SPECTRAV7O

70/46

G

Information
Systems

Processor
Reference Manual

70-46-601
March 1968

The information contained herein is subject

to change without notice. Revisions may be

issued to advise of such changes and/or
additions.

First Printing: April 1967

Reissued: March 1968

INTRODUCTION

SYSTEM STRUCTURE

INSTRUCTION
FORMATS

ADDRESSING

PROGRAM INTERRUPT

INPUT/OUTPUT
OPERATION

CONTENTS

Page

RCA Model 70/46 Processorcovueuieneeneneeaneannannnn 1
Organization of Data i 3
Data FOrmats . ..ovunt it ee e inas s s 3
Numbering Systemcc.ciiiiiiiiiiiiiiiniiiii 3
Main MeIMO Y ..o vvotte e i tesiei e ie e 4
Non-Addressable Main Memoryc.coiiieieinnrnnnn.n 4
Scratch-Pad MemoOryovuverve e iaeeanaaneeeaaennns 4
Translation Memoryc.ouiiiiiiineinnnn e, 5
Read-Only MemoOTryoviuniiuneennenenennneenneraennnns 6
Program Control and Arithmetic Unit, 6
Input/Output Controlc.coiiiiiiiiiiiii 3
INtErvAl TIINEE .« v oot ottt e e e e e et a e 8
RR FOrmatouiiii ettt ee it e i 9
RX Formatcciiiuenienenn.. [9
RS FOrmatcov ittt ittt ie it et teeae et itansaneaaaeananns 9
SI Format .. ovoo ettt it e et e 10
SS Format . ..cv vttt it et e e 10
Memory Address Translation oot 12
Introductionttt e e 16
Processor States .. ovvviit e e e e 16
Processing State P,ot 16
Interrupt Response State P, oo 16
Interrupt Control State P, il 16
Machine Condition State P,t 16

~ Processor State Registers ... 17
Program Countercoeuiniuniuniiennneneneenenen. 17
General Registerscouiirviiiiiinninniennnenenn. 18
Floating-Point Registersooiiiiiiiiiii i 18
Interrupt Status Registerso 18
Interrupt Mask Registersot 20
Program Mask Registersciiiiiiiiinn e, 20
Register Addressingcoiiiiiiiiiieiiniian 21
Interrupt Flag Registero, 21
Interrupt Conditionsoiuiiiiiiirii e 23
Interrupt Mechanizationcoiiieiiniivierainn 23
Automatic Interruptot 23
Program Controlled Interruptoy 33
Introduction . ..ot ittt i i e i s 36
Input/Output Chanmelsooiiiiiiiiin e 36
Selector Channelsvvvieeunenenenneenneaeaeasnnns 36
Multiplexor Channelottt e s 37

iii

INPUT/OUTPUT

OPERATION
(Cont'd)

MULTI-PROCESSOR
INSTALLATION

PRIVILEGED
INSTRUCTIONS

CONTENTS (Cont'd)

Page

Input/Output Operational Control 38
Programming Considerations Prior to Input/Output Initiation.. 38
Input/Output Initiation 38
Channel Servieing 0 i 38
Channel Address Word (CAW) 40
Channel Block Address (CBA) .. 40
Channel Command Word (CCW)Y o, 40
Input/Output Channel Registerscooooeoo ... 45
Channel Address Register (CAR)ooooooo . 45
Channel Command Register-II (CCR-II) 45
Channel Command Register-I (CCR-I) ..ovvivi i, 46
Assembly/Status Registerc.0o o 47
CBA Register 47
Input/Output Instructions 47
Start Device Instruction 00 47
Halt Device Instructionc.. 0 o'eeee i .. 52
Test Device Instruction 56
Check Channel Instruction 0. ... 60
Input/Output Status Indicatorso .. 60
Condition Code0uuuuie 61
Channel Status Byte0 . 63
Standard Device Bytecoouuiuene 65
Sense Bytes 66
Channel Servicingo i i 66
Servicing a Data Transfer 0o ... 67
End and Chaining Servicing 72
Interrupt Servieing 77
Introduction 81
Operational Characteristics oo 81
Direct Control Interfacec.ooo oo 82
Static Qut Linesoo oo 82
Static In Lines oo o 82
Signal Out Lineoouuie 82
External Signal In Linecooovoeoonn . 82
Power Failure Line (PFND) 82
Power Failure Inhibit In Line (PFIR) 82
Dual Processor Complexcoouuiruurnooo 83
Master/Satellite Complexo o 84
Maximum Multi-Processor Complex 85
Operational Procedures 86
Transmission Procedure 86
Response Procedure 86
Introduction 88
Instruction Formats 38
Interrupt Action 38
Function Call (FC) I 90
Special Function #1 Load Translation Memory (LTM) 92
Special Function #2 Scan Translation Memory and Store (STMS) 94
Special Function #3 Store Translation Memory (STM) 96
Special Function #4 Load Interval Timer (LIT) 97

iv

PRIVILEGED

INSTRUCTIONS
{Cont'd)

PROCESSOR STATE
CONTROL
INSTRUCTIONS

FIXED-POINT
INSTRUCTIONS

CONTENTS (Cont'd)

Page
Special Function #5 Store Interval Timer (SIT) 98
Special Function #6 Paging Queue and Paging Error Interrupt
T e T O 99
Load Scratch-Pad (LSP) ...t 102
Store Seratch-Pad (SSP) .. iin i 103
Program Control (PC)oiviiinieeiiniinreneees 104
105 0180 75 T R R 106
Diagnose (DIG)oiiniirminn e 107
Start Device (SDV) . onrtiriitie e 108
Halt Device (HDV) ...ttt iiiiiiiiia e 111
Test Device (TDV) . oivtiiii e 113
Check Channel (CKC) ... oviiiiii i 115
Insert Storage Key (ISK)o 116
Set Storage Key (SSK) ... 117
Write Direct (WRD) ...t 118
Read Direct (RDD) ..ottt 119
INtrodUCEION .« vt ot e et e 120
Instruction Formatcveviimiin s 120
Condition Code Utilizationccvoiitiriiiiiiiienraenn 120
Interrupt Actionc.ooiniiiiiiiiieiiiiii i 120
Supervisor Call (SVC)viiiiiiii i 121
Set Program Mask (SPM)ooiiiiiiiiniiiinn 122
INtrodUCtion .« oot e e et e e e 123
Data FOrMAL & ov ottt ettt et e te e enaaan e 123
Representation of NUmbersc.ooevueeenanromneeeeenes 123
INStruction FOTMAats . .oov e i ieemeenraeannasnaaeannes 124
Condition Code Utilizationcoviiiiiiiiirennn 125
Interrupt Actionc.iennii i 126
Load Word (LR) (L) .ottt innaea oo 127
Load Halfword (LH)c.uiiiniiiiiniiiii it 128
Load and Test (LTR) ... ovvit ittt 129
Load Complement (LCR)o 130
Load Positive (LPR) ... ot 131
Load Negative (LNR) ...ttt eein 132
Load Multiple (LM) .. vtnienteei ittt aaaees 133
Add Word (AR) (A) vttt 134
Add Halfword (AH) ... it 135
Add Logical (ALR) (AL) ..vuiirniiiiiiieiieiiie e 136
Subtract Word (SR) (S) ittt ea e 137
Subtract Halfword (SH) 138
Subtract Logical (SLR) (SL) ...t 139
Compare Word (CR) (C) .. .vuiriiiiii i 140
Compare Halfword (CH)o 141
Multiply Word (MR) (M) ...t 142
Multiply Halfword (MH)coiiiiiiiiieneiannnns 143
Divide (DR) (D) tourtieet ittt e 144
Convert to Binary (CVB) i 145
Convert to Decimal (CVD)oviiiiiiiiiiininn s 146
Store Word (ST) o vrr i ittt 147

FIXED-POINT
INSTRUCTIONS
(Cont‘d)

DECIMAL
ARITHMETIC
INSTRUCTIONS

LOGICAL
INSTRUCTIONS

CONTENTS (Cont'd)

Page
Store Halfword (STH) 148
Store Multiple (STM) 149
Shift Left Single (SLA)oo oo 150
Shift Right Single (SRA) 151
Shift Left Double (SLDA) 152
Shift Right Double (SRDA)cooooooeo 153
Introduction 154
Data Formats 154
Representation of Numbers 155
Instruction Format 155
Condition Code Utilization 156
Interrupt Action 156
Add Decimal (AP) o 158
Subtract Decimal (SP) 159
Zero and Add (ZAP) i 160
Compare Decimal (CP)ccooovieiioo 161
Multiply Decimal (MP)0.ooieoi 162
Divide Decimal (DP)c.ocovuiininin 163
Pack (PACK) ... 164
Unpack (UNPK) ... 165
Move with Offset (MVO)covuiuinen 166
Introduction 167
Data Format 167
Instruetion Formats 168
Condition Code Utilization 00 ooeoeo 169
Interrupt Action 169
Move (MVI) (MVC) oo 170
Move Numerics (MVN)ooouiuinnn 171
Move Zones (MVZ)o.coiuiiieniiaaii 172
Test and Set (TS)ooieieu i 173
Compare Logical (CLR) (CL) (CLI) (CLC) 174
AND (NR) (N) (NI) (NC) ..o 175
OR (OR) (0) (OI) (OC) ..o 176
Exclusive OR (XR) (X) (XI) (XC) oo 177
Test Under Mask (TM)ouuronns 178
Insert Character (IC)o . 179
Store Character (STC)oovurronrea 180
Load Address (LA) i 181
Translate (TR)oouuie e 182
Translate and Test (TRT)oovouronenr 183
Edit (ED) ... 184
Edit and Mark (EDMK)0ooio 187
Shift Left Single Logical (SLL) v, 189
Shift Right Single Logical (SRL)ovouronn . 190
Shift Left Double Logical (SLDL)oooovooo 191
Shift Right Double Logical (SRDL) ... 192

vi

BRANCHING
INSTRUCTIONS

FLOATING-POINT
INSTRUCTIONS

OPTIONAL
FEATURES

APPENDICES

CONTENTS (Cont'd)

Page
INEFOAUCEION ot ottt e e e 193
Sequential Executionc.ceiiiiiiiiaiiiii e 193
Instruction Formatso ire ittt 193
Interrupt Action 194
Branch on Condition (BCR) (BC)iii i 195
Branch and Link (BALR) (BAL) ...« 196
Branch on Count (BCTR) (BCT)oiciininiie e 197
Branch on Index High (BXH) o 198
Branch on Index Low or Equal (BXLE) 199
Execute (EX) ottt 200
INtrodUCEION . ottt e e e e e 201
Data Formats ..o oot i ittt it it eeantiieaaee s 201
Representation of Numbersoovieiiiieiie s 202
NOrMAlIZAtION . oottt ettt ettt et e et 202
Instruction Formatsouiinueuiienerenuannenannnens 202
Condition Code Utilizationciinitiininren e enen 203
Interrupt Actioncciiiinin i 204
Load (LER) (LE) (LDR) (LD)ovniiiiii e 205
Load and Test (LTER) (LTDR) it e 206
Load Complement (LCER) (LCDR)cieeeineenennn 207
Load Positive (LPER) (LPDR) i 208
Load Negative (LNER) (LNDR)o 209
Add Normalized (AER) (AE) (ADR) (AD) 210
Add Unnormalized (AUR) (AU) (AWR) (AW) 212
Subtract Normalized (SER) (SE) (SDR) (SD) 213
Subtract Unnormalized (SUR) (SU) (SWR) (SW) 214
Compare (CER) (CE) (CDR) (CD)vvviiiniiiniiennns 215
Halve (HER) (HDR)ttt 216
Store (STE) (STD) . vtn ittt iia i 217
Multiply (MER) (ME) (MDR) (MD)coiiiveinnnnnnees 218
Divide (DER) (DE) (DDR) (DD) ...oviiiriniiiiinnn 219
Feature 5001-46 — Memory Protect 220
Feature 5002-46 — Elapsed Time Clockcoviviiinnn 220
Feature 5019-46 — Elapsed Time Clock oot 221
Feature 5003-46 — Direct Controlcovvirvii et 221
Feature 5040 — Selector Channel i, 221
Feature 5041 — Selector Channel it 221
Feature 5042 — Selector Channel, 221
A — Summary of Instructionscooiiiiiiiiiien 224
B — Program Interruptscoouieniiniianiiannns 237
C — Input/Output Service Requestcoiiiiiieninn 239
D — Extended Binary-Coded-Decimal Interchange Code 240
E — USA Standard Code for Information Interchange........... 241
F ——Character Codescueeinitieirnnneenannneen s 242
G —Powers of Two Tableiiiiiii i 247
H — Hexadecimal-Decimal Number Conversion 248
I — Scratch-Pad Memory Layout and Register Assignments 253

vii

LIST OF TABLES

LIST OF
ILLUSTRATIONS

Table 1.
Table 2.

CONTENTS (Cont'd)

Basic Hexadecimal Marking System
Use of General Registersc..c0 i,

Table 2A. Analysis of Model 70/46 Move Instruction Results .

Table 2B. Analysis of Overlapped and Non-Overlapped Fields of

Table
Table
Table
Table
Table
Table
Table
Table 10.
Table 11.

PN oUW

Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure

Figure 10.
Figure 11.
Figure 12.
Figure 13.
Figure 14.

PPN o

Model 70/46 Move Instruction
Processor State Registersccoooeoooo ...
Instruction Length Codes
Interrupt State Identifier Codes
Program Indicator Codesoooononnnoo. ..
Register Addressing in Processor States
Interrupt Conditions and Priority
Interrupt Conditions

Data Formats0ouuuiununenn i
70/46 Translation Flow
Functional Logic of Automatic Interrupt
Functional Logic of Program Control Instruction
Functional Logic of Start Device Instruction.........
Functional Logic of Halt Device Instruction
Functional Logic of Test Device Instruction
Functional Logic of Check Channel Instruction.......
Functional Logic of Servicing a Data Transfer.......
Functional Logic of End and Chaining Servicing
Functional Logic of Interrupt Servicing
Dual-Processor Complexcuuuueronnnnii. ..

viii

15

15
17
17
18
19
21
22
24
41
45

30
34
48
54
57
59
68
74
78
83
84

INSTRUCTION INDEX

The index marks at the right edge of this
page line up with similar index marks in the
text. By merely examining the page edges,
the reader can quickly locate a category of
instructions.

Appendix A summarizes the instruction
set for the 70/46 Processor, including timing,
formats and condition codes.

ix

Instruction Index

Privileged

Processor State Control

Fixed-Point

Decimal Arithmetic

Logical

Branching

Floating-Point

Instructions

Instructions

Instructions

Instructions

Instructions

Instructions

Instructions

INTRODUCTION

RCA MODEL 70/46
PROCESSOR

Compatibility

¢ The 70/46 Processor incorporates features which increase the efficiency
of the system for time-sharing use and for conventional batch processing.
This is accomplished by using main and subsidiary memory to create a
virtual memory of two million bytes. The virtual memory consists of
blocks of either 4,096 or 2,048 bytes which are called pages. An address
translation feature translates the addresses of the virtual memory pages
into actual addresses as assigned in working memory by the operating
system. The translated actual addresses are then stored in a translation
memory which is used to implement the virtual memory.

The 70/46 Processor is a halfword-organized, variable-format processor
consisting of main memory, nonaddressable main memory, scratch-pad
memory, translation memory, read-only memory, program control and
arithmetic unit, input/output control, and a program interval timer.
The 70/46 provides multiprogramming with multiaccess time-sharing
capabilities.

User programs may run interactively at remote terminals or sequen-
tially under the automatic control of a job stream monitor where the
presence of the user is not required. The 70/46 also features an efficient
technique for the handling of I/0 data transfer through the reduction in
processing interference during I/O selector channel operations, and an
increase in the I/0 transfer rate capability.

The Time Sharing Operating System, which is used with the 70/46
Processor, consists of a set of control routines, language processors, and
service routines which enable the complete system to provide efficient
batch processing concurrently with time-sharing operations from remote
terminals.

4 All instructions, character codes, interrupt facilities, formats, and pro-
gramming features are functionally the same as corresponding features
on the 70/35, 70/45, and 70/55 Processors. Programs can be interchanged
between processors provided that:

1. Systems features are equivalent (Emulator features are not pro-
vided).

2. Programs are written to be independent of strict timing considera-
tions.

3. Programs are restricted to specified functions and do not use unspeci-
fied characteristics peculiar to the hardware of either processor.

4. Program interrupts does not occur where an instruction is terminated
with unpredictable results.

5. Programs are written subject to all specified compatibility restric-
tions.

Introduction

64 Bits
Double Word
32 Bits
Word Word
16 Bits]

{«— Halfword ————<———Halfword ———te———— Halfword—_+— Halfword ————
l«— Byte Byte Byte Byte Byte Byte Byte ~— Byte —
0 7|8 15|16 23 |24 3132 39 [40 47]48 55|56 63
Halfword Fixed-Point No. I l I |

1 15 I

s Integer I | | |
Fullword Fixed-Point No. I l

1 31 | | |

: |

Integer l

Short Floating-Point No. I

1 7 24 I | I

S Character Fraction I
Long Floating-Point No.

1 7 56
S

Character Fraction
Packed Decimal Number I
| 4 4 4 4 4 4 4 4
[Digit | Digit {Digit| | _ |Digit [Digit |Digit | Digit | Sign
|Zoned Decimal Number _ _
4 4 4 4 4 4 4 4
Zone | Digit |Zone |_ _ | __ _ | Digit |Zone_ |Digit|Sign |Digit
|Fixed-Length Logical Information l
32
Logical Data
Variable Length Logical Information o
8 8 8
Character Character o Character

NOTE: Numbers in upper right corners of blocks
indicate number of bits used.

Figure 1. Data Formats

2

ORGANIZATION
OF DATA

Byte

Halfword

Word

Doubleword

ltem/Field

Record

DATA FORMATS

NUMBERING
SYSTEM

Introduction

4 The following definitions describe the various levels of data organiza-
tion for the 70/46 Processor:

€ A bit is a single binary digit having the value of either zero or one.

€ A byte consists of eight information bits. It represents two decimal
digits, one alphabetic character, or one special symbol.

4 A halfword consists of two consecutive bytes beginning on a main
memory location that is a multiple of two.

€ A word consists of four consecutive bytes beginning on a main
memory location that is a multiple of four.

4 A doubleword consists of eight consecutive bytes beginning on a main
memory location that is a multiple of eight.

4 An item/field consists of any number of bytes that specify a particular
unit of information (numeric field, alphabetic name, street address, stock
number, ete.).

4 A record consists of one or more related items.

4 The basic unit of information in the 70/46 Processor is a byte, which
is the smallest addressable unit. A byte consists of eight information bits.
The parity bit ensures the accuracy of all bytes accessed by the processor.
Odd parity is used in the 70/46 Processor.

The internal code representation in the 70/46 is either the Extended
Binary-Coded-Decimal Interchange Code (EBCDIC) or the USA Standard
Code for Information Interchange (USASCII) as specified by program.
(See Appendices D and E.)

There are eight distinct formats for data in main memory (see figure
1). Further explanation of each format appears in the instruction sections
of this manual.

4 Since binary addresses are cumbersome to work with, the hexadecimal
numbering system has been adopted to represent characters and addresses
in the 70/46 Processor. The hexadecimal system has a base of 16. The
first ten marks are represented by decimal numbers zero (0) through
nine (9) ; the last six marks are represented by the letters A through F.

The basic hexadecimal marking system and its binary and decimal
equivalent are specified in table 1. (See Appendix H.)

Table 1. Basic Hexadecimal Marking System

Hexadecimal Binary Decimal Hexadecimal Binary Decimal
(Base 16) (Base 2) (Base 10) {Base 16) {Base 2) (Base 10)
0 0000 0 8 1000 8
1 0001 1 9 1001 9
2 0010 2 A 1010 10
3 0011 3 B 1011 11
4 0100 4 C 1100 12
] 0101 b] D 1101 13
6 0110 6 E 1110 14
7 0111 7 F 1111 15

SYSTEM
STRUCTURE

MAIN MEMORY

NON-ADDRESSABLE
MAIN MEMORY

SCRATCH-PAD
MEMORY

¢ The main memory of the RCA 70/46 Processor is the central storage
for both data to be processed and the controlling instructions. Main memory
consists of planes of magnetic cores, with each core representing one
binary digit. The smallest addressable unit of information in main memory
is one byte (eight bits). The first 128 locations of main memory are
reserved for processor use and must not be used by the program.

The basic cycle time of the 70/46 Processor is the time required to
access and transfer a halfword from main memory to the memory register
and regenerate the information in main memory. The memory cycle time
is 1.44 microseconds, and memory is available in a 262 KB module.

¢ A non-addressable main memory, is in addition to main memory and
cannot be addressed by programming. It contains the subchannel registers
that control the operation of input/output devices on the multiplexor
channel. A set of three 32-bit registers services each device on the multi-
plexor channel; 256 subchannel register sets and devices can be connected
to the multiplexor channel.

& The scratch-pad memory is a micromagnetic storage device consisting
of 128 four-byte words, the cycle time of which is 300 nanoseconds. Each
word is scratch-pad memory is uniquely addressed.

The following registers are contained in scratch-pad memory. (See
also Appendix 1.):

1. Processor Utility Registers — All locations designated as processor
utility registers are used by the processor for program control and
cannot be used by the program.

2. General Registers — These locations are the general registers for
each processor state. These registers are used by the program for
base addressing, for indexing, or for storing operands.

Note: The 70/46 Processor has four processor states that pertain
to system and program interrupts.

3. Interrupt Mask Registers — An Interrupt Mask register for each
processor state permits or inhibits 32 interrupt conditions.

4. Interrupt Status Registers— An Interrupt Status register for
each processor state stores interrupt identification information and
operational control information. This register contains indications
of the last state interrupted, the protection key, the decimal mode
(USASCII or EBCDIC), the privileged mode bit, and the supervisor
call identification.

4

SCRATCH-PAD

MEMORY
(Cont’d)

TRANSLATION
MEMORY

System Structure

5. Program Counter — A Program Counter for each processor state
contains the main memory address of the next instruction to be
executed, the condition code, the instruction length code, and the
program mask.

6. Input/Output Channel Registers — A set of four registers for each
selector channel controls input/output operation. A set of four
registers for the multiplexor channel controls initiation and ter-
mination of input/output operations on the multiplexor channel.

7. Floating-Point Registers — Four floating-point registers (each is
two words long) are used in floating-point arithmetic.

8. Interrupt Flag Register — One Interrupt Flag register is provided.
When an interrupt condition occurs, a bit associated with this con-
dition is set in the Interrupt Flag register.

¢ The Translation Memory is a magnetic storage device consisting of
512 halfwords (1,024 bytes), the cycle time of which is 300 nanoseconds.
Each halfword (two bytes) in the translation memory is uniquely addressed
and contains a translation table element which is used in translating
virtual addresses to actual addresses (see figure 2).

The translation table which is maintained in the translation memory
is loaded and stored from and to main memory by special EO (Elementary
Operation) routines. It is addressed during each main memory address-
ing cycle when translation is required. Address translation does not require
additional instruction time from that required by the basic 70/45 timing;
however, staticizing time for the SS-Format Load Multiple and Execute
instructions is increased when operating in 70/46 Mode.

Each element of the table consists of 17 bits (16 data bits plus 1
parity bit).

P WIG|U|S|E|M XXX REAL PAGE H
Bits (o) 1 2 3 4 5 6 8 9 14 15
P = Parity bit.

W = Written Into Bit: indicates, when set, that the page addressed in
memory by this translation word has been written into. This bit
indicates, when reset, that the page has not been written into.
This bit is set and reset by the processor.

G = Accessed Bit: indicates, when set, that the page addressed in
memory by this translation word has been accessed (read, or
written into). This bit indicates, when reset, that the page has
not been accessed. This bit is set and reset by the processor.
Attempted but unsuccessful access to a page does not set this bit.

U = Utilization Bit: indicates, when set, that the addressed transla-
tion word can be utilized. This bit indicates, when reset, that the
addressed translation word cannot be utilized and a Paging Queue
Program Interrupt condition occurs. This bit is set and reset by
the program.

TRANSLATION

MEMORY
(Cont’d)

Notes

READ-ONLY
MEMORY

PROGRAM
CONTROL AND
ARITHMETIC UNIT

System Structure

S = State Bit: indicates, when set, that the addressed page is non-
privileged. When this bit is reset, it indicates that the addressed
page is privileged. When this bit is reset and the nonprivileged
bit in the ISR is set, a Paging Error Program Interrupt condition
occurs. This bit is set and reset by the program.

E = Executable Bit: indicates, when set, that the page addressed in
memory by this translation word can be read as an operand or
instruction, but cannot be written into. If a program attempts to
write into a page with this bit set in the translation word, a
Paging Error Program Interrupt condition occurs. This bit
indicates, when reset, that the page addressed in memory can
be executed, read or written into. This bit is set and reset by
the program.

M = Page Control Bit: indicates, when set, that a 2,048-byte page is
referenced. This bit indicates, when reset, that a 4,096-byte page
is referenced. If the high-order bit of the displacement field is
set and M is set, a Paging Error Program Interrupt condition
occurs. This bit is set and reset by the program.

H = Page Address Bit: indicates, when set, and M is set, the high-order
address (2,048 bytes of a 4,096 byte page). This bit indicates,
when reset and M is set, the low-order address (2,048 bytes of a
4,096 byte page). This bit is ignored if M is reset. This bit is set
and reset by the program.

XXX bits are for future expansion and must be zeros (program
restriction).

¢ 1. The G condition is provided as a program flag to indicate written
into and/or accessed, respectively. A first time Read or Write to a
page would cause the G bit to be set.

2. This translation memory is provided in addition to the 128-word
memory used in scratch pad.

3. Addresses used in I/0O servicing and I/O data transfer are direct
and do not go through translation.

¢ Three banks of Read-Only Memory (ROM) are standard on the Model
70/46 Processor. Each ROM bank consists of 2,048 56-bit words (each
containing one micro-instruction of 53-bit [plus 3 parity bits] length).
In addition each ROM contains a 12-bit address register and a 54-bit
memory register.

The wired-in microprogram logic contained in the first read-only
memory bank controls the elementary operations when in the 70/45 or
70/46 Mode. The effective cycle time of the ROM banks is 480 nanoseconds
with a 56-bit access.

Although the Read-Only Memory is a standard feature in the 70/46,
it is not accessible by programming and the programmer need not be
familiar with the detailed method of operation of the ROM.

4 The program control and arithmetic unit in the Model 70/46 Processor
interprets and executes the instructions stored in main memory. Registers
and indicators monitor the sequence of operations, perform automatic
accuracy checks, and communicate with the RCA standard interface in
the control of input/output devices.

System Structure

mol4 uoup|supil 9/0L T eanbig

aNvy3do
70¥LN
340 NOILONY ISNI 40 0¥1NOD
$s3¥yaav vniov Lig -8l
1
liga 119 1ig e 118 18 1l
siig Lt lig 1 siigd 9 ss3yaav 39vd 209 TO¥LNOD angav J1VIS NOILlY a3ss320V OLNI
3ovd 39vd -31N23X3 -ZILn NILLIYM
Ll 9 0 1
Sl 1 6 8 9 S 14 £ Z 1
30
(x0)=
A 1
i
—> ALI¥Vd + S1i9 91
¥30d003da
] SNOILVDO1 3148 71§
AYOWIW NOILVISNVAL
N .
J
\
g 0
LON 4l
LdNYYIINI
slig ¢l slg 9 sug S 18 1
L INIWIDYASIA | 39vd INIWO3S a g B

31n23X3 ¥O HOL3d

ONIANA $S3YAAVY TVNLAIA
119-vZ ¥0 ‘ss3¥aAAv 3AILD3 443 L18-#C

INPUT/OUTPUT
CONTROL

INTERVAL TIMER

System Structure

€ The RCA 70/46 Processor communicates with all input/output devices
through the RCA standard interface.

The 70/46 Processor can have up to four selector channels (optional).
Each selector channel contains two standard interface trunks. Each stand-
ard interface trunk controls one device subsystem (from 1 to 16 devices).
All selector channels can operate simultaneously.

In addition to the selector channels, a multiplexor channel is standard
equipment on the 70/46 Processor.

The multiplexor channel on the 70/46 contains eight standard interface
trunks. Each trunk controls one device subsystem. All trunks on the multi-
plexor channel can operate simultaneously. Also, the multiplexor channel
and all selector channels can operate simultaneously.

¢ The 70/46 has a variable 16-bit Interval Timer which can be set and
read by the program. Upon being set to a nonzero value, the least significant
bit position of the timer is decremented by one every 100 microseconds
until its count becomes zero. Further decrementing is suppressed and the
Interval Timer (Flag Position 12) interrupt is effected, subject to the
corresponding mask. The Interval Timer runs when set to a nonzero
value; otherwise it does not run. The decrement of the count occurs such
that the total elapsed time is never less than the count set in the Interval
Timer. The maximum possible time interval is not greater than 100 micro-
seconds more than the loaded count. This timer is not available to 70/35,
70/45, and 70/55 programs.

The Interval Timer is an independent unit capable of being read and
loaded by Special Functions. Decrementation occurs simultaneously with
processing and causes no interference to either processing (except for
program interrupt upon lapse of count) or 1/0 servicing. When the proces-
sor is halted, the Interval Timer decrementing is stopped. General reset
causes the Interval Timer to be reset to zero.

Note: Use of the Interval Timer and Diagnostic Snapshot by programs
may not occur together because the Counter register is common
to both. If the Diagnose function is initiated while the Interval
Timer is running, the shared counter is cleared to zero without
occurrence of the Interval Timer interrupt and the Diagnose func-
tion assumes control of the counter. If the function being diagnosed
is the Load Interval Timer, the actual loading of the counter is
inhibited but the E/O Flow is diagnosed.

INSTRUCTION
FORMATS

RR FORMAT

RX FORMAT

RS FORMAT

& The five basic instruction formats express, in general terms, the opera-
tion to be performed as follows:

RR = register-to-register

RX = register-to-indexed main memory

RS = register-to-main memory

SI = main memory and immediate operand operation

SS = main memory to main memory

The instruction subfields are defined as follows:

R,, R,, R, — four-bit general register designation used for an operand
X, — four-bit general register designation used for indexing
B,, B, — four-bit general register designation used for base
addressing
D,, D, — 12-bit displacement
I, — eight-bit immediate operand
L,, L, — four-bit operand length specification
L — eight-bit operand length specification
M — eight-bit mask
Before executing the Load Multiple, Store Multiple, and the SS format
instructions, an address look-up is performed to insure that all pages
referenced can be utilized. The time required for this address look-up is
in addition to regular staticizing time. If T =1 (70/46 Mode), the addi-
tional time is required. If T =0 (70/45 Mode), no additional time
is required.

¢ The contents of the general register specified by R, is the first operand.
The contents of the general register specified by R, is the second operand.
In floating-point operations, R, designates the address of the floating-point
register that contains the first operand. R, designates the floating-point
register that contains the second operand. The first and second operands
can be the same and arc designated by identical R, and R, addresses.

Op Code R, R,

0 7T 8 11 12 15

& The contents of the general register specified by R is the first operand.
To obtain the address of the second operand, the contents of the general
registers specified by X, and B, are added to the D, field. In floating-point
operations, R, designates the floating-point register that contains the
first operand.

Op Code R, X, B, D,

0 7 8 11 12 15 16 19 20 31

¢ The RS format is used by shift instructions, branching instructions,
and load/store multiple instructions.

Op Code R, R, B, D,

0 T 8 11 12 15 16 19 20 31

Shift Instructions

Branching Instructions

Load/Store Multiple
Instructions

S| FORMAT

SS FORMAT

Notes

Instruction Formats

¢ The contents of the general register specified by R, is the first operand.
The contents of the general register specified by B, are added to the D,
field. The sum specifies the number of bits of shifting to be done by the
shift operation. The R; field is ignored.

4 The contents of the general register specified by R, is the first operand.
The contents of the general register specified by B, are added to the D,
field to obtain the branch address. The contents of the general register
specified by R; is the third operand.

¢ The R, and R, fields specify the general register boundaries. The con-
tents of the general register specified by B, are added to the D, field to
obtain the main memory address of the second operand.

¢ The contents of the general register specified by B, are added to the
contents of the D, field to obtain the address of the first operand. The
second operand is the immediate eight-bit byte in the T, field of instruction.

Op Code I, B, D,

0 7 8 15 16 19 20 31

¢ The contents of the general register specified by B, are added to the
contents of the D, field to obtain the address of the leftmost byte of the
first operand. The L, field specifies the number of additional bytes in
the operand that are to the right of the first operand address. To obtain
the second operand address, the contents of the general register specified by
B, are added to the contents of the D, field. The L, field specifies the
number of additional bytes in the operand that are to the right of the
second operand address. The L field specifies the number of additional
bytes that are to the right of the first and the second operand address.

L
Op Code B, D, B, D,
Ll L2

0 7 8 11 12 15 16 19 20 31 32 356 36 47

¢ 1. A zero appearing in the X,, B, or B, fields indicates an absence of
the corresponding address or shift-amount component. An instruc-
tion can specify the same general register both for address modi-
fication and for operand location.

2. Address modification is completed before the execution of an
operation.

3. The results replace the first operand (except in Store Character
instruction, where the result replaces the second operand).

4. A variable-length result is never stored outside the field specified
by the address and length.

5. The contents of all registers and main memory locations not speci-
fied by an instruction remain unchanged except for the Edit and
Mark instruction and the Translate and Test instructions. These
instructions automatically use certain general registers as given
in table 2.

10

SS FORMAT
(Cont'd)

Table 2. Use of General

Registers

Instruction Formats

Processor State*

Edit and Mark

Translate and Test

Y.

GR 1
GR 1
GR 13
GR 9

GR 1 and 2
GR 1 and 2
GR 13 and 14
GR 9 and 10

* Processor States are discussed on page 16,

11

ADDRESSING

Paging and
Segmentation

MEMORY ADDRESS
TRANSLATION

4 Locations in main memory are consecutively numbered starting with
zero. In forming an address, the base address (B, B.) and the index (X,)
are treated as unsigned 24-bit positive binary numbers. The displacement
(D, D.) is treated as a 12-bit positive binary number. The three are added
together as absolute binary numbers and overflow is ignored. The results
of these additions yields an 18-bit effective address.

Any address that is within the effective address, but specifies memory
not available in the particular installation, causes an interrupt to occur.
Any address that is outside the effective address as shown above is
ignored. However, to maintain program compatibility on all processors,
all addressing should assume a 24-bit effective address. Negative indexing
may be achieved by address wrap-around since overflow bits over the 24-bit
address are ignored.

4 Paging and segmentation are used to allocate more memory space to
the computer program than is actually available in the processor. The
70/46 System uses special equipment features and programming to provide
this virtual memory capability.

The 70/46 main memory is divided into blocks of equal size called
pages. A 70/46 program can consist of many of these pages but, during any
one execution stage, only those pages required for that execution stage
are in main memory. The pages that are not required are maintained in
subsidiary storage. The 70/46 programming relocates program pages
dynamically within main memory so that programs are executable in
different main memory locations. The 70/46 basic page size is 4,096 bytes.
At the discretion of the program, a 2,048-byte page size can also be used.
This shorter page length makes it possible to pack main memory more
tightly as well as reducing the transfer time between subsidiary storage
and main memory for short routines that do no require a full 4,096 byte
page of storage space. Use of the 2,048 byte page, however, reduces the
available virtual memory space by half since the addressing scheme pro-
vides for only 512 pages regardless of whether they are 4,096 bytes or
2,048 bytes.

The 70/46 provides a grouping of the virtual memory pages into
segments. Segments are independent, logical entities composed of 64 pages.
In the 70/46 only eight of the 32 potential virtual segments are imple-
mented, each segment consisting of 64 pages. If all pages of all eight
segments are 4,096 byte pages, a total virtual memory of two million
bytes is available. If all pages of all segments are 2,048 byte pages, a total
virtual memory of one million bytes is available. Because address incre-
mentation wraps around on 262,144 bytes (equivalent of a segment), no
equipment means are provided to sequence a program from one segment
to another.

& The following two modes are defined for control of memory address
translation :

1. 70/46 Mode: causes all non-I/O memory addresses (instruction
sequence and operands) to be translated if the D-bit within each
address is zero.

12

MEMORY ADDRESS

TRANSLATION
(Cont'd)

Notes

Addressing

2. 70/45 Mode (non-translate): Memory is addressed directly using
the addresses generated during staticizing. The 70/45 mode is used
by all programs other than 70/46 programs.

In the 70/46 mode each memory address, except I/0 instruction execu-
tion and servicing, may be translated. The addresses (called virtual
addresses) of instructions, taken from the next instruction address field
of the P-counter, and data operands may be translated via a table look-up
to obtain actual memory addresses. Virtual addresses consist of 24 bits
using the following format:

1 Bit 5 Bits 6 Bits 12 Bits

D Segment Page Displacement

The 24-bit virtual address is the address in the P-Counter (NIA Field),
or, the operand address after all required address arithmetic has been
performed.

The page and displacement compose the 18-bit address field and are
generated by the 18-bit address arithmetic. The segment is an additional
subfield carried in the 24-bit NIA field within the P-counter or supplied
by 5 bits within the 24-bit low-order address portion of a base register.

Note: These bits positions are ignored in index registers (RX Format).
The D bit is used to specify direct addresses (untranslated) if the
Privileged Mode is established (N = 0).

In the 70/46 Mode, with the Page Control Bit set (2,048 byte pages),
the 11 low-order bits of the displacement field are used, untranslated, in
actual memory addresses. The high-order bit must be zero. When the Page
Control Bit is reset (4,096 byte pages), the 12-bits of the displacement
field are used, untranslated, in actual memory addresses. The 11-bits of
the page and segment are used to address 8 virtual segments, each with
64 virtual pages. The six page-bits and three low-order segment bits are
combined to yield a nine-bit Translation Table address. The two unused
segment bits are reserved for future expansion and must be zeros in order
to avoid a PD error interrupt.

& 1. The page size of the 70/46 is 2,048 bytes or 4,096 bytes, depending
on whether the Page Control Bit (M) in the translation word is set
(1) or reset (0), respectively. Pages are independent and need not
occupy contiguous physical memory space. The low-order halves of
4,096-byte virtual pages are occupied by 2,048-byte virtual pages;
if they do not, (i.e, M =1 and the high-order Displacement Field
bit is set), a Paging Error Program Interrupt Condition occurs.

2. Only base registers and P-counters supply segments; these bits are
ignored within index registers in forming effective operand addresses.
If no base register is specified (that is B = 0), then the D bit is
interpreted as 0 and segment 0 is addressed.

3. The contents of a translation table element are accessed and linked
together with the displacement to compose the actual memory

address. A control field is provided with each table element.

13

Notes
(Cont’d)

Addressing

4. The SS MOVE instructions in the 70/45 (to maintain compatibility

with the System/360) are implemented such that if the source and
destination fields are adjacent (overlap each other), the first byte of
the source field will be extended into the destination field, resulting
in a symbol fill. Similarly, in SS logical instructions with adjacent
fields, each byte operation uses the result of the preceding logical
operation as an operand. Since the implementation of these instruc-
tions in the 70/46 are more complex, the purpose of this note (with its
supporting tables) is to define this implementation in further detail.

The step-by-step operations for overlapped and non-overlapped fields
in the move instructions are detailed in table 2A. Similar results are
obtained for the SS Logicals except that instead of extending a source
character when fields overlap, the result of each operation is extended.

The conditions which determine whether a MOVE in the 70/46 will
result in an actual move or in a fill are detailed on the chart in table
2B. The same rules apply to SS Logical instructions in as much as
an actual move is equivalent to a valid logical result and a fill is
equivalent to extending the preceding result as an operand. The
chart may generally be summarized in narrative form as follows:

a. Two addresses are virtually non-adjacent and they do not trans-
late into the same page: A move field results.

b. Two addresses are virtually adjacent (page and displacement)
and they are:
(1) in the same segment: a symbol fill results.
(2) in different segments and actual addresses are adjacent: a
symbol fill results.
(8) in different segments and actual addresses are not adjacent:
a field move results.

c. If one address is direct (untranslated) and the other address is a
virtual address, the result is a field move. An exception occurs
when the virtual and direct addresses are adjacent and the trans-
lated virtual address is adjacent to the direct address, in which
case the result is a symbol fill.

14

Notes

(Cont’d)

Addressing

Table 2A. Analysis of 70/46 Move Instruction Results

Vst Address 2nd Address Translation Instruction
D|S P Dis D|S P Dis Result Result
1. | 0 JA |B c+1 |0 |A |B|C Fill
2.101A |B c+1/0]|A |D|C (B) %% (D) C+1+#0 Move
3. | 0 |A |B41]| 000 0 |A |B |FFF | (B)# (B41) Fill
4. | 0 |A |B+1 | 000 o |A |B |FFF | (B)=(B+1) Fill
5.] 0]A|B c+1(0 |A|D|C (B) = (D) Move
6. | 1 B C+1 |0 B |C (B)=B Fill
7. 11 B C+11}0 D|C (D) #B Move
8 |1 B C+1 10 B |C (B) #B Move
9. |1 B C+110 D|C (D)=B Move
10. | 0 |A | B c+1]l0|E |B|C (AB) # (EB) Move
11. | 0 [A | B C+1|0 |E |B|C (AB) = (EB) Fill
12. | 0 A B C+1 {0 {E |D|C (AB) = (ED) Move
13. | 0 [A |B c+1lo0 |EID|C (AB) # (ED) Move
Legend:
D — Direct Address Bit Dis = Displacement
S = Segment (X) = X Translated
P = Page

Table 2B. Analysis of Overlapped and Non-Overlapped Fields of
70/46 Move Instruction

Overlapped Fields

(Move four byte field starting at Memory Location 1 into destination field
starting at Memory Location 2.)

Memory Locations

1 2 3 4 5
Before A B C D E
1st Operation A A C D E
2nd Operation A A A D E
3rd Operation A A A A E
4th Operation A A A A A
After A A A A A

Non-Overlapped Fields
(Move four byte field starting at Memory Location 1 into destination field
starting at Memory Location 5.)

Memory Locations
1 2 3

Before
1st Operation
2nd Operation
3rd Operation
4th Operation
After

B P
WwWwwWww
acacaaaaaQ
gogougouo| s
B o N w
W w W e
aaa MMM N
voEsEdE o

15

PROGRAM
INTERRUPT

INTRODUCTION

PROCESSOR STATES

Processing State P,

Interrupt Response
State P,

Interrupt Control
State P,

Machine Condition
State P,

4 Program interrupts occur as a result of errors in data or instruction
specifications, input/output operations, external signals, equipment mal-
functions or arithmetic errors. The instruction being executed at the time
of the interrupt can be completed, suppressed, or terminated depending on
the cause of the interrupt.

An interrupt can be inhibited or permitted in any state through pro-
gramming. If an interrupt occurs and is permitted, conditions existing in
the interrupted state are automatically stored. Control is then passed to
the Interrupt Control State P; or Machine Condition State P,, depending
on the cause of the interrupt. (See Processor States below.) The priority
of the interrupt is established and an analysis is made to determine the
proper linkage to the Interrupt Response State P, so that the interrupt
may be processed. After interrupt processing is completed, control is
returned to the state which was last interrupted, and normal processing
is resumed.

If several interrupts occur at the same time, the one having the highest
priority is processed. The remaining interrupts are processed in turn,
depending on their priority.

¢ The RCA 70/46 Processor has four processor states that provide control
of system and program interrupts. Programs can be executed in any one
of the states, because each state is completely independent and has its own
set of registers. The processor states and their functions are as follows:

€ The Processing State P, interprets and executes the user’s program.
This processing state is the problem-oriented state.

4 The Interrupt Response State P, performs specific program tasks as
dictated by the Interrupt Control State P,.

¢ The Interrupt Control State P, is automatically entered when an inter-
rupt that is other than one caused by a machine check or power failure
is recognized. In this state, programming is responsible for performing a
detailed analysis of the cause of the interrupt and establishing its priority.
After these functions are performed, linkage is provided to the related
interrupt processing routine in the Interrupt Response State P,.

4 The Machine Condition State P, is entered whenever a machine check,
scratch pad memory parity error (if applicable), or power failure occurs.
In this state, programming analyzes the cause of a machine interrupt and
establishes its priority. Control is then transferred to the Interrupt
Response State P,, so that an indication of the cause of interrupt can be
given to the operator.

16

PROCESSOR STATE
REGISTERS

Program Counter

Program Interrupt

& Registers are provided in scratch-pad memory, for each processor state
as given in table 3.

Table 3. Processor State Registers

State
Register

Py P2 P3 Ps
Program Counter . 1 1 1 1
General Registers 16 16 6 5
Floating-Point Registers * *
Interrupt Status Register 1 1 1
Interrupt Mask Register 1 1 1

* Floating-point instructions executed in any of the processor states use the floating-
point registers assigned to P,.

Because each processor state has its own general registers, Interrupt
Status Register and Interrupt Mask Register, storing and reloading these
registers is not necessary during interrupt processing.

& The Program Counter (P-counter) is a 32-bit register that is located
in scratch-pad memory. A separate P-counter is provided for each of the
four processor states.

The format of the P-counter is as follows:

ILC CC Program Mask Next Instruction Address

o 1 2 3 4 7 8 31

Bit Positions 0 and I contain the instruction length code. When an
interrupt occurs and is taken, or a Program Control instruction is exe-
cuted, the length of the last instruction executed in the terminated state,
before the interrupt condition occurred, is stored in bit positions 0 and 1
as given in table 4. The instruction length code is always generated from
the operation code of the instruction.

Table 4. Instruction Length Codes

ILC Length in Bytes

01 Two-byte instruction.
10 Four-byte instruction.
11 Six-byte instruction.

Notes:

1. If the interrupt condition is an operation code trap, the length of
the instruction causing the interrupt is generated from the opera-
tion code and is stored in bit positions 0 and 1 as given in table 6.

2. The instruction length code is unpredictable if the interrupt was
caused by one of the following:
Power Failure
Machine Check
Address Error (only if the address error was caused
by an invalid instruction address)

17

Program Counter

(Cont’d)

General Registers

Floating-Point Registers

Interrupt Status Registers

Program Interrupt

Bit Positions 2 and 3 contain the condition code. When an interrupt
occurs or a Program Control instruction is executed, the condition code
i1s moved from a machine register, where it is maintained for instruction
execution, and stored in this field of the P counter of the state being ter-
minated. The condition code in this field of the P counter of the state being
initiated is moved into a machine register where it is maintained for
possible future use.

Bit Positions 4 through 7 contain the program mask. When an inter-
rupt occurs or a Program Control instruction is executed, the program
mask is moved from the machine register, where it is maintained for
instruction execution, and stored in bits 4 through 7 of the P counter of
the state being terminated. The program mask in this field of the P counter
of the state being initiated is moved into the machine register where it is
maintained for possible future use.

Bit Positions 8 through 31 contain the next instruction address. This
field stores the address of the next instruction in main memory to be
staticized by the appropriate processor state. Each time an instruction is
staticized, the P counter is updated to the next instruction. This field is
left intact whenever an interrupt requires switching to a new processor
state.

¢ A separate set of general registers is assigned to each processor state.
Each general register is 32 bits long. Sixteen general registers are assigned
to P, and P,, six general registers are assigned to P;, and five general
registers are assigned to P,. These registers serve as operands, base address
registers, or index registers.

¢ Four floating-point registers are provided. Each floating-point register
is 64 bits long (double length). These registers are used only in floating-
point arithmetic. The floating-point registers can be used by any of the
processor states.

4 The Interrupt Status register is a 32-bit register. A separate register
is provided for each of the four processor states.

The format of each Interrupt Status register is as follows:

ISI | 000 PI KEY A T B N 00000000 Call (R, R,)

0 23 56 78 1 12 13 14 15 16 23 24 31

Bit Positions 0 through 2 contain the interrupt state identifier. When
an interrupt occurs, the number of the processor state being interrupted is
stored in this field of the processor state being initiated as given in table 5.

Table 5. Interrupt State ldentifier Codes

ISl Definition

000 P, was interrupted.
001 P, was interrupted.
010 P, was interrupted.
011 P, was interrupted.

18

Interrupt Status Registers

(Cont’d)

Program Interrupt

Bit Positions 3 through 5 are not used and must be zeros.

Bit Positions 6 and 7 contain the program indicators. When an inter-
rupt occurs due to a parity error in Main Memory or Scratch Pad Memory,
the program indicators are stored in this field in P, as given in table 6.

Table 6. Program Indicator Codes

Program Indicators Definition
00 Neither error has occurred.
01 Scratch Pad Memory parity error has occurred.
10 Main Memory parity error has occurred.
11 Seratch Pad Memory parity error and Main
Memory parity error have occurred.

Bit Positions 8 through 11 contain the memory protection key. This
field is set by the program to indicate the desired protection key. When an
interrupt occurs or a Program Control instruction is executed, the memory
protection key is extracted from this field of the processor state being
initiated and placed in a machine register where it performs the memory
protect function. The four-bit key provides a possible 15 keys ranging from
(1)1 to (F).. Each 2,048-byte block of main memory has its individual
machine register for the protection key. When the key related to the cur-
rent processor state and the key related to the main memory block are
equal, or either is zero, the main memory block accepts a data store.
Conversely, if the keys do not match, and neither is zero, an address error
(protection) interrupt occurs.

Notes:
1. If the memory protect feature is not installed, this field must be zero.

2. Keys are effective on actual (after translation) addresses.

Bit Position 12 designates the internal decimal code. When an inter-
rupt occurs or a Program Control instruction is executed, the decimal code
(either USASCII or EBCDIC) for the processor state being initiated is
established by the setting of this bit. If the bit is 1, USASCII Code is
established ; if the bit is 0, EBCDIC is established.

Note: The setting of this Decimal Code does not affect any automatic trans-
lation of data read into or written from the processor. The Decimal
Code is used to determine what zone configuration (USASCII or
EBCDIC) is to be established internally when executing the deci-
mal arithmetic instruction set, the Edit instruction, and the Edit
and Mark instruction.

Bit Position 13 is defined as the 70/45-46 Mode Control bit (T-bit)
for the 70/46 processor. It specifies whether translation is allowed.

T=1: 70/46 Mode: Direct Addressing or Translate Addressing
is specified by the setting of the D-bit.

T=0: 70/45 Mode: Direct Addressing only, the setting of the
D-bit is ignored.

Notes:

1. General reset resets the T-bit to zero.

19

Interrupt Status Registers

(Cont’d)

Interrupt Mask Registers

Program Mask Registers

Program Interrupt

2. When T = 1, the D-bit within the virtual addresses (supplied by the
NIA field of the P counter or the effective operand addresses after
staticizing — except 1/0 instructions) specify either address trans-
lation or direct addressing.

D =1: Direct addressing.
D =0: Translate addressing.

Bit Position 14, the B-bit, is controlled by the hardware via the Func-
tion Call instruction to control which ROM bank is used. It has no
meaning to the software.

Bit Position 15 is the non-privileged mode bit. This field is set by the
program to indicate the privileged status of the processor state being
initiated. If N = 0, the initiated processor state runs in the privileged
mode, allowing execution of the privileged instructions; if N =1, the
processor state runs in the non-privileged mode, inhibiting the execution
of the privileged instructions.

Bit Positions 16 through 23 are not used and must be zeros.

Bit Positions 24 through 31 is the call field. This field is set during the
execution of a Supervisor Call instruction. The R, and R, field of this
instruction provide a code which is placed into the call field of the Inter-
rupt Status register of the processor state in which the Supervisor Call
instruction is issued. This code provides linkage to the program required
to accomplish the purpose of the Supervisor Call instruction.

4 The Interrupt Mask register is a 32-bit register. A separate register
is provided for each of the four processor states. Each bit in the Interrupt
Mask register is associated with an interrupt condition. A 0 bit in any bit
position in this register inhibits the associated interrupt condition; a 1 bit
in any bit position in this register permits the associated interrupt
condition.

Important:

1. The Power Failure and Machine Check interrupts must be inhibited
in the Machine Condition State P,. The mask bits in the Interrupt
Mask register for these interrupt conditions must always be zero.
This is a program restriction.

2. All interrupts except the Machine Check interrupt must be inhibited
in the Interrupt Control State P,. The mask bit in the Interrupt
Mask register for this interrupt condition must always be zero.
This is a programming restriction.

¢ In addition to the Interrupt Mask register, a Program Mask register
Is also provided for each state. The Program Mask register is not contained
in main memory or scratch-pad memory. It is a separate machine register
which is set by the non-privileged instruction, Set Program Mask, and it
applies to the following interrupt conditions:

Significance error.

Exponent underflow.

Decimal overflow.

Fixed-point overflow.

20

Program Mask Registers
(Cont’d)

Register Addressing

Interrupt Flag Register

Program Interrupt

The program mask bit settings have priority over the bit settings in
the Interrupt Mask register for the above four program interrupts. A 0 bit
in any bit position in this register cancels the interrupt condition if it
occurs. A 1 bit in any bit position in this register indicates that the Inter-
rupt Mask register is to be examined. If an interrupt condition occurs and
is inhibited by the Interrupt Mask register, it remains pending until it is
serviced (permitted).

& Register addressing in each of the processor states is given in table 7.

Table 7. Register Addressing in the Processor States

Register Processor States
Number
Py Fa P3 Ps
0 GR GR IMR, P, State Processor Utility
1 GR GR ISR, P, State Processor Utility
2 GR GR P counter, P, State Processor Utility
3 GR GR Interrupt Flag Register Processor Utility
4 GR GR IMR, P, State Processor Utility
5 GR GR ISR, P, State Processor Utility
6 GR GR P counter, P, State Processor Utility
7 GR GR GR Processor Utility
8 GR GR IMR, P, State GR
9 GR GR ISR, P, State GR
10 GR GR P counter, P, State GR
11 GR GR GR GR
12 GR GR GR IMR, P, State
13 GR GR GR ISR, P, State
14 GR GR GR P counter, P, State
15 GR GR GR/Weight GR/Weight

GR = General Register
IMR = Interrupt Mask Register
ISR = Interrupt Status Register

Notes:

1. The P counter, Interrupt Status register, and Interrupt Mask reg-
ister for processor state P, P, and P, can be addressed by register
notation (R,, R, or R, field of an instruction) in processor state P,
only. The P counter, ISR and IMR for processor state P, can be
addressed by register notaticn in processor state P, only. Because
the P counter, the ISR’s and the IMR’s are contaiued in scratch-
pad memory, they can be addressed in any of the processor states
by using the Load Scratch Pad instruction and the Store Scratch
Pad instruction. However, these instructions are privileged instruc-
tions and the processor state in which they are executed must be
running in the privileged mode. (Bit position 15 of the appropriate
Interrupt Status register must be set to zero.)

