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ABSTRACT 

Consider the stnng matching problem, where 
differences between characters of the pattern and 
characters of the text are allowed. Each difference 
is due to either a mismatch between a character of 
the text and a character of the pattern or a 
superfluous character in the text or a superfluous 
character in the pattern. Given a text of length n,  a 
pattern of length m and an integer k, we present 
parallel and serial algorithms for finding all 
occurrences of the pattern in the text with at most k 
differences. The first part of the parallel algorithm 
consists of analysis of the pattern and takes 
0 (log m )  time using m 2 processors. The rest of the 
algorithm consists of handling the text. The text han- 
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dling part applies the following new approach. This 
part starts by obtaining a concise characterization of 
the text which is based solely on sttbstrings of the 
pattern in O (log m )  time using n ~log m processors. 
Then the desired output is derived from this charac- 
terization together with the tables built in the first 
part in O (k) time using n processors. 
The serial algorithm follows also this new approach 
for handling the text. It runs in O ( k n )  time for 
alphabet whose size is fixed. For general input the 
algorithm requires O (n (k + log n )) time. In both 
cases the space requirement is O (n). 

1. INTRODUCTION 

The problem. Input .  Two arrays: 
A =al , . . . , a  m - the pattern, T = t  1 ..... t n - the text 
and an integer k (_> 1). 
In the known problem of pattern matching in strings 
(e.g., as discussed in [KMP-77]) we are interested in 
finding all occurrences of the pattern in the text. In 
the present paper we are interested in designing an 
algorithm that finds all such occurrences with at 
most k differences. 
Example.  Let the text be abcde fgh i  , the pattern 
bxdyegh and k=3. Let us see whether there is an 
occurrence with _< k differences that ends at the 
eighth location of the text. For this we propose the 
following correspondence between bcde fgh i  and 
bxdyegh.  1. b (of the text) corresponds to b (of the 
pattern).2, c to x.  3. d to d.  4. Nothing to y .  5. e 
to e. 6. f to nothing. 7. g to g.  8. h to h.  The 
correspondence can be illustrated as 



b x d y e  gh 
b c d  e f  g h i  

In only three places the correspondence is between 
non-equal characters, implying that there is an 
occurrence of the pattern that ends at the eighth 
location of the text with 3 differences as required. 

We distinguish three types of differences: 
(a) A character of the pattern corresponds to a 
different character of the text. (Item 2 in the Exam- 
pie). In this case we say that there is a mismatch 
between the two characters. 
(b) A character of the pattern corresponds to "no 
character" in the text. (Item 4). 
(c) A character of the text corresponds to "no char- 
acter" in the pattern. (Item 6). 

We consider the following problem. 
The string matching with k-differences problem. (In 
short, the k-differences problem). 
Find all occurrences of the pattem in the text with at 
most k differences of type (a),(b) and (c). 

The case k = 0 in the k-differences problem is 
the extensively studied string matching problem. 
There are a few notable algorithms for the string 
matching problem: linear time serial algorithms - 
[BM-77], [GS-83], [KMP-77], [KR-80] (a random- 
ized algorithm) and [V-85b], parallel algorithms [G- 
84] and [V-85b]. 

Even these parallel algorithms for exact string 
matching had to abandon their preceding linear time 
serial algorithms since these serial algorithms do not 
seem amenable to parallelism. We note that none of 
these serial and parallel algorithms is suitable to 
cope with the k-differences problem. Moreover, the 
remark below explains why even the way by which 
parallelism is approached in these parallel algorithms 
is unlikely to be generalizable for approximate string 
matching. 

Remark. [G-84] and [V-85b] gave parallel algo- 
rithms for exact string matching. We give a short 
description of their approach and explain why we 
had difficulties in applying it for the k-differences 
problem. The main part in the text handling parts of 
each of these algorithms consists of eliminating 
many entries of the text for which occurrences of the 
pattern cannot start. This elimination process 
iterates the following step: it picks a proper pair of 
"close" entries which have not yet been eliminated. 
The pair is proper in the sense that, based on infor- 
mation gathered in the pattem analysis, an 
occurrence may start in at most one of these entries. 
Then, one of these entries is eliminated. This results 
in a small enough number of remaining entries in 

which occurrences may start. (The final part in each 
of these algorithms is a straightforward procedure 
which checks whether there is an occurrence in each 
of these remaining entries.) We see no way for 
applying a similar elimination process for approxi- 
mate string matching problems. The reason being 
that the differences which are allowed between the 
pattern and the text enable coexistence of seemingly 
contradicting occurrences. Indeed, our solution is 

constructive in the sense that it finds all occurrences 
without a preceding stage in which some entries in 
which an occurrence is impossible are eliminated. 

The model of computation used in this paper is 
the random-access-machine (RAM) [AHU-74] for 
the serial algorithm, and the concurrent-read 
exclusive-write (CREW) parallel random access 
machine (PRAM) for the parallel algorithm. A 
PRAM employs p synchronous processors all hav- 
ing access to a common memory. A CREW PRAM 
allows simultaneous access by more than one pro- 
cessor to the same memory location for read but not 
for write purposes. See [V-83] for a survey of 
results concerning PRAMs. 

