
ibm.com/redbooks

Intentia Movex Java on the
IBM iSeries Server
An Implementation Guide

Yessong Johng
Per Danielsson

Per Ehnsiö
Mats Hermansson

Mika Jolanki
Scott Moore

Lars Strander
Lars Wettergren

Overview of Movex Java on the
iSeries server

Movex Java on iSeries
installation and configuration

Operational tips and
techniques

Front cover

Intentia Movex Java on the IBM ~ iSeries
Server: An Implementation Guide

November 2002

International Technical Support Organization

SG24-6545-00

© Copyright International Business Machines Corporation 2002. All rights reserved.
Note to U.S Government Users – Documentation related to restricted rights – Use, duplication or disclosure is subject to
restrictions set forth in GSA ADP Schedule Contract with IBM Corp.

First Edition (November 2002)

This edition applies to OS/400 V5R1 (product number 5722-SS1) and to Intentia Movex Java
Version 12.4.

Take Note! Before using this information and the product it supports, be sure to read the
general information in “Notices” on page ix.

Contents

Notices . ix
Trademarks . x

Preface . xi
The team that wrote this redbook. xii
Become a published author . xii
Comments welcome. xiii

Chapter 1. Introduction to Intentia and Movex Java 1
1.1 Intentia’s history . 2
1.2 The Intentia solution . 2
1.3 Introduction to Movex Java . 2
1.4 Why Movex . 3
1.5 Conclusion. 4

Chapter 2. Movex Java overview . 5
2.1 Movex: A multi-dimensional e-collaboration application suite 6
2.2 Movex component repository . 7
2.3 Enterprise Process Manager. 9
2.4 Implex . 10
2.5 Logical deployment dimensions . 10
2.6 Deployment options for Movex Java on iSeries . 11

2.6.1 Server-centric implementation . 12
2.6.2 Client/server implementations. 12

Chapter 3. Application architecture. 13
3.1 Configurability . 14
3.2 Object orientation . 14
3.3 Portability. 15
3.4 Scalability . 15
3.5 Layered architecture . 16
3.6 N-tier architecture . 16

3.6.1 Presentation tier . 17
3.6.2 Application tier. 17
3.6.3 Movex database (MDB) server tier and database tier. 18

3.7 Object model . 18
3.7.1 Foundation classes . 19
3.7.2 Base Component classes . 20
3.7.3 Business Components classes . 20
© Copyright IBM Corp. 2002. All rights reserved. iii

3.8 Technical innovations in the Movex Java architecture 21
3.8.1 Super Dispatcher technology . 21
3.8.2 High performance JDBC driver . 21
3.8.3 Intelligent Object Reuse . 21
3.8.4 Database Connection Optimizer . 22

3.9 Movex Java package structure . 22
3.9.1 File system structure overview . 23
3.9.2 Movex Java implementation scenarios . 25

Chapter 4. Database architecture . 27
4.1 Database representation . 28

4.1.1 Terminology . 28
4.1.2 Accessing the database and IFS . 29

4.2 Movex database structure . 31
4.2.1 Physical files in Movex . 31
4.2.2 Logical files in Movex . 32

4.3 Journaling on the Movex Java database. 32
4.4 Unicode . 33
4.5 Database access methods used by Movex Java application 34

4.5.1 Record level access . 34
4.5.2 SQL . 35
4.5.3 Database related settings in the Movex.properties 35

Chapter 5. Java overview and iSeries implementation 37
5.1 Java platform. 38

5.1.1 Java virtual machine . 38
5.1.2 Java APIs . 41

5.2 Java on the iSeries server . 42
5.2.1 iSeries Java virtual machine . 42
5.2.2 Java transformer . 43
5.2.3 Java garbage collector . 45
5.2.4 Java APIs and iSeries . 46

5.3 iSeries-specific implementation. 46
5.3.1 OS/400 Java commands. 47

Chapter 6. Installing Movex Java . 53
6.1 Platform . 54

6.1.1 Hardware. 54
6.1.2 Software . 54

6.2 Installation prerequisites . 55
6.3 Installation concepts . 56

6.3.1 iSeries distribution. 56
6.3.2 Pre-creation of Java programs . 57

6.4 Installation workflow . 57
iv Intentia Movex Java on the iSeries Server: An Implementation Guide

6.4.1 Base installation . 58
6.4.2 Upgrade installation . 59
6.4.3 Installing a service pack . 61

6.5 Movex Java application users and user groups . 61
6.6 OS/400 system values and other settings for Movex Java 62

6.6.1 Work with Relation Database Directory Entries (WRKRDBDIRE) . . 63
6.6.2 Coded character set identifier (WRKSYSVAL QCCSID) 65
6.6.3 Job message queue full action (WRKSYSVAL QJOBMSGQFL) . . . 67
6.6.4 Performance adjustment (WRKSYSVAL QPFRADJ) 69
6.6.5 Changing printer file definition for QPRINT (CHGPRTF QPRINT) . . 71
6.6.6 Changing prestart job entry for QSQSRVR (CHGPJE QSQSRVR) . 73
6.6.7 Changing shared storage for default Movex pool 74
6.6.8 Configuring TPC/IP (GO CFGTCP) . 75
6.6.9 Installation utility library (MVXCJVA). 77
6.6.10 Installing an application . 78
6.6.11 Installing a database . 79
6.6.12 Installing additional languages . 80
6.6.13 Installing Movex Explorer . 80
6.6.14 Installing Movex OUT . 81
6.6.15 Setting up Movex.properties . 81
6.6.16 Setting up the start program . 81

6.7 Service packs . 83

Chapter 7. Work management . 85
7.1 OS/400 work management . 86

7.1.1 OS/400 memory management . 86
7.1.2 OS/400 shared pools . 86
7.1.3 IBM-supplied subsystems . 88
7.1.4 Movex Java-supplied subsystems . 90
7.1.5 Movex Java runtime environment . 91
7.1.6 Java run priorities . 92

7.2 JVM setup . 93
7.2.1 Single JVM setup . 94
7.2.2 Multiple JVM setup . 94
7.2.3 Starting multiple JVMs . 96
7.2.4 Starting multiple environments . 99
7.2.5 Initial setting of heap sizes . 100
7.2.6 Garbage collection monitoring and settings 102
7.2.7 Memory pool settings . 102

7.3 Server View . 103
7.3.1 Starting Server View . 104
7.3.2 Movex Java view. 105
 Contents v

Chapter 8. Movex OUT and printing . 107
8.1 Movex OUT components. 108
8.2 Movex Out technology. 109

8.2.1 User’s perspective. 110
8.2.2 Customer’s view . 110
8.2.3 Language handling . 110
8.2.4 Modification directories . 110
8.2.5 Agent control . 110

8.3 Movex Java printing features . 111
8.4 Hardware requirements for Windows . 111
8.5 Setup . 112

8.5.1 Setting up Movex Output Server . 112
8.6 The mvxarg.arg argument file . 112
8.7 The Queue Alias file (quealias) . 114
8.8 Starting the Movex Output server . 114

Chapter 9. Security . 117
9.1 Movex security model . 118
9.2 User identification and authentication . 119

9.2.1 Password validation . 119
9.2.2 Movex.properties. 120
9.2.3 Starting Movex . 120
9.2.4 Movex user definition . 121

9.3 Communication security . 123
9.3.1 Port allocation schema . 123
9.3.2 Firewalls . 124

9.4 Access control . 126
9.4.1 Access control setup considerations. 126
9.4.2 OS/400 platform overview. 127
9.4.3 Scenario description . 127
9.4.4 Users and groups . 129
9.4.5 Authority settings: Application . 142
9.4.6 Authority settings: Database . 144

9.5 Movex authority system. 146
9.5.1 Movex user definition . 148
9.5.2 Movex general function authority . 154

Chapter 10. Backup and recovery . 159
10.1 iSeries backup and recovery overview . 160
10.2 Backup types. 160

10.2.1 Cold backup . 160
10.2.2 Save while active . 161

10.3 Backup schedule . 162
vi Intentia Movex Java on the iSeries Server: An Implementation Guide

10.4 Recovery of objects . 164
10.5 Recovery of journaled objects using journaled changes 164
10.6 Recovery after abnormal system end . 164
10.7 Procedure for abnormal system end recovery 165
10.8 Recovering when a journal is damaged . 166
10.9 Recovering when a journal receiver is damaged 168
10.10 High availability solutions . 169
10.11 iSeries high availability solution providers. 169

Chapter 11. Movex Java Utilities . 171
11.1 Directory Compare . 172
11.2 Foundation Check . 173
11.3 Copy Data . 174
11.4 Log View . 175
11.5 Update Data . 176

Chapter 12. System sizing . 177
12.1 Defining workload . 178
12.2 Definition of users . 178
12.3 Calculating activity from a number of authorized users. 179
12.4 Calculating transaction volumes . 179
12.5 Sizing methodology . 180
12.6 The Quick Sizer . 180

Glossary . 183

Related publications . 191
IBM Redbooks . 191

Other resources . 191
Referenced Web sites . 191
How to get IBM Redbooks . 192

IBM Redbooks collections. 192

Index . 193
 Contents vii

viii Intentia Movex Java on the iSeries Server: An Implementation Guide

Notices

This information was developed for products and services offered in the U.S.A.