2. Floating-Point registers may be addressed by floating point instruc-
tions only, and are addressed as 0, 2, 4 and 6 in all processor states.

¢ The Interrupt Flag register is a 32-bit register. There is only one
Interrupt Flag register. When an interrupt condition occurs, a bit asso-
ciated with the specific interrupt is set in the Interrupt Flag register.
If the corresponding bit in the Interrupt Mask register for the current
state is set, an interrupt occurs.

21

Interrupt Flag Register
(Cont’d)

Program Interrupt

Note: If the interrupt condition is one of the four program interrupts,
the corresponding bit in the Program Mask register must also be
set to cause an interrupt.

The Interrupt Flag register is scanned on a priority basis and the
highest priority interrupts are serviced first. Each interrupt condition is
assigned a specific weight which is put into the rightmost eight bits of
General register No. 15 of the initiated state (P; or P,). This weight can
be used by the program to enter the proper interrupt routine.

Note: The rightmost two bytes of General register No. 15 in P, or P, are
cleared and reloaded each time an interrupt oceurs.

Table 8 lists the priority, the Interrupt Flag register position, the
program state initiated, and the weight of each of the interrupt conditions.

Table 8. Interrupt Conditions and Priority

Priority Interrupt Condition Fla.g ?{a e Weight
*Bit Initiated

1 Power Failure 20 P, 0
2 Machine Check 2 P, 4
3 External Signal No. 1 22 P, 8
4 External Signal No. 2 23 p, 12
5 External Signal No. 3 24 P, 16
6 External Signal No. 4 23 P, 20
7 External Signal No. 5 26 P, 24
8 External Signal No. 6 27 P, 28
9 Interval Timer 28 P, 32
10 Selecter Channel No. 1 29 P, 36
11 Selector Channel No. 2 210 P, 40
12 Selector Channel No. 3 21 P, 44
13 Selector Channel No. 4 212 P, 48

Not used

Not used
16 Multiplexor Channel 215 P, 60
1 Elapsed Time Clock 218 P, 64
18 Console Interrupt Request 217 P, 68
19 Paging Error 218 P, 72
20 Paging Queue 219 P, 76
21 Supervisor Call Instruction 220 P, 80
22 Privileged Operation 221 P, 84
23 Op-Code Trap 222 P, 88
24 Address Error (Protect, 223 P, 92

Addressing, Specification)
25 Data Error 224 P, 96
26 Exponent Overflow 225 P, 100
27 Divide Error 226 P, 104
28 Significant Error** 227 P, 108
29 Exponent Underflow** 228 P, 112
30 Decimal Overflow** 229 P, 116
31 Fixed Point Overflow** 230 P, 120
32 Test Mode 231 P, 124

* 20 = The rightmost bit in the Interrupt Flag register.

** Note: These interrupt conditions can be masked by two separate masks. The first,
the program mask, is a four-bit, non-privileged, program settable mask, that

22

Interrupt Flag Register
(Cont’d)

INTERRUPT
CONDITIONS

INTERRUPT
MECHANIZATION

Avutomatic Interrupt

Block 1

Program Interrupt

can be used to cancel the interrupt condition when it occurs. The second mask
is composed of bits 230 through 227 of the 32-bit Interrupt Mask register asso-
ciated with the state in which the processor is operating. If the Program
Mask prohibits the interrupt it is cancelled. If the Program Mask permits the
interrupt, the Interrupt Mask register is scanned. Like all the other interrupt
conditions, the masks of the 32-bit Interrupt Mask register leave these four
interrupt conditions pending if the associated mask bits are zeros.

& A description of the individual interrupt conditions is given in table 9.
More detailed information concerning the interrupt conditions is given in
the instruction descriptions. Some interrupt conditions arise from input/
output channel operations, and these conditions are further discussed in
the Input/Output Operational Control section.

Notes:

1. When an interrupt condition occurs, the current instruction can be
suppressed or it can be terminated. When an instruction is sup-
pressed, the condition code setting that existed before the instruc-
tion was attempted remains unchanged. Data in main memory and
the general registers specified by the instruction also remain un-
changed. When an instruction is terminated, the condition code
setting and data in the general registers and/or main memory are
unpredictable.

2. When operating with T = 0, program interrupt functions described
in the 70/35, 70/45, 70/55 Processor Reference Manual apply. When
operating with T = 1, program interrupt functions of table 9 apply.

& There are two ways of causing a change of processor state. They are:
1. Automatic Interrupt: effected when any interrupt condition de-
scribed in table 9 occurs, and is permitted.
2. Program Controlled Interrupt: effected when a Program Control
instruction is executed.

Whenever the processor state is changed, either by automatic inter-
rupt or by the execution of a Program Control instruction, some machine
conditions must be stored in the P counter and the Interrupt Status reg-
ister of the terminated state for possible use when the state is initiated
again. In addition, certain machine conditions associated with the state
being initiated must be extracted from the P counter and the Interrupt
Status register of the new state.

All the storing and extracting required when processor status are
changed is accomplished by hardware.

4 When an automatic interrupt condition occurs, the following events
occur: (See figure 3.)

4 A check is made to see if the interrupt condition is one of the following
four:

Significance Error
Exponent Underflow
Decimal Overflow

Fixed-Point Overflow

23

Program Interrupt

(‘'uonndo ue s1
¥oor) sy, pesdelq ay) uoiye[dwod 03 s803 jdnirajur Jo swy aY3 JB pIgnoexe Bureq
uonONISUT AUy ‘poyoeas ussq sey adued WNWIXBW S} ey} Buneorpur ‘eanpedau 03
2AnjIsod WOy premumop sjuned 3po[) swily, pasde[y ayj usym sanddo jdnirajur STYL,

918

1) sy, pesdey

LT

(‘Teuonydo aae speuury)
10309[95) ‘uone[duiod 03 sv08 jdniIUI Jo dwW Iy} Je pPIINAXe Jureq uo3INIISul
Auy -jdniisjur peqjorjuod weidoid B Jo }nsa1 8y} SsB INdO0 OS[B UBD] '901AIP
jndjno/indur ue jo jsanbox oy} 3B Jo uonesado jndino/indur ue jo (jewaouqe Jo
[BULIOU) UONJBUIULIS} AU} JO 3[NS3l © SB IN2d0 ued jdniiejur sy, ‘[Puury) aoxardiinpy
Y} 10 (9-T) [eUUBY)D J0309[3S B 03 pojosuuod seorasp jndino/indur woay speusis
uodn 30 pue 9418091 ued Jossadoxd 9y} YoIym Aq suesw ay3 sapraoad jdnrrajur sIyf,

516
13
013

606

[Puury) toxadnnp

¥ 'ON [PUUBY) .10}09[9§
g 'ON [eUuBY) I10309[9§
3 'ON [UuUBY) I0309[9S
T "ON [ouuBy) 10399]8g

9T

8T
¢t
1T
0T

‘uorpnysur ug yo uoie[durod je sanodo 3dNIINUI ST, TOWL], [earoju] Jo osde

8G

I9WIL], [BALDU]

‘uoi3a1duwod 03 903 1dnrrejur Jo awty 9y}
je poyndaxa Jureq uondniysur Auy ‘uorpdo [o13U0) AU DY} YIIM pojeIdosse (9-T)
SUI[JBUI9IXd UB UO PIAISIAI ST [eUSIS B UsYM SInooo jdnirdjur [eudis [BULe]Xd oy,

9 "ON [eulig [eursIxyy
G "ON [BU3IS [BUILIXT
¥ 'ON [BUBIg [euraixy
€ "ON [eulI§ [eul9)xi]
% 'ON [BU3IS [eut9)Xr]
T "ON TeuSIS [euiejxy

M WO - 0

'934q snjelS [PUUBYD Oy}
BIA UOT3IPUOI 3y} JO payljou sT wreadoxd ay3 pur sinodo 3dniidjul [PUUBYD Y “INdd0 j0u
S90p UOTIPU0D JdNILBIUL STY} ‘ToJSUBI} BJEp O/ UB Bunnp sanodo xoxrs Ajured Arowaw
ureuwt B JI—40uug Apand Aiowapy Wnpy 01qDSSouppY-uoN L0 Aiowdpy wnpy
‘AIOWBIY PBJ-YoIRBIOS By} wWo.j
PB3I SI BIED UBYM INID0 UBD I0LID SIYL—4L04s ANUDJ ALoWapy POI-Y2ID40S

1IN200 03 3dNAIdUI YO9UD JUIYIBW B
9SNEd UBD SUOTIIPUOD FUIMO[[0F Y], "SIN020 JdNIISJUT SIY} USYM OI9Z q sfemie jsnw
uonyIpuod jdnrirdjur siyy 1oy Fq 9gejs aossevoxd ur jiq JSBW 3y} JBY3J UOIOLIJSAI Weld
-oad ® ST 7] pejeuruza} st jdnaasiur yo awr} 9y} je pANIex’d Jureq uoronIsur Auy
"Po39939p ST UOTIOUNJ[BW 10 [NEBF SUIYILW B USYM SINO00 JANLISIUT HDIYD SUIYOBUL SY],

16

YoouD euIIBY

‘WdISAs 93 0} SSOf
Zamod [enjoe pue ainjrey Iemod ULMII] [BAIIUI PUODASI[[IWU-dUO Buunp sunyoew
2y} umop Jursop jyo asodand dyj3 oy T 9je3s aossedoxd ur 9jerado 03 weaSoxd a3
syruted SIYJ, 'sanodo }dnII)ul STy} USYM 0I9Z 3] SAeM[e Jsnul uon}Ipuod jdnrrajul SIys
107 g 9yeys aossevoad uy 31q ysewr oy Yey} uonoLIIsar weidoad B ST 3] ‘PIPRUIWLS} ST
jdniiagur yo awr} 9yj 38 paynoexs Juleq UOIPNIISUT AUy *d[OSU0) L6/0L dY3} U0 103D
-tput uoynqysnd YHLSVIN 943 Suissead £q 10 aunje} aurl & Aq pesned Arowdwr urew
a0 Jossoooad dyy Ul danjrey Jomod B ST AIBY) USYM SINIIO jdnarejur aanfrey aamod v

oG

aanqred Iamog

1

uoyoub|dxy

g Boyy

uoypuo)

*oN Ajond

suoyipuo) dnusuj *6 aqpy

24

Program Interrupt

-uononsUI [[E) Josiazadng 9Y3 Jo PRY “Y “Ta] 9} SOA[8D3I PIIMOSXD ST UOONIISUL Y3
YPTYM UT 97e3S 9y} O 103SIF0x snyess ANLIOIU O JO S YSO JsouYILI A, Af[Ew
-1ou poyepdn a1 9jejs pajdniioyul Ay} Jo INSI3AL SNIEIS 1dnizeju] 9y3 pue JIojunod
d @Y "UOI}ONIISUT [[B) Iosiazedng 93 JO UOINDOSXD Y} WIOIY SINSOI jdnaaejur STy,

026

men Iosiazedng

18

‘pozIin 8q jou Awur YoIym soSed 9soy} Jo UOTEOYRUSP! puE
O'IL °y3 Jo osn dy} UIm Jojunod g 9Y3 jo dn-Bupjoeq 29e)[PE] 03 papiaoid
st uoroung [ewed§ V CAIOWRW OjuUl PI[[BD UG SATY soded o[qeoridde
o} J9jJe PONOAXe puE PazNe)s-al 3q 0} UWONPNISUL 393(q0 9y} SI[qBUD
sty -puswidmbae a3 £q A[edrjeuione PIOMI[BY YIEd 103 U0 £q pajuswraIdul
OII 9U3 PUB pIomI[ey 3Xou ay} 03 paysnipe ST pleyY VIN o3 ‘spromyey judnbas
-qus uo sinooo jdnirejur Ay} JI ‘quowdnba ay3 Aq (10 03 39S ST PPRY DTI
oY) pu® ‘pIOMJ[BY PUODDS Y} SSIIPPE 0} PAIs}[E S I93UN0d d j09fqo ¥yj jJo
PIY VIN oY} ‘pozPne)s Suiaq uoppniisul ayj jo plomyrey 1siy Y3} U0 SINID0
jdnizequr oyj FI ‘pesseaddns S uomjonIsuUl oy} Jey} Yons sInado jdniriauy
oy, “Suryojey puesado 1o JurzPIe)s UOHPONISUL U0 andoo Aewr jdnaaaur SIYJ, :220N

-possaxddns 3q 0} UOIONIJSUT Y} SISNED jdnarsjur STy,
(T =1 pue 0 = () UOIJe[SUBI} SSAIPPE BIA PISSIIPPE S1 Arowsw pue (pasn 9q jouued
afed “o1) (=[] ¥q [0IJUOD Y}IM JUSWIS[® UE SUIBIUOD UOLEI0T] a[qe], UonB[SUBL],

616

anand Suideg

03

*sj[nsax
aqejotpeadun YIIM UOIPNISUL Y3 JO UOMRUIULID] SSNEd sydnizejur 9sayJ, : 930N

(0 = @ pue T = [11 [013u0) “3'T)
03 uepLIM 9q jouued YPTYM 3Fed B UMM UOTIBOO[® ojul LM 03 uonyerado Uy ‘g

*(1 = Q@) 99S SI SS2IPPE [ENYIIA
o3 UI 91q SSOppE 08I oY3 pue (T = N) 39§ SI 9poW PISO[IAMJ-UON oY} USUM P

(1) 99s SI Ssaappe ay3 jo ppPRY Juowrede[dsI(] @Y} JO
11q xepro-yS1y ay3} pue (T =) 39S SI PIOMA UOHEB[SUBLY, ay} ur jIq [orjuod aded
a3 ‘(0 = () 398X ST 31q SSAIppE JodIP “a'1 {san000 JoL1o a8ed 914q-8%0'c ® USUM '€

(0 = (@) 3uLLnddo sI
UOT}B[SUBA} SSAIPPE pue (0IDZ JOU AI€ SSIIPPE [ENLIIA € JO PIY jusw3as oy} Jo s3Iiq
posnun omj) Sy} “9'1) POSSAIPpE ST JUSWS[R J[qe)} UORHEB[SUBL JU9ISIXa-UOU B UIYM ‘G

(0 = g) 30sax ST 9[qe], UonEsULL], 3y} ul S g [oxuoe) 9ye1g du3 pue (0 =a)
SuLLnodo SI uonje[sueI} ssaIppe ‘(T = N) 39S SI 9ol poSa[IALIJ-UON oY} USUM T

:sanooo JuimofoF 2y} Jo Aue pue (T =J,) SpoW UOPe[SUBI} 3}
Ul PIsSAIPPE SI AIOWIW USYM dI€ SINdd0 jdnaaejur STy} YoTym JI9pun Suonipuod ayjg,

816

Joury Suiledq

61

‘uoryodwion 03 s903 jdniIGIUL JO AW BY} I8 PIINIAXS Sureq uorpnIsul AUy
*a[0su0? s 10jerado oy} uo Aoy jdnirejuf dosuo) 3 £q pafpoajuod ST 3dnriajul SHT,

116

jsonbay jdniIajuy S[osuo)

8T

uoypubidxy

#g boyg

uop1puo)

*oN Aiiond

(P4u0D) suonipuo) idnusjul 6 2|qoL

25

Program Interrupt

‘pessaaddns st uoryexado
9y, "pueiado piom S[qnOp B UIBIUOd Jey} SI9)STIoL [exeus8 yo ared ® 107 SSAIppe
183SI381 ppo UE S9)RUSISOP UOIONIISUI UB JO PIey sseippe pueiedo jsay oy, ‘g

‘pessaxddns s1 uonerado ayj,
‘peuLIozIad 9q 03 UOIPNIISUI AYNOSXY JOyjouUR Soymads UOTJONIISUTI INODXF UY °Z
‘ssaIppe
uonPNIISUL pIyBAUl ue Joy passexddns s1 uorerado uoppnajsur ayy, *a[qejorpaadun
918 UOHONIISUT 9} JO SIMSAI Y} pUe ‘SSSIPPE BIEP PIBAUL UE 0] pojeuruLI®) ST
uecrjerado UOIONIISUT SYJ, ‘UOTjR[[RISUI Je[non.red 9y} J0F AIOWISW UIBW J[qe[IeAR
943 SpISINO0 PIOM [0IJUOD IO UOIONIISUI Ue “Bjep Jo ired Aue seyads ssoappe uy ‘|
‘usyMm sanooo jdnrrequr (Bulssaappe) Jodle SSOIppE uy — buissauppy

“I0LI3 uopdejoxd pur ‘Ioire uoyroyrads
‘I0LId SSOIppE :aIe A9y, "Inooo 0} 3dniI9jur 10119 SSPIPPR UB 9SNBD SUOIIPU0D JAIY],

€26

JoLrgy

(pauo))

SS9IppPVY

‘uononIsur 9y3 yo 9pod uonyeredo Yy woiy pajessuss sAeMIe SI D[OYg, 1230N

orq s94q-X18 1T
}oeq $934q-1no g 0T
qoeq s93hq-omJ, T0
saiAg ur ybuay o

:smoj[oy se jdnrrajut o} towmd snfea sj yowaa o3 JuNod-J 93 yoeqiox
0} 1By MOy S[[9} 9JBIS PIYJRUIMIDY BY) JO IYUNOD J BY} JO PRy 8pod> yjBus] uoi}
-ONIISUL 9y, “powntogiad st uonjerado oN ‘pajdwaiye st 10ssevoxd Ie[noired 9y3 uo Jjqe
-[IeA® Jou 10 PauIISse J0U I9Y}IS SI J8Y) 9pod uoneiado ue uaym sIndd0 jdnirejur sy,

228

deiy, apo) uonyeradg

8%

"palressur st uondo [01gu0Q JoRaNq Bu3 I W 81q peey
03IQ IM
£A9)] 93®103g IASU
A93] 93wva03g 398
9IPI
ped Yo3eiog a103S
Ped yojesdog peorp
[o13u0) weroxg
puueyd yoayH
0149 3[eH
M1A9(T 3597,
P1A9(11BIS
asoudei(q
1aIB J0SS9001d 9%/()
Y3 ur suoponiysur passpand ayg, ‘pessarddns ST uoponaysur ayy, (398 s1 a93s1dax
snyeyg jdnareju] ay3 Jo gp uonisod 1g) ‘epowr pasa[iarrd-uou ur s1 9je3s Jossavoxd
jusLmd ay3 pue paydwelye SI uoKINIISUT posafiaud & uaym sinooo ydnaisjur sy,

"Pa[IeIsul st uorido 309301 ATOWLIY 9Y3] w

128

uonexadg pelejiaLg

144

uoyoupjdxy

#g Bopy

uokpuo)

"ON Ayaong

(P4u0D) suowipuo) jdnusiul ¢ |qoy

26

Program Interrupt

‘aA0Qe 9Y)} JO Aue JO UOI}0A)3P uodn (uorgonajsut
Areurg o], 319au0) ® SU uonyerado ayy JI possaxddns) pojeurwIe} ST uorjyerado aYJ,

's3181p Jueoyugs ‘rapao-y3ry Auew 003 SBY pueordpnut [BW0dP V ¢
-OeWYjLIE [BWIAP Ul A[3091100UT deliaA0 SpRIA 3

*}091I00UT 9XB SUOKPNAISUI Axeurg
o], $1eAuo)) 10 ‘Suryps PUBWYILIE [BWISP ur spueaado o sopod JI3Ip 10 uls /YL ‘T

120000 SUOTJIPUOD JUIMO[[OF 8Y} JO AU® UBYM SINOO0 ydnaragur S,

$36

Joxxy BIe(q

14

-51M20 3ANIISAUT STY} USYM 0I9Z B SABM[E JSNUW UOLIPUOD jdna
-zeyur Styy 103 °q 2ye3s Josseooxd U 3q HSBUWL OY3 YB3 uonjorrysor urexdoxd e ST 3] g

‘[euuey> ojeridordde oy} 103 SINII0
jdniaajul [euueyd © ‘pea)su] "Indd0 jou Ss0p jdnaxejul 10149 SSAIPpE ue ¢ (uorjeTyIul
aeye) uorperado ndjnondul ue 3ulnp sIndd0 qdnazejur 2dA3 Joxxd sseappe ue JjI ‘I

18930\

(-porressur st uonydo 3093014 AIowRy 9y} JL Anddo A[uo ued jdniiojul
STY]) ‘Pesseuppe Sl Bale payoojoxd 3y} usym ssoxBoxd UI ST UOT}ONIISUL DY} JI SHNSAL
s[qejorpaxdun y3Iim pajeuruLia) st uoryerado oy, “BaIE pajosjord B Ul ST UOHONIISUL a3
yey} poyads Uor3ed0] AIoWAUL UTBW ISy ay3 Jt passoaddns st uoryerado 9y, "0IdZ SI
Joy}lou PuB ‘yojeul J0U Op UoKEBIo[AIoWAUI UTBW }[NSOX 3y} Jo Aoy uonyoejoad ayj} pue
Aoy adei03)s Y} ULAYM SINdO0 jdnizejur (uor3osjord) IOIId SSAIPPE UV — U090

-passaxddns st uorjerado Yy, Lrepunoq pIomjy[ey B
U0 30U ST YDIYMm SSeIppe UOIPNIISUr ue sogpads Uo[PNIISUT [013U0D weidord YL °9

-passaaddns sT uoryerado 9y, "0I9Z JOU St J19)s18aa snjelg jdnd

193Uy oy} ul Aoy uorpejoad ayj pue PI[[EIsul jou Si uorydo 309301 AIOWLI dYJ, ‘G
-pessoaddns st uonerado ayJ, '0I9Z JOU 31E uoTjoNIISUl £33 98BI0IS

qxesuy X0 Ao 93wi0)g 38§ ® JO puexado puodas ay3 Jo 18 ySnoayy gg suonised y1ig ¥
-passoaddns st uorperado oy, ‘uorged1[d3nwt 10 UOISIAID

[ewodp Ur P[eY puerado puodds a3 usl 1e8uo[jou ST pey puerado 3siy 9yl ‘g

-pessoxddns st uorjexado
oy] ‘uSis pue SIS G SPIBDXS dNPUIY}LIE [ewep ur JosAlp 1o sordpmu 8yl ‘3

-pessaaddns s1 uoperado oY,
‘poUIBOUO0D UOTONIISUT xepnonyaed oyy Aq paimbox se Arepunoq 334q I0 ‘promjyey
‘prom ‘promajqnop & £3rads J0U S0P SSAIPPE PIoM [0I3UOD IO ‘UOTIONIISUI ‘B3EP ¥ T

ruoym $Inod0 jdnrrsjur (UOEIYDads) 10119 SSIIPPE uy — uoywoy1ods

-passaaddns st uorjerado ayJ, 9 ‘v
‘7 ‘0 uBY} I9y30 I3SL3AX juiod-3urjeo € SISSAIPPR UOHPNIISUL jurod-3uneoy Vv ¥

€36

(pauo))
JI0XIF SS9IPPVY

144

uoypunjdxy

#g Bojd

uoppuo)

‘oN Ainorad

(P.4uo)) suoyipuo) jdnudjuj "6 3qRL

217

Program Interrupt

"Burpuad surewsx jdniisjur oy
‘Ysew 3dnrisyul ay3 £q pajIqryur Inq ‘ysew wergoxd 3y} Aq payyrured st jdnarsjur ayy
31 'PR[edued ST uoriIpuod jdnarejur oy3 ‘ysewr weroid ayy Aq pajiqmyur st jdnixejur
oY} JI "ejyep mopaaAo ayy Jurioulr Aq pojerdwod st uorgerado ayyJ, ‘uonerado [ewoap
® JO 3[nsax 8y} UIBIUOd 0} [[BWS 00} S P[OY JINSAI Y} USYM SINI20 jydnazejur sryy,

626

MOPIOAQ [BWDOQ

0g

“Burpusd surewex jdnLisjur ayy
“Ysew 3dnrisjur oYy Aq payIqryur Jnq ‘ysew wexBoxd ayy Aq payjrunzad st jdnrrsjur oy
31 "Pa[eoueD ST uonIpuod jdnirejur ay3 ‘Ysew werdoad ayy Aq pajiqiyur st jdnixajur
Y} JI ‘(esspuew oxsz pur ‘yuduodxd 049z ‘ults o19z) orez 9ny jnsax oYy Sunyew
£q pajerdwoo st uonesado ayy, ‘09z UBY} SS9 SI UOISTAIP 10 ‘uoneordijnur ‘uory
-denqns ‘uoryippe jurod-3urjeoy ® jo jusuodxe 3NSAI By} UdYM $an000 3dNLIUI STY,

826

Moprspun) jusucdxyy

65

*‘(essppuBw 019z pue jusuodxa
019z ‘UBIS 019Z) 0I9Z ONI} 03 JnSal oy} 3urpss Aq pejerdwrod st uoneiado 93} pue
Burpuad surews: jdnaxsjur ayg ‘“Ysew jdnarequr oyy £q pajIqryur mq ysew werdoxd
oy} Aq paprured st jdnarajur Ay JI ‘(essyuewr ogez pue jusuodxo 049%Z ‘ul1s oiaz)
0197 9n.13 03 J[usadx 8yy Junjas £q paje[dwod st uoryerado oy Pue pa[[aouBd ST UOT}IPUOD
jdnrisyur ayy ‘ysewr weiSoxd oy Aq pajiquyur st jdnarejur ay3 Jy ‘ueye3 sI jdnirejur
9y} pue ‘parsj[eun sT jusuodxe oYy ‘pajerdwod st uorjerado ey (ysewr 3dnaaagur
8y} pue ysewr weafoxd oy3 Aq) peyyruwred st jdnarejur 9y} JI "0I9Z ST uoponIYsuUY
PrHqNs J0 ppe jured-Juneoy ® Jo BSSHIUBWL J[nSaX aYy) usym sImodo jdnarsur STy,

126

JIOLIG douRdoyIuUSIg

14

‘passaxddns s1 uorgwrado
9YL '0I9Z ST BSSHUBWL 9SOYM JOSIAIP ® Y)Im pojdwape st UuoIsiAlp jurod-3uneoly ‘p

‘possaaddns
ST UOISTAIP 9YJ, "SPTAIP [BWIPDAP UT 9218 P[oy ®jep poymads 9y} spadoxa jusnonb y g

*9ZIS I)s13aa [easued dY) apIsInoO ST Uarym uonewaogur Surtoulr Aq pejojdwiod st
UOISISAUOD BYJ, ‘PIOM 9UO SPIIIX@ UOIONIISUI AIBUIg 0], HOAUO) ® JO }[nsax Y], ‘g

‘possaxddns ST UOISIAIp oyJ, ‘o1ez £q UOTSIAIp
Jutpnpur ‘uoisIAp jJurod-pexy ur 9z1s Is9s18a1 [eidusl a8y} spesdxe jusiionb vV T

$IM220 JUIMO[[OF 8Y3 JO Au® USYM SIMD20 4ANLIFYUI JOLIS SPIAIp AU,

930

I011g OpIAIQ

L2

‘pPojeUTWId]} ST
uonjerado oYy, ‘2T uey} 103weid St UOISTAIp 10 ‘uoppedridpnuwr ‘uoroeijqns ‘uonyippe
qurod-Buryeoy yo juauodxe j[nsax 9U} UdYM SINd20 3dNIISIUI MOLIIA0 JusUOdXd YT,

926

MOPIBAQ Jusuodxi

93

uoypunjdxy

49 Bojy

uoypuoy

*oN Aiuong

(P.4uo)) suoyipuo) jdnuauj ‘¢

s|qpy

28

Program Interrupt

33e)s J0sso00ad pojeIIuL
oy} Ul PeINOSXd SI Jey} UOMOINIISUI 3SIy 9y} J93ye smddo jdnirejur ue ‘39S Yjoq
aIe PaJEIUI 8 0} 98I oY} UI 31q Ys'BW 3ANLIAIUI PIJe[aL oY) pue 3iq ey jdniiejul
9} USY AL ‘UOMPONIJSUT joajuo) weiBord 9y} Aq jos ST Sey jdnriajur 3s9) weadoad ayJ,
-3upse} weaSoxd Surinp rossedoxd ayy 1940 [oxjuoo wreadoxd sepraoad jdnrrajur STy,

186

9POIN 159, 8
‘3urpued
surewaa jdnazejur oy} ‘ysew jdnriejur oy} £q peyiqmur ng ‘ysew weadoxd ayy Aq
peyyrurad st 3dnaisjur ay3 JI 'po[[eoued ST uoripuod jdnizsjur ayj ‘ysew werdord ay)
Aq peylqryut st 3dnLIsjur 8y} JI "eyep MopreAo 8y} Suntoulr Aq pajerdwod st uorjerado
ay], ‘suorjerado [o1juod udis 10 ‘SuUIIYS ‘UOIPBINS ‘UOHIPPE Julod-paxy U 3SO[die
$31q JuedyuSIs I9pao-y81y I0 SINd00 ALIBD JI9PIO-YSIY B UdYM SIn000 JdNIIdjul STy, 0e3 MOPJIBAQ JUlod-PIxXLA 1€
uolypunjdxy g Bojy uoyIpuo) ‘ON Aj1ao1ag

(P.4uo)) suoyipuo) jdnuajul ¢ 3L

29

Interrupt

Condition

1.
f One of Four

Program Interrupts?

No

Set (1)?

INO

Cancel the Interrupt and Proceed
with Next Instruction

Yes
Is Program Mask Bif\ Yes

Figure 3. Functional Logic of Automatic Interrupt

10.

Set Bit in the Interrupt
Flag Register

2

Is Corresponding Bit Set

Program Interrupt

No

(1) in Interrupt Mask
Register?

.

-

| Yes

Store ILC, CC, and Program
Mask in P Counter of
Terminated State

3 '
Is it Power Failure
Machine Check Interrupt,

YL

l

Hold Interrupt Pending
and Continue at Next
Instruction

Yes

or Scratch Pad Memory
parity error (if applicable)?

A

J\E

9. [N

Initiate P3, Reset Flag in
Interrupt Flag Register

| Y
I

Initiate P4, Reset Flag in
Interrupt Flag Register

L

If the Interrupt is a

Extract CC and Program Mask
from P Counter of Initiated
State

\

30

Machine Check Set the
Program Indicators in the

USP of P4 (70/45-55 Only)

Program Interrupt

|

11
Extract Key, Decimal Code,
and Privilege Mode bits from
ISR of Initiated State
12. - L
Store ldentity of Terminated
State in ISR of
Initiated State
13, — |
Store Weight of Interrupt in
GR No. 15 of Initiated State
(See Note 4.)
14. \
Y
Supervisor Cal!l Interrupt? e
/ 15.
No
16.

Staticize and Execute
instruction specified by
P Counter of Initiated State

Interrupt Analysis Program

L

Store Call in ISR of State in
which the Supervisor call
was executed

Figure 3. Functional Logic of Automatic Interrupt (Cont'd)

31

Block 2

Block 3

Block 4

Block 5

Blocks 6 and 7

Block 8

Block 9

Block 10

Block 11

Block 12

Block 13

Program Interrupt

¢ If the interrupt condition is one of the above, the program mask
(machine register) for the current program state is checked to see if the
interrupt is permitted. If the program mask indicates that the interrupt
is inhibited (mask = 0), the interrupt condition is cancelled and the next
instruction in the current processor state is executed.

¢ If the interrupt condition is not one of the four program interrupts,
or is one of the four program interrupts but the program mask indicates
that the interrupt is to be permitted (mask = 1), the specific bit associated
with the interrupt condition is set in the Interrupt Flag register.

¢ The bit in the Interrupt Flag register is compared with the correspond-
ing bit ip the Interrupt Mask register for the current state. If the bit in
the Interrupt Mask register is reset (0), the interrupt condition remains
pending and the next instruction in the current processor state is executed.
The interrupt remains pending until the mask is changed to a permit status
and the interrupt is serviced.

¢ If the bit in the Interrupt Mask register is set, the interrupt is taken
and information (ILC, CC, program mask) is stored in the P counter of
the state being terminated.

¢ If the interrupt condition is a power failure, a machine check, or
Scratch Pad Memory parity (if applicable), the Machine Condition State
P, is initiated. The flag in the Interrupt Flag register is reset.

¢ If the interrupt is a Machine Check, the Program Indicators are stored
in the Interrupt Status register of P..

¢ If the interrupt condition is not a power failure or machine check, the
Interrupt Control State P, is initiated. The flag in the Interrupt Flag
register is reset.

¢ The condition code setting and the program mask are extracted from
the P counter of the initiated state and stored in the appropriate hardware
registers.

¢ The memory protection key, the decimal code and the privileged mode
bits are extracted from the Interrupt Status register of the initiated state
and stored in the appropriate registers.

¢ The state being terminated is identified to the state being initiated by
setting an interrupted state identifier code in the Interrupt Status register

of the initiated state.

¢ The weight of the condition causing the interrupt is stored in general
register No. 15 of the initiated state (P; or P,).

32

Blocks 14 and 15

Block 16

Program Controlled
Interrupt

Block 1

Block 2

Block 3

Block 4

Block 5

Block 6

Block 7

Program Interrupt

¢ If the interrupt condition is a Supervisor Call, the R, and R, fields of
the Supervisor Call instruction are stored in the rightmost eight-bits of the
Interrupt Status register of the state in which the instruction is executed.

@ The instruction at the address specified in the P counter of the initi-
ated state is staticized and executed.

& The Program Control instruction transfers the program from one
processor state to another. This instruction is a privileged operation and
can be executed only if the state in which the processor is operating is in
the privileged mode (bit position 15 of the Interrupt Status register = 0).
When a Program Control instruction is executed, the following events
occur. (See figure 4.)

& The address (B,/D,) specified in the Program Control instruction is
stored in the P counter of the terminated state. The length of the last
instruction executed in the terminated state, the condition code setting,
and the program mask are stored in the P counter of the terminated state.

@ A check is made to see if the program test bit in the Program Control
instruction is set.

& If the program test bit is not set, the Interrupt Mask register for the
state to be initiated by the Program Control instruction is compared to the
Interrupt Flag register. If an interrupt condition has occurred, the events
described under automatic interrupt take place (see figure 3, block 3).

Important: If an interrupt is outstanding in the state to be initiated by
the Program Control instruction, the number of the initiated
state specified by the Program Control instruction is stored in
the interrupt status identifier field of the Interrupt Status
register of the initiated state (P; or P,).

& If an interrupt condition is not outstanding in the state to be initiated
by the Program Control, instruction control is transferred to the state
specified by the Program Control instruction (directly or indirectly — See
Program Control instruction).

& The condition code setting and the program mask are extracted from

the P counter of the initiated state and stored in the appropriate machine
registers.

4 The memory protection key, the decimal code and the privileged mode
bits are extracted from the Interrupt Status register of the initiated state
and stored in the appropriate machine registers.

¢ The instruction at the address specified in the P counter of the initi-
ated state is staticized and executed.

33

2.

Yes

Program
Control
Instruction

Store Address in Program
Control Instruction in
P Counter of
Terminated State.

Store ILC, CC and Program
Mask, in P Counter
of Terminated State

I

ﬂprogram Test Bit in
Program Control

Initiate State Specified in
Program Control Instruction.

Extract CC & Program
Mask from P Counter of
Initiated State

10.

Extract Key, Decimal Code
and Privilege Mode from the
ISR of Initiated State.

Set Program Test
Flag Bit (231) in
Interrupt Flag Register.

Staticize and Execute
Instruction Specified in P
Counter of Initiated State.

(An interrupt occurs after the
execution of this instruction)

-~

Program Interrupt

No

‘!strucﬁon Set? j
3.

An outstanding
Interrupt
Requires
Servicing

Compare IFR to IMR of
State to be initiated by
Program Control

Instruction
No Interrupts .See
OUfStunding Figure 3
Block 6

Initiate State Specified in
Program Control Instruction

Extract CC and Program
Mask from P Counter of
Initiated State.

)

Extract Key, Decimal Code
and Privilege Mode from the
ISR of Initiated State.

L J

Staticize and Execute
Instruction Specified in
P Counter of Initiated State.

\ J

Figure 4. Functional Logic of Program Control Instruction

34

Block 8

Block 9

Block 10

Block 11

Block 12

Program Interrupt

¢ If the program test bit is set, control is transferred to the state speci-
fied by the Program Control instruction (directly or indirectly — see Pro-
gram Control instruction).

€ The condition code setting and the program mask are extracted from
the P counter of the initiated state and stored in the appropriate registers.

¢ The memory protection key, the decimal code, and the privileged mode
bits are extracted from the Interrupt Status register of the initiated state
and stored in the appropriate registers.

& The program test flag bit (23') in the Interrupt Flag register is set.

€ The instruction at the address specified in the P counter of the initi-
ated state is staticized and executed.

Notes:

1. When a Program Control instruction has the program test bit set,
the first instruction of the initiated state is always executed before
any interrupt is taken.

2. If the initiated state permits the program test interrupt (via the
Interrupt Mask register), a program test interrupt occurs after
the first instruction in the initiated state is executed.

3. An interrupt condition can occur while executing the first instruc-
tion of the initiated state. If it does, and is permitted, it is serviced
before the program test interrupt.

General Notes for Program Interrupt:

1. The decimal mode in the 70/46 Processor is either USASCII or
EBCDIC as specified by bit 12 in the Interrupt Status register. When
an automatic interrupt occurs or a Program Control instruction is
executed, the decimal mode is not stored in the Interrupt Status
register of the terminated state. The mode of the state being initiated
is determined by the mode bit in its own Interrupt Status register.

Consequently, to change mode, the mode bit of the Interrupt Status
register associated with the appropriate state must be altered by
the program, and that state must be initiated either by an inter-
rupt condition or a Program Control instruction. This is the method
available to the program for changing the mode.

2. The interrupt flags are scanned to determine whether or not an
interrupt shall occur if the Interrupt Mask register associated with
the current state or the Interrupt Flag register is written into
by the program.

3. Changing the protection key, decimal mode, or privileged mode
fields in the Interrupt Status register does not change the protec-
tion key, machine mode, or privileged mode bits of the associated
processor state. To change the status of the processor, the state
concerned must be initiated by an interrupt condition or a Program
Control instruction.

4. The condition of General register 15 of states P, and P,, at time
of interrupt, and loading of the weight is as follows: The low-order
16 bits are cleared. The least significant 7 bits are loaded with the
weight. The next most significant 9 bits are zeros. The high-order
16 bits are not cleared, but are shifted one bit to the left.

35

INPUT/OUTPUT
OPERATION

INTRODUCTION

INPUT/OUTPUT
CHANNELS

Selector Channels

& The RCA Model 70/46 Processor can control a variety of input/output
devices. All the input/output devices function independently of normal
processor operation. This simultaneous operation is achieved by processor
input/output channels that control input/output operations. The control
electronics of each peripheral device is connected to an input/output channel
via the RCA Standard Interface. This interface permits all peripheral
equipment (with the exception of remote communications and random
access devices) to be attached to any channel in the 70/46 Processor.
Remote communication devices must be connected to the multiplexor
channel. Random access devices must be connected to a selector channel.

After an input/output operation is initiated by the program, data is
transferred, byte-by-byte, between the processor and the peripheral device.
This data transfer over the standard interface is controlled by the appli-
cable input/output channel, freeing the processor to continue the program.
Each of the channels on the 70/46 Processor can interrupt normal process
or operations.

4 The 70/46 Processor has two types of input/output channels, selector
channels and a multiplexor channel.

4 Up to four selector channels (optional) can be attached to a 70/46
Processor; each selector channel can address up to 256 peripheral devices.

Provision is made for up to four high-speed selector channels, as options
on the 70/46 Processor. The high-speed selector channels reduce main
memory interference due to input/output data transfers, such that the
maximum aggregate system interference rate is 1000KB per second;
however, the maximum data rate on any one selector channel is 465KB.

The programming characteristics of the multiplexor and optional
selector channels are identical to the 70/45.

On the 70/46 Processor, each selector channel has two standard inter-
face trunks; each standard interface trunk can be connected to the control
electronics of an input/output device. A device control electronics controls
one device (i.e., card reader, printer), or a number of devices (i.e., tape
controller: up to 16 tape stations).

Only one device can operate on a selector channel at one time. How-
ever, all selector channels can operate simultaneously with, and independ-
ently of, normal processor operation.

The multiplexor channel operates simultaneously with selector chan-
nels and independently of normal processor operation.

Control and operation of each input/output device connected to the
multiplexor channel is done through a set of subchannel registers con-
tained in non-addressable main memory.

36

Selector Channels

(Cont’d)

Multiplexor Channel

Input/Output Operation

In addition to the subchannel registers, four 32-bit registers, called
multiplexor registers, are provided in scratch-pad memory. These registers
are used for subchannel initiation and termination. Upon servicing a
termination interrupt of a device connected to the multiplexor channel, the
information which pertains to the completed operation is transferred from
the non-addressable main memory to the scratch-pad memory.

The multiplexor registers in scratch-pad memory are called:

Channel Address Register (CAR)
Channel Command Register-II (CCR-II)
Channel Command Register-I (CCR-I)
Assembly/Status Register

Channel Block Address Register

Each selector channel is controlled and operated via four 32-bit reg-
isters. These registers are located in scratch-pad memory and are called:

Channel Address Register (CAR)
Channel Command Register-II (CCR-II)
Channel Command Register-I (CCR-I)
Assembly/Status Register

Channel Block Address Register

All the information that is required to control selector channel opera-
tion is contained in these registers. Data is transferred between the selector
channel and the peripheral device one byte at a time.

& The multiplexor channel is standard on the 70/46 Processor, and can
address up to 256 devices.

The multiplexor channel has eight standard interface trunks each of
which can be connected to a device control electronics. This permits the
multiplexor channel to operate devices on all eight trunks simultaneously.
The limit as to the number of input/output devices that can be connected
is determined by the device control electronics.

Although the multiplexor channel can handle slow-speed devices on a
time-sharing basis, it can accommodate fast devices through a burst mode.
Burst mode operation is specified by the program, and causes a transfer of
data to occur between a specific device and main memory without time-
sharing the multiplexor channel with other input/output devices. If a
program is to specify burst mode, a program check is made that other
devices on the multiplexor channel have completed operation. This ensures
that data is not lost.

Data is transferred between the multiplexor channel and each peripheral
device one byte at a time.

Note: When a burst mode operation is executed the subchannel registers
are not utilized. The input/output operation is similar to a selector
channel operation and is controlled entirely by the multiplexor
registers in scratch-pad memory.

37

INPUT/OUTPUT
OPERATIONAL
CONTROL

Programming
Considerations
Prior to
Input/Output
Initiation

Input/Ovutput Initiation

Channel Servicing

Servicing a
Data Transfer

End and Chaining
Servicing

Input/Output Operation

& All input/output operations are executed by the selected channel and
are independent of normal processor operation. Prior to initiation of an
input/output operation, the program must supply information concerning
the operation. The program must store information in main memory, such
as the type of operation (read, write, etc.), the data area address in main
memory at which to begin the operation, and the number of bytes to be
transferred by the channel. This information is called the Channel Com-
mand Word (CCW).

After the channel command word is stored in main memory, the address
of this CCW must be stored in a standard main memory location. This
standard location is called the Channel Address Word (CAW) and is main
memory locations 72 through 75.

When in 70/46 Mode (T = 1) the address of the Channel Control Block
(CCB) must also be stored in a standard main memory location. This
standard location is called the Channel Block Address (CBA) and is main
memory locations 76 through 79. This address gives the software the
address of the Device Status Code.

Once the Channel Address Word, Channel Block Address, and the Chan-
nel Command Word have been assembled, the input/output operation can
be initiated.

4 All input/output operations are initiated by executing a Start Device
instruction or by manually pressing the LOAD pushbutton/indicator on
the Model 70/97 Console. Execution of the Start Device instruction causes
the information contained in the Channel Address Word (CAW), Channel
Block Address (CBA) and the Channel Command Word (CCW) to be
transferred to the input/output channel registers in scratch-pad memory
for the specified selector channel. If the specified channel is the multiplexor
channel, this information is transferred to the subchannel registers in non-
addressable main memory for the specified device. Once this has been
accomplished, the Start Device instruction terminates and the input/output
operation has been initiated. Completion of the input/output operation is
under control of the channel, and normal processor operation can proceed.

¢ When an input/output operation has been initiated and the input/
output device control electronics is ready to send or receive a data byte,
the channel asks the processor for a service request. When the processor
permits the service request, a data transfer occurs. This service permits
the transfer of a data byte between main memory and the input/output
device to occur. It also updates the information in the input/output channel
registers or the subchannel registers (multiplexor) to prepare for the next
data byte.

€ When an input/output operation has been completed, the channel asks
the processor for another service request. This service request is required
so that the channel can (1) tell the device control electronics to set a
channel interrupt condition, or (2) check the current command to see if
chaining is specified, and if it is to initiate the next command.

38

Interrupt Servicing

Servicing Priority

Input/Output Operation

¢ If an input/output operation has been completed and chaining has not
been specified, the input/output device control electronics causes the
appropriate channel interrupt flag to be set in the Interrupt Flag register.
If the Interrupt Mask register for the current processor state permits the
interrupt, it is taken. At this time the channel asks the processor for
another service request. This service request is required so that the channel
can transfer information concerning the status of the device and the
channel to the input/output channel registers in scratch-pad memory. If
the interrupt is caused by a device on the multiplexor channel, the appro-
priate subchannel registers are transferred from non-addressable main
memory to scratch-pad memory.

Because all input/output servicing requires that the channel utilize
main memory, scratch-pad memory and nonaddressable main memory
(multiplexor devices), normal processor operation is held-off until the
servicing has been completed. Servicing is time-shared with normal
mode processing.

& Because input/output operations on all selector channels and the mul-
tiplexor channel proceed simultaneously, the processing is stopped if
servicing is required and the input/output device is serviced. After a
device is serviced, processing resumes, or another device is serviced.

Each selector channel and the multiplexor channel has a scanning
priority. If servicing is required by devices on more than one channel, the
channel with the highest priority is serviced first. The priority is as follows:

Selector Channel No. 1
Selector Channel No. 2
Selector Channel No. 3
Selector Channel No. 4
Multiplexor Channel

The devices on the multiplexor have a priority depending upon the
standard interface trunk to which they are connected; the lower the
standard interface trunk in the scanning sequence, the higher the priority.

Servicing of a device connected to the multiplexor channel may be
temporarily interrupted by a selector channel service request. If this occurs,
all selector channels requiring service are served before multiplexor channel
servicing resumes.

The optimum connection of device control electronics to selector chan-
nels and the multiplexor channel depends on the requirements of each
installation. However, a general rule is to connect the device control elec-
tronics which control devices with the highest data transfer requirements
to the channels with the highest priority. The remaining device control
electronics are connected in descending order of data transfer require-
ments to descending priority sequence of channels. Buffered devices should

always have lowest priority.

39

Channel Address
Word (CAW)

Channel Block
Address (CBA)

Channel Command
Word (CCW)

Input/Output Operation

€ The Channel Address Word (CAW) is used by the Start Device in-
struction (see Privileged Instructions section), and specifies the address
of the first Channel Command Word (CCW) used to control the operation
of the input/output device. If the Memory Protect option is installed, the
memory protection key must also be stored in the CAW before a Start
Device instruction is issued.

The CAW must be stored in main memory locations 72 through 75
before executing a Start Device instruction and has the following format:

Key 0000 Address of CCW

0 3 4 7 8 31

Bit Positions 0 through 3 contain the memory protection key. It is
used to ensure that data is not being transferred to a protected memory
area. If the Memory Protect option is not installed, these bits must be zero.

Bit Positions 4 through 7 are reserved for future expansion.

Bit Positions 8 through 31 contain the main memory address of the
initial channel command word.

€ The Channel Block Address (CBA) is used by the Start Device instruc-
tion (see Privileged Instructions Section), and specifies that the Start
Device Operation was initiated (CC =0). In this event, the contents of
the CBA are loaded into the selector channel registers as follows:

Scratch Pad
Selector No. Word Address
1 36
2 66
3 76
4 A6

If multiplexing, the contents of the CBA are loaded into sub-channel
registers XX00 — XX03, where XX is the device number. The CBA must
be stored in main memory locations 76 through 79 before executing a
Start Device instruction and has the following format:

Reserved Address of Channel Control Block

0 7T 8 31

Bit Positions 8 through 31 contain the main memory address of the
Channel Control Block.

Note: The CCW and the CBA addresses are 24 bits and direct (not
translatable).

4 The Channel Command Word (CCW) supplies the information for
controlling the operation of the input/output device. This information
must be stored in main memory by the program before a Start Device
instruction is issued. The CCW consists of two 32-bit words in main
memory that must be aligned on a double word boundary. The CCW has
the following format:

40

Channel Command
Word (CCW)
(Cont’d)

Input/Output Operation

Command Address of First Data Byte or Address of
Code Next CCW if Command is a Transfer in Channel
0 7T 8 31
Reserved for
Flags Future Expansion Byte Count
32 36 37 47 48 63

Bit Positions 0 through 7 contain the command code, which specifies
the operation to be performed by the I/0 device. (See table 10.)

Table 10. Command Code Operations

Command Code Operation
0 1 2 3 4 5 6 7 Bit Position
M M M M 0 0 0 1 Sense
M M M M M/0 0 1 0 Read Reverse
M M M M/B M/0 0 1 1 Write
M M M M/B M/0 1 0 0 Write Erase
M M M M/B M/0 1 0 1 Read
M M M M 0 1 1 1 Write Control
M M M M 1 0 0 1 Transfer in Channel
Notes:

1. Any command code other than the ones shown in table 10 is illegal

and must not be programmed. If this rule is violated, the ‘resulting
effect on the channel and device is unpredictable. If one of the legal
commands is issued to a device which is not capable of accepting
the operation (i.e., a Write command is issued to a card reader),
the command, after being accepted, is terminated by the device con-
trol electronics. A channel interrupt occurs and the sense byte(s)
indicate the illegal operation.

The bit position designated as “B” indicates that the specified device
is connected to the multiplexor channel and the multiplexor is to
be operated in the burst mode. If this position is a 1 bit, the multi-
plexor channel is locked-on to the selected device, and the servicing
of other devices connected to the multiplexor channel is inhibited.
A burst mode can only be initiated when it is specified in the first
command of a chain. Subsequent commands, linked by chaining,
cannot initiate a burst mode. However, if the first command in a
chain specifies burst mode, all commands in the chain are executed
under burst mode conditions.

. Bit positions designated as M (modifier) indicate variations of the

operation and are unique to the specific input/output device.

An explanation of the commands shown in table 10 is as foliows:

Sense (0001) — Information is transferred from the specified input/
output device control electronics to main memory. The information trans-

41

Channel Command
Word (CCW)
(Cont’d)

Input/Output Operation

ferred indicates unusual conditions that occurred as a result of the last
operation performed by the device. (The information received is defined in
the individual input/output device reference manuals.) The address speci-
fied by the CCW is the leftmost main memory location of the input area.

Note: Parity is not checked on data transferred to main memory by this
command.

Read Reverse (0010) — Information is transferred from the specified
input/output device to main memory in descending order. The address
specified by the CCW is the rightmost main memory location of the input
area.

Write (0011) — Information is transferred from main memory to the
specified input/output device. The address specified by the CCW is the
leftmost main memory location of the output area.

Write Erase (0100) — Information is transferred from main memory
to the specified input/output device control electronics. Data is not written
to tape and the tape is erased in accordance with the byte count (applicable
to magnetic tape only). The address specified by the CCW is the leftmost
main memory location of the output area.

Read (0101) — Information is transferred from the specified input/
output device to main memory in ascending order. The address specified by
the CCW is the leftmost main memory location of the input area.

Write Control (0111) — Information is transferred from main mem-
ory to the specified input/output device control electronics. The device
control electronics interprets this information as control information and
initiates a function not involving a data transfer. The address specified by
the CCW is the leftmost main memory location of the output area.

Transfer in Channel (1001) — This command provides chaining of
CCW’s that are not located in adjacent double word main memory. An
actual branch to the address of the next CCW is taken. The branch address
(specified in bits 8 through 31 of the channel command word) must specify
a double word location. (Bits 29 through 31 must be zero.) This command
cannot be the first command in a chain. A Transfer in Channel command
may address another Transfer in Channel command,

Note: The flag bits are ignored if a Transfer in Channel command is
specified. The flag bits of the preceding command remain effective.

Bit Positions 8 through 31 (see CCW format) contain the address of
the first byte in main memory at which the input/output operation begins,
or if the command is a transfer in channel, the main memory address of
the next CCW to be executed. The address of the first byte of the next data
segment can also be specified if data chaining.

Bit Positions 32 through 36 are the flag bits and have the following
significance :

1. Bit position 32 is the Chain Data flag (CD). In addition to trans-
ferring data to and from a single main memory area, the 70/46
Processor can read into, or write from, many non-contiguous areas
of main memory by executing one Start Device instruction. When
data chaining is specified by setting this bit, a chain (series of
channel command words in sequence) is used and each channel com-

42

Channel Command
Word (CCW)
(Cont’d)

Input/Output Operation

mand word designates an area of main memory at which to continue
the current operation. When one channel command word has a lapsed
byte count, the next channel command word in sequence is auto-
matically fetched. The current operation is continued at the main
memory area specified by the new channel command word. The
command code of the new CCW is ignored unless it specifies a
Transfer in Channel. If any of the following channel status byte
conditions occur, the chain is terminated (see Channel Status Byte
for further definition) :

Program Check

Protection Check

Channel Control Check

Channel Data Check (if the operation is a write)
Incorrect Length Condition

When data chaining, the chain data flag in the last channel command
word must be reset. This causes the data chain to be terminated
upon completion of the operation specified by this CCW.

