
ARTICLE IN PRESS
European Journal of Operational Research xxx (2004) xxx–xxx

www.elsevier.com/locate/dsw
A genetic algorithm for robotic assembly line balancing

Gregory Levitin a,*, Jacob Rubinovitz b, Boris Shnits b

a Division of Planning, Development and Technology, The Israel Electric Company Ltd., P.O. Box 10, Haifa 31000, Israel
b Faculty of Industrial Engineering and Management Technion, Israel Institute of Technology, Haifa 32000, Israel
Abstract

Flexibility and automation in assembly lines can be achieved by the use of robots. The robotic assembly line balanc-
ing (RALB) problem is defined for robotic assembly line, where different robots may be assigned to the assembly tasks,
and each robot needs different assembly times to perform a given task, because of its capabilities and specialization. The
solution to the RALB problem includes an attempt for optimal assignment of robots to line stations and a balanced
distribution of work between different stations. It aims at maximizing the production rate of the line. A genetic algo-
rithm (GA) is used to find a solution to this problem. Two different procedures for adapting the GA to the RALB prob-
lem, by assigning robots with different capabilities to workstations are introduced: a recursive assignment procedure
and a consecutive assignment procedure. The results of the GA are improved by a local optimization (hill climbing)
work-piece exchange procedure. Tests conducted on a set of randomly generated problems, show that the Consecutive
Assignment procedure achieves, in general, better solution quality (measured by average cycle time). Further tests are
conducted to determine the best combination of parameters for the GA procedure. Comparison of the GA algorithm
results with a truncated Branch and Bound algorithm for the RALB problem, demonstrates that the GA gives consist-
ently better results.
� 2004 Elsevier B.V. All rights reserved.

Keywords: Genetic algorithms; Assembly lines; Non-identical Robots; Productivity; Hill climbing
0377-2217/$ - see front matter � 2004 Elsevier B.V. All rights reserv
doi:10.1016/j.ejor.2004.07.030

* Corresponding author. +972 4 8183726; fax: +972 4
8183790.

E-mail addresses: levitin@iec.co.il (G. Levitin), ierjr01@ie.-
technion.ac.il (J. Rubinovitz), shnitsb@tx.technion.ac.il (B.
Shnits).
1. Introduction

1.1. Problem description and previous work

An increasing requirement for flexibility of pro-
duction is motivated by fast changes in technology
and by customers demand for greater product
variety. The main method of providing the desired
flexibility is development of flexible assembly
ed.

mailto:levitin@iec.co.il
mailto:ierjr01@ie.technion.ac.il
mailto:ierjr01@ie.technion.ac.il
mailto:shnitsb@tx.technion.ac.il

2 G. Levitin et al. / European Journal of Operational Research xxx (2004) xxx–xxx

ARTICLE IN PRESS
systems (FAS), equipped with assembly robots
(Owen, 1985). Robots play an important role in
flexible assembly systems. One important configu-
ration of robots in flexible assembly is the use of
robotic assembly lines. The rationale for perform-
ing assembly with robots in an assembly line con-
figuration is due to specialization in operations.
Usually, specific tooling is developed to perform
the activities needed at each station. Such tooling
is attached to the robot at the station, in order
to avoid the time waste required for tool change.
The design of the tooling can take place only after
the line has been balanced. Balancing of the ro-
botic assembly lines includes two main objectives:
to achieve an optimal balance on the assembly line
for a given number of assembly cells (stations) or
given required production rate, and to allocate
the best fitting robot to each station. Different ro-
bot types may exist at the assembly facility. These
robots need to be re-assigned when a new product
is planned for assembly. Each such robot type may
have different capabilities and performance times
for various elements of the assembly task. Unlike
manual assembly lines, where actual times for per-
formance of activities vary considerably and opti-
mal balance is rather of theoretical importance, the
performance of robotic assembly lines depends
strictly on the quality of its balance, and on robot
assignment.

Graves and Holmes (1988) suggest an algorithm
for assignment of activities and equipment to
assembly line stations, satisfying the annual pro-
duction rate. The objective of their work is to min-
imize total cost that is composed of fixed
equipment and tooling costs, variable equipment
usage and set-up costs. Their algorithm finds the
minimum cost configuration for the mixed-prod-
uct assembly line using a single assembly sequence
for each product. Since most assembled products
may be assembled using several alternative se-
quences, this algorithm finds only a local opti-
mum, and does not take advantage of the
assembly task flexibility. As a result, it cannot find
a solution minimizing idle time at each station,
whereas for robotic assembly lines, such optimal
balancing is very important.

Rubinovitz and Bukchin (1991) were the first to
formulate the robotic assembly line balancing
problem (RALB) as one of allocating equal
amounts of work to the stations on the line while
assigning the most efficient robot type from the gi-
ven set of available robots to each workstation.
Their objective was to minimize the number of
workstations for a given cycle time (productivity)
of the line. They formulated the following
assumptions:

1. The precedence relationship among assembly
activities is known and invariable. This prece-
dence is due to technological assembly con-
straints, and is represented by a precedence
graph.

2. The duration of an activity is deterministic.
Activities cannot be subdivided.

3. The duration of an activity depends on the
assigned robot.

4. There are no limitations on assignment of an
activity or a robot to any station other than
the precedence constraints and the robots abil-
ity to perform the activity.

5. A single robot is assigned to each station.
6. Material handling, loading and unloading

times, as well as set-up and tool changing times
are negligible, or are included in the activity
times. This assumption is realistic on a single-
model assembly line, that works on the single
product for which it is balanced. Tooling on
such robotic line is usually designed such that
tool changes are minimized within a station. If
tool change or other type of set-up activity is
necessary, it can be included in the activity time,
since the transfer lot size on such line is of a sin-
gle product.