The k-differences problem is not .only a basic 
theoretical problem. It also has a strong pragmatical 
flavor. In practice, we often need to analyze situa- 
tions where the data is not completely reliable. 
Specifically, consider a situation where the strings 
which are the input for our problem contain errors 
and we still need to find all possible occurrences of 
the pattern in the text as in reality. The errors may 
include a character being replaced by another charac- 
ter, a character being omitted or a superfluous char- 
acter being inserted. Assuming some bound on the 
number of errors would clearly imply our problem. 
We refer the reader to [SK-83], a book which is 
essentially devoted to various instances of the k- 
differences problem. The book gives a comprehen- 
sive review of applications of the problem in a 
variety of fields, including: computer science, molec- 
ular biology and speech recognition. 

We give a first parallel algorithm for the k- 
differences problem. The algorithm has three main 
parts: I. Analysis of the pattern. II. Analysis of the 
text. III. Finding all occurrences of the pattern in the 
text with at most k differences. 
Part I processes the pattern only and results in a few 
tables. These tables contain information on how 
substrings of the pattern relate to other substrings 
of the pattern. In principle, similar constructs were 
used in early string matching algorithms like [KMP- 
77]. Part I needs O (log m) time using m 2 proces- 
sors. 
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Part II processes the text using the tables that were 
built in Part I. It results in a table which character- 
izes the whole text using only substrings of the pat- 
tern as yardsticks. Such constructs seem to be new. 
Part III uses only the tables built in Parts I and II in 
order to derive the desired output. In other words, 
the characterization of the text which was obtained 
in Part II turns out to be so powerful that we do not 
need to take another look at the text. 
The complexity results for the text handling parts 
(Parts II and III) demonstrate that the characteriza- 
tion obtained in Part II is concise: (a) The characteri- 
zation can be computed efficiently - Part II needs 
0 (log m )  time using n ~log m processors to compute 
it. (b) The characterization provides for an efficient 
solution of the k-differences problem - Part III needs 
O (k) time using n processors for finishing the solu- 
tion of the k-differences problem. 

This present paper demonstrates how parallel 
algorithms can enrich the field of serial algorithms. 
We first discovered the parallel algorithm. We then 
noticed that the parallel algorithm yields as a bypro- 
duct a new serial algorithm for the k-differences 
problem which is considerably simpler. The serial 
algorithm runs in O (kn) time for alphabet whose 
size is fixed and requires 0 (n (k +logn))  time for 
general input. In both cases the space requirement is 
O(n). In [LV-85a], [LV-85c] the authors give two 
implementations of a serial algorithm for the k- 
differences problem. The first one [LV-85a] runs in 
O ( m 2 + n k  2) for general input and requires O(m 2) 
space. The second one [LV-85c] runs in 
O ( m  + k2n)  time for alphabet whose size is fixed. 
For general input the algorithm requires 
O ( m l o g m  +k2n)  time. In both cases the space 
requirement is O(m). Our new serial algorithm is 
faster than these previous algorithms when the size 

of the alphabet is fixed or for general input when k 2 
is larger than log n by order of magnitude. 

Using notations of the first paragraph of this 
section we define the k-mismatches problem as fol- 
lows. The input is the same as for the k-differences 
problem. The problem is to find all occurrences of 
the pattern in the text with at most k differences of 
type (a). [LV-85a], [LV-85b] give an algorithm for 
the k-mismatches problem. It runs in 
O ( k ( m l o g m + n ) )  time for general input. Our new 
serial algorithm for the k-differences can handle also 
the k-mismatches problem. So, when the alphabet 
size is fixed or for general input when kmlogm is 
larger than nlogn by order of magnitude then the 
new algorithm is better than [LV-85a], [LV-85b]. 

In the recent survey on future ,directions for 
research in string matching [G-85], the k- 
mismatches problem is discussed. An open question 
which is proposed in the paper is whether the simple 
(dynamic programming) algorithm for the k- 
mismatches problem which takes O (mn)  serial time 
can be improved. A similar O (ran) time algorithm 
solves the k-differences problem. We note that the 
present paper answers affirmatively this question 
also for the k-differences problem which seems 
more general. 

The serial algorithm is given in Section 2. In 
order to make the presentation more intuitive Part III 
of the parallel algorithm is described in Section 3. 
Part II in Section 4 and Part I in Sectian 5. 

2. THE SERIAL ALGORITHM 

In this section we give our new serial algorithm 
for the k-differences problem. As a warm up we 
start with two known serial O (mn)  time algorithms 
for this problem. The first one is a simple dynamic 
programming algorithm. The second algorithm fol- 
lows the same dynamic programming computation in 

slightly different way which will help to understand 
the new algorithm. Subsection 2.3 gives the new 
serial algorithm. 

2.1 The dynamic programming algorithm. 
We use a matrix D[o,...,m;O,...,n], where Di, l is the 
minimum number of differences between 
a 1 . . . . .  a i and any successive substring of the 
text ending at t t. 
It should be obvious that if Din, l _< k then there 
must be an occurrence of the pattern in the text with 
at most k differences that ends at t l . 

The following algorithm computes the matrix 

D [0,...~n ;0,...,n ] 

Initialization for  all l ,  0 _<l_< n , D O,l := 0 
for  all i ,  1 _< i _< m , Di, 0 := i 

for  i:=1 to m do 
for  1:=1 to n do 

Di ,  l:= min (Di_l, l +1, D i , l _  1 ~-1, D i _ l , l _  1 i f  

a i = t l or  D i _ l , l _  1 +1 otherwise) 
(Di, l is the minimum of three numbers. 
These three numbers are obtained from the 
predecessors of Di, t on its column, row and 
diagonal, respectively) 



Complexity. The algorithm clearly runs in O (ran) 
time. 

