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ABSTRACT
With the advances in web service techniques, new collabo-
rative applications have emerged like supply chain arrange-
ments and coalition in government agencies. In such applica-
tions, the collaborating parties are responsible for managing
and protecting resources entrusted to them. Access con-
trol decisions thus become a collaborative activity in which
a global policy must be enforced by a set of collaborating
parties without compromising the autonomy or confidential-
ity requirements of these parties. Unfortunately, none of
the conventional access control systems meets these new re-
quirements. To support collaborative access control, in this
paper, we propose a novel policy-based access control model.
Our main idea is based on the notion of policy decomposition
and we propose an extension to the reference architecture for
XACML. We present algorithms for decomposing a global
policy and efficiently evaluating requests.

Categories and Subject Descriptors
K.4.1 [Computers and Society]: Public Policy Issues;
K.6.4 [Management of Computing and Information

Systems]: System Management

General Terms
security

Keywords
policy decomposition, collaborative access control

1. INTRODUCTION
Today a second generation of web-based communities and

hosted services are emerging which facilitate collaboration
among users and organizations. The term Web 2.0 has been
coined to embrace all those new collaborative applications
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and also to indicate a new “social” approach to share re-
sources, characterized by resource sharing and decentraliza-
tion of authority. For example, commercial coalitions may
implement supply chain arrangements, subcontracting rela-
tionships, or joint marketing campaigns [6]. In the pub-
lic sector, governments have taken various initiatives to in-
crease collaboration among government agencies and non-
government organizations in order to provide better public
service to citizens. Main goals in such collaborations are
resource sharing and joint tasks and activities. As such a
critical issue is represented by access control systems able to
support selective access to sensitive resources.

One key requirement in access control approaches for col-
laborative applications is the notion of collaborative access
control by which we mean that several parties participate to
make access control decisions. There are several motivations
for collaborative access control. A first motivation is privacy
and confidentiality. Modern attribute-based access control
models, such as XACML [3], require as input information
about subjects requiring access to protected resources. Such
information may be sensitive and owned by different parties,
that may not be willing or able to share it. In some cases,
there may not be a unique party having all the necessary in-
formation to take an access control decision. A second moti-
vation is represented by organizational and business process
requirements. Decisions concerning authorizations to exe-
cute tasks often require approval from multiple-independent
parties, especially in the case of complex tasks. A third
motivation is represented by the fact that parties may have
applications already in place supporting access control func-
tions and it may not be feasible requiring them to adopt
other mechanisms or protocols for access control. Such re-
quirement is crucial for dynamically formed coalitions with
temporal constraints; in such case, the collaborative access
control decisions have to be taken as soon as possible and
thus the parties have to leverage on whichever access control
system they have in place.

As an example focusing mainly on the first motivation,
consider a large enterprise with several departments, includ-
ing a classified project management department, L1, and a
financial department, L2. Each department is responsible
for managing access to its resources and each department
stores confidential data concerning its specific operations
and mission. Consider a global policy stating that no one
can acquire crypto equipments if he works for a classified
project for the US government and he has not enough funds
in his/her budget. Suppose that information about the man-
agers of the classified projects is managed by L1 and the in-
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formation about the funds is managed by L2 and that each
department is not able, for confidentiality reasons, to re-
lease its own information to others. Suppose moreover that
the global policy requires that the requests be approved by
the head of each department and the approval be recorded,
through the execution of obligation actions. In such sce-
nario a centralized enforcement of the policy is not feasible.
Rather a more suitable approach would consist of “distribut-
ing” the policy to the two departments asking each of them
to return its own “local” decision. The local decisions are
then combined to generate the global decision.

Several access control models [6, 7, 12, 14, 16] have
been proposed to address some of the unique access con-
trol requirements in collaborative applications. But none
of those approaches address issues related to decomposing
global policies into local policies and strategies for protecting
sensitive information of each party involved in collaborative
access control. Approaches in the area of privacy preserving
access control [9, 11] have focussed on techniques that pre-
vent a client issuing a request from knowing the exact policy
being evaluated for his request and also prevent policy en-
forcer from getting information about sensitive credentials
of the client. Those approaches however, are not applicable
to the context of a collaborative access control application
where multiple parties have to not only co-operate in mak-
ing an access control decision but have also to ensure that
no sensitive information stored at a collaborating party is
divulged in the process of making this decision. Recogniz-
ing the need for a policy-based access control model that can
enforce a global policy among collaborating parties without
compromising the autonomy or confidentiality requirements
of the involved parties, we propose a novel policy-based ac-
cess control model for collaborative environments based on
the notion of policy decomposition. The main idea is that in
a collaborative environment, a global access control policy
is decomposed into local policies so that the policies local
to a party only need the information available at that party
and that the decisions obtained from the local policies can
be combined to derive the access control decision for the
collaboration as a whole.

We cast our solution in the context of the eXtensible Ac-
cess Control Mark-up Language (XACML) [3] framework.
XACML is a general purpose access control policy language
which defines a request/response language and framework
to enforce authorization decisions. We have chosen XACML
because of its widespread adoption as a language of choice
for enforcing access control in traditional and distributed
environments [13]. In a typical XACML framework, there
is a policy enforcement point (PEP) and a policy decision
point (PDP). The PEP is responsible for issuing requests
and enforcing the access control decisions. The PDP receives
requests from the PEP and evaluates policies applicable to
the requests and sends a decision back to the PEP. To sup-
port collaborative access control, we extend the XACML
reference architecture by introducing multiple PDPs that
communicate with a centralized PEP through a request dis-
patcher/decision coordinator. A global policy is thus decom-
posed into local policies for each PDP according to availabil-
ity/sensitivity requirements of each party and user specified
constraints. Given a request, the central PEP modifies the
request and dispatches it to corresponding PDPs, and then
combines the decisions.

Our contributions are summarized as follows.

• We propose a novel access control model for a multi-
party collaborative environment. An important fea-
ture of our model is that we can protect sensitive in-
formation of one party from being known by the other
parties. It is the first time that privacy issues are con-
sidered in policy decomposition.

• We develop an extension to the reference architecture
for XACML to support collaborative access control.

