
INTRODUCING EFFICIENT PARALLELISM INTO

APPROXIMATE STRING MATCHING
AND A NEW SERIAL ALGORITHM

Gad M. Landau 2 Uzi Vishkin 1,2

Department of Computer Science
School of Mathematical Sciences

Tel Aviv University
Tel Aviv 69978, Israel

Department of Computer Science
Courant Institute of Mathematical Sciences

New York University
and

Department of Computer Sc, ience
School of Mathematical Sciences

Tel Aviv University
Tel Aviv 69978, Israel

ABSTRACT

Consider the stnng matching problem, where
differences between characters of the pattern and
characters of the text are allowed. Each difference
is due to either a mismatch between a character of
the text and a character of the pattern or a
superfluous character in the text or a superfluous
character in the pattern. Given a text of length n, a
pattern of length m and an integer k, we present
parallel and serial algorithms for finding all
occurrences of the pattern in the text with at most k
differences. The first part of the parallel algorithm
consists of analysis of the pattern and takes
0 (log m) time using m 2 processors. The rest of the
algorithm consists of handling the text. The text han-

1. The research of this author was supported by NSF grants

NSF-DCR-8318874 and NSF-DCR-8413359 and ONR grant

N00014-85-K-0046.

2. The research of both authors was supported by the Applied

Mathematical Sciences subprogram of the Office of Energy
Research, U. S. Department of Energy under contract number
DE-AC02-76ER03077.

Permission to copy without fee all or part of this material is granted
provided that the copies are not made or distributed for direct
commercial advantage, the ACM copyright notice and the title of the
publication and its date appear, and notice is given that copying is by
permission of the Association for Computing Machinery. To copy
otherwise, or to republish, requires a fee and/or specific permission.

© 1986 ACM 0-89791-193-8/86/0500/0220 $00.75

2'20

dling part applies the following new approach. This
part starts by obtaining a concise characterization of
the text which is based solely on sttbstrings of the
pattern in O (log m) time using n ~log m processors.
Then the desired output is derived from this charac-
terization together with the tables built in the first
part in O (k) time using n processors.
The serial algorithm follows also this new approach
for handling the text. It runs in O (k n) time for
alphabet whose size is fixed. For general input the
algorithm requires O (n (k + log n)) time. In both
cases the space requirement is O (n).

1. INTRODUCTION

The problem. Input . Two arrays:
A =al , . . . , a m - the pattern, T = t 1 t n - the text
and an integer k (_> 1).
In the known problem of pattern matching in strings
(e.g., as discussed in [KMP-77]) we are interested in
finding all occurrences of the pattern in the text. In
the present paper we are interested in designing an
algorithm that finds all such occurrences with at
most k differences.
Example. Let the text be abcde fgh i , the pattern
bxdyegh and k=3. Let us see whether there is an
occurrence with _< k differences that ends at the
eighth location of the text. For this we propose the
following correspondence between bcde fgh i and
bxdyegh. 1. b (of the text) corresponds to b (of the
pattern).2, c to x. 3. d to d. 4. Nothing to y . 5. e
to e. 6. f to nothing. 7. g to g. 8. h to h. The
correspondence can be illustrated as

b x d y e gh
b c d e f g h i

In only three places the correspondence is between
non-equal characters, implying that there is an
occurrence of the pattern that ends at the eighth
location of the text with 3 differences as required.

We distinguish three types of differences:
(a) A character of the pattern corresponds to a
different character of the text. (Item 2 in the Exam-
pie). In this case we say that there is a mismatch
between the two characters.
(b) A character of the pattern corresponds to "no
character" in the text. (Item 4).
(c) A character of the text corresponds to "no char-
acter" in the pattern. (Item 6).

We consider the following problem.
The string matching with k-differences problem. (In
short, the k-differences problem).
Find all occurrences of the pattem in the text with at
most k differences of type (a),(b) and (c).

The case k = 0 in the k-differences problem is
the extensively studied string matching problem.
There are a few notable algorithms for the string
matching problem: linear time serial algorithms -
[BM-77], [GS-83], [KMP-77], [KR-80] (a random-
ized algorithm) and [V-85b], parallel algorithms [G-
84] and [V-85b].

Even these parallel algorithms for exact string
matching had to abandon their preceding linear time
serial algorithms since these serial algorithms do not
seem amenable to parallelism. We note that none of
these serial and parallel algorithms is suitable to
cope with the k-differences problem. Moreover, the
remark below explains why even the way by which
parallelism is approached in these parallel algorithms
is unlikely to be generalizable for approximate string
matching.

Remark. [G-84] and [V-85b] gave parallel algo-
rithms for exact string matching. We give a short
description of their approach and explain why we
had difficulties in applying it for the k-differences
problem. The main part in the text handling parts of
each of these algorithms consists of eliminating
many entries of the text for which occurrences of the
pattern cannot start. This elimination process
iterates the following step: it picks a proper pair of
"close" entries which have not yet been eliminated.
The pair is proper in the sense that, based on infor-
mation gathered in the pattem analysis, an
occurrence may start in at most one of these entries.
Then, one of these entries is eliminated. This results
in a small enough number of remaining entries in

which occurrences may start. (The final part in each
of these algorithms is a straightforward procedure
which checks whether there is an occurrence in each
of these remaining entries.) We see no way for
applying a similar elimination process for approxi-
mate string matching problems. The reason being
that the differences which are allowed between the
pattern and the text enable coexistence of seemingly
contradicting occurrences. Indeed, our solution is

constructive in the sense that it finds all occurrences
without a preceding stage in which some entries in
which an occurrence is impossible are eliminated.

