 
traffic/number of outstanding requests, etc. 

We have used the current set of design synthesis tools to remove 
“dead code” when constants are used as configuration inputs to a 
flexible design. This approach was needed to map a configuration 
of our flexible architecture to an FPGA. Since FPGA gates were 
limited, we mapped the configured logic, and not the full design.  
The initial results look promising. 

Finally, for applications that have exceptionally high performance 
demands and require custom hardware accelerators that cannot be 
substituted by configurable processors, one could replace a 
processor with a specialized functional unit. This functional unit 
would be connected to the standardized memory interfaces 
developed for the processors to allow the hardware accelerator to 
access Tile memory blocks directly. 

The main benefit of the proposed CMP generator is reduced 
design and validation time. Validation should be simplified since 
all interactions between the interfaces have been already 

validated. Design time should be reduced because additional 
functionality is specified in a higher level language like TIE [2], 
and complex interface/communication issues have already been 
resolved. This allows the ASIC designer to focus on higher level 
design issues such as algorithms, and partitioning of data and 
computation. 

The starting point for many of the tools needed in the CMP 
generator already exists. Design tools that incorporate the 
verification environment within the code (such as System Verilog) 
can allow constant propagation into not only the RTL but the 
environment as well. Current synthesis tools can eliminate much 
of the redundant logic after customization, but we probably would 
like a higher-level optimization pass in these types of systems.  
The generated RTL would still need to be fed into the ASIC 
place-and-route flow. These systems are getting more automatic, 
and we expect that for highly structured designs like ours, 
sometime in the future, generating the layout from highly 
structured code will be fast and efficient. 

4. CONCLUSIONS 
We present a novel approach to reducing the very high NRE cost 
of chip design, by making chip design essentially the 
configuration/programming of an abstract, flexible machine. Our 
key insight is that much of the unneeded flexibility in the 
architecture could be identified and compiled out. This gives the 
potential of rapid design time, with a high-performance and power 
efficient silicon implementation. While the construction of the 
original generator would still be expensive, it could be amortized 
over many different designs. Experiments with our own flexible 
CMP system, built using Tensilica processors, look promising. 
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