. Bit position 33 is the Chain Command flag (CC). The 70/46 Proces-

sor can perform several operations to an input/output device by
executing one Start Device instruction. When command chaining is
specified by setting this bit, a chain (series of channel command
words in sequence) is used and each channel command word specifies
the operation to be performed. When the operation specified by one
channel command word is completed, the next channel command
word in sequence is automatically fetched and the operation specified
is initiated. If any of the following conditions occur, the chain is
terminated :

a. Channel status byte conditions (see channel status byte for
further definition).

Incorrect Length Condition and suppress length flag is zero.
Program Check

Protection Check

Channel Control Check

b. Standard device byte conditions (see standard device byte for
further definition).

Secondary Indicator is set
Device Inoperable is set
Device End is not set

When command chaining, the chain command flag in the last channel
command word must be reset. This causes the command chain to be
terminated upon completion of the operation specified by this CCW.

. Bit position 34 is the Suppress Length Indication flag (SLI). Incor-

rect length occurs in the 70/46 Processor when the number of
bytes specified in the channel command word is not equal to the

43

Channel Command
Word (CCW)
(Cont’d)

Input/Output Operation

number of bytes sought by, or sent from, the input/output device.
(When a command or chain of commands terminates, the data byte
count has not lapsed.) An example of an incorrect length condition
is a tape read which terminates on a gap before the byte count has
lapsed. If the SLI bit is set, the program does not receive an indica-
tion of an incorrect length upon termination of the input/output
operation. If the SLI bit is reset, the program receives an indication
of an incorrect length upon termination of the input/output opera-
tion. This indication is contained in the channel status byte.

Notes:

1.

If the SLI bit is set and the chain data flag of the final CCW in a

chain is reset, the incorrect length indication is suppressed, if it
occurs.

. If the chain data flag of a CCW is set and an incorrect length

condition occurs, the program is notified of the condition regardless
of the setting of the SLI flag.

Bit position 35 is the Skip flag (SKIP). In conjunction with data
chaining, portions of a block of information can be suppressed during
an input operation. If this bit is set, the transfer of data to main
memory specified by this command is suppressed. This bit can be
used only with Read, Read Reverse or Sense commands.

. Bit position 36 is the Program Controlled Interrupt flag (PCI).

During data and command chaining, the 70/46 Processor has the
ability to notify the program of the progress of chaining through
an interrupt when a channel command word is fetched. When this
bit is set, a channel interrupt occurs when the channel command
word is fetched from main memory and the first data byte has been
transferred. This flag is ineffective if the channel is the multiplexor
operating in burst mode.

. Bit positions 37 through 47 are reserved for future expansion and

must be set to all zeros by the program.

. Bit positions 48 through 63 contain the count of the number of

bytes to be transferred to or from main memory during the input/
output operation (from 0 to 65,536 bytes). An initial count of zero
specifies the maximum number of bytes to be transferred.

The staticizing of 70/46 1/0 instructions is subject to translation
similar to any other instructions, except for the execution of I/0 instruc-
tions data servicing, and interrupts that utilize direct addresses only,
and are not subject to dynamic translation.

I R R

. Address of I/0 instruction — Translatable
I/0 instructions staticized address — Direct
Address of CAW — Direct
Address of CCW — Direct
Address of CCB — Direct
Contents of CCW — Direct

44

INPUT/OUTPUT
CHANNEL
REGISTERS

Channel! Address
Register (CAR)

Channel Command
Register-1l (CCR-II)

Input/Output Operation

¢ The Channel Address Word (CAW), Channel Block Address (CBA),
and the Channel Command Word(s) (CCW) are stored by the program
in main memory. However, when an input/output operation is initiated,
the information contained in the CAW, CBA, and the first CCW is trans-
ferred to the scratch-pad input/output channel registers for the channel
specified by the Start Device instruction. (See table 11.) Because the access
speed in scratch-pad memory is faster than main memory, faster servicing
of input/output devices is possible. These registers also eliminate the need
for the program to reset channel command words, because incrementing
and decrementing addresses and byte count is done in scratch-pad memory.
These registers allow the input/output operation to proceed under control
of the specified channel, thereby permitting normal mode processing
to continue.
Table 11. Input/Output Channel Registers

Selector Channel Multiplexor Channel

Scratch-Pad
Memory

Register Scratch-Pad

Memory

Non-Addressable
Main Memory

Channel Address
Register (CAR)

1 per selector
channel

1 per multiplexor
channel

1 per device

Channel Command
Register-I (CCR-I)

1 per selector
channel

1 per multiplexor
channel

1 per device

Channel Command 1 per selector 1 per multiplexor 1 per device

Register-II (CCR-II) channel channel
Assembly/Status 1 per selector 1 per multiplexor None
Register channel channel

CBA Register 1 per selector

channel

1 per multiplexor
channel

1 per device

The format for each of these four 32-bit registers is as follows:

Device No.

Address of next CCW

0 7 8 31

Bit Positions 0 through 7 contain the device number specified in the
input/output operation. This number is obtained from the B./D, Address
in the Start Device instruction.

Bit Positions 8 through 31 contain the address of the next channel
command word if chaining is specified. This information is obtained by
incrementing the address of the first CCW by eight. The address of the
first CCW is obtained from the Channel Address Word (CAW).

Flags - 000

Channel Status Byte

Byte Count

0 4 5 7T 8 15 16 31

Bit Positions 0 through 4 contain the flags. The flags are obtained
from the channel command word. The flag bits are defined as follows:

Bit 0 — Chain data flag (CD)
Bit 1 — Chain command flag (CC)

Bit 2 — Suppress length indicator flag (SLI)

45

Channel Command
Register-11 (CCR-II)
(Cont’d)

Channel Command
Register-1 (CCR-I)

Input/Output Operation

Bit 3 — Skip flag (SKIP)
Bit 4 — Program controlled interrupt flag (PCI)
Bit Positions 5 through 7 are reserved for future use.

Bit Positions 8 through 15 contain the channel status byte. The bits
of the channel status byte are generated as a result of the input/output
operation and are defined as follows:

Bit 8 -— Program Controlled Interrupt
Bit 9 — Incorrect Length
Bit 10 — Program Check
Bit 11 — Protection Check
Bit 12 — Channel Data Check
Bit 13 — Channel Control Check
Bit 14 — Reserved for use by the processor
Bit 15 — Termination Interrupt
(For a detailed description of the above see Channel Status Byte
section, page 61.)

Bit Positions 16 through 31 contain the number of bytes of main
memory to or from which data is transferred. This information is obtained
from the Channel Command Word. The count can range from 0 bytes to
65,536 bytes. When the I/0 is terminated, these bit positions contain the
remaining byte count (if any).

Command Data Address of First Byte or Location of new CCW
0000 Code if Command is Transfer in Channel

0 3 4 7T 8 31

Bit Positions 0 through 3 are used by the processor. It should be noted
that these bits are used in the channel command word as modifier bits.
Once the command has been initiated and the entire 8-bit command code
has been sent to the specified device control electronics, these bits are used
by the processor. They no longer contain the modifier bits.

Bit Positions 4 through 7 contain the command code. This code is
obtained from the channel command word. The commands are defined as
follows:

Read (0101)

Write (0011)
Write Control (0111)
Sense (0001)
Read Reverse (0010)
Write Erase (0100)
Transfer in Channel (1001)
Bit Positions 8 through 31 contain the address of the initial byte in
main memory at which the operation begins; or contains the branch

address if the command is a Transfer in Channel. This information is
obtained from the Channel Command Word.

46

Assembly /Status
Register

CBA Register

INPUT/OUTPUT
INSTRUCTIONS

Start Device Instruction

Block 1

Block 2

Input/Output Operation

Data Bytes Standard Device Byte

0 23 24 31
Bit Positions 0 through 31 are for equipment use only.

When the device status is stored as a result of an input/output opera-
tion, bit positions 24 through 31 of the assembly/status register are used
to store the standard device byte. The bits of the standard device byte
supply status information pertaining to the device control electronics and
the input/output device and are defined as follows:

Bit 24 — External Device Request Interrupt Pending
Bit 25 — Terminating Interrupt Pending

Bit 26 — Device Busy

Bit 27 — Control Busy (not applicable)

Bit 28 — Device End

Bit 29 — Second Indicator

Bit 30 — Device Inoperable

Bit 31 — Status Modifier

(For a detailed description of the above, see Standard Device Byte
section, page 65.)

¢ Not modified by channel, equals CBA originally fetched from 76-79.

@ There are four processor instructions which are concerned with input/
output operations. They are Start Device, Halt Device, Check Channel and
Test Device. These instructions are executed by the processor and the
results, in the form of condition codes, are available upon instruction com-
pletion. It should be noted that the condition code settings indicate the
results of the instruction and not the results of the input/output operation
that the instruction may be initiating. The channel continues off-line to
accomplish the input/output operation as specified by the instruction.
However, during this time the processor continues executing subsequent
instructions.

¢ The Start Device instruction is a privileged operation and, therefore,
can be executed only if the mode bit (bit position 15 of the Interrupt Status
register for the current state) is set to zero. This instruction is executed
in the normal mode. Continuation of program execution is delayed until
the Start Device instruction has been terminated.

Upon execution of a Start Device instruction, the following events
occur. (See figure 5.)

¢ If the privileged mode bit (bit position 15 of the Interrupt Status
register) for the current state is not set to zero, the privileged operation
bit is set in the Interrupt Flag register and an interrupt occurs (if
permitted).

& If the specified channel is a selector channel that is not available on
the system, the condition code is set to 3, the Start Device instruction is
terminated and program control is transferred to the next instruction.
The input/output operation is not initiated.

47

Input/OQutput Operation

START
1 1

Is Privileged
Mode Bit Set To

Set Privileged

Mode
Zero? Interrupt
Yes

Is Specified
Selector Channel
On System?

Set Condition Code To 3 ond

Terminate Start Device 3
Instruction

Is Specified Channel:

1. Busy Selector Yes

2. Selector with Interrupt
Pending
3. Multiplexor In Burst

¥

Next Instruction
(1/0 Operation Not lnitiated)

Set Condition Code to 2
and Terminate Start Device

Instruction
Reset the Channel Status

Byte and the Standard Device
Byte to Zero ‘

——

Next Instruction
(1/0 Operation Not Initiated)

the Memory Protect
Feature is Not Installed:
Is Key in CAW = 0?

z
o (1]
R

/

Yes

No Is Main Memory Address
in CAW on a Double Word

K Boundary?

Yes

ﬂdoin Memory Address
in CCW in Available

Main Memory?

\°

Set Program Check Bit in

Chonnel Status Byte

Set Condition Code to 1
and Terminate Start Device
Instruction

|

Next Instruction
(170 Operation Not Initioted)

Figure 5. Functional Logic of Start Device Instruction

48

If Specified Channel is

No

Yes

Input/Output Operation

Multiplexor: Does CCW
Specify Burst Mode?
/ 9

No

Is there o Pending

Send Device Address To
All Trunks on the
Specified Channel

Is the Specified
Device Control
Electronics Operable?

Set Condition Code to 3 and

Terminate Start Device 12
Instruction
Send Command to Specified
I Device Control Electronics

Next Instruction

(170 Operation Not Initiated) 13

Receive Standard Device
Byte from Device and
Set Condition Code

Is the Condition
Code Set 1o '0"'?

Is the Specified Channel
the Multiplexor?

Does the CCW Specify
Burst Mode?

Transfer CAW and CCW
to Appropriate Selector
Channel Registers in
Scratch Pad Memory

Transfer CAW ond CCW to
Multiplexor Channel

Registers in Scrotch Pad
Memory

20

17
Tronsfer CAW and CCW to
Appropriate Subchannel
Registers in Non-Addressable
Main Memory

Send Command to Specified
Device and Terminate
Start Device
Instruction

¥

Next Instruction
(1/0 Operation Initiated)

22

and Interrupt?

Set Condition Code to 2 ond
Terminate Start Device
Instruction

1

Next Instruction

(1/0 Operation Not Initiated)

Is the Condition
Code Set to ''1''?

Yes

Store Standard Device Byte
in Scratch Pad Memory and
Terminate Start Device,
Instruction

No

t

Next Instruction
(1/0 Operation Not Initiated)

Figure 5. Functional Logic of Start Device Instruction (Cont'd)

49

Block 3

Block 4

Block 5

Block 6

Block 7

Block 8

Block 9

Block 10

Block 11

Block 12

Input/Output Operation

¢ If the specified channel is a selector channel that is busy or has an
interrupt pending (termination or external device request) or if the speci-
fied channel is the multiplexor that is operating in the burst mode, the con-
dition code is set to 2, the Start Device instruction is terminated and
program control is transferred to the next instruction. The input/output
operation is not initiated.

¢ The channel status byte and the standard device byte for the specified
channel are reset to zeros in the appropriate channel registers.

4 If the Memory Protect feature is not installed, the key in the Channel
Address Word (CAW) is tested to see if it is equal to zeros. If it is not
zeros, the program check bit in the channel status byte is set, the condition
code is set to 1, the Start Device instruction is terminated, and program
control is transferred to the next instruction. The input/output operation
is not initiated.

¢ The main memory address in the Channel Address Word is tested
to see if it is on a double word boundary. If it is not, the program check
bit in the channel status byte is set, the condition code is set to 1, the Start
Device instruction is terminated and program control is transferred to the
next instruction. The input/output operation is not initiated.

¢ The main memory address in the Channel Command Word (CCW) is
tested to see if it is within the available main memory for the system. If
it is not, the program check bit in the channel status byte is set, the condi-
tion code is set to 1, the Start Device instruction is terminated and program
control is transferred to the next instruction. The input/output operation
is not initiated.

4 If the specified channel is the multiplexor channel, the command code
in the Channel Command Word is tested to see if a burst mode operation
has been specified.

¢ If a burst mode operation has been specified, a test is made to see if
there is a terminating interrupt pending on any of the trunks on the multi-
plexor. If a terminating interrupt is pending, the condition code is set to
2, the Start Device instruction is terminated and program control is trans-
ferred to the next instruction. The input/output operation is not initiated.

¢ The device address as specified in the Start Device instruction is sent
to all trunks on the addressed channel.

€ A test is made to see if the specified device control electronics is oper-
able. The device control electronics has 50 microseconds to signal the
processor that it is operable. If it does not, the condition code is set to 3,
the Start Device instruction is terminated and program control is trans-
ferred to the next instruction. The input/output operation is not initiated.

¢ If the specified device control electronics is operable, the command

code from the Channel Command Word is sent to the specified device
control electronics.

50

Block 13

Block 14

Block 15

Block 16

Block 17

Block 18

Input/Output Operation

& After receiving the command code, the device control electronics sends
the standard device byte to the processor. This standard device byte is not
stored in the channel registers in scratch-pad memory. It is used to set the
proper condition code as follows:

Condition Code Definition
3 Device control electronics is inoperable.
2 A termination interrupt pending condition exists in the device

control electronics on the multiplexor channel.

2 The device control electronics is busy working with the speci-
fied device.
2 The device control electronics is busy working with a device

other than the one specified.

1 An external device request interrupt pending condition exists
in the device control electronics on the multiplexor channel.

1 The specified device is busy but the device control electronics
is not busy (i.e., tape rewinding, off-line seek).

*1 The specified device is inoperable.

0 The specified device and control electronics is available.

* If the command is a Sense, the condition code is set to 0 permitting the operation to
be initiated.

& A test is made to see if the condition code is set to 0 (input/output
operation can be initiated).

¢ If the condition code is zero, a test is made to see if the specified chan-
nel is the multiplexor channel.

¢ If the specified channel is a selector channel, the Channel Address Word
and Channel Block Address (if T =1) are fetched from main memory
locations 72 through 79 and stored in the appropriate channel address
register. Using the main memory address specified in the CAW, the
Channel Command Word is fetched from main memory and stored in the
appropriate channel command registers.

¢ The command is sent to the specified device control electronics and the
Start Device is terminated (with the condition code set to 0). The input/
output operation is initiated and proceeds under control of the appropriate
channel and registers in scratch-pad memory and non-addressable main
memory (multiplexor devices). Normal program execution of the next
instruction continues simultaneously with the input/output operation.

& If the specified channel is the multiplexor channel, the command code
in the Channel Command Word is tested to see if a burst mode operation
has been specified.

51

Block 19

Block 20

Block 21

Block 22

Halt Device Instruction

Input/Output Operation

¢ If a burst mode operation has been specified, the Channel Address Word
and Channel Block Address (if T = 1) are fetched from main memory
locations 72 through 79 and stored in the channel address register for the
multiplexor channel. Using the main memory address specified in the CAW,
the Channel Command Word is fetched and stored in the channel command
registers for the multiplexor channel.

¢ If a burst mode operation has not been specified, the Channel Address
Word and the Channel Command Word are fetched from main memory and
stored in the subchannel registers in non-addressable main memory for the
device specified.

¢ If the condition code is not set to 0, a test is made to see if the condition
code is set to 1.

4 If the condition code is set to 1, the standard device byte is transferred
to the channel registers for the channel specified, the Start Device instruc-
tion is terminated and program control is transferred to the next instruc-
tion. The input/output operation is not initiated.

Notes on Start Device Instruction

1. The channel status byte and the standard device byte are not stored
if the condition codes are 0, 2, 3.

2. If the specified channel and device can be initiated (CC = 0) the
contents of the Channel Address Word, Channel Block Address (if
T = 1), and Channel Command Word are loaded into the appropriate
channel registers and the command is sent to the device. The legality
of the command is not determined at initiation time. If the device
gets an illegal command, the operation is terminated and a channel
interrupt occurs. The standard device byte (stored in the appropriate
channel registers when the interrupt is taken) indicates a secondary
indicator. A Sense command must be issued to bring the Sense byte (s)
into main memory. The Sense byte(s) indicate the illegal operation.

3. If execution of this instruction causes the channel status byte or the
standard device byte to be stored, the program must inhibit inter-
rupts on this channel until the status byte has been analyzed or
moved from the channel registers. If interrupts are permitted and
one occurs the standard device byte and the channel status byte
are destroyed.

4 The Halt Device instruction is a privileged operation and can be exe-
cuted only if the mode bit (bit position 15 of the Interrupt Status register)
for the current state is set to 0. This instruction is executed in the normal
mode. Continuation of program execution is delayed until termination is
accepted by the device control electronics. When the device control elec-
tronics receives the termination, it causes a channel interrupt to occur.
Both the channel number and the device number must be specified in the
instruction. Because the Channel Address Word is not referred to by the
Halt Device instruction, the Channel Address Word, Channel Block
Address, and a Channel Command Word are not required.

Upon execution of a Halt Device instruction, the following events occur
(see figure 6).

52

Block 1

Block 2

Block 3

Block 4

Block 5

Block 6

Block 7

Block 8

Block 9

Input/Output Operation

& If the privileged mode bit (bit position 15 of the Interrupt Status
register) for the current state is not set to zero, the privileged operation
bit is set in the Interrupt Flag register and an interrupt occurs
(if permitted).

& If the specified channel is a selector channel which is not available
on the system, the condition code is set to 3, the Halt Device instruction is
terminated and program control is transferred to the next instruction.

& If the specified channel is a selector channel that is busy or if the speci-
fied channel is the multiplexor that is operating in the burst mode, the
Chain Command (CC) flag in CCR-II is reset, the device control electronics
is told to set an end condition, the condition code is set to 2, the Halt Device
instruction is terminated, and program control is transferred to the next
instruction.

Notes:

1. Setting an end condition causes the device to be halted on servicing
the next data transfer (see Servicing a Data Transfer).

2. The Chain Command flag must be reset to suppress chaining during
termination (see Chaining and End Servicing section, below).

& If the specified channel is not the multiplexor channel, the condition
code is set to 0, the Halt Device instruction is terminated and program
control is transferred to the next instruction.

& If the specified channel is the multiplexor channel, the channel status
byte and the standard device byte are reset to zeros in the multiplexor
channel registers.

& The device address as specified in the Start Device instruction is sent
to all trunks on the multiplexor channel.

€ A test is made to see if the specified device control electronics is oper-
able. The device control electronics has 50 microseconds to signal the
processor that it is operable. If it does not the condition code is set to 3,
the Halt Device instruction is terminated and program control is trans-
ferred to the next instruction.

& If the specified device control electronics is operable, it sends the
standard device byte to the processor. This standard device byte is not
stored in the channel registers.

& If the condition code is not set to 1 (it is 0, 3) the Halt Device
instruction is terminated and program control is transferred to the next
instruction.,

Notes on Halt Device instruction:

1. The channel status byte is not stored as a reult of this operation.

However, the incorrect length bit in the channel status byte may
be set.

53

No

~

N

-

Set Condition Code to 3
and Terminate Halt Device
Instruction

t

Next Instruction

No

.

P

Set Condition Code to
0 and Terminate Halt
Device Instruction

!

Next Instruction

-

O

~

Start

!

Is Privileged Mode Bit

Input/Output Operation

\ Set Privileged

Set to Zero?

Yes

s Specified Selector
Channel on System?

-—/
Yes

Is Specified Channel:
1. Busy Selector Channel

Y

Mode
Interrupt

2. Multiplexor Channel
in Burst

.

No

Is Specified Channel
the Multiplexor?

| Yes

-

Reset the Channel Status
Byte ond the Standard
Device Byte to Zero

Send Device Address to
All Trunks on
Multiplexor Channel

Tell Device to Set an End
Condition; Reset Chain
Command(CC) Flag in CCR-II
in Scratch Pad Memory

Set Condition Code to 2
and Terminate Halt
Device Instruction

!

Next Instruction

Figure 6. Functional Logic of Halt Device Instruction

54

Input/Output Operation

No ﬁe Specified Device

ontrol Electronics
l- Operable?
Set Condition Code to 3 l Yes
and Terminate Halt Device 8 —

Instruction
Receive Standard Device
‘ Byte from Device

Next Instruction L

Store Standard Device Byte
in Multiplexor Channel
Registers in SPM

Tell Device to Set an
End Condition

l
_

Reset Chain Command (CC)
Flagin CCR-Hl in Non-
Addressable Main Memory

-

Terminate Halt
Device Instruction

!

Next Instruction

Figure 6. Functional Logic of Halt Device Instruction {Cont'd)

55

Block 9
(Cont’d)

Test Device
Instruction

Block 1

Block 2

Block 3

Block

Block 5

Input/Output Operation

2. The standard device byte is not stored if the condition codes are
0, 2, 3.

3. If an interrupt pending (termination or external device request)
condition exists on a specified selector channel, the condition code
is set to zero.

4. The channel and device are terminated at the next data service
request (see Servicing a Data Transfer).

5. The Channel Address Word (CAW), Channel Block Address (CBA),
and Channel Command Word (CCW) are not used by this instruction.

6. If execution of this instruction causes the standard device byte to
be stored in the multiplexor channel registers, the program must
inhibit interrupts from the multiplexor channel until the standard
device byte has been analyzed or moved from the channel registers.
If interrupts are permitted and one occurs, the standard device
byte is destroyed.

¢ The status of an input/output device can be tested by executing a Test
Device instruction. The Test Device instruction is a privileged operation
and can be executed only if the mode bit (bit position 15 of the Interrupt
Status register for the current state) is set to 0. This instruction is exe-
cuted in the normal mode. Continuation of program execution is delayed
until the instruction is terminated.

Both the channel number and the device number must be specified in
the instruction. Because the Channel Address Word is not referred to by
the Test Device instruction, the Channel Address Word, Channel Block
Address, and a Channel Command Word are not required.

Upon execution of a Test Device instruction, the following events occur
(see figure 7).

¢ If the privileged mode bit (bit position 15 of the Interrupt Status
register) for the current state is not set to 0, the privileged operation bit
is set in the Interrupt Flag register and an interrupt occurs, if permitted.

¢ If the specified channel is a selector channel that is not available on
the system, the condition code is set to 3, the Test Device instruction is
terminated and program control is transferred to the next instruction.

¢ If the specified channel is a selector channel that is busy or has on
interrupt pending (termination or external device request) ; or if the speci-
fied channel is the multiplexor that is operating in the burst mode, the
condition code is set to 2, the Test Device instruction is terminated and
program control is transferred to the next instruction.

¢ The channel status byte and the standard device byte for the specified
channel are reset to zeros in the appropriate channel registers.

¢ The device address as specified in the Test Device instruction is sent
to all trunks on the addressed channel.

56

Input/Output Operation

Start

Set Privileged
Mode
Interrupt

Is Privileged Mode
Bit Set to Zero?

2 .
No Is Specified Selector

Chaonnel on System?

Yes

Set Condition Code to 3

Multiplexor in Burst

ond Terminate Test Device 3 Is Specified Channel:
Instruction 1. Busy Selector Channel
2. Selector with Interrupt Yes
3.

l Pending

Next Instruction I Set Condition Code to 2
4 ond Terminate Test
Reset the Channel Status Device Instruction
Byte and the Standard
Device Byte to Zero *

Next Instruction

Send Device Address to
All Trunks on
Specified Channel

l

Operable?

6
No K Is the Specified
Qice Control Electronics

>/

Set Condition Code to 3 \
ond Terminate Test Device 7
Instruction

Receive Standard Device
Byte from Device and

l Set Condition Code

S

Next Instruction l

/

Is the Condition Code

Set to 1? J I
Store Standard Device 1
I No Byte in Scratch Pad
9 Memory
Terminate Test =
Device Instruction
‘ Terminate Test
Device Instruction
Next Instruction

'

Next Instruction

Figure 7. Functional Logic of Test Device Instruction

57

Block 6

Block 7

Block 8

Block 9

Input/Output Operation

¢ A test is made to see if the specified device control electronics is oper-
able. The device control electronics has 50 microseconds to signal the
processor that it is operable. If it does not, the condition code is set to 3,
the Test Device instruction is terminated and program control is trans-
ferred to the next instruction.

4 If the specified device control elec_tronics is operable, it sends the stand-
ard device byte to the processor. This standard device byte is not stored in
the channel registers. It is used to set the proper condition code as follows:

Condition Code Meaning
3 Device control electronics is inoperable.
2 A termination interrupt pending condition exists in the device

control electronics on the multiplexor channel.

2 The device control electronies is busy working with the speci-
fied device.
2 The device control electronics is busy working with a device

other than the one specified.

1 An external device request interrupt pending condition exists
in the device control electronics on the multiplexor channel.

1 The specified device is busy but the device control electronics
is not busy (i.., tape rewinding, off-line seek).

1 The specified device is inoperable.

0 The specified device and control electronics is available.

¢ A test is made to see if the condition code is set to 1. If it is, the
standard device byte is transferred to the channel registers for the channel
specified, the Test Device instruction is terminated and program control
is transferred to the next instruction.

4 If the condition code is not set to 1, the Test Device instruction is
terminated and control is transferred to the next instruction.

Notes on Test Device Instruction:
1. The channel status byte is not stored as a result of this operation.

2. The standard device byte is not stored if the condition codes are
0, 2, or 3.

3. The Channel Address Word (CAW), Channel Block Address (CBA)
and Channel Command Word (CCW)) are not used by this
instruction.

4. If execution of this instruction causes the standard device byte to
be stored in the multiplexor channel registers, the program must
inhibit interrupts from the multiplexor channel until the standard
device byte has been analyzed or moved from the channel registers.
If interrupts are permitted and one occurs, the standard device
byte is destroyed.

58

No

R\"

Start

Is Privileged Mode

Bit

~

Set to Zero?

l Yes

Set Condition Code to 3
and Terminate Check Channel
Instruction

!

Next Instruction

Yes

k{

~

Is Specified Selector
Channel on System?

Is Spe

cified Channel:
1. Busy Selector Yes

Input/Output Operation

Set Privileged
Mode

Interrupt

Pending

2. Selector with Interrupt
3. Multiplexor in BJ

lNo

Does S

—

Set Condition Code to 1
and Terminate Check Channel
Instruction

!

Next Instruction

w

Chann

Device

e

pecified Selector
el have External
Request Interrupt
Pending?

No

Set Col
and T

ndition Code to 0
erminate Check

Channel Instruction

N

!

ext Instruction

Set Condition Code to 2
and Terminate Check
Channel Instruction

'

Next Instruction

Figure 8. Functional Logic of Check Channel Instruction

59

Check Channel
Instruction

Block 1

Block 2

Block 3

Block 4

Block 5

INPUT/OUTPUT
STATUS INDICATORS

Input/Output Operation

¢ The status of an input/output channel can be tested by executing a
Check Channel instruction. The Check Channel instruction is a privileged
operation and can only be executed if the mode bit (bit position 15 of the
Interrupt Status register for the current state) is set to 0. This instruc-
tion is executed in the normal mode. Continuation of program execution
is delayed until the instruction is terminated.

Only the channel number must be specified in the instruction. Because
the Channel Address Word is not referred to by.the Check Channel instruc-
tion, the Channel Address Word, and Channel Block Address (CBA)
and a Channel Command Word are not required.

Upon execution of a Check Channel instruction, the following events
occur (see figure 8).

¢ If the privileged mode bit (bit position 15 of the Interrupt Status
register) for the current state is not set to 0, the privileged operation
bit is set in the Interrupt Flag register and interrupt occurs if permitted.

¢ If the specified channel is a selector channel that is not available on
the system, the condition code is set to 3, the Check Channel instruction
is terminated and program control is transferred to the next instruction.

4 If the specified channel is a selector channel that is busy or has a ter-
mination interrupt pending; or if the specified channel is the multiplexor
that is operating in the burst mode, the condition code is set to 2, the
Check Channel instruction is terminated and program control is trans-
ferred to the next instruction.

¢ If the specified channel is a selector channel that has an external device
request interrupt pending, the condition code is set to 1, the Check Channel
instruction is terminated and program control is transferred to the
next instruction.

¢ If the specified channel is a selector channel that is not busy and has
no interrupts pending; or is the multiplexor channel that is not operating
in the burst mode, the condition code is set to 0, the Check Channel
instruction is terminated and program control is transferred to the next
instruction.

Notes on Check Channel instruction:

1. The channel status byte and the standard device byte are never
stored by this instruction.

2. The Channel Address Word (CAW), Channel Block Address (CBA)
and the Channel Command Word (CCW) are not used by this
instruction.

¢ Three levels of status information are available to the program to
control input/output operation. The first pertains to the setting of the
condition code when an input/output instruction is issued. The second level
provides more detailed information by storing the channel status byte and
the standard device byte in the appropriate input/output channel registers
in scratch-pad memory. The third level of status information is generated

60

INPUT / OUTPUT
STATUS INDICATORS
(Cont'd)

Condition Code

Input/Output Operation

by, and stored in, the device control electronics until a Sense command is
issued. At that time the status information (Sense bytes) are transferred
to main memory similar to a data transfer.

¢ The condition code is set by the input/output instructions and can be
tested by the Branch On Condition instruction. It should be noted that the
condition code settings indicate the result of the input/output instructions
only. They do not indicate the results of the input/output operation. Con-
dition Code settings for all input/output instructions are as follows:

Start Device Instruction Condition Code Seftings

Condition | 1/O Operation
Code Initiated Meaning

0 Yes 1. The device control electronics and the device specified
are available.

2. The Start Device instruction specifies a Sense com-
mand to a device that is inoperable.

1 No This condition code indicates that either the channel status
byte or the standard device byte has been stored in the
channel registers for the specified channel.

The channel status byte is stored under the following
conditions:

1. A parity error occurs while accessing the Channel
Address Word, Channel Block Address, or a Channel
Command Word. The channel control check bit in the
channel status byte is set.

2. The Memory Protect feature is not installed and the
key in the CAW is not zero. The program check bit
in the channel status byte is set.

3. The main memory address specified in the CAW is
not on a double word boundary. The program check
bit in the channel status byte is set.

4. The main memory address in the CCW specifies an
address outside the available memory for the system.
The program check bit in the channel status byte
is set.

The standard device byte is stored under the following
conditions:

1. The specified device control electronics on the multi-
plexor channel indicates that a device request inter-
rupt pending condition is present. The external device
request interrupt pending bit in the standard device
byte is set.

2. The Start Device instruction specifies a command
which is other than a Sense command and the
addressed device is inoperable. The device inoperable
bit in the standard device byte is set.

3. The specified device is busy but the device control
electronics is not busy (i.e., tape rewinding, off-line
seek to a random access device). The device busy bit
and the device end bit in the standard device byte
is set.

(Cont’d)

61

Condition Code
(Cont’d)

Input/Output Operation

Start Device Instruction Condition Code Settings (Cont'd)

Condition
Code

1/0 Operation
Initiated

Meaning

2

No

1. A selector channel is specified that is busy.

2. A selector channel is specified that has an interrupt
pending (termination or external device request).

3. The multiplexor channel is specified and it is operating
in burst mode.

4. The multiplexor channel is specified and the addressed
device control electronics is busy with addressed or
non-addressed device.

5. The multiplexor, channel is specified and the addressed
device control electronics has a termination interrupt
pending.

6. A burst mode operation is directed to the multiplexor
and there is a termination interrupt pending on one of
the attached device control electronics.

1. A selector channel is specified that is not in the system.
2, The specified device control electronics is inoperable.

Halt Device Instruction Condition Code Settings

Condition
Code

1/0 Operation
Initiated

Meaning

0

No

1. The device control electronics or the device specified on
the multiplexor channel is not busy. No termination
is required.

2. A selector channel or the multiplexor channel operat-
ing in burst mode is specified and it is not busy. No
termination is required.

3. The multiplexor channel is specified and the addressed
device control electronics has a termination interrupt
pending. No termination is required.

This condition code indicates that the specified device is
on the multiplexor channel and that the standard device
byte has been stored in the channel registers for the multi-
plexor channel. The channel status byte is never stored.

The standard device byte is stored under the following

conditions:

1. The specified device indicates that a device request
interrupt pending condition is present. The external
device request interrupt pending bit in the standard
device byte is set.

2. The specified device is busy but the device control
electronics is not busy (i.e., tape rewinding). The
device busy bit in the standard device byte is set.

3. The specified device is inoperable. The device inop-
erable bit in the standard device byte is set.

Yes

1. A selector channel is specified that is busy.

2. The multiplexor channel is specified and it is operating
in the burst mode.

3. The multiplexor channel is specified and the addressed
device control electronics and device are busy.

No

1. A selector channel is specified that it is not in the
system.

2. The specified device control electronics is inoperable.

62

Input/Output Operation

Condition Code Test Device Instruction Condition Code Settings
(Cont’d)
Condition)
Code Meaning
0 The device control electronics and the device are available.

Note: There may be pending interrupts on the multiplexor channel
that would prohibit a burst mode operation being initiated.

1 This condition code indicates that the standard device byte has been
stored in the channel registers for the specified channel. The channel
status byte is never stored by this instruction.

The standard device byte is stored under the following conditions:

1. The specified device control electronics on the multipiexor chan-
nel indicates that a device request interrupt pending condition
is present. The external device request interrupt pending bit in
the standard device byte is set.

2. The specified device is busy but the device control electronics
is not busy (i.e., tape rewinding, off-line seek to a random access
device). The device busy bit in the standard device byte is set.

3. The specified device is inoperable. The device inoperable bit in
the standard device byte is set.

2 1. A selector channel is specified that is busy.

2. A selector channel is specified that has an interrupt pending
(termination or external device request).

3. The multiplexor channel is specified and it is operating in burst
mode.

4. The multiplexor channel is specified and the addressed device
control electronics is busy with addressed or non-addressed device.

5. The multiplexor channel is specified and the addressed device
control electronics has a termination interrupt pending.

3 1. A selector channel is specified which is not on the system.
2. The specified device control electronics is inoperable.

3. A device is specified that is not in the system.

Check Channel Instruction Condition Code Setting

Condition .
Code Meaning
0 1. The specified selector channel is not busy and has no interrupts
pending.
2. The specified multiplexor channel is not operating in the burst
mode.
1 The specified selector channel has an external device request inter-
rupt pending.
2 1. The specified selector channel is busy or has a terminating inter-
rupt pending.
2. The specified multiplexor is operating in the burst mode.
3 A selector channel is specified that is not in the system.

Channel Status Byte ¢ The channel status byte is stored in Channel Command Register-11
(bit positions 8 through 15) for the appropriate channel. It contains infor-
mation concerning the status of the channel when a channel interrupt
occurs, or at the completion of a Start, Halt or Test Device instruction if

63

Channel Status Byte
(Cont’d)

Input/Output Operation

the condition code indicates that Status is stored. The bit significance of
the channel status byte is as follows:

Bit Position 8 is the program controlled interrupt bit. When set, this
bit indicates that a Channel Command Word was accessed which had the
program controlled interrupt flag bit set. A channel interrupt occurs for
the appropriate channel while the input/output operation specified by the
Channel Command Word is being executed.

Note: The program controlled channel interrupt occurs after the first
data byte has been transferred.

Bit Position 9 is the incorrect length bit. When set, this bit indicates
that when the input/output operation was terminated, the byte count
specified in the channel command was not equal to the number of bytes
received from, or sent to, the input/output device. The incorrect length
indicator can be set only if the suppress length indicator flag bit in the
channel command word is reset to 0.

The following conditions cause the incorrect length bit to be set:

1. Count High on Input (Read, Read Reverse, Sense). The main
memory area specified by the Channel Command Word is not com-
pletely filled by transmission from the device. The final byte count
in Channel Command Register-1I is greater than zero.

2. Count High on Output (Write, Write Control). Data in the main
memory area specified by the Channel Command Word is not com-
pletely transferred and the device terminated. The final byte count
in Channel Command Register-II is greater than zero.

Notes:

1. If incorrect length occurs during command chaining and the
Suppress Length Indicator flag bit of the current command is reset,
the incorrect length bit is set.

2. If incorrect length occurs during the last command of a chain (the
Chain Data flag bit is reset), and the Suppress Length Indicator
flag of the command is set, the incorrect length bit is not set.

Bit Position 10 is the program check bit. When set, this bit indicates
that a programming error was detected by the channel.

The following conditions cause the program check bit to be set:

1. Invalid Channel Command Word Address. The addressed Channel
Command Word is not located on a double word boundary.

2. Invalid Channel Command Word Address. The addressed Channel
Command Word is outside the available main memory for the par-
ticular installation.

3. Invalid Data Address. The main memory location specified by the
data address in the Channel Command Word is outside the avail-
able main memory for the particular installation.

64

Channel Status Byte
(Cont’d)

Standard Device Byte

Input/Output Operation

4. Invalid Key. The memory protection key in the Channel Address
Word is not zero and the system does not have the Memory Protect
option installed.

Notes:

1. If a program check error occurs during input/output initiation,
the operation is suppressed and the program is notified of the error
by the condition error setting.

2. If a program check error occurs while the input/output operation
is in progress, the operation is terminated and a channel interrupt
occurs for the specified channel.

3. If a program check error occurs during chaining (command or
data), a channel interrupt occurs for the specified channel and
chaining is suppressed.

Bit Position 11 is the protection check bit. When set, this bit indicates
that the channel tried to store data in a protected main memory area. The
operation is terminated and a channel interrupt occurs for the specified
channel. If chaining (command or data) is in progress, it is suppressed.

Bit Position 12 is the channel data check bit. When set, this bit indi-
cates that a parity error was detected in the channel, in main memory,
non-addressable main memory or in scratch-pad memory. Characters with
bad parity going into memory are replaced with the systems error byte
(hexadecimal FF), and the input/output operation is completed. For parity
error characters going to a device, (writing) the invalid character is
transferred unchanged, the operation is terminated and a channel interrupt
occurs for the specified channel. (The transfer of sense byte(s) to memory
is not checked for parity.)

Bit Position 138 is the channel control check bit. When set, this bit
indicates that a machine malfunction has occurred affecting the channel
controls. Conditions which cause this bit to be set are parity error in the
Channel Command Word, data address, or contents of the Channel Com-
mand Word. The operation is terminated and a channel interrupt occurs
for the specified channel. If chaining (command or data) is in progress,
it is suppressed.

Bit Position 14 is reserved for use by the processor.

Bit Position 15 is the termination interrupt bit. When set, this bit
indicates that a termination interrupt has been effected.

Important: The channel status byte is reset only when an input/output
operation is initiated.

& The standard device byte is stored in scratch-pad memory in the
Assembly/Status register (bit positions 24 through 31) for the appropriate
channel. This byte indicates the status of a device after an input/output
operation. It may also indicate a device request interrupt.

The standard device byte is automatically stored when:

1. An input/output interrupt is serviced (request or termination).

65

Standard Device Byte
(Cont’d)

Sense Bytes

CHANNEL
SERVICING

Input/Output Operation

2. An input/output operation is attempted and the condition code
indicates that status bits are stored (channel status byte, standard
device byte).

The standard device byte is defined as follows:

Bit Position 24 is the external device request interrupt pending bit.
When set, this bit indicates that a random access device, a data exchange
control or a communications device requires servicing.

Bit Position 25 is the termination interrupt pending bit. When set,
this bit indicates that a termination interrupt condition exists in an input/
output device.

Bit Position 26 is the device busy bit. When set, this bit indicates that
the specified device is busy and cannot accept another operation.

Bit Position 27 is the control busy bit. Not applicable.

Bit Position 28 is the device end bit. When set, this bit indicates that
the specified device has terminated. Another operation can be accepted by
the device if the device busy bit (26) is not set.

Bit Position 29 is the secondary indicator bit. When set, this bit indi-
cates that the specified device has additional indicators to be tested. These
indicators can be brought into main memory by using the Sense command.

Bit Position 30 is the device inoperable bit. When set, this bit indi-
cates that the specified device is inoperable.

Bit Position 31 is the status modifier bit. This bit is used with Command
chaining. When set, this bit indicates that the next Channel Command
Word is skipped. This bit is set as a result of device termination.

¢ The sense byte, or bytes, are brought into main memory from an
input/output device by using the Sense command. These bytes contain
status information for the device referred to. The exact status information
sent is defined in the Spectra 70 input/output reference manuals for the
individual devices.

¢ The following sections explain in detail the three types of channel
servicing which may be performed during input/output operations. They

are: servicing a data transfer, end and chain servicing, and interrupt
servicing.

Because channel servicing requires that the channel utilize main
memory, scratch-pad memory and non-addressable main memory (multi-
plexor devices), normal mode processing is held off until the servicing has
been completed. Consequently, channel servicing is time-shared with
normal mode processing. Between service requests, normal mode process-
ing is resumed, or another channel is permitted to service its device(s).

Channel servicing for a device on the multiplexor channel (multiplex
mode) requires more time than channel servicing for a device on a selector
channel. To balance the system’s throughput rate, multiplexor channel
servicing is segmented to permit selector channel servicing to break-in if
any selector channels require servicing. After all selector(s) demanding
service have been satisfied, multiplexor servicing is resumed. This tech-

66

CHANNEL
SERVICING
(Cont'd)

Servicing a Data Transfer

Block 1

Block 2

Block 3

Input/Output Operation

nique insures that the interference to selector channel servicing caused by
the multiplexor channel is not greater than that of an additional selector
channel.

¢ Once an input/output operation has been initiated, it proceeds under
control of the appropriate channel and registers in scratch-pad memory
and non-addressable main memory (multiplexor devices). When an input/
output operation has been initiated and the input/output device is ready
to send or receive a data byte, it asks the processor for a service request.
When the processor honors this service request, servicing of a data trans-
fer occurs.

Because servicing a data transfer requires that the channel utilize
main memory, scratch-pad memory and non-addressable main memory
(multiplexor devices), normal mode processing is held off until the servic-
ing has been completed. Servicing of a data transfer is time-shared with
normal mode processing. Between service requests, processing is resumed,
or another channel is permitted to service its device(s).

If a burst mode operation has been initiated to the multiplexor chan-
nel, the channel operates similar to a selector and only one device is serv-
jced. Service requests by devices other than the one operating in burst
mode are ignored until the multiplexor channel is operating in the multi-
plexor mode. This occurs at the conclusion of the burst operation when
the last data byte has been serviced (prior to interrupt).

Servicing of a data transfer causes the following events to occur (see
figure 9).

& If the service request comes from a device control electronics con-
nected to the multiplexor channel which is operating in the multiplex mode,
the processor gets the device address and fetches the appropriate sub-
channel registers in non-addressable main memory. These registers are
placed in processor utility registers in scratch-pad memory. (They are not
sent to the multiplexor channel registers in scratch-pad memory.) If the
service request comes from a device control electronics connected to the
multiplexor channel which is operating in the burst mode or from a device
connected to a selector chanmel, the appropriate channel registers in
scratch-pad memory are used to service the data transfer.

& A test is made to, see if the Program Controlled Interrupt (PCI) flag
is set. If it is, the channel interrupt bit is set in the Interrupt Flag register
and an interrupt occurs, if permitted. The PCI flag is reset and the
program control interrupt bit is set in the channel status byte.

¢ A test is made to see if the device control electronics requesting service
has indicated an end condition. An end condition is indicated when one of
the following occurs:

1. The processor reaches a byte count lapse. If this occurs, the processor
tells the device control electronics to indicate an end condition on
the next data service request.

67

Input/Output Operation

1/0 Service Request

Is Specified Channel Yes

the Multiplexor?
__/ k j

No { Get Device Address and

Fetch Subchannel - See M
2
Yes (Is the PCl Flag in

Registers
the Command Set?

Set Channel
Interrupt (PCI)
for Specified
Channel

1/0 Service Request for
Multiplexor in Burst Mode

Has Device Indicated Yes Go to *‘End and

Chaining Servicing’® — Block 1

an End Condition?

Reset PCI Flog
in the Command

2 [
Decrement the Byte
Set Program Control Count by One
Interrupt Bit in Ch. |
Stotus Byte

Is the Command

l K A Read
Fetch Data Byte from

Memory and Send it <~ See Note 4 6
to the Device

Is the Skip Flag
in the Commond Set?

Is the Command
a Sense

Figure 9. Functional Logic of Servicing a Data Transfer

68

\U'

Received from the Device

Does the Data Byte No

Input/Output Operation

have Correct Pori'yj

—¥a

| 8

Bt Bnd

Transfer the Data Byte
from the Device to
Main Memory

<= See Note 2

|

Is the Command

Set Channel Data Check
Bit in Channel Status
Byte; Change Data Byte
to (FF) 16

o Read Reverse?

Yes

Increment the Main Memory

Data Address By One

4

Is Multiplexor Operating

Decrement the Main Memory
Data Address By One

Yes

Is the Chain Data (CD) Flag Go to “‘End
in the Command Set and Chaining
Servicing” -
Block Il

Tell Device to Set an

Is Specified Channel
the Multiplexor?

No

in Burst Mode?

Store Subchannel
Registers Back in Non-

Addressable
Main Memory

?

Next Instruction

End Condition

Figure 9. Functional Logic of Servicing a Data Transfer (Cont’d)

69

Servicing a Data Transfer

(Cont’d)

Block 4

Block 5

Block 6

Block 7

Block 8

Block 9

Block 10

Block 11

Block 12

Block 13

Input/Output Operation

2. The device has completed the input/output operation (i.e., a gap
is sensed on tape). If this occurs, the device control electronics
automatically indicates an end condition. (In this case the byte
count is never zero.)

If an end condition has been indicated, the processor goes to End and
Chaining Servicing (see figure 10, Block 1).

Note: Certain error conditions cause the processor to tell the device con-
trol electronics to indicate an end condition on the next data service
request (see Notes 3, 4, 5, 6 on Servicing a Data Transfer).

¢ If the device control electronics has not indicated an end condition, the
byte count is decremented by one.

¢ A test is made to see if the command is a read. A read command can
be any one of the following:

Read Forward
Read Reverse

Sense

All other commands (except Transfer in Channel) are write com-
mands. If the command is a write, the data byte is fetched from main
memory and sent to the device. Control is then transferred to Block 11.

¢ If the command is a read, a test is made to see if the SKIP flag is set.
If it is, transfer of the data byte to main memory is bypassed and control
is transferred to Block 10.

¢ If the SKIP flag is not set, a test is made to see if the command is a
Sense. If it is, parity checking of the data byte is bypassed and control is
transferred to Block 9.

¢ If the command is not a Sense, a test is made to see if the data byte
received from the device has correct parity. If it does not, the channel data
check bit in the channel status byte is set and the data byte is converted to
(FF). The input/output operation continues.

4 The data byte is transferred to the main memory address specified.

¢ A test is made to see if the command is a Read Reverse. If it is, the
main memory address is decremented by one.

4 If the command is not a Read Reverse, the main memory address is
incremented by one.

¢ A test is made to see if the byte count has lapsed. If it has, a test is
made to see if the Chain Data flag is set. If it is, the processor goes to End
and Chaining Servicing (see figure 10, Block 11).

¢ If the Chain Data flag is not set, the processor tells the device control
electronics to indicate an end condition on the next data service request.

70

Block 14

Block 15

Input/Output Operation

& A test is made to see if the service request was honored for a device
on the multiplexor channel. If it was not, program control continues with
the next instruction or with the instruction that was interrupted due to the
service request.

& If the service request was honored for a device on the multiplexor
channel, a test is made to see if it is a burst mode operation. If it is not a
burst mode operation, the sub-channel registers are sent back to non-
addressable main memory. In either case, program control continues with
the next instruction or with the instruction that was interrupted due to
the service request.

Notes on Servicing a Data Transfer:

1. All input/output data service requests are honored depending on
the channel’s position in the priority sequence.

2. The following tests occur when a data byte is transferred to main
memory :

a. The main memory address to which the data byte is to be trans-
ferred is tested to see if it is in a memory protected area (Memory
Protect feature must be installed). If it is, the protection check
bit in the channel status byte is set (no data transfer occurs)
and the device control electronics is told to set an end condition
on the next data service request (see Block 13).

b. The main memory address to which the data byte is to be trans-
ferred is tested to see if it is in available main memory for the
system. If it is not, the program check bit in the channel status
byte is set (no data transfer occurs) and the device control
electronics is told to set an end condition on the next data service
request (see Block 13).

3. The following tests occur when a data byte is transferred from
main memory :

a. The main memory address from which the data byte is to be
transferred is tested to see if it is in available main memory for
the system. If it is not, the program check bit in the channel
status byte is set (no data transfer occurs) and the device control
electronics is told to set an end condition on the next data service
request (see Block 13).

b. The data byte to be transferred is checked for correct parity.
If parity is not correct, the data check bit in the channel status
byte is set and the device control electronics is told to set an end
condition on the next data service request (see Block 13).

4. If a main memory parity error occurs while fetching the subchannel
registers, the channel control check bit in the channel status byte
is set, and the device control electronics is told to set an end condition
on the next data service request (see Block 13).

5. If a scratch-pad memory parity error occurs during the servicing
of a data transfer, the channel control check bit in the channel
status byte is set and the device control electronics is told to set
an end condition on the next data service request (see Block 13).

71

End and Chaining
Servicing

Block 1

Block 2

Input/Output Operation

¢ End and chaining servicing is required when the input/output opera-
tion specified by the current command has been completed (normally or
abnormally). Entry to this servicing always comes from “servicing a data
transfer”. The following conditions cause end and chaining servicing to
take place:

1. A device control electronics has indicated an end condition. This
end condition is recognized in Servicing a Data Transfer.

2. The byte count in the current command has lapsed and the Chain
Data (CD) flag in this command is set. If this condition occurs,
entry to End and Chaining Servicing occurs at a point which
bypasses the normal end servicing with no chaining and the end
servicing with command chaining.

For input/output operations that do not specify chaining, end servic-
ing is used so that the processor can tell the appropriate device control
electronics to set an interrupt condition. This interrupt condition is in turn
reported to the processor and the appropriate flag in the Interrupt Flag
register is set, at which time the interrupt is taken, if permitted.

For input/output operations that specify chaining (command or data),
this servicing does one of the following:

1. If the current command specifies command chaining (the CC flag
in the command is set) this service is used to fetch the next com-
mand in the chain and to send this new command to the input/
output device.

2. If the current command specifies data chaining (the CD flag in
the command is set) this service is used to fetch the next command
in the chain so that the current operation can be continued.

End and Chaining Servicing causes the following events to occur (see
figure 10).

¢ Entry to this block occurs when the input/output device control elec-
tronics has indicated an end condition. This end condition is recognized
during servicing a data transfer and is generated:

1. automatically by the device, or
2. by the device on command from the processor

The processor receives the standard device byte from the device control
electronics. This standard device byte is used by the processor for testing
purposes. It is not stored in the channel registers.

¢ The standard device byte is tested to see if the device busy bit is set
and the device end bit is reset. This condition normally arises in buffered
devices (i.e., card punch, printer) when the buffer has been loaded and the
completion of the operation is off-line (no more data has to be sent between
the processor and the device control electronics). If this condition exists,
the processor tells the device to set another end condition and ask for
another service request when the device is no longer busy. Control is then
transfrred to Block 14.

72

Block 3

Block 4

Block 5

Block 6

Block 7

Block 8

Input/Output Operation

& If the device is not busy, a test is made to see if the Chain Command
(CC) flag is set. If it is not, control is transferred to Block 8 which causes
termination of the command to occur.

& If the Chain Command (CC) flag is set, a test is made to see if one of
the following bits is set in the channel status byte:

Program Check bit
Protection Check bit

Data Check bit (This bit is checked only if the
current operation is a write)

Channel Control Check bit

If any of the above bits are set (except the data check bit on a Read) con-
trol is transferred to Block 8 which causes termination of the command
and suppression of command chaining to occur.

4 If none of the bits tested in the channel byte are set, a test is made to
see if the Chain Data (CD) flag is set. If the Chain Data flag is set, control
is transferred to Block 8 which causes termination of the command and
suppression of command chaining to occur.

& If the Chain Data (CD) flag is not set the standard device byte is tested
to see that the following conditions are present:

Device is operable
Secondary indicator is not set
Device end is set

If any of the above conditions is not present, control is transferred to Block
8 which causes termination of the command and suppression of command
chaining to occur.

& If all of the conditions tested in the standard device byte are present, a
test is made to see if the byte count is not equal to zero and the Suppress
Length Indicator (SLI) flag is equal to zero. If these conditions are pres-
ent, the program desires an indication of incorrect length, and control is
transferred to Block 8 which causes termination of the command and
suppression of command chaining to occur.