2.2 An alternative dynamic programming compu- 
tation. 

The description reminds to some extent [U-83]. 
It computes the matrix D ,  of the dynamic program- 
ming algorithm, using its diagonals. A diagonal d 
of the matrix consists of all Di,l 'S such that 
l - i  = d.  
For a number of  differences e and a diagonal d ,  let 

Ld, e denote the largest row i such that Di, l = e and 
Di,l is on diagonal d.  The definition of Ld, e clearly 
implies that e is the minimum number of differences 
between a 1 . . . . .  aL~,~ and any substring of the text 

ending at tLd.~+d. It also implies that aLd,~+l 

tLd.~+d+r For our k-differences problem we need 

only the values of Ld, e ' s ,  where e satisfies e _< k. 
If one of the Ld,e'S equals m, for e _<k, it means 
that there is an occurrence of the pattern in the text 
with at most k differences that ends at ta+ m . 
We compute the Ld, e 's  by induction on e.  Given d 
and e we show how to compute Ld, e using its 
definition. Suppose that for all x < e and all diago- 
nals y Ly,x was already computed. Suppose Ld, e 
should get the value i.  That is, i is the largest row 
such that Di, l = e ,  and Di, l is on the diagonal d.  
The algorithm of the previous subsection reveals that 
Di, l could have been assigned its value e using one 
(or more) of the following data: 
(a) Di_i,i_ 1 (which is the predecessor of D i,l on the 
diagonal d)  is e - 1  and a i ~ b t. Or, Di,l_ 1 (the 
predecessor of Di, 1 on row i which is also on the 
diagonal "below" d)  is e - 1 .  Or, Di_i, l (the prede- 
cessor of Di, l on column l which is also on the 
diagonal "above" d)  is e - 1 .  
(b) Di_l,l_ 1 is also e and a i = b 1. 
This implies that we can start from Di, l and follow 
its predecessors on diagonal d by possibility (b) till 
the first time possibility (a) occurs. 
The following algorithm "inverses" this description 
in order to compute the Ld, e's.  Ld,e_l, Ld_l,e_l,  and 
Ld+l,e_ 1 are used to initialize the variable row,  
which is then increased by one at a time till it hits 
the correct value of Ld, e . 

The following algorithm computes the Ld, e's 

Initialization for  all d ,  0 _<d_< n + l  , Ld,_ 1 := -1 
for  all d ,  - ( k + l )  _< d _< -1 do 

Ld,ld_21 :=--oo 
Ld,ld_l l  := [ d - l [  

2. for  e:=O to k do 
for  d:=-e to n do 

3. row := max [(Ld,e_l+l),(Ld_l,e_l), 

(Ld+l,e-l+l)] 
4. while arow+ 1 = trow+l+ d do 

row :=row +1 
5. Ld, e := row 
6. if L a,e = m then 

print *THERE IS AN OCCURRENCE 
ENDING AT td+ m * 

Remarks. a) For every i , l ,  Di , l -Di_l , l_  1 is either 
zero or one. b) The values of the matrix D on diag- 
onals d ,  such that d > n - m + k + l  and d < - k  are 
useless for the solution of  the k-differences problem. 

Correctness  of the algori thm. 
Claim. L d,e gets its correct value. 
Proof  o f  claim. By induction on e.  
Let e = 0. Consider the computation of Ld, O, (d _> 0). 
Instruction 3 starts by initializing row to 0. Instruc- 
tions 4 and 5 find that a 1 . . . . .  aZd,o is equal to 

td+ 1 . . . . .  td+Ld,o and aLd,o+l ~ td+Ld,o+l. Therefore 
Ld, 0 gets its correct value. 
Let e = l .  Assume that all Ld,l_ 1 are correct. (The 

reader can easily check that L l,l_ 1 and L_t_l , t_ 1 
get correct values in the Initialization - this should 
have actually been part of establishing the base of 
the induction.) Consider the computation of Ld,e, 
(d _>-e). Following Instruction 3 row,  is the largest 
row on diagonal d such that Drow,d+ro w can get 
value e by possibility (a). Then Instruction 4 finds 

Ld,e " 

Complexity. We evaluate Ld,e'S for n + k + l  
diagonals. For each diagonal the variable row can 

get at most m different values. Therefore, the com- 
putation takes O (mn)  time. 

2.3 The  new a lgor i thm 

The new algorithm has two steps: 
Step I. Concatenate the text and the pattern to one 
string ( t l  . . . . .  t n¢al  . . . . .  a m). Compute the 
suffixes tree of this string. 
A methodological remark. Step I of the serial algo- 
rithm presented here combined Parts I and II of the 
parallel algorithm that follows. Step II corresponds 
to Part III. 
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Step II. Find all occurrences of the pattern in the 
text with at most k differences. 

