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Abstract

In this paper, we demonstrate a technique called ac-
tive probing used to study TCP implementations. Ac-
tive probing treats a TCP implementation as a black
box, and uses a set of procedures to probe the black
box. By studying the way TCP responds to the probes,
one can deduce several characteristics of the imple-
mentation. The technique is particularly useful if TCP
source code is unavailable.

To demonstrate the technique, the paper shows ex-
ample probe procedures that examine three aspects of
TCP. The results are informative: they reveal imple-
mentation flaws, protocol violations, and the details of
design decisions in five vendor-supported TCP imple-
mentations. The results of our experiment suggest that
active probing can be used to test TCP implementa-
tions.

1 Introduction

The Transmission Control Protocol (TCP) is
a connection-oriented, flow-controlled, end-to-end
transport protocol that provides reliable transfer and
ordered delivery of data [14]. TCP is designed to op-
erate successfully over communication paths that are
inherently unreliable (i.e., they can lose, damage, du-
plicate, and reorder packets). The ability of TCP to
adapt to networks of various characteristics and com-
puter systems of various processing power makes TCP
an important component in the fast expansion of the
global Internet.

The original definition of TCP appears in RFC-793
[14]. Many researchers [2, 7, 8, 9, 11, 12, 18, 19] have
identified problems and weakness of the protocol, and
proposed solutions. RFC-1122 [1] updates and sup-
plements the definition; to meet the TCP standard, an
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implementation must follow both RFC-793 and RFC-
1122.

Although RFCs 793 and 1122 give a detailed de-
scription of TCP implementation, two TCP implemen-
tations that conform to the specifications can differ
slightly because an implementor has some freedom to
choose a software design, parameters, and to interpret
the protocol standards. Although it is possible to de-
duce design decisions and parameters choices from the
source code, understanding the operation of a complex
software module like TCP can be difficult. In this pa-
per, we demonstrate a technique called active probing
used to study TCP implementations. Active probing
is especially useful when source code is unavailable.
Furthermore, it shows how the TCP code operates in
the presence of other system components.

Active probing treats a TCP implementation as a
black box and uses a set of procedures to probe the
black box. By studying the way TCP responds to
the probes, one can deduce characteristics of the im-
plementation. The information that can be deduced
depends on the probing procedures used. In this paper,
we show three example procedures that examine three
aspects of TCP. The results are informative: they re-
veal implementation flaws, protocol violations, and the
details of design decisions in commercially available
TCP implementations. The results of the experiment
suggest that active probing can also be used to test TCP
implementations.

Active probing operates much like traditional TCP
trace analysis. It uses a software tool to capture TCP
segments directed toward a particular TCP implemen-
tation as well as segments the TCP implementation
sends in response. It then analyzes the trace data to
find patterns that reveal characteristics of the TCP im-
plementation. Unlike trace analysis, however, active
probing uses specially designed probing procedures to
induce TCP traffic instead of passively monitoring nor-
mal traffic on the network.

The software tools used to capture TCP segments



and to assist in the analysis of the trace data are widely
available, both in public domain and in commercial
domain. RFC-1470 [4] gives a detailed catalog of such
tools. All experiments reported in this paper use the
tools from NetMetrix [6] to capture the TCP segments
and to assist in the analysis of the trace data; we also
wrote C programs to parse and analyze the the captured
data.

The experiments reported in this paper examine
commercially available TCP implementations: Solaris
2.1, SunOS 4.1.1, SunOS 4.0.3, HP-UX 9.0, and IRIX
5.1.1. We chose these implementations because they
are widely available in workstation operating systems.
We only have the access to the source code of SunOS
4.0.3 and SunOS 4.1.1.

The remainder of this paper is organized as follows.
Section 2 examines TCP retransmission time-out in-
tervals for successive retransmission of a single data
segment. Section 3 studies the keep-alive mechanism
in some TCP implementations. Section 4 investigates
TCP zero-window probing. Finally, section 5 draws
conclusions and discusses future work.