& Entry to this block occurs under the following conditions:

a. A device control electronics has indicated and end condition, the
device is not busy and the chain command flag bit is not set.

b. A device control electronics has indicated an end condition and the
chain command flag is set. However, a condition is present which
causes command chaining to be suppressed.

The processor tells the device control electronics to set a channel interrupt
condition for the appropriate channel.

73

Input/Output Operation

From Servicing o Data Transfer

and Device Control Electronics has Indicated an End Condition

t

Tell Device Control
Electronics to Set an End
Condition when Device is

No Longer Busy

1
Receive the Standard
Device Byte from Device
Control Electronics
2
Yes Does the Standord Device
Byte Indicate o Device
Rusy Condition?
No
3
No Is the Chain Command

(Normal End Servicing)
@ s [{"-

Tell Device Control
Electronics to Set Channel
Interrupt

Is This o Multiplexor
Channel Device?

Store Subchannel Registers
Back in Non-Addressable
Moin Memory

KSee Note 3)

o
-

Next Instruction

i (CC) Flag Set?

Yes

Test Channel Status Byte
for: Program Check, Pro-
tection Check, Dota Check
or Channel Control Check

Is the Chain Data
(CD) Flag Set?

Test Stondard Device
Byte for the Following:

® Device Inoperable - No
® Secondary Ind - No
® Device End - Yes

Is Byte Count #
O ond SLI Flag = O

Figure 10. Functional Logic of End and Chaining Servicing

74

These Tests are made to see if Commond Chaining
can toke place. Failure of any of these Tests
causes Command Chaining to be Suppressed

From ‘‘Servicing a Data Transf

Test Stondord Device
Byte for Status

Input/Output Operation

Yes

Modifier Condition? /

No

Increment the Next CCW

1

Fetch the Next CCW and
Place it in the Appropriate

Byte Count = @ and Data Chaining
is specified

Channel Registers in
Scratch Pad Memory

L

12

Does the Command Specify
a Transfer in Chonnel?

Address by 8

(See Note 1, 2)

Is Main Memory Address
in Tronsfer in Chonnel
Command on o Double-Word
Boundary?

Transfer Main Memory
Address in Transfer in
Ch 1C d in Next
CCW Address

Set Program Check Bit
in Channel Stotus Byte

No
13
Yes Is this a
13 l Command Chain Operation?
—
Send Command to .
Specified Device »4{ No (Data Chain)
14

Yes

Is this a Multiplexor

Is this o Yes

Burst Mode Operation?

\ Channel Operation?

No

]

(See Note 4)
Store Subchonnel Registers
bock in Non-Addressable

Main Memory

1

Continue Processing

Is this a Data
Chain Operation

Yes

Tell Device to Set an
End Condition

Figure 10. Functional Logic of End and Chaining Servicing (Cont'd)

75

Block 9

Block 10

Block 11

Block 12

Block 13

Block 1}

Block 15

Block 16

Block 17

Input/Output Operation

¢ A test is made to see if the device is on the multiplexor channel. If it is,
the subchannel registers are sent back to non-addressable main memory.
In either case, program control continues with the next instruction or with
the instruction that was interrupted due to chaining and/or end servicing.

Note: If the operation that was terminated was a burst mode operation,
the burst mode is completed at this point and other multiplex mode
operations can be directed to devices on the multiplexor channel.
The processor does not have to wait for the burst mode terminating
interrupt to occur.

¢ Entry to this block occurs when command chaining is to take place.
The standard device byte is tested to see if the status modifier bit is set.
If it is, the next Channel Command Word (CCW) address is incremented
by eight. (The next channel command word in sequence is skipped.)

4 In addition to continuing command chaining processing, entry to this
block occurs from Servicing a Data Transfer when the following conditions
are present:

a. The byte count is equal to zero.

b. The Chain Data (CD) flag is set.

The next Channel Command Word (CCW) is fetched from main memory
and placed in the appropriate channel registers. The next Channel Com-
mand Word address is incremented by eight.

¢ A test is made to see if the next command in sequence is a Transfer in
Channel command.

4 If the command is not a Transfer in Channel command, a test is made
to see if this is a command chain or a data chain operation. If it is a com-
mand chain operation, the new command is sent to the specified device con-
trol electronics. (This is not required if this is a data chain operation.)

¢ A test is made to see if the chaining servicing has occurred for a device
on the multiplexor channel. If it has, a test is made to see if it is a burst
mode operation. If it is not a burst mode operation, the subchannel regis-
ters are sent back to non-addressable main memory. In all cases, program
control continues with the next instruction, or with the instruction that
was interrupted due to the chaining servicing.

¢ If the next command in sequence is a Transfer in Channel command,
the main memory address specified by the Transfer in Channel command
is tested to see if it is on a double word boundary.

4 If the main memory address specified in the Transfer in Channel com-
mand is on a double word boundary, this address is placed in the next
Channel Command Word address and control is transferred to Block 11
which fetches the CCW specified by the Transfer in Channel command.

4 If the main memory address specified in the Transfer in Channel com-

mand is not on a double word boundary, the program check bit is set in the
channel status byte.

76

Block 18

Interrupt Servicing

Input/Output Operation

€ A test is made to see if this is a data chain operation. If it is, the device
is told to set an end condition on the next data service request and control
is transferred to Block 14 to complete the end servicing. If this is a com-
mand chain operation (the device has already indicated an end condition)
control is transferred to Block 8 where the device control electronics is
told to set an interrupt condition.

Notes On End and Chaining Servicing:

1. The following test occurs when the next Channel Command Word
is fetched:

The main memory address specified is tested to see if it is in
available main memory for the system. If it is not, the pro-
gram check bit in the channel status byte is set; and, if data
chaining, the device is told to set an end condition on the next
data service request (see Block 2); if command chaining, the
device control electronies is told to set a channel interrupt
condition (see Block 8).

2. If a main memory parity error occurs when fetching the next
Channel Command Word, the channel control check bit in the chan-
nel status byte is set; and, if data chaining, the device control
electronics is told to set an end condition on the next data service
request (see Block 2); if command chaining, the device control
electronics is told to set a channel interrupt condition (see Block 8).

3. If a scratch-pad memory parity error occurs when storing the sub-
channel registers back in non-addressable main memory the chan-
nel control check bit in the channel status byte is set.

4. If a scratch-pad memory parity error occurs when storing the sub-
channel registers back in non-addressable main memory, the chan-
nel control check bit in the channel status byte is set; and, if data
chaining, the device control electronics is told to set an end condi-
tion on the next service request (see Block 2) ; if command chaining,
the device control electroniecs is told to set a channel interrupt
condition (see Block 8).

4 Interrupt servicing occurs when the appropriate flag in the Interrupt
Flag register has been set, and the Interrupt Mask register for the current
state permits the interrupt and it is taken. This service is required to:

1. Obtain the standard device byte from the device control electronics
(if applicable) and store it in the appropriate input/output
channel registers.

2. Fetch the appropriate subchannel registers from non-addressable
main memory if the interrupt is due to a multiplexor channel device.
The subchannel registers are stored in the multiplexor channel
registers in scratch-pad memory.

There are three kinds of channel interrupts. They are as follows:

Programmed Control Interrupt—This interrupt occurs when a Channel
Command Word is fetched and the program controlled interrupt flag bit is

7

Input/Output Operation

1
Device Control Electronics is
Asked for the
Device Address
2

Is Device Control \ No

Electronics Operable?]

Generate an All Zero
Standard Device Byte
and Store it into 1/0

3
{ Channel Registers in

Receive Standard Device Scratch Pad Memory
Byte from Device
Control Electronics

4

Yes (Is This a Multiplexor

Channel Interrupt?

Fetch Appropriate (See Note 2)
Subchannel Registers
ond Tronsfer Them to -4 No

Scratch Pad Memory
5
No / Is This a
\ Termination Interrupt?

Yes
6
Set Termination
Interrupt Bit in
Chonnel Status Byte
7

Test for
Incorrect Length

Yes

. l

[Set Incorrect Length
Bit in Channel

8 ‘ Status Byte

Store Stondard Device
Byte in Appropriate
Registers in Scratch Pad
Memory (If Required)

'

Next Instruction

Figure 11. Functional Logic of Interrupt Servicing

78

Interrupt Servicing

(Cont’d)

Block 1

Block 2

Block 3

Input/Output Operation

set. This interrupt condition has no effect upon the input/output operation
specified by the Channel Command Word. The standard device byte and the
subchannel registers are not stored.

Device Request Interrupt—This interrupt occurs as a result of a condition
arising in an input/output device control electronics. It may occur inde-
pendent of a processor initiated input/output operation. Examples of this
type of interrupt are as follows:

1. A remote processor wishes to send data via a Data Exchange Control.
The Data Exchange Control initiates the channel interrupt. (This
interrupt occurs independent of a procesor initiated input/output
operation.)

2. The processor initiates an off-line seek to a random access device.
When the seek is complete, the random access device control elec-
tronics initiates a channel interrupt. (This interrupt occurs in
conjunction with a processor initiated input/output operation.)

When an external device request interrupt occurs, the standard device
byte and the subchannel registers (if a multiplexor device) are stored in
the appropriate input/output channel registers.

Terminating Interrupt—This interrupt occurs when an input/output
operation initiated by the processor has terminated. When this interrupt
occurs, the standard device byte and the subchannel registers (if a multi-
plexor device) are stored in the appropriate input/output channel registers.
This is the final servicing of the channel and device. At the completion
of this servicing, the chanmel is free to accept another operation. The
contents of the input/output channel registers must be utilized by the
program before another operation is initiated. (When another operation is
initiated, the contents of these registers are altered.) The following infor-
mation is available in the input/output channel registers for interrogation
by the program:

Channel status byte

Standard device byte

Byte count

Address of next CCW

Low-order 4 bits of the command code

Device number

Interrupt servicing causes the following events to occur (see figure 11).

& The device control electronics is asked for the address of the device
requiring interrupt servicing.

& A test is made to see if the device control electronics is operable. The
device control electronics has 50 microseconds to signal the processor that
it is operable. If it does not, the processor generates a standard device byte
of all zeros. Control is then transferred to Block 4.

& If the device control electronics is operable, it sends the standard
device byte to the processor.

79

Block 4

Block 5

Block 6

Block 7

Block 8

Input/Output Operation

¢ If the service request comes from a device control electronics con-
nected to the multiplexor channel, the processor uses the device address
to fetch the appropriate subchannel registers in non-addressable main
memory. The subchannel registers are stored in the input/output channel
registers in scratch-pad memory for the multiplexor channel.

¢ A test is made to see if this is a terminating interrupt. If it is not
(it is a program controlled or a device request interrupt) control is trans-
ferred to Block 8.

¢ If the interrupt is a terminating interrupt, the termination interrupt
bit in the channel status byte is set.

€ A test is made to see if the byte count is not equal to zero and the
Suppress Length Indicator (SLI) flag is equal to zero. If these conditions
are present, the program desires an indication of incorrect length and the
incorrect length bit in the channel status byte is set.

€ The standard device byte is stored in the appropriate input/output
channel registers and program control continues with the next instruction.

Notes on Interrupt Servicing :

1. The device address is always stored in the input/output channel
registers in scratch-pad memory if the interrupt is due to a device
connected to the multiplexor channel. If the interrupt is due to a
device on a selector channel, the device address is stored only if it
is a device request interrupt.

2. If a main memory parity error occurs when fetching the subchan-
nel registers, the channel control check bit in the channel status
byte is set.

80

MULTI-PROCESSOR
INSTALLATION

INTRODUCTION

OPERATIONAL
CHARACTERISTICS

¢ Installations where more than one computer shares peripheral equip-
ment or work loads require extra machine-program communications. To
enable this rapid signaling between processors independent of input/output
operations the Direct Control feature is provided.

To signal a receiving processor (or processors) a Write Direct instruc-
tion is used to effect an external interrupt in the receiving processor. To
enable the receiving processor to honor this external interrupt and com-
plete the transfer, a Read Direct instruction is used (refer to Privileged
Instructions section). This Write Direct action of one processor to another
is analogous to a Supervisor Call instruction and corresponding interrupt
of a user’s program to the Interrupt Control State (P;).

Some typical cases for which this feature is used are:
Request use of a control file.
Notify that file access has been completed.

Notify back-up system that a processor machine failure
has been detected.

Notify back-up system that a processor power failure
has been detected.

Request assistance because of program overload.
Request for task assignments.

& The 8-bit data byte transmitted from the out line of one processor to
the in line of a second processor in a multi-processor installation by means
of the Direct Control feature provides 256 code combinations. The code
sets can be any required by the program including EBCDIC and USASCII
with code interpretation being performed by the program.

When a transmitting processor issues a Write Direct instruction, an
external interrupt is set in the receiving processor (specified by the I-Field
of the Write Control instruction) in response to the signal. To service the
interrupt, the receiving processor issues a Read Direct instruction to
accept the control byte and then issues a Write Direct with an acknowl-
edgement code to the transmitting processor. (Write Direct of an acknowl-
edgement code does not require a return acknowledgement.) When an
acknowledgement has been received from each of the receiving processors
(if more than one connected), the transmitting processor may execute
another transmission.

In the event of power failing in a processor, interrupt occurs to proces-
sor state P,. In a multi-processor installation with the Direct Control
feature, the failing processor issues a Write Direct instruction with a data
byte of all zero bits to all processors it is connected to in the system.

Note: The Direct Control feature does not provide error checking on the
data transmitted. When checking is required, it must be performed

by program.

81

DIRECT CONTROL
INTERFACE

Static Out Lines

Static In Lines

Signal Out Line

External Signal In Line

Power Failure
Line (PFND)

Power Failure Inhibit
In Line (PFIR)

Multi-Processor Installation

4 The Director Control interface conneects from two to six processors into
a multi-processor complex. Each of the processors can have up to six direct
control trunks which contain the signal lines that transmit and receive the
direct control information. These signal lines function as follows:

¢ The Static Out lines are logically identical (common) on all trunks
(information on one trunk is identical to information of all other trunks).
The state of these Static Out lines is established when a Write Direct
instruction is executed and remains static until altered by a subsequent
Write Direct instruction. Parity is not generated or checked on these lines.
(See Write Direct instruction.)

¢ The Static In lines provide the means for the receiving processor to
receive 8-bit bytes of data from other transmitting processors via their
Static Out lines. Each trunk may be uniquely sampled by a Read Direct
instruction which specifies the desired trunk. (See Read Direct instruction.)

¢ The Signal Out line provides a signal to the other processors upon
execution of a Write Direct instruction. The Direct Control Trunks (DCT)
whose Signal Out lines are signaled is specified by the I-Field pattern of
the instruction.

4 The External Signal In line provides the means for receiving a signal
from other processors via their Signal Out lines. The External Signal In
line is logically connected to the external signal interrupt flag associated
with each Direct Control Trunk (DCT) as indicated:

Trunk Signaled External Interrupt Flag

DCT #1 1
DCT #2
DCT #3
DCT #4
DCT #5
DCT #6

(=220 S-S VU)

¢ The PFND line is logically identical on all Direct Control Trunks
(DCT) in the complex. Its signal is normally up but is dropped upon
detection of a power failure. The signal on this line remains down through-
out the one millisecond of available program time remaining, and does not
come up again until after power has been restored.

4 The PFIR line provides the means for inhibiting a Read Direct instruc-
tion of the associated Static In lines when its signal is dropped. When
the signal is dropped, all zeros are read by the receiving processor.

82

Multi-Processor Installation

DUAL-PROCESSOR | ¢ The following illustration is presented to demonstrate the manner in

COMPLEX | which two processors are interconnected. In this instance only one cable
is required.

PROCESSOR #1 PROCESSOR #2
STATIC IN STATIC OUT
STATIC OUT STATIC IN
EXT SIGNAL IN ——————— SIGNAL OUT
SIGNAL OUT — _ EXT SIGNAL IN
PFIR PFND
PFND PFIR
HOLD IN WRITE OUT
WRITE OUT HOLD IN

CABLE CABLE

connecrs (411 L ! SREN CONNECTS

TO DCT2 TO DCTI

Figure 12, Dual-Processor Complex

83

Multi-Processor Installation

MASTER/SATELLITE | 4 The Master/Satellite complex permits the master processor to commu-
COMPLEX | nicate with its satellites and the satellites to communicate with the master
processor. However, the satellites cannot communicate with each other.
The following illustration demonstrates the manner in which the master
processor interconnects with up to five satellite processors via the Direct

Control Trunks (DCT).

MASTER PROCESSOR (#1)

DCTI DCT2 DCT3 DCT4 DCTS5 DCTé

DCTI DCT!
SATELLITE SATELLITE
PROCESSOR (#2) PROCESSOR (#6)
DCT1 DCT1
SATELLITE SATELLITE
PROCESSOR (#3) PROCESSOR (#5)
DCTH

SATELLITE
PROCESSOR (#4)

Figure 13. Master/Satellite Complex

84

Multi-Processor Installation

MAXIMUM | ¢ The following illustration demonstrates the manner in which six proces-
MULTI-PROCESSOR | sors may be interconnected so that any two processors may communicate.

COMPLEX
DCTI DCT1
DCT2 DCT2
pROCESSOR | 2¢T3 DCT3 | procESSOR
4
#1 DCT4 DCT4 #
DCTS DCTS
DCT6 DCT6
DCTH DCTH
DCT2 pCT2
PROCESSOR | PCT3 DCT3 | procESSOR
#2 #5
DCT4 DCT4
DCTS DCT5
DCT6 DCTE
DCTI DCTI
DCT2 DCT2
T3
PROCESSOR | °° BCT3 | brocESSOR
3
* 0CT4 DCT4 #6
DCTS DCTS
DCT6 DCT6

Figure 14. Maximum Multi-Processor Complex

85

OPERATIONAL
PROCEDURES

Transmission Procedure

Response Procedure

Multi-Processor Installation

¢ The following sections are furnished to illustrate typical operational
procedures when using the Direct Control feature. They are presented for
clarification only and are not meant to imply fixed and firm standards.
For a detailed description of the actual programming procedures, reference
should be made to the applicable reference manuals.

€ User Program — (P,) The user program in Processing State (P,)
contains a Supervisor Call instruction with a Write Direct Interrupt Code.
In addition, it contains the following parameters required when interrupt
is effected to the operating system in processor state (P,):

Data Byte (8-bit code)

Signal Byte (specifies processor(s) to which
Write Direct is addressed)

Return Address (for return to normal processing)

Operating System — (P,) The operating system accepts the Super-
visor Call Interrupt and issues a Program Control instruction to (P,).
In addition, the locations of the user parameters are saved, the processor is
set to the Privileged Mode and a change made from (P;) to (P,).

Supervisor Call Routine — (P,) The Interrupt Weight is used to
branch to the Supervisor Call routine where the Supervisor Call Interrupt
Code is decoded and a branch is made to the required routine, in this case
the Write Direct routine. The Write Direct routine then performs the
following :

1. Checks to determine whether Write Direct instruction can be issued
or must be stacked in queue.

2. Fetches the user parameters.

Sets Write Direct instruction I-Field to the Signal byte, the Address
field to the Data byte, and the Return After Interrupt to the user
Return Address in (P,).

Executes Write Direct instruction.

w

If no acknowledgement is received, sets control in Acknowledge queue.

Set processor to non-privileged mode.

qe o e

After interrupt, executes Program Control instruction and branch
to user return address in (P1).

€ Operating System — (P;) The operating system accepts the Direct
Control Interrupt and issues a Program Control instruction to (P,). In
addition, the processor is set to privileged mode and a change made from
(Ps) to (P2).

Read Direct Routine — (P,) The Interrupt Weight is used to branch
to the Read Direct routine. The Read Direct routine then performs the
following :

1. Issues a Read Direct instruction to read the Data Byte.

2. Saves the Data Byte and the External Interrupt number (which
corresponds to the transmitting processor) for user Read Direct
processing.

86

Response Procedure

(Cont’d)

Multi-Processor Installation

3. Issues a Program Control instruction to (P,) and sets processor to
non-privileged mode.

4. Changes from (P,) to (P,) and branches to user Read Direct routine.

User Read Direct Routine — (P,) Using the External Interrupt num-
ber, the user Read Direct routine determines the transmitting processor
number and decodes the Data Byte to determine the type of action required.

If the Power Failure code (all zeros) is received, the processor that is
down is removed from the system configuration and a return to normal
processing is effected.

For all other codes received, a Write Direct acknowledgement is issued
as follows:

1. Supervisor Call is issued with a Write Direct Interrupt Code.

2. A Write Direct instruction with a Data Byte of an Acknowledge
Code and a return address of the user Read Direct routine is executed.

When the return is accomplished, the function specified by the Data
Byte initially read is performed, and at the end of the Read Direct process-
ing a branch is made back to the (P,) program.

87

PRIVILEGED
INSTRUCTIONS

INTRODUCTION

INSTRUCTION
FORMATS

RR Format

Description

$I Format

Description

S$S Format

Description

INTERRUPT ACTION

Address Error

Addressing

4 The instructions described in this section are called privileged instruc-
tions and can only be executed if the non-privileged mode bit (bit position
15 in the Interrupt Status register) for the current state is zero.

In addition to the standard privileged instruction set, inclusion of the
memory protect and/or the direct control optional features cause additional
privileged instructions to be added.

OpCode | R, | R,

0 7 8 11 1215

4 The RR format is used only by the Set Storage Key and the Insert
Storage Key instructions. The contents of the general register specified
by the R, field is the first operand. The general register specified by the
R, field contains the second operand address.

Op Code I, B, D,

0 7 8 15 16 19 20 31

4 The SI format is used by the Program Control, the Write Direct, the
Read Direct instructions and all input/output instructions. The first address
(B./D,) specifies the main memory location of the first operand. The
second operand is the immediate byte in the I, field.

Op Code L B, D, B, D,

0 7T 8 16 16 19 20 31 32 356 36 47

€ The SS format is used by the Load Scratch Pad and the Store Scratch
Pad instructions. The location of the first operand is specified by the first
address (B,/D,), and the location of the second operand is specified by
the second address (B,/D,). The L field is the number of words in addition
to the addressed word that are to be transferred,

4 The following interrupt conditions can occur as a result of a privileged
instruction:

€ An address error interrupt occurs when an address specifies a location
outside the available main memory of the particular installation. The
operation is terminated at the point of error. The result data and condition
code, if produced, are unpredictable. If the address of an instruction is
invalid, the operation is suppressed.

88

Specification

Protection

Privileged Operation

Operation Code Trap

Privileged
Instructions

€ An address error interrupt occurs when:

1. A Load Scratch Pad or Store Scratch Pad instruction specifies a
first or second address which is not on a word boundary.

2. Bits 28 through 31 of the second operand of a Set Storage Key or
Insert Storage Key instruction are not zero.

3. The memory protect feature is not installed and the protection key
in the Interrupt Status register for the current program state is
not zero.

In these error interrupt conditions, the operation is suppressed. The
data in main memory and registers is unchanged.

€ An address error interrupt occurs when the storage key and the protec-
tion key of the result location do not match. The operation is terminated.
The result data is unpredictable. (This interrupt can occur only if the
memory protect feature is installed.)

¢ A privileged operation interrupt occurs if execution of any privileged
instruction is attempted and the non-privileged mode bit (bit position 15
in the Interrupt Status register) for the current state is 1. The operation
is suppressed and the condition code, registers, and main memory are
unaltered.

4 An operation code trap interrupt occurs under the following conditions:

1. The memory protect feature is not installed and an attempt to
execute a Set Storage Key or Insert Storage Key instruction is made.

2. The direct control feature is not installed and an attempt to execute
a Write Direct or Read Direct instruction is made.

89

Function Call (FC)

General Description

Format
(S

Condition Code

Interrupt Action

Notes

Privileged
Instructions

4 This instruction is used to execute Elementary Operation (EO) routines
contained in Read Only Memory (ROM). The I field is used to specify
one of 128 possible EO routines. The address field specifies the address of
the parameters used by the specified EO routine.

9A I, B, D,

0 T 8 15 16 19 20 31

¢ Unchanged by this instruction, however, the routine called may modify
the condition codes.

¢ Op Code Trap.
Power Failure.
Machine Check.
Privileged Operation.
Addressing.
Paging Error.
Paging Queue.

Others as defined by the specifications of the routine called.

& 1. The I field specifies one of 128 possible EO routines, called Special
Functions. All 8-bit codes in which the 2! bit is zero are available
for Special Functions. This instruction is only incorporated on the
70/46 Processor. The routine specified by the I field must be incorpo-
rated in the ROM. Otherwise, an Op Code Trap Interrupt condi-
tion occurs.

2. This instruction is available to 70/46 programs only. If it is executed
in the 70/45 mode, an Op Code Trap Interrupt condition occurs.

3. If a location outside the available memory is addressed, an Address-
ing Interrupt condition occurs.

4. If this instruction is attempted under any of the following conditions,
a Paging Error Interrupt condition occurs and the instruction is
terminated with unpredictable results:

a. A nonexistent Translation Table element is addressed (i.e., the
two unused bits of a segment field of a virtual address are not
Zero).

b. A 2,048-byte page is addressed in the high-order address half of
a 4,096-byte page.

c. A write operation into a location within a non-writable page is
attempted.

90

Notes

(Cont’d)

Privileged
Instructions

d. If this instruction is attempted under the following conditions the
indicated interrupt results:

S-Bit N-Bit D-Bit Interrupt
N/A 1 1 Paging Error
0 1 0 Paging Error
1 1 0 Privileged Operation

N/A — Not applicable.

5. If this instruction is attempted in a non-utilizable page, a Paging
Queue Interrupt condition occurs and the instruction is suppressed.

91

Special Function #1
Load Translation
Memory (LTM)

General Description

| Code

Format

Condition Code

Interrupt Action

Notes

Privileged
Instructions

& The translation memory is loaded with blocks of halfwords from
memory, where the blocks are specified by a Block Address Table which is
also in memory. The location of the Block Address Table is addressed by
the low-order three bytes of the general register specified by R1. The
number of memory locations per block is given in the high-order byte
of the general register specified by R1. The number of blocks to be loaded
is specified by the low-order halfword of the general register specified by
R2. The first location of the translation memory into which an entry is
to be placed is specified by the high-order halfword contained in the general
register specified by R2.

¢ Co.

¢ Unchanged.

& Addressing.
Power Failure.
Machine Check.
Paging Error.
Paging Queue.

4 1. The high-order byte of the general register specified by R1 contains
a count of 0-255 to specify 1-256 translation memory locations in
each of the blocks.

2. The low-order three bytes of the general register specified by Rl
containing the address of the Block Address Table may be either
virtual or direct as indicated by the D bit.

3. Bit positions 7 through 15 in the general register specified by R2
contains the address of 0-511 of the first location of the Translation
Table to be loaded. This may specify any location in the Translation
Table. Bit positions 0 through 6 are not used and must be zeros.
This is a program restriction only.

4. Bit positions 23 through 31 in the general register specified by R2
contains a count 0-511 specifying the number of words in the
Block Address Table 1 to 512, respectively. Bit positions 16
through 22 are not used and must be zeros. This is a program
restriction only.

92

(Cont’d)

10.

11.

12.

13.

14.

Privileged
Instructions

. The high-order byte (0-255) in each Block Address Table word

specifies the number of halfwords (1 to 256) to be loaded from the
block beginning at the address specified by the low-order three
bytes. If this count is less than the count contained in the high-order
byte of the general register specified by R1 (translation memory
block size), the remaining Translation Table locations of the speci-
fied block are loaded with zeros. If this count is greater than the
translation memory block size count, loading is terminated by the
block size count reaching zero.

. If an address of the Block Address Table specified by the general

register designated by R1 is not on a full word boundary, an Address-
ing Interrupt condition occurs. The operation is suppressed with the
operands unchanged.

. If a location outside the available memory is addressed, an Address-

ing Error Interrupt condition occurs. The operation is terminated
with unpredictable results.

. When the translation memory entry is made from main memory,

the word is copied except for the G-bit which is unaltered in main
memory, and is reset to zero in the translation memory.

. The format of the halfword in main memory from which the trans-

lation memory entry is copied is:
WGUSEMXXXPPPPPPH

The format of the translation memory entry is specified under the
Translation Memory description in this manual.

If the block address specified in Block Address Table entry is not
on a halfword boundary, an Addressing Interrupt condition occurs.
The operation is terminated with unpredictable results.

If this Special Function is attempted under any of the following
conditions, a Paging Error Interrupt Condition occurs and the
Special Function is terminated with unpredictable results:

a. If either the address of the Block Address Table or the block
address in a Block Address Table entry specifies a nonexistent
translation memory element (i.e., the two unused bits of the
segment field of a virtual address are not zeros).

b. If either the address of the Block Address Table or the block
address in a Block Address Table entry specifies a 2,048-byte page
in the high-order address half of a 4,096-byte page.

If this Special Function is attempted with either a Block Address
Table address or the block address of a Block Address Table entry
specifying a non-utilizable page, a Paging Queue Interrupt condi-
tion occurs and the instruction is terminated with unpredictable
results.

The contents of the Translation Table being loaded in the trans-
lation memory do not cause a Paging Queue condition or Paging
Error Interrupt condition.

93

Special Function #2

Scan Translation
Memory and Store
(STMS)

General Description

I Code

Format

Condition Code

Interrupt Action

Notes

¢ Th

Privileged
Instructions

e Translation Memory is scanned for nonzero values of the G bit,

and the table of halfwords thus found is stored into the corresponding
halfwords of the block memory identified by the Block Address Table, etc.,
as defined for the Load Translation Memory Special Function (CO0).

¢ C1

R,

R2

3 4 7

4 Unchanged.

¢ Addressing.
Power Failure.
Machine Check.
Paging Error.

Paging Queue.

L B

The high-order byte of the general register specified by R1 contains
a count of 0-255 to specify 1-256 translation memory locations in
each of the blocks.

The low-order three bytes of the general register specified by R1
containing the address of the Block Address Table may be either
virtual or direct as indicated by the D bit of the address field.

. Bit positions 7 through 15 in the general register specified by R2

contain the address 0-511 of the first translation memory location
to be loaded. This may specify any location in the translation memory.
Bit positions 0 through 6 are not used and must be zeros. This is
a program restriction only.

. Bit positions 23 through 31 in the general register specified by R2

contain a count 0-511 specifying the number of words in the Block
Address Table 1 to 512, respectively. Bit positions 16 through 22
are not used and must be zeros. This is a program restriction only.

The high-order byte (0-255) in each Block Address Table word
specifies the number of halfwords (1 to 256) to be loaded from the
block specified by the low-order three bytes.

If this count is less than the count contained in the high-order byte
of the general register specified by R1 (translation memory block
size), the remaining translation memory locations of the specified
block are loaded with zeros. If this count is greater than the trans-
lation memory block size count, loading is terminated by the trans-
lation memory block size count reaching zero.

9

Notes
(Cont’d)

10.

11.

12.

13.

14.

15.

16.

Privileged
Instructions

If an address of the Block Address Table specified by the General
Register designated by R1 is not on a full word boundary, an Address-
ing Interrupt condition occurs. The operation is suppressed with
the operands unchanged.

. If a location outside the available memory is addressed, an Address-

ing Error Interrupt condition occurs. The operation is terminated
with unpredictable results.

. The format of the halfword in main memory from which the trans-

lation entry is copied is:
WGUSEMXXXPPPPPPH

. The format of the Translation Table entry in the translation memory

is specified under the Translation Memory description in this
manual.

The format of the translation memory entry is specified under the
Addressing description in this manual.

If the block address specified in Block Address Table entry is not on a
halfword boundary, an Addressing Interrupt condition occurs. The
operation is terminated with unpredictable results.

If this Special Function is attempted under any of the following
conditions, a Paging Error Interrupt condition occurs and the Special
Function is terminated with unpredictable results:

a. If either the address of the Block Address Table or the block
address in a Block Address Table entry specifies a nonexistent
translation memory element (i.e., the two unused bits of the
segment field of a virtual address are not zeros).

b. If either the address of the Block Address Table or the block
address in a Block Address Table entry specifies a 2,048-byte
page in the high-order address half of a 4,096-byte page.

c. If either the address of the Block Address Table or the block
address in a Block Address Table entry specifies a page that is
not writable.

If this Special Function is attempted with either a Block Address
Table address or the block address of a Block Address Table entry
specifying a nonutilizable page, a Paging Queue Interrupt condition
occurs and the instruction is terminated with unpredictable results.

The contents of the Translation Table being loaded to the translation
memory do not cause a Paging Queue or Paging Error Interrupt
condition.

If the translation memory block size count is greater than the
individual Block Address Table item count (N) that individual block
scan and store is completed when the N-halfwords have been stored.

The contents of the translation memory being stored into memory

do not cause a Paging Queue condition or Paging Error Interrupt
condition.

9%

Special Function #3

Store Translation
Memory (STM)

General Description

I Code

Format

Condition Code

Interrupt Action

Notes

Privileged
Instructions

4 The 9-bit count contained in the lower half of the general register
specified by R, specifies the number of Translation Table halfwords to be
stored into memory (beginning with the memory address contained in the
general register specified by R,). The 9-bit Translation Table initial
address is contained in the upper half of the general register specified by R..

¢ C4

Rl

R,

3 4 7

& Unchanged.

¢ Addressing.
Power Failure.
Machine Check.
Paging Error.

Paging Queue.

¢ 1

The count, contained in bit positions 23 through 31, specifies 1-512
Translation Table halfwords with a count of 0-511, respectively. Bit
positions 16 through 22 are not used and must be zeros. This is a
program restriction only.

The initial memory address may be either virtual or direct.

If an address not on a halfword boundary is specified, an Address
Interrupt condition occurs. The operation is suppressed with the
operands unchanged.

. If a location outside the available memory is addressed, an Address-

ing Error Interrupt condition occurs. The operation is terminated
with unpredictable results.

. The contents of the translation memory being stored into memory

do not cause a Paging Queue condition or Paging Error Interrupt
condition. :

. If this Special Function is attempted under any of the following

conditions, a Paging Error Interrupt condition occurs and the opera-

tion is terminated with unpredictable results.

a. If the main memory address specifies a nonexistent translation
table element (i.e., the two unused bits of the segment field of a
virtual address are not zeros).

b. If the main memory address specifies a 2,048-byte page in the
high-order address half of a 4,096-byte page.

¢. If the main memory address specifies a page that is not writable.

If this Special Function is attempted with a main memory address
specifying a nonutilizable page, a Paging Queue Interrupt condition
occurs and the operation is terminated with unpredictable results.

96

Special Function #4

Load Interval Timer
(LIT)

General Description

I Code

Format

Condition Code

Interrupt Action

Notes

Privileged
Instructions

4 This Special Function loads the Interval Timer with a halfword. The
address of the halfword to be loaded is indicated by the contents of the
memory location addressed by the address field of the Function Call instruc-
tion. If the value loaded is a nonzero value, the timer begins to decrement
by one. If the value loaded is zero, and the timer is not counting, the
instruction has no effect. If this instruction is executed while the timer is
running, the contents of the counter are replaced by the specified halfword.
If the specified halfword is zero, the timer is reset to zero (shut-off) and
no interrupt occurs for this condition.

¢ 02.

Base Displacement

0 3 4 15
¢ Unchanged.

4 Address Error.
Power Failure.
Machine Check.
Paging Error.
Paging Queue.

4 1. If either this Special Function or the timer halfword addresses are
not on halfword boundaries, an Addressing Error Interrupt condi-
tion occurs.

2. If the counter is reset to zero after zero occurs and the interrupt
flag has been set, the interrupt flag will not be cleared.

3. Use of the Interval Timer and Diagnostic Snapshot by programs
may not occur together, since the counter register is common to both.
If the Diagnose function is initiated while the Interval Timer is
running, the shared counter is cleared to zero without occurrence
of the Interval Timer Interrupt and the Diagnose function assumes
control of the counter. If the function being diagnosed is the Load
Interval Timer, the actual loading of the counter is inhibited but
the E. O. Flow is Diagnosed.

97

Special Function #5

Store Interval Timer
(SIT)

General Description

I Code

Format

Condition Code

Interrupt Action

Note

Privileged
Instructions

& This Special Function stores the current contents of the Interval Timer
into a memory halfword. The address of the halfword to receive the
contents of the Interval Timer is indicated by the contents of the memory
location addressed by the address field of the Function Call instruction.
This instruction has no effect upon the Interval Timer.

¢ 03.

Base Displacement

0 3 4 15
¢ Unchanged.

¢ Address Error.
Power Failure.
Machine Check.
Paging Error.
Paging Queue.

€ 1. If either this Special Function or the timer halfword addresses are
not on halfword boundaries, an Addressing Error Interrupt condi-
tion occurs.

2. Use of the Interval Timer and Diagnostic Snapshot by programs
may not occur together, since the counter register is common to both.
If the Diagnose function is initiated while the Interval Timer is
running, the shared counter is cleared to zero without occurrence
of the Interval Timer Interrupt and the Diagnose function assumes
control of the counter. If the function being diagnosed is the Load
Interval Timer, the actual loading of the counter is inhibited but
the E. O. Flow is Diagnosed.

98

Special Function #6
Paging Queve and
Paging Error
Interrupt Service

General Description

I Code

Format

Condition Code

Interrupt Action

Notes

Privileged
Instructions

4 This Special Function determines all the segment and page addresses
specified by the instruction whose Translation Table elements caused or
might cause a Paging Queue condition or Paging Error Interrupt condi-
tion and adjusts the NIA field of the P counter in the suppressed program
state. It interfaces with the program by stacking a list of addresses (page
and segment) with applicable program indicators to identify the status
of each. The address of the beginning of the stack (up to eight halfwords
per stack) of the effective address list is indicated by the contents of the
memory location addressed by the address field of the Function Call
instruction.

¢ 01

Base Displacement

0 3 4 15

(Address of the beginning of the up to eight halfword stack for the
effective address list.)

4 Unchanged.

¢ Power Failure.
Machine Check.

4 1. This Special Function can be used to analyze those interrupts that
can occur during staticizing or execution. The NIA field of the
object P counter and the ILC are set correctly to permit this Special
Function to back-up the object P counter for reentry to the object
instruction following completion of the page calling.

2. An index is provided in General Purpose Register 15 of the current
state. This index is the number of virtual addresses in the stack
minus one times 2; i.e., 0 is equivalent to 1 address and 14 is
equivalent to 8 addresses. The addresses of the stack are either
virtual or actual, depending on the status of the appropriate D bit
settings, D = 0 and D = 1 respectively.

3. The size of the address stack is a function of the instruction type

as follows:

Range of

Format Number of Stack Addresses General Purpose
Register 15

RR 1 (instruction) 0

RS 1-3 (up to 2 instruction and 1 operand) 04

*RX 1-3 (up to 2 instruction and 1 operand) 04

SI 1-3 (up to 2 instruction and 1 operand) 04

SS 1-6 (up to 2 instruction and 4 operand) 0-10

* If the instruction is an Execute, the number of stack addresses is 1 to 8
(up to 4 instruction and 4 operand) and the range of General Purpose
Register 15 is 0-14, depending on the format of the object instruction.

99

Notes
(Cont’d)

Privileged
Instructions

4. The Special Function must shift the effective address to provide the

segment and page in the low-order position within each stack item.
The format of an address in the stack is as follows:

Indicators SEG PAGE

0 6 7 9 10 15

The seven high-order bit positions, when set (1), indicate the specific
interrupt condition(s) for the Paging Error Interrupt (Priority
19) and Paging Queue Interrupt (Priority 20) as follows:

Bit 0: Non-privileged mode was set (N = 1) and the control bit S
was reset (S =0). '

Bit 1: Either one or both of the two unused bits of the segment
field were not zero.

Bit 2: The Page Control Bit was set (M = 1) and the high-order
bit of the Displacement field of the address was set (1).

Bit 3: Non-privileged mode was set (N = 1) and the direct address
bit is set (D =1).

Bit 4: Control bit E was set (E = 1) and a write operation was
attempted to the page.

Bit 5: Translation table element has control bit U reset (U = 0)
(i.e., page not utilizable).

Bit 6: Flags the stack address as a Direct Address, not subject to
translation.

If multiple interrupt conditions of different kinds occur on the
same page, the page address is listed once in the address stack and
all applicable condition bits are set.

. This Special Function is to be used for analysis of Paging Error

condition or Paging Queue Interrupt condition on the normal instruc-
tion set of the 70/46 and is not usable for analysis of other Special
Functions.

. This Special Function provides a maximum of two instruction

addresses for 1/0 instructions. It does not provide the addresses of
the Channel Address Word or Channel Control Word for any of the
Paging Error or Paging Queue Interrupt conditions.

. The operand addresses provided for Paging Error condition or

Paging Queue Interrupt condition on the Translate and the Trans-
late and Test instructions are based on the assumption that the
tables involved are maximum size (256 bytes).

In any case where the table is less than 256 bytes, a false indica-
tion of a Paging Error condition of Paging Queue condition may
have occurred, and the ending table address provided by this Special
Function may be incorrect.

100

Notes

(Cont’d)

10.

11.

Privileged
Instructions

The operand addresses provided for Paging Error condition or
Paging Queue Interrupt condition on the Edit and Edit and Mark
instructions are based on the assumption that the number of source
field bytes and the number of pattern field bytes are equal. In any
case where the number of source field bytes is less than the number
of pattern field bytes, a false indication of a Paging Error or Paging
Queue may have occurred, and the ending source field address pro-
vided by this Special Function may not be correct.

. When a Paging Error or Paging Queue Interrupt occurs, the Pro-

gram Counter, Interrupt Status Register, and General Purpose
Registers of the Interrupted State must not be altered before the
special function is executed.

This Special Function should be used only if a Paging Queue con-
dition or Paging Error Interrupt condition occurs. Otherwise, the
results are unpredictable.

The ISI field of the current program states ISR is used to identify
the Program State in which the interrupt occurred (Program State
to be analyzed).

101

Load Scratch Pad
(LSP)

General Description

Format
(SS)

Condition Code

Interrupt Action

Notes

Privileged
Instructions

4 Operands from main memory, starting with the storage location specified
by the second address (B./D.), are loaded in the scratch-pad memory
starting at the location specified by the first address (B,/D,).

D8 L B, D, B, D,

0 7 8 15 16 19 20 31 32 36 36 47
4 Unchanged except when the P counter in seratch-pad memory is loaded.

& Privileged operation.
Address error:
Addressing.
Specification.

4 1. The L field provides an eight-bit count specifying the number of
scratch-pad memory locations to be loaded. An initial count of zero
specifies one word to be loaded.

2. The first address specifies scratch-pad memory words 0 through 127
by the seven rightmost bits of the address. The bits to the left of
the seven-bit address must be zero.

3. The second address must be on a word boundary. (This is a
program restriction.)

4. The processor uses utility registers in scratch-pad memory to execute
this instruction. If these registers are included in the range of this
instruction results are unpredictable.

102

Store Scratch Pad
(SSP)

General Description

Format
(SS)

Condition Code

Interrupt Action

Notes

Privileged
Instructions

4 Operands from the scratch-pad memory, starting with the location
specified by the first address (B,/D,), are stored in main memory locations,
starting with the location specified by the second address (B./D.).

DO L B, D, B, D,

0 7 8 15 16 19 20 31 32 356 36 47

¢ Unchanged.

& Privileged operation.
Address error:
Addressing.
Specification.
Protection.

& 1. The L field provides an eight-bit count specifying the number of
scratch-pad memory locations to be stored. An initial count of zero
specifies one word to be stored.

2. The first address specifies scratch-pad memory words 0 through 127
by the seven rightmost bits of the address. The bits to the left of
the seven-bit address must be zero.

3. The second address must be on a word boundary. (This is a
program restriction.)

103

Program Control
(PC)

General Description

Format
(s

Condition Code

Interrupt Action

Note

Privileged
Instructions

4 This instruction specifies the termination of program execution in the
current state, and the initiation of another state under control of the
immediate byte in the I, field. The address computed from the B,/D,
address components of the instruction is stored in the P counter of the state
being terminated (bit positions 8-31).

82 Iz B, D

0 7 8 15 16 19 20 31

¢ The condition code indicators of the state being terminated are preserved
in the state’s P counter. The condition code in the P counter of the initiated
state is then used to set the condition code indicators.

€ Privileged operation.
Address error:
Addressing.

¢ 1. The immediate byte in the I, field of the instruction is divided
into four subfields as follows:

8 9 10 11 12 13 14 15

12
\ /
\ \'%4 / \"4
Unused
Program

Test
Bit

Direct

State

Initiation
Indirect

Control Flag

Bits 8 through 10 are unused. The three bit unused portion must be zero.

Bit 11 is the program test bit. If bit 11 = 1, the program test mode
is initiated. The program test interrupt bit is set in the Interrupt Flag
register of the initiated state.

The scan of the Interrupt Flag register in the initiated state is delayed
until after the first instruction of the initiated state is executed, at which
time the scan is made in normal priority.

If bit 11 = 0, the program test mode is not initiated.

104

Note
(Cont’d)

Privileged
Instructions

Bits 12 through 14 are the direct state initiation bits., The three-bit
direct state initiation codes that may be specified are as follows:

000 — Go to Machine Condition State P..
001 — Go to Interrupt Control State P,.
010 — Go to Interrupt Response State P..
011 — Go to Processing State P,.

Programming Note: The leftmost bit of the three-bit direct state
initiation field must be zero. (This is a programming restriction.)

Bit 15 is the indirect control flag bit. If indirect state control is specified
(bit 15 = 1), the three-bit direct state initiation field is ignored. The three-
bit interrupted state identifier (ISI), which indicates the last state inter-
rupted, specifies the state to be initiated. This information is contained in
the Interrupt Status register of the state being terminated.

If bit 15 = 0, direct state initiation is used.

105

‘Idle
(IDt)

General Description

Format
(sh

Condition Code
Interrupt Action

Notes

Privileged
Instructions

¢ This instruction effects an idle mode within the processor by con-
tinuously branching back to itself.

80 L B, D
0 7 8 15 16 19 20 31

¢ Unchanged.
4 Privileged operation.

4 1. When this instruction is operating with the I field zero, the Idle
light of the console is on.

2. Any interrupt occurring while the idle mode is in effect is taken
(if permitted via the Interrupt Mask register).

3. The B, and D, fields of this instruction must be zero.

4. For normal programming, the I field must be zero. For maintenance
programming, bits within the I field, have the following meaning:
Bit 15 = 1-set alarm inhibit.
Bit 14 = 1-reset alarm inhibit.
Bit 13 = 1-set inhibit simultaneity.
Bit 12 = 1-reset-inhibit simultaneity.

106

Diagnose
(DIG)

General Description

Format
(sh

Note

Privileged
Instructions

€ The purpose of this privileged instruction is to store four additional
bytes in the snapshot memory location table which will provide a means
for facilitating maintenance techniques on the 70/46 Processor. It is
provided for the RCA Customer Service and Engineering Representatives
and cannot be used for a program debugging aid.

The mechanics of this instruction are implemented specifically for
the 70/46 Processor.

83 I, B, D

0 7 8 15 16 19 20 31

& Use of the Interval Timer and Diagnostic Snapshot by programs may
not occur together, since the counter register is common to both. If the
Diagnose function is initiated while the Interval Timer is running,
the shared counter is cleared to zero without occurrence of the Interval
Timer Interrupt and the Diagnose function assumes control of the
counter. If the function being diagnosed is the Load Interval Timer,
the actual loading of the counter is inhibited but the E. O. Flow
is Diagnosed.

107

Start Device
(SDV)

General Description

Format
(sh

Condition Code

Interrupt Action

Notes

Privileged
Instructions

¢ The contents of the general register specified by B, are added to the D,
field. The resultant sum identifies the channel and device to which the
instruction applies. These are specified by bit positions 21 through 31 of
the sum. The I-field is not used and must be zeros.

The channel address word in main memory location 72 contains the
protection key to be used and the address of the first channel command
word. The channel command word designated by the channel address word
specifies the operation to be performed, the main memory area to be used,
and the action to be taken when the operation is completed. The condition
code indicates the result of the instruction.

9C I, B, D,

0 7 8 156 16 19 20 31

4 0 — input/output operation initiated and channel proceeding with
execution.

1 — status bits stored in scratch-pad memory.
2 —busy or interrupt pending.

3 — inoperable.

(For a detailed description of the condition code settings, see Notes
below.)

4 Privileged operation.

¢ 1. The address portion of this instruction specifies the device and
channel as follows:

Bit Positions

Channel Specified
21 22 23
0 0 0 Multiplexor
0 0 1 Selector No. 1
0 1 0 Selector No. 2
0 1 1 Selector No. 3
1 0 0 Selector No. 4
1 1 0 Undesignated

Bit positions 24 through 31 specify one of 256 possible devices.

2. The standard device byte and the channel status byte stored by the
brevious input/output instruction in scratch-pad memory are
destroyed if the condition code at the completion of the Start Device
instruction is 0 or 1.

3. Status storage (channel status byte and standard device byte), if
required, occurs before the Start Device instruction terminates.

4. Condition Code 0 is set under the following conditions:

108

" Notes
(Cont’d)

Privileged
Instructions

a. The device control electronics and the device specified are
available.

b. The Start Device instruction specifies a Sense command to a
device that is inoperable.

. Condition Code 1 indicates that either the channel status byte or

the standard device byte has been stored in the channel registers in
scratch-pad memory for the specified channel.

The channel status byte is stored under the following conditions:

a. A parity error occurs while accessing the Channel Address Word
(CAW), Channel Block Address (CBA), or a Channel Command
Word (CCW). The channel control check bit in the channel status
byte is set.

b. The Memory Protect feature is not installed and the key in the
CAW is not zero. The program check bit in the channel status
byte is set.

¢. The main memory address specified in the CAW or CBA is not
on a double word boundary. The program check bit in the channel
status byte is set.

d. The main memory address in the CCW specifies an address out-
side the available memory for the system. The program check
bit in the channel status byte is set.

The standard device byte is stored under the following conditions:

a. The specified device control electronics on the multiplexor chan-
nel indicates that a device request interrupt pending condition is
present, The external device request interrupt pending bit in the
standard device byte is set.

b. The Start Device instruction specifies a command which is other
than a Sense command and the addressed device is inoperable.
The device inoperable bit in the standard device byte is set.

¢. The specified device is busy but the device control electronics is
not busy (i.e., tape rewinding, off-line seek to a random access
device end bit in the standard device byte are set.

. Condition Code 2 is set under the following conditions:

a. A selector channel is specified that is busy.

b. A selector channel is specified that has an interrupt pending
(termination or external device request).

¢. The multiplexor channel is specified and it is operating in burst
mode.

d. The multiplexor channel is specified and the addressed device
control electronics is busy with addressed or non-addressed device.

e. The multiplexor channel is specified and the addressed device con-
trol electronics has a termination interrupt pending.

f. A burst mode operation is directed to the multiplexor and there
is a termination interrupt pending on one of the attached device
control electronics.

7. Condition Code 3 is set under the following conditions:

a. A selector channel is specified that is not in the system.
b. The specified device control electronics is inoperable.

109

Notes

(Cont’d)

Privileged
Instructions

8. If the condition code is 1, 2 or 3 the input/output operation is not

10.

initiated.

Parity errors that occur while fetching the CAW, CBA, or CCW or
that occur after the input/output operation has been initiated do not
cause a machine check interrupt. A channel interrupt occurs and
the program is notified of the error via the channel status byte.

If the first CCW is a Transfer in Channel command the Start Device
instruction terminates and the condition code is set to 0. However,
the specified device control electronics recognizes this command as
an illegal operation and causes a channel interrupt to occur.

110

Privileged
Instructions

Halt Device
(HDV)

General Description | ¢ The contents of the general register specified by B. are added to the D,
field, and the resultant sum identifies the channel to be halted. The channel
is specified by bit positions 21 through 23 of the sum. If a multiplexor is
specified, bit positions 24 through 31 of the sum identify the device to be
halted. The I field is not used and must be zeros. Bufferred devices operating
off-line, and independent of the channel/device control electronics, cannot
be stopped by using this instruction. The condition code specifies the results
of the instruction.

Format

9E I B D
(sh 2 ! !

0 7 8 15 16 19 20 31

Condition Code ¢ 0—not busy.

1 — standard device byte stored in scratch-pad memory.
2 — termination accepted.

3 — inoperable.

(For a detailed description of the condition code settings, see Notes
below.)

Interrupt Action | ¢ Privileged operation.

Notes ¢ 1. The address portion of this instruction specifies the device and
channel as follows:

Bit Positions

Channel Specified
21 22 23
0 0 0 Multiplexor
0 0 1 Selector No. 1
0 1 0 Selector No. 2
0 1 1 Selector No. 3
1 0 0 Selector No. 4
1 1 0 Undesignated

Bit positions 24 through 31 specify one of 256 possible devices.

2. If a device operating on a selector channel is to be halted, the device
number does not have to be specified.

3. The channel address word in main memory location 72, the channel
block address in main memory location 76, and the channel command
word are nmot used by this instruction.

4. A termination interrupt occurs when any input/output operation is
terminated. Status bits are stored in scratch-pad memory when the
termination interrupt occurs.

5. All five flags in CCR-II are cleared if the Halt Device instruction is
accepted. Therefore, upon termination, the incorrect length counter
in the channel status byte is set if the count is not zero.

111

Notes
(Cont’d)

6.

10.

11.

Privileged
Instructions

A Halt Device instruction that specifies a multiplexor channel that
is operating in the burst mode must specify a device that is operating
in the burst mode.

. Condition Code 0 is set under the following conditions:

a. The device control electronics or the device specified on the multi-
plexor channel is not busy. No termination is required.

b. A selector channel or the multiplexor channel operating in burst
mode is specified and it is not busy. No termination is required.

¢. The multiplexor channel is specified and the addressed device con-
trol electronics has a termination interrupt pending. No termina-
tion is required.

. Condition Code 1 indicates that the specified device is on the multi-

plexor channel and that the standard device byte has been stored
in the channel registers in scratch-pad memory for the multiplexor
channel. The channel status byte is never stored.

The standard device byte is stored under the following conditions :

a. The specified device indicates that a device request interrupt pend-
ing condition is present. The external device request interrupt
pending bit in the standard device byte is set.

b. The specified device is busy but the device control electronics is
not busy (i.e., tape rewinding). The device busy bit in the stand-
ard device byte is set.

