
Chip Multi-Processor Generator
Alex Solomatnikov, Amin Firoozshahian, Wajahat Qadeer, Ofer Shacham, Kyle Kelley, Zain

Asgar, Megan Wachs, Rehan Hameed, Mark Horowitz
Stanford University

{sols, aminf13, wqadeer, shacham, kkelley, zasgar, wachs, rhameed, horowitz}@stanford.edu

ABSTRACT
The drive for low-power, high performance computation coupled
with the extremely high design costs for ASIC designs, has driven
a number of designers to try to create a flexible, universal
computing platform that will supersede the microprocessor. We
argue that these flexible, general computing chips are trying to
accomplish more than is commercially needed. Since design NRE
costs are an order of magnitude larger than fabrication NRE costs,
a two-step design system seems attractive. First, the users
configure/program a flexible computing framework to run their
application with the desired performance. Then, the system
“compiles” the program and configuration, tailoring the original
framework to create a chip that is optimized toward the desired set
of applications. Thus the user gets the reduced development costs
of using a flexible solution with the efficiency of a custom chip.

Categories and Subject Descriptors
B.7.2 [Hardware]: Integrated Circuits – Design Aids

General Terms
Algorithms, Performance, Design

Keywords
Chip Multi-Processor, High-Level Design

1. INTRODUCTION
The result of CMOS technology scaling is growing design
complexity and thus growing non-recurring engineering (NRE)
costs associated with the design and verification of the chip.
Complexity also makes it hard to predict the time-to-market and
increases the risks of application specific integrated circuit (ASIC)
design [1]. As a consequence, only IC market segments with large
volumes can justify the NRE costs of ASIC design.

One possible approach to improve design productivity, advocated
by reconfigurable processor IP providers such as Tensilica, is to
use customized embedded processors as a new fundamental
building block for complex systems-on-chip (SoC) [2]. Many
recent ASIC designs are actually chip multi-processors (CMP)
such as the Silicon Packet Processor of Cisco’s CSR-1 router [3],
TI’s OMAP platform [4], and Philips’ MSVD [5]. However, the
design of such SoCs is far more complex than just customization

of reconfigurable processors and optimization of software. Putting
together multiple heterogeneous processors and task-specific
hardware accelerators requires a lot of hardware and software to
interface the units to each other, making it a challenging design
and verification problem.

As a result of the difficulty in designing these SoC chips,
numerous startups and established companies are trying to create
the next generation computing platform, by extending FPGAs
with high-level primitives [6], creating more efficient computing
for an application domain [7], etc. We argue that there is a middle
ground in this conflict. To reduce the design NRE costs, we
should create a flexible/configurable abstract system that has been
optimized for a broad application domain. The application
developer will only need to configure this system, and port his
application code to run on this machine. Since this abstract system
would have well defined interfaces and high-level primitives, like
the next generation computing platforms, the complexity of the
design process should be similar to using a programmable engine.
The advantage of this approach is two fold. First, and most
important, it allows a more powerful set of configuration
operations, like creating a tailored functional unit, than would be
possible for a reconfigurable hardware solution. Second, it allows
tools to identify those portions of the architecture that are unused
or underutilized by the target applications and remove them from
the implementation.

Clearly there are many issues that need to be addressed before this
type of system can be a reality. The most obvious is the
requirement for an automated backend toolset that could take the
finished logic (with floor-plan information) and create a chip with
little manual intervention. More interesting are the tools that
perform the optimization of the design. One can imagine some
passes that are generic, and that would probably be used in all
such systems, while others would be domain specific and tied to
the input abstraction used.

In this paper we propose a chip multiprocessor generator based on
a reconfigurable CMP architecture. The basic reconfigurable chip
architecture is described in the next section. How this system can
improve chip efficiency is described in Section 3.

2. RECONFIGURABLE CMP
Our reconfigurable CMP design framework grew out of an earlier
effort to build a flexible chip multiprocessor [8]. It is a modular,
scalable hierarchical architecture, which integrates a large number
of processors and memory blocks on a single die. The system
consists of Tiles, each with two Tensilica cores, several
reconfigurable memory blocks, and a crossbar connecting them.
Tiles are placed in groups of four, forming Quads. Tiles in the
Quad are connected to a shared protocol controller. Quads are
then connected to each other and to the off-chip interfaces using
an on-chip network.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.

DAC 2007, June 4–8, 2007, San Diego, California, USA

Copyright 2007 ACM 978-1-59593-627-1/07/0006…5.00

262

15.1

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
DAC 2007, June 4–8, 2007, San Diego, California, USA.
Copyright 2007 ACM 978-1-59593-627-1/07/0006 ...$5.00.

The memory blocks inside the Tile contain dual-ported meta-data
storage, and logic that can perform atomic read-modify-write
operations on meta-data bits, FIFO pointers and logic, and a
comparator that is used for a single cycle read-compare operation
[9]. This allows the memory blocks to be configured to work as
caches, local scratchpad memories, or FIFOs. The Tile uses a
general crossbar to connect the memory blocks to the access ports
of the processors, allowing different cache parameters (including
associativity, block size, and coherence) to be set by the user.