2 Successive Retransmission Intervals In
TCP

TCP uses an acknowledgment and retransmission
scheme to ensure the reliable delivery of packets.
When sending a packet, the sender starts a timer and
expects an acknowledgment from the receiver within
a retransmission time-out (RTO) period. If the sender
does not receive an acknowledgment in that period, it
assumes the packet was lost and retransmits the packet.
The correct estimation of the retransmission time-out
is vitally important to provide effective data transmis-
sion and avoid overwhelming the Internet by excessive
retransmissions [11]. On one hand, if the sender uses
a smaller RTO value than the actual packet round-trip
time (RTT), unnecessary retransmissions occur. More-
over, if the packet round-triptime increase is due to net-
work congestion, unnecessary retransmissions make
the situation even worse and may lead to congestion
collapse [12]. On the other hand, if the sender uses
a larger RTO value, a lost packet causes the sender to
wait longer than necessary, thus degrading throughput.

The calculation of the RTO value originally sug-
gested in RFC-793 is now known to be inadequate and
has been replaced. RFC-1122 specifies the new stan-
dard, which uses an algorithm described in Jacobson
[8]. The new algorithm uses the measured RTT val-
ues to calculate a smoothed mean and a measure of
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Figure 1: Configuration of networks and hosts to obtain
successive retransmissions intervals in TCP

the variance using a smoothed mean difference. The
RTO is then calculated from the smoothed mean and
the variance. RFC-1122 specifies that TCP must im-
plement this algorithmand must exponentially increase
the RTO values for successive retransmissions of the
same segment.

2.1 Probing Procedure

To determine how a TCP implementation chooses RTO
values for successive retransmissions, we use the fol-
lowing probe procedure:

1. From a host to be tested, T, select a multi-homed
host1, H, as the destination (see Figure 1).

2. Let the IP address of one interface on H, say A, be
the destination address that can be reached by T.

3. From T, open a TCP connection to the discard port
[16] of host H via interface A, and start sending
data.

4. Login to host H from a control host, C, via another
interface, say B.

5. Disable interface A while the communication be-
tween host T and host H is in progress2.

Disabling interface A while host T is sending data
to the discard port of host H via interface A simulates

1A multi-homed host is a host that connects to at least two
networks.

2We used the UNIX command ifconfig to disable the
interface.
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Figure 2: The TCP RTO intervals for successive retransmissions in a LAN environment

a network failure between host T and host H, and it
triggers retransmissions from T. Note that T runs the
probe program; it is also the host on which TCP is
being probed. To enable continued control of H while
interface A is down, one must login to H from a control
host (C) via interface B. C and interface B are connected
to the same Ethernet.

Because the RTO estimate depends on the packet
round trip time between a tested host and host H, all the
TCP implementations tested run on hosts connected to
10 megabit per second (Mbps) Ethernets. The average
load on the Ethernets during the experiment is less
than 10% of capacity. The tested hosts are located at
most one gateway from H (see Figure 1). The average
round trip time of packets between a tested host and
H during the experiments, measured using ping, is at
most 10 ms. To make the measurements more accurate,
the monitor program that captures the TCP segments
always runs on a host connected to the same Ethernet
as the hosts being probed. (The monitor program runs
on host M1 or M2 depending on which host is being
probed.)

2.2 Results

For each TCP implementation, we conducted 30 ex-
periments; Figure 2 shows the results. As the graphs

in Figure 2 show, four of the probed operating sys-
tems, SunOS 4.1.1, SunOS 4.0.3, HP-UX 9.0, and IRIX
5.1.1, behave the same. Each increases the RTO val-
ues exponentiallyon successive retransmissions until it
reaches a maximum RTO of 64 seconds. Each retrans-
mits the same data segment twelve times; at the thir-
teenth transmission, each sends a reset (RST) segment
(without data), drops the connection, and terminates
the process that executes the probe program.

Solaris 2.1 TCP increases the RTO values for succes-
sive retransmissions and drops the connection after the
ninth retransmission. The Solaris TCP does not send a
RST segment after the ninth retransmission. However,
it delays for 62.2 seconds3before it drops the connec-
tion and terminates the process that executes the probe
program.