¢. The specified device is inoperable. The device inoperable bit in
the standard device byte is set.

. Condition Code 2 is set under the following conditions:

a. A selector channel is specified that is busy.

b. The multiplexor channel is specified and it is operating in the
burst mode.

¢. The multiplexor channel is specified and the addressed device
control electronics and device are busy.

Condition Code 3 is set under the following conditions:

a. A selector channel is specified that it is not in the system.
b. The specified device control electronics is inoperable.

Status storage (standard device byte), if required, occurs before
the Halt Device instruction terminates.

112

Test Device

(TDV)

General Description

Format
(sh

Condition Code

Interrupt Action

Notes

Privileged
Instructions

¢ The contents of the general register specified by B, are added to the D,
field. The resultant sum identifies the channel and device to which the
instruction applies. These are specified by bit positions 21 through 31 of
the sum. The I-field is not used and must be zeros, The condition code
specifies the results of the instruction.

9D 1, B, D,

0

7 8 16 16 19 20 31

¢ 0 — available.

1 — standard device byte stored in scratch-pad memory.
2 —busy or interrupt pending.
3 — inoperable.

(For a detailed description of the condition code settings, see Notes

below.)

& Privileged operation.

4 1. The address portion of this instruction specifies the device and

channel as follows:

Bit Positions

Channel Specified
21 22 23
0 0 0 Multiplexor
0 0 1 Selector No. 1
0 1 0 Selector No. 2
0 1 1 Selector No. 3
1 0 0 Selector No. 4
1 1 0 Undesignated

Bit positions 24 through 81 specify one of 256 possible devices.

. The channel address word in main memory location 72, the channel

block address in main memory 76, and the channel command word
are not used by this instruction.

. Status storage (standard device byte), if required, occurs before

the Test Device instruction terminates.

. Condition Code 0 is set if the device control electronics and the

device are available.

Note: There may be pending interrupts on the multiplexor
channel that would prohibit a burst mode operation
to be initiated.

. Condition Code 1 indicates that the standard device byte has been

stored in the channel registers in scratch-pad memory for the
specified channel. The channel status byte is never stored by this
instruction.

113

Notes
(Cont’d)

Privileged
Instructions

The standard device byte is stored under the following conditions;

a. The specified device control electronics on the multiplexor chan-
nel indicates that a device request interrupt pending condition
is present, The external device request interrupt pending bit in
the standard device byte is set.

b. The specified device is busy but the device control electronics is
not busy (i.e., tape rewinding, off-line seek to a random access
device). The device busy bit in the standard device byte is set.

c. The specified device is inoperable. The device inoperable bit in
the standard device byte is set.

6. Condition Code 2 is set under the following conditions:
a. A selector channel is specified that is busy.
b. A selector channel is specified that has an interrupt pending
(termination or external device request.)
c. The multiplexor channel is specified and it is operating in burst
mode.

d. The multiplexor channel is specified and the addressed device
control electronics is busy with addressed or non-addressed device.

e. The multiplexor channel is specified and the addressed device
control electronics has a termination interrupt pending.

7. Condition Code 3 is set under the following conditions:
a. A selector channel is specified which is not in the system,
b. The specified device control electronics is inoperable.
¢. A device is specified that is not in the system.

114

Check Channel
(CKC)

General Description

Format
(s1)

Condition Code

Interrupt Action

Notes |

Privileged
Instructions

¢ The contents of the general register specified by B, are added to the D,
field, and the resultant sum identifies the input/output channel to be tested.
This is specified by bit positions 21 through 23 of the sum. Only the channel
is tested.

9F I, B, D,

0 7T 8 15 16 19 20 31

4 0—a. The specified selector channel is not busy and has no interrupts
pending.
b. The specified multiplexor channel is not operating in the burst
mode.
1 — The specified selector channel has an external device request inter-
rupt pending.
2 —a. The specified selector channel is busy or has a terminating
interrupt pending.
b. The specified multiplexor is operating in the burst mode.
3 — A selector channel is specified that is not in the system.

& Privileged operation.

4 1. The address portion of this instruction specifies the channel to be
tested as follows:

Bit Positions

Channel Specified
21 22 23
0 0 0 Multiplexor
0 0 1 Selector No. 1.
0 1 0 Selector No. 2.
0 1 1 Selector No. 3
1 0 0 Selector No. 4
1 1 0 Undesignated

2. The channel address word in main memory location 72, the channel
block address in main memory 76, and the channel command word
are not used by this instruction.

3. The device address (bit positions 24 through 31 of the sum) is not
used by this instruction.

4. Status bits (channel status byte and standard device byte) are not
stored in scratch-pad memory by this instruction.

5. Current operations proceeding in the specified channel are unaffected
by this instruction.

115

Insert Storage Key
(ISK)

General Description

Format
(RR)

Condition Code

Interrupt Action

Notes

Privileged
Instructions

¢ The storage key of the 2,048-byte main memory block, which is located
at the address contained in the general register specified by the second
address (R.), is inserted in the general register specified by the first
address (R,).

09 R

0 7 8 1 12 15
4 Unchanged.

4 Privileged operation.
Address error:
Addressing.
Specification.
Operation code trap (if the memory protect feature is not installed).

¢ 1. The general register specified by the second address (R;) contains
the location of the 2,048-byte main memory block in bits 8 through
20. Bits 0 through 7 and 21 through 27 are ignored. Bits 28 through
31 must be zero.

2. When the five-bit storage key is inserted into bits 24 through 28
of the general register specified by the first address, bits 0 through
23 are unaltered and bits 29 through 31 are made zero.

3. The address of the storage key for a specific 2,048-byte main memory
block is specified in R, by a binary count as shown in the following
examples:

Storage Key Address in R,

IGNORED 00000O0O0OODOCOCOOTO IGNORED 0000

0 7.8 20,21 27 .28 31
-V
Address of Storage Must be
key for first 2,048 Zeros

main memory block

IGNORED 00000O0O0OO0COOOT1IO0 IGNORED 0000

0 7.8 20,21 27 .28 31
v
Address of Storage Must be
key for third 2,048 zeros

main memory block

IGNORED 00000000 O010O01 IGNORED 0000

0 7.8 20 , 21 27 28 31

V
Address of Storage Must be
key for tenth 2,048 zeros
main memory block

116

Set Storage Key
(SSK)

General Description

Format
(RR)

Condition Code

Interrupt Action

Notes

Privileged
Instructions

4 The storage key of a 2,048-byte main memory block located at the
address contained in the general register specified by the second address
(R,) is set according to the value contained in the register specified by the
first address (R,).

08 R, R,

0 7 8 11 12 15
4 Unchanged.

& Privileged operation.
Address error:
Addressing.
Specification.

Operation code trap (if the memory protect feature is not installed).

4 1. Bits 8 through 20 of the register specified by the second address (R,)
contain the location of the 2,048-byte main memory block where
storage key is to be set. Bits 0 through 7 and 21 through 27 are
ignored. Bits 28 through 31 must be zero.

2. Bits 24 through 28 of the general register specified by the first
address (R,) contain the five-bit storage key to be assigned. Bits
0 through 23 and 29 through 31 are ignored.

3. The address of the storage key for a specific 2,048-byte main memory
block is specified in R, by a binary count (see examples under Insert
Storage Key description).

117

Write Direct
(WRD)

General Description

Format
(sh)

Condition Code

Interrupt Action

Notes

Privileged
Instructions

¢ The eight-bit byte specified by the first address (B,/D,) is accessed and
transmitted to all units via the Static Out lines. The eight-bit I field
specifies the Signal Out lines to be pulsed. The Static Out lines remain as
specified until the next Write Direct instruction.

84

L

B, D,

0

4 Unchanged.

¢ Privileged operation.

Address error:
Addressing.
Operation code trap (if Direct Control option is not installed),

16 16

19 20 31

1. Each trunk has only one Signal Out line and is pulsed according to

the following pattern:

I-Field
Bit0=1
Bit1=1
Bit2=1
Bit3=1
Bit4=1
Bit 5=1
Bit 6=0
Bit 7=0

Trunk(s) Pulsed
Six
Five
Four
Three
Two
One
Reserved (Must be zero)
Reserved (Must be zero)

More than one I-Field bit may be set to 1 providing pulses for
sending over more than one direct control trunk. This permits
sending the same byte to all processors connected to the trans-

mitting processor.

2. A processor cannot Write Direct to itself. The I-Field bit associated
with the transmitting processor must always be reset to zero. (This

is a programming restriction.)

3. An I field of all zeros causes the byte specified by the first address
to be placed on all trunks but does not cause an interrupt to occur
in the other connected processors. This byte can be read by a Read

Direct instruction.

118

Read Direct
(RDD)

General Description

Format
(sh

Condition Code

Interrupt Action

Notes

Privileged
Instructions

& The eight-bit I field specifies one of up to five possible sets of Direct
Control trunks to be sampled. The sampled eight-bit byte is transferred to
the main memory location specified by the first address (B./D,) from the
Static In lines.

85 L B, D,

0 7 8 15 16 19 20 31

4 Unchanged.

& Privileged operation.
Address error:
Addressing.
Protection.
Operation code trap (if Direct Control option is not installed).

¢ 1. Each of the six Direct Control trunks has a set of Direct In lines
which are sampled according to the following pattern:

I-Field Trunk Sampled
Bit0=1 Six
Bit1=1 Five
Bit 2=1 Four
Bit 3=1 Three
Bit 4 =1 Two
Bit 5=1 One
Bit 6 =0 Unused (Must be zero)
Bit 7T=0 Unused (Must be zero)

The program must specify only one I-Field bit set to 1, otherwise
results of the instruction are unpredictable.

2. A processor cannot Read Direct to itself. The I-Field bit associated
with the receiving processor must always be reset to zero. (This is
a programming restriction.)

3. This instruction may be prolonged by the presence of a HOLD signal.
If so, timer updating may be skipped. However, 1/0 servicing will
not be affected.

119

PROCESSOR
STATE CONTROL
INSTRUCTIONS

INTRODUCTION

INSTRUCTION
FORMAT

RR Format

Description

CONDITION CODE
UTILIZATION

INTERRUPT ACTION

¢ There are two control instructions that can be used in the Processing
State (P,). These instructions are Supervisor Call, and Set Program Mask.
These instructions can also be executed in any other state.

The Supervisor Call instruction enables the program to switch from
any state to the Interrupt Control State (P;). Through this operation a
program in any processor state can communicate with and initiate the
Interrupt Control State (P,) programs.

The Set Program Mask instruction permits the user to specify whether
or not the program is to be interrupted for any of the following errors:

1. significance error.

2. exponent underflow.

3. decimal overflow.

4. fixed-point overflow.

The execution of the Set Program Mask instruction causes the condition
code and program mask bits in the P counter of the state in which the
system is operating to be set to the value specified by the instruction. This
instruction always changes the condition code.

Op Code R, R,

0 7 8 1 12 15

¢ The RR format is used for the Supervisor Call and Set Program Mask
instructions. For the Set Program Mask instruction, the R, field is ignored.
The contents of the general register specified by the R, field form the
first operand.

For the Supervisor Call instruction, the R, and R, fields are combined
to become an immediate operand. This operand does not refer to any regis-
ter, but is a value which is placed in the Interrupt Status Register (ISR)
of the initiated state to provide communication with the software in
this state.

¢ The condition code is changed by the Set Program Mask instruction. The
condition code and program mask bits of the current P counter are replaced
by the contents of the general register (bits 2-7) specified by the first
address of the instruction.

4 No error interrupts can occur as a result of using the instructions in

this section. The Supervisor Call instruction causes an interrupt, but this
interrupt is the desired result of its execution,

120

Supervisor Call
(SVC)

General Description

Format
(RR)

Condition Code
Interrupt Action

Note

Processor
State Control
Instructions

¢ The R, and R, fields provide an interruption code and this code is placed
into the rightmost byte of the Interrupt Status Register (ISR) of the
program state in which this instruction is issued. The supervisor call
interrupt flag bit (priority 21) is set in the Interrupt Flag register and a
program interrupt may occur depending on the associated mask bit in the
Interrupt Mask register of the current state.

OA R,

R,

0 7 8
4 Unchanged.

4 None.

11 12

15

& If a higher priority interrupt is honored upon executing this instruc-
tion, the flag bit (priority 21) will be set and the Supervisor Call byte
stored in the ISR so that when it is honored, the results are independent
of any higher priority interrupts.

121

Set Program Mask
(SPM)

General Description

Format
(RR)

Condition Code

Program Mask

Note

Processor
State Control
Instructions

¢ Bits 2-7 of the general register specified by the first address (R,)
establish new program masks and condition code setting for the current
program state.

04 R,

0 7 8 11 12 15

4 The condition code is set according to bits 2 and 3 of the general register
specified by R, as follows:

Condition Code Setting

2 3 Result

0 0 Set condition code 0 (zero).
0 1 Set condition code 1.

1 0 Set condition code 2.

1 1 Set condition code 8.

€ The program mask is set according to bits 4-7 of the general register
specified by R, as follows:

Program Mask Setting

Bit Result

4 Fixed-point overflow.
5 Decimal overflow.

6 Exponent underflow.
7 Significance error.

¢ The contents of the P-counter and the register specified by the first
address are unaltered.

122

FIXED-POINT
INSTRUCTIONS

INTRODUCTION

DATA FORMAT

Halfword Fixed-Point
Number

Full-word Fixed-Point
Number

REPRESENTATION
OF NUMBERS

& Using fixed-point instructions, binary arithmetic is performed on
operands used as addresses, index quantities, counts, and fixed-point data.
Generally, the operands involved are 32 bits long and signed. One of the
general registers always holds one operand. The other operand is in either
main memory or in a general register. Negative quantities are in the two’s-
complement form.

This instruction set performs the following functions:
loading.
storing.
comparing.
shifting.
sign control.
radix conversion of fixed-point operands.
adding.
subtracting.
multiplying.
dividing.

CLOPIAST AP

[y

The result of all sign control, compare, shift, add, and subtract opera-
tions is reflected in the condition code.

¢ A fixed-length format of a one-bit sign followed by the integer field
makes up fixed-point numbers. In one of the general registers, the number
is a 31-bit integer field. The complete 32-bit register is occupied by the
fixed-point quantity and sign. A 64-bit operand, with a 63-bit integer
field, is used by some shift, multiply, and divide instructions. A pair of
adjacent registers, addressed by the even address of the leftmost register,
contains these longer operands. The sign-bit of the rightmost register
becomes part of the integer field. The same register can be specified for
both operands in register-to-register operations (except for the Divide
instructions). In main memory, fixed-point operands are in either a 32-bit
word or a 16-bit halfword. The integer fields are then either 31 bits or 15
bits. Radix conversion operations always use a 64-bit decimal field. Integral
storage boundaries for these units of data must be observed. Halfword,
full-word, or double-word operands are addressed with one, two, or three
low-order address bits set to zero, Half-word operands are extended to full
words when they are fetched from main memory and used as a full-word
operand.

SIGN 15-bit
Integer
0 1 15
SIGN 31-bit
Integer
0 1 31

¢ All fixed-point operands are treated as signed integers. True binary
notation with a sign bit of zero is the representation of positive numbers.
Two’s-complement notation with a sign bit of one is the representation of
negative numbers. To obtain the two’s complement of a number, the value
of each bit is changed and a one is added to the low-order bit.

123

Fized-Point
Instructions

REPRESENTATION This number representation can be regarded as the low-order part of

OF NUMBERS an infinitely long representation of the number. A positive number has all

(Cont'd) | zero bits, including the sign, to the left of the most significant bit of the

number, A negative number has all one bits, including the sign, to the left

of the most significant bit of the number. When an operand is to be extended

with high-order bits, the extension is made by prefixing the operand with
bits equal to the high-order bit of the operand.

A negative zero is not included in two’s-complement notation. In the
number range, the set of positive numbers is one less than the set of
negative numbers. The maximum negative number is made up of an all-zero
integer field with a one-bit sign. The maximum positive number consists
of all 1’s in the integer field with a zero-bit sign. The complement of the
maximum negative number cannot be represented in the processor. For
example, on a subtraction from zero that produces the complement of the
maximum negative number, a fixed-point overflow exception is noted and
the number remains unchanged. If the final result is within the represent-
able range, then an overflow does not result (such as a subtraction from
minus one). The representation of the product of two maximum negative
numbers is a double-length positive number.

An overflow carries into the leftmost bit, which is the sign, and changes
it. In algebraic shifting, however, the sign bit is unchanged even when
significant bits in a shift left instruction are shifted out.

INSTRUCTION | ¢ The following three formats (RS, RX, RR) are used for fixed-point
FORMATS | operations:

RS Format Op Code R, R, B, D,

0 7 8 11 12 16 16 19 20 31

Description ¢ An address is formed by adding the contents of the general register
specified by B, to the displacement of field D,. The address formed is that
of the main memory location of the second operand in the Load and Store
Multiple instructions. In the shift operations, the result formed designates
the amount of shift. The R, and R, fields specify the general register
boundaries for Load and for Store Multiple instructions. In shift operations,
R, specifies the general register holding the first operand, and R; is ignored.

RX Format

Op Code R, X, B, D,

0 7 8 11 12 15 16 19 20 31

Description | ¢ An address is formed by adding the contents of general registers
specified by the X, and B, fields to the displacement field D,. This address
specifies the main memory location of the second operand in the operation.
The R, field designates the general register containing the first operand.

RR Format

Op Code R, R,

0 7 8 11 12 15

Description | ¢ In this format, the R, field specifies the general register holding the
first operand. The R, field specifies the general register holding the second
operand. The same register can be specified for both operands.

124

Fixed-Point
Instructions

Notes & 1. A zeroin an X, or B, field indicates there is no corresponding address
component to enter in the forming of an address in either the RX
or RS format.

2. Except for the instructions Store and Convert to Decimal, results
of fixed-point operations replace the first operand.

3. Except for storing the result, the contents of general registers and
main memory locations used in the operations are not changed.

4. Tt is possible to designate the same general register both for operand
locations and for address modification. Address modification occurs
prior to operation execution.

CONDITION CODE
UTILIZATION

& The condition code indicates the results of fixed-point sign control, add,
subtract, shift, and compare instructions. The code is not changed by any
other fixed-point instruction. Decision making by branch on condition
operations can be done after those instructions which set the code.

For most arithmetic instructions, the Condition Codes 0, 1, or 2 indicate
respectively a zero, less than zero, or greater than zero result. Condition
Code 3 is set for overflow result, In comparison instructions, the Condition
Codes 0, 1, or 2 indicate that the first operand is equal to, less than, or
greater than the second operand. In add and subtract logical instructions,
the Condition Codes 2 and 3 indicate either a zero or non-zero result with
a carry from the sign bit. The Condition Codes 0 and 1 indicate the same
conditions with no carry out of the sign position. Instructions that cause
the condition code to be set and the meaning of the setting are as follows:

Condition Code Setting
Instruction

0o 1 2 3
Add Word Zero < Zero > Zero Overflow
Add Halfword Zero < Zero > Zero Overflow
Add Logical Zero Not Zero Zero Carry Carry
Compare Word Equal Low High —_
Compare Halfword Equal Low High _—
Load and Test Zero < Zero > Zero —_—
Load Complement Zero < Zero > Zero Overflow
Load Negative Zero < Zero —_— —
Load Positive Zero —_ > Zero Overflow
Shift Left Double Zero < Zero > Zero Overflow
Shift Left Single Zero < Zero > Zero Overflow
Shift Right Double Zero < Zero > Zero B —
Shift Right Single Zero < Zero > Zero
Subtract Word Zero < Zero > Zero Overflow
Subtract Halfword Zero < Zero > Zero Overflow
Subtract Logieal — Not Zero Zero Carry Carry

125

INTERRUPT ACTION

Address Error
Addressing

Specification

Protection

Data Error

Fixed-Point Overflow

Divide Error

Fized-Point
Instructions

4 The following interrupt conditions can occur as a result of fixed-point
instructions:

¢ An address error interrupt occurs when an address specifies a location
outside the available main memory. The operation is terminated at the

point of error. The result data and the condition code, if produced, are
unpredictable.

¢ An address error interrupt occurs when an instruction specifies a:
1. Full-word operand that is not located on a 32-bit boundary.
2. Halfword operand that is not located on a 16-bit boundary.
3. Double-word operand that is not located on a 64-bit boundary.

4. Register with an odd-numbered address when using an even/odd
pair containing a 64-bit operand.

The instruction is suppressed. The condition code, data in main memory,
and registers remain unchanged.

4 An address error interrupt occurs when the storage key and the protec-
tion key of the result location do not match. The operation is suppressed
and the condition code and data in the registers and main memory are
unaltered. The only exception is the Store Multiple instruction which is
terminated. The amount of data stored is unpredictable. (This interrupt
can only occur if the memory protect feature is installed.)

€ A data error interrupt occurs when an invalid digit or sign code of the
decimal operand is encountered in the Convert to Binary instruction. The
operation is suppressed and the condition code and data in the register and
main memory are unaltered.

¢ A fixed-point overflow interrupt occurs when the results overflow in
sign control, add, subtract or shift operations. The operation is completed
by placing the truncated result in the register and setting Condition Code 3.
Overflow bits are lost. If the fixed point program mask bit is reset, inter-
rupt will not occur and the flag in the IFR will not be set,.

4 A divide error interrupt occurs when the quotient would exceed the
register size in division, or the result of a Convert to Binary instruction

exceeds 31 bits. The operation is suppressed and the data in the registers
remains unaltered.

126

Load Word
(LR) (L)

General Description

Format
(RR)

(RX)
Condition Code

Interrupt Action

Note

Fixed-Point
Instructions

4 The operand specified by the second address (R; or X,/B,/D,) is loaded

into the general register specified by the first address (R,).

(LR) 18

R,

R,

0

1 12

15

(L) 58

X

2

B,

]

4 Unchanged.

7

8

& Address error:

11 12

Addressing (RX format).
Specification (RX format).

15 16

19 20

31

4 The operand in the register or main memory location specified by the
second address remains unchanged.

127

Load Halfword
(LH)

General Description

Format
(RX)

Condition Code

Interrupt Action

Notes

Fixed-Point
Instructions

¢ The halfword operand in the main memory specified by the second
address (X./B,/D.) is loaded into the general register specified by the
first address (R,).

48 R, X

2

0 7 8 1 12 15 16 19 20 31
4 Unchanged.

& Address error:
Addressing.

Specification.

4 1. When the halfword (second operand) is fetched from main memory,
it is expanded to a full word by propagating the sign-bit value
through the 16 high-order positions of the receiving register.

2. The operand specified by the second address is unaltered.

128

Fized-Point
Instructions

Load and Test
(LTR)

General Description ¢ The operand in the register specified by the second address (R,) is
loaded into the general register specified by the first address (R,). The
condition code is determined by the magnitude and the sign of the loaded
operand.

Format 12 R, R,
(RR)

0 7 8 1 12 15

Condition Code | ® 0—result is zero.

1 —result is less than zero.

2 — result is greater than zero.
38 — not used.

Interrupt Action | ¢ None.

Notes ¢ 1. The same register can be specified for both R, and R,. If this is done,
the operation is equivalent to a test with no data movement.

2. The operand specified by the second address (R,) is unaltered.

129

Load Complement
(LCR)

General Description

Format
(RR)

Condition Code

Interrupt Action

Notes

Fixed-Point
Instructions

4 The two’s complement of the operand in the register specified by the
second address (R.) is loaded into the general register specified by the
first address (R.). The condition code is determined by the magnitude and
the sign of the loaded operand.

13 R, R,

0 7T 8 11 12 15

4 0 —result is zero.
1 —result is less than zero.

2 —result is greater than zero.
3 — overflow.

¢ Fixed-point overflow.

4 1. Zero operands remain constant and unchanged under complementa-
tion.

2. A fixed-point overflow interrupt occurs when the maximum negative
number is complemented.

3. The operand specified by the second address is unaltered.

130

Load Positive
(LPR)

General Description

Format
(RR)

Condition Code

Interrupt Action

Notes

Fixed-Point
Imstructions

& The operand in the register specified by the second address (R.) is
made positive, if negative, and loaded into the general register specified by
the first address (R,). In loading the absolute value of the operand, nega-
tive numbers are complemented and positive numbers remain unaltered.
The magnitude of the absolute value determines the condition code.

10 R, R,
0 7 8 11 12 16

4 0 —result is zero.
1 —not used.
2 —result greater than zero.
3 — overflow on complement.

& Fixed-point overflow.

¢ 1. A fixed-point overflow interrupt exists if a maximum negative num-
ber is complemented.

2. The operand specified by the second address is unaltered,

131

Load Negative
(LNR)

General Description

Format
(RR)

Condition Code

Interrupt Action

Notes

Fized-Point
Instructions

€ The two’s complement of the operand in the register specified by the
second address (R,) is loaded into the general register specified by the
first address (R,). In loading the operand value, positive numbers are
complemented and negative numbers remain unaltered. The magnitude of
the loaded value determines the condition code setting,

11 R

1

R,

0 7 8

€ 0 —result is zero.

11 12

1 —result is less than zero.

2 —not used.
3 — not used.

¢ None.

15

¢ 1. A zero operand is not altered and retains a positive sign.

2. The operand specified by the second address is unaltered.

132

Fized-Point
Instructions

Load Multiple
(M)

General Description | ® The set of general registers, beginning with the register specified by
the first address (R,) and ending with the register specified by the third
address (R,), is loaded with operands from main memory. The second
address (B./D.) specifies the main memory location of the first word to be
loaded. Loading of the general registers continues in the ascending order
of their addresses beginning with the register specified by R,. As many
words as needed are fetched from the main memory location specified,
continuing up to, and including, the register specified by Ra.

Format 98 R
(RS)

1 RS BZ D2

0 7 8 1 12 15 16 19 20 31
Condition Code | ¢ Unchanged.

Interrupt Action 4 Address error:
Addressing.

Specification.

Notes ¢ 1. If R, and R, specify the same register, only one word is loaded.

2. If the register specified by Rs is less than the register specified by
R,, wrap-around occurs from register 15 to 0.

3. The operands specified by the second address are unaltered.

133

Add Word
(AR) (A)

General Description

Format
(RR)

(RX)

Condition Code

Interrupt Action

Notes

Fizxed-Point
Instruetions

¢ The operands specified by the first and second addresses (R, and

» or X,/B,/D,) are added and the sum is placed in the general register
specified by the first address (R,;). The magnitude and the sign of the
sum determine the condition code setting.

(AR) 1A

R,

R

2

0

11

12

15

(A) B5A

¢ 0—sum is zero.
1 —sum is less than zero.

7

8

11

12

15 16 19 20 31

2 —sum is greater than zero.

3 — overflow.

Address error:

Fixed-point overflow.

Addressing (RX format).
Specification (RX format).

¢ 1. All 82 bits of both operands participate in the addition. If the carries

into and out of the sign bit disagree, an overflow exists. The overflow
does not alter the sign bit created by the carries.

2. A negative overflow results in a positive sum and a positive overflow
results in a negative sum with overflow bits being lost.

3. A zero result is always positive.

4. The operand specified by the second address is unaltered,

134

Fixed-Point
Instructions

Add Halfword
(AH)

General Description ¢ The halfword operand specified by the second address (X./B;/D,) is
added to the operand specified by the first address (R,) and the sum is
placed into the register specified by the first address (R.). The sign and
the magnitude of the sum determine the condition code setting.

F°'(':;; 4A R, X, B, D,

0 7 8 1 12 15 16 19 20 31

Condition Code ¢ 0 —sum is zero.

1 — sum is less than zero.

2 — sum is greater than zero.
3 — overflow

Interrupt Action

*

Fixed-point overflow.

Address error:

*

Addressing.

Specification.

Notes | ¢ 1. The halfword in main memory specified by the second address is
expanded to full-word length prior to the addition by propagating
the sign bit value through the high-order 16 positions. The addition
is completed by adding all 32 bits of both operands.

2. An overflow exists if the high-order numeric result bit and the
carry out of the sign-bit position disagree. The sign is not corrected
after overflow occurs. A negative overflow results in a positive sum
and a positive overflow results in a negative sum with the overflow
bits being lost.

3. The operand specified by the second address is unaltered.

135

Add Logical

(ALR) (AL)

General Description

Format
(RR)

(RX)

Condition Code

Interrupt Action

Notes

Fized-Point
Instructions

¢ The operand specified by the second address (R, or X,/B,/D,) is
logically added (32-bit unsigned) to the operand specified by the first
address (R,). The sum is placed in the general register specified by the first
address. The condition code is determined by the relation of the sum
to a zero number and the occurrence of a carry out of the sign bit
position. An overflow on such carries is not recognized and does not set an
interrupt condition.

(ALR) 1E R, R,
0 7 8 11 12 15

(AL) 5E R, X, B, D,

0 7 8 11 12 15 16 19 20 31

¢ 0—sum is zero and no carry.
1 —sum is not zero and no carry.
2 —sum is zero with a carry.
3 — sum is not zero with a carry.

€ Address error:
Addressing (RX format).
Specification (RX format).

¢ 1. All 32 bits of the operands participate in the logical addition.

2. The operand specified by the second address is unaltered.

136

Subtract Word
(SR) (S)

General Description

Format
(RR)

(RX)

Condition Code

Interrupt Action

Notes

Fixed-Point
Instructions

& The operand specified by the second address (R, or X./B./D,) is sub-
tracted from the operand specified by the first address (R;) and the
difference is placed in the general register specified by the first address
(R,). The magnitude and the sign of the difference determine the condition
code setting.

(SR) 1B R, R,

0 7T 8 11 12 15

(S) 5B R, X, B, D,

0 7 8 11 12 15 16 19 20 31

4 0 — difference is zero.
1 — difference is less than zero.
2 — difference is greater than zero.
3 — overflow.

4 Fixed-point overflow.
Address error:
Addressing (RX format).
Specification (RX format).

¢ 1. The operation is accomplished by adding the one’s complement of
the second operand and a one in the low-order position of the first
operand. The one’s complement of a number is obtained by changing
all the 1 bits to 0 bits and all the 0 bits to 1 bits. All 32 bits are
involved in the operation. An overflow exists if the high-order
numeric result bit and the carry out of the sign bit position disagree.

9. The difference between a maximum negative number and another
maximum negative number is zero with no overflow.

3. When the same register is specified for R, and R,, the operation is
equivalent to clearing R, to zero.

4. The operand specified by the second address is unaltered.

137

Subtract Halfword
(SH)

General Description

Format
(RX)

Condition Code

Interrupt Action

Notes

Fized-Point
Instructions

¢ The halfword operand specified by the second address (X./B,/D,) is
expanded and subtracted from the operand specified by the first address
(R;). The difference is placed in the general register specified by R,.
The sign and the magnitude of the difference determine the condition

code

setting.

4B R, X, B, D

7 8 11 12 15 16 19 20 31

¢ 0—difference is zero.

1 — difference is less than Zero.

2 — difference is greater than zero.
3 — overflow.

¢ Fixed-point overflow.
Address error:

Addressing.
Specification.

. The halfword in main memory specified by the second address is

expanded to full-word length by propagating the sign bit value
through the 16 high-order positions.

. The subtraction is completed by adding the one’s complement of the

second operand and a one in the low-order position of the first
operand, All 32 bits are involved in the operation.

. An overflow exists if the high-order numeric result bit and the

carry out of the sign bit position disagree.

- The operand specified by the second address is unaltered.

138

Subtract Logical
(SLR) (SL)

General Description

Format
(RR)

(RX)

Condition Code

Interrupt Action

Notes

Fixed-Point
Instructions

& The operand specified by the second address (R. or X./B./D.) is
logically subtracted (32-bit unsigned) from the operand specified by the
first address (R,). The difference is placed in the general register specified
by the first address. The condition code is determined by the relation of
the sum to a zero number and the occurrence of a carry out of the sign
bit position. An overflow on such carries is not recognized and does not
set an interrupt condition.

(SLR) 1F R, R,

0 7 8 11 12 15

(SL) 5F R, X, B, D,

0 7 8 11 12 16 16 19 20 31

¢ 0—not used.
1 — difference is not zero and no carry.
2 — difference is zero with a carry.
3 — difference is not zero with a carry.

& Address error:
Addressing (RX format).
Specification (RX format).

¢ 1. Logical subtraction is accomplished by adding the one’s complement
of the second operand and a one in the low-order position of the
first operand.

2. All 32 bits of the operands participate in the logical subtraction
without change to the resulting sign bit.

3. The operand specified by the second address is unaltered.

139

Compare Word
(CR) (C)

General Description

Format
(RR)

(RX)

Condition Code

Interrupt Action

Note

Fixed-Point
Instructions

¢ The operand specified by the first address (R,) is compared with the
operand specified by the second address (R, or X./B,/D.,). Both operands
remain unaltered. The result of the comparison determines the condition
code setting.

(CR) 19 R, R,

0 7 8 11 12 15

(C) 59 R, X, B, D,

0 7 8 11 12 15 16 19 20 31

4 0 —operands are equal.
1 —the operand specified by the first address is low.
2 — the operand specified by the first address is high.
3 — not used.

€ Address error:
Addressing (RX format).
Specification (RX format).

€ Both operands are considered as 32-bit signed integers and the com-
parison is algebraic.

140

Compare Halfword
(CH)

General Description

Format
(RX)

Condition Code

Interrypt Action

Notes

Fixed-Point
Instructions

& The operand specified by the first address (R,) is compared with the
halfword operand expanded to a full word, specified by the second address
(X,/B,/D.). Both operands remain unaltered. The result of the comparison
determines the condition code setting.

49 R, X, B, D,

0 7 8 1 12 15 16 19 20 31

& 0 —operands are equal.
1 — the operand specified by the first address is low.
2 — the operand specified by the first address is high.
3 — not used.

€ Address error:
Addressing.
Specification.

4 1. The halfword in storage specified by the second address is expanded
to full-word length by propagating the sign bit value through the
16 high-order positions.

2. Both operands are considered as 32-bit signed integers and the
comparison is algebraic.

141

Multiply Word
(MR) (M)

General Description

Format
(RR)

{RX)

Condition Code

Interrupt Action

Notes

Fized-Point
Instructions

¢ The operand (multiplicand) specified by the first address (R,) is
multiplied by the operand (multiplier) specified by the second address
(R; or X,/B,/D,). The double-length product is loaded into the register
specified by the first address (R,), which must be an even number, and the
next odd-numbered register.

(MR) 1C R, R,
0 78 112 15

(M) 5C R, X

2

0 7 8 1 12 15 16 19 20 31
4 Unchanged.

€ Address error:
Addressing (RX format).
Specification.

¢ 1. The first address (R,) must always refer to the even-numbered regis-
ter of an even/odd pair. The multiplicand is taken from the
odd-numbered register of the pair. The original contents of the
even-numbered register, which is replaced by the product, is ignored.
An overflow cannot occur.

2. Only when two maximum negative numbers are multiplied does the
product exceed 62 significant bits, This product produces 63 signifi-
cant bits.

3. In two’s-complement notation, the sign bit is propagated right, up
to the first significant product bit.

4. The sign of the product is determined algebraically. A zero result
is always positive,

5. The least significant digit of the product goes into the odd-numbered
register.

6. The operand specified by the second address (multiplier) is unaltered
except when the first and second addresses specify the same (even
numbered) register. In this case the multiplier is taken from the
even register, the multiplicand is taken from the odd register and
the product is placed into the even/odd pair.

142

Fizxed-Point
Instructions

Multiply Halfword
(MH)

General Description ¢ The operand (multiplicand) specified by the first address (R,) is
multiplied by the halfword operand (multiplier) specified by the second
address (X./B./D.). The product of the operands replaces the contents of
the register specified by the first address (R,)

Format 4C R, X, B, D,
(RX)

0 7 8 1 12 15 16 19 20 31
Condition Code | ¢ Unchanged.

Interrupt Action | 4 Address error:
Addressing.
Specification.

Notes | ¢ 1. The halfword operand in main memory is expanded to a full word
before multiplication by propagating the sign bit value through the
16 high-order positions. Both operands are considered as 32-bit
signed integers. The multiplicand is replaced by the low order 32 bits
of the product. The product usually occupies 46 bits of significance
except when both operands are maximum negative numbers and
occupy 47 bits.

2. The bits to the left of the 32 low-order bits of the product are not
tested for significance. No overflow indication is given, Since the
bits to the left of the low-order 32 are ignored, the sign of the result
may differ from the true sign of the product, if the product exceeds
32 bits.

3. The operand specified by the second address is unaltered.

4. A zero product is always positive.

143

Divide
(DR) (D)

General Description

Format
(RR)

(RX)

Condition Code

Interrupt Action

Notes

¢

is

Fixed-Point
Instructions

The double-word operand (dividend) specified by the first address (R,)
divided by the operand (divisor) specified by the second address

(R; or X,/B,/D,). The quotient and remainder replace the double-word
operand in the registers specified by the first address (R,). The register
specified by the first address must be the even-numbered register of an
even/odd pair.

(DR) 1D R, R,

0

7 8 11 12 156

(D) 5D R, X, B, D

0
¢
L 4

7 8 11 12 16 16 19 20 31

Unchanged.

Address error:
Addressing (RX format).
Specification.

Divide Error.

1. The dividend, a 64-bit signed integer, is replaced by a 32-bit signed
quotient and a 32-bit signed remainder; the remainder is placed in
the even-numbered register and the quotient is placed in the odd-
numbered register. The divisor is a 32-bit signed integer and is
unaltered.

2. A divide error interrupt occurs when the magnitude of the dividend
to the divisor is such that the quotient cannot be expressed by a
32-bit signed integer. (The divisor must be greater in absolute value
than the first word of the dividend.)

3. The sign of the quotient is determined algebraically except that a
zero quotient as a zero remainder is always positive.

4. The remainder has the same sign as the dividend.

144

Fized-Point
Instructions

Convert to Binary
(CVB)

General Description | ® The radix of the double-word operand in main memory specified by the
second address (X,/B./D.) is converted from decimal to binary notation
and loaded into the general register specified by the first address (R)).
The operand in main memory is treated as a right-justified signed integer
before and after the conversion.

"°';;;; 4F R, X, B, D,

0 7 8 11 12 15 16 19 20 31
Condition Code 4 Unchanged.

Interrupt Action | @ Address error:
Addressing.
Specification.

Data error.

Divide error.

Notes | @ 1. The double-word operand in main memory (15 digits plus sign)
must be in the packed decimal format. The operand is checked for
valid sign and digit codes. The sign representation depends on the
current decimal code (USASCII or EBCDIC).

9. The maximum decimal number that can be converted and still be
contained in a 32-bit register is (2,147,483,647),, positive and
(2,147,483,648) ,, negative. A larger decimal number causes a divide
error interrupt.

3. Negative decimal zero is converted to positive binary zero,

4. The operand specified by the second address remains unaltered in
main memory.

145

Convert to Decimal
(CVD)

General Description

Format
(RX)

Condition Code

Interrupt Action

Notes

Fixed-Point
Instructions

¢ The radix of the operand specified by the first address (R,) is converted
from binary to decimal notation and stored at the double-word main
memory area specified by the second address (X,/B./D,). The operand is
treated as a right-justified signed integer before and after the conversion.

4E R, X, B, D,

0 7 8 1 12 15 16 19 20 31
¢ Unchanged.

4 Address error:
Addressing.
Specification.
Protection.

¢ 1. The result is placed in the double-word main memory location in the
packed decimal format of 15 digits plus sign.

2. The low-order four bits of the result are the sign which is generated
according to the current decimal code, EBCDIC or USASCII.

3. The maximum binary number (32-bit signed integer) that can be
converted is (2,147,483,647) positive and (2,147,483,648) negative.
No overflow can occur.

146

Store Word

(ST)

General Description

Format
(RX)

Condition Code

Interrupt Action

Notes

Fixed-Point
Instructions

& The operand in the general register specified by the first address (R.,)
is stored in the main memory location specified by the second address
(X:/B./D.).

50 R, X, B, D

0 7 8 11 12 15 16 19 20 31

4 Unchanged.

¢ Address error:
Addressing.
Specification.
Protection.

¢ 1. The complete contents (32 bits) of the general register specified by
the first address are placed unaltered in main memory.

2. The operand specified by the first address is unaltered.

147

Store Halfword
(STH)

General Description

Format
(RX)

Condition Code

Interrupt Action

Notes

Fixed-Point
Instructions

¢ The rightmost half (16 bits) of the operand in the general register
specified by the first address (R,) is stored unaltered in the halfword main
memory location specified by the second address (X./B./D,).

40 R, X, B, D,

0 7 8 11 12 15 16 19 20 31

4 Unchanged.

€ Address error:
Addressing.
Specification.
Protection.

¢ 1. The 16 high-order bits of the operand specified by the first address
field are ignored by the operation.

2. The operand specified by the first address is unaltered.

148

Store Multiple
(STM)

General Description

Format
(RS}

Condition Code

Interrupt Action

Notes

Fixed-Point
Instructions

& The operands in the set of general registers, beginning with the register
specified by the first address (R,) and ending with the register specified
by the third address (R;), are stored in main memory locations starting with
the location specified by the second address (B./D.). The second address
(B./D,) refers to the main memory location where the first operand (word)
is to be stored. Storing of the operands continues in the ascending order
of the register number specified by R,, up to and including R, storing as
many words as indicated in the main memory locations that immediately
follow the initial operand.

90 R, R, B, D,

0 7 8 11 12 15 16 19 20 31
4 Unchanged.

4 Address error:
Addressing.
Specification.
Protection.

& 1. If the same register is specified for R, and Rs, only one word is stored.

2. If R, is less than R,, the register addresses wrap around from 15 to 0.
For instance, all registers can be stored by making R, one less than R,.

3. The operands in the set of registers designated are unaltered.

149

Shift Left Single
(SLA)

General Description

Format
(RS)

Condition Code

Interrupt Action

Notes

Fixed-Point
Instructions

¢ The integer portion of the operand in the general register specified by
the first address (R,) is shifted left the number of positions specified by
the second address (B:/D,). The second address is used as a count and not
to address data. The low-order six bits of the second address constitute
the count, The remaining bits are ignored.

8B R, B, D,

0 7 8 11 12 15 16 19 20 31

4 0—result is zero.
1 —result is less than zero.
2 —result is greater than zero.
3 — overflow.

4 Fixed-point overflow.

4 1. All 31 bit positions of the integer are shifted. The sign is not altered.
Zeros are inserted in the right-hand end of the operand for each shift.

2. If a bit is shifted out of the left-hand end that is not identical to the
sign bit, a fixed-point overflow condition exists.

150

Shift Right Single
(SRA)

General Description

Format
(RS)

Condition Code

Interrupt Action

Notes

Fizxed-Point
Instructions

& The integer portion of the operand in the general register specified by
the first address (R,) is shifted right the number of positions specified by
the second address (B,/D.). The second address is used as a count and not
to address data. The low-order six bits of the second address field constitute
the count. The remaining bits are ignored.

8A R, B, D,

0 7 8 11 12 15 16 19 20 31

¢ 0 —result is zero.
1 —result is less than zero.
2 — result is greater than zero.
3 —not used.

4 None.

4 1. All 31 bit positions of the integer are shifted. The sign is not altered.
The sign bit is propagated through the positions vacated in the left
end of the operand. The bits shifted out to the right are lost.

2. Shifting to the right is equivalent to low-order truncation or division
by powers of two.

3. Shifts greater than 31 cause all significant bits to be lost. A zero for
positive numbers and a minus one for negative numbers is the result
of such shifts.

4. Fixed-point positive numbers go towards zero; Fixed-point negative
numbers go towards minus one.

151

Shift Left Double
(SLDA)

General Description

Format
(RS)

Condition Code

Interrupt Action

Notes

Fized-Point
Instructions

¢ The integer portion of the double-word operand specified by the first
address (R,) and the first address plus one is shifted left the number of
positions specified by the second address (B./D,). The first address (R,)
specifies an even-numbered register of an even/odd pair that contains the
63-bit integer to be shifted. The second address is used as a count and not
to address data. The low-order six bits of the second address field constitute
the count. The remaining bits are ignored.

8F R, B, D,

0 7T 8 11 12 16 16 19 20 31

4 0 —result is zero.
1 —result is less than zero.
2 —result is greater than zero.
3 — overflow.

4 Fixed-point overflow.
Address error:
Specification.

¢ 1. All 63 bit positions of the integer are shifted. The sign bit (posi-
tion 0) in the even register is not altered. Zeros are inserted in the
right-hand end of the double-word operand for each shift.

2. If a bit is shifted out of the left-hand end that is not identical to the
sign bit, a fixed-point overflow condition exists.

152

Shift Right Double
(SRDA)

General Description

Format
(RS)

Condition Code

Interrupt Action

Notes

Fixed-Point
Instructions

& The integer portion of the double-word operand specified by the first
address (R,) and the first address plus one is shifted right the number of
positions specified by the second address (B./D,). The first address (R,)
specifies an even-numbered register of an even/odd pair that contains the
63-bit integer to be shifted. The second address is used as a count and not
to address data. The low-order six bits of the second address constitute the
count., The remaining bits are ignored.

8E R, B

2 D,
0 7 8 11 12 156 16 19 20 31

4 0 —result is zero.
1 —result is less than zero.
2 —result is greater than zero.
3 — not used.

¢ Address error:

Specification.

¢ 1. All 63 bit positions of the integer are shifted. The sign bit in the
leftmost position of the even-numbered register is not altered. This
sign bit is propagated through the positions vacated in the left end
of the double-word operand. The bits shifted out to the right are lost.

2. A shift count of zero provides a double-word sign and magnitude
check.

153

DECIMAL
ARITHMETIC
INSTRUCTIONS

INTRODUCTION

DATA FORMATS

Packed Format

Zoned Format

Description of Formats

¢ Decimal arithmetic is performed on data in packed format. In this
format, two decimal digits are placed in one byte (four bits each). The
operands may be variable in length, and must contain a sign in the right-
most four bits.

All decimal instructions are two-address, SS-type format. The instruc-
tion set includes addition, subtraction, comparison, multiplication, and divi-
sion. Since data sent to, and from, external devices are usually in zoned
(unpacked) format (one digit in one byte), there are also instructions for
converting to, and from, packed and zoned format, All decimal arithmetic
instructions are standard features of the 70/46 Processor.

4 The formats for decimal data in high-speed memory are:

Byte

Byte

Byte

Byte

Byte

Byte

]
Digit | Digit
!

Digit | Digit
1

1
Digit + Digit
!

|
Digit : Digit

]
Digit | Digit
]

T
Digit ; Sign

In packed format, one byte represents two decimal digits. The right-
most half-byte (4 bits) of a field represents the sign.

Byte

Byte

Byte

Byte

Byte

Byte

1]] }
Zone : Digit Zone : Digit Zone : Digit Sign : Digit

]
Zomne 1 Digit
]

]
Zone ; Digit

In zoned format, the low-order four bits of each eight-bit byte contain
the decimal digit and the high-order four bits contain the zone. The
high-order four bits of the rightmost byte of a field contain the sign
of the field.

4 Decimal arithmetic instructions operate from right to left. The addresses
specify the leftmost byte of the operand, and the length specifies the addi-
tional number of bytes that are to the right of the addressed byte. The
fields specified by the addresses can be variable in length beginning at any
byte in main memory and consisting of from 1 to 16 eight-kit bytes. Results
of operations are always placed in the first operand field. The result never
exceeds the limits set by the address and length of the first operand field.
If a decimal arithmetic operation results in a carry outside the operand
limits, a decimal overflow interrupt occurs. If the first operand is longer
than the second, the second operand is extended with high-order zeros
up to the length of the first operand during operation execution (in addition
and subtraction only). This extension never changes main memory.

Because the code configurations of digits and sign are verified while
arithmetic operations are performed, improper overlapping of fields is
recognized as a data error. The arithmetic instruction set (except Pack,
Unpack, Move with Offset) should not specify overlapping fields unless
the rightmost byte of the fields coincide.

In the move-type instructions of this set (Pack, Unpack, Move with
Offset), no checking is made for valid codes. Consequently, overlapping is
permitted without any restrictions. (Although unusual results are possible,
overlapping is dangerous.)

154

REPRESENTATION
OF NUMBERS

INSTRUCTION
FORMAT

S$S Format

Description

Decimal Arithmetic
Instructions

& Decimal operands in packed format are four-bit, binary-coded, decimal
digits packed two to a byte. The operands may be variable in length and
must contain a sign in the rightmost four bits of the rightmost byte.
The digit and sign codes are as follows:

Digit and Sign Codes

Digit Code Sign Code
0 0000 -+ 1010
1 0001 — 1011
2 0010 -+ 1100
3 0011 — 1101
4 0100 + 1110
5 0101 + 1111
6 0110
7 0111
8 1000
9 1001

EBCDIC or USASCII sign or zone codes are generated for the decimal
arithmetic results depending on the setting of the decimal code bit in the
Interrupt Status Register. When the decimal code bit is set for EBCDIC,
the following codes are generated:

Sign
Zone

Plus Minus

1100 1101 1111

When the decimal code bit is set for USASCII, the following codes are
generated :

Sign
Zone

Plus Minus

1010 1011 0101

Note: The codes (1110), and (1111), are accepted as plus signs. However,
if an arithmetic operation is performed on a field with these signs,
the sign of the result will be in EBCDIC or USASCII, as shown
above.

& Decimal arithmetic instructions use the two-address, SS format as
follows:

Op Code L, L, B, D, B, D,

0 7 8 11 1215 1619 20 31 3235 36 47

& The contents of the general register specified by B, are added to the
contents of the displacement field (D,) to obtain the main memory location
of the leftmost byte of the first operand. The length (1,) of the first address
specifies the number of bytes that are to the right of the location obtained
above, thus giving the processor the address of the rightmost byte of the
first operand. The length of the operand can be from one to 16 bytes, since

155

Description
(Cont’d)

CONDITION CODE
UTILIZATION

INTERRUPT ACTION

Address Error

Addressing

Specification

Protection

Data Error

Decimal Arithmetic
Instructions

L, can be from 0000 to 1111. The address and size of the second operand
is obtained in the same way using B,, D, and L,.

Results of operations are always stored in the first operand field and
never exceed the limits specified by the address and length. The second
operand is not changed in an add-type instruction unless the second operand
addresses the same rightmost byte as the first operand.

Note: A zero in the B, or B, field indicates that no general register is to
be used.

¢ The condition code is set as a result of all add-type and comparison
operations. No other decimal arithmetic instructions affect the condition
code.

The condition code setting has a different meaning for the comparison
operation result than for the add-type result. The results of the following
decimal arithmetic instructions cause the indicated condition code settings:

Condition Code Setting
Instruction
(/] 1 2 3
Add Decimal Zero < Zero > Zero Overflow
Subtract Decimal Zero < Zero > Zero Overflow
Zero and Add Zero < Zero > Zero Overflow
Compare Decimal Equal Low High

¢ The following interrupt conditions can oceur as a result of a decimal
arithmetic instruction.

¢ An address error interrupt exists when an address specifies a location
outside the available main memory of the particular installation. The
operation is terminated at the point of error. The result data and the
condition code are unpredictable.

¢ An address error interrupt exists when a multiplier or divisor size
exceeds 15 digits plus sign; or when the multiplier size or the divisor
size is equal to, or greater than, the multiplicand or dividend size, respec-
tively. The instruction is suppressed. The condition code, data in main
memory, and registers remain unchanged.

¢ An address error interrupt exists when the protection key and the
storage key of the result location do not match. The operation is terminated.
The result data and condition code are unpredictable, (This interrupt can
occur only if the memory protect feature is installed.)

¢ A data error interrupt exists in decimal arithmetic when an invalid
sign (not greater than nine) or digit code (not zero through nine) is
detected in an operand, a multiplicand has insufficient high-order zeros,
or there is incorrect overlapping of operands. The operation is terminated.
The result data and the condition code setting are unpredictable.

156

Decimal Overflow

Divide Error

Decimal Arithmetic
Instructions

4 A decimal overflow interrupt exists when the result field of an Add
Decimal, Subtract Decimal, or Zero and Add instruction is too small to
contain the overflow data. The operation is completed by ignoring the
overflow data, and setting the condition code to 3. If the decimal overflow
program mask bit is reset, interrupt will not occur and the flag in the IFR
will not be set.

& A divide error interrupt occurs when the quotient is greater than the
specified data field, including division by zero, or the dividend does not
have one leading zero. Division is suppressed and the dividend and divisor
remain unchanged in main memory.

157

Add Decimal

(AP)

General Description

Format
(SS)

Condition Code

interrupt Action

Notes

Decimal Arithmetic
Instructions

¢ The operand specified by the second address (B./D,) is added alge-
braically to the operand specified by the first address (B./D,). The result
is stored in the field specified by the first address. The sign and the magni-
tude of the sum determine the condition code.

The operands can be variable in length up to 16 bytes and must be in
packed format. If operands overlap, their rightmost byte location must
coincide.

The addition of the two operands can cause decimal overflow. Two
conditions which cause overflow are:

1. a carry out of the high-order position of the result.

2. a second operand that is larger than the first operand and significant
result positions are lost.

FA L | L, | B D, B, D,

0 7 8 11 1215 1619 20 31 3235 36 47

¢ 0—sum is zero.
1 —sum is less than zero.
2 —sum is greater than zero.
3 — overflow.

¢ Address error:
Addressing.
Protection.
Data error.
Decimal overflow.

¢ 1. High-order zeros are supplied for either operand during instruction
execution.

All signs and digits are checked for validity.

The operand specified by the second address is unaltered.

Processing is from right to left.

A R

A zero result is always positive except when high-order digits are
lost because of overflow. In overflow, a zero result has the sign of
the correct result.

158

Subtract Decimal
(SP)

General Description

Format
(SS)

Condition Code

Interrupt Action

Notes

Decimal Arithmetic
Instructions

¢ The operand specified by the second address (B./D,) is subtracted
algebraically from the operand specified by the first address (B,/D,). The
result is stored in the field specified by the first address. The sign and
the magnitude of the difference determine the condition code.

The operands can be variable in length up to 16 bytes and must be in
packed format. If operands overlap, their rightmost byte location must
coincide.