2.3.1 Step I. 
Let us define the suf f ixes  t ree  of a string 

C = c  1 . . . . .  Cl: 
1) It is a tree in which all the edges of the tree are 
directed away from the root. The out degree of each 
node of the tree is either zero (if the node is a leaf) 
or_>2. 
2) Each suffix C i = ci+ 1 . . . . .  c I of the pattern 
defines a l e a f  of the tree. (The tree has l leaves.) 
3) Let C i and C j  be any two suffixes. Suppose 
Ci+l,...,Ci+ f is their longest equal prefix. That is, 
ci+ 1 . . . . .  ci+ f equals to c j+ 1 . . . . .  c j+ f  and 
c i+f  + 1 ¢ c j + f  + 1. Then, ci+ 1 . . . . .  ci+ f defines an 
i n t e rna l  node  (i.e., a node which is not a leaf) of the 
tree. Let D be a successive substring of the string 
C. Let B be a proper prefix of D. Suppose also 
that both D and B define nodes of the tree. Then 
there is an edge  connecting the nodes of D and B if 
there is no successive substring F of the pattern 
such that the following three condition hold at once: 
F is a proper prefix of D, B is a proper prefix of F 
and F defines a node of the tree. 
4) The substrings of two sibling edges (edges 
emanating from the same vertex of the tree) cannot 

have identical (nonempty) prefixes. 

Upon construction of the suffixes tree we 
require that for each node v of the tree a successive 
substring ci+ 1 . . . . .  ci+ f which defines it will be 
stored as follows: S T A R T  (v ):= i and E N D  ( v ) : = f .  

Remark. Up to isomorphism (of graphs) there is 
only one suffixes tree for a given string. 

EXAMPLE. Given the string a b a b $  the suffixes 
tree is: 

S T A R T  (A ) = 2, E N D  (A ) = 2, 
S T A R T  (B ) = 3, E N D  (B ) = 1, 
S T A R T ( C  ) = 5, E N D  ( C )  = O, 
S T A R T  (D ) = O, E N D  (D ) = 4, 
S T A R T ( E )  = 2, E N D  ( E )  = 2, 
S T A R T ( F )  = 1, E N D  ( F )  = 3, 

S T A R T  ( G ) = 3, E N D  ( G ) = 1. 

The suffixes tree 

We compute the suffixes tree of the string 
t 1 . . . . .  t n ¢ a 1 . . . . .  a m using the serial algorithm 
of Weiner [W-73]. 
Complexity. [W-73] computes the suffixes tree in 
O (n) time when the size of the alphabet is fixed. 
This is also the running time of Step I for fixed size 
alphabet. If the alphabet of the pattern contains x 
letters then it is easy to adapt this algorithm of [W- 
73] and Step I to run in time O ( n l o g x ) .  In both 
cases the space requirement of Step I is O (n). (The 
reader is also referred to [CS] in which a lucid 
presentation of the algorithm of [W-73] is given). 

2.3.2 Step II. 

The matrix D and the Ld,  e ' s  are exactly as in 
the alternative dynamic programming algorithm. We 
use this alternative algorithm with a very substantial 
change. Introducing this change in the present step 
of the algorithm and enabling it by proper prepara- 
tion in the previous step is the main contribution of 
this paper in both the serial and parallel algorithms. 
The change is in Instruction 4, where instead of 
increasing variable r o w  by one at a time until it 
reaches Ld ,e ,  we find Ld,  e in O (1) time! 

For a diagonal d, the situation following Instruction 
3 is that we matched (with e differences) a 1 ..... aro w 
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of the pattern with some substring of the text that 
ends at trow+ d. We want to find the largest q for 

which arow+l,...,arow+ q equals trow+d+l,...,trow+d+ q. 
Let  LCArow, d be the lowest common ancestor (in 
short LCA) of the leaves of the suffixes trow+d+ 1 . . . .  

and arow+ 1 . . . .  in the suffixes tree. The desired q is 
simply END(LCArow,d) .  Thus, the problem of 
finding this q is reduced to finding LCArow, d. We 
use the algorithm of [HT-84] for the purpose of 
computing LCA's in the suffixes tree when ever we 
need to find such a q throughout the algorithm. 

Complexity. Using the classification of [HT- 
84] we are interested in the static lowest  common 
ancestors  problem, where the tree is static but 
queries for lowest common ancestors of pair of ver- 
tices are given on line. That is, each query must be 
answered before the next one is known. The suffixes 
tree has O ( n )  nodes. The algorithm of [HT-84] 
proceeds as follows. It preprocesses the suffixes tree 
in O (n) time. Then, given ct_>n LCA queries it 
responds to them in a total of O (ix) time. For each 
of the n+k+l  diagonals, we evaluate k + l  Ld,e'S.  

Therefore, we have O (kn)  LCA Queries. It will take 
O (kn) time to process them. This time dominates 
the running time of Step II. 

Complexity of the serial algorithm. The total 
time for the serial algorithm is, O (kn)  time for 
alphabet whose size is fixed and O ( n ( k  + logn) )  
time for general input. 

3. PARALLEL ALGORITHM - FINDING ALL 
OCCURRENCES OF THE PATTERN IN THE 
TEXT WITH AT MOST k DIFFERENCES 
(PART III). 

This section is devoted to the last part of the 
parallel algorithm. The presentation will clarify 
which information became available as a result of 
Parts I and II. The matrix D and the Ld, e ' s  are 
exactly as in the serial algorithm. Part III of the 
parallel algorithm employs n +k+l processors. Each 
processor is assigned to a diagonal d , - k  _< d _< n. 
The parallel treatment of the diagonals is the source 
of parallelism in Part III of our new algorithm. 

For a diagonal d the situation following Instruc- 
tion 3 is that we matched (with e differences) 
a 1 ..... aro w of the pattern with some substring of the 
text that ends at trow+ d . We want to find the largest 
q for which arow+l,...,arow+ q equals 
trow +d + l , . . . , trow +d +q . 