• We propose a method to optimize the evaluation of
requests as well as complexity analysis.

The rest of the paper is organized as follows. Section 2
briefly introduces the structure of XACML policies. Section
3 presents details of our proposed policy decomposition ap-
proach. Section 4 analyzes the complexity of our approach.
Section 5 reviews related work and Section 6 concludes the
paper and outlines future research directions.

2. XACML POLICIES
XACML [3] is the OASIS standard language for the spec-

ification of access control policies. It is an XML language
able to express a large variety of policies, taking into ac-
count properties of subjects and protected objects as well
as context information. In general, a subject can request an
action to be executed on a resource and the policy decides
whether to deny or allow the execution of that action. Sev-
eral profiles, such as a role profile and a privacy profile, have
been defined for XACML. Commercial implementations of
XACML are also available [1, 2].

XACML policies include three main components: a Tar-
get, a Rule set and a Rule combining algorithm. The Target
identifies the set of subjects, resources, actions and enviro-
nents to which the policy is applicable. Each Rule in turn
consists of another optional Target, a Condition and an Ef-
fect element. The Condition specifies restrictions on the at-
tribute values in a request that must hold in order for the
request to be permitted or denied as specified by the Effect.
The Effect specifies whether the requested actions should
be allowed (Permit) or denied (Deny). The Rule combin-
ing algorithm is used to resolve conflicts among applicable
rules with different effects. An XACML policy may also con-
tain one or more Obligations, which represent functions to
be executed in conjunction with the enforcement of an au-
thorization decision. An XACML request consists of a list
of attributes characterizing a subject and its environment
along with the attributes of the action and resource.

3. POLICY DECOMPOSITION
As aforementioned, policy decomposition is considered in

a multi-party collaborative environment. Such a multi-party
collaborative environment can either be a group of individ-
ual organizations or a large enterprise with several depart-
ments. In our paper, we assume all collaborative parties to
be peers.

Our collaborative access control system is based on the
architecture shown in Figure 1 which also highlights the rel-
evant information flows. The basic idea is to decompose a
global policy in such a way that each participating party
does not need to have any sensitive information belonging
to other parties to make an access control decision, and to
combine decisions made by each participating party to ob-
tain the decision for the global policy. In our system, there
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Figure 1: Data Flow Diagram

are a central policy enforcement point (PEP) and multiple
policy decision points (PDP). The central PEP and PDPs
are connected by a request dispatcher/ decision coordinator
(RDDC) and local context handlers.

The PEP, RDDC, policy decomposition module, global
policy repository reside at one party called coordinator; each
PDP and associated local policy repository reside at each
collaborating party. The system implements two key func-
tions: policy decomposition and request evaluation.

The policy decomposition function takes a global policy
and policy decomposition constraints as input. The global
policy is decomposed into local policies according to the con-
straints and then sent to the local policy repositories of cor-
responding PDPs. This function is performed by the trusted
coordinator. After the decomposition, the global policy is
encrypted and stored in a secure store. That means that
the global policy will no longer be used for the subsequent
request evaluation. Instead, only the non sensitive informa-
tion of each global policy is kept as plain text in a policy
table maintained by the coordinator. In particular, every
record in such table contains: policy targets, a list of par-
ticipating local PDPs, and corresponding effect combining
functions (details can be found in Section 3.2). Since the
policy targets are kept public in the record we must ensure
that no sensitive attributes are present in the policy targets.
Any sensitive attributes that appear in a policy target are
removed from the policy target and appended to the rule tar-
gets. The rules of the global policy which contain conditions
that must be satisfied for a request to be permitted or denied
is often more sensitive because it can involve the compari-
son of highly classified values. These rules are decomposed
into local policies and sent to corresponding PDPs. In short,
the coordinator is responsible for coordination and does not
maintain any sensitive information; sensitive information is
stored at each local PDP.

When a request is issued, the coordinator will first check
whether information in the request matches the policy tar-
gets. If there is a match, the coordinator will check the
policy table and distribute the request to the corresponding
local PDPs. A local policy may contain predicates on both
sensitive and non sensitive attributes. For non sensitive at-
tributes, the local PDP looks for the attribute values in the
request. For sensitive attributes, the local PDP accesses its
local database and resolves the attribute values regardless
of whether the request includes such values or not. In some
situations, additional information like the requester ID may
be needed to help local PDPs to resolve the values of the sen-
sitive attributes. The responses of local PDPs are collected
and returned to the coordinator where the final decision is
made.

In the rest of this section, we first discuss a running ex-
ample in order to illustrate the approach. Then we present
a security analysis of our approach. After that we introduce
a basic algorithm for policy decomposition and discuss how
to integrate user defined decomposition constraints into the
basic algorithm. Finally, we present an optimized approach
for request evaluation.

3.1 An Illustrative Example
To illustrate the discussion we consider an enterprise with

several departments, like financial department, project man-
agement department and human resource department as
shown in Figure 2. Suppose that there is a global policy
P written in a simplified format as shown in Figure 3. The
policy P contains two rules: P.r1 and P.r2. The rule P.r1

states that a principal investigator (PI) of project called“Se-
cretCrypto”with level“High”can buy advanced equipments.
While the rule P.r2 denies the right to buy advanced equip-
ments to any subject with funding less than 100,000 dollars
in the project “SecretCrypto” with level “High”.
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Global Policy Policy Target {PDP, Local Policies} Rule Effect Combination function
P ProjectName=“SecretCrypto” {PDP1, P1, P2} P.r1 : f1(P1)

ActionAction = “Buy” {PDP2, P3} P.r2 : f2(P2, P3)

Table 1: Decomposition record for global policy P

Project 

PDPPDP32PDPPDP1

PEP Enterprise

... ...

Financial
Management

Human 
Resource

n

Figure 2: Hierarchy

We further assume that “ProjectName” and “Action” are
public information and known by any department, while in-
formation about “ProjectRole” and “ProjectLevel” is only
stored at the project management department and informa-
tion about “Funding” is only stored at the financial depart-
ment.

According to the available information at each depart-
ment, we decompose the policy P into P1, P2 and P3 with
permit effect as follows, where policies P1 and P2 only con-
tain project information and policy P3 only contains finan-
cial information.