IBM may not offer the products, services, or features discussed in this document in other countries. Consult
your local IBM representative for information on the products and services currently available in your area.
Any reference to an IBM product, program, or service is not intended to state or imply that only that IBM
product, program, or service may be used. Any functionally equivalent product, program, or service that
does not infringe any IBM intellectual property right may be used instead. However, it is the user's
responsibility to evaluate and verify the operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter described in this document.
The furnishing of this document does not give you any license to these patents. You can send license
inquiries, in writing, to:
IBM Director of Licensing, IBM Corporation, North Castle Drive Armonk, NY 10504-1785 U.S.A.

The following paragraph does not apply to the United Kingdom or any other country where such
provisions are inconsistent with local law: INTERNATIONAL BUSINESS MACHINES CORPORATION
PROVIDES THIS PUBLICATION "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR
IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF NON-INFRINGEMENT,
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer
of express or implied warranties in certain transactions, therefore, this statement may not apply to you.

This information could include technical inaccuracies or typographical errors. Changes are periodically made
to the information herein; these changes will be incorporated in new editions of the publication. IBM may
make improvements and/or changes in the product(s) and/or the program(s) described in this publication at
any time without notice.

Any references in this information to non-IBM Web sites are provided for convenience only and do not in any
manner serve as an endorsement of those Web sites. The materials at those Web sites are not part of the
materials for this IBM product and use of those Web sites is at your own risk.

IBM may use or distribute any of the information you supply in any way it believes appropriate without
incurring any obligation to you.

Information concerning non-IBM products was obtained from the suppliers of those products, their published
announcements or other publicly available sources. IBM has not tested those products and cannot confirm
the accuracy of performance, compatibility or any other claims related to non-IBM products. Questions on
the capabilities of non-IBM products should be addressed to the suppliers of those products.

This information contains examples of data and reports used in daily business operations. To illustrate them
as completely as possible, the examples include the names of individuals, companies, brands, and products.
All of these names are fictitious and any similarity to the names and addresses used by an actual business
enterprise is entirely coincidental.

COPYRIGHT LICENSE:
This information contains sample application programs in source language, which illustrates programming
techniques on various operating platforms. You may copy, modify, and distribute these sample programs in
any form without payment to IBM, for the purposes of developing, using, marketing or distributing application
programs conforming to the application programming interface for the operating platform for which the
sample programs are written. These examples have not been thoroughly tested under all conditions. IBM,
therefore, cannot guarantee or imply reliability, serviceability, or function of these programs. You may copy,
modify, and distribute these sample programs in any form without payment to IBM for the purposes of
developing, using, marketing, or distributing application programs conforming to IBM's application
programming interfaces.
© Copyright IBM Corp. 2002. All rights reserved. ix

Trademarks
The following terms are trademarks of the International Business Machines Corporation in the United States,
other countries, or both:

IBM eServer™
Redbooks (logo)™
AS/400®
DB2®
IBM®
IPDS™

iSeries™
Operating System/400®
OS/2®
OS/400®
Perform™
PowerPC®

Redbooks™
SP™
SP1®
WebSphere®
xSeries™

The following terms are trademarks of International Business Machines Corporation and Lotus Development
Corporation in the United States, other countries, or both:

Lotus®
Word Pro®

Lotus Notes®
Notes®

The following terms are trademarks of other companies:

ActionMedia, LANDesk, MMX, Pentium and ProShare are trademarks of Intel Corporation in the United
States, other countries, or both.

Microsoft, Windows, Windows NT, and the Windows logo are trademarks of Microsoft Corporation in the
United States, other countries, or both.

Java and all Java-based trademarks and logos are trademarks or registered trademarks of Sun
Microsystems, Inc. in the United States, other countries, or both.

C-bus is a trademark of Corollary, Inc. in the United States, other countries, or both.

UNIX is a registered trademark of The Open Group in the United States and other countries.

SET, SET Secure Electronic Transaction, and the SET Logo are trademarks owned by SET Secure
Electronic Transaction LLC.

Other company, product, and service names may be trademarks or service marks of others.
x Intentia Movex Java on the iSeries Server: An Implementation Guide

Preface

The Intentia Movex Java solution improves Intentia customers’ business
processes. It offers of an optimum set of knowledge, tools, methods, and
functionality for a successful configuration and implementation of Movex. This
IBM Redbook provides a detailed guide that explains the specific tasks
associated with implementing Movex Java on the IBM ~ iSeries server. It
is based on a collection of knowledge gathered by the architects and developers
behind Movex Java, and by the Intentia professionals who have implemented
Movex Java at customer sites.

This redbook is designed to assist Movex Java customers, Movex Java
consultants, business partners, and IBM technical and service representatives. It
targets these professionals who are directly involved with implementing a total
business solution consisting of the Movex Java solution, the iSeries, the DB2 for
iSeries database, and supplemental solution products.

This redbook explores the following topics:

� An introduction to Intentia and Movex Java
� An overview of Movex Java
� Application architecture
� Database architecture
� Java overview and iSeries implementation
� Installation
� Work management
� Printing
� Security
� Backup and recovery
� Movex Java Utilities
� System sizing

The material in this redbook applies to the current version of Movex Java and is
subject to change.

You can find the most current Movex Java information on the Intentia Wire. This
is an Intentia intranet site that is available only to Intentia representatives and
requires a user ID and password. If you do not have access to the Intentia Wire,
contact your local Intentia office. You can locate the Intentia Wire at:

http://www.intentia.com/Intentia/wire2000.nsf/
© Copyright IBM Corp. 2002. All rights reserved. xi

http://www.intentia.com/Intentia/wire2000.nsf/

The team that wrote this redbook
This redbook was produced by a team of specialists from around the world
working at the International Technical Support Organization, Rochester Center.

Yessong Johng is a Senior iSeries Specialist at the International Technical
Support Organization, Rochester Center.

Per Danielsson is a Technical Domain Expert at Intentia R&D, Sweden.

Per Ehnsiö is a Chief Technology Officer at Intentia R&D, Sweden.

Mats Hermansson is a Documentation Team Manager at Intentia R&D, Sweden.

Mika Jolanki is an IT Specialist at IBM Sweden and a Project Manager for
Movex Java on iSeries technical optimization.

Scott Moore is an IT Specialist at IBM Rochester and an OS/400 and Java
expert.

Lars Strandner is a Technical Domain Expert at Intentia R&D, Sweden.

Lars Wettergren is the Director of the Intentia IBM Competence Center at
Intentia R&D, Sweden.

Become a published author
Join us for a two- to six-week residency program! Help write an IBM Redbook
dealing with specific products or solutions, while getting hands-on experience
with leading-edge technologies. You'll team with IBM technical professionals,
Business Partners and/or customers.

Your efforts will help increase product acceptance and customer satisfaction. As
a bonus, you'll develop a network of contacts in IBM development labs, and
increase your productivity and marketability.

Find out more about the residency program, browse the residency index, and
apply online at:

ibm.com/redbooks/residencies.html
xii Intentia Movex Java on the iSeries Server: An Implementation Guide

http://www.redbooks.ibm.com/residencies.html
http://www.redbooks.ibm.com/residencies.html

Comments welcome
Your comments are important to us!

We want our Redbooks to be as helpful as possible. Send us your comments
about this or other Redbooks in one of the following ways:

� Use the online Contact us review redbook form found at:

ibm.com/redbooks

� Send your comments in an Internet note to:

redbook@us.ibm.com

� Mail your comments to:

IBM Corporation, International Technical Support Organization
Dept. JLU Building 107-2
3605 Highway 52N
Rochester, Minnesota 55901-7829
 Preface xiii

http://www.redbooks.ibm.com/
http://www.ibm.com/redbooks/
http://www.ibm.com/redbooks/
http://www.redbooks.ibm.com/contacts.html

xiv Intentia Movex Java on the iSeries Server: An Implementation Guide

Chapter 1. Introduction to Intentia and
Movex Java

Intentia is one of the world’s leading suppliers of enterprise applications. Its
business concept is to develop and make business processes more effective by
combining software and know how. Enterprise Application Movex is one of the
most advanced systems on the market. It is available in a number of industry
applications to meet the unique requirements of different industry sectors. Movex
is another cornerstone of the Intentia solution that provides a unique set of tools,
methods, and functionality for configuring and implementing enterprise
applications.

