Insect Flight:

Aerodynamics, Efficiency, and Evolution

Z. Jane Wang

Cornell University

Thad fue sumed futu)

 la viras Climege eberione. Les twosen changbons: onpthener de Many burson invangenplis.
A it fo de to cankm tary toder so mepon \& lusiect has trever peokitr par didisert mopar os ptr

Fig. 9. - Zootrope dans lequel sont disposees 10 images en reliec d'un goéland dans les attitudes successives du vol.
difference, that an insect allowed to take flight after a string is tied to its leg can remain in the air without difficulty, while a bird similarly treated will fall to the ground as soon as the string is stretched. The apparatus of Professor Marey, as improved by him, is sufficient to determine, with the greatest precision, the number of beats of the wing per minute, as well as the particular curve of flight; and, among other observations, he informs us that, while the sparrow makes thirteen movements of the wing in a second, and the wild dack nine, the buzzard (Buteo vulgaris) beats its wings only three times in the same interval. As a general rule, he finds that the time occupied in depressing the wing is always decidedly longer than that of elevation, excepting in birds of a small wing area, in which case the two periods are almost equal. At starting the bird appears to make fewer strokes, but with a greater amplitude of stretch than subsequently. The rapidity of the stroke, on the other hand, appears to diminish anew when the bird has obtained a high degree of velocity.

The comparison of the two modes of flight may be summed up by saying, that in the bird the extremity of the wing describes a simple helix, while in the insect a series of lemniscates is traced. The difference in the two curves will be appreciable by an examination of the diagrams.

FLAGUT OF A MHRD,

FLGGT OR AN INSEGR.

Harper Magazine 1870

$$
\begin{aligned}
& \mathrm{L} \sim 1 \mathrm{~cm} \\
& \mathrm{f} \sim 40 \mathrm{~Hz} \\
& \mathrm{Re} \sim 3000
\end{aligned}
$$

"According to all known laws of physics it should be impossible for them to walk

Navier-Stokes Equation Subject to Wing Motions

Incompressible flow:

$$
\begin{aligned}
\frac{\partial \mathbf{u}}{\partial t}+\mathbf{u} \cdot \nabla \mathbf{u} & =-\nabla P / \rho+\nu \nabla^{2} \mathbf{u} \\
\nabla \bullet \mathbf{u} & =0
\end{aligned}
$$

Boundary condition (no-slip):

$$
\mathbf{u}_{b}=\mathbf{V}_{b}
$$

Moving wing:

$$
m \frac{d \mathbf{v}_{b}}{d t}=\mathbf{F}_{f l u i d}+f_{e x t}
$$

Copyright Z. Jane Wang, 2007

Why compute and which methods?

1. Single rigid wing in prescribed or free motion
-Co-moving frame, 4th order in time and space (Phys. Rev. Lett. '00, '04)
2. Multiple rigid wings in prescribed motion
-Cartesian grid + overset grid, 4th order in time, 2nd order in space
(J. Comp. Phys.'03)
3. Multiple flexible wings in prescribed motion or prescribed force in 2D
-Immersed Interface Method 2nd order in space and time
(SIAM Sci. Comp. ‘05, J. Comp. Phys. ‘05)
4. Multiple flexible wings in 3D
-Immersed Interface Method 2nd order in +space and time (Comp. Mech. '07)

Dragonfly = Drag on Fly

Drag supports majority of the weight.
If drag is neglected, the required lift coefficient $\sim 4-5$, which is 'anomalously high'.

Why insects flap their wings the way they do?

Fore-hind Wing Interactions

Copyright Z. Jane Wang, 2007

Fore-Hind Wing Interaction Can Reduce Power for Hovering

Passive Wing Pitching

Are Insect Wing Motions

Optimal ?

Why should nature optimize?

Optimize what?

Do Insect Wing Motions

Minimize Energetic Cost?

Why should they?
Which energy?

Do Insect Wing Motions Minimize

Mechanic Power in Hovering?

Why should they?

Do they?

Energy Minimizing Hovering Wing Motion

Problem:

Given a wing and a weight,

find wing motions

that minimize the aerodynamic power to support the weight
Constrained PDE/ODE optimization

Optimized Wing Kinematics vs. Observation

$$
\begin{aligned}
& \text { Fruitfly: } \\
& f=230 \mathrm{~Hz} \\
& \eta_{m}=70.2^{\circ} \\
& C_{\eta}=2.724 \\
& \Phi_{\eta}=-72.3^{\circ} \\
& K=.727 \\
& \phi_{m}=89.0^{\circ} \\
& \theta_{m}=2.86^{\circ} \\
& \Phi_{\theta}=-98.0^{\circ} \\
& \theta_{0}=1.75^{\circ} \\
& N=2 \\
& \eta_{0}=89.6^{\circ}
\end{aligned}
$$

Fry, Sayaman, and Dickinson, JEB (2005)

$$
\mathrm{f}=230 \mathrm{~Hz}
$$

$$
\begin{aligned}
& P^{*}=14.8 \frac{\mathrm{~W}}{\mathrm{~kg}} \\
& L-1=4.1 \cdot 10^{-10}
\end{aligned}
$$

Optimization Results for Insects

12 Species of Drosophila (fruit-flies) Wild-type and Mutants

With I. Cohen Group
'Birds’ vs. Plane

In Classical Aerodynamics Limit

Hovering with

VS

(no need for additional propulsion \square)
same wing, same weight

In Classical Aerodynamics Limit

Optimal Steady Flight Sets the Bar

Independent of Re

Independent of Wing Shape

Including Unsteady Aerodynamics

Flapping Flight can be Less Costly

U. Pesavento and ZJW, Preprint

Fly Group:

Fore-hind wing interactions in dragonfly flight : David Russell
Passive wing pitch reversal: Attila Bergou
Optimization: Gordon Berman
Flapping vs. fixed wing flight: Umberto Pesavento
Fruitfly Exp: Itai Cohen and Leif Reistroph
Falling Paper: Anders Andersen, UP \square
Immersed Interface Methods: Sheng Xu
http://dragonfly.tam.cornell.edu