P1 (Project Management Department): A principal inves-
tigator (PI) of project “SecretCrypto” with level “High” can
buy advanced equipments.

P2 (Project Management Department): Everyone can buy
advanced equipments for the project“SecretCrypto”with level
“High”.

P3 (Financial Department): Everyone can buy advanced
equipments for the project “SecretCrypto” with funding less
than 100,000 dollars.

After the decomposition, the coordinator stores the policy
targets in P together with a record specifying that the policy
P needs to be evaluated by policies P1 and P2 at project
management department(PDP1) and policy P3 at financial
department(PDP2). Note that the coordinator only records

PolicyId=P, RuleCombiningAlgorithm = deny-override
〈RuleId=r1 Effect=Permit〉

〈Target〉
〈Subject ProjectName = “SecretCrypto” 〉
〈Action Action= ”Buy”〉

〈/Target〉
〈Condition ProjectRole = “PI” and

ProjectLevel = “High”〉
〈/Rule〉
〈RuleId=r2 Effect=Deny〉

〈Target〉
〈Subject ProjectName = “SecretCrypto”〉
〈Action Action= “Buy”〉

〈/Target〉
〈Condition ProjectLevel = “High” and

Funding < 100000 〉
〈/Rule〉

Figure 3: Global Policy P

the IDs of local policies but not the content of the local
policies. The coordinator also stores functions stating that
P.r1 has the same decision as P1; P.r2 will yield a deny
decision if both P2 and P3 return permit. A record stored
by the coordinator for this example is shown in Table 1.

Next, we show an example of a request evaluation based on
the local policies. Assume that Bob is the PI of the project
“SecretCrypto” and he wants to buy some equipment. A
corresponding request 〈 Bob, ProjectName=“SecretCrypto”,
Action=“Buy” 〉 is received by the coordinator. The coor-
dinator checks the policy table and finds that this request
matches the policy targets of policy P . Then it sends the
request to the project management department and the fi-
nancial department. The project management department
knows that Bob is a PI and the corresponding ProjectLevel
is “High”, and hence both P1 and P2 return permit decisions
to the coordinator. Similarly, P3 is evaluated in the finan-
cial department and we assume a deny decision is returned
to the coordinator. Finally, the coordinator combines the
decision and permit Bob’s request.

In the above example, we observe that both P1 and P2

need to check whether the ProjectLevel is “High”. To avoid
such redundant evaluation and improve the efficiency, our
system will simplify policy P1 as follows.

P ′

1 (Project Management Department): A principal in-
vestigator (PI) of project “SecretCrypto” can buy advanced
equipments.

Correspondingly, we also need to reflect this change to
the effect combination functions stored in the coordinator,
where P.r1 is now associated with P ′

1 and P2.

3.2 Security Analysis
In our approach, we assume that each participating party

is not willing to share sensitive information; each partici-
pating party is trusted and local PDPs will correctly en-
force the portions of the global policy that have been sent
to them. Note that at the coordinator side, only a small
component dealing with policy decomposition is required to
be trustable, which can be easily verified. Based on these
assumptions, we proceed to analyze possible attacks to our
system.

First, consider the situation when several parties other
than the coordinator have been hacked. The information
stored at these parties would be leaked while the information
stored at other parties is still safe. Similarly, only the request
evaluation involving the hacked parties may not be carried
out properly.

Next, suppose that the coordinator has been attacked. In
this case, it is hard for the attacker to know the original
global policies as they are encrypted. In order to guess poli-
cies that are stored at each local PDP, the attacker may send
out fake requests as in the polling attack. However, since the
attacker does not know based on what criteria (sensitive in-
formation) a request is evaluated, it needs to try a lot of
combinations of attributes. Even if it generates a set of re-
quests like “Bob wants to buy equipments and he has 10,000
dollar funding”, “Bob wants to buy equipments and he has
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20,000 dollar funding”, ..., “Bob wants to buy equipments
and he has 90,000 dollar funding” in order to infer the fund-
ing requirements stated in the local policy, it still will not
succeed. The reason is that if funding information is consid-
ered sensitive, the values regarding this funding information
will be resolved at the local PDP, which means Bob’s fund-
ing amount in the request will be replaced by the real value
at the local PDP and hence the above set of requests is es-
sentially the same. At the end, the attacker will only know
whether Bob can buy the equipments or not.

To sum up, our approach can prevent the attackers from
knowing predicates on sensitive attributes in local policies
as well as sensitive information stored at local PDPs.

3.3 Basic Decomposition
The decomposition consists of four main steps (outlined in

Figure 4). First, we convert the global policy into compound

Algorithm 1. Policy Decomposition(P )
Input : P is a global policy

//— step 1 —//
1. for each rule ri in P
2. Bri

← a compound Boolean expression of ri

//— step 2 —//
3. identify unique atomic Boolean expressions in all Bri

4. label each unique atomic Boolean expression
//— step 3 —//

5. C1,...,Ck ← Decomposition Plan Search
6. for j ← 1 to k
7. convert every Cj into a local policy Pj

8. distribute Pj to the destination PDP
//— step 4 —//

9. construct effect combination table for each rule at PEP

Figure 4: Policy Decomposition Algorithm

Boolean expressions over policy attributes [4]. A compound
Boolean expression is composed of atomic Boolean expres-
sions combined using the logical operations ∨ and ∧. Atomic
Boolean expressions that appear in most policies belong to
one of the following two categories: (i) one-variable equality
Boolean expressions, a ⊲ c, where a is an attribute name,
c is a constant, and ⊲ ∈ {=, 6=}; (ii) one-variable inequality
Boolean expressions, c1⊳a⊲c2, where a is an attribute name,
c1 and c2 are constants, and ⊳, ⊲ ∈ {<,≤, >,≥}. Given a
policy, we represent each rule together with the policy tar-
get as a compound Boolean expression. An example is given
below. In what follows, we use the notation {..}T to denote
targets.