The model of computation used in this paper is
the random-access-machine (RAM) [AHU-74] for
the serial algorithm, and the concurrent-read
exclusive-write (CREW) parallel random access
machine (PRAM) for the parallel algorithm. A
PRAM employs p synchronous processors all hav-
ing access to a common memory. A CREW PRAM
allows simultaneous access by more than one pro-
cessor to the same memory location for read but not
for write purposes. See [V-83] for a survey of
results concerning PRAMs.

The k-differences problem is not .only a basic
theoretical problem. It also has a strong pragmatical
flavor. In practice, we often need to analyze situa-
tions where the data is not completely reliable.
Specifically, consider a situation where the strings
which are the input for our problem contain errors
and we still need to find all possible occurrences of
the pattern in the text as in reality. The errors may
include a character being replaced by another charac-
ter, a character being omitted or a superfluous char-
acter being inserted. Assuming some bound on the
number of errors would clearly imply our problem.
We refer the reader to [SK-83], a book which is
essentially devoted to various instances of the k-
differences problem. The book gives a comprehen-
sive review of applications of the problem in a
variety of fields, including: computer science, molec-
ular biology and speech recognition.

We give a first parallel algorithm for the k-
differences problem. The algorithm has three main
parts: I. Analysis of the pattern. II. Analysis of the
text. III. Finding all occurrences of the pattern in the
text with at most k differences.
Part I processes the pattern only and results in a few
tables. These tables contain information on how
substrings of the pattern relate to other substrings
of the pattern. In principle, similar constructs were
used in early string matching algorithms like [KMP-
77]. Part I needs O (log m) time using m 2 proces-
sors.

221

Part II processes the text using the tables that were
built in Part I. It results in a table which character-
izes the whole text using only substrings of the pat-
tern as yardsticks. Such constructs seem to be new.
Part III uses only the tables built in Parts I and II in
order to derive the desired output. In other words,
the characterization of the text which was obtained
in Part II turns out to be so powerful that we do not
need to take another look at the text.
The complexity results for the text handling parts
(Parts II and III) demonstrate that the characteriza-
tion obtained in Part II is concise: (a) The characteri-
zation can be computed efficiently - Part II needs
0 (log m) time using n ~log m processors to compute
it. (b) The characterization provides for an efficient
solution of the k-differences problem - Part III needs
O (k) time using n processors for finishing the solu-
tion of the k-differences problem.

This present paper demonstrates how parallel
algorithms can enrich the field of serial algorithms.
We first discovered the parallel algorithm. We then
noticed that the parallel algorithm yields as a bypro-
duct a new serial algorithm for the k-differences
problem which is considerably simpler. The serial
algorithm runs in O (kn) time for alphabet whose
size is fixed and requires 0 (n (k +logn)) time for
general input. In both cases the space requirement is
O(n). In [LV-85a], [LV-85c] the authors give two
implementations of a serial algorithm for the k-
differences problem. The first one [LV-85a] runs in
O (m 2 + n k 2) for general input and requires O(m 2)
space. The second one [LV-85c] runs in
O (m + k2n) time for alphabet whose size is fixed.
For general input the algorithm requires
O (m l o g m +k2n) time. In both cases the space
requirement is O(m). Our new serial algorithm is
faster than these previous algorithms when the size

of the alphabet is fixed or for general input when k 2
is larger than log n by order of magnitude.

Using notations of the first paragraph of this
section we define the k-mismatches problem as fol-
lows. The input is the same as for the k-differences
problem. The problem is to find all occurrences of
the pattern in the text with at most k differences of
type (a). [LV-85a], [LV-85b] give an algorithm for
the k-mismatches problem. It runs in
O (k (m l o g m + n)) time for general input. Our new
serial algorithm for the k-differences can handle also
the k-mismatches problem. So, when the alphabet
size is fixed or for general input when kmlogm is
larger than nlogn by order of magnitude then the
new algorithm is better than [LV-85a], [LV-85b].

In the recent survey on future ,directions for
research in string matching [G-85], the k-
mismatches problem is discussed. An open question
which is proposed in the paper is whether the simple
(dynamic programming) algorithm for the k-
mismatches problem which takes O (mn) serial time
can be improved. A similar O (ran) time algorithm
solves the k-differences problem. We note that the
present paper answers affirmatively this question
also for the k-differences problem which seems
more general.

The serial algorithm is given in Section 2. In
order to make the presentation more intuitive Part III
of the parallel algorithm is described in Section 3.
Part II in Section 4 and Part I in Sectian 5.

2. THE SERIAL ALGORITHM

In this section we give our new serial algorithm
for the k-differences problem. As a warm up we
start with two known serial O (mn) time algorithms
for this problem. The first one is a simple dynamic
programming algorithm. The second algorithm fol-
lows the same dynamic programming computation in

slightly different way which will help to understand
the new algorithm. Subsection 2.3 gives the new
serial algorithm.

2.1 The dynamic programming algorithm.
We use a matrix D[o,...,m;O,...,n], where Di, l is the
minimum number of differences between
a 1 a i and any successive substring of the
text ending at t t.
It should be obvious that if Din, l _< k then there
must be an occurrence of the pattern in the text with
at most k differences that ends at t l .

The following algorithm computes the matrix

D [0,...~n ;0,...,n]

Initialization for all l , 0 _<l_< n , D O,l := 0
for all i , 1 _< i _< m , Di, 0 := i

for i:=1 to m do
for 1:=1 to n do

Di , l:= min (Di_l, l +1, D i , l _ 1 ~-1, D i _ l , l _ 1 i f

a i = t l or D i _ l , l _ 1 +1 otherwise)
(Di, l is the minimum of three numbers.
These three numbers are obtained from the
predecessors of Di, t on its column, row and
diagonal, respectively)

Complexity. The algorithm clearly runs in O (ran)
time.