3Obtained by using
P30

i�1
�pi � qi��30, wherepi is the interval

between the instance at which the probe program calls a connect
routine to establish a connection and the instance at which the process
that runs the probe program (called it P) exits in the i-th experiment,
and qi is the interval between the instance at which TCP sends the
first segment and the instance at which TCP sends the last segment
as measured by the monitor program in the i-th experiment. The
time interval, pi, consists of three parts: �, qi, and �, where � is
the interval between the instance at which the probe program calls
connect and the instance at which the first segment is sent, and� is
the interval between the instance at which the last segment sent and
the instance at which process P exits. Because � is small compared
to �, pi � qi is an approximation of �.
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Figure 3: The initial RTO values in TCP implementations in a LAN environment

RFC-1122specifies a threshold, R2, for dealing with
excessive retransmissions of the same segment by TCP.
R2 can be measured in units of time or as a count of re-
transmissions. When the number of retransmissions of
the same segment reaches R2, TCP closes the connec-
tion. RFC-1122 specifies that R2 should correspond to
at least 100 seconds. All the implementations probed
meet the requirement. However, no implementation al-
lows users to configure the value for R2 as RFC-1122
mandates.

The initial RTO values in TCP implementations are
worth noting. In a local area network (LAN) envi-
ronment that consists of 10 Mbps Ethernet segments
with a average load of less than 10% of the available
bandwidth, typical packet RTTs average less than 20
ms, and the variance (smoothed mean difference) of
the packet RTTs averages less than 10 ms. So, a typ-
ical RTO value calculated from mean plus variance
will remain under 100 ms. Figure 3 shows that the
initial RTO values used by TCP implementations are
all much higher than 100 ms. The large initial RTO
values suggest that the implementations have imposed
a lower bound on the RTO estimates.

2.3 The Lower Bound on RTO Estimates

There are two reasons for imposing a lower bound on
the RTO estimates. First, the timer used to measure
packet RTT may be too coarse for accurate measure-
ments. For example, the 4.3BSD TCP (and most of its
derivatives) uses a timer of 500 ms per tick to measure
the packet round trip time and to schedule retransmis-

sions [10]. In a LAN environment with typical packet
RTT less than 20 ms, using such a timer to measure
packet RTT accurately is impossible. Thus, a lower
bound filters out the RTT samples that are too small to
measure accurately with a coarse granularity timer.

Second, imposing a lower bound on RTO estimates
can improve throughput in a LAN environment. A
LAN environment exhibits low packet loss and low
average packet round trip time. Imagine a TCP im-
plementation that uses a millisecond granularity timer
to measure packet round trip time and to schedule re-
transmissions without imposing a lower bound on RTO
estimates. Under normal load conditions, the smoothed
RTT will be less than 10 ms and the variance (smoothed
mean difference) is less than 5 ms. A sudden network
delay or host processing delay that causes the RTT of a
segment to exceed 20 ms4 will cause a retransmission
of that segment even though the segment is not likely
to be lost in transit. The redundant retransmission not
only consumes network bandwidth and adds unneces-
sary processing overhead to the sender and receiver,
but also forces the sender to a slow start mode [8] that
reduces its transmission rate.

Another way of viewing the lower bound on the RTO
estimates is to consider it a threshold for the RTO esti-
mation algorithm to take effect. If the lower bound is
set to infinity, TCP ignores the RTO estimates entirely
(TCP makes no attempt to retransmit lost packets); if
the lower bound is set to zero, TCP uses the RTO esti-
mates for each transmission. Because the RTO estima-

4We calculate RTO as mean plus twice the variance.
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Figure 4: Illustration of an implementation flaw in Solaris 2.1 TCP.

tion algorithm derives an estimate of future RTO from
the previous RTT samples, it can only cover the fluc-
tuations of packet RTT within a specific range. Any
sudden RTT fluctuations that exceed that range will
trigger unnecessary retransmissions. On one hand, us-
ing a higher lower bound allows TCP to tolerate greater
network delay fluctuations without triggering unneces-
sary retransmissions; but it makes TCP take longer
to respond to lost packets. On the other hand, using
a lower lower bound allows TCP to respond to lost
packets quickly, but it may cause unnecessary retrans-
missions when network delay fluctuations exceed RTO
estimations. Therefore, the lower bound on RTO es-
timates is a design parameter a TCP implementation
must choose carefully.