Example 1. Consider policy P in Figure 3. The Boolean
expression of rule P.r1 is
{(ProjectName = “SecretCrypto”)∧(Action = “Buy”)}T

∧(ProjectRole = “PI”) ∧(ProjectLevel = “High”)
The Boolean expression for rule P.r2 is

{(ProjectName = “SecretCrypto”)∧ (Action = “Buy”)}T

∧(ProjectLevel = “High”) ∧ (Funding < 100000)

The second step is to decide what portion of the policy
needs to be assigned to which PDP. We first identify unique
atomic Boolean expressions in the policy. We cluster all
syntactically equal atomic Boolean expressions into a group.
Each such group corresponds to a unique atomic Boolean
expression.

The values of certain attributes or a decision involving cer-
tain attributes may have to be provided by specific PDPs(and

associated context handlers) in the collaboration. For ex-
ample, the value of and the decision involving the Fund-
ing attribute must be provided by the financial department.
Therefore we categorize and label the unique atomic Boolean
expressions with the corresponding PDP’s ID. Typically each
atomic Boolean expression contains an attribute associated
with a single PDP. However, for attributes in policy targets
which are known by every party, we refer to them as com-
mon attributes and give them a special label for distinction,
denoted as Ls.

Example 2. Consider policy P in Figure 3. Assume that
the PDP’s IDs with respect to the project management and
financial departments are L1 and L2 respectively. Table 2
shows the unique atomic Boolean expressions in rule P.r1

and the labels of each Boolean expression.

ID Unique atomic Boolean expression Label
B1 ProjectRole = “PI” L1

B2 ProjectLevel = “High” L1

B3 Funding < 100,000 L2

B4 ProjectName = “SecretCrypto” Ls

B5 Action = “Buy” Ls

Table 2: Atomic Boolean Expressions and Labelling

The third step is to generate the actual local policies ac-
cording to the labels attached to the atomic Boolean ex-
pressions. The basic idea is to replace a group of correlated
atomic Boolean expressions with a local policy. We convert
the compound Boolean expression of a policy into a disjunc-
tive normal form (DNF) expression. The definition below
introduces the notion of correlated atomic Boolean expres-
sions.

Definition 1. Let F be a Boolean expression in DNF.
Let Bi and Bj be two atomic Boolean expressions in F . We
say that Bi and Bj are correlated iff they satisfy one of the
following two conditions.

(i) Bi and Bj have the same label and appear in the same
disjunct of F .

(ii) Bi and Bj have the same label L and appear in two
different disjuncts in which every atomic Boolean expression
has the same label L.

For example, consider the DNF Boolean expression F =
(BL1

1 ∧ B
L1

2 ) ∨ (BL1

2 ∧ B
L2

3 ∧ B
L3

4 ) ∨ (BL1

5 ). B1 and B2 are
correlated according to condition (i) and B5 is correlated
with both B1 and B2 according to condition (ii). Based
on the above definition, we define the notion of cluster of
correlated Boolean expressions.

Definition 2. Let F be a Boolean expression in DNF.
Let B1, . . . , Bn be atomic Boolean expressions in F . We say
that B1, . . . , Bn form a cluster of correlated Boolean expres-
sions iff Bi is correlated with Bi+1 for every 1 ≤ i ≤ n − 1.
The cluster is maximum if B1 and Bn are not correlated
with any other atomic Boolean expressions that are in F but
not in this cluster.

For each rule, it is easy to find all maximal clusters of corre-
lated atomic Boolean expressions. Each cluster corresponds
to a candidate local policy. Note that we do not create a
separate local policy for a cluster with the special label. In-
stead, such a special cluster is appended to every cluster
with label other than Ls to create local policies. The reason
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we call them candidate local policies is that maximal clus-
ters are not always the best choice. We also need to consider
the problem from the view of an entire global policy. This
is because some rules may share same Boolean expressions
which are not the maximal cluster in all rules, but the cre-
ation of a local policy regarding this set of shared atomic
Boolean expressions can improve the system performance.
From now on, we will refer to a decomposition of a policy
as a policy decomposition plan. An example is given below.

Example 3. Consider the rules P.r1 and P.r2 of the global
policy P in Figure 3. Let B1, B2, B3 and B4 be atomic
Boolean expressions, and let L1 and L2 be the labels refer-
ring to the project management and financial department
PDPs. Using Example 1 and table 2 we derive :

P.r1 : B
L1

1 ∧ B
L1

2 ∧ {BLs
4 ∧ BLs

5 }T

P.r2 : B
L1

2 ∧ B
L2

3 ∧ {BLs
4 ∧ BLs

5 }T

In P.r1, {B
L1

1 , B
L1

2 } is a maximal cluster of atomic Boolean

expressions; in P.r2, {B
L1

2 },{BL2

3 } are maximal clusters re-
spectively. The cluster {BLs

4 ∧ BLs
5 }T denotes the target.

Two decomposition plans for policy P are shown in Table 3.

Plan A Plan B

P1 : B
L1

1
∧ B

L1

2
∧ (BLs

4
∧ B

Ls
5

) P ′

1
: B

L1

1
∧ (BLs

4
∧ B

Ls
5

)

P2 : B
L1

2
∧ (BLs

4
∧ B

Ls
5

) P ′

2
: B

L1

2
∧ (BLs

4
∧ B

Ls
5

)

P3 : B
L2

3
∧ (BLs

4
∧ B

Ls
5

) P ′

3
: B

L2

3
∧ (BLs

4
∧ B

Ls
5

)

Table 3: Decomposition Plans

Plan A creates local policies by always using maximal clus-
ters. Compared to Plan A, Plan B has the same number of
policies. However policies in Plan B have smaller sizes. We
define the policy size as the number of Boolean expressions
in the policy. With respect to performance, Plan B would be
more efficient than Plan A since Plan B needs to evaluate
fewer attributes.

Therefore, to guide the search of decomposition plans, we
propose the following cost function which estimates the total
workload for evaluating all local policies.

cost(P1, ..., PNP
) =

NP∑

i=1

SPi
+ α · NP (1)

In equation 1, NP is the total number of local policies, SPi

is the size of policy Pi which is estimated by using the num-
ber of atomic Boolean expression in Pi. α is the overhead
introduced at evaluation time due to the increased number
of policies. Specifically, instead of evaluating a single large
policy, evaluating a number of smaller policies may require a
little bit more time. The smaller the value of cost, the more
efficient the policy decomposition plan will be. It is worth
noting that we also need to check if the decomposed policy
is consistent with the original rule. We present more details
about determing a consistent decomposition plan in Section
3.3.1.