In the serial algorithm we got this q from the 
suffixes tree. In the parallel algorithm we get q in a 
different way. We use two kinds of information 
from the previous parts of the algorithm: 
a) An index g of the pattern which brings l to a 
maximum in the following match: 

trow+d+ 1 . . . . .  trow+d+ 1 = ag+l  . . . . .  ag+l . (There 
is no larger l (and g) for which such a match 
holds.) This information was computed in Part II 
into an array called B E S T - F I T  (see section 4). 
b) The length f of the longest match between 
aro w + ! , . . .  and ag + 1, . . . .  That is, 

arow+ 1 . . . . .  arow+ f = ag+l . . . . .  ag+f and 
arow +f  + ! ~ a g + f  +l .  T h i s  i n f o r m a t i o n  w a s  computed 
in Part I into array M A X - L E N G T H  (see section 5). 

Observation. The desired q is the minimum between 
f and 1. proof of the observation is straightforward. 

We use the parameter d and the pardo  com- 
mand for the purpose of guiding each processor to 
its instruction. 

Part III of the parallel algorithm 
1. Initialization (as above) 
2. f o r  e:=O to k do 

f o r  d:=-e to n pardo  

3. row := max [(Ld,e_l+l) , (Ld_l ,e_l) ,  

(Ld+l,e- l+l)]  

4. Ld, e := row + min ( f  ,l ) 
5. ifLd, e = m then 

print *THERE IS AN OCCURRENCE 
ENDING AT td+ m * 

Complexity of Part  HI. We employs n+k+l  
processors (one per diagonal). Each processor com- 
putes at most k + 1 Ld, e 's. Obtaining the informa- 
tion from Parts I and II to compute each Ld, e takes 
O (1) time. Therefore, Part 3 takes O (k) time using 
n+k+l  processors. Simulating the algorithm by n 
processors, instead of n+k+l  still gives O (k) time. 

4. PARALLEL ALGORITHM - COMPUTA- 
TION OF ARRAY BEST-FIT (PART II). 

In this section we compute the one dimensional 
array B E S T - F I T [ O  ..... n- l ] .  B E S T - F I T ( i ) = ( g , I )  
means that t i+l , . . . , t i+  l = ag+l  . . . . .  ag+l , and there 
is no larger l, such that there exists g, for which 
such a match holds. In this case we denote 
B E S T - F I T ( i ) . 1  = g and B E S T - F I T ( i ) . 2  = I. The  
computation relies on the following information 
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which was gathered in Part I of the parallel algo- 
rithm (see section 5): 
1. The array LOCATION[1  ..... 13], L O C A T I O N  (i)= f 
means that character i in the alphabet appears in 
location f of the pattern (af  = i ). 

2. The three dimensional array 
P A I R - F I T  [0 ..... m-1  ;0 ..... m-1  ;0 ..... [log m ]]. 
P A I R - F I T ( j , I , i )  = ( ~ , f )  means that aj+l,...,aj+2i 

a l + l , . . . , a l +  f = a k +  1 . . . . .  a k + 2 i + f  and there is no 
larger f ,  such that there exists ~, for which such a 
match holds. 

Step 1. Using array L O C A T I O N  find for each 
character in the text a location in the pattern in 
which the same character appears (if there is one). 
Note that Step 1 results in a characterization of the 
text using characters of the pattern only. Each stage 
of Steps 2 and 3 refines this characterization until 
the ultimate characterization is reached and entered 
into B E S T - F I T .  
Steps 2 and 3 use the scheme of parallel prefix sum 
computation in which a balanced binary tree guides 
the computation. We refer the reader to [V-84] for a 
detailed description. (For an earlier reference to 
using the scheme of parallel prefix sum computation 
see [FL-80].) The balanced binary tree is defined as 
follows: Each pair [i , j] ,  where 0 _< i _< [logn], 
0 _ < j _ < n - 1  and j is divisible by 2 i, defines a 

node of the binary tree whose left son is [ i - l , j ]  and 
right son is [ i - l , j+ 2 i -1 ] .  

Step 2. The computation proceeds in [log m] 
stages. 

The output o f  stage i ,  1 _< i _< [logm]: Essentially, 
it is the same as the input of stage i+1. For each 
j ,  0 _ < j _ < n - 1  which is divisible by 2 i, we are 
given an index f of the pattern such that 
tj+ 1 . . . . .  tj+2i = af  + 1 . . . . .  a f  +2i , if such f exists. 
If such f does not exist we are given an index g of 
the pattern which brings l to a maximum in the fol- 
lowing match: tj+ 1 . . . . .  tj+ l = ag+l . . . . .  ag+t . 

The relation to the binary tree is clear: The "active" 
nodes at stage i are of the form [i , j] .  The  input that 
such a node needs can be obtained from its two 
sons. We further observe (and leave it to the reader 
to fill in the details) that using P A I R - F I T  a single 
processor can perform the operations corresponding 
to each node in O (1) time. We refer to the compu- 
tation at each node as an operation. 

Observe that the computation starts at the leaves and 
moves towards the root of the balanced binary tree 
which guides the computation until it reaches the 
nodes of the tree whose distance from the leaves is 

[log m]. The tree has n leaves and therefore O (n) 
nodes. The [log m ] stages use only the [log m] 
lower levels of the tree. Hence, this description 

implies a total of O (n) operations and O (log m )  
time. 

Step 3 consists also of [log m] stages. Essentially, 
they amount to reversing the [log m]  :;tages of Step 
2. That is, the computation of Step 3 starts at nodes 
of the tree whose distance from the leaves is 
[log m ] and ends at the leaves. 