As Figure 3 shows, the lower bound on the observed
systems is a range of values5. IRIX 5.1.1 TCP has the
largest lower bound (in the range of 1000 ms to 1500
ms) and Solaris TCP has the smallest lower bound (in
the range of 200 ms to 400 ms). SunOS 4.1.1, HP-UX
9.0, and SunOS 4.0.3 has the lower bound set in the
range of 500 ms to 1000 ms.

2.4 Implementation Flaw Found

In analyzing the probe results for Solaris 2.1 TCP,
we have found an apparent implementation flaw. The
symptom occurs in all 30 instances of TCP trace data
we gathered. As Figure 4 illustrates, host A, running
Solaris 2.1, sends data to the discard port of host H.

5In reading the SunOS 4.1.1 and 4.0.3 TCP source code, we
found that the inaccuracy in the timer algorithm for scheduling re-
transmissions can cause the lower bound on RTO to be a range of
values.

Segment #992 has sequence number 2473 and car-
ries 488 octets of data. The next data segment from
A should have sequence number 2961 (2473+488).
Instead, segment #993 has sequence number 3985
(2473+488+1024). Apparently TCP has skipped 1024
octets in the sequence space! After 234 milliseconds,
A transmits the missing 1024 octets of data in segment
#1000 and segment #1002.

Note that the monitor program runs on hostM2 con-
nected to the same Ethernet as A. Thus, the missing
segments are not discarded by a gateway. Further-
more, the retransmissions of the missing data segments
in segments #1000 and #1002 show that the error did
not result from the monitor program missed the origi-
nal transmissions. The same symptom also occurs in
10 of the 30 instances of the IRIX 5.1.1 trace data.

3 TCP Keep-alives

The TCP specification does not include a mechanism
for probing idle connections. In theory, if a host crashes
after establishing a connection to another host, the sec-
ond machine will continue to hold the idle connection
forever. Some TCP implementations include a mech-
anism that tests an idle connection and releases it if
the remote host has crashed. Called TCP keep-alive,
the mechanism periodically sends a probe segment to
elicit response from the peer. If the peer responds to
the probe by sending an ACK, the connection is alive.
If the peer TCP fails to respond to probe segments for
longer than a fixed threshold, the connection is declared
down and the connection is closed.

According to RFC-1122,a TCP implementation may
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include the keep-alive mechanism. However, if TCP
keep-alive is included, the applications must be able
to turn it on or off in a per connection basis, and by
default, it must be off. The threshold interval to send
TCP keep-alives must be configurable and must default
to 7,200 seconds (two hours) or more. Because TCP
does not reliably transmit ACK segments that carry no
data6, an ACK segment in response to the keep-alive
probe may be lost. Therefore, a TCP should drop the
connection only after a predefined number of keep-
alive probes fail to elicit response from the peer.

3.1 Probe Procedure

We use the followingprobe procedure to study whether
an implementation of TCP uses keep-alive, and, if so,
how they implement it.

1. From a host to be tested, open a TCP connection
to the discard port of another host.

2. Enable keep-alive on the connection.

3. Pause7 until a terminating signal occurs.

As Figure 5 illustrates, when a TCP connection
is quiet, the sequence number of the sender’s next
octet to send (SND.NXT) is the same as the se-
quence number of the receiver’s next octet to receive
(RCV.NXT), and the size of the sender’s send window
(SND.WND) is the same as the receiver’s receive win-
dow size (RCV.WND). RFC-1122 recommends using
a sequence number (SEG.SEQ) of SND.NXT-1 with
or without one octet of garbage data as the keep-alive

6There is no retransmission timer set for an ACK segment that
carries no data.

7C library function pause() may be used.
8No keep-alive segment observed in five observations; each ob-

servation lasted for 30 hours.