So far we have obtained a decomposition plan where each
local policy is represented as a Boolean expression. We pro-
ceed to introduce the procedure for converting these Boolean
expressions into actual XACML policies. As we know, a
Boolean expression in a policy corresponds to one of the
policy components, like target and condition. Boolean ex-
pressions that present in a certain type of component of a
global policy are placed in the same type of component in

local policies. For example, if a Boolean expression belongs
to a resource element in the target of the global policy, this
Boolean expression will also be in the resource element in
the target of the local policy. Second, in XACML, there
are structures which can represent the meaning of ∨ and ∧.
Next, we set the effect of all local policies to permit. Then
the constructed local policies are distributed to the PDPs
indicated by the labels.

The last step is to compute the effects of original rules
from the corresponding local policies. To achieve this, we
propose an effect combination table maintained by the re-
quest dispatcher/decision coordinator. Each row in such
table has the form of 〈RID, F 〉, where RID is a rule ID and
F is a Boolean expression on the decisions (denoted as e(P ))
returned by the local policies associated with rule RID. F

is constructed based on the Boolean expression representing
the rule. Specifically, given a request, if the decision of P is
permit, the value of e(P ) will be true. Otherwise, the value
of e(P ) will be false. If F is evaluated true, the decision
of the corresponding rule will be determined by the rule ef-
fect. If F is evaluated false, the decision of the rule will be
NotApplicable. Below is an example.

Example 4. Table 3 is an effect combination table for
the policy decomposed using Plan B in Example 3.

RID F

P.r1 e(P ′

1) ∧ e(P ′

2)
P.r2 e(P ′

2) ∧ e(P ′

3)

Table 4: An Effect Combination Table

The effects of P.r1 and P.r2 are permit and deny re-
spectively. Consider a request q applicable to local policies
P ′

2 and P ′

3. Suppose that the decisions returned by P ′

2 and P ′

3

are both permit. Correspondingly, we have e(P ′

1) = false,
e(P ′

2) = true, e(P ′

3) = true. The Boolean expression F of
P.r2 is then evaluated true, and hence the decision of the
request q is deny.

After the effects of the original rules are obtained, the rule
combining algorithm is applied to generate the final decision.

Finally, we briefly discuss the situation when there is an
update to the global policy. An update can be seen as a
deletion followed by an insertion. If almost every rule has
been modified, we remove all related information about the
old global policy and decompose the new policy. If there is
only minor modification to several rules in the global policy,
we only need to re-decompose the rules sharing the same
local policies with the updated rules.

3.3.1 Decomposition Plan
In the previous section, we have mentioned that the de-

composition is based on finding the clusters of atomic Boolean
expressions. An important requirement is to ensure that
the decomposed policies are consistent with the original one.
The following definition introduces our notion of consistency.

Definition 3. Let r be a rule in a policy, let P1, P2, ...,
Pk be local policies with respect to r, and let F be the effect
combination function of r. If for any request q, the decision
yielded by F is the same as the decision yielded by r, we say
that the decomposition of r into P1, P2, ..., Pk is consistent.
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In what follows, we first introduce an algorithm for the
search of a decomposition plan and then prove that the ob-
tained decomposition plan is consistent.

The algorithm consists of two main steps. First, we re-
order the atomic Boolean expressions in the DNF Boolean
expression of each rule. In particular, we rearrange the
atomic Boolean expressions in the same clause by moving
together the atomic Boolean expressions with the same la-
bel, i.e. atomic Boolean expressions belonging to the same
PDP. It is now easy to find the maximal clusters of corre-
lated Boolean expressions in each clause. Next, we move
together the clauses with the same single label.

The maximal clusters of correlated Boolean expressions
found in previous step are treated as candidate local policies.
We can compute the evaluation cost of this set of candidate
local policies according to Equation 1. The next step is to
find out if other alternative local policies exist. As discussed
in Example 3 when one local policy is included by another,
we need to split the bigger candidate local policy to reduce
the total evaluation cost. This only happens to policies that
are local to the same PDP. Based on such observation, we
propose the following heuristics to guide the decomposition
plan search.

Heuristics 1. Let P1, P2 be two policies local to the same
PDP, and let f1 and f2 be the corresponding Boolean expres-
sions of P1 and P2 respectively. If there exists a Boolean
expression f ′

1 such that f1 = f2 ∧ f ′

1 or f1 = f2 ∨ f ′

1, then
we split P1 into two local policies P2 and P ′

1 where P ′

1 cor-
responds to f ′

1. This heuristics is summarized as follows.
P1(f2 ∧ f ′

1), P2(f2) ⇐⇒ P ′

1(f
′

1), P2(f2)
P1(f2 ∨ f ′

1), P2(f2) ⇐⇒ P ′

1(f
′

1), P2(f2)

In the above heuristics, it is obvious that evaluating P ′

1 and
P2 is less expensive than evaluating P1 and P2.

The situation becomes complicated when two local poli-
cies have an intersection rather than one being included by
the other. In such case, we need to use the cost function to
decide if we need to separate the intersection part from the
candidate local policies. In particular, we have the following
heuristics.

Heuristics 2. Let P1, P2 be two policies at the same
PDP, and let f1 and f2 be the corresponding Boolean ex-
pressions of P1 and P2 respectively. If the following two
conditions are satisfied, we replace P1 and P2 with P ′

1, P12,
P ′

2 which correspond to f ′

1, f12 and f ′

2 respectively.
(i) ∃f ′

1, f12, f
′

2, f1 = f ′

1

⊙
1
f12 and f2 = f12

⊙
2
f ′

2, where⊙
1
,

⊙
2
∈ {∧,∨}.

(ii) cost(P1, P2) > cost(P ′

1, P12, P
′

2).