This chapter introduces you to Intentia and presents an overview of its enterprise
solution, Movex. It also shows you the value and benefits that Movex can bring to
your organization.

1

© Copyright IBM Corp. 2002. All rights reserved. 1

1.1 Intentia’s history
Since 1983, Intentia grew from a newly founded company in Sweden to one of
the world leaders in enterprise management systems. Intentia’s success is
based on its ability to link software expertise and industry knowledge with an
understanding of business processes.

Movex was originally designed to work locally and globally. It allowed people in
different countries and regions to access the same system at the same time, in
their own language.

Intentia customers around the world have declared Movex to be the best
enterprise management system on the market. These loyal customers will help
Intentia to continue to drive the development of Movex forward.

1.2 The Intentia solution
Implementing an enterprise resource planning (ERP) system is not simply a
matter of loading software on the computer, getting it to run smoothly, and
training personnel to use it. Intentia wants its customers to truly justify their
investment by making real improvements in their business and taking full
advantage of the potential of new applications.

Intentia helps its customers carry out the specific actions to make any
implementation project a success. The configurations and implementation
methods offered by the Intentia solution help Intentia customers avoid simply
automating inefficient old processes and making only limited improvements.

1.3 Introduction to Movex Java
Intentia’s solution improves their customers’ business processes. It consists of:

� Movex component repository (the software)
� Enterprise Process Manager (EPM): Process mapping and configuration tool
� Implex: The implementation method
� Professional services

Together these parts form an optimum set of knowledge, tools, methods, and
functionality for a successful configuration and implementation of Movex.

All parts are fully integrated into a single system. This results in higher product
and implementation quality and greater effectiveness when upgrading your
system with new or enhanced functionality.
2 Intentia Movex Java on the iSeries Server: An Implementation Guide

Movex component repository: Selecting the right parts
The Movex component repository holds more than 1,000 business components,
including generic components and industry-specific components that are used to
support the needs of different industries. By selecting and configuring the
appropriate components, the solution fully supports your unique business
processes.

Enterprise Process Manager: Using the best tools
The Enterprise Process Manager manages process design and application
configuration. The EPM consists of the Enterprise Process Designer and the
Component Configurator. The Enterprise Process Designer, a fully integrated
tool for mapping business processes, is used to design new processes for a
customer or redesign their existing processes. The Component Configurator is
an advanced tool that is used to set up a tailored execution environment of
Movex.

Implex: Putting it all in place
Implex is what Intentia calls the method and tools it developed for implementing
Movex. Implex can be divided into five phases. Each phase has predefined tasks
to be carried out and goals to be achieved. Each phase ends with a quality
assessment and milestone that must be approved before implementation can
advance to the next phase.

Implex is based on experience from over 4,000 implementation projects
worldwide. Once implementation is completed, you receive more than a system
that is up and running. You gain a solid foundation for quality certification at your
company.

Professional services: The people behind the product
Intentia's professional services offering consists of project management and
business and technology consulting. Intentia's business consultants are experts
in such areas as logistics, production, finance, and human resources.

1.4 Why Movex
Today, Intentia holds a competitive position. This position was attained by
steadfastly offering an open-ended product and powerful configuration tools
through a global organization that uses uniform methods for implementation. The
Intentia solution further strengthens Intentia’s position and affirms its role in the
industry as a supplier of fully integrated ERP systems.
 Chapter 1. Introduction to Intentia and Movex Java 3

There are many advantages of providing such an integrated system. For
example, the quality is higher, and the system can be upgraded with new or
enhanced functionality more efficiently and with more precision.

The introduction of an ERP system is a critical step for a company. Taking the
right steps from the start and obtaining a measurable gain in business
performance requires a tried and proven implementation method and efficient
information processing. It is just as vital to have rapid and reliable deployment to
minimize delays in operations and to pay back customer investments as soon as
possible.

1.5 Conclusion
Intentia’s vision is clear: To be the most respected company in helping customers
improve their business processes. Intentia’s objective is to make the complicated
simple.

Intentia continues to develop Movex to be the best enterprise management
system and Implex to be the best and most cost-effective implementation
methodology. Intentia will continue to exploit its unique combination of know-how
in application and business skills.
4 Intentia Movex Java on the iSeries Server: An Implementation Guide

Chapter 2. Movex Java overview

Movex offers the key to success with its e-collaboration applications, which are all
enabled and supported by e-business. These applications target:

� Customer relationship management (CRM)
� Enterprise resource planning (ERP)
� Partner relationship management (PRM)
� Supply chain planning and execution (SCP&E)
� Business performance measurement (BPM)

Intentia is also a leading supplier of collaborative trading portals and corporate
portals.

The Movex component repository contains more than 2,000 business
components. It includes generic components as well as industry-specific
components used to support the needs of different industries. By selecting and
configuring the appropriate components, the solution fully supports your unique
business processes.

This chapter describes the internal arrangement and structure of Movex. The
structure described here represents the structure in which Movex is delivered to
the Intentia partner network.

2

© Copyright IBM Corp. 2002. All rights reserved. 5

2.1 Movex: A multi-dimensional e-collaboration
application suite

This section outlines the Movex multi-dimensional architecture. Movex can be
scrutinized from various angles as shown in Figure 2-1.

Figure 2-1 Movex multiple view support

Movex can be viewed from the following perspectives:

� Functional

The conventional presentation of Movex describes all of the functional
capabilities in Movex. For a more detailed description, see the “Movex
Application Summary”, which is available on the Intentia Wire.
6 Intentia Movex Java on the iSeries Server: An Implementation Guide

� Component repository

The component repository is the Movex internal organization and
architecture. It serves as the basis for mapping Movex application
components to business processes in the Enterprise Process Manager
(EPM). The base iSeries menus are aligned with the component repository.
For the sake of consistency and clarity, this means that every program and file
only occur once and are connected to a component group.

� Processes

This refers to business processes that are mapped out in the EPM and can
actually be seen as the conclusion of an implementation project. The generic
process model is used as an outline for presenting Movex. It also serves as a
starting point for various marketing oriented publications.

� User

This perspective refers to the customized Movex menus.

2.2 Movex component repository
To make it easy to navigate in the Movex component repository, components are
logically organized into three categories:

� Application

An application represents a major functional management area in an
enterprise. A set of components groups is connected for each application.

� Component group

A component group consists of a group of components. It is used to refine
navigation within Movex. A component group generally defines and describes
a set of components.

� Application component

An application component represents the basic building block for
configuration of a user-specific application. The behavior of a component is
exposed by its methods. Components can be configured to meet specific
customer requirements, such as operations to be carried out, choice of
workflow, and data fields to expose. An application component consists of:

– Business component
– Documentation component
– Education component
 Chapter 2. Movex Java overview 7

A Business component conforms to the notion of a business object, which is a
representation of a real-world artifact, for example, customer, item,
warehouse, budget, order, etc. Business components, in turn, often use
finer-grained components to contribute to their responsibility.

Table 2-1 shows the applications and component groups in the component
repository structure.

Table 2-1 Applications, component groups in component repository structure

Application Application

Component Group Component Group

SMS Sales and Marketing SLS Sales & Distribution

Contact Management
Opportunity Management
Marketing Management

COP
PCR
COS
COB
CDS
COQ
SST
TPL

Customer Order Processing
Product Configurator
Sales Prices & Discounts
Bonus & Commissions
Customer Delivery Schedules
Sales Quotations
Sales Statistics & Performance
Transportation Planning

PJM Project Management SRV Service and Rental

PJQ
PJP

Project Quotations
Project Processing

SEP
SAG
STR

Service Order Processing
Service Agreement
Rental Agreement

MAI Maintenance WHS Warehouse Management

MCO
PRM
WOP
MCM
ICC
DIM

Maintenance Order Processing
Preventive Maintenance
Work Order Processing
Maintenance Performance & Costing
Equipment & Component Structure
Diagnostic Management

WAC
WPI
WIO
WLA
WIS

Warehouse Activity Control
Physical Inventory
Internal Orders
Lot & Allocation Control
Inventory Statistics

PDM Product Management RPL Resource Planning

PDA
PCO
ECM
SDS
TDO

Product Data
Product Costing
Engineering Change Management
Material Safety Data Sheet
Technical Document Management

FOR
MAP
MPS
RCP
CRP
DRP

Forecasting
Material Planning
Master Production Scheduling
Rough-Cut Capacity Planning
Capacity Requirements Planning
Distribution Requirements Planning

MAN Manufacturing APS Advanced Planning and Scheduling
8 Intentia Movex Java on the iSeries Server: An Implementation Guide

2.3 Enterprise Process Manager
EPM is a fully integrated process-mapping tool, which manages process design
and application configuration. The tool is used for designing new processes or
redesigning current ones. It is also possible to map responsibilities to the
processes.

