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Abstract—In the field of computer security, covert communica-
tion is usually seen as adversarial, but from another perspective,
it can be seen as a way to communicate securely by hiding data
from a malicious third party, e.g., an inside attacker. In this
light, instead of making data unreadable using encryption, it
may be possible to hide from an adversary a secure network
infrastructure (consisting of several node endpoints) in network
traffic.

Current covert communication techniques, using storage and
timing channels, are not suited well for this task. Storage channels
typically use properties of a protocol that are ignored, such as
unused header fields. In this case, once the vulnerability of the
protocol is documented, an attacker may uncover the data and
breach the communication. Timing channels work by purposely
modifying timing mechanisms on a network such as packet
arrival times. In general, timing channels are difficult to detect,
but they provide low throughput. In this paper we describe a
novel blending technique that is capable of using as carriers the
payload fields of multiple connections including audio, video, and
voice over IP (VoIP) streams.

To send covert data, the technique executes in three main
phases. In the analysis phase the covert sender will analyze
traffic in promiscuous mode. In the selection phase, the sender
selects locations to place covert data. In order to blend with
active network traffic, the sender will select connections with
high data rates and a sufficient amount of randomness in the
payload. Within these connections, the packets with the highest
randomness (considered injection points) are duplicated and
slightly modified to include the covert data. Finally, in the sending
phase, the modified packets are injected into the network (still
containing the original source and destination addresses). By
analyzing the same traffic the covert receiver will identify the
injection points and extract the covert messages. We implemented
the blending covert method (BCM) tool and evaluate it using
user datagram protocol (UDP) connections during two network
loads. Our results show that our technique works with limited
data loss and we analyze the tradeoffs between throughput and
detectability.

I. INTRODUCTION

Much focus has been placed on security defense mecha-
nisms against outside adversaries, but an insider with ma-
licious intent can overcome these defenses with much less
effort. One example of an inside attack is priviledge escalation.
In a network environment with promiscuous traffic such as a
wireless local area network (WLAN), an inside attacker may
eavesdrop on communication to realize a network’s infrastruc-
ture. Although some of these networks employ encryption,
many encryption techniques allow an insider to see all traffic

on the network. In this case, an insider could use this infor-
mation to plan an effective denial of service attack. Similar
scenarios are possible in networks with multicast traffic, hubs,
or switches (e.g., using a poisoning attack). One way to protect
data from unintended receivers is to hide communication by
communicating over covert channels within the network.

Traditionally, covert communication is defined as a way for
two entities that are not intended to communicate to exchange
information [1]. From this perspective, covert communication
is adversarial, and is used as a means to leak information
to unintended listeners. From a different perspective, covert
communication can be seen as a way to protect information
from unauthorized recepients. Unlike encryption, where the
information is made unreadable, covert communication will
allow hiding information including even the node endpoints
in a network environment. This will make it difficult for a
malicious insider to plan attacks.

Some have used covert communication for legitimate com-
munication, e.g., [2]–[4], but in general, these covert communi-
cation methods are tied to a single protocol and the throughput
does not scale as the network gets larger. In this paper, we
introduce the blending covert method (BCM), which allows
nodes in a network to communicate covertly by blending in
active network traffic.

In this paper, we make the following contributions:
1) We describe a method that can be used for commu-

nicating securely through multiple concurrent covert
channels within a network with promiscuous traffic
(e.g., WLAN, multicast, hub, switch configured with
promiscuous ports). The covert throughput can scale as
network congestion increases.

2) We demonstrate the practicality of the method by im-
plementing the BCM tool.

3) We evaluate the performance of the BCM tool under two
loads and show that the method works with limited data
loss in a hubbed network. We also evalute the tool with
different parameter configurations to show the trade-offs
between throughput and detectability.

The rest of the paper is organized as follows. First, we
review related covert communication methods. Next, we de-
scribe the covert communication method and each phase
(monitor, select, and insert/extract) in detail along with the
configurable parameters. We then describe the experimental



setup and report the results from the experiments. Finally, we
present our conclusions and future work.