The subtraction of two operands can cause decimal overflow.

FB L | L, | B, D, B, D,

0 7 8 11 1215 1619 20 31 3235 36 47

€ 0 — difference is zero.
1 — difference is less than zero.
2 — difference is greater than zero.
3— overflow.

€ Address error:
Addressing.
Protection.
Data error.
Decimal overflow.

¢ 1. High-order zeros are supplied for either operand during instruction
execution.

All signs and digits are checked for validity.

The operand specified by the second address is unaltered.

Processing is from right to left.

otk o

A zero difference is always positive except when high-order digits
are lost because of overflow. In overflow, a zero result has the sign
of the correct difference.

159

Zero and Add
(ZAP)

General Description

Format
(SS)

Condition Code

Interrupt Action

Notes

Decimal Arithmetic
Instructions

& The operand specified by the second address (B./D,) is loaded into the
location specified by the first address (B,/D,). The operation is equivalent
to an addition to zero and the result of the addition determines the
condition code.

The operands may be variable in length up to 16 bytes and must be in
packed format. High-order zeros are provided when necessary, Operands
may overlap if their rightmost byte locations coincide, or if the rightmost
byte of the first operand is to the right of the rightmost byte of the
second operand.

A second operand that is longer than the first operand causes overflow.

F8 L, | L, | B D, B, D,

0 7 8 11 1215 1619 20 31 32356 36 47

¢ 0 —result is zero.
1 —result is less than zero.
2 — result is greater than zero.
3 — overflow.

¢ Address error:
Addressing.
Protection.
Data error.
Decimal overflow.

Only the second operand is checked for valid sign and digit codes.
The second operand is unaltered.

Processing is from right to left.

Lol o

A zero result is positive except when high-order digits are lost because
of overflow, In overflow, a zero result has the sign of the second
operand.

160

Compare Decimal
(cP)

General Description

Format
(SS)

Condition Code

Interrupt Action

Notes

Decimal Arithmetic
Instructions

¢ The operand specified by the first address (B./D,) is algebraically
compared with the operand specified by the second address (B./D,). The
results of the comparison determine the condition code.,

The operands may be variable in length up to 16 bytes and must be in
packed format. If the fields are unequal in length, the shorter is exfended
with high order zeros. If operands overlap, their rightmost byte location
must be identical.

Overflow cannot occur as a result of this operation.

F9 L | L, | B D, B, D,

0 7T 8 11 1215 1619 20 31 3236 36 47

4 0—the fields are numerically equal.

1 — the first operand is algebraically less than the second operand.
2 — the first operand is algebraically greater than the second operand.

4 Address error:
Addressing.
Data error.

€ 1. All signs and digits are checked for validity.
2. Both operands are unaltered.
3. Comparison is from right to left.

4. A positive zero compares equally to a negative zero.

161

Multiply Decimal
(MP)

General Description

Format
(SS)

Condition Code

Interrupt Action

Notes

Decimal Arithmetic

Instructions

@ The operand specified by the first address (multiplicand) is multiplied
by the operand specified by the second address (multiplier). The product

is stored in the location of the first operand, right-justified.

The operands may be variable in length and must be in packed format.

Operands can overlap if their rightmost byte locations coincide.

The second operand (multiplier) must be shorter than the first operand
(multiplicand) and must not exceed eight bytes in length (15 digits plus

sign). Otherwise, an address error (specification) occurs.

The multiplicand must have high-order zero bytes equal to the number
of bytes in the multiplier, field, or a data error occurs. The maximum

product size is 31 digits.

FC L

1 L2 Bl Dl B2

D,

0 7 8 11 1215 1619 20 31 3235 36

4 Unchanged.

& Address error:
Addressing.
Protection.
Specification.

Data error.

All signs and digits are checked for validity.

Overflow cannot occur.

- @ b=

The second operand is unaltered unless operands overlap.

47

The sign of the product is determined by the rules of algebra, even if

one, or both, operands are zero; that is, minus zero is a possible result.

162

Divide Decimal
(DP)

General Description

Format
(SS)

Condition Code

Interrupt Action

Notes

Decimal Arithmetic
Instructions

¢ The operand specified by the first address (the dividend) is divided by
the operand specified by the second address (the divisor) and the result
(quotient plus remainder) replaces the first operand. The quotient is placed
leftmost in the first operand field. The remainder, which has a size equal
to the divisor size, is placed rightmost in the first operand field.

The operands may be variable in length and must be in packed format.
Overlapping is allowed if the rightmost byte locations are identical, The
second operand (the divisor) must be shorter than the first operand
(the dividend) and must not exceed eight bytes in length (15 digits plus
sign). If either rule is not observed, an address error (specification) occurs.

The dividend must have at least one high-order zero. Otherwise, a data
error occurs.

Together, the quotient and remainder occupy the entire dividend field
after division. Therefore, the address of the quotient field is the address of
the dividend field and its size in bytes is L,-L,. The quotient and
remainder are signed integers which are right-aligned in the first operand.

No overflow can occur, A quotient that is larger than the number of
digits allowed causes a decimal divide error.

FD L, | L, | B D, B, D,

0 7 8 11 1215 1619 20 31 3235 36 47

4 Unchanged.

¢ Address error:
Addressing.
Protection.
Specification.
Data error.
Decimal divide error.

¢ 1. All signs and digits are checked for validity.
2. The second operand is unaltered.

3. The sign of the quotient is determined by the rules of algebra from
dividend and divisor signs. The sign of the remainder has the same
value as the dividend sign.

4. The first address plus (L, - L,) specifies the address of the remainder.
The length of the remainder is specified by L, 1.

163

Pack
(PACK)

General Description

Format
(SS)

Condition Code

Interrupt Action

Notes

Decimal Arithmetic
Instructions

& The operand specified by the second address (B./D.) is converted from
zoned format to packed format and the result is placed in the location
specified by the first address (B,/D,).

The operand specified by the second address must be in zoned format.
The sign is obtained from the zone portion of the rightmost byte of the
second operand and is placed in the rightmost four bits of the first operand
(result field). All other zones are ignored. The four-bit numeric portions
(stripping the four-bit zone) of each byte are then placed adjacent to the
sign, and to each other, to fill the result field.

The result is extended with high-order zeros if the second operand field
is shorter than the first. If the first operand field is not large enough to
contain all the significant digits from the second operand field, the remaining
digits are ignored. The operands may overlap.

F2 L L

2 Bl Dl B2 D2

1

0 7 8 11 1215 1619 20 31 3235 36 47

¢ Unchanged.

¢ Address error:
Addressing.
Protection.

¢ 1. Signs and digits are not checked for validity.
2. The second operand is not changed except when the operands overlap.

3. Processing is from right to left, one byte at a time.

164

Unpack
(UNPK)

General Description

Format
(SS)

Condition Code

Interrupt Action

Notes

Decimal Arithmetic
Instructions

4 The operand specified by the second address (B./D,) is converted from
packed format to zoned format and the result is placed in the location
specified by the first address (B,/D,).

Each of the eight-bit bytes of the packed, second-operand field repre-
sents two four-bit digits. Each of the four-bit digits is stored in a byte of
the first operand field in the low-order four-bit positions. If the Decimal
Code is EBCDIC, a zone code of 1111 is inserted into the high-order four
bits of each byte. If the Decimal Code is USASCII, a zone code of 0101 is
inserted. These zones are inserted in all but the zone portion of the right-
most byte, which receives the sign of the packed operand.

If the first operand is not large enough to receive the significant digits
of the second operand, the remaining digits are ignored. The second-operand
field is extended with zero digits before unpacking.

F3 L, | L, | B D, B, D,

0 7 8 11 1215 1619 20 31 3235 36 47

4 Unchanged.

¢ Address error:
Addressing.
Protection.

4 1. Signs and digits are not checked for validity.
2. The second operand is not altered, except when operands overlap.

3. Processing is from right to left.

165

MOVE with OFFSET
(MVO)

General Description

Format
(SS)

Condition Code

Interrupt Action

Notes

Decimal Arithmetic
Instructions

@ The operand specified by the second address (B./D.) is offset 4 bits to
the left (a 1-digit left shift) and is placed to the left of, and adjacent to,
the low-order four bits of the operand specified by the first address (B,/D,).

If the first operand is not large enough to receive all bytes of the second
operand, the remaining bytes are ignored. If the second operand is shorter
than the first operand, the second operand is extended with high-order
zeros, The first and second operands may overlap.

F1 L, | L, | B D, B, D,

0 7 8 11 1215 1619 20 31 3235 36 47
¢ Unchanged.

¢ Address error:
Addressing.
Protection.

Signs and digits are not checked for validity.
The second operand is not changed except when operands overlap.

1.
2.
3. Processing is from right to left.
4.

The initial low-order 4-bit digit of the operand specified by the first
address is left unaltered.

166

LOGICAL
INSTRUCTIONS

INTRODUCTION

DATA FORMAT

& Logical instructions are used to manipulate data. The operands
are usually treated as eight-bit bytes. Some logical operations require a
single eight-bit byte specified as an operand; others may have variable-
length operands composed of many eight-bit bytes. Some instructions oper-
ate on the zone portion only, or on the digit portion only, of the bytes of
a variable-length operand. Some instructions have an operand that is part
of the immediate instruction being executed. Finally, there is a group of
instructions that provide for bit shifting.

Operands are in either main memory or general registers. Processing of
data in main memory is from left-to-right starting at any byte location.
Processing in general registers usually involves the entire contents of a
general register, or in some cases, two general registers.

The Edit instruction is the only instruction which requires that the
data be in packed decimal data. The Edit instruction converts packed
decimal data into alphanumeric characters with editing under the control
of a mask pattern.

The logical instruction set includes moving, comparing, bit testing,
translating, editing, shifting, and bit connecting.

The condition code is set by all instructions except the moving, trans-
lating, and shifting instructions.

4 Data in general registers usually involves the entire 32 bits. There is
no distinction made between sign and numeric bits. In some operations,
only the least significant eight bits of the general register are involved,
and in another case, the least significant 24 bits are involved. In addition,
there are some shift operations in which an even/odd numbered pair of
general registers is involved.

The storage data in memory-to-register operations resides in either a
32-bit word or an eight-bit byte. A word must be oriented on word
boundaries (i.e., the address of the 32-bit word must have the two low-order
bits zero).

The storage data in memory-to-memory operations have a variable
length format and can have a field size of up to 256 bytes starting at any
byte location. Processing is from left to right.

Instructions that specify an operand that is part of the immediate
instruction being executed are restricted to a field size of one eight-bit byte.

The Translate and Test and the Edit and Mark instructions imply
the use of General Register 1*. An address of 24 bits may be placed in this
register during the execution of these instructions, The Translate and Test
instruction also implies the use of General Register 2 where an insertion of
an eight-bit function byte may be placed during the execution of the
instruction.

Overlapping of fields in memory-to-memory operations may or may
not affect the operands of the various instructions. The execution of some

* When these instructions are executed in P,, General Registers 13 and 14 are used;
in P,, General Registers 9 and 10 are used.

167

DATA FORMAT

(Cont'd)

INSTRUCTION

FORMATS

RR Format

Description

RX Format

Description

RS Format

Description

S| Format

Description

$S Format

Description

Logical
Instructions

logical instructions does not change the operands. Other instructions, such
as Move, Edit, and Translate, replace one operand with new data, and this
data is handled one eight-bit byte at a time, This procedure enables the
user to determine the effect overlapping fields have on the execution of the
instruction. Unpredictable results can occur while overlapping fields are
being edited. Overlapping fields are valid for all other operations.

¢ The logical instructions use the following five instruction formats
(RR, RX, RS, SI, SS):

Op Code R, R,

0 7 8 11 1215

¢ In the RR format, the contents of the general register specified by R,
are called the first operand. The conten.ts of the general register specified
by R. are called the second operand.

Op Code R, X, B, D,

0 7 8 11 1215 1619 20 31

¢ In the RX format, the contents of the general register specified by R,
are called the first operand, To obtain the address of the second operand,
the contents of the general registers specified by X, and B, are added to
the contents of the D, field.

Op Code R, R, B, D,

0 7 8 11 1215 1619 20 31

¢ In the RS format, which is only used for shift instructions in this
instruction set, the contents of the general register specified by R, are
called the first operand. There is no actual storage address formed by adding
the contents of the general register specified by B, and the contents of D,.
Instead, this sum specifies the number of bits to be shifted by the shift
operations, The R, field is ignored in the shift operation.

Op Code I, B, D,

0 7 8 15 16 19 20 31

¢ In the SI format, the contents of the general register specified by B,
are added to the contents of the D, field to obtain the address of the first
operand. The second operand is the immediate eight-bit byte in the I,
field of the instruction.

Op Code L B, D, B, D,
31 3235 36 47

0 7 8 16 1619 20

¢ In the SS format, the contents of the general register specified by B,
are added to the contents of the D, field to obtain the address of the leftmost
byte of the first operand. The L field specifies the number of additional
bytes in the operand that are to the right of the first operand. To obtain

168

$S Format
(Cont'd)

CONDITION CODE
UTILIZATION

INTERRUPT ACTION
Address Error

Addressing

Specification

Protection

Data Error

Logical
Instructions

the second operand address, the contents of the general register specified
by B, are added to the contents of the D, field. The length of the second
operand is the same as the length of the first.

The use of a zero in the X,, B,, or B, field of any instruction indicates
that no register is to be used as a component of the instruction. Instructions
may use a general register for both address modification and operand
location. Addresses are always modified before an instruction is executed.

& The condition code is set as a result of using most of the logical instruc-
tions. The condition code setting has a different meaning when using
different instructions and can be tested by subsequent branch on condi-
tion instructions for decision making. Altogether, there are six types
of result meanings. The instructions which cause the condition code to be
set and the meaning of the setting are as follows:

Condition Code Setting
Instruction
[} 1 2 3

AND Zero Not Zero —_—
Compare Logical Equal Low High o
Edit Zero < Zero > Zero o
Edit and Mark Zero < Zero > Zero _—
Exclusive OR Zero Not Zero e

OR Zero Not Zero e One
Test Under Mask Zero Mixed

Translate and Test Zero Incomplete Complete —_
Test and Set Zero One _ —_—

& The following interrupt conditions can occur as a result of logical
instructions:

4 An address error interrupt occurs when an address specifies a loca-
tion outside the available memory. At the point of error the operation is
terminated. The vresult data and condition code, if affected, are
unpredictable.

€ An address error interrupt occurs when a full-word operand is not
located on a word boundary in a storage-to-register operation, or when an
odd register is specified as the first register in an instruction which per-
forms an operation on an even/odd pair of general registers. The operation
is suppressed.

4 An address error interrupt occurs when the storage key and the protec-
tion key of the result location do not match. The operation is suppressed
and the condition code, registers, and main memory are unaltered, The
variable-length memory-to-memory instructions are the only exception,
in which case the operation is terminated and the result data and the
condition code setting are unpredictable. (This interrupt can only occur
if the memory protect feature is installed.)

& A data error occurs if a digit code of the second operand in the Edit
instruction or Edit and Mark instruction is invalid. The operation is
terminated, and the result data and condition code setting are unpredictable.

169

Move
(MVI) (MVC)

General Description

Format
(sh

(SS)

Condition Code

Interrupt Action

Notes

Logidal
Instructions

¢ To process the SS format Move instruction, the source field specified by
the second address (B,/D.) is moved into the destination field specified by
the first address (B,/D;,). This format is used for a main memory-to-main
memory move.

For the SI format Move instruction, the immediate byte in the I, field
of the instruction being executed is stored in the main memory location
specified by the first address (B./D,).

(MVI) 92 I, B, D,

0 7 8 15 1619 20 31

(MVC) D2 L B, D, B, D,

0 7 8 16 1619 20 31 3235 36 47

4 Unchanged.

& Address error:
Addressing.
Protection.

The bytes being moved are not inspected or changed.

Processing is from left to right and overlapping of fields is permitted.

® N o=

The second operand is not altered, unless operands overlap in the
SS format.

4. It is possible to propagate one byte through an entire field by having
the first operand address specify one location to the right of the
second operand address.

170

Move Numerics
(MVN)

General Description

Format
(SS)

Condition Code

Interrupt Action

Notes

Logical
Instructions

& The low-order four bits of each byte in the source operand specified by
the second address (B,/D,) are placed into the low-order four bits of the
corresponding byte of the destination operand specified by the first address
(By/Dy).

D1 L B, D, B, D,

0 7T 8 15 1619 20 31 3235 36 47
& Unchanged.

Address error:
Addressing.
Protection.

4 1. The numerics are not changed or checked for validity.

2. The operand specified by the second address is not altered, unless
operands overlap.

3. Processing is from left to right.

4. The high-order four bits of the source and destination operand bytes
are not altered.

5. The operand fields may overlap in any way and may be variable
in length.

171

Logical
Instructions

Move Zones
(MVZ)

General Description 4 The high-order four bits of each byte in the source operand specified by
the second address (B./D.) are placed into the high-order four bits of the
corresponding byte of the destination operand specified by the first address
(B./D,).

Format
"(';5) D3 L B, D, B, D,

0 7 8 15 1619 20 31 8236 36 47
Condition Code | ¢ Unchanged.

Interrupt Action | @ Address error:

Addressing.

Protection.

Notes & 1. The zones are not changed or checked for validity.

2. The operand specified by the second address is not altered, unless
operands overlap.

3. Processing is from left to right.

4. The low-order four bits of the source and destination operand bytes
are not altered.

5. The operand fields may overlap in any way and may be variable
in length.

172

Test and Set
(TS)

General Description

Format
(si)

Condition Code

Interrupt Action

Notes

Logical Instructions

4 This instruction is used to test and set a byte in memory and to set the
condition code in accordance with the initial setting of the byte being
tested. The I field of the instruction is not used (bits 8 through 15). The
address field specifies the location of the byte being tested and set.

93 B, D

0 7 8 15 1619 20 31

¢ 0 — Leftmost bit of byte specified is zero.
1 — Leftmost bit of byte specified is one.

€ Addressing.
Power Failure.

Machine check.

4 1. The leftmost bit (bit position 0) of the byte located at the first
operand address is used to set the condition code, and the entire
addressed byte is set to all ones.

2. The operation is terminated on any protection violation. The condi-
tion-code setting is unpredictable when a protection violation occurs.

3. This instruction, during execution, sequences two consecutive mem-
ory cycles, during which time I/O does not have access to memory.
No other access to this location is permitted between the moment
of fetching and the moment of storing all ones.

173

Compare Logical
(CLR) (CL) (CLI) (CLC)

General Description

Format

(RR)

{RX)

(sh

(SS)

Condition Code

Interrupt Action

Notes

Logical
Instructions

4 The operand specified by the first address is logically compared with the
operand specified by the second address (RR format: R, to R,; RX format:
R, to X,/B./D,; SI format: B,/D, to I,; SS format: B,/D, to B./D.).
The result of the comparison determines the condition code. These instruc-
tions process all bits as part of an unsigned binary quantity. All codes are
valid and the instruction is terminated on inequality or when the operand
bytes have been exhausted.

(CLR) 15 | R, | R,
0 7 8 11 1215

(cLys5 | R, | X, | B, D,
0 7 8 11 1215 1619 20 31

(CLI) 95 I, B, D,
0 7 8 16 1619 20 31

(CLC) D5 L B, D, B, D,
0 7 8 16 1619 20 31 3235 36 47

¢ 0 —the operands are equal.
1 —the first operand is less than the second operand.
2 —the first operand is greater than the second operand.
3 —not used.

4 Address error:
Addressing (RX, SI, SS only).
Specification (RX only).

4 1. Both operands are unaltered.

2. In the SI format, the immediate byte in the I, field of the instruction
being executed is the second operand.

3. Processing is from left to right and can extend to field lengths of
256 bytes.

4. The operation can be used for alphanumeric comparisons.

174

AND
(NR) (N) (NI) (NC)

General Description

Format

(RR)

(RX)

(sh

(SS)

Condition Code

Interrupt Action

Notes

Logical
Instructions

¢ These instructions perform a logical “AND” operation on two operands
bit-by-bit according to the following rules:

Rules of Logical “AND" Operation

If Bit in And Bit in Then Bit in
First Operand is Second Operand is Result is
0 0 0
0 1 0
1 0 0
1 1 1

The logical product of the operation is placed in the location specified
by the first address (R, or B,/D,) and determines the condition code.

(NR) 14 | R, | R,

0 7 8 11 1215
(N) 54 R, X, B, D,

0 7 8 11 1215 1619 20 31
(NI) 94 I, B, D,

0 7 8 15 16 19 20 31
(NC) D4 L B, D, B, D,

0 7 8 15 16 19 20 31 3235 36 47

¢ 0 —result is zero.
1 — result not zero.
2 —not used.
3 — not used.

¢ Address error:

Addressing (RX, SI, SS only).
Protection (SI, SS only).

Specification (RX only).

SS format.

. The second operand is unaltered, unless operands overlap in the

2. In the SI format, the immediate byte in the I, field of the instruction
being executed is the second operand.

3. Processing is from left to right.

4. All operands and results are valid.

5. The “AND” instruction is also used to set a bit to zero.

175

' OR
(OR) () (ON) (Oc)

General Description

Format

(RR)

(RX)

(sn

(SS)

Condition Code

Interrupt Action

Notes

Logical
Instructions

¢ This instruction performs a logical “OR” operation on two operands

bit-by-bit according to the following rules:

Rules for Logical “OR™ Operation

If Bit in And Bit in Then Bit in
First Operand is Second Operand is Result is
0 0 0
0 1 1
1 0 1
1 1 1

The logical result of the operation is
the first address (R, or B,/D,

placed in the location specified by
) and determines the condition code.

(OR)16 | R, | R,
0 7 8 11 1215

(0) 56 R, | X, | B, D,
0 7 8 11 12156 1619 20 31

(O1) 96 I, B, D,
0 7 8 16 1619 20 31

(0C) D6 L B, D, B, D,
0 7 8 15 1619 20 31 3235 36 47

¢ 0—result is zero.

L 4

¢

1 —result is not
2 —not used.
3 —not used.

Address error:

zZero.

Addressing (RX, SI, SS only).

Protection (SI,

SS only).

Specification (RX only).

1. The second operand is unaltered, unless operands overlap in the

SS format.

2. In the SI format, the immediate byte in the I, field of the instruction

being executed is the second operand.

3. Processing is from left to right.
4. All operands and results are valid.
5. The “OR” instruction is also used to set a bit to one.

176

Logical
Instructions

Exclusive OR
(XR) (X) (XI) (XC)

General Description @ These instructions perform an Exclusive “OR” operation on two oper-
ands bit-by-bit according to the following rules:

Rules for Exclusive “OR” Operation

1f Bit of And Bit of Then Bit in
First Operand is Second Operand is Result is
0 0 0
0 1 1
1 0 1
1 1 0

The modulo-two sum (binary addition without carries) of the operation
is placed in the location specified by the first address (R, or B,/D;) and
determines the condition codes.

Format
XR) 17 R R
(RR) (XR) ! 2
0 7 8 11 12156
(RX) (X) 57 R, | X, | B, D,
0 7 8 11 12156 1619 20 31
(s (XI1) 97 I, B, D,
0 7 8 15 1619 20 31
(s5) (XC) D7 L B, D, B, D,
0 7T 8 15 1619 20 31 3235 36 47

Condition Code | @ 0 —result is zero.

1 — result is other than zero.
2 —not used.

3 — not used.

Interrupt Action | @ Address error:

Addressing (RX, SI, SS only).
Protection (SI, SS only).
Specification (RX only).

Notes & 1. The second operand is unaltered, unless operands overlap in the
SS format.

2. In the SI format, the immediate byte in the I, field of the instruction
being executed is the second operand.

8. Processing is from left to right.

All operands and results are valid.

5. These instructions may be used to complement a number (one’s
complement).

-

177

Test Under Mask
(TM)

General Description

Format
(sh

Condition Code

Interrupt Action

Note

Logical
Instructions

¢ The operand (byte) specified by the first address (B,/D,) is tested
against the immediate I field (byte) as a mask, The result determines the
condition code. The I field is used as an eight-bit mask and is made to
correspond one-for-one with the bits of the byte in main memory that is
specified by the first address.

A bit in the byte being examined is said to be selected when the corre-
sponding mask bit is a one. When the mask bit is a zero, the bit in main
memory is ignored.

91 I, B, D,

0 7T 8 15 16 19 20 31

€ 0 —selected bits all zero or mask is all zero.
1 — selected bits mixed zero and one.
2 —not used.
3 — selected bits all one’s.

¢ Address error:
Addressing.

& The operands are unaltered.

178

Insert Character
(1)

General Description

Format
(RX)

Condition Code

Interrupt Action

Note

Logical
Instructions

€ The eight-bit byte specified by the second address (X./B./D.) is loaded
into the rightmost byte of the general register specified by the first address
(R,). The remaining bits of the register are unaltered.

43 R, | X B D

2 2 2

0 7T 8 11 1215 1619 20 31
¢ Unchanged.

4 Address error:
Addressing.

& The operand specified by the second address is not altered or inspected.

179

Store Character
(STC)

General Description

Format
(RX)

Condition Code

Interrupt Action

Note

Logical
1 nspmctions

¢ The rightmost eight-bit byte of the general register specified by the first
address (R.) is stored into the main memory location specified by the
second address (X,/B./D,).

42 R, | X, | B, D,

0 7T 8 11 1215 16 19 20 31
4 Unchanged.

€ Address error:
Addressing.
Protection.

¢ The operand specified by the first address is not altered or inspected.

180

Load Address
(LA)

General Description

Format

(RX)

Condition Code
Interrupt Action

Notes

Logical
Instructions

4 The final main memory address specified by the second operand
(X./B./D,) is loaded into the rightmost 24 bits of the general register
specified by the first address (R,). The leftmost eight bits of the register are
set to zeros.

The contents of the registers specified by the X, and B, fields are added
to the contents of the D, field of the instruction to obtain an address. This
is the address that is loaded into the register specified by the first address.
Any carry beyond the rightmost 24 bits is ignored.

41 R, | X, | B, D,
0 7 8 11 1215 1619 20 31
€ Unchanged.
4 None.
4 1. All specified address arithmetic is computed before loading.

2. R,, X; and B, may specify the same register; however R, only may
specify register 0.

3. This instruction can be used to increment the low-order 24 bits of a
general register (other than 0) by the contents of the D, field.
The register to be incremented is specified by R,, and either X,
(with B, set to zero) or B, (with X, set to zero). Since R, and
X, or B, must specify the same register, register zero cannot be
incremented (a zero in the B, or X, field indicates that the corre-
sponding address component is absent).

4. Main memory is not accessed by this instruction.

181

Translate
(TR)

General Description

Format
(SS)

Condition Code

Interrupt Action

Notes

Logical
Instructions

4 The variable length operand specified by the first address (B,/D,) is
translated, byte-for-byte, according to the byte translation table specified
by the second address (B./D.). The result replaces the bytes in the field
specified by the first address.

The bytes of the first operand are termed the argument bytes. Bytes of
the first operand are selected for translation from left-to-right, one byte
at a time. Each argument byte is added to the second operand address,
which is the starting location of a translation table. This sum, in turn,
addresses a byte location within the table containing a function byte, The
function byte at this location replaces the original argument byte of the
first operand.

The operation terminates when the first operand bytes have been
exhausted.

DC L B, D, B, D,

0 7 8 15 1619 20 31 3235 36 47
4 Unchanged.

4 Address error:
Addressing.
Protection.

€ 1. The translation table is unaltered unless overlap occurs.

2. The field to be translated and the translation table are addressed by
their leftmost byte.

3. The length of a table, in general, must be 256 bytes, unless the
domain of argument bytes is limited to a specific subset by the
program and data.

4. The L field specifies the length of the first operand minus one
(binary 00000001 = 2 bytes).

182

Translate and Test
(TRT)

General Description

Format
(SS)

Condition Code

Interrupt Action

Notes

Logical
Instructions

& The variable length operand, which is specified by the first address
(B,/D,), is used as the argument (byte-by-byte) to reference a list (func-
tions) specified by the second address (B./D.). The functions referenced
are inspected for zero or non-zero. If a non-zero is encountered, the address
of the argument byte is loaded into General Register 1 (General Register
13 in P,; General Register 9 in P,) and the function byte is loaded into the
rightmost end of General Register 2 (General Register 14 in P,; General
Register 10 in P,). Whenever zeros are encountered in the function list,
the operation proceeds to the next byte. The first operand is unaltered.

The bytes of the first operand are termed the argument bytes. Processing
of the first operand is from left-to-right, one byte at a time. Each argument
byte is added to the second operand, which is the starting location of the
translate table. This sum, in turn, addresses a byte location within the
table, which is termed a function byte. Then, the function byte retrieved
from the table is inspected for all zeros.

If the function byte is all zeros, the operation proceeds to the next
argument byte and continues processing. If the function byte is not all
zeros, the instruction inserts the address of the argument byte in the low-
order 24 bits of General Register 1 (13 or 9) and inserts the retrieved
non-zero function byte in the low-order eight-bits of General Register 2
(14 or 10). The high-order eight bits of General Register 1 (13 or 9)
and high-order 24 bits of General Register 2 (14 or 10) are unaltered.

The operation terminates when a (non-zero) function byte is accessed
or when the first operand field is exhausted.

DD L B, D, B, D,

0 7 8 15 1619 20 31 3235 36 47

€ 0 — accessed function bytes all zeros.
1 — a non-zero function byte is encountered before the first operand
field is exhausted.
2 — the last function byte is non-zero.
3 — not used.

¢ Address error:
Addressing.

& 1. The variable length field specified by the first address is unaltered.

2. If non-zero functions do not occur, General Registers 1 (13 or 9) and
2 (14 or 10) are unaltered.

3. The first operand and the translation table are addressed by their
leftmost bytes.

4. The length of the table, in general, must be 256 bytes, unless the
domain of argument bytes is limited to a specific subset by the
program and data.

5. The L field specifies the length of the first operand minus one.

6. This instruction is useful for scanning input streams and locating
delimiters for variable length records and fields.

7. In processor states P, and P,, General Registers 1 and 2 are used.
In processor state P; General Registers 13 and 14 are used. In
processor state P, General Registers 9 and 10 are used.

183

Edit
(ED)

General Description

Format
(SS)

Editing Rules

Logical
Instructions

¢ The variable length source field specified by the second address (B,/D,)
is changed from packed format to zoned format with the results edited
under the control of a mask pattern. The result of the operation replaces
the mask pattern specified by the first address (B,/D,) and determines the
condition code.

The L field applies to the mask pattern (first address field). The source
digits are processed left-to-right, one byte at a time. The leftmost four
bits of each byte are examined first and the rightmost four bits of each
byte are held available for the next mask character that calls for digit
examination. Immediately after the leftmost four bits have been examined,
the rightmost four bits are checked for a sign code. When one of the sign
codes is encountered, these bits are no longer treated as a digit. A new
character is fetched from the mask pattern for the next digit to be examined.

DE L B, D, B, D,

0 7 8 16 1619 20 31 3235 36 a7
¢ Editing includes sign control, punctuation control, zero suppression or
check protection, and also facilitates blanking of all-zero fields. In addition,
multiple fields of digits can be edited in one operation, and numeric data

can be combined with alphabetic and special characters.

Editing rules depend on the control code, significance, and the source
digit, and are given as follows:

Editing Rules

Control Codes Hexadecimal Dack Function
Code Code

Filler Any Any *Replaces leading zeros.

Start Significance 21 33 Stops replacement of leading
zeros, Also acts as a digit
select code.

Digit Select 20 32 Specifies digit position in data
(replaced by filler code if ap-
pears after a negative sign
has been sensed).

Field Separator 22 34 Indicates editing of a new
field is to begin (replaced by
filler code).

Insertion Character Any Any Inserted in the result,

* The most common filler characters are the blank and the asterisk.

1. Source digits are examined only when a digit select code (20),s0r a
start significance code (21),, is encountered in the mask pattern.
2. Significance is established either:
a. upon encountering a non-zero digit in the source field.

b. after encountering a start significance code (21),; within the
mask pattern.

184

Editing Rules
(Cont’d)

Condition Code

Logical
Instructions

. If significance has not been established, every control code or insertion

character encountered in the mask pattern (including the start
significance code) is replaced by the filler character.

. If significance has been established, every digit select code (20).; or

start significance code (21)., encountered in the mask pattern is
replaced by a digit from the source field, which is expanded by
attaching a zone.

. If significance has been established, every insertion character (other

than the digit select, start significance, or field separator codes)
encountered within the mask pattern is left in place without
alteration.

. Significance is disestablished by:

a. encountering a field separator code (22),, in the mask pattern.

b. encountering a positive (plus) sign within the rightmost four
bits of a source field byte.

. A negative (minus) sign within the rightmost four bits of a source

byte does mot disestablish significance. Additional digit select codes
encountered in the mask pattern are replaced by filler characters,
but insertion characters are left in place without alteration.

. Field separator codes (22).. are always replaced by the filler

character.

Note: The filler character is obtained from the mask pattern as part
of the editing operation. The first character (leftmost byte)
of the mask pattern is used as a filler character and is left
unchanged in the result, except:

a. when it is a digit select code.
b. when it is a start significance code.

In these codes, a source digit is examined and, when non-zero,
inserted in the result field.

To facilitate blanking out all-zero result fields, or triggering negative
field special processing, the condition code is used to indicate the sign and
zero status of the last field edited. All digits examined are tested for zero,
and the presence, or absence, of an all-zero source field is indicated in the
condition code at the termination of the editing operation. Sign significance
is also indicated by the condition code.

¢ 0 — indicates a zero source field regardless of whether or not significance

is established.

1 — indicates non-zero result field with significance established to

indicate less than zero.

2 — indicates non-zero result field with no significance established to

indicate greater than zero.

3 — not used.

Note: The condition code setting reflects only the field following the last

(rightmost) field separator code of the mask pattern for multiple-
field-editing operations.

185

Interrupt Action

Notes

Logical
Instructions

€ Address error:

Addressing.
Protection.
Data error.
¢ 1. The leftmost four-bits of any source field byte must be a valid digit,
otherwise a data error interrupt occurs.

2. The rightmost four-bits of any source field byte can be either a digit
or a sign.

3. Multiple field editing is possible by using the field separator code
within the mask pattern.

4. The zones of the expanded source digits can be either EBCDIC or
USASCII, as specified by the mode code. When the mode code specifies
EBCDIC, zone code 1111 is generated. When the mode code specifies
USASCII, the zone code 0101 is generated.

5. The rightmost four bits of any source field byte can be a digit or

sign as follows:

Codes Definition
0000 — 1001 Digits
1010, 1100, 1110, 1111 Plus sign
1011, 1101 Minus sign

6. Overlapping of fields yields unpredictable results.

In testing for Paging Error or Paging Queue interrupt conditions,
the hardware assumes that the number of bytes in the source field
is equal to the number of bytes in the pattern field. If the assumed
source field extends across two pages, of which the second page
has any of the conditions causing Paging Error or Paging Queue
interrupts, but the actual source field number of bytes is short
enough to fit within the first page, a false Paging Error condition
or Paging Queue Interrupt condition occurs,

186

Edit and Mark
(EDMK)

General Description

Format
(SS)

Condition Code

Interrupt Action

Notes

Logical
Instructions

¢ The variable length source field specified by the second address (B.,/D»)
is changed from packed format to zoned format and the results are edited
under control of a mask pattern. The result of the operation replaces the
mask pattern specified by the first address (B./D:) and determines the
condition code. In addition, the address of each first significant result digit
is stored in General Register 1 (General Register 13 in P.; General Register
9 in P,).

The operation of this instruction is identical to the Edit instruction
except for the additional function of inserting a byte address in General
Register 1 (13 or 9). The destination address of the digit that establishes
significance within the source field being edited is loaded into the right-
most 24 bits of General Register 1 (13 or 9). The leftmost eight bits are
unaltered. The address is not loaded when significance is forced by recogni-
tion of the start significance code in the mask pattern.

The Edit and Mark instruction facilitates the insertion of floating cur-
rency symbols, sign indicators, relational operators, and other editing
symbols ($, +, —, <, >, etc.). The address loaded into the register is one
byte to the right of the address where such a symbol would be inserted.
(The Branch on Count instruction, with zero in the R, field, can be used to
reduce the loaded address by one.)

Because the address is not loaded when significance is forced by the start
significance code, the address of the byte immediately to the right of the
start significance code in the mask pattern field should be loaded in General
Register 1 (13 or 9) before an Edit and Mark instruction is executed.

DF L B, D, B, D,

0 7T 8 15 16 19 20 31 3235 36 47

¢ 0 —indicates a zero source field whether or not significance is estab-
lished.

1 — indicates non-zero result field with significance established to indi-
ciate less than zero.

2 __indicates non-zero result field with no significance established to
indicate greater than zero.

3 — not used.

4 Address error:
Addressing.
Protection.

Data error.

4 1. All notes of the Edit instruction are applicable to the Edit and Mark
instruction.

9. The address of the byte is loaded each time significance is established
and a non-zero character is inserted into the result field.

187

Notes
(Cont'd)

Logical
Instructions

. The address is loaded into the rightmost 24 bits of General Register

1 (13 or 9). The leftmost eight bits are unaltered.

. When a single instruction is used to edit multiple fields, the address

of the first significant digit of each field is loaded into the register.
However, only the address of the last field processed will be available
upon completion of the instruction.

. In processor states P, and P,, General Register 1 is used. In processor

state P;, General Register 13 is used. In processor state P,, General
Register 9 is used.

. In testing for Paging Error or Paging Queue interrupt conditions,

the hardware assumes that the number of bytes in the source field
is equal to the number of bytes in the pattern field. If the assumed
source field extends across two pages, of which the second page has
any of the conditions causing Paging Error or Paging Queue inter-
rupts, but the actual source field number of bytes is short enough
to fit within the first page, a false Paging Error condition or Paging
Queue Interrupt condition occurs.

188

Shift Left Single
Logical (SLL)

General Description

Format
(RS)

Condition Code
Interrupt Action

Notes

Logical
Instructions

& The entire contents of the general register specified by the first address
(R,) are shifted left the number of bit positions specified by the second
address (B,/D,). The R; field is ignored.

The second address does not refer to a main memory location. The low-
order six bits of the second address are used as the count to specify the
number of bits of shifting to be done. The remaining bits are ignored.

89

R,

R

3

B,

D

2

0

7 8 11 1215 1619 20

4 Unchanged.

4 None.

31

¢ 1. High-order bits of the register are shifted out and lost.

2. Zeros are placed into the right end of the register.
3. All 32 bits of the specified register are shifted.

189

Shift Right Single
Logical (SRL)

General Description

Format

(RS)

Condition Code
Interrupt Action

Notes

Logical
Instructions

€ The entire contents of the general register specified by the first address
(R,) are shifted right by the number of bit positions specified by the
second address (B,/D,). The R, field is ignored.

The second address does not refer to a main memory location, The low-
order six bits of the second address are used as the count to specify the
number of bits shifting to be done. The remaining bits are ignored.

88 R,

R,

B

2

D,

0 7 8 11 1215 1619 20

4 Unchanged.

4 None.

31

¢ 1. Low-order bits of the register are shifted out and lost.

2. Zeros are placed into the left end of the register.

3. All 32 bits of the specified register are shifted ; that is, the operation
is unsigned.

190

Shift Left Double
Logical (SLDL)

General Description

Format
(RS)

Condition Code

Interrupt Action

Notes

Logical
Instructions

¢ The entire contents of the double-length operand (two general registers)
— even/odd specified by the first address (R,) are shifted left the number
of bit positions specified by the second address (B./D,). The R, field
is ignored.

The second address does not refer to a main memory location. The low-
order six bits of the second address are used as the count to specify the
number of bits of shifting to be done. The remaining bits are ignored.

8D R, | R, | B, D,

0 7 8 11 1215 1619 20 31
4 Unchanged.

¢ Address error:
Specification.

4 1. The first address must specify an even-numbered register.
2. All 64 bits of the double-length operand are shifted.
3. High-order bits are shifted out and lost.
4. Zeros are placed into the low-order end of the odd-numbered register.

191

Shift Right Double
Logical (SRDL)

General Description

Format
(RS)

Condition Code

Interruption

Notes

Logical
Instructions

& The entire contents of the double-length operand (two general registers)
— even/odd specified by the first address (R,) are shifted right the number
of bit positions specified by the second address (B,/D.). The R, field

is ignored.

The second address does not refer to a main memory location, The low-
order six bits of the second address are used as the count to specify the
number of bits of shifting to be done. The remaining bits are ignored.

8C R,

R,

B,

D,

0 7 8 11 12156 1619 20

4 Unchanged.

¢ Address error:
Specification.

N O

register.

192

31

The first address must specify an even-numbered register.

. All 64 bits of the double-length operand are shifted.

. Low-order bits are shifted out and lost.

. Zeros are placed into the high-order end of the even-numbered

BRANCHING
INSTRUCTIONS

INTRODUCTION

SEQUENTIAL
EXECUTION

INSTRUCTION
FORMATS

RS Format

Description

4 In normal processor operation, instructions are executed in sequential
order according to the main memory locations in which they are stored.
When branching is performed, a break in this normal sequential execution
occurs. Branching instructions provide for referencing another subroutine
or repeating a segment of coding or continuing to the next instruction
in sequence. When branching occurs, the address specified in the branch
instruction replaces the current address in the P counter. The branch
address can be specified by an instruction address or it can be obtained
from one of the general registers.

The actual branching execution is based on the setting of the condition
code or on the contents of a general register as specified in the loop-closing
operations.

In a branching operation, the current address in the updated P counter
can be stored before the branch address is placed in the P counter. This
stored address can be used for linking the new segment of instructions
with the segment of instructions from which the branching occurred.

The Execute instruction is listed with the branch instructions, although
only a temporary departure from sequential operation is entailed by use
of this instruction. The branch address, in this instruction, specifies one
instruction to be executed in the instruction sequence. The address in the
P counter is not replaced by the branch address and only the instruction
located at the address is executed before the sequence is continued based
upon the updated P counter.

¢ Normally, the P counter instruction address specifies a main memory
location from which the next instruction to be executed is fetched. This
instruction address is updated in the P counter by the length, in bytes, of
the instruction to be executed as indicated by the current P counter. The
instruction currently indicated by the P counter is executed and the opera-
tion is repeated using the updated P counter to fetch the next instruction.

Instructions can occupy from one halfword (two bytes) up to three
halfwords (six bytes). The high-order two bits of the operation code of
each instruction designates its length as follows:

00 = halfword instruction (two bytes).
01, 10 = two-halfword instructions (four bytes).
11 = three-halfword instructions (six bytes).

4 Branching instructions use the following three instruction formats:

Op Code R, R, B, D,

0 7 8 11 12 156 16 19 20 31

¢ The contents of the general register specified by B, are added to the
contents of the D, field to obtain the branch address (second operand).
The R, field specifies the general register that contains the first operand.
The R; field specifies the general register that contains the third operand.

193

RX Format

Description

RR Format

Description

INTERRUPT ACTION

Address Error
Addressing

Specification

Branching Instructions

Op Code R,/M X, B, D,

0 7 8 11 12 15 16 19 20 31

4 The contents of the general registers specified by X, and B, are added
to the contents of the D, field to obtain the branch address (second
operand). The R, field specifies the general register which contains the first
operand. In a Branch on Condition instruction, the M field is a mask
which specifies the condition codes to be tested.

Op Code R,/M R,

0 7 8 1 12 15

4 The contents of the general register specified by the R, field are the
branch address (second operand). The R, field specifies the general register
that contains the first operand. The same register can be specified by R,
and R.. If R, is zero, no branching occurs. In a Branch on Condition
instruction, the M field is a mask that specifies the condition codes to
be tested.

Notes:

1. A zero in the X, or B, field indicates that the corresponding address
component is absent.

2. The sequence of operations when using general registers is as follows:
a. compute the address.
b. store arithmetic or link information.
c. replace the P counter with the branch address.

4 Interrupts can occur as a result of an Execute instruction only. The
interrupt conditions are as follows:

& An address error interrupt occurs when the branch address of an
Execute instruction is outside the main memory for the particular installa-
tion, or if an Execute instruction is attempted to perform another Execute
instruction. The operation is suppressed and the condition code, registers,
and main memory are unaltered.

€ An address error interrupt occurs if the branch address of an Execute

instruction is not on a halfword boundary. The operation is suppressed
and the condition code, registers, and main memory are unaltered.

194

Branch on Condition
(BCR) (BC)

General Description

Format
(RR)

(RX)

Condition Code
Interrupt Action

Notes

Branching Instructions

4 If the condition code is set to any of the conditions specified by the
four-bit mask field (M or M,), the P counter is replaced by the branch
address (R, or X,/B,/D,). If the four-bit mask field (M or M,) is not
equivalent to the condition code settings, branching does not occur and
the next instruction in sequence is executed. The branch is initiated when-
ever the condition code has a corresponding mask bit set.

(BCR) 07 M, R,
0 7 8 11 12 15
(BC) 47 M X, B, D,
0 7 8 1 12 15 16 19 20 31
4 Unchanged.
4 None.
¢ 1. The four-bit mask in M, corresponds, left-to-right, with the four
condition codes:
Instruction Bit Condition Code
8 0
9 1
10 2
11 3

2. If all mask bits are set (M, = F,;), an unconditional branch is
effected.

3. When all mask bits are zero, or if R, in the RR format is zero, the
instruction is a no-op.

4. When a branch occurs, the leftmost eight-bit portion of the 32-bit
P counter (ILC, CC, and mask) is unpredictable. However, the
actual condition code and program mask (hardware registers) are
unaffected by branching.

5. The contents of the registers specified by the second address are
unaltered.

195

Branch and Link
(BALR) (BAL)

General Description

Format
(RR)

(RX)

Condition Code

Interrupt Action

Notes

Branching Instructions

¢ The entire 32-bit contents of the P counter are loaded into the general
register specified by R,. Then, the program branches to the instruction
address specified by the branch address (R, or X,/B,/D,). The instruction
length counter, the condition code, the program mask, and the updated
instruction address are stored. However, when branching occurs, only the
instruction address is replaced.

(BALR) 05 R, R,

0 7 8 11 12 15

(BAL) 45 R, X, B, D

0 7T 8 1 12 15 16 19 20 31
4 Unchanged.

4 None.

4 1. The P counter is stored without branching in the RR format when

the R, field is zero.

2. When a branch occurs, the leftmost eight-bit portion of the 32-bit P
counter (ILC, CC, and mask) is unpredictable. However, the actual
condition code and program mask (hardware registers) are
unaffected by branching.

3. The contents of the register specified by the second address are
unaltered.

4. The P counter is moved to a reserved area in memory ; the branch
then takes place as specified by the contents of R, or X./B./D..
The P counter (from the reserved area) is then placed into R,.

196

Branch on Count
(BCTR) (BCT)

General Description

Format
(RR)

(RX)

Condition Code
Interrupt Action

Notes

Branching Instructions

4 The contents of the general register specified by the R, field are alge-
braically decremented by one. The contents of the register are examined,
and if the contents are zero, no branching occurs, If the contents are not
zero, the instruction address in the P counter is replaced by the branch
address (R, or X,/B./D,) and branching occurs.

(BCTR) 06 R, R,

0 7 8 1 12 15

(BCT) 46 R, X, B, D,

(=}
-3

8 11 12 15 16 19 20 31
Unchanged.

None.

® & o

1. The subtraction executes as in fixed-point arithmetic with all 32
bits participating.

2. An initial count of zero in the R, field results in branching, because
subtraction occurs before testing the contents of the register. If the
value is zero, branching occurs and the result is minus one. To effect
a no branch, the contents of the R, field must be 1.

3. The contents of the registers specified by the second address are
unaltered.

4. When branching occurs, the leftmost eight-bit portion of the 32-bit
P counter (ILC, CC, and mask) is unpredictable. However, the
actual condition code and program mask (hardware registers) are
unaffected by branching.

5. In the RR format, if the R, field is zero, counting is performed
without branching.

6. If a negative number appears in R,, an overflow condition occurs
when this field is decremented. However, this overflow is ignored.

7. Overflow from a maximum negative number to a maximum positive
number is ignored.

197

Branch on Index High
(BXH)

General Description

Format
(RS)

Condition Code
Interrupt Action

Notes

Branching Instructions

& The operand specified by the third address (R;) is added to the operand
specified by the first address (R,) and the sum is algebraically compared
with the operand specified by the third address (Rs), if R; specifies an odd
register. If R, specifies an even register, the sum is algebraically com-
pared with R; + 1. If the sum is low or equal, branching does not occur
and the next instruction is executed. If the sum is high, the instruction
address in the P counter is replaced by the branch address (B./D.) and
branching occurs.

86 R, R, B, D,

0 7 8 1 12 15 16 19 20 31
4 Unchanged.

¢ None.

¢ 1. The sum replaces the operand specified by the first address (R,)
regardless of the comparison, The sum replaces (R,) after the
comparison has been made.

2. Overflow is not recognized.
3. The contents of the register specified by R; or R; + 1 are unaltered.

4. When a branch occurs, the leftmost eight-bit positions of the 32-bit
P counter (ILC, CC, and mask) are unpredictable. However, the
actual condition code and program mask (hardware registers) are
unaffected by branching.

198

Branch on Index
Low or Equal
(BXLE)

General Description

Format
(RS}

Condition Code
Interrupt Action

Notes

Branching Instructions

4 The operand specified by the third address (R;) is added to the operand
specified by the first address (R,) and the sum is algebraically compared
with the operand specified by the third address (R;), if R; specifies an odd
register. If R, specifies an even register, the sum is algebraically compared
with R; + 1. If the sum is high, branching does not occur and the next
instruction in sequence is executed. If the sum .is low or equal, the
instruction address in the P counter is replaced by the branch address
(B;/D,) and branching occurs.

87 R, R, B, D,

0 7 8 11 12 15 16 19 20 31
4 Unchanged.

4 None.

4 1. The sum replaces the operand specified by the first address (R,)

regardless of the comparison. The sum replaces (R,) after the
comparison has been made.

2. Overflow is not recognized.
3. The contents of the register specified by R; or R; + 1 are unaltered.

4. When a branch occurs, the leftmost eight-bit positions of the 32-bit
P counter (ILC, CC, and mask) are unpredictable. However, the
actual condition code and program mask (hardware registers) are
unaffected by branching.

199

Execute
(EX)

General Description

Format
{RX)

Condition Code

Interrupt Action

Notes

Branching Instructions

4 The instruction in the location specified by the second address
(X:/B:/D.) is modified by the contents of the register specified by the first
address (R.). Then, the modified instruction is executed and control is
returned to the instruction following the Execute instruction.

44 R, X, B, D,

0 7T 8 11 12 15 16 19 20 31
€ May be set by the instruction being modified and executed.

¢ Address error:
Addressing.
Specification.

¢ 1. Bits 8-15 of the subject instruction are “OR”ed with bits 24-31
of the register specified by the first address (R,).
2. If R, is zero, no modification takes place.

3. The ILC is set to two (length of the Execute) and the P counter
is set to the address of the instruction following the Execute
instruction.

4. The contents of R, and the subject instruction in main memory
are unaltered.

5. Interrupts are inhibited until the subjeet instruction has been
completed.

6. When the subject instruction is a successful branching instruction,
the P counter is updated by the branch address.

200

FLOATING-POINT
INSTRUCTIONS

INTRODUCTION

DATA FORMATS

Short Floating-Point
Number

Long Floating-Point
Number

4 Floating-point arithmetic instructions provide the capability to process
operands of large magnitude with precise results.

A floating-point number is made up of three parts: a sign, an exponent
and a mantissa. The sign portion applies to the mantissa. The exponent is
a power to which the number 16 is raised. The mantissa is a hexadecimal
number with an assumed radix point to the left of the high-order digit.
The quantity that the floating-point number represents is obtained by
multiplying the mantissa by the number 16 raised to the power represented
by the exponent.

Four floating-point registers are provided, each of which is 64 bits
long. These registers are numbered 0, 2, 4 and 6.

Included in this set are instructions for loading, adding, subtracting,
comparing, multiplying, dividing, storing, and controlling signs of short
and long operands.

Addition, subtraction, multiplication, and division produce normalized
results. Addition and subtraction can also produce unnormalized results.
Operands can be normalized, or unnormalized, in any floating-point
operation.

Sign control, add, subtract, and compare operation results are indicated
in the condition code settings.

4 Floating-point numbers are fixed in length and are either full-word
short or double-word long in format.

The first bit in both formats is the sign of the mantissa. A 1 bit repre-
sents a minus sign and a 0 bit represents a plus sign. The next seven bits
represent the exponent. The mantissa contains six hexadecimal digits (short
floating-point number) or 14 (long floating-point number) hexadecimal
digits.

The short format allows for faster processing and uses less storage.
Because floating-point registers are 64 bits long, the rightmost 32 bits are
ignored when dealing with short operands., When the short format is
specified, all operands and the result are 32 bits long. When using the long
format, which provides greater precision, all operands are 64 bits long and
require the full register.

1 7 24
S Exponent Mantissa
0 1 7 8 31
1 7 56
S Exponent Mantissa
0 1 7 8 63

201

REPRESENTATION
OF NUMBERS

NORMALIZATION

INSTRUCTION
FORMATS

RX Format

Description

Floating-Point Instructions

& The mantissa is always represented in hexadecimal. An assumed radix
point is always immediately to the left of the high-order digit of the
mantissa.

The exponent, bits 1 through 7, indicates the power to which the number
16 must be raised. The range of the exponent is from —64 to 463 corre-
sponding to the binary value of 0-127. The power is equal to the binary
number minus 64, as shown in following table:

Exponent Decimal Equivalent Power
(1 111 111), 127 —64 = 463
(1 000 111), 71 —64 = 47
(0 000 000), 0 —64 = —64

Because the value (64),, represents the power zero, this technique is
called excess 64 notation.

The sign of a result from addition, subtraction, multiplication, or divi-
sion with a zero mantissa is positive. A zero sign, zero exponent, and zero
mantissa in a floating-point number is called true zero.