2.2 An alternative dynamic programming compu-
tation.

The description reminds to some extent [U-83].
It computes the matrix D , of the dynamic program-
ming algorithm, using its diagonals. A diagonal d
of the matrix consists of all Di,l 'S such that
l - i = d.
For a number of differences e and a diagonal d , let

Ld, e denote the largest row i such that Di, l = e and
Di,l is on diagonal d. The definition of Ld, e clearly
implies that e is the minimum number of differences
between a 1 aL~,~ and any substring of the text

ending at tLd.~+d. It also implies that aLd,~+l

tLd.~+d+r For our k-differences problem we need

only the values of Ld, e ' s , where e satisfies e _< k.
If one of the Ld,e'S equals m, for e _<k, it means
that there is an occurrence of the pattern in the text
with at most k differences that ends at ta+ m .
We compute the Ld, e 's by induction on e. Given d
and e we show how to compute Ld, e using its
definition. Suppose that for all x < e and all diago-
nals y Ly,x was already computed. Suppose Ld, e
should get the value i. That is, i is the largest row
such that Di, l = e , and Di, l is on the diagonal d.
The algorithm of the previous subsection reveals that
Di, l could have been assigned its value e using one
(or more) of the following data:
(a) Di_i,i_ 1 (which is the predecessor of D i,l on the
diagonal d) is e - 1 and a i ~ b t. Or, Di,l_ 1 (the
predecessor of Di, 1 on row i which is also on the
diagonal "below" d) is e - 1 . Or, Di_i, l (the prede-
cessor of Di, l on column l which is also on the
diagonal "above" d) is e - 1 .
(b) Di_l,l_ 1 is also e and a i = b 1.
This implies that we can start from Di, l and follow
its predecessors on diagonal d by possibility (b) till
the first time possibility (a) occurs.
The following algorithm "inverses" this description
in order to compute the Ld, e's. Ld,e_l, Ld_l,e_l, and
Ld+l,e_ 1 are used to initialize the variable row,
which is then increased by one at a time till it hits
the correct value of Ld, e .

The following algorithm computes the Ld, e's

Initialization for all d , 0 _<d_< n + l , Ld,_ 1 := -1
for all d , - (k + l) _< d _< -1 do

Ld,ld_21 :=--oo
Ld,ld_l l := [d - l [

2. for e:=O to k do
for d:=-e to n do

3. row := max [(Ld,e_l+l),(Ld_l,e_l),

(Ld+l,e-l+l)]
4. while arow+ 1 = trow+l+ d do

row :=row +1
5. Ld, e := row
6. if L a,e = m then

print *THERE IS AN OCCURRENCE
ENDING AT td+ m *

Remarks. a) For every i , l , Di , l -Di_l , l_ 1 is either
zero or one. b) The values of the matrix D on diag-
onals d , such that d > n - m + k + l and d < - k are
useless for the solution of the k-differences problem.

Correctness of the algori thm.
Claim. L d,e gets its correct value.
Proof o f claim. By induction on e.
Let e = 0. Consider the computation of Ld, O, (d _> 0).
Instruction 3 starts by initializing row to 0. Instruc-
tions 4 and 5 find that a 1 aZd,o is equal to

td+ 1 td+Ld,o and aLd,o+l ~ td+Ld,o+l. Therefore
Ld, 0 gets its correct value.
Let e = l . Assume that all Ld,l_ 1 are correct. (The

reader can easily check that L l,l_ 1 and L_t_l , t_ 1
get correct values in the Initialization - this should
have actually been part of establishing the base of
the induction.) Consider the computation of Ld,e,
(d _>-e). Following Instruction 3 row, is the largest
row on diagonal d such that Drow,d+ro w can get
value e by possibility (a). Then Instruction 4 finds

Ld,e "

Complexity. We evaluate Ld,e'S for n + k + l
diagonals. For each diagonal the variable row can

get at most m different values. Therefore, the com-
putation takes O (mn) time.

2.3 The new a lgor i thm

The new algorithm has two steps:
Step I. Concatenate the text and the pattern to one
string (t l t n¢al a m). Compute the
suffixes tree of this string.
A methodological remark. Step I of the serial algo-
rithm presented here combined Parts I and II of the
parallel algorithm that follows. Step II corresponds
to Part III.

223

Step II. Find all occurrences of the pattern in the
text with at most k differences.

2.3.1 Step I.
Let us define the suf f ixes t ree of a string

C = c 1 Cl:
1) It is a tree in which all the edges of the tree are
directed away from the root. The out degree of each
node of the tree is either zero (if the node is a leaf)
or_>2.
2) Each suffix C i = ci+ 1 c I of the pattern
defines a l e a f of the tree. (The tree has l leaves.)
3) Let C i and C j be any two suffixes. Suppose
Ci+l,...,Ci+ f is their longest equal prefix. That is,
ci+ 1 ci+ f equals to c j+ 1 c j+ f and
c i+f + 1 ¢ c j + f + 1. Then, ci+ 1 ci+ f defines an
i n t e rna l node (i.e., a node which is not a leaf) of the
tree. Let D be a successive substring of the string
C. Let B be a proper prefix of D. Suppose also
that both D and B define nodes of the tree. Then
there is an edge connecting the nodes of D and B if
there is no successive substring F of the pattern
such that the following three condition hold at once:
F is a proper prefix of D, B is a proper prefix of F
and F defines a node of the tree.
4) The substrings of two sibling edges (edges
emanating from the same vertex of the tree) cannot

have identical (nonempty) prefixes.

Upon construction of the suffixes tree we
require that for each node v of the tree a successive
substring ci+ 1 ci+ f which defines it will be
stored as follows: S T A R T (v):= i and E N D (v) : = f .