MOP
PST
LIC

Manufacturing Order Processing
Production Statistics & Costing
Laboratory & Inspection Control

APP Advanced Production Planner

POP
PDS
POQ
PSS

Purchase Order Processing
Purchase Delivery Schedules
Inquiries & Request for Quotations
Supplier Evaluation & Statistics

FIM Financial Management FIC Financial Controlling

GLR
RGR
ARL
APL
FAS
CUR
GCO
MUC

General Ledger
Report Generator
Accounts Receivable
Accounts Payable
Fixed Assets
Current Assets
Group Consolidation
Multiple Unit Coordination

BUD
CFM
CAC
TAC

Budgeting
Cash Flow Management
Cost Accounting
Time Accounting

HRE Human Resources PRS Personnel Services

HRS
HRR
HRD

Personnel Skill Management
Personnel Recruitment
Personnel Development

PAY
TIM
TEX

Payroll Administration
Time & Attendance
Travel Expenses (Sweden)

MIF Management Information INT Interoperability Support

BPW Business Performance Warehouse API
LNI
DCI
CAD

Application Program Interfaces
Lotus Notes Integration
Data Collection Interface
CAD Integration

MEB Movex e-business SYS System Foundation

WEB
EDI

Web Enable
EDI Enable

OUT
SEC
ENV
CRS

Output Management
Security Management
System Environment
Cross Application Management

Application Application
 Chapter 2. Movex Java overview 9

Enterprise Process Manager consists of the Enterprise Reference Model (ERM).
The ERM is a repository of business processes that is used as a reference when
improving current processes and designing new ones.

A component connection defines which components are to be used where in the
process. Workflow configuration sets the execution behavior of each component
and the execution interaction between components. Screen design provides the
ability, if necessary, to redesign the specific screens suggested by the configured
systems.

2.4 Implex
Implex is the implementation method developed specifically for the
implementation and management of all activities within an implementation
project of Enterprise Application Movex. Once implementation is completed, you
will have received more than a system that is up and running. You will have a
solid foundation for quality certification at your company.

With the Intentia approach, customers work with the same team of dedicated
professionals who develop and implement the software.

2.5 Logical deployment dimensions
Movex Java can be in a country’s local language. Apart from the
language-dependent view and print definition files, different databases for
different languages can be used on the same system. The advantage is that the
user, when using database tools such as Query/400, receives the field
descriptions in their own language. This is helpful considering that the field
descriptions mostly correspond to the fields on screen, the documents, and the
lists.

Companies and divisions
Movex Java contains a number of levels where data is managed. Each level used
to manage data represents a logical level. For example, Movex distinguishes
between enterprise structure and stock levels. The abbreviations used are
referred to as field names. All relationships under the various levels are
considered one-to-multiple relationships.

Note: When using a Multi Unit Coordination (MUC) solution, you may only use
one database.
10 Intentia Movex Java on the iSeries Server: An Implementation Guide

Multi-site and single-site
In Movex, an enterprise is designated as multi-site if logistics, production, and
sales are managed in common for a number of legal entities. For example, the
stock levels are referred to the company, but the bookkeeping is (depending on
facility) carried out in different divisions (legal entities). If there are such
companies, separate bookkeeping and separate logistics and sales are
necessary since they will normally be handled as separate companies in Movex.

A single-site installation is an enterprise consisting of one company (one legal
entity). In this case, the company corresponds to the division, but in Movex, a
division must be defined (for establishing a one-to-one relationship).

A multi-site installation is designated as an MUC installation. In cases where, at
the time of system setup, project management is unsure about whether one or
more “divisions” will be defined in the future, you must register the company as
an “MUC company” at the outset.

2.6 Deployment options for Movex Java on iSeries
Movex Java is a server-centric application that resides on the iSeries platform.
This means that it uses the integrated DB2 database that is included in the
operating system. This allows the Movex Java technical components (for
example, physical files, logical files, program objects, etc.) to take full advantage
of the server-based technology.

The presentation components are the main target for a wide range of distribution
options. The Movex Java presentation tier supports intranet, extranet, and
Internet usage with products like Movex Explorer, Movex Web Explorer, and the
e-business applications. Each can reside on the server topology (for example, file
server, Windows Terminal Server, etc.) that is best suited for a specific situation.

Movex Java also supports such mechanisms as IBM MQSeries, distributed data
management (DDM), clustering applications, and the high availability products
that are available on the iSeries. Splitting the application across several servers
must always be synchronized with the usage of the application from a business
component standpoint before all the benefits are noticeable. This also applies to
the database. However, remember to take real-time considerations into account
before using this as an efficient alternative.

The architecture in Movex makes option implementation adaptable to a wide
range of situations and demands. Along with the interoperability and national
language support (NLS), Movex Java on the iSeries has proven to be a solid and
highly configurable mission-critical application for small local installation to
multinational sites.
 Chapter 2. Movex Java overview 11

Based on how the functional components of application and database servers
are grouped, a variety of hardware configuration scenarios is possible. The
following sections discuss these options in a Movex Java environment.

2.6.1 Server-centric implementation
In a server-based configuration, the application and database server functions
are installed on a single iSeries server. The considerable scalability of the iSeries
server range allows adequate capacity for many organizations to implement
Movex Java through a centralized server.

2.6.2 Client/server implementations
In a client/server configuration, the application and database server functions are
installed on the iSeries and the client portion of the application on a stand-alone
Windows server or Integrated xSeries Server for iSeries.

This approach provides a greatly increased capacity for growth for Intel-based
interfaces. The application server can reside on multiple machines, due to the
Movex Java Super Dispatcher.
12 Intentia Movex Java on the iSeries Server: An Implementation Guide

Chapter 3. Application architecture

The architecture of a system defines its broad outlines and the precise
mechanisms used. Architecture is a term applied to both the process and the
outcome of planning and specifying the overall structure, logical components,
and logical interrelationships. It is extremely important with a well-crafted
architecture for an application systems’ complete life cycle from development to
implementation and operation.

The Movex robust architecture grows as your business grows. It allows you to run
your business instead of running into problems each time technology changes.
The architecture is based on the principles that are described in this chapter.

3

© Copyright IBM Corp. 2002. All rights reserved. 13

3.1 Configurability
Each business component in Movex can be configured and reconfigured to suit
changes in the customer's business. Also, the forward compatibility that Movex
provides ensures a future-proof solution that can be migrated from version to
version. In this way, Intentia customers can keep pace with technological
changes at all times.

3.2 Object orientation
Movex Java is a modern application built on object-oriented mechanisms on all
levels of the object model. Here are examples of four of the most important
constructions:

� Encapsulation

Movex business components are not “aware” of the type of interface or
database that is used. You can add or remove without changing the business
logic.

� Inheritance

The inheritance mechanism is used to enforce standard behavior throughout
the whole application and to maximize reuse of functionality within the object
model. Subclassing also makes it easy to benefit from and extend existing
functionality.

� Polymorphism

A good example of polymorphism in the architecture is the control
mechanisms in the business components. The well-defined interfaces make
the method (actually defined in a super class) general throughout the system
and, at the same time, make the components easy to replace.

� Reusability

By basing Intentia’s technical architecture on layered components, Intentia
has significantly reduced the amount of code in the system. This improves
product quality and enables Intentia to more quickly deliver new functionality.
14 Intentia Movex Java on the iSeries Server: An Implementation Guide

3.3 Portability
Because it is programmed in 100% Pure Java, you can transfer Movex from one
operating system to another with no or few required changes. This allows your
enterprise to have the right technical platform for the right size and type of
business. And as new technological advances take place, you can move your
solution from your old technical platform to your new one. This minimizes your IT
costs while maximizing your IT agility.

3.4 Scalability
Since the Intentia customer base consists of a wide variety of organizations
ranging considerably in size, Intentia has built a scalable solution based on N-tier
architecture. It can operate on a large multiprocessor iSeries and support several
thousands of users down to a single user with a Windows laptop.

Figure 3-1 shows the layers and tiers within the architectural model of Movex.

Figure 3-1 The layers and tiers within the architectural model of Movex
 Chapter 3. Application architecture 15

3.5 Layered architecture
Layered architecture constitutes the framework for how groups of components
relate to each other and where in the dependency chain they belong.