4 A floating-point number with a mantissa containing a non-zero, high-
order, hexadecimal digit is called a normalized number. An unnormalized
number has one or more high-order hexadecimal zero digits in the mantissa.
To change an unnormalized number into a normalized number, the man-
tissa is shifted to the left until the high-order digit is non-zero. Then, the
exponent is decremented by the number of digits shifted.

Generally, normalization occurs when the intermediate arithmetic result
is changed to the final result. However, in multiplication and division
operations, normalization occurs before the arithmetic process.

Floating-point operations are performed with, or without, normaliza-
tion. Most operations are performed in only one way; however, addition
and subtraction may be performed either way as specified.

When normalization is not performed, high-order zeros in the result
mantissa are not eliminated. Depending on the original operands, the result
may, or may not, be normalized.

Initial operands in both normalized and unnormalized operations need
not be in normalized form. Because normalization takes place on hexa-
decimal digits, the three high-order bits of a normalized mantissa can
be zero.

& The following two instruction formats are used for floating-point
operations:

Op Code R, X, B, D,

0 7T 8 11 12 156 16 19 20 31

¢ An address is formed by adding the contents of general registers X,
and B, to the displacement field D,. This address specifies a main memory
location that contains the second operand in the operation. R, designates
the floating-point register containing the first operand.

202

RR Format

Description

CONDITION CODE
UTILIZATION

Floating-Point Instructions

Op Code R, R,

0 7T 8 1 12 15

4 In this format, R, designates the address of the floating-point register
holding the first operand. R, is the address of the floating-point register
holding the second operand. The first and second operands can be the same
and are designated by identical R, and R, addresses.

Notes:

1. Register addresses specified by the R, and R, fields must be 0, 2, 4,

or 6 or an address error (specification) interrupt occurs.

2. A short operand must be located on a word boundary and a long
operand must be on a double-word boundary; if not, an address
error (specification) interrupt occurs.

Floating-point registers are used by floating-point instructions only.

4. A zero in an X, or B, field shows that there is no address component
to enter in forming an address.

5. Except for the instructions Store (long) and Store (short), results
of floating-point operations replace the first operand.

6. Except for the storing of the result, the contents of floating-point
registers, general registers, and main memory locations used in the
operations are not changed.

7. It is possible to designate the same general register to specify both
operand locations and address generation, Addresses are generated
before execution.

S

4 The condition code reflects results of floating-point sign control, add,
subtract, and compare instructions. The code is not changed by any other
floating-point operation. Decision-making by branch on condition instruc-
tions can be done after those instructions that set the code.

For most arithmetic and load instructions, Condition Codes 0, 1, or 2
indicate respectively a zero, or less than, or greater than zero content, of
the result. Condition Code 3 is set for overflow of the result in arithmetic
instructions only. In comparison instructions, the Condition Codes 0, 1,
or 2 show, respectively, that the first operand is either equal to, less than,
or greater than the second operand.

Instructions that cause the condition code to be set and the meaning
of the setting are as follows:

Condition Code Setting
Instruction
(1] 1 2 3

Add Normalized Short/Long Zero < Zero > Zero Overflow
Add Unnormalized Short/Long Zero < Zero > Zero Overflow
Compare Short/Long Equal Low High
Load and Test Short/Long Zero < Zero > Zero —_—
Load Complement Short/Long Zero < Zero > Zero —_—
Load Negative Short/Long Zero < Zero _—
Load Positive Short/Long Zero e > Zero
Subtract Normalized Short/Long Zero < Zero > Zero Overflow
Subtract Unnormalized Short/Long Zero < Zero > Zero Overflow

203

INTERRUPT ACTION

Address Error

Addressing

Specification

Protection

Significance Error

Divide Error

Exponent Overflow

Exponent Underflow

Floating-Point Instructions

& The following interrupt conditions ean occur as a result of a floating-
point instruction.

4 An address error interrupt occurs when an address in the RX instruc-
tion format specifies a location outside the available main memory. The
operation is terminated at the point of error. The result data and the
condition code (if affected) are unpredictable,

€ An address error interrupt occurs if a short operand is not located on
a word boundary or a long operand is not located on a double-word boundary.
An address error interrupt also occurs if a floating-point register other
than 0, 2, 4 or 6 is specified. The instruction is suppressed. The condition
code, the data in main memory, and the registers remain unchanged.
Address restrictions do not apply to the X,, B, and D, components of
the instruction.

4 An address error interrupt occurs when the protection key and the
storage key of the result location do not match. The operation is suppressed.
The condition code, the data in main memory, and the registers remain
unchanged. (This interrupt can only occur if the memory protect feature
is installed.)

€ A significance error interrupt occurs when the result mantissa of an
add or subtract operation is zero. A program interrupt occurs if the
significance error mask bit in the Interrupt Mask Register of the current
state is set to 1. The operation is completed, the exponent is unaltered,
and the interrupt is taken. If the significance error mask bit is zero, the
interrupt is prohibited and the operation is completed by setting the result
to true zero (zero sign, zero exponent, and zero mantissa). In either case,
the condition code is set to zero.

4 A divide error interrupt occurs if division by zero is attempted.

¢ An exponent overflow interrupt occurs when the result exponent over-
flows and the mantissa is not zero. The operation is terminated and the
result data is unpredictable, Addition and subtraction set the condition
code to 3. Multiplication and division do not affect the condition code setting.

& An exponent underflow interrupt occurs when the result exponent is
less than zero and the result mantissa is not zero. The operation is com-
pleted by setting the result to true zero (zero sign, zero exponent, and zero
mantissa). Addition and subtraction set the condition code to zero.
Multiplication and division do not affect the condition code setting,

204

Load
(LER) (LE) (LDR) (LD)

General Description

Format

(RR Short)

(RX Short)

{RR Long)

(RX Long)

Condition Code

Interrupt Action

Notes

Floating-Point Instructions

® The operand specified by the second address (R, or X,/B,/D,) is loaded

into the floating-point register specified by the first address (R,).

(LER) 38 R, R,
0 1112 15
(LE) 78 R, X, B, D,
0 11 12 156 16 19 20 31
(LDR) 28 R, R,
0 1 12 16
(LD) 68 R, X, B, D,
0 11 12 15 16 19 20 31

4 Unchanged.

& Address error:

Addressing (RX format).

Specification.

4 1. The operand specified by the second address is unaltered.

2. Exponent overflow, underflow, or lost significance cannot occur.

3. The low-order half of the register specified by the first address is
unaltered when short operands are used.

205

Load and Test
(LTER) (LTDR)

General Description

Format
(RR Short)

(RR Long)

Condition Code

Interrupt Action

Notes

Floating-Point Instructions

& The operand in the floating-point register specified by the second address
(R.) is loaded into the floating-point register specified by the first address
(R,). The sign and magnitude of the loaded operand determine the
condition code.

(LTER) 32 R, R,

0 7 8 11 12 15

(LTDR) 22 R, R,

0 7 8 11 12 15

4 0 —result mantissa is zero.
1 —result mantissa is less than zero.
2 — result mantissa is greater than zero.
3 — not used.

4 Address error:

Specification.

¢ 1. If R, and R, are equal, the operation is equivalent to a test without
data movement.

2. The operand specified by the second address is unaltered.

3. Short operands do not alter the low-order half of the register specified
by the first address.

206

Load Complement
(LCER) (LCDR)

General Description

Format
(RR Short)

(RR Long)

Condition Code

Interrupt Action

Notes

Floating-Point Instructions

@ Theoperand in the floating-point register specified by the second address
(R.) is loaded into the floating-point register specified by the first address
(R,) and the sign is changed to the opposite value. The sign and magnitude
of the loaded operand determine the condition code.

(LCER) 33 R, R,

0 7 8 11 12 15

(LCDR) 23 R, R,

0 7T 8 1 12 15

4 0 —result mantissa .is zero.
1 — result mantissa is less than zero.
2 — result mantissa is greater than zero.
3 —not used.

¢ Address error:

Specification.

4 1. The exponent and mantissa are unaltered.

2. Short operands do not alter the low-order half of the register specified
by the first address.

207

Load Positive
(LPER) (LPDR)

General Description

Format
(RR Short)

(RR Long)

Condition Code

Interrupt Action

Notes

Floating-Point Instructions

& The operand in the floating-point register specified by the second
address (R.) is loaded into the floating-point register specified by the first
address (R,) and the operand sign is made plus.

(LPER) 30 R, R,

0 7 8 11 12 15

(LPDR) 20 R, R,

0 7 8 11 12 15

€ 0 — result mantissa is zero.
1 —not used.
2 — result mantissa is greater than zero.
3 — not used.

€ Address error:
Specification.

4 1. The exponent and mantissa are unaltered.

2. Short operands do not alter the low-order half of the register specified
by the first address.

208

Floating-Point Instructions

Load Negative
(LNER) (LNDR)

General Description € The operand in the floating-point register specified by the second address
(R,) is loaded into the floating-point register specified by the first address
(R,) and the operand sign is made minus.

Format
LNER) 31 R R
(RR Short) () ! 2
0 7 8 11 12 15
(RR Long) (LNDR) 21 R, R,
0 7 8 1 12 15

Condition Code | € 0 —result mantissa is zero.

1 —result mantissa is less than zero.
2 —not used.

3 — not used.

Interrupt Action & Address error:
Specification.

Notes & 1. The exponent and mantissa are unaltered.

2. Short operands do not alter the low-order half of the register specified
by the first address.

209

Add Normalized
(AER) (AE) (ADR) (AD)

General Description

Format

(RR Short)

(RX Short)

(RR Long)

(RX Long)

Condition Code

Interrupt Action

Notes

Floating-Point Instructions

@ The operand specified by the second address (R, or X,/B,/D,) is added
to the operand in the floating-point register specified by the first address
(R;). The normalized sum is loaded into the register specified by the first
address. The sign and magnitude of the sum determine the condition code.

(AER) 3A R, R,

0 7 8 11 12 15
(AE) 7A R, X, B, D,

0 7 8 11 12 15 16 19 20 31
(ADR) 2A R, R,

0 7 8 11 12 16
(AD) 6A R, X, B, D,

0 7 8 11 12 156 16 19 20 31

€ 0 —result mantissa is zero.
1 —result mantissa is less than zero.
2 — result mantissa is greater than zero.
3 — result exponent overflows.

4 Address error:
Addressing (RX format).
Specification.
Significance error.
Exponent overflow.
Exponent underflow.

¢ 1. To perform normalized addition, the computer must scale the two
operands. Scaling consists of comparing the exponents of the two
operands. If they do not agree, the mantissa with the smaller exponent
operand is shifted right. Its exponent is increased by one for each
digit right-shifted, until the two exponents agree. Then, the mantissas
are added algebraically to form an intermediate sum. If an over-
flow carry occurs, the intermediate sum is right-shifted one digit
and its exponent is increased by one. If this causes an overflow, an
exponent overflow interrupt condition occurs.

For short operands, the intermediate sum consists of seven hexa-
decimal digits and a possible carry. The low-order digit is the guard
digit which is retained from the mantissa which is shifted right.
Only one guard digit participates in the mantissa addition. The
guard digit is zero if no shift occurs.

210

Notes
(Cont’d)

Floating-Point Instructions

For long operands, the intermediate sum consists of fourteen hexa-
decimal digits and a possible carry. No guard digit is retained.

. After addition, the intermediate sum is left-shifted until all high-

order zero hexadecimal digits have been eliminated. The vacated
low-order digits are made zero and the exponent is decremented by
one for each zero digit shifted. If no left-shift takes place, the inter-
mediate sum is truncated to the proper mantissa length. If the
exponent underflows (exceeds —64) during normalization, the float-
ing-point number is made true zero and an exponent underflow
interrupt occurs.

. No normalization is performed when the intermediate sum is zero.

The sum mantissa is unaltered and a significance error interrupt
occurs. If a significance error interrupt is prohibited by the interrupt
mask, the quantity is made true zero and a significance error
interrupt does not occur.

. Initial operands need not be in normalized form,

5. The sign of the sum is determined by the rules of algebra. A zero

sum is always plus.

. Short operands do not alter the low-order halves of the registers

specified by the address fields.

211

Add Unnormalized
(AUR) (AU)
(AWR) (AW)

General Description

Format
{(RR Short)

(RX Short)

(RR Long)

(RX Long)

Condition Code

Interrupt Action

Notes

Floating-Point Instructions

¢ The operand specified by the second address (R. or X,/B,/D,) is added
to the operand in the floating-point register specified by the first address
(R,). The unnormalized sum is loaded into the register specified by the
first address. The sign and magnitude of the loaded sum determine the
condition code.

(AUR) 3E R, R,
0 7 8 11 12 15
(AU) 7E R, X, B, D,
0 7 8 11 12 15 16 19 20 31
(AWR) 2E R, R,
0 7 8 11 12 15
(AW) 6E R, X, B, D,
0 7 8 11 12 15 16 19 20 31

€ 0 — result mantissa is zero.
1 — result mantissa is less than zero.
2 — result mantissa is greater than zero.
3 — result exponent overflows.

4 Address error:

Addressing (RX format).
Specification.
Exponent overflow.
Significance.

4 1. The Add Unnormalized is similar to the Add Normalized, except that

the sum is not normalized by this instruction and exponent underflow
cannot occur.

212

Subtract Normalized
(SER) (SE) (SDR) (SD)

General Description

Format

{RR Short)

(RX Short)

{RR Long)

(RX Long)

Condition Code

Interrupt Action

Notes

Floating-Point Instructions

¢ The operand specified by the second address (R, or X,/B,/D.) is sub-
tracted from the operand in the floating-point register specified by the first
address (R,). The normalized difference is loaded into the register specified
by the first address. The sign and magnitude of the difference determine
the condition code.

(SER) 3B R, R,
0 7 8 1 12 16
(SE) 7B R, X, B, D,
0 7 8 11 12 156 16 19 20 31
(SDR) 2B R, R,
0 7 8 11 12 15
(SD) 6B R, X, B, D,
0 7 8 11 12 16 16 19 20 31

€ 0 —result mantissa is zero.
1 —result mantissa is less than zero.
2 —result mantissa is greater than zero.
3 — result exponent overflows.

& Address error:
Addressing (RX format).
Specification.
Significance error.
Exponent overflow.
Exponent underflow.

¢ 1. The Subtract Normalized is the same as the Add Normalized, except

that the sign of the second operand is changed to the opposite value
before addition. A zero difference is always positive,

213

Subtract

Unnormalized
(SUR) (SU) (SWR) (SW)

General Description

Format
(RR Short)

(RX Short)

(RR Long)

(RX Long)

Condition Code

Interrupt Action

Notes

Floating-Point Instructions

¢ The operand specified by the second address (R, or X,/B,/D,) is sub-
tracted from the operand in the floating-point register specified by the first
address (R,). The unnmormalized difference is loaded into the register
specified by the first address. The sign and magnitude of the difference
determine the condition code.

(SUR) 38F R, R,
0 7 8 11 12 15
(SU) 7F R, X, B, D,
0 7 8 11 12 15 16 19 20 31
(SWR) 2F R, R,
0 7 8 11 12 15
(SW) 6F R, X, B, D,
0 7 8 11 12 15 16 19 20 31
€ 0 — result mantissa is zero.

1 — result mantissa
2 — result mantissa
3 — result exponent

€ Address error:

is

is

less than zero.
greater than zero.

overflows.

Addressing (RX format).

Specification.
Significance error.
Exponent overflow.

¢ 1. Subtract Unnormalized differs from Subtract Normalized only in that
the difference is not normalized before it is loaded into the result

register.

2. Exponent underflow cannot occur.

214

Compare
(CER) (CE) (CDR) (CD)

General Description

Format

(RR Short)

(RX Short)

{RR Long)

(RX Long)

Condition Code

Interrupt Action

Notes

L 4

Floating-Point Instructions

The operand in the floating-point register specified by the first address

(R,) is algebraically compared to the operand specified by the second
address (R or X,/B./D,). The result determines the condition code.

(CER) 39 R, R,
0 7 8 11 12 15
(CE) 79 R, X, B, D,
0 7 8 11 12 15 16 19 20 31
(CDR) 29 R, R,
0 7 8 11 12 15
(CD) 69 R, X, B, D,
0 7 8 11 12 15 16 19 20 31
4 0 — operands are equal.

L4

1 — operand specified by the first address is less than the one specified
by the second address.

2 — operand specified by the first address is greater than the one
specified by the second address.

3 — not used.

Address error:
Addressing (RX format).
Specification.

1. Comparison takes into account the sign, exponent, and mantissa of
each number. Exponent inequality is not decisive for magnitude
determination since the mantissas may have different numbers of
leading zeros. The operands are scaled, as in Subtract Normalized,
and if the mantissa of each operand is zero, the numbers are con-
sidered equal regardless of the sign and exponent.

2. Both operands are unaltered.

215

Halve
(HER) (HDR)

General Description

Format
(RR Short)

(RR Long)

Condition Code

Interrupt Action

Notes

Floating-Point Instructions

¢ The operand in the floating-point register specified by the second address
(R;) is divided by two. The quotient is loaded into the floating-point register
specified by the first address (R,).

(HER) 34 R, R,
0 7 8 11 12 15

(HDR) 24 R, R,
0 7 8 11 12 15

€ Unchanged.

4 Address error:
Specification.

¢ 1. The difference between the Halve instruction and a Divide instruction
with a divisor of two, is that no normalization and no zero mantissa
testing takes place. The sign and exponent are unaltered and the
mantissa is shifted right one bit.

2. Short operands do not alter the low-order half of the result register.

216

Store
(STE) (STD)

General Description
Format
(RX Short)

(RX Long)

Condition Code

Interrupt Action

Notes

Floating-Point Instructions

4 The contents of the floating-point register specified by the first address
(R:) are stored in the main memory location specified by the second

address (X,/B./D,).

(STE) 70 R, X, B,

D,

0 7 8 11 12 15 16 19 20

31

(STD) 60 R, X, B,

0 7 8 1 12 15 16 19 20
4 Unchanged.

4 Address error:
Addressing.
Specification.
Protection.

& 1. The first operand is unaltered.

31

2. Short operands do not alter the low-order half of the register specified

by the second address.

217

Multiply
(MER) (ME)
(MDR) (MD)

General Description

Format
{RR Short)
(RX Short)
(RR Long)

(RX Long)

Condition Code

Interrupt Action

Notes

Floating-Point Instructions

¢ The operand in the floating-point register specified by the first address

(Ry)
(R,

is multiplied by the operand specified by the second address
or X,/B,/D;). The normalized product is loaded into the register

specified by the first address.

(MER) 3C R, R,

0 7 8 11 12 15
(ME) 7C R, X, B, D,

0 7 8 11 12 15 16 19 20 31
(MDR) 2C R, R,

0 7 8 11 12 15
(MD) 6C R, X, B, D,

0 7 8 11 12 15 16 19 20 31

4 Unchanged.

& Address error:

Addressing (RX format).

Specification.

Exponent overflow.

Exponent underflow.

L IR

The exponents of the two operands are added, and the sum is reduced
by 64 to form an intermediate exponent. The mantissas are normal-
ized as described in the Add Normalize instruction, and multiplied
to form an intermediate mantissa. The intermediate mantissa is
then normalized (reducing its exponent by one for each digit left
shifted) to form the final product.

2. The sign of the product is determined by the rules of algebra.

3. If the product mantissa is zero, the final product is made true zero.

4. If the final product exponent is greater than 127, an exponent over-

flow interrupt occurs.

. If final product exponent is less than zero, an exponert underflow
interrupt occurs.

. For short operands, the low-order half of the register specified by
the first address is used in the calculation of the intermediate man-
tissa. The product mantissa has the full 14 digits as in the long
format and the two low-order digits are always zero.

218

Divide
(DER) (DE) (DDR) (DD)

General Description

Format

(RR Short)

(RX Short)

(RR Long)

(RX Long)

Condition Code

Interrupt Action

Notes

Floating-Point Instructions

4 The operand (dividend) in the floating-point register specified by the
first address (R,) is divided by the operand divisor specified by the second
address (R, or X,/B.,/D,). The normalized quotient is stored in the register
specified by the first address. The remainder is not retained.

(DER) 3D R, R,
0 7 8 11 12 15
(DE) 7D R, X, B, D,
0 7 8 11 12 15 16 19 20 31
(DDR) 2D R, R,
0 7 8 11 12 15
(DD) 6D R, X, B, D,
0 7 8 11 12 15 16 19 20 31

4 Unchanged.

4 Address error:

Addressing (RX format).
Specification.

Exponent overflow.

Exponent underflow.

Divide error.

¢ 1

The exponents of the two operands are subtracted and the difference
is increased by 64 to form an intermediate exponent. The mantissas
are normalized as described in the Subtract Normalize instruction,
and divided to form the mantissa of the intermediate quotient. The
intermediate exponent and mantissa are normalized to form a final
quotient.

If the dividend (first operand) is zero, the quotient is made true zero.

. If the divisor (second operand) is zero, a divide error interrupt

occurs.

4. The sign of the quotient is determined by the rules of algebra.

5. If the final quotient exponent is less than zero, the final quotient is

made true zero and an exponent underflow interrupt occurs,

If the final quotient exponent exceeds 127, an exponent overflow
interrupt occurs.

. For short operands, the low-order halves of the registers are

unaltered.

219

OPTIONAL
FEATURES

FEATURE 5001-46
MEMORY PROTECT

Operational
Characteristics

FEATURE 5002-46
ELAPSED TIME
CLOCK

Operational
Characteristics

¢ Data in memory can be protected from destruction or intrusion by the
erroneous storing or fetching of information during program execution
through the optional Memory Protect feature. This feature provides store
protection or store and fetch protection for memory blocks of 2,048
bytes each.

¢ Memory protection is accomplished by a five-bit storage key associated
with each block of 2,048 bytes of main memory. Whenever data is to be
stored or accessed in main memory during the execution of an instruction,
the five-bit protection key in the Interrupt Status register for the current
program state is compared with the five-bit storage key. During a channel-
to-memory data transfer, the protection key (as specified in the channel
address word) is compared with the storage key. If the storage and
protection keys are equal, or either one is zero, the storage or access of
data is completed.

If the storage and protection keys do not match (neither is zero),
the execution of an instruction that stores data into memory or accessor
data is suppressed or terminated. An address error (protection) interrupt
occurs, and the protected memory remains unaltered. If the storage and
protection keys mismatch during a channel-to-memory data transfer, the
data transfer is terminated and a channel termination interrupt occurs.
The protected memory is unaltered and the indication of mismateh is stored
in the input/output channel registers in scratch-pad memory for the
specified channel.

The storage key can be changed by the privileged instruction Set
Storage Key and can be inspected by the privileged instruction Insert
Storage Key.

When the Memory Protect feature is not installed and the protection
key is non zero, an address error (specification) interrupt occurs.

¢ The elapsed time clock is an optional feature available on the 70/46
Processor.

4 The elapsed time clock occupies a full word beginning at main memory
location 80. The word is treated as a signed binary operand and follows
the rules of fixed-point arithmetic.

The clock count is performed by decrementing bit positions 21 and 23
every 1/60th of a second (60 cycle processor) or by decrementing bit
positions 21 and 22 every 1/50th of a second (50 cycle processor). In either
case, the effect is equivalent to reducing the elapsed time clock by one in
bit position 23 every 1,/300th of a second (every 3.3 milliseconds). When the
clock goes from positive to negative, an elapsed time clock interrupt occurs.

Normally, an updated elapsed time clock is available after the com-
pletion of each instruction execution. However, when input/output data
transmission approaches the limit of main memory capability, or a Read
Direct instruction time is excessive, elapsed time clock updating can
be skipped.

220

Operational
Characteristics

(Cont’d)

FEATURE 5019-46
ELAPSED TIME
CLOCK

Operational
Characteristics

FEATURE 5003-46
DIRECT CONTROL

Operational
Characteristics

FEATURE 5040
SELECTOR CHANNEL*

FEATURE 5041
SELECTOR CHANNEL*

FEATURE 5042
SELECTOR CHANNEL*

Optional Features

When an elapsed time clock interrupt occurs, the clock may have been
decremented several times before the interrupt takes effect, depending on
the execution time of the current instruction.

& This feature provides an elapsed time clock with a greater resolution
than the 5002-46 clock. The 5019-46 clock is decremented at a 1000-
cycle rate.

& The elapsed time clock count is performed by decrementing the elapsed
time clock word at main memory location 80. The word is decremented
by 4D, every 1002 microseconds. When the clock count word changes from
positive to negative, if the applicable program mask bit is set, a program
interrupt occurs.

& The Direct Control feature enables one 70/46 processor program to
directly signal the programs of from one to five other processors over an
interface independent of the input/output channels. The processors directly
connected by this feature may be remotely located up to 500 cable feet
from the transmitting processor.

¢ Two additional privileged instructions are provided with this option,
Write Direct and Read Direct, which initiate the transfer of one byte of
control information between processor memories, and which signal the
opposite unit (by external interrupt) upon execution of an instruction.

This feature can also initiate initial program loading in a remote
processor which is in a stopped state. In this case, the Load Unit Switches
on the console of the processor being signaled specify the device from
which the loading is to occur and the information byte is ignored.

& This feature provides two enhanced selector channels for a system
maximum of 12 I/0 Trunks and the Console Trunk.

& This features provides three enhanced selector channels for a system
maximum of 14 1/0 Trunks and the Console Trunk.

& This feature provides four enhanced selector channels for a system

maximum of 16 I/0 Trunks and the Console Trunk.

* Only one feature (5040, 5041 or 5042) is permitted on a system.,

221

APPENDICES

223

449

APPENDIX A — SUMMARY OF INSTRUCTIONS

Privileged Instructions

Timing (usec)
Instruction Op1s) | Mnemonic | Format Interrupt Action Condition Code (Average and Includes Staticizing)
70/46
Check Channel 9F | CKC SI 1. Privileged operation. 0 —I/0 chan. avail.
1 — Interrupt pending in
selector channel. Multiplexor = 5.52
2 — Selector chan. busy or int.
pending or multiplex chan. Selector = 6.48
operating in burst mode.
3 — Inoperable.
Diagnose 83 DIG SI 1. Privileged operation. Unaltered. 4.56
Halt Device 9E | HDV SI 1. Privileged operation. 0 — Not busy.
1 — Standard device byte stored | Multiplexor = 10.32 + CRT
in seratch-pad memory. Burst = 5.52 + CRT
2 — Termination accepted. Selector = 6.00 + CRT
3 — Inoperable.
Idle 80 IDL SI 1. Privileged operation. Unchanged. 6.00
Insert Storage Key| 09 ISK RR | 1. Privileged operation.
2. Operation code trap Unchanged.
(if feature not installed). 5.28
3. Address error.
Load Scratch Pad D8 | LSP SSs 1. Privileged operation. Unchanged.
2. Address error. 10.56 + 2.88R
Program Control 82 PC SI 1. Privileged operation. CC of state being terminated is
2. Address error. stored in P counter.
CC of state being jnitiated used 744
to set CC indicators.
Read Direct 85 RDD SI 1. Privileged operation.
2. Operation code trap Unchanged. T .
(if feature not installed). o be supplied.
3. Address error.
Set Storage Key 08 SSK RR | 1. Privileged operation.
2. Operation code trap Unchanged.

(if feature not installed).
. Address error.

5.28

<144

Start Device 9C | SDV SI 1. Privileged operation. 0 —1I/0 operation started and
channel proceeding. .
1 — Status bits stored in Multiplexor = 33.36 4+ CRT
scratch-pad.
2 — Busy or interrupt pending. Selector = 27.60 4 CRT
3 — Inoperable.
Store Scratch-Pad | D0 | SSP S8 | 1. Privileged operation. Unchanged. 11.52 4- 2.88R
2. Address error.
Test Device 9D | TDV SI 1. Privileged operation. 0 — Available.
1 — Standard device byte stored Multiplexor = 8.40 + CRT
in seratch-pad.
2 — Busy or interrupt pending. Selector — 8.88 4 CRT
3 — Inoperable.
Write Direct 84 WRD SI 1. Privileged operation.
2. Operation code trap Unchanged. To be supplied.
(if feature not installed).
3. Address error.
Function Call 9A FC SI 1. Privileged operation.
2. Operation code trap.
3. Power failure,
4. Machine check. Unchanged. To be supplied.
5. Addressing.
6. Paging error.
7. Paging queue
8. Others as defined.
Special Functions
Load Translation Co0 | LTM SF 1. Addressing. Unchanged. 11.28 4- (6.72 + 2.88S)
Memory 2. Power Failure. N-—-096 F
3. Machine Check.
4. Paging Error.
5. Paging Queue.
Scan Translation Cl1 | STMS SF | 1. Addressing. Unchanged. 11.28 + (6.24 4 2.88S)
Memory and Store 2. Power Failure. N +0.96 (G-A)
3. Machine Check.
4. Paging Error.
5. Paging Queue.

Legend :

A — number of locations skipped.

F — number of locations filled with zeros.
G — number of G-Bits set (1).

N — number of blocks to be loaded.
R — number of registers specified.

S — number of Halfwords in each Translation Memory Bank.

CRT — channel response time (two microseconds average).

Vv cpuaddy

93¢

SUMMARY OF INSTRUCTIONS (Cont'd)

Special Functions (Cont'd)

Instruction

Opais)

Mnemonic

Format

Interrupt Action

Condition Code

Timing (usec)
(Average and Includes Staticizing)

70/46

Store Translation
Memory

C4

STM

SF

U O N

. Addressing.

. Power Failure.
. Machine Check.
. Paging Error.
. Paging Queue.

Unchanged.

12.24 4 2.88M

Load Interval
Timer

02

LIT

SF

TGt WN

. Addressing.

. Power Failure.
. Machine Check.
. Paging Error.
. Paging Queue.

Unchanged.

8.64

Store Interval
Timer

03

SIT

SF

cn»hco_NH

. Addressing.

Power Failure.

. Machine Check.
. Paging Error.
. Paging Queue.

Unchanged.

9.60

Paging Queue and
Paging Error
Interrupt

Service

01

SF

. Power Failure.
. Machine Check.

Unchanged.

26 — RR Instruction or 1st
Instruction Address
Error.

48 — 2nd Instruction Address
Error.

110 — Load Multiple/Store
Multiple (no Instruction
Address Error).

83 — Other RX/RS/SI
Instruction (no
Instruction Error
Address Error).

75— 8rd Instruction Address
Error (LSP/SSP only).

130 — 3rd Instruction Address
Error (other SS
Instruction).

v zipuoddy

L2e

Processor State Control Instructions

Set Program Mask | 04 SPM RR | None. CC set according to GR bits 2, 3
R 2.88
specified by R,.
Supervisor Call 0A | SVC RR | None. Unchanged. 2.88
Fixed-Point Instructions
Add Halfword 4A | AH RX | 1. Fixed-Point overflow. 0 — Sum is zero.
2. Address error. 1 — Sum is less than zero. 7.92
2 — Sum is greater than zero. :
3 — Overflow.
5E | AL RX | 1. Address error. 0 — Sum is zero & no carry. 8.40
Add Logical 1 — Sum is not zero & no carry.
ogica 1E | ALR RR 2 — Sum is zero with carry. 480
3 — Sum is not zero with carry. -
A | A RX | 1. Fixed-Point overflow. 0 — Sum is zero. 8.88
2. Address error., 1— Sum is less than zero.
Add Word 2 — Sum is greater than zero. 5.28
1A | AR RR 3 — Overflow. :
Comwpare Halfword | 49 CH RX | 1. Address error. 0 — Operands equal.
1 — First operand low. 7.44
2 — First operand high. :
3 — Not used.
59 C RX | 1. Address error. 0 — Operands equal. 8.40
C Word 1 — First operand low.
ompare Wor 19 CR RR 2 — First operand high.
3 — Not used. 4.80
Convert to Binary 4F | CVB RX 1. Address error. Unchanged.
2. Data error. 91.20
3. Divide error.
Convert to Decimal | 4E | CVD RX | 1. Address error. Unchanged. 68.88 to 91.92
5D | D RX | 1. Address error. 94.89
Divide Unchanged.
1D | DR RR | 2. Divide error. 90.81
Load Complement 13 LCR RR | 1. Fixed-Point overflow. 0 — Result is zero.
1 — Result is less than zero. 5.28

2 — Result is greater than zero.

8 — Overflow.

Legend: M — number of locations stored.

vV xipusddy

84¢

SUMMARY OF INSTRUCTIONS (Cont'd)

Fixed-Point Instructions (Cont'd)

Timing (usec)

Instruction Op1s)| Mnemonic| Format Interrupt Action Condition Code (Average and Includes Staticizing)
70/46
Load Halfword 48 LH RX | 1. Address error, Unchanged. 7.92
Load Multiple 98 LM RS 1. Address error. Unchanged. 9.60 + 2.88R
Load Negative 11 LNR RR | None. 0 — Result is zero.
1 — Result is less than zero.
2 — Not used. 6.24
3 — Not used.
Load Positive 10 LPR RR | 1. Fixed-Point overflow. 0 — Result is zero.
1 — Not used. 24
2 — Result greater than zero. 6.
3 — Overflow.
Load and Test 12 LTR RR | None. 0 — Result is zero.
1 — Result is less than zero. 9
2 — Result is greater than zero. 5.28
3 — Not used.
58 | L RX | 1. Address error. 8.88
Load Word Unchanged.
18 LR RR 2.88
Multiply Halfword| 4C | MH RX | 1. Address error. Unchanged. 35.40
5C | M RX | 1. Address error. 65.64
Multiply Word - Unchanged.
witiply ox 1C | MR RR g 62.52
Shift Left Double 8F | SLDA RS 1. Fixed-Point overflow. 0 — Result is zero. Under 16 = 11.04 4 0.96 (N)
2. Address error. 1 — Result is less than zero. 16 to 81 = 15.12 4 0.96 (N-16)
2 — Result is greater than zero. | 32 to 47 = 19.20 4 0.96 (N-32)
8 — Overflow. 48 to 63 = 23.28 4 0.96 (N-48)
Shift Right Double| 8E | SRDA RS 1. Address error. 0 — Result is zero. Under 16 = 9.36 4+ 0.96 (N)

1 — Result is less than zero.
2 — Result is greater than zero.
3 — Not used.

16 to 81 = 12.48 4 0.96 (N-16)
32 to 47 = 15.60 + 0.96 (N-32)
48 t0 63 = 18.72 + 0.96 (N-48)

v zipuoddy

633

Shift Left Single 8B | SLA RS 1. Fixed-Point overflow. 0 — Result is zero. Under 16 = 10.08 4 0.48 (N)
1 — Result is less than zero. 16 to 31 = 13.20 4 0.48 (N-16)
2 — Result is greater than zero. | 32 to 47 = 16.32 + 0.48 (N-32)
3 — Overflow. 48 to 63 = 19.44 + 0.48 (N-48)
Shift Right Single | 8A | SRA RS None. 0 — Result is zero. Under 16 —= 8.16 + 0.48 (N)
1 — Result is less than zero. 16 to 31 = 10.32 4 0.48 (N-16)
2 — Result is greater than zero. { 32 to 47 — 12.48 + 0.48 (N-32)
3 — Not used. 48 t0 63 = 12.48 4 0.48 (N-48)
Store Halfword 40 STH RX | 1. Address error. Unchanged. 5.04
Store Multiple 90 STM RS 1. Address error. Unchanged. 9.60 + 2.88R
Store Word 50 ST RX | 1. Address error. Unchanged. 7.44
Subtract Halfword | 4B | SH RX | 1. Fixed-Point overflow. 0 — Diff. is zero.
2. Address error. 1 — Diff. less than zero. 7.92
2 — Diff. greater than zero. *
3 — Overflow.
5F | SL RX | 1. Address error. 0 — Not used. 8.40
. 1 — Diff. not zero; no carry.
Subtract Logical 2 — Diff. zero with carry.
1F | SLR RR 3 — Diff. not zero with carry. 4.80
5B | S RX | 1. Fixed-Point overflow. 0 — Diff. is zero. 8.88
2. Address error. 1 — Diff. less than zero.
Subtract Word 2 — Diff. greater than zero.
1B | SR RR 3 — Overflow. 5.28
Decimal Arithmetic Instructions
Add Decimal FA | AP SS 1. Address error. 0 — Sum is zero. 15.84 4 1.8L, + 0.42L,
2. Data error. 1 — Sum is less than zero. (Note 1)
3. Decimal overflow. 2 — Sum is greater than zero.
3 — Overflow.
Compare Decimal F9 | cp SS 1. Address error. 0 — Fields algeb. equal. 17.28 4 1.08L, + 0.42L,
2. Data error. 1 — 1st operand algeb. less than (Note 1)

2nd operand.
2 — 1st operand algeb. greater
than 2nd operand.

Legend: L, —number of bytes in first operand field.
L, —number of bytes in second operand field.

N — total number of bits shifted.
R — number of registers specified.

VvV xpuaddy

1144

SUMMARY OF INSTRUCTIONS (Cont'd)

Decimal Arithmetic Instructions (Cont'd)

Timing (usec)
Instruction Op1s) | Mnemonic | Format Interrupt Action Condition Code (Average and Includes Staticizing)
70/46
Divide Decimal FD | DP SS 1. Address error. Unchanged. 26.81 + 36.71L, — 35.14L, +
2. Data error. 5.40L, (L, — L,)
3. Decimal divide error.
Move with Offset F1 | MVO SS 1. Address error. Unchanged. 11.52 + 1.92L, + 0.96L,
Multiply Decimal FC | MP SS 1. Address error. Unchanged. 28.97 + 16.96L, — 14.35L, +
2. Data error. 2.34L, (L, — L,)
Pack F2 [PACK SS | 1. Address error. Unchanged. 9.36 4 1.92L, + 0.96L,
Subtract Decimal FB | SP SS 1. Address error. 0 — Diff, is zero. 15.84 4+ 1.80L, + 0.42L,
2. Data error. 1 — Diff. is less than zero. (Note 1)
3. Decimal overflow. 2 — Diff. is greater than zero.
3 — Overflow.
Unpack F3 UNPK SS 1. Address error. Unchanged. 10.38 + 0.96L, + 0.90L,
Zero and Add F8 | ZAP SS 1. Address error. 0 — Result is zero. 15.96 + 1.08L, + 0.42L,
2. Data error. 1 — Result is less than zero. (Note 1)
3. Decimal overflow. 2 — Result is greater than zero,
3 — Overflow.
Logical Instructions
54 N RX | 1. Address error. 0 — Result is zero. 8.40
1 — Result is not zero.
D4 | NC 58 2 — Not used. 12,07+ 2.22L
And 3 — Not used.
94 NI SI 6.96
14 | NR RR 5.28

Vv rpuaddy

182

8.40

66 | CL RX | 1. Address error. 0 — Operands equal.
1 — 1st operand less than 2nd
. D6 | CLC SS operand. 12.32 4 1.44B
Compare Logical 2 — 1st operand greater than (Note 2)
2nd operand.
95 CLI SI 3 — Not used.
15 CLR RR 6.0
4.8
Edit DE | ED SS 1. Address error. 0 — Indicates zero source field 13.44 4 3L, + 1.92L2, —
2. Data error. whether or not signif. is 0.12F — 0.6K
established.
1 — Non-zero result field with
signif. established to
indicate less than zero.
2 — Non-zero result field with
no signif. established to
indicate greater than zero.
3 — Not used.
Edit and Mark DF | EDMK KR 1. Address arror. 0 — Indicates zero source field 16.32 + 3L, + 1.92L, —
2. Data error. whether or not signif. is 0.12F — 0.6K
established.
1 — Non-zero result field with
signif. established to
indicate less than zero.
2 — Non-zero result field with
no signif. established to
indicate greater than zero.
3 —Not used.
57 X RX | 1. Address error. 0 — Result is zero. 8.40
1 — Result is not zero.
D7 | XC sSs 2 Not used. 12.07 4 2.22L
Exclusive Or 3 — Not used.
97 | XI SI 6.96
17 XR RR 5.28
Insert Character 43 IC RX | 1. Address error. Unchanged. 5.52
Load Address 41 LA RX | None. Unchanged. 7.92

Legend:

terminates before the L count is exhausted.

F — total number of field separating symbols in pattern field.

K — number of control characters in pattern field.

B — total number of bytes processed. This condition occurs if instruction

L, — total number of bytes specified by L field.
L, — number of bytes in first operand field.
L, — number of bytes in second operand field.

vV zpuaddy

444

SUMMARY OF INSTRUCTIONS (Cont'd)

Logical Instructions (Cont'd)

Timing (usec)
Instruction Op(1s) | Mnemonic | Format Interrupt Action Condition Code (Average and Includes Staticizing)
‘ 70/46
D2 | MVC SS 1. Address error. 12.06 + 1.44L
Move Unchanged.
92 MVI SI 5.04
Move Numerics D1 |MVN SS 1. Address error. Unchanged. 13.02 4 2.22L,
Move Zones D3 |MVZ SSs 1. Address error. Unchanged. 13.02 4 2.22L
56 (0] RX 1. Address error. 0 — Result is zero. 8.40
1 — Result is not zero.
D6 |0OC SS 2 — Not used. 12.07 4 2.221,
Or 3 — Not used.
96 O1 SI 6.96
16 OR RR 5.28
Shift Left Single 89 SLL RS None. Unchanged. Under 16 = 7.92 + 0.48 (N)
Logical 16 to 31 = 11.04 4- 0.48 (N-16)
32 to 47 = 14.16 4 0.48 (N-32)
48 to 63 = 17.28 4 0.48 (N-48)
Shift Right Single| 88 | SRL RS None. Unchanged. Under 16 = 8.88 4 0.48 (N)
Logical 16 to 31 = 11.04 4- 0.48 (N-16)
32 t0 47 = 13.20 4- 0.48 (N-32)
48 to 63 = 13.20 4 0.48 (N-48)
Shift Left Double 8D | SLDL RS 1. Address Error. Unchanged. Under 16 = 7.68 + 0.96 (N)
Logical 16 to 31 = 11.76 + 0.96 (N-16)
32 to 47 = 15.84 + 0.96 (N-32)
48 to 63 = 19.92 4 0.96 (N-48)
Shift Right Double] 8C | SRDL RS 1. Address Error. Unchanged. Under 16 = 7.44 4 0.96 (N)
Logical 16 to 31 = 10.56 + 0.96 (N-16)
32 to 47 = 13.68 + 0.96 (N-32)
48 t0 63 = 16.80 + 0.96 (N-48)
Store Character 42 | STC RX | 1. Address Error. Unchanged. 5.04

v mpusddy

€8¢

Test Under Mask 91 T™™ SI 1. Address Error. 0 — Selected bits all zero, or
mask all zero.
1 — Selected bits mixed zero
6.48
and one.
2 — Not used.
3 — Selected bits all one.
Translate DC | TR SsS 1. Address Error. Unchanged. 9.84 + 5.04L
Translate and Test{ DD | TRT SS 1. Address Error. 0 — All accessed function bytes
all zeros. '
1 — Non-zero function byte
encountered. 14.64 + 4.08B
2 — Last function byte non-zero.
3 — Not used.
Test and Set 93 TS SI 1. Machine check. 0 — Leftmost bit of byte
2. Addressing. specified is zero. 9
3. Power failure. 1 — Leftmost bit of byte 6.96
specified is one.)
Branching Instructions
45 BAL RX None. 5.52
Branch and Link Unchanged.
05 BALR RR Branch = 4.80
No Branch = 3.84
47 BC RX | None. Branch — 4.56
Branch on No Branch = 4.56
ors Unchanged.
Condition 07 | BCR RR Branch — 3.84
No Branch = 3.36
46 BCT RX | None. Branch = 7.92
No Branch = 6.96
Branch on Count Unchanged.
06 BCTR RR Branch = 5.76
No Branch = 5.28
Branch on 86 BXH RS None. Unchanged. Branch = 11.60
Index High No Branch = 11.12

Legend:

B — total number of bytes processed. This condition occurs if instruction terminates
before L count is exhausted.

L — total number of bytes specified by L field.
N — number of bits shifted.

V cpusddy

454

SUMMARY OF INSTRUCTIONS (Cont'd) »

Branching Instructions (Cont’d)

Timing (usec)

Instruction Op(16) | Mnemonic | Format Interrupt Action Condition Code (Average and Includes Staticizing)
70/46
Branch on Index 87 |BXLE RS | None. Unchanged. Branch = 11.60
Low or Equal No Branch = 11.60
Execute 44 EX RX 1. Address error. May be set by instruction being 6.96 + EX
modified and executed.
Floating-Point Arithmetic Instructions
Add Normalized 6A | AD RX | 1. A'ddl.'ess error. 0 — Result mantissa zero. 27.69
(Long) 2. Significance error. 1 — Result mantissa less than
2A | ADR RR | 3. Exponent overflow. zero. 22.63
4. Exponent underflow. 2 — Result mantissa greater
Add Normalized TA | AE RX than zero. 19.20
(Short) 3A | AER RR 3 — Result exponent overflow. 16.08
Add Unnormalized 6E | AW RX 1. A.ddzzess error. 0 — Result mant‘issa Zero. 26.81
(Long) 2. Significance error. 1 — Result mantissa less than
2E | AWR RR | 3. Exponent overflow. zero. 21.77
2 — Result mantissa greater
Add Unnormalized "E | AU RX than zero. 18.96
(Short) 3E | AUR RR 3 — Result exponent overflow. 15.84
69 CD RX | 1. Address error. 0 — Operands equal. 23.52
Compare (Long) 1 — Operand specified by 1st
29 | CDR RR address low. 18.48
— ified by 1
79 CE RX 2 — Operand speci ed by 1st 15.36
address high.
Compare (Short) 3 — Not used
39 CER RR - : 12.24
6D | DD RX | 1. Address error. 280.27
Divide (Long) 2. Exponent overflow.
2D | DDR RR | 3. Exponent underflow. 275.68
ivi . Unchanged.
D | DE RX 4. Divide error 83.00
Divide (Short)
3D | DER RR 79.88

Vv xipuaddy

144

Halve (Long) 24 HDR RR | 1. Address error. 8.16
Unchanged.
Halve (Short) 34 | HER RR 6.00
Load Complement 23 LCDR RR | 1. Address error. 0 — Result mantissa zero.
(Long) 1 — Result mantissa less than 8.16
zero.
Load Complement | 33 | LCER | RR 2— Result mantissa greater
(Short) than zero. 6.00
8 — Not used.
68 LD RX | 1. Address error. 13.68
Load (Long)
28 LDR RR 8.64
Unchanged.
78 | LE RX 9.84
Load (Short)
38 LER RR 6.72
Load Negative 21 LNDR RR | 1. Address error. 0 — Result mantissa zero. 7.68
(Long) 1 — Result mantissa less than .
Zero.
Load Negative 31 LNER RR 2 __ Not used. 5.52
(Short) 3 — Not used. ’
Load Positive 20 LPDR RR 1. Address error. 0 — Kesult mantissa zero. 768
(Long) 1 — Not used. :
2 — Result mantissa greater
Load Positive 30 | LPER RR than zero. 5.52
(Short) 3 — Not used. '
Load and Test 22 LTDR RR | 1. Address error. 0 — Result mantissa zero.
(Long) 1 — Result mantissa less than 8.16
Zero.
Load and Test 32 | LTER | RR 2— Result mantissa greater 600
Short an zero. X
(Short) 3 — Not used.
6C | MD RX | 1. Address error. 186.55
Multiply (Long) 2. Exponent overflow.
2C | MDR RR | 3. Exponent underflow. 181.51
Unchanged.
7C | ME RX 49.42
Multiply (Short)
3C | MER RR 46.40
Store (Long) 60 STD RX | 1. Address error. 11.28
Unchanged.
Store (Short) 70 STE RX 8.40

Legend: EX — object instruction execution time.

y wpusddy

9¢¢

SUMMARY OF INSTRUCTIONS (Cont'd)

Floating-Point Arithmetic Instructions (Cont'd)

Timing (usec)
Instruction Op«16) | Mnemonic | Format Interrupt Action Condition Code (Average and Includes Staticizing)
70/46
Subtract 6B | SD RX | 1. Address error. 0 — Result mantissa zero. 27.69
Normalized 2. Significance error. 1 — Result mantissa less than
(Long) 3. Exponent overflow. zero. 99,63
2B | SDR RR | 4. Exponent underflow. 2 — Result mantissa greater -
than zero.
Subtract 7B | SE RX 3 — Result exponent overflow. 19.20
Normalized)
(Short) 3B | SER RR 16.08
Subtract 6F | SW RX | 1. Address error. 0 — Result mantissa zero. 26.81
Unnormalized 2. Significance error. 1 — Result mantissa less than
(Long) 3. Exponent overflow. Zero. 21.77
2F | SWR RR 2 — Result mantissa greater
than zero.
Subtract 7F | 8U RX 3 — Result exponent overflow. 18.96
Unnormalized
(Short) 3F | SUR RR 15.84
Notes: 1. Time for L, > L, and no End Around Carry. Additional time must be added if L, > L,

or End Around Carry.

. If the two fields are equal B = L since all bytes must be examined. If the fields are

unequal the instruction is terminated upon examining the first pair of unequal bytes.

In this case, B is less than L.

wrap around.

. If Debug Mode, 19.20 4 EX.

. Each 127 words stored or loaded requires an extra 0.96 microseconds to effect

APPENDIX B

LIST OF PROGRAM
INTERRUPTS

- - State . Timing (If Interrupt Taken)
Priority Condition Inifiated Explanation
70/46
1 | Power Failure 4 Power failure in pro- 11.64
cessor or memory. 6
2 | Machine Check 4 Parity error or equip- 1164
ment malfunction. *
3 | External Signal 1 3 11.64
4 External Sig'nal 2 3 Signal received on 11.64
5 |External Signal3 | 38 one of the six ex- 11.64
- ternal lines asso-
6 | External Signal 4 3 ciated with the di- 11.64
7 | External Signal 5 3 rect-control feature. 11.64
8 | External Signal 6 3 11.64
9 | Interval Timer 3 Lapse of Interval Timer. 14.64
10 | Selector1
Terminate 3 18.86 + CRT
11 | Selector 2
Terminate 3 18.86 + CRT
12 | Selector 3 A device on the asso-
Terminate 79/46 3 ciated selector or 18.86 + CRT
13 | Not Specified 3 multiplex'or channel
has terminated.
14 | Not Specified 3
15 | Not Specified 3
16 | Multiplexor
Terminate 3 25.90 + CRT
17 | Elapsed Time Elapsed time count has
Clock expired. 13.08
18 | Console Request Manual request for
interrupt by the oper- 13.08
ator.
19 | Paging Error 3 Improper use of 1
Virtual Memory. 5.60
20 | Paging Queue 3 Translation Table
Interrupt. 15.60
21 | Supervisor Call 3 Result of execution of
Supervisor Call in-
struction to utilize pro- 13.08
grammed routines.
22 | Privileged Privileged instruction
Operation 3 attempted in non- 13.08
privileged mode.
23 | Op-Code Trap 3 Op Code attempted
which is invalid for 13.08
this model.
24 | Address Error 3 Invalid address, speci-
fication, or memory 13.08
protect violation.
25 | Data Error 3 Sign of operand incor-
rect in decimal
arithmetic and editing, 13.08
or incorrect field over-
lap.

237

LIST OF PROGRAM

INTERRUPTS
(Cont'd)

Appendix B

Priority

Condition

State
Initiated

Explanation

Timing (If iInterrupt Taken)
70/46

26 |Exponent Overflow

Result characteristic
of floating-point oper-
ation is greater than
127.

13.08

27 | Divide Error

Rules pertaining to
Divide instruction have
been violated.

13.08

28 | Significance Error

Result of floating-point
or subtract has zero

fraction.

13.08

29 |Exponent
Underflow

Result characteristic
of floating-point oper-
ation is less than zero.

13.08

30 |Decimal Overflow

Result field is too small
to contain the result of
a decimal operation.

13.08

31 | Fixed-Point
Overflow

High-order carry or
high-order significant
bits lost in fixed-point
operation.

13.08

32 |Test Mode

Allows program con-
trol over processor
during program test-
ing.

13.08

Priorities 1 thru 16

If interrupt not taken.

5.76

Priorities 17 thru 32

If interrupt not taken.

5.76

238

APPENDIX C

INPUT/OUTPUT
SERVICE REQUEST

1/0 Channel Service Times and
Processing Mode

Spectra 70/46 Processor Times
(Microseconds)

70/46
A. Selector Basic Times
1. Read/Write (Scratch Pad) NA
2. Read/Write (Main Memory Normal) 1.44 (2 bytes)
3. Read/Write (Main Memory less than 4-bytes; NA
CCW specified)
4. End Service 3.12
. Selector Add’l Times (to be added to above times)
1. Data Chaining 7.20 (read)
8.16 (write) (©)
2. Command Chaining 3.04 (read)
6.0 (write) (©
3. Transfer in Channel 3.84
4. Status Modifier 1.92
5. Incomplete Read (Device Terminated in middle of NA
word; not indicated by CCW)
. Multiplexor Basic Times
1. Read/Write (Multiplex Mode; non-catch-up) 13.92=)
2. Read/Write (Burst Mode) 1.92(=)
3. END SERVICE (Mux Mode) 10.08(a; 4
4. END SERVICE (Burst Mode) 7.68(a, d)
. Multiplexor Add’l Times (to be added to above items)
1. Data Chaining Mux Mode 12.96
2. Data Chaining Burst Mode 13.44
3. Command Chaining Mux Mode 12.96™
4. Command Chaining Burst Mode 6.72(b)
5. Transfer in Channel 4.32
6. Status Modifier 1.92
7. Catch-up each additional byte 1,92
. Processing Mode Times
1. START I1/0 (addr. the selector) 32.64(h)
2. START I/0 (addr. the multiplexor) 39.6(b)
3. Multiplexor Program Interrupt 25.90(®)
4. Selector Program Interrupt 18.86(»

NOTES:

a. Because of odd/even ROM addressing, banking may result in loss of 2 EO cycles
(or 0.96 us); which will probably occur both at the beginning and at the ending
of the service; randomly this is a 50% change, or an additional time of 0.48 us.

b. Times are for processor servicing and are extended by Channel Response Time

(CRT).

¢. The additional time required for the command and data chaining for write com-
mands is needed for buffer loading in the selector channel on the 70/46.

d. Buffered devices require two (2) end services for multiplexor operations. If the
multiplexor is operating in the Burst Mode, the first end service is done in the
Burst Mode and the second end service is done in the normal Mux Mode.