7. All types of robots are available without limita-
tions. The purchase cost of the robots is not
considered.

8. The line is balanced for a single product.

The RALB algorithm (Rubinovitz and Buk-
chin, 1991; Rubinovitz et al., 1993) is based on a
Frontier-Search modification of the Branch-and-
Bound method. It builds a search tree by assigning
robots and task elements to stations. As a lower
bound, the sum of minimal possible times for
activities not yet assigned to stations is used. To
maintain the huge number of nodes on the search

G. Levitin et al. / European Journal of Operational Research xxx (2004) xxx–xxx 3

ARTICLE IN PRESS
tree, the algorithm may require more storage space
than available. It also requires significant compu-
tation time. As a result, the Branch-and-Bound
based algorithm, even with heuristic rules incorpo-
rated to reduce the search space, can be used for
solving relatively small problems. This approach
has been generalized by Bukchin and Tzur
(2000), to design a flexible assembly line when sev-
eral equipment alternatives are available. The
objective is to minimize equipment cost. An exact
Branch and Bound algorithm is developed to solve
moderate problems, in which a heuristic procedure
is incorporated to cope with large problems.

Kim and Park (1995) focus on the problem of
assigning assembly tasks, parts and tools on a seri-
al robotic assembly line so that the total number of
robot cells required is minimized while satisfying
the various constraints. Assignment of robots with
different performance capabilities is not part of
their model. They suggest an integer programming
formulation of this problem and a strong cutting
plane algorithm to solve it.

Khouja et al. (2000) suggest statistical cluster-
ing procedures to design robotic assembly cells.
The proposed methodology has two stages. In
the first, a fuzzy clustering algorithm is employed
to group similar tasks together so that they can
be assigned to robots while maintaining a balanced
cell and achieving a desired production cycle time.
In the second stage, a Mahalanobis distance proce-
dure is used to select robots appropriate for the
task groups (for more details on the Mahalanobis
metric and its applications for clustering, see
Mahalanobis, 1936; Everitt, 1974). While their
work focuses on a robotic cell design, it seems
that the approach can be extended to design of a
line of cells with similar cycle times. However, in
an assembly line, task elements may be assigned
to a single robot based on the robot capabilities,
and not on task similarity, as assumed in their
work.

Nicosia et al. (2002) deal with the problem of
assigning operations on a production line to an or-
dered sequence of non-identical workstations,
while observing precedence relationships and cycle
time restrictions. The objective is to minimize the
cost of the workstations. This formulation is very
similar to the RALB problem. The approach used
to solve the problem is by a dynamic programming
algorithm with several fathoming rules used to re-
duce the number of states. The authors classify in-
stances of the problem that are polynomially
solvable.

1.2. Methodology and notation

This paper suggests an algorithm for solving
large and complex RALB problems. This algo-
rithm minimizes the cycle time of an assembly line
with the given number of stations. It provides a
solution on how to group Na work activities per-
formed at Nst stations and how to assign a single
robot of one of Nr types to each station so as to
achieve a minimal cycle time (the maximum time
required for assembly at any given station). The
algorithm is based on the genetic approach, which
uses a simple principle of evolution. Combinato-
rial explosion of the storage requirements does
not occur with the increase of the problem size
as in the Branch-and-Bound method.

Only simple procedures are needed in GA
for the estimation of solution quality. These may
be easily changed or modified, providing a desira-
ble flexibility of tools for real robotic assembly
lines.

Notation:
Nst total number of stations
Na total number of activities
Nr total number of different types of robots
P precedence matrix in which each element

pij is 1 if activity i immediately precedes
activity j and 0 otherwise

Yi set of immediate predecessors of activity i

tr,j time of performance of jth activity by
robot r (if activity j can not be performed
by the robot r, tr,j =1)

sj average performance time for activity j

r(s) number of robot assigned to station s

s(j) number of station to which activity j is
assigned

Ts total execution time for station s

C0 initial estimation of assembly line cycle
time

v integer vector of numbers of activities rep-
resenting feasible solution.

4 G. Levitin et al. / European Journal of Operational Research xxx (2004) xxx–xxx

ARTICLE IN PRESS
In Section 2 of this paper, the adaptation of the
genetic algorithm for RALB problem is described.
Section 3 presents the result of testing the perform-
ance evaluation of the algorithm for the different
procedures suggested. Conclusions are presented
in Section 4.
2. The genetic algorithm for RALB

The comprehensive description of GAs theory
can be found in Goldberg (1989). A bibliography
of numerous applications of GA in manufacturing
is available in Alander (1995). Falkenauer (1998)
provides an in-depth discussion of industrial appli-
cations of grouping GAs. In Rubinovitz and Lev-
itin (1995) the application of GA for the simple,
single-model, assembly line balancing (SALB) is
described and reasons for choosing this approach
are discussed. One of the advantages of GAs for
the SALB problem is the ease of handling different
evaluation functions. As a result, this approach
has been further explored by other researchers,
mainly to cope with the multiple objectives of
an assembly line (Kim et al., 1996; Mitsuo Gen
et al., 1996; Suresh et al., 1996; Kim et al., 2000;
Ponnambalam et al., 2000; Sabuncuoglu et al.,
2000).

This paper presents modification of the method
suggested by Rubinovitz and Levitin (1995) for
the more complicated RALB problem, which in-
volves the selection and assignment of robots
with different performance capabilities to work-
stations.

Unlike various constructive optimization algo-
rithms that use sophisticated methods to obtain a
single good solution, the GA deals with a set of
solutions (population) and tends to manipulate
each solution in the simplest way. ‘‘Chromo-
somal’’ representation requires the solution to be
coded as a finite length string. The basic steps of
GENITOR version of GA (Whitley, 1989), used
in this paper, are as follows:

G1. Generate an initial population of randomly
constructed chromosomes (structures) that
represent solutions of the problem. Evaluate
the fitness of each solution (see step G4).
G2. Select at random two solutions and produce
a new solution (offspring) using a crossover
procedure that provides inheritance of some
basic properties of the parent structures in
the offspring. (Some genetic algorithm
schemes suggest a selection with a bias pro-
portional to the solution quality; this is not
the case here.)