The notion of reusability and portability is addressed by the concept of layered
architecture. Components are organized in a hierarchy of layers. The most
generic components are in the lower layers (reused by many), and the most
specific components are in the upper layers (reused by few). Each layer provides
a well-defined interface to the above layers.

An important rule is that components can only depend on other components in
lower layers. This minimizes the complexity of dependencies between
components. This approach is the key to achieve a high degree of reuse in a
business application. That is designing the architecture for the application in a
layered structure and placing the most generic (most reusable) components in
the lower layers.

Portability is actually a consequence of using this approach. This is done by
totally isolating the platform-dependent components. For an example, consider
components related to operating systems platforms or RDBMS platforms.

3.6 N-tier architecture
The concept of an n-tier architecture primarily addresses the notion of scalability.
N-tier architecture provides flexibility in the configuration of scalable topologies
such as multiple application servers, multiple database servers, and Web
servers. N-tier architecture also constitutes the well-defined borders between
tiers. This enables flexibility to add new types of user interfaces (clients) or
alternative databases.

In addition to scalability, the layered architecture of Movex offers Intentia
customers component reusability and portability. This constitutes the framework
for how groups of components relate to each other and where in the dependency
chain they belong.

Not only is layered architecture the key to achieving a high degree of reuse for
Movex, it also provides increased portability by totally isolating the platform
dependant components.

Figure 3-2 shows the n-tier architecture and layered architecture within the
architectural model of Movex.
16 Intentia Movex Java on the iSeries Server: An Implementation Guide

Figure 3-2 N-tier architecture: Layered architecture in an architectural model of Movex

3.6.1 Presentation tier
The presentation tier handles any kind of presentation service to the application
tier. It is important to note that the presentation logic is separated from the
business logic. This separation means that new kinds of user interfaces can be
added to the system and affect only the presentation tier classes and not the
business logic.

The separation of concerns used in a true n-tier architecture is key to achieve
transparent isolation between the different tiers.

3.6.2 Application tier
Business components at the highest level in the application tier represent the
artifacts that constitute the Movex business logic. These components are
subjects for configuration to suit the specific requirements of a customer by using
the Movex Configuration Series of products. These components are further
described in the object model.
 Chapter 3. Application architecture 17

The Foundation classes represent the environmental parts needed to run a
business application. Such tasks as thread handling and queuing are carried out
by these classes.

3.6.3 Movex database (MDB) server tier and database tier
The separation of concern approach also applies to the MDB server tier and the
database tier. By the inclusion of a middle-tier database server tier, different
relational databases can be used without affecting the actual business logic.

A key benefit of the database server tier in the architecture is data store
independence. This means that applications are uncoupled from the storage
technique used and are unaware of the physical location of the data store being
used.

Therefore, implementors of Movex applications are free to switch to the latest
data storage technology, support multiple storage techniques in the same
application, and apply their applications on a variety of system configurations
without recompiling their code. Data is encapsulated within business data
objects.

3.7 Object model
The object model, with its programming model and class hierarchies, defines the
software standard. This design was proven before starting the “industrial”
transition. The transition was made during an iterative and incremental
development process including analysis, design, implementation, and testing.

The highest layer in the architecture relates to the business components in
Movex. The object model describes how the components are constructed.

The class hierarchy shows that business component classes at the bottom inherit
from parent or super classes higher up in the model. This way of structuring the
general or commonly used code patterns higher up in the hierarchy has several
benefits:

� Code reduction
� Forced use of standard
� Higher quality
� Increased development efficiency
� Isolation/encapsulation of complex environmental code

Figure 3-3 shows the Movex Java object model.
18 Intentia Movex Java on the iSeries Server: An Implementation Guide

Figure 3-3 The Movex Java object model

This object model is simplified and structured to explain the most important parts
of the class hierarchy. An example of this is that the Foundation classes are
made up of three major classes:

� Core Services
� Control
� Standard Methods

The Foundation classes also include a number of supporting utility classes.

3.7.1 Foundation classes
Foundation classes are central in the object model. They establish the Movex
standard behavior. Because all Business Component classes inherit from Base
Component classes, they also inherit, or aggregate, from different Foundation
classes. Apart from being the standard, Foundation classes with the Utility
classes, including components for thread management and messaging, define
the rules and behavior for the environment. This means that Foundation classes
are often middleware related.
 Chapter 3. Application architecture 19

3.7.2 Base Component classes
The Base Component layer is where all standard code that applies to all
components lower down in the inheritance chain is placed. This is often referred
to as generic code. Should a widespread modification need to be carried out that
relates to all presentation classes, a programmer only needs to adjust the
presentation class in the Base Components layer. This change is then
automatically inherited by all the presentation subclasses in the Business
Components Layer. This is also true for the Business Logic and Data classes.

This results in greater productivity, quality, and development efficiency and
substantially reduces the amount of code in the system.

3.7.3 Business Components classes
The Business Components layer includes business components that meet the
requirement of a substantially configurable offering. Business components are
subjects for configuration and are usually grouped into coarser-grained Business
Domain components.

An essential aspect of Business Components is that their interfaces expose the
behavior of the actual components through an application programming interface
(API). This is of major importance, since the API serves as the enabler for
integration and interoperability between applications in numerous ways.

These interfaces provide the openness needed for interoperability with
third-party components, using industry-wide standards such as Microsoft’s
Component Object Model (COM) standard, Sun’s Enterprise JavaBeans (EJB)
standard, C++, and the emerging Business Quality Messaging (BQM) standard.

100% Pure Java has been used as the implementation language of all business
components and related classes. This guarantees the highest degree of
portability for Movex with exactly the same source code across different
platforms.

The Movex object model maximizes development efficiency and development
productivity. The inheritance mechanism forces the use of standards
implemented and facilitates rapid modifications to the application when required.
20 Intentia Movex Java on the iSeries Server: An Implementation Guide

3.8 Technical innovations in the Movex Java
architecture

In the process of creating Movex Java, several characteristics required by
Intentia either did not exist or did not meet its technical or functional
requirements. Therefore, in creating the Movex Java architecture, Intentia R&D
created software components to bridge some gaps in the available technology.

The implementations were developed according to our layered architecture with
encapsulated components that can easily be changed or replaced by standard
middleware (drivers, Java virtual machines (JVM), etc.) as appropriate solutions
become available.

The following sections covers some of the most important Movex middleware
constructions.

3.8.1 Super Dispatcher technology
The Movex Java Super Dispatcher is an advanced dispatcher that can be used to
dedicate special types of workload to a specific JVM or server. It is used to
distribute workload, provide high availability by recognizing when one JVM goes
down, and shuffle requests to separate machines.

3.8.2 High performance JDBC driver
The n-tier architecture in Movex Java provides a structure that can use the best
data access mechanism available for any given database or topology. This
means that during an onsite installation, Movex Java can use the most efficient
data access mechanism provided for a combination of other components.

To bridge the gap where performance of current drivers on some databases is
found to be lacking, Intentia R&D developed a database driver that can handle
the large transaction volumes.

3.8.3 Intelligent Object Reuse
Movex Java Intelligent Object Reuse is a proprietary, intelligent tuning algorithm
for all types of object reuse units in the runtime version Movex Java technology
and architecture. All object instances in the runtime version of Movex Java are
reused in the architecture and middleware.
 Chapter 3. Application architecture 21

Intelligent Object Reuse decreases the frequency in which pauses caused by
“old object” reclamation occur significantly for most programs. It also increases
reclamation efficiency significantly for most programs running in current JVM.
This greatly improves performance scalability of applications that use large
amounts of “live” object memory.

3.8.4 Database Connection Optimizer
Movex Java Database Connection Optimizer is a database connection
technology. The database access is designed as encapsulated container objects
for persistent data rather than as in other technologies, where persistent data is
treated as entity beans.

Database Connection Optimizer, where all the transaction handling is managed
in the database (single or distributed), releases the middleware from coordination
problems in the runtime clusters of each JVM.

The Movex Java high performance architecture heavily uses intelligent database
connection pooling in combination with a prepared statement pool. This achieves
optimum performance and high-level reuse of allocated resources.

3.9 Movex Java package structure
The package structure implemented for Movex Java is basically divided into three
sections:

� Business Logic (binopt)
� MovexCore
� Common

Figure 3-4 shows in which section each package is found. Note that MovexCore
contains both Base and Foundation classes. This structure is the same in all
different scenarios where the Movex system occurs. Above this package,
structure different scenarios have their own file system structure to facilitate
different needs.
22 Intentia Movex Java on the iSeries Server: An Implementation Guide

Figure 3-4 Movex package map

3.9.1 File system structure overview
The Java package structure is normally implemented in the file structure used to
store the application. Figure 3-5 shows the Movex file system structure used
above the package structure that was mentioned in the previous section. Each
entry on the left side of the figure is described by its matching description on the
right side of the figure.