II. RELATED WORK

There are two main types of channels that are used for
covert communication [5]. The first are timing channels, which
work by purposely modifying timing mechanisms on a net-
work such as packet arrival times. In general, timing channels
are difficult to detect, but they provide low throughput. The
second type of channels are storage channels, which insert
covert data inside header or footer fields in specific protocols,
e.g., [6], [7] and within payload fields of invalid messages.
For example, HICCUPS [8] works by hiding data within
the payload of messages with bad checksums in the datalink
layer. This method works for wireless networks and requires
specialized hardware that has the capability to modify data
link layer checksums. In general, once these channels are
documented, an adversary may know where to find these.

Recent methods use a combination of timing and storage
channels. The Lost Audio PaCKets Steganography (LACK)
method [9] works by having a legitimate voice over IP (VoIP)
stream between nodes on a network. The sender will then hide
data in purposely delayed packets. In a VoIP stream messages
older than a certain period are usually ignored because each
message generally carries only a few milliseconds of audio.
It would not make sense for a receiver to process older
messages, especially in streams with high message rates.
Only a covert receiver captures and extracts the covert data
within these messages. From a defensive perspective, just as
a covert receiver monitors the old messages an adversary
could potentially do the same and therefore breach the covert
communication.

One possible solution for this problem is to blend covert
communication with normal traffic. In the field of system
vulnerability analysis, one method that uses blending to bypass
intrusion detection systems (IDSs) that identify anomalies in
payload data is the polymorphic blending attack (PBA) [10].
PBA works by monitoring traffic and identifying byte frequen-
cies. In order to send malicious packets without triggering an
anomaly detector, PBA pads the malicious data with bytes that
make the entire contents match the known byte frequencies.

Applying this blending idea to covert communication re-
quires additional considerations. First, covert communication
requires a sender and a receiver, so the data must be coded in
a way that a receiver can identify and extract the messages.
In addition, assuming that invalid messages are not ignored, a
covert communicator should modify only portions of messages
that will not be noticed. Yarochkin et al. [11] demonstrate a
method that creates connections that blend with network traffic
(including protocols and services used). These connections
are used to communicate covertly and they are created and
removed dynamically as the network changes. The method
relies on having a network structure where new connection
attempts are common and failed connection attempts are
blocked and ignored, such as in Internet traffic. This is not
the case in tactical networks where all nodes and connections

among nodes follow some specifications. Huang et al. [12]
present another method that blends covert communication with
existing traffic by hiding information in VoIP streams. In this
work, the authors use the least significant bits (LSBs) in VoIP
streams to hide data. The problem with this is that the LSBs
are used regardless of the data that is being sent. One problem
that can occur is if the LSBs are unchanging, when inserting
covert data the covert communication may become obvious.
An extension of this work [13], improved the covert insertion
process by selecting the LSB most similar to a given covert
message to improve the blending (or transparency). The latter
two methods use a single protocol and use fixed fields in the
payload for covert communication. The method described in
this paper chooses insertion points dynamically and embeds
covert data over multiple connections.

III. BLENDING COVERT METHOD

The blending covert method works in three main phases.
During each phase, there are several parameters that a covert
communicator may set in order to balance between throughput
and detectability, e.g., one may risk higher detectability to
achieve higher throughput in a network with some level of
congestion depending on the protocols and services used.

The three phases and the parameters used are shown in
Figure 1.

Fig. 1. Blending covert method dataflow diagram. Letters in parantheses
correspond with the parameters in Table I.

A. Monitoring

In the monitor phase, all network traffic is analyzed in
promiscuous mode. A connection consists of the messsages
sent between two nodes that share the same source and destina-
tion media access control (MAC) addresses, Internet protocol
(IP) addresses, and port numbers. In addition, messages in



TABLE I
BLENDING COVERT METHOD PARAMETERS

Type Parameter Name Description Value Range

Monitor (A) Window Size Determines how often the packet counts, byte counts, and ran-
domness values are computed. Also defines the smallest wait time
before sending a covert message for a connection. For example,
if this value is set to one second, for each connection, only one
covert message can be sent each second.