G3. Allow the offspring to mutate with mutation
index pm, which results in slight changes in
the offspring structure and maintains diver-
sity of solutions. This procedure avoids pre-
mature convergence to a local optimum and
facilitates jumps in the solution space.

G4. Decode offspring to obtain the objective
function (fitness) values. These values are a
measure of quality that is used to compare
different solutions.

G5. Apply a selection procedure that compares
new offspring with the worst solution in the
population. The better solution joins the
population and the worse one is discarded
(removed from the population). If the popu-
lation contains equivalent structures follow-
ing selection, redundancies are eliminated
and, as a result, the population size decreases
slightly.

G6. Terminate the algorithm if after repeating
steps G2–G5 Z times no improvement of
the best-in-population solution was achieved
(Z is a preliminarily specified parameter).

A classical permutation encoding is used to cre-
ate a genotype, and a procedure is applied to
transform each genotype permutation into a feasi-
ble problem solution before evaluating it (as de-
scribed in detail in Rubinovitz and Levitin,
1995). Therefore the fitness evaluation procedure
(step G4) is the only one that is tightly connected
with the nature of the problem being solved. This
step must include transformation operators (if it
is necessary) and procedures for quality criteria
evaluation. Inclusion of some local optimization
procedures into the transformation procedure
can also significantly improve performances of
GA. Some optimization methods may also be
implemented in the stage of initial population gen-
eration (step G1). The implementation of these

G. Levitin et al. / European Journal of Operational Research xxx (2004) xxx–xxx 5

ARTICLE IN PRESS
GA elements in adapting a GA algorithm for the
RALB problem is described in the following
sections.

2.1. Solution representation and the basic GA
procedures

The choice of solution representation (struc-
ture) affects the method of transformation and
evaluation. In this work we use a representation
of RALB problem solution that includes three
integer vectors:

1. Vector v containing a permutation of task ele-
ment (activity) numbers, ordered according to
their technological precedence sequence.

2. Vector of pointers to the position of the first
activity for each station. These pointers divide
the vector of activities into Nst parts.

3. Vector of robot numbers (indicating robot
types) assigned to each station.

This solution representation scheme for a sam-
ple problem is presented in Fig. 1.

Only the first vector (ordered sequence of activ-
ities) is involved in the genetic process (crossover,
mutation and selection procedures) in our algo-
rithm. The two other vectors are generated, for
each solution represented by the first vector and
produced by the GA, by a set of simple decoding
procedures.

It should be noted that such representation al-
lows equal solutions to be represented by different
1

2

3

4 6 8

7

10

5 9

Precedence

Diagram

Solution Representation:

1 3 5 8

2 1 3 2

2 7 3 5 1 4 6 9 8 10activities:

stations:

robots:

Fig. 1. Solution representation scheme for a sample problem.
vectors (because of feasible activities permutations
within stations). Thus an appropriate procedure is
necessary in order to check the identity of
solutions.
2.2. Crossover and mutation operators

For a given solution representation, we can now
define crossover and mutation operations. Most of
the crossover procedures suggested by Stark-
weather et al. (1991) operate with two parent solu-
tions, and produce two offspring (children). In this
work, the Fragment Reordering Crossover which
was introduced by Rubinovitz and Levitin
(1995), is used. This crossover procedure preserves
solutions feasibility in problems with precedence
constraints. The Fragment Reordering Crossover
works as follows:

• All elements from the first parent are copied to
identical positions in the offspring string.

• A fragment of the offspring string is defined as a
subset of adjacent elements between two ran-
domly selected positions (crossover sites).

• All the elements within the fragment are re-
ordered according to the order of their appear-
ance in the second parent vector.

The second offspring is generated in the same
method, with the roles of its parents reversed.

In the following example the elements of a ran-
domly chosen fragment in the first parent P1 are
marked with bold font as well as corresponding
elements in the second parent P2. O is an offspring
solution obtained by Fragment Reordering
Crossover.

P1 : 1 2 3 4 5 6 7 8 9 10

P2 : 7 8 9 2 4 5 1 3 6 10

O : 1 2 7 4 5 3 6 8 9 10

The mutation procedure selects two positions
within the solution string at random, and looks
for a pair of elements closest to these two positions
that can swap places without violating the prece-
dence constraints (i.e. preserving solution feasibil-
ity). The elements found in this way swap positions
in the solution string.

6 G. Levitin et al. / European Journal of Operational Research xxx (2004) xxx–xxx

ARTICLE IN PRESS
2.3. Decoding procedures

The purpose of the set of decoding procedures
is to provide the following functions:

1. Transformation of an arbitrary sequence of
activities into a feasible one (this procedure
needs to be performed only for the initial ran-
domly generated solutions, because the crosso-
ver and mutation operators used further on
preserve feasibility of solutions).

2. Partition of the sequence i.e. assignment of
activities to the Nst stations.

3. Assignment of robots to stations.
4. Evaluation of the cycle time for the given

balance.
5. Local improvement of the solution (if possible).

The transformation of an arbitrary sequence of
activities into a feasible one (step 1) is performed
by a re-ordering procedure that restores feasibility
of a randomly generated string according to the
precedence constraints. Detailed description of
this procedure can be found in Rubinovitz and
Levitin (1995). For sake of clarity, this procedure
is illustrated for a sample problem in Fig. 2, and
explained below.