Remark. Up to isomorphism (of graphs) there is
only one suffixes tree for a given string.

EXAMPLE. Given the string a b a b $ the suffixes
tree is:

S T A R T (A) = 2, E N D (A) = 2,
S T A R T (B) = 3, E N D (B) = 1,
S T A R T (C) = 5, E N D (C) = O,
S T A R T (D) = O, E N D (D) = 4,
S T A R T (E) = 2, E N D (E) = 2,
S T A R T (F) = 1, E N D (F) = 3,

S T A R T (G) = 3, E N D (G) = 1.

The suffixes tree

We compute the suffixes tree of the string
t 1 t n ¢ a 1 a m using the serial algorithm
of Weiner [W-73].
Complexity. [W-73] computes the suffixes tree in
O (n) time when the size of the alphabet is fixed.
This is also the running time of Step I for fixed size
alphabet. If the alphabet of the pattern contains x
letters then it is easy to adapt this algorithm of [W-
73] and Step I to run in time O (n l o g x) . In both
cases the space requirement of Step I is O (n). (The
reader is also referred to [CS] in which a lucid
presentation of the algorithm of [W-73] is given).

2.3.2 Step II.

The matrix D and the Ld, e ' s are exactly as in
the alternative dynamic programming algorithm. We
use this alternative algorithm with a very substantial
change. Introducing this change in the present step
of the algorithm and enabling it by proper prepara-
tion in the previous step is the main contribution of
this paper in both the serial and parallel algorithms.
The change is in Instruction 4, where instead of
increasing variable r o w by one at a time until it
reaches Ld ,e , we find Ld, e in O (1) time!

For a diagonal d, the situation following Instruction
3 is that we matched (with e differences) a 1 aro w

224

of the pattern with some substring of the text that
ends at trow+ d. We want to find the largest q for

which arow+l,...,arow+ q equals trow+d+l,...,trow+d+ q.
Let LCArow, d be the lowest common ancestor (in
short LCA) of the leaves of the suffixes trow+d+ 1

and arow+ 1 in the suffixes tree. The desired q is
simply END(LCArow,d) . Thus, the problem of
finding this q is reduced to finding LCArow, d. We
use the algorithm of [HT-84] for the purpose of
computing LCA's in the suffixes tree when ever we
need to find such a q throughout the algorithm.

Complexity. Using the classification of [HT-
84] we are interested in the static lowest common
ancestors problem, where the tree is static but
queries for lowest common ancestors of pair of ver-
tices are given on line. That is, each query must be
answered before the next one is known. The suffixes
tree has O (n) nodes. The algorithm of [HT-84]
proceeds as follows. It preprocesses the suffixes tree
in O (n) time. Then, given ct_>n LCA queries it
responds to them in a total of O (ix) time. For each
of the n+k+l diagonals, we evaluate k + l Ld,e'S.

Therefore, we have O (kn) LCA Queries. It will take
O (kn) time to process them. This time dominates
the running time of Step II.

Complexity of the serial algorithm. The total
time for the serial algorithm is, O (kn) time for
alphabet whose size is fixed and O (n (k + logn))
time for general input.

3. PARALLEL ALGORITHM - FINDING ALL
OCCURRENCES OF THE PATTERN IN THE
TEXT WITH AT MOST k DIFFERENCES
(PART III).

This section is devoted to the last part of the
parallel algorithm. The presentation will clarify
which information became available as a result of
Parts I and II. The matrix D and the Ld, e ' s are
exactly as in the serial algorithm. Part III of the
parallel algorithm employs n +k+l processors. Each
processor is assigned to a diagonal d , - k _< d _< n.
The parallel treatment of the diagonals is the source
of parallelism in Part III of our new algorithm.

For a diagonal d the situation following Instruc-
tion 3 is that we matched (with e differences)
a 1 aro w of the pattern with some substring of the
text that ends at trow+ d . We want to find the largest
q for which arow+l,...,arow+ q equals
trow +d + l , . . . , trow +d +q .

In the serial algorithm we got this q from the
suffixes tree. In the parallel algorithm we get q in a
different way. We use two kinds of information
from the previous parts of the algorithm:
a) An index g of the pattern which brings l to a
maximum in the following match:

trow+d+ 1 trow+d+ 1 = ag+l ag+l . (There
is no larger l (and g) for which such a match
holds.) This information was computed in Part II
into an array called B E S T - F I T (see section 4).
b) The length f of the longest match between
aro w + ! , . . . and ag + 1, That is,

arow+ 1 arow+ f = ag+l ag+f and
arow +f + ! ~ a g + f +l . T h i s i n f o r m a t i o n w a s computed
in Part I into array M A X - L E N G T H (see section 5).

Observation. The desired q is the minimum between
f and 1. proof of the observation is straightforward.

We use the parameter d and the pardo com-
mand for the purpose of guiding each processor to
its instruction.

Part III of the parallel algorithm
1. Initialization (as above)
2. f o r e:=O to k do

f o r d:=-e to n pardo

3. row := max [(Ld,e_l+l) , (Ld_l ,e_l) ,

(Ld+l,e- l+l)]

4. Ld, e := row + min (f ,l)
5. ifLd, e = m then

print *THERE IS AN OCCURRENCE
ENDING AT td+ m *

Complexity of Part HI. We employs n+k+l
processors (one per diagonal). Each processor com-
putes at most k + 1 Ld, e 's. Obtaining the informa-
tion from Parts I and II to compute each Ld, e takes
O (1) time. Therefore, Part 3 takes O (k) time using
n+k+l processors. Simulating the algorithm by n
processors, instead of n+k+l still gives O (k) time.