This structure may be subject to changes. Note that the root folder for the runtime
environment is the same independently of the release of Movex Version 12 that is
implemented.
 Chapter 3. Application architecture 23

Figure 3-5 Movex file system structure

Customer Modified (one per cusname)

Customer modified database components

Service pack consolidation level for customer modifications

Base folder for a given version of customer modified files

Runtime environment definitions

Bundled JavaSoft JDK 1.3 components

Template structure used when creating runtime environments

Foundation Framework and super class structure

Service pack consolidation level for foundation

Base folder for given version of foundation

Human Resources

HUM database components

Service pack consolidation level for HUM

Base folder for given version of HUM

Movex Explorer

Help files (can be placed on another file server or client)

Language files (can be placed on another file server or client)

Menu files (can be placed on another file server or client)

View Definition files (can be placed on another file server or client)

Movex OUT

Language files (can be placed on other file server or client)

Output definition files (can be placed on other file server or client)

Movex (standard)

Standard database components

Language components (for example, MVXCONGB, MVXMSGGB, etc.)

Service pack consolidation level for standard

Base folder for given version and release of Movex

Market adoptions Mxx (MSE, MFR, …)

Mxx database components

Service pack consolidation level for Mxx

Base folder for giver version of Mxx (for example, MGB, MFR, etc.)

Utilities and Tools

iSeries and OS400 specific utilities and tools

Not used on OS400

Service pack consolidation level for utilities

Not used on OS/400

Root folder for Movex version 12.x
24 Intentia Movex Java on the iSeries Server: An Implementation Guide

3.9.2 Movex Java implementation scenarios
Another representation of the structure is in which scenarios the code may
appear. The following list gives an overview of these different combinations:

� Standard Movex runtime

The pure runtime environment facilitates the possibility to execute Movex with
maximum performance. Most parts are installed as JAR files to avoid
problems with accidental mismatch of executables. There is still the ability to
handle individual fixes by using the file structure and correcting the code as
necessary within it. Routines are developed to ensure the consistency and
seamless updates are added to the installation process.

� Movex HUM

Movex HUM is stored under a separate subfolder in the main catalog for
Movex, as shown in the structure example in Figure 3-5. This is the
recommended way for storage to simplify the handling.

� Market modifications

Market modifications are stored under a separate subfolder in the main
catalog for Movex, as shown in Figure 3-5. This is the recommended way for
storage to simplify the handling.

For inheritance reasons, an extra level is introduced to the package
mvx.app.pgm, that is mvx.app.pgm.market. Note that in this case the name
“market” should not be replaced with the real market code.

� Customer modifications

Customer modifications are stored under a separate subfolder in the main
catalog for Movex, as shown in Figure 3-5. This is the recommended way for
storage to simplify handling.

For inheritance reasons, an extra level is introduced to the package
mvx.app.pgm. That level is customer as in mvx.app.pgm.customer. Note that
in this case, do not replace “customer” with the real customer name.

� Movex development

The development environment does not have as many similarities with the
runtime environment, at least not on the upper levels. That is because of the
fact that the development is more focused upon supporting the life-cycle
structure for the Movex system. Deeper down in the file system, the package
map is recognized.
 Chapter 3. Application architecture 25

26 Intentia Movex Java on the iSeries Server: An Implementation Guide

Chapter 4. Database architecture

The relational database management system (RDBMS) used on the iSeries
server is DB2 Universal Database (UDB) for iSeries. It is fully integrated with the
OS/400 operating system. The two products are shipped by IBM and installed as
a single entity. The close integration between the operating system and the
database allows iSeries developers to implement database functions where they
are most efficient. In fact, some of the database functions are even implemented
in the hardware.

This high level of integration makes the complexity of a database management
system quite transparent to the users of an iSeries server. This enhances the
ease of use and management of the two products. Resulting from this
integration, separately authorized users are not required for the two components.
Also, when OS/400 is started at IPL time, DB2 UDB for iSeries starts
automatically.

The Movex database consists of a number of physical files (tables) and logical
files (views and indexes) that are structured on the DB2 UDB for iSeries
database.

4

Note: DB2 UDB for iSeries is a member of the IBM DB2 family of products.
© Copyright IBM Corp. 2002. All rights reserved. 27

4.1 Database representation
Data representation for Movex Java on DB2 UDB for iSeries and OS/400 is in
Unicode Worldwide Character Standard. This is different than American National
Standard Code for Information Interchange (ASCII) used on other platforms.

iSeries database files are record (or row) oriented. They almost always have
subdivisions that consist of data fields (or columns). These objects have an
iSeries object type of FILE, with an attribute such as PF or LF. Any application
capable of accessing the database can process the contents of a database file.

Nearly all data on an iSeries server is normally stored as relational tables.
However, enhancements to the product have allowed for a variety of file systems
to be supported on the iSeries server to make it an efficient and effective central
store house of information.

4.1.1 Terminology
This section introduces you to the terminology used in an iSeries environment
that relates to information storage and retrieval.

Library
All traditional iSeries objects are contained in a special object type called a
library (*LIB). However, there is a special library called QSYS, which contains
the names of all the other libraries.

Physical and logical files
Data in the relational database on an iSeries server is stored in objects called
physical files. Physical files consist of records (rows) with a predefined layout of
data fields (columns). Physical files can have a keyed index in its definition that
allows the retrieval of information in a predefined sequence.

Logical files provide a different view of the physical data. They allow data to be
retrieved in a sequence other than that specified in the physical file. They also
allow field (or column) subsetting, record selection, joining multiple database
files, and so on.

An access path describes the order in which records are to be retrieved and
presented to the application program. Records in a physical or logical file can be
retrieved using an arrival sequence access path or a keyed sequence access
path. For logical files, you can also select and omit records based on the value of
one or more fields in each record.
28 Intentia Movex Java on the iSeries Server: An Implementation Guide

iSeries integrated file system (IFS)
The iSeries IFS encompasses all file systems currently supported by the iSeries
server. File systems supported by the iSeries IFS include the following
components:

� Root file system: The root (/) file system is designed to take advantage of
stream file support and the hierarchical directory structure of the IFS. The
object names are not case sensitive.

� QSYS.LIB: This file system represents the traditional iSeries library and file
structures. It provides access to iSeries libraries and SQL collections defined
under the iSeries QSYS library and all of the iSeries objects under them.

� QOpenSys: iSeries Open Systems support is designed to be compatible with
UNIX-based Open Systems standards, such as POSIX and X/Open
Portability Guide (XPG). This file system supports case-sensitive object
names.

� QDLS: This is a document library services system that supports the folder
structure and provides access to documents and folders within folders.

� QLANSrv: The LAN Server file system provides access to the same
directories and files that are accessed through the LAN Server/400 licensed
program product.

� QOPT: This is the optical file system and supports stream files stored on
optical media, including the iSeries’s integrated CD-ROM drive.

� QFileSvr.400: This is a special OS/400 facility that provides access to file
systems residing on other iSeries servers.

� NFS: This file system supports access to data and objects stored on remote
Network File System (NFS) servers other than iSeries. NFS objects can be
exported from the NFS server and dynamically mounted by NFS clients.

� QNetWare: This file system provides access to objects that are stored on a
server running Novell NetWare 3.12 or 4.10.

� QNTC: This file system provides access to the objects that are stored in
Windows 2000 either on the Integrated xSeries Server (formerly known as the
Integrated PC Server and the Integrated Netfinity Server) or a stand-alone PC
server.

4.1.2 Accessing the database and IFS
This section presents an overview of how information is stored and retrieved from
an iSeries database and the IFS.
 Chapter 4. Database architecture 29

iSeries directory structure
The IFS presents a hierarchical directory structure, which enables users and
application programs to access all objects in the iSeries server. Path names are
used to access objects. The support is similar to the support that is available in
PCs.

Hard and soft links
Each entity in the path is linked to the next entity in the path through hard links.
An object has a hard link to the directory in which it is created.

On the other hand, symbolic links (or soft links) merely point to another object
described through another path. The object pointed to by a symbolic link is
resolved only when the link is used. Therefore, a symbolic link can point to a
non-existent object until it is accessed. Also, symbolic links can cross file
systems, where hard links cannot.

The Add Link (ADDLNK) command (or ln Qshell command) on the iSeries server
enables you to create a link between two objects. Figure 4-1 shows an example
of the ADDLNK command.

Figure 4-1 Add Link (ADDLNK) command display

Add Link (ADDLNK)

Type choices, press Enter.