The feasible vector in Fig. 2 is based on
problem precedence diagram as presented in
Fig. 1. The re-ordering procedure that generates
this vector from a feasible vector is summarized
below:

The objective of this procedure is to transform
an arbitrary vector v� of activity numbers into a
sequence v which is feasible according to prece-
dence relations.
2 7 3 5 1 4 6 9 8 10

6 10 8 2 7 5 3 1 4 9

Random vector

Feasible vector

Fig. 2. A re-ordering procedure that restores feasibility of a
randomly generated string according to the precedence con-
straints of the sample problem of Fig. 1.
Let us introduce a logical function Wi(j) which
returns true if activity i can be moved from station
s(i) to station j and false otherwise:

W iðjÞ ¼ false if

sðiÞ > j and 9k 2 Y i; sðkÞ > j

or

sðiÞ < j and 9k : i 2 Y k; sðkÞ < j

W iðjÞ ¼ true otherwise:

The re-ordering procedure, as illustrated in Fig.
2, consists of the following steps:

R1. For all activities 1 6 i 6 Na assign s(i) =
2;k = 1.

R2. Find the least m (m 6 Na):

sðv � ðmÞÞ ¼ 2 and W v�ðmÞð1Þ ¼ true:

R3. If such m does not exist end of procedure.
Else: v(k) v� (m);
k k + 1;
s(v� (m)) 1;
return to R2.
Two alternative procedures were developed for
assignment of activities and robots to different sta-
tions (steps 2–3): a recursive procedure and a suc-
cessive assignment procedure. These procedures,
developed for the RALB problem, are discussed
and illustrated in detail in the following sections.

The local improvement function (step 5) was
performed by an exchange procedure, like the
one used in Rubinovitz and Levitin (1995).

2.3.1. Recursive assignment procedure (R)
This procedure aims to assign activities to sta-

tions without violating the v sequence. The recursive
procedure was developed in order to divide a vector v
into M = Nst parts, while trying to achieve the max-
imal equality of total execution times for all stations.

First, it defines the average performance time
for each activity i as:

si ¼
XNr

r¼1

tr;idr;i

XNr

r¼1

dr;i

,
ð1Þ

where dr,i = 0 if tr,i =1, and dr,i = 1 otherwise.

G. Levitin et al. / European Journal of Operational Research xxx (2004) xxx–xxx 7

ARTICLE IN PRESS
Next, the procedure divides the total vector v

(i.e. the set of its elements from the left position
pl = 1 to the right position pr = Na) into two parts
with ratio H/Q where H = [M/2] and Q = M	H.
To do this it finds a position i(pl 6 i 6 pr) such
that a time ratio value TR:

TR ¼
Xi

j¼pl

svðjÞ
Xpr

j¼iþ1

svðjÞ

,
ð2Þ

is as close as possible to the ratio H/Q. Such i
should minimize the imbalance function d(i):

dðiÞ ¼ Q
Xi

j¼pl

svðjÞ 	 H
Xpr

j¼iþ1

svðjÞ

�����
����� ð3Þ

Using Eq. (2), the procedure finds a value for i

that divides the initial vector into two subvectors
(pl = 1; pr = i and pl = i + 1; pr = Na). These
resulting vectors must be further divided into
M = H and M = Q parts respectively using the
same procedure recursively until M = 1. At the
end of the recursion, the total execution time is cal-
culated and boundary positions pl and pr for all
stations are fixed.

Having all activities assigned to the stations, the
procedure chooses robots to minimize the total
execution time for each station:

rðsÞ ¼ arg16h6Nr
T sðhÞ ¼

Xprs

k¼pls

th;vðkÞ ¼ min

()
ð4Þ

where pls and prs are the first and the last elements
of a fragment of the vector v corresponding to sta-
tion s.

For a given station s minimal Ts may be equal
to1. This means that no single robot can perform
the activities assigned to this station. The GA dis-
cards such a solution.

An example of the procedure is presented in
Fig. 3a. The performance times for the example
are presented in Table 1.
2.3.2. Consecutive assignment procedure (C)

Similarly to the recursive procedure, the consec-
utive procedure divides the vector v into Nst parts,
thus distributing activities given in a defined se-
quence among stations, and assigning robots to
the stations. For a given initial value of cycle time
C0, the procedure attempts to allocate activities to
a station using robots that allow to maximize the
number of activities performed at each station.
For robots that result in the same number of activ-
ities, the procedure will choose a robot that mini-
mizes the total execution time of the station.

For each station s (where 1 6 s 6 Nst), it defines
the set of preferred robots Xs as follows:

k 2 Xs if mðkÞP mðhÞ for 1 6 h 6 Nr ð5Þ
where m(h) is the maximal number of activities ro-
bot h can perform in the given sequence (vector v)
during a time not greater than C0:

T sðhÞ ¼
XplsþmðhÞ

k¼pls

th;vðkÞ < C0 6

XplsþmðhÞþ1

k¼pls

th;vðkÞ ð6Þ

Next, it defines the robot to be assigned to the
sth station as

rðsÞ ¼ k if T sðkÞ 6 T sðhÞ 8h 2 Xs ð7Þ
and calculates the start position for the next
station:

plsþ1 ¼ prs þ 1 ¼ pls þ mðrðsÞÞ þ 1 ð8Þ
Beginning with initial value C0, the procedure

runs repeatedly while it fails to find any cycle time
feasible allocation of activities (some activities re-
main unallocated). Before each new pass the value
of C0 is incremented by one. The procedure stops
when a feasible allocation is achieved. The initial
value of C0 is determined as lower bound estima-
tion of the system cycle time:

C0 ¼
XNa

j¼1

min
16i6Nr

ti;j

& ,
N st

’
ð9Þ

An example of the procedure outcome for per-
formance times from Table 1 is presented in Fig.
3b. This example, as the one used to illustrate
the recursive procedure, is also solved for
Nst = 4. Using Eq. (9) to calculate initial (lower
bound) estimate for C0 we get: C0 =
d(12 + 30 + 19 + 23 + 27 + 10 + 14 + 19 + 12 +
17)/4e = d183/4e = 46. It is not possible to find a
solution for four stations within this cycle time.
As a result, C0 is incremented by one, but the pro-
cedure fails to find a solution for four stations until