Operating Data size Sequence ACK Seq. Probing
System in Seg. Number Number Interval

Solaris 2.1 N/A8 N/A N/A N/A
SunOS 4.1.1 1 octect SND.NXT-1 RCV.NXT-1 7200 sec.
SunOS 4.0.3 1 octect SND.NXT-1 RCV.NXT-1 75 sec.
HP-UX 9.0 1 octect SND.NXT-1 RCV.NXT-1 7200 sec.
IRIX 5.1.1 1 octect SND.NXT-1 RCV.NXT-1 7200 sec.

Table 1: The results of TCP keep-alive probing in TCP
implementations

segment. Using one octet of garbage data makes the
keep-alive mechanism compatible with early TCP im-
plementations that cannot handle a SEG.SEQ equal to
SND.NXT-1 without one octet of data. Because the
sequence number SND.NXT-1 lies outside the peer’s
receive window, it causes the peer TCP to respond with
an ACK segment if the connection is still alive; if the
peer has dropped the connection, it will respond with a
reset (RST) segment instead of an ACK segment [14].

3.2 Results

All the TCP implementations we tested correctly set
the default so TCP did not send keep-alive probes, and
let the applications turn on keep-alive in a per connec-
tion basis. Most implementations use a 7,200 second
(2 hours) time interval between probes, as specified in
RFC-1122. SunOS 4.0.3 uses a 75-second interval be-
tween probes. However, none of the implementations
allow users to configure the probing interval as man-
dated in RFC-1122. Although Solaris 2.1 provides a
socket option to turn on the TCP keep-alive, we did
not observe any keep-alive probes in five observations;
each observation lasted for 30 hours.

RFC-1122 does not specify the contents of the ac-
knowledgment field (SEG.ACK) of the keep-alive seg-



ment. However, as Table 1 shows, most of the TCP
implementations set the SEG.ACK to RCV.NXT-1. It
is unnecessary to set SEG.ACK to RCV.NXT-1 unless
it is also for backward compatibility with early TCP
implementations. To see if probed implementations
respond to a keep-alive segment that has SEG.SEQ
equal to SND.NXT-1, SEG.ACK equal to RCV.NXT,
and does not include one octet of data, we modified
the SunOS 4.0.3 TCP code to send such a keep-alive
segment. All implementations responded correctly to
the keep-alive segment.

3.3 Keep-alive and Server Applications

TCP keep-alive is especially useful for a server appli-
cation to prevent clients from holding server resources
indefinitely after clients crash or after a network failure.
As an example to see how network failure can affect
a host when a server application does not turn on TCP
keep-alive and does not deploy mechanisms to handle
idle connections, consider the probe procedure used in
section 2. The probe procedure deliberately disables
interface A on host H while a probe program on host
T is communicating with the TCP discard server9 on
host H via interface A. After host T retransmits a data
segment for a preset number of times without any re-
sponse, it closes the connection. Unfortunately, the
discard server on host H has no idea that the peer has
aborted the connection because it does not turn on the
TCP keep-alive and makes no attempt to detect the
idle connection. From its point of view the connec-
tion remains quiet. After each experiment, there is an
orphan discard server process left on host H. These
orphan server processes stay until the system reboots
or a system manager destroys them explicitly10.

4 Zero-Window Probes

TCP in a receiving host uses the window field in each
acknowledgement to inform TCP in the sending host
how much more data it is willing to accept [14]. If the
receiver temporarily runs out of buffer space, it sends
an ACK with the window field set to zero. When space
becomes available, the receiver sends another ACK
with a nonzero window size. Because the ACK that
reopens window can be lost in transit, the connection
may hang forever. TCP specifications [1, 14] require a
host that has received a zero window advertisement to

9The program inetd implements the discard server.
10To prevent too many orphan discard server processes from af-

fecting the experiment, we destroyed the orphan process after each
experiment.
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Figure 6: Generating zero-window probes using TCP
echo service

transmit zero-window probe segments to the receiving
host requesting its current buffer space if it does not
receive a nonzero window advertisement in a specified
period of time. The sender must increase the intervals
between the zero-window probes exponentially as it
does for retransmissions.