Step 3. The computation proceeds in [logm] 
stages. We describe stage i, 1 < i < [logm]. Let 
8:= [ l o g m ] - i .  
The input which is relevant to stage i: 
a) For each j ,  0 _< j _< n - l ,  which is', divisible by 
2 ~1, we are given an index g of the pattern which 
brings l to a maximum in the following match: 
tj+ 1 . . . . .  tj+ 1 = ag+l . . . . .  ag+l . (That is, we have 
already found that B E S T - F I T ( j ) =  (g ,l ).) 
b~ For each h, 0 _< h _< n-1  , which is divisible by 
2 but is not divisible by 2 ~+l, we are given an 
index f of the pattern such that th+ 1 . . . . .  th+2S = 

af+ 1 . . . . .  af+2~ , if such f exists. If such f does 
not exist we are given an index g of the pattern 
which brings l to a maximum in the following 
match: th+ 1 . . . . .  th+ l = ag+l  . . . . .  a g + l ;  (observe, 
that in this case (g ,l) is already the d!esired output 
for B E S T - F I T  (h )). 

The result o f  stage i: 
For each h, 0 _< h _< n-1 , which is dJivisible by 28 
but is not divisible by 28+1, we find B E S T - F I T ( h ) .  
That is, we want to find an index g of the pattern 
which brings l to a maximum in the following 
match: th+ 1 . . . .  , th+ l = ag+l  . . . . .  ag+l  T h i s  

computation takes place at node [8,h iI of the tree. 
Finally, we observe that using P A I R - F I T  a single 
processor can carry out the computation required at 
each node, in O (1) time. 

Similar to Step 2, these log m stages require a total 
of O (n) operations and O (log m )  time. 

Complexity of Part  II. We had a total of O(n)  
operations and O( log  m )  time. No difficulty will 

arise in applying the simulation scheme due to [Br- 
74]. Applications of this scheme for similar purpose 
were given in a few parallel algorithms. For 
instance, see [V-85b]. This will result in O (log m ) 
time using n/log m processors. 
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5. P A R A L L E L  A L G O R I T H M  - ANALYSIS OF 
THE PATTERN (PART I). 

5.1 C O M P U T A T I O N  OF ARRAY MAX- 
L E N G T H :  

The input is the pattern a 1 . . . . .  a m . The out- 
put is the two dimensional array 
M A X - L E N G T H  [0,...,m -1 ;0,...,m -1 ]. 
M A X - L E N G T H  ( i ,j )=f  means that 

ai+ 1 . . . . .  a i+ f = a j +  1 . . . . .  a j + f ,  and 
ai+f+ 1 ¢a j+f+ I. In words, consider laying the 
suffix of  the pattern starting at ai+ 1 over the suffix 
of the pattern starting at aj+ 1. M A X - L E N G T H ( i , j )  
is the longest match of prefixes between these two 
suffixes. 

The pair ( i , j )  , O _ < i , j _ < m - 1  is defined to be on 
diagonal d of M A X - L E N G T H  if j - i = d ,  where 
possible values of d are - ( m - l )  <_ d _< m-1 .  It is 
easy to see that: MAX- L ENGTH (i ,j) 
= M A X - L E N G T H ( i + I , j + I ) + I  if ai+l=aj+l and 
MAX-LENGTH  (i , j )  := 0 otherwise. We compute 
M A X - L E N G T H  in two steps: 
a) Initialization: for each pair (i,j) 0 _<i , j  _< m - 1  
M A X - L E N G T H ( i , j )  := 1 if ai+l=aj+l and 
M A X - L E N G T H  (i ,j) := 0 otherwise. 
b) Using a parallel prefix sum computation we com- 
pute the values of each diagonal d of 
M A X - L E N G T H  separately. (We compute the sum 
till the first 0 and not till the bottom of the diago- 
nal.) 
Complexity.  In step a we have O (m 2) operations 
and O(1)  time. In step b we have a total of O(m)  
operations and O (log m) time per diagonal. Apply- 
ing the simulation scheme due to [Br-74] will result 
in O (log m ) time using m Z/log m processors. 

5.2 COMPUTATION OF ARRAY PAIR-FIT:  

The input is the pattern a 1 . . . . .  a m . The out- 
put is the three dimensional array 
PAIR - F I T  [0 ..... m -1 ;0 ..... m -1 ;0 ..... [log m ]]. 
PAIR - F I T  (j ,l ,i ) = (~, , f ) means that 

and aj+l,...,aj+ zi al+l,...,al+f = a~.+l . . . . .  a)~+ Zi +f 
there is no larger f (and ~.) for which such a match 
holds. In words, concatenate to aj+l,...,aj+zl the 
suffix of the pattern starting at at+ :. As a result we 

get the concatenated string aj+l,...,aj+zl al+l,...,a m. 
We are interested in a suffix of the pattern whose 
prefix has a longest match with a prefix of the con- 
catenated string and a z. .... is such a suffix. 

Step 1. Construction of the suffixes tree. 

The suffixes tree as it is described in section 2 has 
m leaves and therefore it has < m internal nodes. 
However, the number of pairs of suffixes is ®(m z) 
which is much larger. Step 1.1 results in a set of at 
most m - 1  pairs which provide all internal nodes (as 
implied by Observation (1) below). Observations (2) 
and (3) enable us to use the same computation to 
find two things: (a) a minimal set of pairs which 
provides all internal nodes, and (b) for each node, its 
father in the tree. 