4. PARALLEL ALGORITHM - COMPUTA-
TION OF ARRAY BEST-FIT (PART II).

In this section we compute the one dimensional
array B E S T - F I T [O n- l] . B E S T - F I T (i) = (g , I)
means that t i+l , . . . , t i+ l = ag+l ag+l , and there
is no larger l, such that there exists g, for which
such a match holds. In this case we denote
B E S T - F I T (i) . 1 = g and B E S T - F I T (i) . 2 = I. The
computation relies on the following information

225

which was gathered in Part I of the parallel algo-
rithm (see section 5):
1. The array LOCATION[1 13], L O C A T I O N (i)= f
means that character i in the alphabet appears in
location f of the pattern (af = i).

2. The three dimensional array
P A I R - F I T [0 m-1 ;0 m-1 ;0 [log m]].
P A I R - F I T (j , I , i) = (~ , f) means that aj+l,...,aj+2i

a l + l , . . . , a l + f = a k + 1 a k + 2 i + f and there is no
larger f , such that there exists ~, for which such a
match holds.

Step 1. Using array L O C A T I O N find for each
character in the text a location in the pattern in
which the same character appears (if there is one).
Note that Step 1 results in a characterization of the
text using characters of the pattern only. Each stage
of Steps 2 and 3 refines this characterization until
the ultimate characterization is reached and entered
into B E S T - F I T .
Steps 2 and 3 use the scheme of parallel prefix sum
computation in which a balanced binary tree guides
the computation. We refer the reader to [V-84] for a
detailed description. (For an earlier reference to
using the scheme of parallel prefix sum computation
see [FL-80].) The balanced binary tree is defined as
follows: Each pair [i , j] , where 0 _< i _< [logn],
0 _ < j _ < n - 1 and j is divisible by 2 i, defines a

node of the binary tree whose left son is [i - l , j] and
right son is [i - l , j+ 2 i -1] .

Step 2. The computation proceeds in [log m]
stages.

The output o f stage i , 1 _< i _< [logm]: Essentially,
it is the same as the input of stage i+1. For each
j , 0 _ < j _ < n - 1 which is divisible by 2 i, we are
given an index f of the pattern such that
tj+ 1 tj+2i = af + 1 a f +2i , if such f exists.
If such f does not exist we are given an index g of
the pattern which brings l to a maximum in the fol-
lowing match: tj+ 1 tj+ l = ag+l ag+t .

The relation to the binary tree is clear: The "active"
nodes at stage i are of the form [i , j] . The input that
such a node needs can be obtained from its two
sons. We further observe (and leave it to the reader
to fill in the details) that using P A I R - F I T a single
processor can perform the operations corresponding
to each node in O (1) time. We refer to the compu-
tation at each node as an operation.

Observe that the computation starts at the leaves and
moves towards the root of the balanced binary tree
which guides the computation until it reaches the
nodes of the tree whose distance from the leaves is

[log m]. The tree has n leaves and therefore O (n)
nodes. The [log m] stages use only the [log m]
lower levels of the tree. Hence, this description

implies a total of O (n) operations and O (log m)
time.

Step 3 consists also of [log m] stages. Essentially,
they amount to reversing the [log m] :;tages of Step
2. That is, the computation of Step 3 starts at nodes
of the tree whose distance from the leaves is
[log m] and ends at the leaves.

Step 3. The computation proceeds in [logm]
stages. We describe stage i, 1 < i < [logm]. Let
8:= [l o g m] - i .
The input which is relevant to stage i:
a) For each j , 0 _< j _< n - l , which is', divisible by
2 ~1, we are given an index g of the pattern which
brings l to a maximum in the following match:
tj+ 1 tj+ 1 = ag+l ag+l . (That is, we have
already found that B E S T - F I T (j) = (g ,l).)
b~ For each h, 0 _< h _< n-1 , which is divisible by
2 but is not divisible by 2 ~+l, we are given an
index f of the pattern such that th+ 1 th+2S =

af+ 1 af+2~ , if such f exists. If such f does
not exist we are given an index g of the pattern
which brings l to a maximum in the following
match: th+ 1 th+ l = ag+l a g + l ; (observe,
that in this case (g ,l) is already the d!esired output
for B E S T - F I T (h)).

The result o f stage i:
For each h, 0 _< h _< n-1 , which is dJivisible by 28
but is not divisible by 28+1, we find B E S T - F I T (h) .
That is, we want to find an index g of the pattern
which brings l to a maximum in the following
match: th+ 1 , th+ l = ag+l ag+l T h i s

computation takes place at node [8,h iI of the tree.
Finally, we observe that using P A I R - F I T a single
processor can carry out the computation required at
each node, in O (1) time.

Similar to Step 2, these log m stages require a total
of O (n) operations and O (log m) time.

Complexity of Part II. We had a total of O(n)
operations and O(log m) time. No difficulty will

arise in applying the simulation scheme due to [Br-
74]. Applications of this scheme for similar purpose
were given in a few parallel algorithms. For
instance, see [V-85b]. This will result in O (log m)
time using n/log m processors.

226

5. P A R A L L E L A L G O R I T H M - ANALYSIS OF
THE PATTERN (PART I).

5.1 C O M P U T A T I O N OF ARRAY MAX-
L E N G T H :

The input is the pattern a 1 a m . The out-
put is the two dimensional array
M A X - L E N G T H [0,...,m -1 ;0,...,m -1].
M A X - L E N G T H (i ,j)=f means that

ai+ 1 a i+ f = a j + 1 a j + f , and
ai+f+ 1 ¢a j+f+ I. In words, consider laying the
suffix of the pattern starting at ai+ 1 over the suffix
of the pattern starting at aj+ 1. M A X - L E N G T H (i , j)
is the longest match of prefixes between these two
suffixes.