4.1 Probing Procedure

We use the following simple procedure to study zero-
window probing in various TCP implementations. For
each implementation, we conduct five experiments.

1. From a host to be tested, open a TCP connection
to the echo port [15] of another host.

2. Keep sending data to the echo port without reading
the echoed data.

As Figure 6 shows, because the probe program sends
data without reading the echo, the receive buffer of
TCP A eventually becomes full, causing it to send a
zero-window ACK segment to TCP B. Because TCP
B cannot send data to TCP A, the send buffer of TCP
B will become full of echoed data. When the echo
server on B cannot send more data, the receive buffer
of TCP B will become full. Once the receive buffer
of TCP B becomes full, it advertises a zero window
to TCP A. After the zero-window condition exists for
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Operating Data size in Min. probe Max. probe
System 0-win probe seg. Interval Interval

Solaris 2.1 1 MSS octets 200 ms 60 sec.
SunOS 4.1.1 1 octet 5 sec. 60 sec.
SunOS 4.0.3 1 octet 5 sec. 60 sec.
HP-UX 9.0 1 octet 4 sec. 60 sec.
IRIX 5.1.1 1 octet 5 sec. 60 sec.

Table 2: Zero-window probe in TCP implementations

more than a threshold time period, both sides begin
sending zero-window probes.

4.2 Results

As Table 2 and Figure 7 show, all the implementa-
tions probed exponentially increase the time interval
between probes and limit the probe interval to a max-
imum value of 60 seconds. Most implementations
impose a minimum probe interval between 4 and 5
seconds; Solaris 2.1 uses the lower bound on RTO es-
timates as the minimum probe interval, which is much
smaller than other systems.

Figure 7 shows another difference between Solaris
implementation and other systems — there are two
curves on the graph of Solaris. One curve corresponds
to the results of two experiments (Experiment #2 and

#3) and the other curve corresponds to three. A plausi-
ble explanation of the difference is that Solaris uses a
finer granularity timer than other systems. If the probe
intervals shown represent an exponential increase, di-
vergence in the two curves must result from a difference
in the initial RTO values. We conclude that Solaris 2.1
TCP had two RTO estimates during the experiments.

4.3 Two Approaches In Handling Zero-
window Probing

From the data, we observe two approaches used to han-
dle zero-window probing. Observe that a sender does
not need to distinguish between a peer that has insuffi-
cient buffer space to receive a segment and a segment
that is lost. In both situations, the data segment is
unable to reach the application. Although a receiving
TCP will generate a zero-window ACK segment when
it has no receive buffer space and will not generate an
ACK for a lost data segment, the unreliable delivery of
the zero-window ACK segment in TCP makes both sit-
uations look similar to a sending TCP. The observation
suggests that one can use a retransmitted data segment
as a zero-window probe.

Indeed, the first approach uses a retransmitted data
segment as a zero-window probe. If a receiving TCP
does not have sufficient buffer space to accept an in-
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Figure 8: Illustration of an implementation flaw in Solaris 2.1 TCP

coming data segment, it sends a zero-window ACK
without acknowledging the data segment. After a pe-
riod of one RTO, the sender retransmits the data seg-
ment. The retransmitted data segment acts as a zero-
window probe. Unlike retransmitting missing data seg-
ments, a sender keep transmitting zero-window probes
even if a receiver does not ACK the probes.

Using a retransmitted data segment as a zero-
window probe is optimistic in the sense that it sends
as much data as possible in a zero-window probe and
expects the receiver’s receive window to open within
one RTO period. The scheme responds quickly when
an ACK that would reopen the window is lost. The
scheme is also efficient because TCP implementations
must implement Silly Window Syndrome avoidance
algorithm11[1, 2]. It is likely that when the receiver
opens the receive window, it will open at least the
size of a maximum segment (1 MSS). However, the
scheme consumes more network resources than the
second approach, described below, when the receiver’s
zero-window persists.