Step 1.1. Sort the m suffixes of the pattern. (A com- 
parison between two suffixes is performed in O(1) 
time as follows. MAX-LENGTH gives the longest 
match of prefixes between the two suffixes. This 
implies the index of the leftmost character in which 
the two suffixes differ. So, compare the characters 
that have this index in both suffixes.) Any parallel 
sorting algorithm which is based on comparisons can 
be used here. We assume of course, some total order 
on the characters of the pattern: In the computer, 
each character is given by a binary representation. 

We can use the natural order on these binary 
representations. 

Let Bo,B1,...,Bm_ 1 be the sorted vector of suffixes 
which is obtained in Step 1.1. Let f i  be the length 

of longest equal prefix of B i and Bi+l, 
( 0 _ < i  < m - l ) .  Note that, the f i  values can be 
looked up in M A X - L E N G T H .  Step 1.2 below 
computes the suffixes tree from the f i ' s  using the 
following observations. 
Observations. (1) Let v be an internal node of the 
suffixes tree. Suppose v is defined by the longest 
equal prefix of two suffixes B i and Bj. Then, there 
exists y ,  0 _< y < m - l ,  such that the longest equal 
prefix of By and By+l also defines v. (For short, we 
then say that v is the node of f y ) .  Observation 
(1) says that every node of the tree is a node of 
some f i .  This implies that it is sufficient to consider 
the nodes of the f i ' s  only for computing the suffixes 
tree. Observation (2) characterizes the situation 
where the nodes of several f i ' s  are the same. 
(2) Suppose that for some 0<_i < j  < m - l ,  
f i = f  j ,  and for all i < y < j ,  f y  >_ f i. Then the 
nodes of f i  and f j  are the same. This implies 
that we can dispense with f j  in the minimal set of 
f x  values which define internal nodes. We identify 
the internal nodes of the suffixes tree with the f x  
values that have not been dispensed with. 
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(3) Let 0 _< h < i < j < m-1 and suppose f i  > fh , 
f i > f j and for all h < y < j ,  f i -< f y. Then, the 
node of the maximal among fh and f j  is the father 
of the node of f i .  (Note that if f h= f j ,  then, by 
observation (2), their nodes are the same). 

Step 1 . 2 .  Consider the interval of integers 
[0,1 ..... m-2]. We define the singleton subintervals 
[0],[1],...,[m-2] to be the subintervals of level 0. 
The ['m/2] size-two subintervals [0,1],[2,3],[4,5] .... 
are said to be the subintervals of level 1. The 

I "  - I  

[m/2i[ size-2 i subintervals [0,..,2i-1 ] 

[2 i ..... 2.2i-1] .... are said to be the subintervals of 
level i. All these O (m) subintervals are called the 
power-two subintervals of [0 ..... m-2]. 
1.2.1. For each power-two subinterval find the 
minimum f i  over the subinterval. We implement this 
computation using a balanced binary tree in the 
obvious way. This takes O(log m) time using 
m/log m processors. 
1.2.2. For each 0 _< i < m - l ,  find the largest h < i 
such that fh  -<fi (if such h exists). Denote this h 
by h (i). We implement this computation by assign- 
ing a processor to each such i. The processor finds 
h (i) by a kind of binary search on the power-two 
subintervals in time O (log m). 
If f i  >fh(i) or if h(i) does not exist, we conclude 
that f i  belongs to the minimal set of f .  and identify 
f i  with a node of the suffixes tree. 
If fi=fh(i), we conclude that f i  does not belong to 
this minimal set. We say that f i  is a non-node. 
We compute the node fa(i) which is the node which 
is defined by non-node f i  as follows. 
1.2.3. For each non-node f i  we assign a processor 
which performs a binary search on the power-two 
subintervals to find the smallest a<i such that 
f i= f et and for all o~ < y < i, f y _> f i. 
1.2.4. For each 0 _< i < m - l ,  find the smallest j > i 
such that f j  <fi (if such j exists). Denote this j by 
j(i).  We implement this computation in the same 
way as in 1.2.2 above. So, using m-1 processors it 
takes O (log m) time. 
1.2.5. For each node of the tree, find its father. 
For each internal node f i ,  take the maximum value 
between fh(i) and fj(i). Let I~(i) be h(i) if fh(i ) 
provides the maximum and let it be j (i) otherwise. 
By Observation (3), the node of fl](i) is the father of 
node f i  in the suffixes tree. Observe that f[3(i) may 
be a non-node. However, in 1.2.2 above we found 
the node fa(i) which is the node defined by f i .  So, 
using a processor per node we can find its father in 

O (1) time. 
Each suffix of the pattem is a leaf of the tree. Con- 
sider suffix B i in the output of 1.1. Using the nota- 
tions of 1.2.5 for internal nodes, h (i) is fi-1 and 
j (i) is f i .  Finding the father of B i is :now similar to 
finding the father of an internal node. 
Below we use the Euler tour techniq~ae of [TV-85] 
and [V-85a] which computes various', functions on 
tree. The description below has been taken from [V- 
85a]. 
Step 2. Find an Euler path in the suffixes tree that 
starts and ends at the root (say r) and compute for 
each node in the tree the length of the (shortest) path 
leading from the node to the root, to be called the 
level of the node. The input to Step 2 is T the 
suffixes-tree which was computed in Step 1. 
2.1 Finding an Euler path. 