The pair (i , j) , O _ < i , j _ < m - 1 is defined to be on
diagonal d of M A X - L E N G T H if j - i = d , where
possible values of d are - (m - l) <_ d _< m-1 . It is
easy to see that: MAX- L ENGTH (i ,j)
= M A X - L E N G T H (i + I , j + I) + I if ai+l=aj+l and
MAX-LENGTH (i , j) := 0 otherwise. We compute
M A X - L E N G T H in two steps:
a) Initialization: for each pair (i,j) 0 _<i , j _< m - 1
M A X - L E N G T H (i , j) := 1 if ai+l=aj+l and
M A X - L E N G T H (i ,j) := 0 otherwise.
b) Using a parallel prefix sum computation we com-
pute the values of each diagonal d of
M A X - L E N G T H separately. (We compute the sum
till the first 0 and not till the bottom of the diago-
nal.)
Complexity. In step a we have O (m 2) operations
and O(1) time. In step b we have a total of O(m)
operations and O (log m) time per diagonal. Apply-
ing the simulation scheme due to [Br-74] will result
in O (log m) time using m Z/log m processors.

5.2 COMPUTATION OF ARRAY PAIR-FIT:

The input is the pattern a 1 a m . The out-
put is the three dimensional array
PAIR - F I T [0 m -1 ;0 m -1 ;0 [log m]].
PAIR - F I T (j ,l ,i) = (~, , f) means that

and aj+l,...,aj+ zi al+l,...,al+f = a~.+l a)~+ Zi +f
there is no larger f (and ~.) for which such a match
holds. In words, concatenate to aj+l,...,aj+zl the
suffix of the pattern starting at at+ :. As a result we

get the concatenated string aj+l,...,aj+zl al+l,...,a m.
We are interested in a suffix of the pattern whose
prefix has a longest match with a prefix of the con-
catenated string and a z. is such a suffix.

Step 1. Construction of the suffixes tree.

The suffixes tree as it is described in section 2 has
m leaves and therefore it has < m internal nodes.
However, the number of pairs of suffixes is ®(m z)
which is much larger. Step 1.1 results in a set of at
most m - 1 pairs which provide all internal nodes (as
implied by Observation (1) below). Observations (2)
and (3) enable us to use the same computation to
find two things: (a) a minimal set of pairs which
provides all internal nodes, and (b) for each node, its
father in the tree.

Step 1.1. Sort the m suffixes of the pattern. (A com-
parison between two suffixes is performed in O(1)
time as follows. MAX-LENGTH gives the longest
match of prefixes between the two suffixes. This
implies the index of the leftmost character in which
the two suffixes differ. So, compare the characters
that have this index in both suffixes.) Any parallel
sorting algorithm which is based on comparisons can
be used here. We assume of course, some total order
on the characters of the pattern: In the computer,
each character is given by a binary representation.

We can use the natural order on these binary
representations.

Let Bo,B1,...,Bm_ 1 be the sorted vector of suffixes
which is obtained in Step 1.1. Let f i be the length

of longest equal prefix of B i and Bi+l,
(0 _ < i < m - l) . Note that, the f i values can be
looked up in M A X - L E N G T H . Step 1.2 below
computes the suffixes tree from the f i ' s using the
following observations.
Observations. (1) Let v be an internal node of the
suffixes tree. Suppose v is defined by the longest
equal prefix of two suffixes B i and Bj. Then, there
exists y , 0 _< y < m - l , such that the longest equal
prefix of By and By+l also defines v. (For short, we
then say that v is the node of f y) . Observation
(1) says that every node of the tree is a node of
some f i . This implies that it is sufficient to consider
the nodes of the f i ' s only for computing the suffixes
tree. Observation (2) characterizes the situation
where the nodes of several f i ' s are the same.
(2) Suppose that for some 0<_i < j < m - l ,
f i = f j , and for all i < y < j , f y >_ f i. Then the
nodes of f i and f j are the same. This implies
that we can dispense with f j in the minimal set of
f x values which define internal nodes. We identify
the internal nodes of the suffixes tree with the f x
values that have not been dispensed with.

227

(3) Let 0 _< h < i < j < m-1 and suppose f i > fh ,
f i > f j and for all h < y < j , f i -< f y. Then, the
node of the maximal among fh and f j is the father
of the node of f i . (Note that if f h= f j , then, by
observation (2), their nodes are the same).

Step 1 . 2 . Consider the interval of integers
[0,1 m-2]. We define the singleton subintervals
[0],[1],...,[m-2] to be the subintervals of level 0.
The ['m/2] size-two subintervals [0,1],[2,3],[4,5]
are said to be the subintervals of level 1. The

I " - I

[m/2i[size-2 i subintervals [0,..,2i-1]

[2 i 2.2i-1] are said to be the subintervals of
level i. All these O (m) subintervals are called the
power-two subintervals of [0 m-2].
1.2.1. For each power-two subinterval find the
minimum f i over the subinterval. We implement this
computation using a balanced binary tree in the
obvious way. This takes O(log m) time using
m/log m processors.
1.2.2. For each 0 _< i < m - l , find the largest h < i
such that fh -<fi (if such h exists). Denote this h
by h (i). We implement this computation by assign-
ing a processor to each such i. The processor finds
h (i) by a kind of binary search on the power-two
subintervals in time O (log m).
If f i >fh(i) or if h(i) does not exist, we conclude
that f i belongs to the minimal set of f . and identify
f i with a node of the suffixes tree.
If fi=fh(i), we conclude that f i does not belong to
this minimal set. We say that f i is a non-node.
We compute the node fa(i) which is the node which
is defined by non-node f i as follows.
1.2.3. For each non-node f i we assign a processor
which performs a binary search on the power-two
subintervals to find the smallest a<i such that
f i= f et and for all o~ < y < i, f y _> f i.
1.2.4. For each 0 _< i < m - l , find the smallest j > i
such that f j <fi (if such j exists). Denote this j by
j(i). We implement this computation in the same
way as in 1.2.2 above. So, using m-1 processors it
takes O (log m) time.
1.2.5. For each node of the tree, find its father.
For each internal node f i , take the maximum value
between fh(i) and fj(i). Let I~(i) be h(i) if fh(i)
provides the maximum and let it be j (i) otherwise.
By Observation (3), the node of fl](i) is the father of
node f i in the suffixes tree. Observe that f[3(i) may
be a non-node. However, in 1.2.2 above we found
the node fa(i) which is the node defined by f i . So,
using a processor per node we can find its father in