 Object

 New link

 Link type *SYMBOLIC *SYMBOLIC, *HARD

Bottom
F3=Exit F4=Prompt F5=Refresh F12=Cancel F13=How to use this display
F24=More keys
30 Intentia Movex Java on the iSeries Server: An Implementation Guide

The first parameter, Object (OBJ), specifies the path name of the object to which
you want to add a link. This object must exist unless a symbolic link is being
added. The second parameter, New link (NEWLNK), specifies the new path
name that can be used to refer to the object. The new name must not exist.

QFileSvr.400
The QFileSvr.400 file system is used to communicate between the application
server and the database server. Other iSeries servers that can be communicated
with must be identified in the QFileSvr.400 directory. A soft link can be defined to
point to the file system on the other iSeries servers.

4.2 Movex database structure
Movex database consists of a well-defined set of physical and logical files. This
section offers a general description on the different types of physical files and the
logical files that make the Movex standard runtime database.

Note that this is described from a runtime perspective. For development or
modified environments, refer to the information and naming conventions on
Intentia Wire. It is located under Intentia Solution-> Deliverables->
Instructions.

4.2.1 Physical files in Movex
In Movex, physical files only contain data and never key definitions. Because of
this, access to physical data is always sequential. Data is processed via a logical
file with a corresponding access path. This concept has been chosen to make
changes and extensions of unique key definitions simpler.

� Master tables

Master tables contain general data that is used in most parts of all business
functions. Examples are customer master, items master, supplier master, etc.
Master tables are frequently used, considering there is a low frequency of
changes to the data.

� System files

System files contain data that has a connection to the runtime environment or
that use system-like functions such as users, access control lists, authority,
etc. The usage characteristics are similar to those for master tables. However,
there is distention since there is no direct connection to functional entities.
 Chapter 4. Database architecture 31

� Transaction files

Transaction files are used to store data in or between business functions.
Data in these files is used, and the changes are intensive.

� History files

History files are used when performing Movex archiving from transaction files
on data that is considered by business functions to be used for historical data
or statistics reasons. Transfer to the history files is often done on a scheduled
basis and is initiated by a user or on a weekly, monthly, or other routine.

� Work files

Work files are used for temporary storage of data that is being processed to
feed a specific business function. Generally work files should be empty when
the system is in backup or offline mode.

4.2.2 Logical files in Movex
In Movex Java, logical files are used to access the records stored in physical
files. These files contain all the key information. Besides the keys (sorting), select
or omit definitions are also partly entered. Because of this additional selection,
only certain records can be selected or omitted. This allows for optimal
processing of online inquiries, among other items.

Logical files always receive the same names as the physical file in which they are
based, but they are numbered with the seventh and eighth positions. Logical files
with the sequence number 00 receive the main key, with some exceptions. For an
item master table, for example, the main key is the item number. The main key is
meant to be the unique definition of a record. The key always includes the
company number (first key field), but the division is indicated only in files that
require this number.

The logical files always contain all the fields according to the physical file on
which they are based. This is a prerequisite for updating the files in update and
write operations.

4.3 Journaling on the Movex Java database
Movex Java database setup in relation to journaling is different than Movex
ThisGen. In Movex Java, a basic transaction model is placed under the
functionality, even if the programs are not fully adapted to a new transaction
model than earlier releases. This means that if a transaction, from the database
point of view, is not fully executed, the transaction is undone.
32 Intentia Movex Java on the iSeries Server: An Implementation Guide

On the OS/400, DB2 UDB for iSeries is implemented to handle attempts, using
journaling, to make transactions to a physical file. From an overview perspective,
this is performed in two steps:

1. Create the environment needed for the journals and journal receivers.
2. Start journaling for the Movex databases.

There is also a function to stop journaling for a database. The creation step is
normally performed under the Movex installation and setup, while the other
functions may be used through normal operations.

Note that journaling must be started to use the database from the application. If
journaling is used for other purposes, such as in a high availability solution
scenario, that set of journals may be used instead of the ones handled in the
Movex utility library.

The Intentia Wire explains the full instructions for how to use these functions. On
the Wire, look under Intentia Solution-> Deliverables-> Installation.

4.4 Unicode
Another difference between Movex ThisGen and Movex Java is that the Movex
Java database is delivered in Unicode format, which is officially called the
Unicode Worldwide Character Standard. It is a system to interchange, process,
and display the written text of several, diverse languages worldwide. It also
supports many classical and historical texts in a number of languages.

Currently, the Unicode standard contains 34,168 distinct coded characters,
derived from 24 supported language scripts. Unicode allows Movex customers to
store any language in the same database tables.

The iSeries server supports the storage and access of Unicode character strings
within the database. Since Java runs in Unicode, no conversion is needed on
character fields when transferring data from the database to the Java runtime.
This is yet another performance advantage that helps the iSeries and Movex
Java excel.

Movex Java can also run in any country or region without deciding in which
CCSID to store the data. Currently with ThisGen, a consciencious decision must
be made in regard to which CCSID to store the data in to avoid “lost” characters.
Since a Movex customer can span many countries or regions, this is a more
difficult task than to choose the host country (region) CCSID. NextGen simplifies
this scenario considerably. When the data is stored in Unicode, it can be
displayed in almost all languages, without any advance planning. This is a major
advantage because dealing with national language support (NLS) issues can
 Chapter 4. Database architecture 33

take a significant amount of resources from an international software company.
With the Movex WebShop product, the customer base of Movex Java is the
world, and with a Unicode database, the country (region)-specific modifications
can be kept to a minimum.

The size of the database increases when moving to a Unicode database from a
single byte EBCDIC database, but the result is not two times larger as you may
expect. Of course, most ASCII and EBCDIC databases store a character in 1
byte, and Unicode stores a single character in 2 bytes. But, data that is stored in
numeric or binary data types is not affected. Much of the size of a database can
be linked to the metadata of the database tables (for example, the size and types
of the columns within the database). The size of this is not affected when the
database moves to Unicode. The net is that the database becomes larger in
terms of bytes used, but not twice the size.

4.5 Database access methods used by Movex Java
application

Since Movex Java is a true n-tier client server application, it (the business
functions) can access the database (data) in a dynamic but optimal way for any
given situation. For the iSeries server, this means usage of the integrated access
method provided by DB2 UDB for iSeries record level access (RLA).

4.5.1 Record level access
The only platform-specific code within the Movex Java application resides in a
layer of database access. On the iSeries platform, the customer can choose to
use either native I/O (also called record level access) or DB2 UDB SQL access.

To the Movex Java end user, the only difference is the superior performance and
scalability advantages of RLA. This database access layer has been abstracted
to a defined internal interface. Therefore, the method of database access is
invisible to the developer as long as they code to the interface.

During the installation, the MVXRLA file is downloaded to the iSeries server. This
component is then used when specifying usage of RLA as an access method in
the Movex.properties file.
34 Intentia Movex Java on the iSeries Server: An Implementation Guide

4.5.2 SQL
Despite the fact that Movex Java uses RLA for most of the database access from
the application’s database layer, Movex Java also uses standard SQL features in
OS/400 for some queries, where performance was a concern with RLA. The
application database layer makes this decision automatically at runtime.

4.5.3 Database related settings in the Movex.properties
In the Movex.properties files, several settings relate to the database. The most
important settings are:

Property Description

db.con.source Specifies the ODBC name that will be used to reach
the database. On the iSeries platform, this should be
the entry made on the Relational Database Directory
Entry (WRKRDBDIRE) during installation.

db.con.user Tells the user profile that should be used to connect to
the database from the application. The default value
is MDBUSR.

db.con.password Tells the password of the user that is used to connect
to the database.

db.con.libraryList Specifies in what order the different libraries
(schemas) that constitute the database should be
searched to find the desired tables.

db.con.defaultschema Tells the schema to should be used when tables are
created in runtime.

Other database-related settings offer the possibility to select database access
method, to switch on trace of database access, and to specify more
development- or troubleshooting-related settings. Normally these settings do not
need any attention from a pure runtime aspect.
 Chapter 4. Database architecture 35

36 Intentia Movex Java on the iSeries Server: An Implementation Guide

Chapter 5. Java overview and iSeries
implementation

This chapter discusses the Java platform architecture. The first part shows the
Sun Microsystems, Inc. definition of the Java platform and its implementation in
the Java Development Kit (JDK).

The next part presents the Java implementation on the iSeries platform. It
explains some of the iSeries-specific aspects of this implementation.

The final part examines how Intentia exploits some of the iSeries advantages in
the implementation of the Movex Java implementation.