Table 1
Performance times for 10 activities

Activity 1 2 3 4 5 6 7 8 9 10

t1,j 12 30 19 26 29 14 21 19 14 20
t2,j 15 33 22 26 31 10 14 20 12 17
t3,j 15 30 22 23 27 12 19 21 13 17
sj 14 31 21 25 29 12 18 20 13 18

2 7 3 10

Στ =201

Στ =99 Στ =102

Στ =49 Στ =50 Στ =51 Στ =51

2 7 3 5 1 4 6 9 8 10

9 8 101 4 63 52 7

M=Nst=4

M=2 M=2

M=1 M=1 M=1 M=1

9 8 10

T=49, r=2

1 4 6

T=50, r=3

3 5

T=48, r=1

2 7

T=47, r=2

5 1 4 6 89

Station 1 Station 2 Station 3

47 22 41 49

9 8 101 4 63 52 7R1

9 8 101 4 63 52 7R2

9 8 101 4 63 52 7R3

30 48 38 33

49 49 50 34

Station 4

(a)

(b)

Fig. 3. (a) Example of the recursive assignment procedure. (b) Example of the consecutive assignment procedure.

8 G. Levitin et al. / European Journal of Operational Research xxx (2004) xxx–xxx

ARTICLE IN PRESS
the value of C0 = 50 is reached. At this cycle
time, the solution presented in Fig. 3b is reached,
with the robots assigned to each station according
to Eqs. (5)–(7) highlighted in grey. In the solution
illustration, the rows R1–R3 correspond to the
three robot types available, and the row of the se-
lected robot, highlighted in grey, indicates that this
robot allows to maximize the number of activities
performed at that station, while also minimizing
the total execution time of the station. The double
arrows indicate activities that can be performed at
the station, by each robot, within the cycle time.

G. Levitin et al. / European Journal of Operational Research xxx (2004) xxx–xxx 9

ARTICLE IN PRESS
2.3.3. Exchange procedure (E)

First we introduce the logical function Wi(q)
which returns false if activity i cannot be trans-
ferred from station s(i) to station q, and true
otherwise:

W iðqÞ ¼ false if

sðiÞ > q and 9k 2 Y i; sðkÞ > q

or

sðiÞ < q and 9k : i 2 Y k; sðkÞ < q

W iðqÞ ¼ true otherwise:

ð10Þ

Now consider two stations f and q with total
execution times Tf and Tq (Tf > Tq). If exchange
of activities i (s(i) = f) and j (s(j) = q) is feasible,
the new execution times after the exchange are:

T �f ¼ T f 	 trðf Þ;i þ trðf Þ;j ð11Þ

T �q ¼ T q 	 trðqÞ;j þ trðqÞ;i ð12Þ

The exchange is worth-while if:

maxfT �f ; T �qg < T f ð13Þ

From these expressions one can derive the con-
dition of exchange:

trðf Þ;j < trðf Þ;i and T q 	 T f < trðqÞ;j 	 trðqÞ;i ð14Þ

The exchange procedure is as follows:

1. Rank all stations in order of total execution
times.

2. For the most loaded station f and the other sta-
tions 1 6 q 6 Nst, q 5 f, in sequence (beginning
from the least loaded), look for a pair of activ-
ities (i,j): s(i) = f, s(j) = q which satisfies the
conditions:

W iðqÞ ¼ W jðf Þ ¼ true; ð15Þ

pi;j ¼ pj;i ¼ 0: ð16Þ

3. If these conditions are satisfied as well as condi-
tion (14), perform the exchange, recalculate
execution times Tf and Tq and return to step
1. If the desired pair of activities does not exist
for all possible q, i and j, terminate the
procedure.
2.3.4. Stop condition

The GA stops after performing a pre-defined
number of cycles, NCYC, that is defined as a
parameter. At a termination of each cycle, a ‘‘cat-
aclysm’’ is performed, i.e. a new population of
solutions is created, preserving only the best solu-
tions. This is the usual procedure in GA to avoid
convergence to local optimum. For each cycle, a
pre-defined number of crossovers (NCRS) is
performed, unless all solutions converge earlier
to a single value of cycle time, without further
improvement.
3. Performance evaluation

3.1. Evaluation of the assignment procedures

The assignment procedures were evaluated by
conducting tests of the GA with each procedure
for a large set of RALB problems with different
characteristics are as follows.

F-ratio––Flexibility ratio, as defined by Dar-El
(1973) measures the flexibility of the assembly task
precedence constraints, by a ratio of the number of
0 elements in the precedence matrix (no precedence
required) to the number of 1 elements in the matrix
(hence tasks with no precedence required have an
F-ratio of 1). Problems with three levels of F-ratio
were generated and evaluated: low flexibility F-
ratio = 0.1, medium flexibility F-ratio = 0.4, and
high flexibility F-ratio = 0.8.

WEST ratio––work element to station number
ratio, as defined by Dar-El (1973) measures the
average number of activities per station. This
measure indicates the expected quality of achieva-
ble solutions and the complexity of the problem.
Problems with six levels of WEST ratios: 2, 3.33,
5, 7.5, 10 and 15 were generated and evaluated.
These ratios were achieved by different combina-
tions of problems with 20, 100 and 150 activities
that were balanced for 10, 20 and 30 stations.

Nr––number of different robot types. This
parameter affects problem complexity. Two levels
were evaluated, with three and six robot types.

RF––robot (equipment) flexibility, as defined by
Rubinovitz and Bukchin (1991) measures the num-
ber of different robot types that are capable to per-

Consecutive Assignment
Recursive assignment

460.6

564

589

485.5

597

653

440
460
480
500
520
540
560
580
600
620
640
660

0.1 0.4 0.8
F-ratio

Avg. Cycle
Time

Fig. 5. Average cycle times vs. F-ratio levels for RETV = 90%.