O (1) time.
Each suffix of the pattem is a leaf of the tree. Con-
sider suffix B i in the output of 1.1. Using the nota-
tions of 1.2.5 for internal nodes, h (i) is fi-1 and
j (i) is f i . Finding the father of B i is :now similar to
finding the father of an internal node.
Below we use the Euler tour techniq~ae of [TV-85]
and [V-85a] which computes various', functions on
tree. The description below has been taken from [V-
85a].
Step 2. Find an Euler path in the suffixes tree that
starts and ends at the root (say r) and compute for
each node in the tree the length of the (shortest) path
leading from the node to the root, to be called the
level of the node. The input to Step 2 is T the
suffixes-tree which was computed in Step 1.
2.1 Finding an Euler path.

2.1.1 Replace each edge (u,v) of T by two
anti-parallel directed edges u ~ v and v ~ u to
form a digraph called T.
2.1.2 For each node v of T we do the follow-
ing. (Let degree(v)=d in T and let the d adja-
cent edges of v in T be (V,Ul) (V,Ud)')
D(u i ----~v):=v --~Ui+lmod d for 1 _<i _<d. Now
D has an Euler cycle.
The 'correction', D (u d ---~ r) :='end of list'
(where d = degree(r)) gives an Euler path that
starts and ends at r .

2.2 Finding for each node its level in T.

2.2.1 The distance of each edge of T from the
end of the path is computed into a vector R
using a 'doubling' procedure.

Initialize: R (e) : = - I for all edges e in T
which are directed towards the root and
R (e):= 1 for all the edge e in T which are
directed away from the root. Also
R ('end o f list') := 0.
Apply [log2(m-1)] iterations in parallel
((m-l) is the length of the Euler path):
R(e):=R(e)+R(D(e), D(e):=D(D(e)).

2.2.2 The doubling procedure assigns to R (e),
of each edge e (u-->v) which is directed
towards the root in T, the level of u in T.

Step 3. We show how to find for each suffix of the
pattern Aj and each integer i, 0 _< i .'~ ['log m l, all
values of PAIR-FIT(j,I,i). So, below, j and i are
fixed.
Assign a processor to each suffix Ag Using
MAX-LENGTH the processor checks whether a
prefix of length 2 i of Aj is a prefix of Ag. If yes,
"mark" (the leaf of) suffix Ag+2i. As a result some

228

of the leaves of the tree are marked. Recall that our
goal is to compute into P A I R - F I T (j ,I ,i) (for each
1,0 _<l < m - l) the values)~ and f such that

aj+l,...,aj+2i al+l,...,al+ f = a~,+l ,az,+2;+f and
there is no larger f (and 9~) for which such a match
holds. If l is a marked leaf then we simply select
)~ := l - 2 i and f := m - l . Otherwise, to maximize f
we have to find a marked leaf such that the level of
LCA(l,"the marked leaf') is as large as possible.

Observations. Suppose leaf l is not marked. Con-
sider the Euler path on T- and the location of leaf l
in this path. (The incoming edge of I is followed by
the outgoing edge of I. We say that the location of
leaf l is "between" these two edges.) Let ~ be the
last marked leaf which precedes 1 in the Euler path
and let [3 be the first marked leaf which succeeds l
in the Euler path. Then,
(1) either ~ or 13 (or both) can provide the desired E.
(2) the portion of the Euler path leading from c~ to l
visits LCA (~,l) ; moreover, the node LCA (ct,l) pro-
vides the minimal level in this path. Similarly, the
portion of the Euler path leading from l to 13 visits
LCA (13,l) ; moreover, the node LCA (~,l) provides
the minimal level in this path.

Observation (2) explains the rest of the computation
of Step 3 below:

3.1 Using a parallel prefix sum computation find for
each edge in the Euler path the node of minimal
level which appears between the edge and its
preceding marked leaf in the Euler path. This is
done as follow:

a) Divide the Euler path into subpath by throw-
ing away all the edges from or to marked
leaves.
b) Handle each subpath separately. Let each
edge e (u ~ v) be a leaf in a balanced binary
tree. Its initial value will be the level of u (com-
puted in Step 2.2).
c) Use the parallel prefix sum computation
(with one change - replace the operation sum by
the operation minimum) to finish the computa-
tion.

3.2 Using a parallel prefix sum computation find for
each edge in the Euler path the node of minimal
level which appears between the edge and its
succeeding marked leaf in the Euler path (similar to
3.1).

3.3 Determine for each l whether it preceding
marked leaf or succeeding marked leaf will be
selected for ~.

3.4 Using a computation which is similar to 3.1 and
3.2 above, find for each edge in the tree its preced-

ing marked leaf and its succeeding marked leaf.
(Each edge needs actually one of these data, as
implied by 3.3. However, the computation is much
easier if we compute both for all edges.)

3.5 Using 3.3 and 3.4 determine ~ for each non
marked leaf. If v is the node of minimal level
between ~ and l then f := END (v).