The quad protocol controller is a programmable message engine
that can perform all the required communication between the
Tiles, from cache refills and cache coherence protocol to complex
DMA requests. We have already mapped conventional multi-
threaded models with shared memory and cache coherence,
streaming [10] and transactional memory [11] on this platform.

3. CMP GENERATOR
While CMP architecture described in the previous section was
designed to be directly implemented as a reconfigurable chip this
approach had two significant shortcomings. The first was that the
resulting system, while flexible, would not provide the end user
the efficiency that was possible had the system been hard-wired.
The second was that we could not take full advantage of the
customization potential of the Tensilica processor to really match
the memory system and the processor to the application.

In thinking more about the efficiency problem, it became clear
that we should consider the system we constructed as being used
for design input, and not as the RTL for the final design. Between
the design input and output we could perform a number of
optimization steps to improve the overall efficiency of the design.
In addition to the obvious advantage of customizing the size and
type of memories (e.g. using a CAM if needed) and using the
Tensilica system to optimize the functional units of the processors
to the applications, this two step process would also allow the user
to compile out much of the flexibility that was in the original
design framework. The crossbar between the processor and all
the memory mats becomes a set of wires; extra meta-data bits that
are not used are removed, buffers can be sized to meet the actual
traffic/number of outstanding requests, etc.

We have used the current set of design synthesis tools to remove
“dead code” when constants are used as configuration inputs to a
flexible design. This approach was needed to map a configuration
of our flexible architecture to an FPGA. Since FPGA gates were
limited, we mapped the configured logic, and not the full design.
The initial results look promising.

Finally, for applications that have exceptionally high performance
demands and require custom hardware accelerators that cannot be
substituted by configurable processors, one could replace a
processor with a specialized functional unit. This functional unit
would be connected to the standardized memory interfaces
developed for the processors to allow the hardware accelerator to
access Tile memory blocks directly.

The main benefit of the proposed CMP generator is reduced
design and validation time. Validation should be simplified since
all interactions between the interfaces have been already

validated. Design time should be reduced because additional
functionality is specified in a higher level language like TIE [2],
and complex interface/communication issues have already been
resolved. This allows the ASIC designer to focus on higher level
design issues such as algorithms, and partitioning of data and
computation.

The starting point for many of the tools needed in the CMP
generator already exists. Design tools that incorporate the
verification environment within the code (such as System Verilog)
can allow constant propagation into not only the RTL but the
environment as well. Current synthesis tools can eliminate much
of the redundant logic after customization, but we probably would
like a higher-level optimization pass in these types of systems.
The generated RTL would still need to be fed into the ASIC
place-and-route flow. These systems are getting more automatic,
and we expect that for highly structured designs like ours,
sometime in the future, generating the layout from highly
structured code will be fast and efficient.

4. CONCLUSIONS
We present a novel approach to reducing the very high NRE cost
of chip design, by making chip design essentially the
configuration/programming of an abstract, flexible machine. Our
key insight is that much of the unneeded flexibility in the
architecture could be identified and compiled out. This gives the
potential of rapid design time, with a high-performance and power
efficient silicon implementation. While the construction of the
original generator would still be expensive, it could be amortized
over many different designs. Experiments with our own flexible
CMP system, built using Tensilica processors, look promising.

5. REFERENCES
[1] Bryant, R., et al. Limitations and Challenges of Computer-

Aided Design Technology for CMOS VLSI. Proceedings of
IEEE, vol. 89, 3, March 2001, 341-365.

[2] Rowen, C. Reducing SoC Simulation and Development
Time. IEEE Computer, 11, December 2002, 29-34.

[3] Dixit, A. Networking Applications for Xtensa Configurable
Processors. Linley Tech 2006, January 25th 2006.

[4] Wireless Terminals Solutions Guide. Texas Instruments.
[5] Mutz, S., et al. Heterogeneous Multiprocessing for Efficient

Multi-Standard High Definition Video Decoding. Hotchips
18, August 2006.

[6] http://www.cswitch.com
[7] http://www.streamprocessors.com
[8] Mai, K., et al. Smart Memories: A Modular Reconfigurable

Architecture. International Symposium on Computer
Architecture, June 2000.

[9] Mai, K., et al. Architecture and Circuit Techniques for a
1.1GHz 16-kb Reconfigurable Memory in 0.18um-CMOS.
IEEE Journal of Solid- State Circuits, January 2005.

[10] Kapasi, U., et al. Programmable Stream Processors. IEEE
Computer, vol. 36, 8, August 2003, 54-62.

[11] Hammond, L., et al. Transactional Memory Coherence and
Consistency. International Symposium on Computer
Architecture, June 2004.

263