[100ms,5000ms]

Monitor (B) Protocol To Use Indicates which network protocol(s) must be used by a connection
to be a candidate for covert message insertion.

[UDP,any]

Selection (C) Rate Threshold The minimum rate (packets per window) that a connection must
send data to be a candidate for covert data insertion. A higher
value will decrease detectability, but will also reduce throughput.

[1,50]

Selection (D) Connection Randomness Threshold This value is calculated by summing the randomness of all bytes
in a connection. This value indicates the minimum randomness
that a connection must exhibit to be a candidate for covert data
insertion.

[1,1024]

Selection (E) Byte Randomness Threshold Byte randomness is calculated using the technique described in
Section III-A. This value indicates the minimum randomness that
a byte in a connection must exhibit to be a candidate for covert
data insertion.

[0,1]

Selection (F) Contiguous Random Bytes Indicates the number of contiguous bytes that must satisfy the
Byte Randomness Threshold in order for a connection to be a
candidate for covert data insertion.

[Sync Bytes +
Checksum Bytes
+ 1,1024]

Insertion/Extraction (G) Sync Bytes Indicates the number of bytes to use for identifying the start of
a covert message within a connection’s payload. A higher sync
byte count will result in fewer false positives, but may also result
in higher detectability and less throughput.

[0,5]

Insertion/Extraction (H) Checksum Bytes Indicates the number of bytes to use for calculating the message
checksum used to validate covert messages. A higher value will
result in fewer false positives, but less throughput.

[0,3]

Insertion/Extraction (I) Rate To Use Indicates the percentage of the connection’s rate that will be used
for covert data insertion.

[0,1]

a connection have equal protocol types and packet lengths.
Therefore, for each connection, only the bytes in the payload
fields change.

In this phase, connections that communicate over the pro-
tocol specified in the Protocol to Use parameter are stored.
For each of these connections, several statistics are calculated.
First, the rate is calculated by averaging the number of packets
received during the last two windows of duration given by
Window Size. Next, the randomness of the each byte in
the connection and the total over the entire connection are
calcuated. Randomness is calculated as follows.

Using the packets collected for a given connection, the
randomness of each byte in the buffer is calculated using a
histogram. Given that each byte in the buffer can take one
of 256 possible values, a histogram is generated using the
number of occurances of values or range of values for each
byte. Figure 2 shows sample histograms for three cases. In
these cases, the value ranges for the bytes are stored in eight
size bins (x-axis). Each time a new packet is received, the bin
corresponding to the byte value is incremented (y-axis). The
leftmost histogram is for a byte that exhibits a predominate
value with some occurances of surrounding values. The middle
histogram shows a byte value that is mostly evenly distributed
(which is most favored for covert data placement), while the
rightmost graph shows a byte value that has three discrete
value ranges.

Fig. 2. Sample histograms for different randomness values

For this work, we used histograms with equal size bins
with width size of 32 (8 bins) in order to produce a good
estimate of the probability density function (PDF) [14]. This
was verified with informal testing. A histogram with evenly
distributed value counts produces a uniform PDF.

Given that the BCM runs in real time, we calculated a single
value representation of randomness for each byte using a
method that requires minimal resources. We used the following
equation.

Rb = Min/Max

Min and Max represent the minimum and maximum count



values of the histogram. If the values are well distributed then
the maximum and minimum values will be close in value and
the randomness will be close to one. Higher counts in discrete
bins will result in decreased randomness.

For a given connection, the total randomness is given by
the following.

n∑
b=1

Rb

where n is the number of bytes in a given connection.

B. Selection

During the selection phase, locations for placing covert
data are identified and stored. Based on the counts from the
first phase, in order to blend with active network traffic, con-
nections that satisfy the Rate Threshold, and the Connection
Randomness Threshold are selected. Within these connections,
the sequences of contiguous bytes satisfying the parameters
Contiguous Randomness Bytes and Byte Randomness Thresh-
old) are identified. Next the start and end position of the
longest sequence, along with a copy of the packet is stored as
a candidate carrier.