207.1

150

200

250

Avg. Run
Time (sec.)

10 G. Levitin et al. / European Journal of Operational Research xxx (2004) xxx–xxx

ARTICLE IN PRESS
form each activity. When RF = 0, each activity
can be performed by a single robot type. When
RF = 1, each activity can be performed by all ro-
bot types. The levels used in evaluation were 0,
0.33, 0.66, and 1.

RETV––robot expected time variability, meas-
ures the variability in activity performance times
by different robot types. Three levels were tested,
0.1, 0.5 and 0.9 for low, medium and high
variability.

The problems generated for this set of parame-
ters were solved using each of the two assignment
procedures with ten replications. The observed
decision variables were the solution cycle time,
and the time required to reach a solution. Results
of the tests for low (0.1) and high (0.9) values of
RETV are summarized in Figs. 4–7.

Analysis of test results shows that, in general,
the Consecutive Assignment algorithm achieves
better solution quality (measured by average cycle
time). For all the parameter values tested, the Con-
secutive Assignment Procedure results in cycle
times that are shorter or equal to those achieved
with the Recursive Procedure. While solution
quality tends to be similar for both procedures
for low (0.1) RETV values, it is consistently better
for high RETV values (both for RETV 0.5 (not
shown), and for RETV 0.9) and for lower F-ratio
659

688

631.6

675

688

630.3

600

610

620

630

640

650

660

670

680

690

700

0.10 0.4 0.8 F-ratio

Avg. Cycle
Time

Consecutive Assignment
Recursive assignment

Fig. 4. Average cycle times vs. F-ratio levels for RETV = 10%.

68.8
55.8

115 .8

45.4
35

0

50

100

0.1 0.4 0.8
F-ratio

Consecutive Assignment
Recursive assignment

Fig. 6. Average run times vs. F-ratio levels for RETV = 10%.
values. The Recursive Assignment algorithm re-
quires shorter run times when RETV values are
very low, however the times required for both
algorithms are shorter than single-digit number
of minutes. However, for medium and high RETV
values, and for problems with high F-ratio values,
the Consecutive Assignment algorithm solves the
problems in a significantly shorter time. In sum-

405. 2

164 .4
77.8

2145 .5

49.236.6
0

500

1000

1500

2000

0.1 0.4 0.8
F-ratio

Avg. Run
Time (sec.)

Consecutive Assignment
Recursive assignment

Fig. 7. Average run times vs. F-ratio levels for RETV = 90%.

Table 2
GA parameter values tested

Parameter Values

IPS 50 80 100
NCYC 5 20 50 80
NCRS 1500 3000 4500
pm 0.5 1 2

G. Levitin et al. / European Journal of Operational Research xxx (2004) xxx–xxx 11

ARTICLE IN PRESS
mary, it is always recommended to use the Consec-
utive Assignment algorithm to solve the RALB
problem, as the run time required is longer only
for a small subset of the problems, and the solu-
tion quality is consistently superior.

The results above can be explained further, by
analyzing the differences between the two proce-
dures. The Recursive Procedure assigns activities
to stations using activity times calculated as an
average of the performance times with different ro-
bots. This means that for low time variability be-
tween the robots (low RETV values) this
procedure will be more accurate. This explains its
better performance for low RETV values, which
is comparable to the performance of the Consecu-
tive Assignment Procedure. Similar performance is
also achieved by both procedures for high F-ratio
values. This also can be explained by the larger
solution space, that allows the approximate Recur-
sive Procedure to find good solutions.

3.2. Selecting values for the GA parameters

The performance of a genetic algorithm, and
the quality of solutions, can be affected by the val-
ues assigned to the different parameters of the
algorithm. Extensive testing and tuning of the
parameter values to be used with the consecutive
assignment procedure of the GA was performed.
Parameters that were evaluated in this set of tests
are:

IPS––initial population size (the population
size may decreases slightly, if equivalent structures
are created during the selection process, in which
case redundancies are eliminated).

NCYC––number of cycles, i.e. the number of
times a new set of randomly generated solutions
replaces the existing set, keeping only the best
solutions in the population.

NCRS––number of crossovers performed in a
single genetic algorithm cycle.

pm––index of mutation, i.e. a random change by
exchanging element positions in a solution string.
pm values between 0 and 1 indicate the probability
that a newly generated solution string will undergo
a single exchange of element positions. Integer pm

values greater than 1 indicate that every newly
generated solution string will undergo pm ex-
changes of element positions.

Different combinations of GA parameter values
were tested for a representative set of eight RALB
problems with different characteristics. The differ-
ent parameter values tested are summarized in
Table 2.

The eight different RALB problems were solved
for all the combinations of the parameter values,
with ten replications. The observed decision varia-
bles for each of the test runs were a solution cycle
time (measure of solution quality), and a computer
run time required (measure of algorithm perform-
ance). In selecting the recommended set of GA
parameter values, preference was given to solution
quality, as measured by the cycle time, over the
performance, measured by computer run-times.
This is due to a fact that most of the problems
were solved within a single-digit number of min-
utes (on a personal computer) and there were no
marked differences between them in terms of per-

NCYC=5 NCYC=20 NCYC=50 NCYC=80

Number of Cycles

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

A
ve

ra
ge

 p
er

ce
nt

 o
f

cy
cl

e
tim

e
ab

ov
e

m

in
im

um

Fig. 9. Average percent of cycle time above the minimum cycle
time, as function of the number of cycles (NCYC).

NCRS=1500 NCRS=3000 NCRS=4500

Number of Crossovers

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

A
ve

ra
ge

 p
er

ce
nt

 o
f

cy
cl

e
tim

e
ab

ov
e

m

in
im

um

Fig. 10. Average percent of cycle time above the minimum
cycle time, as function of the number of crossovers (NCRS).