2.1.1 Replace each edge (u,v) of T by two 
anti-parallel directed edges u ~ v and v ~ u to 
form a digraph called T. 
2.1.2 For each node v of T we do the follow- 
ing. (Let degree(v)=d in T and let the d adja- 
cent edges of v in T be (V,Ul) ..... (V,Ud)') 
D(u i ----~v):=v --~Ui+lmod d for 1 _<i _<d. Now 
D has an Euler cycle. 
The 'correction', D (u d ---~ r ) :='end of  list' 
(where d = degree(r)) gives an Euler path that 
starts and ends at r .  

2.2 Finding for each node its level in T. 

2.2.1 The distance of each edge of T from the 
end of the path is computed into a vector R 
using a 'doubling' procedure. 

Initialize: R ( e ) : = - I  for all edges e in T 
which are directed towards the root and 
R (e):= 1 for all the edge e in T which are 
directed away from the root. Also 
R ('end o f  list' ) := 0. 
Apply [log2(m-1)] iterations in parallel 
( (m-l )  is the length of the Euler path): 
R(e):=R(e)+R(D(e),  D(e):=D(D(e)). 

2.2.2 The doubling procedure assigns to R (e), 
of each edge e (u-->v) which is directed 
towards the root in T, the level of u in T. 

Step 3. We show how to find for each suffix of the 
pattern Aj and each integer i, 0 _< i .'~ ['log m l, all 
values of PAIR-FIT(j,I,i). So, below, j and i are 
fixed. 
Assign a processor to each suffix Ag Using 
MAX-LENGTH the processor checks whether a 
prefix of length 2 i of Aj is a prefix of Ag. If yes, 
"mark" (the leaf of) suffix Ag+2i. As a result some 
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of the leaves of the tree are marked. Recall that our 
goal is to compute into P A I R - F I T  (j ,I ,i ) (for each 
1,0 _<l < m - l )  the values )~ and f such that 

aj+l,...,aj+2i al+l,...,al+ f = a~,+l . . . .  ,az,+2;+f and 
there is no larger f (and 9~) for which such a match 
holds. If l is a marked leaf then we simply select 
)~ := l - 2  i and f := m - l .  Otherwise, to maximize f 
we have to find a marked leaf such that the level of  
LCA(l,"the marked leaf') is as large as possible. 

Observations. Suppose leaf l is not marked. Con- 
sider the Euler path on T- and the location of leaf l 
in this path. (The incoming edge of I is followed by 
the outgoing edge of I. We say that the location of 
leaf l is "between" these two edges.) Let ~ be the 
last marked leaf which precedes 1 in the Euler path 
and let [3 be the first marked leaf which succeeds l 
in the Euler path. Then, 
(1) either ~ or 13 (or both) can provide the desired E. 
(2) the portion of the Euler path leading from c~ to l 
visits LCA (~,l) ; moreover, the node LCA (ct,l) pro- 
vides the minimal level in this path. Similarly, the 
portion of the Euler path leading from l to 13 visits 
LCA (13,l) ; moreover, the node LCA (~,l) provides 
the minimal level in this path. 

Observation (2) explains the rest of the computation 
of Step 3 below: 

3.1 Using a parallel prefix sum computation find for 
each edge in the Euler path the node of minimal 
level which appears between the edge and its 
preceding marked leaf in the Euler path. This is 
done as follow: 

a) Divide the Euler path into subpath by throw- 
ing away all the edges from or to marked 
leaves. 
b) Handle each subpath separately. Let each 
edge e (u ~ v) be a leaf in a balanced binary 
tree. Its initial value will be the level of u (com- 
puted in Step 2.2). 
c) Use the parallel prefix sum computation 
(with one change - replace the operation sum by 
the operation minimum) to finish the computa- 
tion. 

3.2 Using a parallel prefix sum computation find for 
each edge in the Euler path the node of minimal 
level which appears between the edge and its 
succeeding marked leaf in the Euler path (similar to 
3.1). 

3.3 Determine for each l whether it preceding 
marked leaf or succeeding marked leaf will be 
selected for ~. 

3.4 Using a computation which is similar to 3.1 and 
3.2 above, find for each edge in the tree its preced- 

ing marked leaf and its succeeding marked leaf. 
(Each edge needs actually one of these data, as 
implied by 3.3. However, the computation is much 
easier if we compute both for all edges.) 

3.5 Using 3.3 and 3.4 determine ~ for each non 
marked leaf. If v is the node of minimal level 
between ~ and l then f := END (v). 

Complexity. Step 3 takes O (log m) time using 
m ~log m processors for each of the m values of j 
and [log m ] + l  values of i. Therefore, we get 
O(log m) time using m 2 processors. It is easy to 
achieve the same time-processor bound for Steps 1 
and 2. 

5.3 COMPUTATION OF ARRAY LOCATION: 

The input is the pattern a 1 . . . . .  a m. (We 
assume that the alphabet of the characters that can 
be used in the pattern is 1 ..... ~, for some 13.) The 
output is an one dimensional array LOCA- 
TION [1 ..... 13]. LOCATION ( i )=f  means that charac- 
ter i in the alphabet appears in location f of the 
pattern (af = i ). 
The computation of the array LOCATION is 
straightforward. 
Complexity. O(log m) time using m processors. 
The time can be reduced to O(1) if simultaneous 
writes by several processors into the same memory 
location are allowed. 

Complexity of Part  I. O(logm) time using m 2 
processors. 
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