C. Insertion and Extraction

The insertion phase runs on a separate thread that contin-
ually pulls covert data from a buffer. This buffer is filled by
reading the contents of a file. If candidate carriers exist, then
covert data are distributed among the candidate carriers into
the insertion points. Along with the covert data, sync bytes
and checksum bytes are also included in the sent data. The
number of sync and checksum bytes used are taken from the
Sync Bytes and Checksum Bytes parameters. In the case that
candidate carriers do not exist in the current window, then
the data are held in the buffer. When a message is sent, the
candidate carriers that are used will not be considered again
for a specific number of windows, given by the Rate to Use
parameter.

One important note is that due to the header fields exhibiting
zero randomness (because they never change for a connection),
these fields are not considered as insertion points. Therefore,
the covert data are sent in packets without modification to the
source, destination and protocol fields.

During the extraction phase, a covert receiver extracts covert
data by monitoring the network traffic and looking for sync
bytes and valid checksums. Assuming a covert sender uses
insertion points that exhibit uniform PDFs, then an estimate
of the chance of a false positive is given by the following.

PFalsePositive ≈ (1/256)n

One way to reduce the number of packets needed to be
analyzed by a receiver is to match the parameters used by the
sender, however, this may also result in more packet loss.

IV. EVALUATION

In order to test the performance of the BCM, we imple-
mented a tool and tested it in real network environment. The

TABLE II
NETWORK TRAFFIC LOADS DURING THE TWO EXPERIMENTS

Experiment 1 Experiment 2

Overt Nodes 6 12

Packets/sec 80–100 5200–5500

Bytes/sec 95,000–115,000 2,700,000–3,500,000

Active Connections 15–20 40–50

tool is written in the Java programming language and uses the
open source JNetPcap library for network operations.

A. Experimental Setup

We evaluted our covert method by measuring to throughput,
reliability, and detectability under different network loads.
We evaluate reliability by measuring packet loss and then
we evalute tradeoffs between throughput and detectability by
testing the method using different parameters values.

For the first experiment, the network setup contains eight
nodes connected on a 100mbps network hub. One node is the
covert sender, one node is the covert receiver and the other
six nodes are overt communicators that exchange mp3 audio
using the real time service protocol (RTSP) enclosed in UDP.
In total there are three pairs of connections among the six
nodes. Each node acts as a server and client to a neighboring
node (i.e. node A serves node B and node B also serves node
A, etc.). The publicly available live555 media server software
is used to serve the audio and the video lan client (VLC) tool
is used to play the audio. Each node serves a different mp3 file
(a total of six different mp3 files are used). The audio files are
looped so the data exchange is continuous. The mp3 audio
files are recorded conversations taken from a dialog corpus
[15].

In order to observe the effects of the network load on
throughput (specifically packet loss), we conducted a second
experiment with a higher amount of network congestion.
For the second experiment, the network setup consisted of
the same eight nodes, plus six additional nodes exchanging
tranmission control protocol (TCP) packets. We used a traffic
generator to generate the TCP traffic, which was mainly audio
and video data.

The following table shows the network load conditions
during both experiments.

In both experiments, only the UDP connections were used
as carriers for covert communication. The reason UDP was
used is because the protocol is connectionless and there is no
control mechanism as there is in TCP (with sequence num-
bers). During the send phase, only payload data are modified,
not header fields. Duplicating TCP messages could alert an
adversary to the covert communication. One way that TCP
could be used is if a covert sender is also a legitimate sender
that embeds covert data in the payload of select messages.

As the control variables, the following parameter values
were used. We used two sync bytes and two checksum bytes to
virtually eliminate false positives. The other parameters were
chosen favoring detectability over throughput.