0.4

0.5

0.6

yc
le

 ti
m

e
ab

ov
e

um

12 G. Levitin et al. / European Journal of Operational Research xxx (2004) xxx–xxx

ARTICLE IN PRESS
formance times. To establish the recommended
values for the GA parameters, the following proce-
dure was used:

(1) Each of the eight different RALB problems
was solved with all the 108 possible combina-
tions of parameter values, and the combina-
tion resulting with the best solution quality
(minimal cycle time) was found.

(2) For all other parameter combinations, the
percentage of cycle time above the minimum
found was calculated.

(3) For each combination of the parameter val-
ues, the average percentage of cycle time
above the minimum cycle time value was cal-
culated, based on the results of ten replica-
tions for the eight different RALB problems
solved.

(4) For each distinct value used for each one of
the parameters, the average percentage of
cycle time above the minimum cycle time
value was calculated. This was calculated
based on an average of cycle time results for
all the parameter combinations in which this
particular parameter value was used.

The results of the average percentage of cycle
time above the minimum cycle time, for the differ-
ent parameter values tested, are summarized in
Figs. 8–11.

It is evident from the test results that there were
no marked differences in quality of solutions for all
the problems, as all solutions were within 0.5 per-
cent above the minimum cycle time. However,
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

IPS=50 IPS=80 IPS=100

Population Size

A
ve

ra
ge

 p
er

ce
nt

 o
f

cy
cl

e
tim

e
ab

ov
e

m

in
im

um

Fig. 8. Average percent of cycle time above the minimum cycle
time, as function of the initial population size (IPS).

0

0.1

0.2

0.3

Pm=0.5 Pm=1 Pm=2

Probability of Mutation

A
ve

ra
ge

 p
er

ce
nt

 o
f

c

 m
in

im

Fig. 11. Average percent of cycle time above the minimum
cycle time, as function of the index for mutation (pm).
based on the results, it is possible to recommend
the values of IPS = 100, NCYC = 50, NCRS =
3000, and pm = 1 for the GA parameters.

G. Levitin et al. / European Journal of Operational Research xxx (2004) xxx–xxx 13

ARTICLE IN PRESS
3.3. Comparison with a branch and bound algorithm

A reduced set of problems, with only three dif-
ferent robot types (Nr = 3), was used to compare
the performance of the GA with the consecutive
assignment procedure with the performance of
the Branch and Bound algorithm for RALB sug-
gested by Rubinovitz and Bukchin (1991). There
is some difficulty in comparing the two algorithms:
the GA minimizes the cycle time for a given num-
ber of stations, while the B&B algorithm has been
developed to minimize the number of stations for a
given cycle time. In order to make a performance
comparison without changing either of the two
algorithms, a set of problems with different prob-
lem parameters was generated, and a special com-
parison procedure was used. The problem
characteristics used to generate this set of prob-
lems are summarized in Table 3. This experimental
design consists of a total of 108 problems, for all
the combinations of the parameters set. The com-
parison procedure was as follows:

• The GA with the consecutive assignment proce-
dure was used to solve the entire set of
problems, with ten replications (10 different
problems were generated for each combination
of the parameters set). An average cycle time
for each parameter combination, resulting from
the 10 replications, was calculated.

• The B&B algorithm was solved for the same set
of problems, attempting to minimize the num-
ber of stations for the average cycle time
achieved by the GA.

• A comparison was made between the number of
stations used for the GA and the number of sta-
tions found by the B&B algorithm, for the same
problems.
Table 3
Characteristics of the problem set

Parameter Values

F-ratio 0.1 0.4 0.8
WEST ratio 2 5 10
Nr 3
RF 0 0.33 0.66 1
RETV 0.1 0.5 0.9
B&B could solve only a small subset of 24 prob-
lems, of all the problems generated, to optimality.
For this subset, equal quality solutions were
achieved for 23 of the problems by both algo-
rithms, and the B&B solution was better for only
one problem. For all the other problems, the heu-
ristic version of B&B had to be used. Both algo-
rithms gave solutions of equal quality for about
30% of the problems. For the other problems the
solutions achieved by the GA were of higher qual-
ity, balancing the line with one or two less stations.
This superiority of solutions of the GA was dem-
onstrated in particular for problems with greater
complexity (high values of F-ratio and WEST-
ratio). An important advantage of the GA is that
the time required to reach a solution is not grow-
ing with problem complexity, and is dependent
on the set of parameters of the GA (initial popula-
tion size, number of cycles and number of crosso-
vers). Most solutions were achieved in few seconds
(none exceeded a single-digit number of minutes)
on a Pentium3 personal computer.

3.4. Consistency and robustness of the Genetic

Algorithm

In order to check the consistency and robust-
ness of the GA, five representative problems with
very different problem characteristics were se-
lected. Each problem was solved by the GA ten
times, using different problem parameters (such
as initial population size), and randomly generat-
ing different initial populations. At selected inter-
vals in the solution process (after a given
number, x, of crossovers), the best solution values
were recorded. The purpose was to show that the
different solutions of a problem converge to a com-
mon value of the solution�s quality. The basic idea
behind this test was that if we can show conver-
gence to similar solution quality, even when
changing parameters such as the initial population
size, then we can conclude that this is not a ran-
dom event, and the algorithm is consistent and ro-
bust. This was measured at each interval by
calculating the coefficient of variance between the
best solution values of the 10 GA runs. In three
of the five problems tested, the algorithm con-
verged to solutions of equal quality (coefficient of

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

0 5000 10000 15000 20000 25000

NCRS - Number of Crossovers

 C
oe

ff
ic

ie
nt

 o
f

va
ri

an
ce

WEST-ratio = 5, F-ratio = 0.8, RETV= 50%

Fig. 12. Coefficient of variance between the best solutions of 10
different algorithm runs as function of number of crossovers
(NCRS).