239

EXTENDED BINARY-CODED-DECIMAL INTERCHANGE CODE

APPENDIX D

(EBCDIC)
0123 = 4567 >
HEX - 0 1 2 3 4 5 6 7 8 9 A B C D E F
J 0000 (0001 | 0010 | 0011 0100 | 0101 | 0110 | O111 1000 | 1001 | 1010 | 1011 1100 [1101 1110 | 1111
0 0000 | NUL PF HT | LC | DEL
1 0001 RES | NL | BS IL
2 0010 BYP | LF |EOB | PRE SM
3 0011 PN | RS UC | EOT
4 | 0100 | SPACE ¢ < (+ [
5 | o101 & ! $ *) ; -
0110 - / A , % | __ | > ?
7 | oin # @ ' = "
8 1000 a c d e f h i
9 1001 j k 1 m n o q r
A 1010 8 t u v w y z
B 1011
c 1100 B C D E F G H 1
D 1101 J K L M N (0] P Q R
E 1110 S T U v w X Y Z
F 1111 0 1 2 3 4 5 6 7 8 9 -
Bit Positions: 0 1 2 3 4 5 6 7
Significance: 27 26 25 24 23 22 21 20
Control Characters:
NUL — All Zero-Bits BYP — Bypass
PF — Punch Off LF — Line Feed
HT — Horizontal Tab EOB —End of Block
LC — Lower Case PRE — Prefix
DEL — Delete SM — Set Mode
RES — Restore PN — Punch On
NL — New Line RS — Reader Stop
BS — Backspace UC — Upper Case
IL —Idle EOT — End of Transmission

240

APPENDIX E

USA STANDARD CODE FOR INFORMATION INTERCHANGE (USASCII)
(Extended to 8 Bits)

76X5 € 4321 >
HEX - 0 1 2 3 4 5 6 7 8 9 A B C D € F
! 0000 ! 0001 0010 | 0011 | 0100 | 0101 | 0110 | 0¥11 [1000 [1001 | 1010 | 1011 (1100 [1107 (1110 | 1111

o 0000 | NUL | SOH | STX [ETX | EOT |ENQ |ACK |BEL | BS HT | LF | VT FF | CR | SO SI

1 0001 | DLE | DC1 | DC2 | DC3 | DC4 |[NAK | SYN |ETB |CAN |EM [SUB|ESC | FS |GS | RS | US

2 0010

3 0011

4 0100 SP ! ” # $ % & ! () * +) - . /
5 0101 0 1 2 3 4 5 6 7 8 9 : ; < = > ?
6 o110

7 o1

8 1000

9 1001

A 1010 @ A B C D E F G H 1 J K L M N 0
B 10mn P Q R S T U v w X Y Z [AN] A L
< 1100

D 101

E 1110 N a b c d e f g h i j k 1 m n o
F nn P q r s t u A4 w X y z { | } ~ DEL

Bit Positions: 7 6 X 5 4 3 2 1
Significance: 27 26 25 21 23 22 21 2

Control Characters:

NUL — Null DC3 — Device Control 3
SOH — Start of Heading (CC) DC4 — Device Control 4 (stop)
STX — Start of Text (CC) NAK — Negative Acknowledge (CC)
ETX — End of Text (CC) SYN — Synchronous Idle (CC)
EOT — End of Transmission (CC) ETB — End of Transmission Block (CC)
ENQ — Enquiry (CC) CAN — Cancel
ACK — Acknowledge (CC) EM —End of Medium
BEL — Bell (audible or attention signal) SUB — Substitute
BS — Backspace (FE) ESC — Escape
HT — Horizontal Tabulation FS — File Separator (IS)
(punch card skip) (FE) GS — Group Separator (IS)
LF — Line Feed (FE) RS — Record Separator (IS)
VT — Vertical Tabulation (FE) US — Unit Separator (IS)
FF — Form Feed (FE) DEL — Delete
CR — Carriage Return (FL)
SO — Shift Out SP — Space (normally non-printing)
SI — Shift In
DLE — Data Link Kscape (CC) (CC) — Communication Control
DC1 — Device Control 1 (FE) — Format Effector
DC2 — Device Control 2 (IS) — Information Separator

241

APPENDIX F
CHARACTER CODES

Character Set

Printer
Decimal | Hexadecimal EBCDIC Punch .
Graphics

Combination
0 00 0000 0000 12,0,9,8,1
1 01 0000 0001 12,9,1
2 02 0000 0010 12,9,2
3 03 0000 0011 12,9,3
4 04 0000 0100 12,94
5 05 0000 0101 12,9,6
6 06 0000 0110 12,9,6
7 07 0000 0111 12,9,7
8 08 0000 1000 12,9,8
9 09 0000 1001 12,9,8,1
10 0A 0000 1010 12,9,8,2
11 0B 0000 1011 12,9,8,3
12 0C 0000 1100 12,9,8,4
13 0D 0000 1101 12,9,8,5
14 OE 0000 1110 12,9,8,6
15 oF 0000 1111 12,9,8,7
16 10 0001 0000 12,11,9,8,1
17 11 0001 0001 11,9,1
18 12 0001 0010 11,9,2
19 13 0001 0011 11,9,3
20 14 0001 0100 11,94
21 15 0001 0101 11,9,5
22 16 0001 0110 11,9,6
23 17 0001 0111 11,9,7
24 18 0001 1000 11,9,8
25 19 0001 1001 11,9,8,1
26 1A 0001 1010 11,9,8,2
27 1B 0001 1011 11,9,8,3
28 1C 0001 1100 11,9,84
29 1D 0001 1101 11,9,8,5
30 1E 0001 1110 11,9,8,6
31 1F 0001 1111 11,9,8,7
32 20 0010 0000 11,0,9,8,1
33 21 0010 0001 0,9,1
34 22 0010 0010 0,9,2
35 23 0010 0011 0,9,3
36 24 0010 0100 0,94
37 25 0010 0101 0,9,5
38 26 0010 0110 0,9,6
39 27 0010 0111 0,9,7
40 28 0010 1000 0,9,8
41 29 0010 1001 0,9,8,1
42 2A 0010 1010 0,9,8,2
43 2B 0010 1011 0,9,8,3
44 2C 0010 1100 0,9,8,4
45 2D 0010 1101 0,9,8,5
46 2E 0010 1110 0,9,8,6
47 2F 0010 1111 0,9,8,7
48 30 0011 0000 12,11,0,9,8,1
49 31 0011 0001 9,1
50 32 0011 0010 9,2
51 33 0011 0011 9,3
52 34 0011 0100 94
53 35 0011 0101 9,6
54 36 0011 0110 9,6

242

Appendix F

CHARACTER CODES (Cont.)

Character Set Printer
Decimal | Hexadecimal EBCDIC Punch Graphics
Combination
55 37 0011 0111 9,7
56 38 0011 1000 9,8
57 39 0011 1001 9,8,1
58 3A 0011 1010 9,8,2
59 3B 0011 1011 9,8,3
60 3C 0011 1100 9,8,4
61 3D 0011 1101 9,8,5
62 3E 0011 1110 9,8,6
63 3F 0011 1111 9,8,7
64 40 0100 0000 Space
65 41 0100 0001 12,0,9,1
66 42 0100 0010 12,0,9,2
67 43 0100 0011 12,0,9,3
68 44 0100 0100 12,0,9,4
69 45 0100 0101 12,0,9,5
70 46 0100 0110 12,0,9,6
1 47 0100 0111 12,0,9,7
72 48 0100 1000 12,0,9,8
73 49 0100 1001 12,8,1
74 4A 0100 1010 12,8,2 ¢ (cents)
75 4B 0100 1011 12,83 . (period)
76 4C 0100 1100 12,8,4 < (Less than)
M 4D 0100 1101 12,8,5 ((open parenthesis)
8 4E 0100 1110 12,8,6 + (plus)
79 4F 0100 1111 12,8,7 | (vertical)
80 50 0101 0000 12 & (ampersand)
81 51 0101 0001 12,11,9,1
82 52 0101 0010 12,11,9,2
83 53 0101 0011 12,11,9,3
84 54 0101 0100 12,11,9,4
85 55 0101 0101 12,11,9,5
86 56 0101 0110 12,11,9,6
87 57 0101 0111 12,11,9,7
88 58 0101 1000 12,11,9,8
89 59 0101 1001 11,8,1
90 KR\ 0101 1010 11,8,2 ! (exclamation)
91 5B 0101 1011 11,8,3 $ (dollar sign)
92 5C 0101 1100 11,84 * (asterisk)
93 5D 0101 1101 11,8,5) (close parenthesis)
94 5E 0101 1110 11,8,6 ; (semicolon)
95 5F 0101 1111 11,8,7 T (logical NOT)
96 60 0110 0000 11 — (minus)
97 61 0110 0001 0,1 / (slash)
98 62 0110 0010 11,0,9,2
99 63 0110 0011 11,0,9,3
100 64 0110 0100 11,0,9,4
101 65 0110 0101 11,0,9,5
102 66 0110 0110 11,0,9,6
103 67 0110 0111 11,0,9,7
104 68 0110 1000 11,0,9,8
105 69 0110 1001 0,8,1
106 6A 0110 1010 12,11 A (logical AND)
107 6B 0110 1011 0,8,3 , (comma)
108 6C 0110 1100 0,8,4 % (percent)
109 6D 0110 1101 0,8,5 __ (underline)

243

CHARACTER CODES (Cont.)

Character Set Printer
Decimal | H decimal EBCDIC’ Punch Graphics
Combination
110 6E 0110 1110 0,8,6 > (greater than)
111 6F 0110 1111 0,8,7 ? (question mark)
112 70 0111 0000 12,11,0
113 71 0111 0001 12,11,0,9,1
114 72 0111 0010 12,11,0,9,2
115 73 0111 0011 12,11,0,9,3
116 74 0111 0100 12,11,0,9,4
117 75 0111 0101 12,11,0,9,5
118 76 0111 0110 12,11,0,9,6
119 s 0111 0111 12,11,0,9,7
120 78 0111 1000 12,11,0,9,8
121 79 0111 1001 8,1
122 TA 0111 1010 8,2 : (colon)
123 B 0111 1011 8,3 # (number sign)
124 7C 0111 1100 8,4 @ (at the rate of)
125 (4 0111 1101 8,5 " (apostrophe)
126 TE 0111 1110 8,6 = (equals)
127 F 0111 1111 8,7 “ (quote)
128 80 1000 0000 12,0,8,1
129 81 1000 0001 12,0,1
130 82 1000 0010 12,0,2
131 83 1000 0011 12,0,3
132 84 1000 0100 12,0,4
133 85 1000 0101 12,0,5
134 86 1000 0110 12,0,6
135 87 1000 0111 12,0,7
136 88 1000 1000 12,0,8
137 89 1000 1001 12,0,9
138 8A 1000 1010 12,0,8,2
139 8B 1000 1011 12,0,8,3
140 8C 1000 1100 12,0,8,4
141 8D 1000 1101 12,0,8,6
142 8E 1000 1110 12,0,8,6
143 8F 1000 1111 12,0,8,7
144 90 1001 0000 12,11,8,1
145 91 1001 0001 12,11,1
146 92 1001 0010 12,11,2
147 93 1001 0011 12,11,3
148 94 1001 0100 12,114
149 95 1001 0101 12,11,56
150 96 1001 0110 12,11,6
151 97 1001 0111 12,11,7
152 98 1001 1000 12,11,8
153 99 1001 1001 12,11,9
154 9A 1001 1010 12,11,8,2
155 9B 1001 1011 12,11,8,3
166 9C 1001 1100 12,1184
157 9D 1001 1101 12,11,8,5
158 9E 1001 1110 12,11,8,6
159 9F 1001 1111 12,11,8,7
160 A0 1010 0000 11,0,8,1
161 Al 1010 0001 11,0,1
162 A2 1010 0010 11,0,2
163 A3 1010 0011 11,0,3
164 A4 1010 0100 11,0,4

244

[N

17
34

68
137
274
549

1 099

oo N

33
67
134

268
536
073
147

294
589
179
359

719
438
877
755

511

[

16
32

65
131
262
524

048
097
194
388

777
554
108
217

435
870
741
483

967
934
869
738

476
953
906
813

627

576
152
304
608

216
432
864
728

456
912
824
648

296
592
184
368

736

944
888

776

whhHE O 3

~N oL B

10
11

12
13
14
15

16
17
18
19

20
21
22
23

24
25
26
27

28
29
30
31

32
33
34
35

36

38
39

40

APPENDIX G
POWERS OF TWO TABLE

2"“

1.0
0.5
0.25
0.125

0.062 5
0.031 25
0.015 625
0.007 812 5

0.003 906 25
0.001 953 125
0.000 976 562 5
0.000 488 281 25

0.000 244 140 625
0.000 122 070 312 5
0.000 061 035 156 25
0.000 030 517 578 125

0.000 015 258 789 062 5
0.000 007 629 394 531 25
0.000 003 814 697 265 625
0.000 001 907 348 632 812

0.000 000 953 674 316 406
0.000 000 476 837 158 203
0.000 000 238 418 579 101
0.000 000 119 209 289 550

0.000 000 059 604 644 775
0.000 000 029 802 322 387
0.000 000 014 901 161 193
0.000 000 007 450 580 596

0.000 000 003 725 290 298
0.000 000 001 862 645 149
0.000 000 000 931 322 574
0.000 000 000 465 661 287

0.000 000 000 232 830 643
0.000 000 000 116 415 321
0.000 000 000 058 207 660
0.000 000 000 029 103 830

0.000 000 000 014 551 915
0.000 000 000 007 275 957
0.000 000 000 003 637 978
0.000 000 000 0OO1 818 989

0,000 000 000 000 909 494

247

25

125
562
781

390
695
847
923

461
230
615
307

653
826
913
456

228
614
807
403

701

625
312
656
828

914
957
478
739

869
934
467
733

366
183
091
545

772

25
125

062
031
515
257

628
814
407
703

851
425
712
856

928

45
625
812

906
453
226
613

806
903
951
475

237

5

25
125
562 5
281 25

640 625
320 312 5
660 156 25

830 078 125

915 039 062 5

APPENDIX H
HEXADECIMAL-DECIMAL NUMBER CONVERSION

General , ¢ The table provides for direct conversion of hexadecimal and decimal
. numbers in these ranges:

Hexadecimal Decimal
000 to FFF 0000 to 4095
Hexadecimal- 4 In the table, the decimal value appears at the intersection of the row

Decimal Number representing the most significant hexadecimal digits (16* and 16') and
Conversion Table the column representing the least significant hexadecimal digit (16v).

Example: @116 = 3105,

HEX 0 1 2

CoO 3072 3073 3074
C1 3088 3089 3090
C2 3104 (3105) 3106
C3 3120 3121 3122

For numbers outside the range of the table, add the following values to
the table figures:

Hexadecimal Decimal Hexadecimal Decimal
1000 4,096 C000 49,152
2000 8,192 D000 53,248
3000 12,288 E000 57,344
4000 16,384 F000 61,440
‘ 5000 20,480 10000 65,536
| 6000 24,576 20000 131,072
| 7000 28,672 30000 196,608
| 8000 32,768 40000 262,144
| 9000 36,864 50000 327,680
; A000 40,960 60000 393,216
i B000 45,056 70000 458,752
Example: 1C21,, = 7201,,

Hexadecimal Decimal

C21 3105
41000 +-4096
1C21 7201

248

0

0000
0016
0032
0048
0064
0080
0096
0112
0128
0144
0160
0176
0192
0208
0224
0240

0256
0272
0288
0304
0320
0336
0352
0368
0384
0400
0416
0432
0448
0464
0480
0496

0512
0528
0544
0560
0576
0592
0608
0624
0640
0656
0672
0688
0704
0720
0736
0752

0768
0784
0800
0816
0832
0848
0864
0880
0896
0912
0928
0944
0960
0976
0992
1008

HEXADECIMAL-DECIMAL NUMBER CONVERSION TABLE

1

0001
0017
0033
0049
0065
0081
0097
0113
0129
0145
0161
0177
0193
0209
0225
0241

0257
0273
0289
0305
0321
0337
0353
0369
0385
0401
0417
0433
0449
0465
0481
0497

0513
0529
0545
0561
0577
0593
0609
0625
0641
0657
0673
0689
0705
0721
0737
0753

0769
0785
0801
0817
0833
0849
0865
0881
0897
0913
0929
0945
0961
0977
0993
1009

2

0002
0018
0034
0050
0066
0082
0098
0114
0130
0146
0162
0178
0194
0210
0226
0242

0258
0274
0290
0306
0322
0338
0354
0370
0386
0402
0418
0434
0450
0466
0482
0498

0514
0530
0546
0562
0578
0594
0610
0626
0642
0658
0674
0690
0706
0722
0738
0754

0770
0786
0802
0818
0834
0850
0866
0882
0898
0914
0930
0946
0962
0978
0994
1010

3

0003
0019
0035
0051
0067
0083
0099
0115
0131
0147
0163
0179
0195
0211
0227
0243

0259
0275
0291
0307
0323
0339
0355
0371
0387
0403
0419
0435
0451
0467
0483
0499

0515
0531
0547
0563
0579
0595
0611
0627
0643
0659
0675
0691
0707
0723
0739
0755

0771
0787
0803
0819
0835
0851
0867
0883
0899
0915
0931
0947
0963
0979
0995
1011

4

0004
0020
0036
0052
0068
0084
0100
0116
0132
0148
0164
0180
0196
0212
0228
0244

0260
0276
0292
0308
0324
0340
0356
0372
0388
0404
0420
0436
0452
0468
0484
0500

0516
0532
0548
0564
0580
0596
0612
0628
0644
0660
0676
0692
0708
0724
0740
0756

0772
0788
0804
0820
0836
0852
0868
0884
0900
0916
0932
0948
0964
0980
0996
1012

5

0005
0021
0037
0053
0069
0085
0101
0117
0133
0149
0165
0181
0197
0213
0229
0245

0261
0277
0293
0309
0325
0341
0357
0373
0389
0405
0421
0437
0453
0469
0485
0501

0517
0533
0549
0565
0581
0597
0613
0629
0645
0661
0677
0693
0709
0725
0741
0757

0773
0789
0805
0821
0837
0853
0869
0885
0901
0917
0933
0949
0965
0981
0997
1013

6

0006
0022
0038
0054
0070
0086
0102
0118
0134
0150
0166
0182
0198
0214
0230
0246

0262
0278
0294
0310
0326
0342
0358
0374
0390
0406
0422
0438
0454
0470
0486
0502

0518
0534
0550
0566
0582
0598
0614
0630
0646
0662
0678
0694
0710
0726
0742
0758

0774
0790
0806
0822
0838
0854
0870
0886
0902
0918
0934
0950
0966
0982
0998
1014

7

0007
0023
0039
0055
0071
0087
0103
0119
0135
0151
0167
0183
0199
0215
0231
0247

0263
0279
0295
0311
0327
0343
0359
0375
0391
0407
0423
0439
0455
0471
0487
0503

0519
0535
0551
0567
0583
0599
0615
0631
0647
0663
0679
0695
0711
0727
0743
0759

0775
0791
0807
0823
0839
0855
0871
0887
0903
0919
0935
0951
0967
0983
0999
1015

249

8

0008
0024
0040
0056
0072
0088
0104
0120
0136
0152
0168
0184
0200
0216
0232
0248

0264
0280
0296
0312
0328
0344
0360
0376
0392
0408
0424
0440
0456
0472
0488
0504

0520
0536
0552
0568
0584
0600
0616
0632
0648
0664
0680
0696
0712
0728
0744
0760

0776
0792
0808
0824
0840
0856
0872
0888
0904
0920
0936
0952
0968
0984
1000
1016

9

0009
0025
0041
0057
0073
0089
0105
0121
0137
0153
0169
0185
0201
0217
0233
0249

0265
0281
0297
0313
0329
0345
0361
0377
0393
0409
0425
0441
0457
0473
0489
0505

0521
0537
0553
0569

0585
0601
0617
0633
0649
0665
0681
0697
0713
0729
0745
0761

0777
0793
0809
0825
0841
0857
0873
0889
0905
0921
0937
0953
0969
0985
1001
1017

A

0010
0026
0042
0058
0074
0090
0106
0122
0138
0154
0170
0186
0202
0218
0234
0250

A

0266
0282
0298
0314
0330
0346
0362
0378
0394
0410
0426
0442
0458
0474
0490
0506

0522
0538
0554
0570
0586
0602
0618
0634
0650
0666
0682
0698
0714
0730
0746
0762

0778
0794
0810
0826
0842
0858
0874
0890
0906
0922
0938
0954
0970
0986
1002
1018

B

0011
0027
0043
0059
0075
0091
0107
0123
0139
0155
0171
0187
0203
0219
0235
0251

0267
0283
0299
0315
0331
0347
0363
0379
0395
0411
0427
0443
0459
0475
0491
0507

0523
0539
0555
0571
0587
0603
0619
0635
0651
0667
0683
0699
0715
0731
0747
0763

0779
0795
0811
0827
0843
0859
0875
0891
0907
0923
0939
0955
0971
0987
1003
1019

C

0012
0028
0044
0060
0076
0092
0108
0124
0140
0156
0172
0188
0204
0220
0236
0252

0268
0284
0300
0316
0332
0348
0364
0380
0396
0412
0428
0444
0460
0476
0492
0508

0524
0540
0556
0572
0588
0604
0620
0636
0652
0668
0684
0700
0716
0732
0748
0764

0780
0796
0812
0828
0844
0860
0876
0892
0908
0924
0940
0956
0972
0988
1004
1020

Appendixz H

D

0013
0029
0045
0061
0077
0093
0109
0125
0141
0157
0173
0189
0205
0221
0237
0253

0269
0285
0301
0317
0333
0349
0365

0381
0397

0413
0429
0445
0461
0477
0493
0509

0525
0541
0557
0573
0589
0605
0621
0637
0653
0669
0685
0701
0717
0733
0749
0765

0781
0797
0813
0829
0845
0861
0877
0893
0909
0925
0941
0957
0973
0989
1005
1021

E

0014
0030
0046
0062
0078
0094
0110
0126
0142
0158
0174
0190
0206
0222
0238
0254

0270
0286
0302
0318
0334
0350
0366

0382
0398

0414
0430
0446
0462
0478
0494
0510

0526
0542
0558
0574
0590
0606
0622
0638
0654
0670
0686
0702
0718
0734
0750
0766

0782
0798
0814
0830
0846
0862
0878
0894
0910
0926
0942
0958
0974
0990
1006
1022

F

0015
0031
0047
0063
0079
0095
0111
0127
0143
0159
0175
0191
0207
0223
0239
0255

Cc271
0287
0303
0319
0335
0351
0367
0383
0399
0415
0431
0447
0463
0479
0495
0511

0527
0543
0559
0575
0591
0607
0623
0639
0655
0671
0687
0703
0719
0735
0751
0767

0783
0799
0815
0831
0847
0863
0879
0895
0911
0927
0943
0959
0975
0991
1007
1023

70
71
72
73
74
75

77
78
79
7A
7B
7C
7D

7F

Appendix H

HEXADECIMAL-DECIMAL NUMBER CONVERSION TABLE (Cont'd)

1024
1040
1056
1072
1088
1104
1120
1136
1152
1168
1184
1200
1216
1232
1248
1264

1280
1296
1312
1328
1344
1360
1376
1392
1408
1424
1440
1456
1472
1488
1504
1520

1536
1552
1568
1584
1600
1616
1632
1648
1664
1680
1696
1712
1728
1744
1760
1776

1792
1808
1824
1840
1856
1872
1888
1904
1920
1936
1952
1968
1984
2000
2016
2032

1025
1041
1057
1073
1089
1105
1121
1137
1153
1169
1185
1201
1217
1233
1249
1265

1281
1297
1313
1329
1345
1361
1377
1393
1409
1425
1441
1457
1473
1489
1505
1521

1537
1553
1569
1585
1601
1617
1633
1649
1665
1681
1697
1713
1729
1745
1761
1777

1793
1809
1825
1841
1857
1873
1889
1905
1921
1937
1953
1969
1985
2001
2017
2033

1026
1042
1058
1074
1090
1106
1122
1138
1154
1170
1186
1202
1218
1234
1250
1266

1282
1298
1314
1330
1346
1362
1378
1394
1410
1426
1442
1458
1474
1490
1506
1522

1538
1554
1570
1586
1602
1618
1634
1650
1666
1682
1698
1714
1730
1746
1762
1778

1794
1810
1826
1842
1858
1874
1890
1906
1922
1938
1954
1970
1985
2002
2018
2034

3

1027
1043
1059
1075
1091
1107
1123
1139
1155
1171
1187
1203
1219
1235
1251
1267

1283
1299
1315
1331
1347
1363
1379
1395
1411
1427
1443
1459
1475
1491
1507
1523

1539
1555
1571
1587
1603
1619
1635
1651
1667
1683
1699
1715
1731
1747
1763
1779

1795
1811
1827
1843
1859
1875
1891
1907
1923
1939
1955
1971
1987
2003
2019
2035

1028
1044
1060
1076
1092
1108
1124
1140
1156
1172
1188
1204
1220
1236
1252
1268

1284
1300
1316
1332
1348
1364
1380
1396
1412
1428
1444
1460
1476
1492
1508
1524

1540
1556
1572
1588
1604
1620
1636
1652
1668
1684
1700
1716
1732
1748
1764
1780

1796
1812
1828
1844
1860
1876
1892
1908
1924
1940
1956
1972
1988
2004
2020
2036

1029
1045
1061
1077
1093
1109
1125
1141
1157
1173
1189
1205
1221
1237
1253
1269

1285
1301
1317
1333
1349
1365
1381
1397
1413
1429
1445
1461
1477
1493
1509
1525

1541
1557
1573
1589
1605
1621
1637
1653
1669
1685
1701
1717
1733
1749
1765
1781

1797
1813
1829
1845
1861
1877
1893
1909
1925
1941
1957
1973
1989
2005

2021

2037

1030
1046
1062
1078
1094
1110
1126
1142
1158
1174
1190
1206
1222
1238
1254
1270

1286
1302
1318
1334
1350
1366
1382
1398
1414
1430
1446
1462
1478
1494
1510
1526

1542
1558
1574
1590
1606
1622
1638
1654
1670
1686
1702
1718
1734
1750
1766
1782

1798
1814
1830
1846
1862
1878
1894
1910
1926
1942
1958
1974
1990
2006
2022
2038

1031
1047
1063
1079
1095
1111
1127
1143
1159
1175
1191
1207
1223
1239
1255
1271

1287
1303
1319
1335
1351
1367
1383
1399
1415
1431
1447
1463
1479
1495
1511
1527

1543
1559
1575
1591
1607
1623
1639
1655
1671
1687
1703
1719
1735
1751
1767
1783

1799
1815
1831
1847
1863
1879
1895
1911
1927
1943
1959
1975
1991
2007
2023
2039

250

1032
1048
1064
1080
1096
1112
1128
1144
1160
1176
1192
1208
1224
1240
1256
1272

1288
1304
1320
1336
1352
1368
1384
1400
1416
1432
1448
1464
1480
1496
1512
1528

1544
1560
1576
1592
1608
1624
1640
1656
1672
1688
1704
1720
1736
1752
1768
1784

1800
1816
1832
1848
1864
1880
1896
1912
1928
1944
1960
1976
1992
2008
2024
2040

1033
1049
1065
1081
1097
1113
1129
1145
1161
1177
1193
1209
1225
1241
1257
1273

1289
1305
1321
1337
1353
1369
1385
1401
1417
1433
1449
1465
1481
1497
1513
1529

1545
1561
1577
1593
1609
1625
1641
1657
1673
1689
1705
1721
1737
1753
1769
1785

1801
1817
1833
1849
1865
1881
1897
1913
1929
1945
1961
1977
1993
2009
2025
2041

1034
1050
1066
1082
1098
1114
1130
1146
1162
1178
1194
1210
1226
1242
1258
1274

1290
1306
1322
1338
1354
1370
1386
1402
1418
1434
1450
1466
1482
1498
1514
1530

1546
1562
1578
1594
1610
1626
1642
1658
1674
1690
1706
1722
1738
1754
1770
1786

1802
1818
1834
1850
1866
1882
1898
1914
1930
1946
1962
1978
1994
2010
2026
2042

1035
1051
1067
1083
1099
1115
1131
1147
1163
1179
1195
1211
1227
1243
1259
1275

1291
1307
1323
1339
1355
1371
1387
1403
1419
1435
1451
1467
1483
1499
1515
1531

1547
1563
1579
1595
1611
1627
1643
1659
1675
1691
1707
1723
1739
1755
1771
1787

1803
1819
1835
1851
1867
1883
1899
1915
1931
1947
1963
1979
1995
2011
2027
2043

1036
1052
1068
1084
1100
1116
1132
1148
1164
1180
1196
1212
1228
1244
1260
1276

1292
1308
1324
1340
1356
1372
1388
1404
1420
1436
1452
1468
1484
1500
1516
1532

1548
1564
1580
1596
1612
1628
1644
1660
1676
1692
1708
1724
1740
1756
1772
1788

1804
1820
1836
1852
1868
1884
1900
1916
1932
1948
1964
1980
1996
2012
2028
2044

D

1037
1053
1069
1085
1101
1117
1133
1149
1165
1181
1197
1213
1229
1245
1261
1277

1293
1309
1325
1341
1357
1373
1389
1405
1421
1437
1453
1469
1485
1501
1517
1533

1549
1565
1581
1597
1613
1629
1645
1661
1677
1693
1769
1725
1741
1757
1773
1789

1805
1821
1837
1853
1869
1885
1901
1917
1933
1949
1965
1981
1997
2013
2029
2045

E

1038
1054
1070
1085
1102
1118
1134
1150
1166
1182
1198
1214
1230
1246
1262
1278

1294
1310
1326
1342
1358
1374
1390
1406
1422
1438
1454
1470
1486
1502
1518
1534

1550
1566
1582
1598
1614
1630
1646
1662
1678
1694
1710
1726
1742
1758
1774
1790

1806
1822
1838
1854
1870
1886
1902
1918
1934
1950
1966
1982
1998
2014
2030
2046

1039
1055
1071
1087
1103
1119
1135
1151
1167
1183
1199
1215
1231
1247
1263
1279

1295
1311
1327
1343
1359
1375
1391
1407
1423
1439
1455
1471
1487
1503
1519
1535

1551
1567
1583
1599
1615
1631
1647
1663
1679
1695
1711
1727
1743
1759
1775
1791

1867
1823
1839
1855
1871
1887
1903
1919
1935
1951
1967
1983
1999
2015
2031
2047

90
91
92

94
95
96
97
98
99
9A
9B
9C
9D
9E
9F

HEXADECIMAL-DECIMAL NUMBER CONVERSION TABLE

0

2048
2064
2080
2096
2112
2128
2144
2160
2176
2192
2208
2224
2240
2256
2272
2288

2304
2320
2336
2352
2368
2384
2400
2416
2432
2448
2464
2480
2496
2512
2528
2544

2560
2576
2592
2608
2624
2640
2656
2672
2688
2704
2720
2736
2752
2768
2784
2800

2816
2832
2848
2864
2880
2896
2912
2928
2944
2960
2976
2992
3008
3024
3040
3056

1

2049
2065
2081
2097
2113
2129
2145
2161
2177
2193
2209
2225
2241
2257
2273
2289

2305
2321
2337
2353
2369
2385
2401
2417
2433
2449
2465
2481
2497
2513
2529
2545

2561
2577
2593
2609
2625
2641
2657
2673
2689
2705
2721
2737
2753
2769
2785
2801

2817
2833
2849
2865
2881
2897
2913
2929
2945
2961
2977
2993
3009

3025

3041

3057

2

2050
2066
2082
2098
2114
2130
2146
2162
2178
2194
2210
2226
2242
2258
2274
2290

2306
2322
2338
2354
2370
2386
2402
2418
2434
2450
2466
2482
2498
2514
2530
2546

2562
2578
2594
2610
2626
2642
2658
2674
2690
2706
2722
2738
2754
2770
2786
2802

2818
2834
2850
2866
2882
2898
2914
2930
2946
2962
2978
2994
3010
3026
3042
3058

3

2051
2067
2083
2099
2115
2131
2147
2163
2179
2195
2211
2227
2243
2259
2275
2291

2307
2323
2339
2355
2371
2387
2403
2419
2435
2451
2467
2483
2499
2515
2531
2547

2563
2579
2595
2611
2627
2643
2659
2675
2691
2707
2723
2739
2755
2771
2787
2803

2819
2835
2851
2867
2883
2899
2915
2931
2947
2963
2979
2995
3011
3027
3043
3059

4

2052
2068
2084
2100
2116
2132
2148
2164
2180
2196
2212
2228
2244
2260
2276
2292

2308
2324
2340
2356
2372
2388
2404
2420
2436
2452
2468
2484
2500
2516
2532
2548

2564
2580
2596
2612
2628
2644
2660
2676
2692
2708
2724
2740
2756
2772
2788
2804

2820
2836
2852
2868
2884
2900
2916
2932
2948
2964
2980
2996
3012
3028
3044
3060

5

2053
2069
2085
2101
2117
2133
2149
2165
2181
2197
2213
2229
2245
2261
2277
2293

2309
2325
2341
2357
2373
2389
2405
2421
2437
2453
2469
2485
2501
2517
2533
2549

2565
2581
2597
2613
2629
2645
2661
2677
2693
2709
2725
2741
2757
2773
2789
2805

2821
2837
2853
2869
2885
2901
2917
2933
2949
2965
2981
2997
3013
3029
3045
3061

6

2054
2070
2086
2102
2118
2134
2150
2166
2182
2198
2214
2230
2246
2262
2278
2294

2310
2326
2342
2358
2374
2390
2406
2422
2438
2454
2470
2486
2502
2518
2534
2550

2566
2582
2598
2614
2630
2646
2662
2678
2694
2710
2726
2742
2758
2774
2790
2806

2822
2838
2854
2870
2886
2902
2918
2934
2950
2966
2982
2998
3014
3030
3046

3062

7

2055
2071
2087
2103
2119
2135
2151
2167
2183
2199
2215
2231
2247
2263
2279
2295

2311
2327
2343
2359
2375
2391
2407
2423
2439
2455
2471
2487
2503
2519
2535
2551

2567
2583
2599
2615
2631
2647
2663
2679
2695
2711
2727
2743
2755
2775
2791
2807

2823
2839
2855
2871
2887
2903
2919
2935
2951
2967
2983
2999
3015
3031
3047

3063

251

8

2056
2072
2088
2104
2120
2136
2152
2168
2184
2200
2216
2232
2248
2264
2280
2296

2312
2328
2344
2360
2376
2392
2408
2424
2440
2456
2472
2488
2504
2520
2536
2552

2568
2584
2600
2616
2632
2648
2664
2680
2696
2712
2728
2744
2760
2776
2792
2808

2824
2840
2856
2872
2888
2904
2920
2936
2952
2968
2984
3000
3016
3032
3048
3064

9

2057
2073
2089
2105
2121
2137
2153
2169
2185
2201
2217
2233
2249
2265
2281
2297

2313
2329
2345
2361
2377
2393
2409
2425
2441
2457
2473
2489
2505
2521
2537
2553

2569
2585
2601
2617
2633
2649
2665
2681
2697
2713
2729
2745
2761
2777
2793
2809

2825
2841
2857
2873
2889
2905
2921
2937
2953
2969
2985
3001
3017
3033
3049

3065

A

2058
2074
2090
2106
2122
2138
2154
2170
2186
2202
2218
2234
2250

2266

2282

2298

2314
2330
2346
2362
2378
2394
2410
2426
2442
2458
2474
2490
2506
2522
2538
2554

2570
2586
2602
2618
2634
2650
2666
2682
2698
2714
2730
2746
2762
2778
2794
2810

2826
2842
2858
2874
2890
2906
2922
2938
2954
2970
2986
3002
3018
3034
3050

3066

B

2059
2075
2091
2107
2123
2139
2155
2171
2187
2203
2219
2235
2251
2267
2283
2299

2315
2331
2347
2363
2379
2395
2411
2427
2443
2459
2475
2491
2507
2523
2539
2555

2571
2587
2603
2619
2635
2651
2667
2683
2699
2715
2731
2747
2763
2779
2795
2811

2827
2843
2859
2875
2891
2907
2923
2939
2955
2971
2987
3003
3019
3035
3051

3067

Appendix H

(Cont'd)

c

2060
2076
2092
2108
2124
2140
2156
2172
2188
2204
2220
2236
2252
2268
2284
2300

2316
2332
2348
2364
2380
2396
2412
2428
2444
2460
2476
2492
2508
2524
2540
2556

2572
2588
2604
2620
2636
2652
2668
2684
2700
2716
2732
2748
2764
2780
2796
2812

2828
2844
2860
2876
2892
2908
2924
2940
2956
2972
2988
3004
3020
3036
3052

3068

D

2061
2077
2093
2109
2125
2141
2157
2173
2189
2205
2221
2237
2253
2269
2285
2301

2317
2333
2349
2365
2381
2397
2413
2429
2445
2461
2477
2493
2509
2525
2541
2557

2573
2589
2605
2621
2637
2653
2669
2685
2701
2717
2733
2749
2765
2781
2797
2813

2829
2845
2861
2877
2893
2909
2925
2941
2957
2973
2989
3005
3021
3037
3053

3069

E

2062
2078
2094
2110
2126
2142
2158
2174
2190
2206
2222
2238
2254
2270
2286
2302

2318
2334
2350
2366
2382
2398
2414
2430

2446 -

2462
2478
2494
2510
2526
2542
2558

2574
2590
2606
2622
2638
2654
2670
2686
2702
2718
2734
2750
2766
2782
2798
2814

2830
2846
2862
2878
2894
2910
2926
2942
2958
2974
2990
3006
3022
3038
3054
3070

F

2063
2079
2095
2111
2127
2143
2159
2175
2191
2207
2223
2239
2255
2271
2287
2303

2319
2335
2351
2367
2383
2399
2415
2431
2447
2463
2479
2495
2511
2527
2543
2559

2575
2591
2607
2623
2639
2655
2671
2687
2703
2719
2735
2751
2767
2783
2799
2815

2831
2847
2863
2879
2895
2911
2927
2943
2959
2975
2991
3007
3023
3039
3055
3071

DO
D1
D2
D3
D4
D5
D6
D7
D8
D9
DA
DB
DC
DD
DE
DF

Appendix H

HEXADECIMAL-DECIMAL NUMBER CONVERSION TABLE (Cont'd)

0

3072
3088
3104
3120
3136
3152
3168
3184
3200
3216
3232
3248
3264
3280
3296
3312

3328
3344
3360
3376
3392
3408
3424
3440
3456
3472
3488
3504
3520
3536
3552
3568

3584
3600
3616
3632
3648
3664
3680
3696
3712
3728
3744
3760
3776
3792
3808
3824

3840
3856
3872
3888
3904
3920
3936
3952
3968
3984
4000
4016
4032
4048
4064
4080

1

3073
3089
3105
3121
3137
3153
3169
3185
3201
3217
3233
3249
3265
3281
3297
3313

3329
3345
3361
3377
3393
3409
3425
3441
3457
3473
3489
3505
3521
3537
3553
3569

3585
3601
3617
3633
3649
3665
3681
3697
3713
3729
3745
3761
3777
3793
3809
3825

3841
3857
3873
3889
3905
3921
3937
3953
3969
3985
4001
4017
4033
4049
4065
4081

2

3074
3090
3106
3122
3138
3154
3170
3186
3202
3218
3234
3250
3266
3282
3298
3314

3330
3346
3362
3378
3394
3410
3426
3442
3458
3474
3490
3506
3522
3538
3554
3570

3586
3602
3618
3634
3650
3666
3682
3698
3714
3730
3746
3762
3778
3794
3810
3826

3842
3858
3874
3890
3906
3922
3938
3954
3970
3986
4002
4018
4034
4050
4066
4082

3

3075
3091
3107
3123
3139
3155
3171
3187
3203
3219
3235
3251
3267
3283
3299
3315

3331
3347
3363
3379
3395
3411
3427
3443
3459
3475
3491
3507
3523
3539
3555
3571

3587
3603
3619
3635
3651
3667
3683
3699
3715
3731
3747
3763
3779
3795
3811
3827

3843
3859
3875
3891
3907
3923
3939
3955
3971
3987
4003
4019
4035
4051
4067
4083

4

3076
3092
3108
3124
3140
3156
3172
3188
3204
3220
3236
3252
3268
3284
3300
3316

3332
3348
3364
3380
3396
3412
3428
3444
3460
3476
3492
3508
3524
3540
3556
3572

3588
3604
3620
3636
3652
3668
3684
3700
3716
3732
3748
3764
3780
3796
3812
3828

3844
3860
3876
3892
3908
3924
3940
3956
3972
3988
4004
4020
4036
4052
4068
4084

5

3077
3093
3109
3125
3141
3157
3173
3189
3205
3221
3237
3253
3269
3285
3301
3317

3333
3349
3365
3381
3397
3413
3429
3445
3461
3477
3493
3509
3525
3541
3557
3573

3589
3605
3621
3637
3653
3669
3685
3701
3717
3733
3749
3765
3781
3797
3813
3829

3845
3861
3877
3893
3909
3925
3941
3957
3973
3989
4005
4021
4037
4053
4069
4085

6

3078
3094
3110
3126
3142
3158
3174
3190
3206
3222
3238
3254
3270
3286
3302
3318

3334
3350
3366
3382
3398
3414
3430
3446
3462
3478
3494
3510
3526
3542
3558
3574

3590
3606
3622
3638
3654
3670
3686
3702
3718
3734
3750
3766
3782
3798
3814
3830

3846
3862
3878
3894
3910
3926
3942
3958
3974
3990
4006
4022
4038
4054
4070
4086

7

3079
3095
3111
3127
3143
3159
3175
3191
3207
3223
3239
3255
3271
3287
3303
3319

3335
3351
3367
3383
3399
3415
3431
3447
3463
3479
3495
3511
3527
3543
3559
3575

3591
3607
3623
3639
3655
3671
3687
3703
3719
3735
3751
3767
3783
3799
3815
3831

3847
3863
3879
3895
3911
3927
3943
3959
3975
3991
4007
4023
4039
4055
4071
4087

252

8

3080
3096
3112
3128
3144
3160
3176
3192
3208
3224
3240
3256
3272
3288
3304
3320

3336
3352
3368
3384
3400
3416
3432
3448
3464
3480
3496
3512
3528
3544
3560
3576

3592
3608
3624
3640
3656
3672
3688
3704
3720
3736
3752
3768
3784
3800
3816
3832

3848
3864
3880
3896
3912
3928
3944
3960
3976
3992
4008
4024
4040
4056
4072
4088

9

3081
3097
3113
3129
3145
3161
3177
3193
3209
3225
3241
3257
3273
3289
3305
3321

3337
3353
3369
3385
3401
3417
3433
3449
3465
3481
3497
3513
3529
3545
3561
3577

3593
3609
3625
3641
3657
3673
3689
3705
3721
3737
3753
3769
3785
3801
3817
3833

3849
3865
3881
3897
3913
3929
3945
3961
3977
3993
4009
4025
4041
4057
4073
4089

A

3082
3098
3114
3130
3146
3162
3178
3194
3210
3226
3242
3258
3274
3290
3306
3322

3338
3354
3370
3386
3402
3418
3434
3450
3466
3482
3498
3514
3530
3546
3562

3578

3594
3610
3626
3642
3658
3674
3690
3706
3722
3738
3754
3770
3786
3802
3818
3834

3850
3866
3882
3898
3914
3930
3946
3962
3978
3994
4010
4026
4042
4058
4074
4090

B

3083
3099
3115
3131
3147
3163
3179
3195
3211
3227
3243
3259
3275
3291
3307
3323

3339
3355
3371
3387
3403
3419
3435
3451
3467
3483
3499
3515
3531
3547
3563
3579

3595
3611
3627
3643
3659
3675
3691
3707
3723
3739
3755
3771
3787
3803
3819
3835

3851
3867
3883
3899
3915
3931
3947
3963
3979
3995
4011
4027
4043
4059
4075
4091

¢

3084
3100
3116
3132
3148
3164
3180
3196
3212
3228
3244
3260
3276
3292
3308
3324

3340
3356
3372
3388
3404
3420
3436
3452
3468
3484
3500
3516
3532
3548
3564

3580

3596
3612
3628
3644
3660
3676
3692
3708
3724
3740
3756
3772
3788
3804
3820
3836

3852
3868
3884
3900
3916
3932
3948
3964
3980
3996
4012
4028
4044
4060
4076
4092

D

3085
3101
3117
3133
3149
3165
3181
3197
3213
3229
3245
3261
3277
3293
3309
3325

3341
3357
3373
3389
3405
3421
3437
3453
3469
3485
3501
3517
3533
3549
3565

3581

3597
3613
3629
3645
3661
3677
3693
3709
3725
3741
3757
3773
3789
3805
3821
3837

3853
3869
3885
3901
3917
3933
3949
3965
3981
3997
4013
4029
4045
4061
4077
4093

E

3086
3102
3118
3134
3150
3166
3182
3198
3214
3230
3246
3262
3278
3294
3310
3326

3342
3358
3374
3390
3406
3422
3438
3454
3470
3486
3502
3518
3534
3550
3566

3582

3598
3614
3630
3646
3662
3678
3694
3710
3726
3742
3758
3774
3790
3806
3822
3838

3854
3870
3886
3902
3918
3934
3950
3966
3982
3998
4014
4030
4046
4062
4078
4094

F

3087
3103
3119
3135
3151
3167
3183
3199
3215
3231
3247
3263
3279
3295
3311
3327

3343
3359
3375
3391
3407
3423
3439
3455
3471
3487
3503
3519
3535
3551
3567

3583

3599
3615
3631
3647
3663
3679
3695
3711
3727
3743
3759
3775
3791
3807
3823
3839

3855
3871
3887
3903
3919
3935
3951
3967
3983
3999
4015
4031
4047
4063
4079
4095

‘fd 124un0D woiBoid yZ *6°3 ![OWIDIPOXAY Ul S| SSEIPPY PIOM

_ , | | _ | | a8
M AN 9 "ON ¥3LSI93Y v "ON ¥315193% Z "ON ¥3L5193¥ 0°ON ¥315193¥
¥0$SID0Ud LNIOJ-ONILYO4 LNIOJ-ONILYO 4 LNLOJ-ONILYO T4 LNIO-ONILYOd
a[o
1d 1d 1d 1d Id d Id 1d 1d 1d 1d 14 1d 1d 1d 1d
SL°ON ¥L'ON £1°ON zLoN 1L "ON oL "ON 6 'ON 8°ON L°ON 9 ‘ON S 'ON ¥ ON £ "ON z oN L ON 00N
¥aLsioay ¥3451938 ¥3451933 ¥3151938 ¥3151938 ¥315193¥ ¥315193¥ ¥315193¥ ¥315193¥ ¥3151938 ¥3151938 ¥315193y ¥3151934 ¥315193¥ ¥315193¥ ¥3151938
350484 asodund 2504 ¥Nd 3504 ¥nd 3504 ¥nd 35044Nd 350d¥Nd 35043Nd 3504¥Nd 350d¥nd 350d¥Nd 350d3Nd 3504¥nd 350d¥Nd 3504uNd 350d4Nd
qvaaNao v¥aNas v¥3INaD RZECED v¥anas IvuaNao Ivy¥IN3D IvaaNas WvyIND Av¥aNas vy3INGD IVyIND vuaNad RZENED) IvaaNzo RCELED)
8| v
¥3Ls193y | 193151938 | 1 ¥3LSIOIY ¥3Ls193y
sNLvis ANVWWOD aNYwwod ss3yaay ALILA
< xoﬁwwm_vﬁ v8d —¥ qgwassy TINNVHD TINNVHD Jannvin (¢ 405532044 >
l@——— ¥ "ON 301237135 - SHILSI9IY TINNVHD 0,1 —— P
A
24 wd zd d wd zd (7 [zd d zd 2 4 2d 4 zd
SLON 1ON 2L "ON z1 "oN 1L "oN o1 ‘ON 60N 8°ON L-oN 9 'ON s ‘ON ¥ "ON € "ON ZoN LON 0 "ON
¥3Ls193y ¥3151938 ¥3151938 3315193y ¥315193% ¥3LsI93¥ 3315193y ¥315193y ¥3isi03y ¥3L5193y ¥315193y 8315193y ¥3151934 ¥31s5193¥ ¥315193% ¥315193y
25043nd 25043Nd 2504und 3504¥0d 3504 ¥nd 2504 ¥Nd 350duNd 3sodand 25044Nd 350d¥Nd 3sodand 350480d 3504¥Nd 3504 ¥nd 3504¥Nd 3504¥Nd
vaanas qv¥aNad Iv¥aNag Tv¥IN3o IV ¥INID L ELED] TvyaNao Iva3INaD v¥aNao qvaanas R ECED) v¥aNao Ivaanas RECED) TvyaNae v¥aNas
]9
3315193y 1343151938 | 1W¥315193Y FETOLEN ¥3Lsioay | 1 ¥3Ls103Y 1y¥3Ls193y | waLsivax
SALYLS ANVWHOD GNYWNOD ssayaav SNLVAS QNVWWOD aNYWNOD ss3¥aav lin
€— uniin —bl— vey —p] ATEMISSY 13NNwKO INNVHD J3NNYHD A|||zoww_.m__u-m§||"|t§ul,.' ATEwassy T3INNYHD TINNYHD TENNYHD g A
¥0$5370¥d l€—— £ 'ON ¥012373S - S¥ILSINIU TANNYHI 0/1 » [——— Z ON ¥01337135 - S¥3LSIOTY TINNVHI 0/1 —— P
s|v
(LHoram) £d td £d £d £ €d &d 2d zd ta 14
¥ Yi'ON £1 "ON 71N 1L°oN td LON wd FETRILEN 1d
“w._.mumx ¥3LsIDIY ¥315193y ¥31s193y FEYRIEEM ¥3ILNNOD mmwh._.mﬁ“« mwww,_‘w.mz ¥aisioay ¥3LNNOD Mw._._.w_wwwz xw._ww_wuu ov4 ¥3LNNOD ﬂmﬂﬂ.ww« umv.".“wwx
350duNd 3504 ¥Nd 3504 3Nd 350d¥Nd WYd90¥d 2s0d¥Nd Wv¥903d LdNu¥ILN Wy¥903d :
.u_wn.mnmw IvNaNao Ivaanao IvaINgo Jvyanas LdNWYALNI | Ldnuaain vuanas LdNEILNI | LdNAYILNI 1dN¥¥3LN | 1dNYEILN
t]z
¥3LS1038 | 1¥3LsIo3¥ | 0 ¥ILSIOBY ¥als1938) ¥3Ls193% | uw3aLsioay | w3isioay
SNLVLS ANVWHOD QNYWWOD ss3¥aav 0 ¥3Ls1938 aNvAnoD aNYWWOD ssauaav | n
AGWassy TINNVHD 3INNVHD TINNYHD AL SNLVLS TINNYHD 3INNYHD TINNYHD ALY
= o —be— Ve —> 2 , 305535084 € yossasoud >
¥055300¥d — " o, - sy3ist NNYH —P
L 0N ¥0133735 ~ su3151830 13 201 €—— ¥OX3TdILIAW — S¥ILSI9TY TINNVHD 0/1 —
vd) |0
(LHO13N) vd vd vd rd
st -oN rd rd ’d LLON oL “oN 60N Bon | o
¥3LsI193y ¥31NN0D yaLsioay 4315193y ¥aL151938 y3Ls1938 ¥3151938 CEFCEERIN 4088350 "
WYN90¥d snivis Asvw 3504und 350d¥nd 3504¥Nd 3504 ¥nd
3sodund LdNHY¥ILNI | LdNY¥ILNI Qv¥3NaD Av¥IN3D IVYINIO V¥3INID |
TvuaNas) _
¢ 9 S v 3 z 1 [} I ¢ 9 3 v € z | 0 Jowizapaxay

SINIWNOISSY ¥31SI93¥ ANV LNOAV1 AJOWIW AVd-HOLVAIS
| XION3ddV

253

	0001
	0002
	0003
	0004
	0005
	0006
	0007
	0008
	0009
	001
	002
	003
	004
	005
	006
	007
	008
	009
	010
	011
	012
	013
	014
	015
	016
	017
	018
	019
	020
	021
	022
	023
	024
	025
	026
	027
	028
	029
	030
	031
	032
	033
	034
	035
	036
	037
	038
	039
	040
	041
	042
	043
	044
	045
	046
	047
	048
	049
	050
	051
	052
	053
	054
	055
	056
	057
	058
	059
	060
	061
	062
	063
	064
	065
	066
	067
	068
	069
	070
	071
	072
	073
	074
	075
	076
	077
	078
	079
	080
	081
	082
	083
	084
	085
	086
	087
	088
	089
	090
	091
	092
	093
	094
	095
	096
	097
	098
	099
	100
	101
	102
	103
	104
	105
	106
	107
	108
	109
	110
	111
	112
	113
	114
	115
	116
	117
	118
	119
	120
	121
	122
	123
	124
	125
	126
	127
	128
	129
	130
	131
	132
	133
	134
	135
	136
	137
	138
	139
	140
	141
	142
	143
	144
	145
	146
	147
	148
	149
	150
	151
	152
	153
	154
	155
	156
	157
	158
	159
	160
	161
	162
	163
	164
	165
	166
	167
	168
	169
	170
	171
	172
	173
	174
	175
	176
	177
	178
	179
	180
	181
	182
	183
	184
	185
	186
	187
	188
	189
	190
	191
	192
	193
	194
	195
	196
	197
	198
	199
	200
	201
	202
	203
	204
	205
	206
	207
	208
	209
	210
	211
	212
	213
	214
	215
	216
	217
	218
	219
	220
	221
	222
	223
	224
	225
	226
	227
	228
	229
	230
	231
	232
	233
	234
	235
	236
	237
	238
	239
	240
	241
	242
	243
	244
	247
	248
	249
	250
	251
	252
	253