We now proceed to describe how to use these two heuris-
tics. We insert policies local at the same PDP into a list.
For each list {P1, P2, ..., Pk}, we start with the first two local
policies. First, we apply Heuristics 1 to P1 and P2. With-
out loss of generality, suppose that P2 can be split into two
local policies P1 and P ′

2. We replace P2 with P ′

2 and the list
becomes {P1, P ′

2, ..., Pk}. We then consider policies P1 and
P3. Suppose that Heuristics 2 can be applied to them so
that P1 is split into P ′

1 and P13 while P3 is split into P ′

3 and
P13. We remove P1 and P3 from the list and insert P ′

1, P13

and P ′

3 after P ′

2. The list is then changed to {P ′

2, P ′

1, P13,
P ′

3, P4, ..., Pk}. Since the first policy in the list, i.e. P1, has
been removed, we start a new round by selecting policies P ′

2

and P ′

1 and keep applying two heuristics. The same proce-
dure continues until we reach the end of the list. The last

Algorithm 2. Decomposition Plan Search(f1, ..., fn)
Input : f1, ..., fn are Boolean expressions of rule r1,..., rn

//— step 1 —//
1. for each rule ri

2. f ′

i ← cluster atomic Boolean expressions
with the same label in fi

3. append maximal clusters of atomic Boolean
expressions to a list C

//— step 2 —//
4. take every maximal cluster in C as a local policy
5. for each PDP
6. L ← a list of local policies P1, ..., Pm at this PDP
7. Pi ← the first policy in L

8. while Pi is not the last second policy in L

9. Pj ← the policy following Pi

10. while Pj is not the last policy in L

11. apply Heuristics 1 to Pi and Pj

12. if Pi can be split into P ′

i and Pj

13. Pi ← P ′

i
14. else if Pj can be split into Pi and P ′

j

15. Pj ← P ′

j

16. else
17. apply Heuristics 2 to Pi and Pj

18. if Pi and Pj can be split into P ′

i , Pij and P ′

j

19. insert P ′

i , Pij and P ′

j after Pj

20. delete Pi and Pj from L

21. Pi ← the first policy in L

22. Pj ← the policy following Pi

23. else Pj ← the policy following Pj

24. Pi ← the policy following Pi

25. eliminate duplicate policies from L

26. return L

Figure 5: Decomposition Plan Search

step is to eliminate any duplicate Boolean expression cre-
ated during the decomposition. The final result is a list of
local policies represented as Boolean expressions. Figure 5
summarizes the algorithm for decomposition plan search.

3.3.2 Consistency

Theorem 1. Let r be a rule in a global policy P , and
let P1, P2, ..., Pk be local policies generated by Algorithm 2
(Figure 5). P1,P2, ..., Pk are consistent with r.

Proof. To prove this theorem, we only need to prove
that the combination of Boolean expressions regarding local
policies P1, ..., Pk is the same as the original Boolean ex-
pression F regarding r. We examine the decomposition plan
search algorithm step by step.

First, we look at the reordering step. Suppose that F ′

is the Boolean expression obtained after changing the order
of the atomic Boolean expressions in the same clause in F .
According to the commutative property, i.e. a

⊙
b = b

⊙
a

where
⊙

∈ {∧,∨}, and a, b are Boolean expressions, F ′ is
equivalent to F . Let F ′′ be the Boolean expression obtained
after changing the order of clauses in F ′. Again, according
to the commutative property, F” is equivalent to F ′, and
hence equivalent to F .

Let f1, ..., fl be the maximal clusters of atomic Boolean
expressions in F ′′. According to the associative property,
i.e., (a

⊙
b)

⊙
c = a

⊙
(b

⊙
c) where

⊙
∈ {∧,∨}, and a,

b, c are Boolean expressions, the combination of f1, ..., fl

is equivalent to F ′′. Based on the associative property, it is
also easy to prove that the Boolean expressions obtained by
applying any of the two heuristics is equivalent to the origi-
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nal Boolean expression. To summarize, the local policies P1,
..., Pk generated by our algorithm are consistent with rule
r.

3.4 Constraint-based Decomposition
In some cases, policy owners have specific requirements

when their policies are decomposed, which we refer to as
decomposition constraints. For example, a party only trusts
some specific PDPs for the evaluation of its policies and
hence it requires that its policies can only be stored in these
sites that it trusts.

To support such a function, we keep a profile for each
PDP. The profile contains the PDP ID and a set of at-
tribute and value pairs in the form of 〈(PDP ID, val1),
(Attr2, val2), · · · , (Attrk, valk)〉. These attributes can be
trust levels (TRUST), average response time taken to evalu-
ate a request (AVG RESP), etc. Decomposition constraints
are then specified as Boolean expressions on some attributes
listed in profiles, denoted as fc(Attr1, ..., Attrl).

Given a policy and a decomposition constraint, we carry
out a filtering phase before the normal policy decomposi-
tion as described in previous section. In this filtering phase,
we evaluate every PDP and leave out PDPs whose profile
cannot satisfy the decomposition constraint. The decompo-
sition is executed only among the qualified PDPs. Below is
an example.

Example 5. Suppose that there are three PDPs, whose
ID are PDP1, PDP2 and PDP3. Their profiles are as fol-
lows:

• 〈(PDP ID, PDP1), (TRUST, 3), (AVG RESP, 0.1s)〉.

• 〈(PDP ID, PDP2), (TRUST, 1), (AVG RESP, 0.03s)〉.

• 〈(PDP ID, PDP3), (TRUST, 5), (AVG RESP, 0.03s)〉.

A policy owner specifies his decomposition constraint fc

as: (PDP ID = PDP1) ∨ (TRUST > 2 ∧ AVG RESP< 0.05s),
which requires that the policy can only be handled by PDP1 or
PDPs which has a TRUST higher than 2 and AVG RESP less
than 0.05s.

After evaluating profiles of the three PDPs against fc, we ob-
tain two qualified PDPs, i.e. PDP1 and PDP3. The decomposi-
tion procedure will then only consider these two qualified PDPs.

It is worth noting that some decomposition constraints
may render the policy decomposition unsatisfiable. For ex-
ample, if a policy contains information only maintained at
a PDP that does not satisfy the decomposition constraint,
this policy cannot be decomposed. In that case, the user
will be informed that the policy cannot be decomposed and
be advised to revise his policy constraints.