• Window Size = 1000ms
• Sync Bytes = 2
• Checksum Bytes = 2
• Rate to Use = 0.1
• Protocol to Use = UDP
• Rate Threshold = 10
• Connection Randomness Threshold = 10
• Contiguous Random Byte = (1 + 3) + 1 = 4
We ran each experiment with varying values for the

Byte Randomness Threshold parameter and we measured the
throughput and reliability during each run.

For each run, we first started a covert sender, which would
automatically begin sending covert packets when valid thresh-
old values were observed. Each packet included a sequence
number (0–255) as the first byte of data. The sequence
numbers were used to count packet loss. On the receiver
missing or out-of-order sequences indicated missing packets.

For the sender, a large file was loaded into the covert data
buffer. As a result, the buffer always contained enough data to
fill all candidate carriers during each window. This was done
to measure maximum throughput.

The receiver was started fifteen seconds after the covert
sender. Packet loss was observed only after the first packet
was received. The receiver was run for five minutes, during
which all incoming covert messages were logged. After the
experiment, we analyzed the logs and measured throughput
and packet loss.

V. RESULTS

The results are presented in Figures 3 to 5.
Figure 3 shows misses graphed against the throughput

available given the Byte Randomness Threshold value. The
data points are total number of misses averaged over the
five minute runs. Even using UDP connections, which are
inherently unreliable, the number of misses is very small
compared to the available throughput received under both
network loads. The variation in the packet loss during the
higher network load may be attributed to the bursty nature of
some of the TCP communication that was present. Since the
number of misses were small, it may be feasible for a receiver
to request resubmission of lost packets. Also, this shows that
it may be favorable to communicate covertly over congested
networks to decrease detectability because the communication
is still reasonably reliable.

Figure 4 shows a graph of received throughput with different
Byte Randomness Threshold values. As expected, the amount
of throughput is consistent under both network loads (because
the same UDP traffic was present for both). Also, as the
threshold value is increased, the throughput decreases, but
this also means that the data are placed in areas with more
randomness, which would be more difficult for an adversary
to find. It should be noted that when using a value of 0.9
for randomness, no covert data were was sent. Although
there were some individual bytes that exhibitied this high
randomness, there were not enough contiguous bytes to fit
the covert data.

Fig. 3. Misses graphed against throughput

Fig. 4. Throughput graphed against Byte Rate Thresholds

Figure 5 shows the number of packets that were sent during
both network loads. As mentioned earlier, the window size
used during the experiments was one second. Also a maximum
of six connections were considered as candidate carriers (only
the six satisfied the threshold parameters). Although there
were other UDP connections, used for controlling the media
sessions, only the connections with audio data realized suitable
randomness values. As a result, the maximum number of
packets that were sent each window was six. This is observed
in the graph. A high degree of randomness is expected because
the the packets contain speech audio. When the threshold
parameter values are higher, the number of packets used de-
creases. This is a good indication that the audio data differed.
Some connections had higher levels of randomness due to
the fact that in some dialogs, the speakers were more verbal.
If the speakers talked less, there was more silence, which
translated to less randomness. Although the same connections
were used as covert carriers during both network loads, there
are slight differences in the values. This is because the sender



and receiver were started while background traffic was already
running. The randomness threshold is reached at different
times depending on the network traffic present during the
instantiation of the BCM tool.

Fig. 5. Packets received graphed against Byte Rate Thresholds

VI. CONCLUSIONS AND FUTURE WORK

We have developed a novel method for secure communi-
cation that communicates through multiple concurrent covert
channels and can scale as network congestion increases.
Evaluation of the method shows that the communication is
reasonably reliable. We also demonstrate tradeoffs between
throughput and detectability.

For future work we will determine the effects of higher
throughput on quality of service. We will also investigate
whether it is more beneficial to hide covert data based on byte
similarity as in [13]. We will also evaluate the performance
of the method using different network configurations such as
WLAN, multicast, and switches configured with promiscuous
ports. Lastly we will look into automatic methods for tuning
the parameters in real time depending on the network.
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