The second approach treats zero-window probing
as a special case. When a sender receives a zero-
window advertisement from the receiver, it enters a
zero-window probing state and delays sending data for
a predetermined interval t12. If a window-opening
ACK segment arrives within interval t, TCP immedi-
ately sends data without sending zero-window probe.
However, the scheme suffers a (long) delay of t if an
ACK segment to reopen the window is lost in transit.
The zero-window probes in this approach carry only
one octet of data; they are designed to elicit an ACK

11Silly Window Syndrome is characterizedas a situation in whicha
steady pattern of small TCP window increments results in small data
segments being sent. Sending small data segments lowers TCP per-
formance because TCP and IP headers consume network bandwidth.

segment from the peer, not to transfer data.

From the experiments, we conclude that Solaris uses
the first approach, and the others use the second ap-
proach.

4.4 Implementation Flaw Found

The data from zero-window probe experiments shows
protocol violations in the SunOS 4.0.3 version and an
implementation flaw in Solaris 2.1. SunOS 4.0.3 TCP
does not acknowledge zero-window probes at all. So-
laris 2.1 TCP responds incorrectly to a peer’s zero-
window probe when both sides have zero receive win-
dow; we describe the flaw below.

As Figure 8 illustrates, host A communicates with
host B (running Solaris 2.1); both hosts have a zero
receive window. In segment #1094, B sends a zero-
window probe with sequence number 8552 and 512
octets of data to A. A acknowledges it properly in seg-
ment #1095. Five seconds later, in segment #1096, A
sends a zero-window probe with one octet of data to
B. Note that the ACK number in segment #1096 is the
same as the ACK number in segment #1095, i.e., A did
not acknowledge the 512 octets of data that B sent in
segment #1094. However, B acknowledges the zero-
window probe with a segment (segment #1097) con-
taining an invalid sequence number 9064 (8552+512),
as if the zero-window probe from A had acknowledged
the segment it sent in segment #1094. A acknowledges
the error by sending an ACK segment (segment #1098)
with the sequence number it expects. The flaw occurs
in all of the Solaris trace data we gathered.

12Experiments show thatt is 4 or 5 seconds in the implementations
probed (see Table 2).



5 Conclusion and Future Work

This paper introduces the active probing technique and
demonstrates how it can be used to study TCP imple-
mentations. The technique treats a TCP implementa-
tion as a black box and uses specially designed probe
procedures to examine its behavior. A packet trace
taken during active probing can be used to deduce de-
sign parameters and design decisions in TCP imple-
mentations. The results show that active probing is an
effective tool.

Insight into black box behavior depends on probe
procedure design and careful analysis of the resulting
output. We demonstrated three probe procedures that
examine three aspects of TCP. Additional probe proce-
dures to study other aspects of TCP are also possible.
For example, one can design a probe procedure that
generates heavy network traffic through a gateway to
examine how a TCP behaves in a congested environ-
ment.

Because active probing can be used to deduce design
parameters and design decisions in TCP, the technique
can also be applied to protocol conformance checking.
One can design procedures that induce output from
a TCP implementation, and use an automated tool to
analyze the output and verify that it conforms to the
protocol specification. For example, the failure to re-
spond to the zero-window probes in SunOS 4.0.3, as
discussed in section 4, can easily be detected by such
a method.

The implementation flaws found also show that ac-
tive probing can be used to test whether TCP imple-
mentations operate correctly. From the point of view
of software engineering, one can design probe pro-
cedures to create conditions that occur frequently or
infrequently, thus providing tests that cover cases not
normally found through passive monitoring.

Unusual outputcan be used to detect implementation
flaws in TCP. For example, an implementation of TCP
that generates excessive retransmissions in a LAN en-
vironment may contain an implementation flaw. The
implementation flaws in Solaris 2.1, as discussed in
sections 2 and 4, were detected by observing excessive
retransmissions in the trace output. It would be in-
teresting to combine a knowledge-based trace analysis
tool [5] with active probing to accurately detect other
abnormal TCP behavior.

Finally, most of the TCP implementations probed
in this paper are BSD derived TCP implementations.
It is possible to probe non-BSD derived TCPs (e.g.,
Plan9 TCP [13, 17] and Xinu TCP [3]) to determine

the similarities and differences.
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