3.5 Request Evaluation Optimization
A straightforward approach to evaluate a request consists

of three basic steps: (i) for each rule applicable to the re-
quest, evaluate its local policies; (ii) combine the effects of
local policies based on the effect combination table; and (iii)
apply the rule combining algorithm to obtain the final de-
cision of the request. However, this naive method may not
be always efficient. First, different rules may share the same
local policies, and hence some policies may be repeatedly
evaluated. For example, in Table 4, rules r1 and r2 share
the local policy P2. Second, the naive method evaluates all
applicable rules which may not be necessary for some rule

combining algorithms. Consider the permit-override com-
bining algorithm as an example. If a rule with the permit
effect is evaluated true, we do not need to check other rules,
i.e., we do not need to check corresponding local policies.
Based on these observations, we propose a novel method to
generate an evaluation plan for a global policy by carefully
considering the relationships among local policies, the prop-
erties of local PDPs, and the characteristics of rule combin-
ing algorithms.

Two main data structures are used in our method. IRE
is an intermediate result table which stores the effects of
local policies on a given request. RS is a response time table
which keeps a record of evaluation time of each rule and each
local policy.

We now proceed to introduce an approach to generate an
evaluation plan for a global policy. The first step is to deter-
mine a proper order for evaluating rules. The rule evaluation
plan consists of two levels: first-level plan and second-level
plan. The first-level plan determines the evaluating order of
the rules. For each rule, there is a second-level plan provid-
ing the evaluating order of local policies corresponding to
this rule.

To obtain the first-level plan, we sort all the rules in an
ascending order according to estimated evaluation cost. We
use equation 1 to estimate the cost of evaluating a rule r

by replacing NP , SPi
with Nr

P and SP r
i

respectively, where
Nr

P is the total number of local policies regarding rule r,
and SP r

i
is the corresponding policy size. If we do not have

any knowledge about a rule-combining algorithm, like when
a user defined algorithm is used, we use the current ascend-
ing order as the first-level plan. Otherwise, we can further
customize the plan according to the types of rule-combining
algorithms used by the global policy. In the following, we
consider four common rule-combining algorithms.
Permit-overrides. The effect of the policy is “Permit” if a
rule is encountered that evaluates to “Permit”, regardless of
the evaluation result of the other rules. This rule-combining
algorithm gives precedence to the rules with “Permit” effect.
Thus, we reorder the rules which are already in an ascending
order according to the evaluation cost, by first selecting rules
with “Permit” effect and then selecting rules with “Deny”
effect. Thus, once a rule returns a decision, the evaluation
can stop and return the decision as the final decision for the
request. Also, we can benefit from the ascending order as
we always evaluate rules with lower cost first.
Deny-overrides. The effect of the policy is “Deny” if any
rule is encountered that evaluates to “Deny”. The effect of
the policy is “Permit” if any policy evaluates to“Permit”and
all other rules evaluate to “NotApplicable”. Deny-overrides
is the opposite of permit-overrides. Thus, this time we move
the rules with “Deny” effects before the rules with “Permit”
effect. Similarly, once a rule returns a decision, the evalua-
tion stops and this decision is treated as the final decision
for the request.
First-one-applicable. The effect of the policy is the same
as the result of the first applicable rule. In this case, the
first-level plan is skipped and the original order of rules is
maintained.
Only-one-applicable. The effect of the policy corresponds
to the result of the unique rule in the policy which applies
to the request. Specifically, if no rule or more than one rule
is applicable to the request, the result of rule combination
should be“NotApplicable”; if only one rule is applicable, the
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result will be the result of evaluating the rule. For this rule-
combining algorithm, we do not need to make any change
to the previously obtained first-level plan. We evaluate the
rules in an ascending order of their estimated evaluation
cost. The evaluation will stop and return the decision “No-
tApplicable” if two applicable rules are encountered.

The second-level plan is developed based on the assump-
tion that a rule is represented by a DNF Boolean expres-
sion of local policies. As we know DNF expressions have an
important property. That is when one clause of the DNF
expression is evaluated to true, the DNF expression is true.
This means that the evaluation can stop when a satisfied
clause is encountered. It would be beneficial to first eval-
uate the clauses with lower evaluation cost. Further, we
notice that if a request does not match the rule target, the
evaluation will also stop. Therefore, the second-level plan
will first evaluate clauses with respect to the rule target in
an ascending order of the evaluation cost and then evalu-
ate the remaining clauses also in an ascending order of the
evaluation cost. We employ equation 1 again to estimate
the cost of evaluating each clause. We replace NP and SPi

in equation 1 with Nrj ,ck
and S

P
rj,ck
i

respectively, where

Nrj ,ck
is the number of local policies in the clause ck of rule

rj , and S
P

rj,ck
i

is the corresponding policy size.

The last step is to actually evaluate local policies and rules
according to the orders given by the rule evaluation plans.
Each evaluation result returned by rules and local policies
is stored in the intermediate result table IRE. For another
rule containing the same local policies, we can directly use
the results in IRE. Figure 6 summarizes the algorithm. If
the global policy remains unchanged, we can adopt some
optimizations to reduce the time of composing rule evalua-
tion plans. First, the estimated evaluation cost of each rule
needs to be computed only once and all rules are sorted once
based on this cost. Second, the estimated evaluation cost of
local policies is also computed only once and the second-level
plans are the same for any request.

Finally a request issued to the system must be properly
routed to the appropriate PDPs.

It is worth noting that there is an alternative method to
estimate the evaluation cost of rules and local policies if we

Algorithm 3. Request Evaluation(q, P )
Input : q is a request regarding policy P

//— step 1 —//
1. Order rules in RuleSet based on estimated evaluation cost
2. Reorder rules in RuleSet based on

types of rule combining algorithms
3. for each rule rj in RuleSet
4. Order all local policies regarding rj

//— step 2 —//
5. for each local policy pk regarding rj

6. Tailor the request q for pk

7. if pk has been evaluated then
8. obtain the effect of pk on rj from IRE table
9. else
10. evaluate pk

11. store the effect of pk in the result table
12. store the evaluation time of pk in IRE table
13. store the evaluation time of rj in the RS table
14. if the final decision of the rj can be made then
15. return the final decision

Figure 6: Request Evaluation Algorithm

log the response times for the evaluation of each rule and
each local policy. After the system has run some time and
we have collected a history of the response time for each rule
and local policy, we can then use this historical information
as the measure to decide the order of the rule evaluation and
local policy evaluation instead of using the estimated cost.