Complexity. Step 3 takes O (log m) time using
m ~log m processors for each of the m values of j
and [log m] + l values of i. Therefore, we get
O(log m) time using m 2 processors. It is easy to
achieve the same time-processor bound for Steps 1
and 2.

5.3 COMPUTATION OF ARRAY LOCATION:

The input is the pattern a 1 a m. (We
assume that the alphabet of the characters that can
be used in the pattern is 1 ~, for some 13.) The
output is an one dimensional array LOCA-
TION [1 13]. LOCATION (i)=f means that charac-
ter i in the alphabet appears in location f of the
pattern (af = i).
The computation of the array LOCATION is
straightforward.
Complexity. O(log m) time using m processors.
The time can be reduced to O(1) if simultaneous
writes by several processors into the same memory
location are allowed.

Complexity of Part I. O(logm) time using m 2
processors.

Acknowledgement. We are grateful to Z. Galil for
encouraging us to continue improving our results.

[AHU-74]

[Br-74]

[BM-771

[FL-80]

[G-84]

REFERENCES
A.V. Aho, J.E. Hopcroft and J.D.

Ullman, The Design and Analysis of
Computer Algorithms, Addison-
Wesley, Reading, MA, 1974.
R.P. Brent, "The parallel evaluation of
general arithmetic expressions" ,
JACM 21,2 (1974), 201-206.
R.S. Boyer and J.S. Moore, "A fast
string searching algorithm", Comm.
ACM 20 (1977), 762-772.
M. Fisher and L. Ladner, "Parallel
prefix computation", JACM 27,4
(1980), 831-838.
Z. Galil, "Optimal parallel algorithms
for string matching", Proc. 16th ACM
Symposium on Theory of Computing,
1984, 240-248.

2.09

[G-85]

[GS-83]

[HT-84]

[I-851

[KMP-77]

[KR-80]

[LV-85a]

[LV-85b]

[LV-85c]

[LVN-85]

Z. Galil, "Open problems in stringol-
ogy", in A. Apostolico and Z. Galil

(editors), Combinatorial Algorithms
on Words, NATO ASI Series, Series
F: Computer and System Sciences,
Vol. 12, Springer-Verlag, 1985, 1-8.
Z. Galil and J.I. Seiferas, "Time-
space-optimal string matching", J.
Computer and System Sciences 26
(1983), 280-294.
D. Harel and R.E. Tarjan, "Fast algo-
rithms for finding nearest common
ancestors", SIAM J. Computing 13,2
(1984), 338-355.
A.G. Ivanov "Recognition of an
approximate occurrence of words on a
turing machine in real time", Math.
USSR Izvestiya, Vol. 24(1985), No.
3, 479-522.
D.E. Knuth, J.H. Morris and V.R.
Pratt, "Fast pattern matching in
strings", SIAM J. Comp. 6 (1977),
322-350.
R.M. Karp, and M.O. Rabin,
"Efficient randomized pattem-
matching algorithms", manuscript,
1980.
G.M. Landau and U. Vishkin
"Efficient string matching in the pres-
ence of errors", Proc. 26 IEEE FOCS,
1985, 126-136. This is a preliminary
version of [LV-85b] and [LV-85c].
G.M. Landau and U. Vishkin
"Efficient string matching with k
mismatches", Theoret. Comput. Sci.,
to appear.
G.M. Landau and U. Vishkin
"Efficient string matching with k
differences", TR-36/85, Department of
Computer Science, Tel Aviv Univer-
sity, 1985.
G.M. Landau, U. Vishkin and R. Nus-
sinov "An efficient string matching
algorithm with k differences for
nucleotide and amino acid sequences
", Nucleic Acids Research 1986, to
appear.

[ML-841

[S-80]

[SK-831

[TV-85]

[U-83]

[U-851

[V-83]

[V-84]

[V-85a]

[V-85b]

[W-73]

[WF-74]

M.G. Main and R.J. Lorentz, "An
O (n log n) algorithm for finding all
repetitions in a string", J. of Algo-
rithms (1984), pp. 422-.432.
P. H. Sellers, "The theory and compu-
tation of evolutionary distances: Pat-
tern recognition", J. c,f Algorithms 1
(1980), 359-373.
D. Sankoff and J.B. Kruskal (editors),
Time Warps, String Edits, and Macro-
molecules: the Theory and Practice of
Sequence Comparison, Addison-
Wesley, Reading, MA, 1983.
R.E. Tarjan and U. Vishkin, "An
efficient parallel biconnectivity algo-
rithm", SIAM J. Comput.
14,4(1985),862-874.
E. Ukkonen, "On approximate string
matching", Proc. Int. Conf. Found.
Comp. Theor., Lecture Notes in Com-
puter Science 158, Springer-Verlag,
1983, 487-495.
E. Ukkonen, "Finding approximate
pattern in strings", J. of Algorithms 6
(1985), 132-137.
U. Vishkin, "Synchronous parallel
computation - a survey", TR-71, Dept.
of Computer Science, Courant Insti-
tute, NYU, 1983.
U. Vishkin, "An optimal parallel con-
nectivity algorithm", Discrete Applied
Math. 9 (1984), 197-207.
U. Vishkin, "On efficient parallel
strong orientation", hfformation Pro-
cessing Letters 20 (1985), 235-240.
U. Vishkin, "Optimal parallel pattern
matching in strings", Proc. 12th
ICALP, Lecture Note, s in Computer
Science 194, Springer-Verlag, 1985,
497-508. Also, Information and Con-
trol, to appear.
P. Weiner "Linear Pattern Matching
Algorithm", Proc. 14 IEEE Sympo-
sium on Switching and Automata
Theory, 1973, 1-11.
R. Wagner and M. Fisher "The
string-to-string correction problem", J.
ACM 21 (1974), 168-3178.

230