14 G. Levitin et al. / European Journal of Operational Research xxx (2004) xxx–xxx

ARTICLE IN PRESS
variance equal zero). In the two other problems of
higher complexity (high F-ratio and WEST-
ratio values) the algorithm converged to coeffi-
cients of variance of 0.11% and 0.31%, respectively.
The convergence graph for the last problem tested
is shown in Fig. 12. This graph shows that after
about 20,000 crossovers, different parameters used
for the GA all yield solutions of very similar quality
(Coefficient of variance of less than 0.31%).
4. Conclusion

The objective of this work was to develop an
efficient solution for the robotic assembly line bal-
ancing (RALB) problem. This solution aims to
achieve a balanced distribution of work between
different stations (balance the line) while assigning
to each station the robot best fit for the activities
assigned to it. The result of such solution would
be an increased production rate of the line (by
achieving a minimal cycle time).

Two different procedures for adapting the GA
to the RALB problem and assigning robots to sta-
tions are introduced: a recursive and a consecutive
procedure. Local exchange procedure is used to
further improve the quality of solutions. The best
combination of these procedures and GA parame-
ters is reached by testing on an extensive set of ran-
domly generated problems. The GA developed is
shown to be consistent and robust. It achieves
solutions of higher quality than a Branch and
Bound algorithm, and solves large and complex
problems very efficiently.
References

Alander, J., 1995. An indexed bibliography of genetic algo-
rithms in manufacturing. In: Lance, C. (Ed.), Practical
Handbook of Genetic Algorithms New Frontiers, vol. II.
CRC Press, Boca Raton, FL.

Bukchin, J., Tzur, M., 2000. Design of flexible assembly line to
minimize equipment cost. IIE Transactions 32, 585–598.

Dar-El (Mansoor), E.M., 1973. MALB––a heuristic technique
for balancing large single-model assembly lines. AIIE
Transactions 54, 343–356.

Everitt, B.S., 1974. Cluster Analysis, first ed. John Wiley &
Sons, New York.

Falkenauer, E., 1998. Genetic Algorithms and Grouping
Problems. John Wiley & Sons Inc.

Goldberg, D., 1989. Genetic Algorithms in Search, Optimiza-
tion and Machine Learning. Addison Wesley, Reading, MA.

Graves, S.C., Holmes, C.R., 1988. Equipment selection and
task assignment for multiproduct assembly system design.
The International Journal of Flexible Manufacturing Sys-
tems 1, 31–50.

Kim, H., Park, S., 1995. Strong cutting plane algorithm for the
robotic assembly line balancing problem. International
Journal of Production Research 33 (8), 2311–2323.

Kim, Y.K., Kim, Y.J., Kim, Y., 1996. Genetic algorithms for
assembly line balancing with various objectives. Computers
and Industrial Engineering 30 (3), 397–409.

Kim, Y.K., Kim, Y., Kim, Y.J., 2000. Two-sided assembly line
balancing: a genetic algorithm approach. Production Plan-
ning and Control 11 (1), 44–53.

Khouja, M., Booth, D.E., Suh, M., Mahaney Jr., J.K., 2000.
Statistical procedures for task assignment and robot selec-
tion in assembly cells. International Journal of Computer
Integrated Manufacturing 13 (2), 95–106.

Mahalanobis, P.C., 1936. On the Generalized Distance in
Statistics. National Institute of Science in India 12, 49–55.

Gen, M., Tsujimura, Y., Li, Y., 1996. Fuzzy assembly line
balancing using genetic algorithms. Computers and Indus-
trial Engineering 31 (4), 631–634.

Nicosia, G., Paccarelli, D., Pacifici, A., 2002. Optimally
balancing assembly lines with different workstations. Dis-
crete Applied Mathematics 118, 99–113.

Owen, A.E., 1985. Assembly with Robots. Kogan Page Ltd.
Ponnambalam, S.G., Aravindan, P., Naidu, G.M., 2000. A

multi-objective genetic algorithm for solving assembly line
balancing problem. International Journal of Advanced
Manufacturing Technology 16, 341–352.

Rubinovitz, J., Bukchin, J., 1991. Design and balancing of
robotic assembly lines. In: Proceedings of the Fourth World
Conference on Robotics Research, Pittsburgh, PA.

Rubinovitz, J., Bukchin, J., Lenz, E., 1993. RALB––a heuristic
algorithm for design and balancing of robotic assembly
lines. CIRP Annals 42 (1), 497–500.

G. Levitin et al. / European Journal of Operational Research xxx (2004) xxx–xxx 15

ARTICLE IN PRESS
Rubinovitz, J., Levitin, G., 1995. Genetic algorithm for
assembly line balancing. International Journal of Produc-
tion Economics 41, 343–354.

Sabuncuoglu, I., Erel, E., Tanyer, M., 2000. Assembly line
balancing using genetic algorithms. Journal of Intelligent
Manufacturing 11, 295–310.

Starkweather, T., McDaniel, S., Mathias, K., Whitley, D.,
Whitley, C., 1991. A comparison of genetic sequencing
operators. In: Proceedings of the Fourth Interna-
tional Conference of Genetic Algorithms and their
Applications.

Suresh, G., Vinod, V.V., Sahu, S., 1996. A genetic algorithm for
assembly line balancing. Production Planning and Control 7
(1), 38–46.

Whitley, D., 1989. The GENITOR algorithm and selective
pressure: why rank-based allocation of reproductive trials is
best. In: Proceedings of the Third International Conference
on Genetic Algorithms and their Applications.

	A genetic algorithm for robotic assembly line balancing
	Introduction
	Problem description and previous work
	Methodology and notation

	The genetic algorithm for RALB
	Solution representation and the basic GA procedures
	Crossover and mutation operators
	Stop condition

	Performance evaluation
	Evaluation of the assignment procedures
	Selecting values for the GA parameters
	Comparison with a branch and bound algorithm
	Consistency and robustness of the Genetic Algorithm

	Conclusion
	References