4. COMPLEXITY ANALYSIS
The two main functions involved in our approach are Pol-

icy Decomposition and Request Evaluation.
Consider the Policy Decomposition algorithm (Figure 4).

Let nR denote the number of rules in a policy to be decom-
posed, nB denote the maximum number of atomic Boolean
expressions for each rule in the policy and m denote the max-
imum number of local policies for each rule. Steps 1-2 can
be executed in time O(nB). For line 5 we must look at the
algorithm in Figure 5. In Figure 5, the complexity of step 1
is dominated by the conversion of rule Boolean expressions
to their corresponding DNF which is O(2nB ). Note however
that in practice nB is reasonably small [8]. Step 2 involves
scanning the local policies and applying the heuristics. We
can see that for each policy, the application of the heuristics
results in at most one new policy. This means that the num-
ber of operations is proportional to m2, where m is the total
number of local policies in a PDP. The actual application
of the heuristics can be executed in time linear to nB which
is the maximum number of atomic Boolean expressions in
a local policy. Therefore the complexity here is O(nBm2).
Coming back to Figure 4, lines 6-9 can be done in time O(m).
Hence the overall complexity of the Policy Decomposition
procedure is O(2nB + nRnBm2). Note that the above pro-
cedure is executed once for each policy and does not incur
any overhead during the request evaluation.

For the Request Evaluation algorithm (Figure 6), the re-
ordering of rules based on evaluation cost (lines 1-4) can
be done offline in time O(nR log nR). For lines 5-15, in the
worst case where all local policies are unique, the time will
be O(nRm). Hence the request evaluation will be O(nRm).
Note that because of the use of the IRE table as the number
of local policies shared by the rules increases the time for
request evaluation decreases.

5. RELATED WORK
Several access control models [6, 7, 12, 14, 16] have been

proposed for collaborative systems. Akenti [16] uses an au-
thorization model based on the use of authenticated X.509
certificates. For such approach there is a trusted Akenti
server (a PDP) which is contacted by the resource gate-
keeper (PEP) when a request is made to access protected
resources. The PDP finds all the (possibly distributed)
relevant policy certificates from all stakeholders and eval-
uates them to make a decision. The PRIMA [12] system
adopts a decentralized privilege management model in which
the main focus is on enabling fine-grained privilege delega-
tion among subjects and on establishing trust relationships
among entities from different administrative domains. Ap-
proaches like those described in [14] mainly focus on group
authorization in grid communities. Cohen et al. [6] pro-
pose a family of coalition-based access control(CBAC) mod-
els, wherein elements required for a coalition-based access
control are layered on top of a simple role-based access con-
trol model. Their models also incorporate team-based and
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task-based access control. Edwards [7] proposed the use of
roles to associate policies regarding resources with users for
achieving access control in a collaborative system. However,
compared to our approach, those approaches have one or
more of the following shortcomings: lack of approaches for
dealing with sensitive information required for access con-
trol; use of simple access control languages; lack of strategies
for the efficient enforcement of distributed access control.

Lorch et al. [13] describe the use of XACML for imple-
menting the PRIMA authorization model discussed above.
Jin and Ahn [10] propose a role-based access control for
ad-hoc collaborative environments. They use XACML to
express the policies needed to support their framework. In
contrast to these approaches, we propose an extension to the
reference architecture of XACML in order to support the de-
composition of policies for collaborative access control. In
addition we provide policy decomposition techniques and
strategies for efficient access control enforcement.

The notion of policy decomposition has been mainly used
in the context of policy refinement [5, 15]. These approaches
typically consider multiple distributed resources in an ap-
plication as one single abstract hierarchical resource. A
high-level access control policy for the abstract resource is
transformed to produce local policies that govern access to
concrete resources. These local policies are then stored at
the PDPs controlling each resource. Unlike our approach
in which the policy decomposition is guided by the sensitiv-
ity/availability of attribute information necessary for access
control and/or user defined constraints at each PDP, the
policy decomposition in these approaches is mainly guided
by the resource type hierarchy.

Works in the area of privacy preserving access control
[11, 9] have proposed techniques to hide sensitive creden-
tials of the request owner and the policies of a policy owner
from each other during the request evaluation. Li et al. [11]
have proposed a OSBE (Oblivious Signature-Based Enve-
lope) scheme to protect the sensitive credentials of a request
owner but the policies are revealed. Frikken et al. [9] have
proposed cryptographic protocols that hides both policies
and credentials during access control. If we directly ap-
ply these approaches to a global policy that involves predi-
cates on sensitive information from multiple parties, during
a request evaluation, we can only prevent a requester from
knowing the global policy but we need a central PEP to col-
lect sensitive attribute values from each participating party
which does not want to share such sensitive information.
In comparison, the coordinator in our system only collects
decisions from each party but not any sensitive attribute
values. In other words, their approaches are not feasible for
multi-party collaborative access control in which each party
is not willing to disclose its own sensitive information to
other parties or the central PEP.

6. CONCLUSION
In this paper, we have proposed a novel access control

model for collaborative access control. Our architecture is
developed based on the XACML framework which allows
our technique to be easily integrated into existing systems.
The main idea is to properly decompose a global policy and
distribute it to each collaborating party. The decomposition
ensures the autonomy and confidentiality of each involved
party and guarantees the consistency of the decisions. Also,
we propose an algorithm to optimize the request evaluation.

Several future research directions exist. One is to conduct
a simulation study to evaluate the efficiency of our approach.
Also, we plan to consider hierarchical relationships among
PDPs where each PDP reports the decision to his parent
PDP. Another interesting direction is to take into account
more complex decomposition constraints which may require
the integration of the decomposed policies with policies orig-
inally residing at the local PDP.
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