5

© Copyright IBM Corp. 2002. All rights reserved. 37

5.1 Java platform
Java is a full-fledged object-oriented (OO) programming language. The Java
language syntax is similar to the syntax of C or C++, while its behavior is more
closely related to Smalltalk. Some features of the Java language, such as
strongly typed data definitions, no direct memory addressing through pointers, or
automatic garbage collection, make it well suited to develop robust Enterprise
core business applications. Although Java can be seen as yet another
programming language, it is easy to learn, simple to debug, and has reduced
maintenance costs.

The main advantage of Java is its cross-platform portability. Java is portable,
because of the core Java application programming interfaces (APIs) or Java
classes that provide a rich set of platform-neutral APIs. The existence of this set
of Java APIs provides the I/T industry with the capability of developing
sophisticated, state-of-the-art, client or server Internet-enabled applications that
you can deploy and run on any Java-enabled platform. Therefore, Java is not only
a promising programming language, it is a software platform that you can
implement and run on any existing hardware or software platforms.

You can see the Java platform as the combination of three components:

� Java virtual machine (JVM)
� Java APIs
� Java Utilities

5.1.1 Java virtual machine
The JVM is the centerpiece of the Java platform. It is the “engine” of Java. The
JVM is responsible for running Java applications or applets in any given
hardware or software environment, and it is platform-dependent. Every company
that wants to implement Java on a given platform must implement the JVM on its
hardware or software platform.

The JVM generally includes these components:

� Class loader
� Bytecode verifier
� Bytecode interpreter
� Garbage collector
� Java native interface (JNI)
� Other miscellaneous components
38 Intentia Movex Java on the iSeries Server: An Implementation Guide

Class loader
The class loader is capable of dynamically locating and loading the various
classes that the application uses. This is a powerful feature, because it allows
programmers to develop applications or applets that consist of many classes that
can be provided by several different vendors. As the acceptance of Java grows in
the entire industry, many companies are developing standard, ready-to-use
software components or Java beans that greatly simplify the job of application
developers.

The dynamic nature of the class loader simplifies the application packaging
process. You are no longer required to go through the complex and error-prone
process of building the executable program. You can compile each class
separately from the other classes and load each class as required by the class
loader.

The class loader determines which classes to load from the CLASSPATH
environment variable or the command line argument. The class path is similar to
the library list for the JVM. It is a list of directories that the class loader looks at to
find a class that it needs. In the start program for a Movex Java configuration, the
class path to use is specified in the start script. Additions and changes to the
class path are then done dynamically as defined in the library list configuration.

However, for ease of handling and performance reasons, developers tend to
package related classes together into what is known as Java ARchive (JAR) files.
A JAR file is a compressed (zipped) package that includes several classes. The
process of packaging an application into a JAR file is simple and much easier
than the traditional building steps that were required when using more
conventional languages, such as C or C++.

Often, all of the classes that make up an application are packaged in a single
JAR file. For example, all Java Core API classes are shipped within a single file
named rt.jar. The class loader is capable of finding the required class within a
JAR file and expanding (unzipping) it on the fly.

Bytecode verifier
The bytecode verifier performs extensive checks before running a Java program.
This ensures that the Java bytecode has not been altered and that it still
conforms to Java security specifications. This involves such checks as type
matching.
 Chapter 5. Java overview and iSeries implementation 39

For example, when an arithmetic operation code is encountered, the bytecode
verifier checks that all the operands involved in the operation are of the integer
type. If the bytecode does not pass the verifier checks, the JVM throws a runtime
exception and the program is terminated. It is especially important to perform
extensive checks in an open network environment where someone could run an
applet from an unknown source.

Bytecode interpreter
The bytecode interpreter is responsible for reading the bytecode and carrying out
the operations that they specify. The bytecode is interpreted on the fly as the
Java application steps from one instruction to the next. As new versions of the
JDK are introduced, the overall performance of the bytecode interpreter
improves, because of the new algorithms that are being developed.

Garbage collector
The garbage collector provides fully automated memory allocation and
de-allocation. This is unlike C/C++, where the programmer is responsible for
allocating memory to store new objects and freeing unused memory when
objects are discarded.

The garbage collector solves one of the main problems found in many C++
applications, which is known as memory leaks. This is one of the most difficult
bugs to deal with when developing C++ applications. Often C++ applications fail
with an “out of memory” error because of poor memory management.

In Java, the JVM allocates the memory needed when a new object is created.
Meanwhile a background task, running in a separate thread, continuously scans
the memory and de-allocates space that objects (without an active reference in
any of the running classes) occupy. The garbage collector is key to both the
performance and the reliability of Java programs.

Java native interface (JNI)
You can view the Java native interface as “glue” code that allows a Java program
to start a method that is written in a language other than Java. This interface
allows for interoperation between Java applications and legacy applications.
However, by using native methods you lose portability. By construction, native
methods are written to a specific execution environment and are platform
dependent.

Movex uses the JNI, for database access, for performance reasons.
40 Intentia Movex Java on the iSeries Server: An Implementation Guide

Miscellaneous components
Some Java implementations may include other components. One of the most
commonly found components is a Just-In-Time (JIT) compiler. This is often tightly
integrated with the bytecode interpreter. It performs additional tasks such as
setting aside in memory the real instructions that correspond to the bytecode.
Any further reference to a bytecode that was executed once results in the
execution of the corresponding real machine instruction that already exists.

JIT compilers also perform code optimization functions to further improve
performance. Such functions as inlining (which includes a piece of code in
another sequence rather than performing a branch or a call to a subroutine and
dynamic dead code elimination) are becoming common. In fact, sophisticated
compiler optimizing techniques are being implemented in JIT compilers.

Other functions, such as reflection or serialization, are also found in a JVM.
Reflection in Java refers to the ability of a Java class to reflect upon itself (to “look
inside itself”). The reflection technique allows a Java program to inspect and
manipulate any Java class. The Java beans “introspection” mechanism uses this
technique to determine the properties, events, and methods that a bean
supports. You can use reflection to query and set the values of fields, start
methods, or create new objects. Java does not allow methods to pass directly as
data values, but the reflection technique makes it possible for methods that pass
by name to start indirectly.

Serialization is the ability to write the complete state of an object (including any
object to which it refers) to an output stream, and then to recreate that object at a
later time by reading its serialized state from an input stream. This technique is
used as the basis for transferring objects through cut-and-paste and between a
client and a server or vice versa for remote method invocation (RMI). It can also
be used by Java beans to provide preinitialized serialized objects rather than a
simple class file.

The serialization technique is also used as an easy way to save user preferences
and application states. Serialization includes information about the class version.
Obviously, an early version of a class cannot de-serialize a serialized instance
that was created by a newer version of the same class.

5.1.2 Java APIs
The Java platform provides a set of Java classes or APIs that mimic a complete
modern, yet platform-neutral operating system. The Java platform, which is
based on Sun Microsystems, Inc. JDK, consists of two kinds of APIs. Each is
discussed in the following sections.
 Chapter 5. Java overview and iSeries implementation 41

Core Library APIs
Core Library APIs belong to the minimal set of APIs that form the standard Java
platform. Core Library APIs are available on the Java platform, regardless of the
underlying operating system. They can run on smaller, dedicated embedded
systems such as set-top boxes, printers, copiers, and cellular phones. The core
library grows with each release of the JDK.

Standard Extension library APIs
Standard Extension library APIs are a set of APIs outside of the Core API for
which JavaSoft has defined and published an API standard.

5.2 Java on the iSeries server
Starting with V4R2 of OS/400, the iSeries implements the Java platform. This
implementation fully complies with JDK 1.1.8, JDK 1.2, and JDK 1.3 as defined
by Sun Microsystems, Inc. As in any other Java platform implementation, the
iSeries also provides these components:

� Java virtual machine
� Java APIs
� Java Utilities
� Integrated JVM
� Static compilation of class files
� Dynamic class loading
� Remote Abstract Windowing Toolkit (AWT)
� Scalable garbage collector
� DB2 UDB for iSeries JDBC driver
� Multi-process design point

5.2.1 iSeries Java virtual machine
On the iSeries, the JVM is implemented within System Licensed Internal Code
(SLIC), beneath the Technology Independent Machine Interface (TIMI). JVM is
an integral part of OS/400. By installing OS/400 (5722-SS1) and the iSeries
Developer Kit for Java (Licensed Program Product (LPP) 5722-JV1) via the
standard OS/400 Install Licensed Program Procedures, you install a standard
JVM on your system. You must install one additional, no charge AS/400 TCP/IP
Connectivity Utilities/400 (LPP 5722-TC1) before you can use Java on your
iSeries server.
42 Intentia Movex Java on the iSeries Server: An Implementation Guide

The iSeries Developer Kit for Java is a “skip release” LPP that follows Sun
Microsystems JDK future versions as closely as possible. This happens
independently from OS/400 versions and releases whenever possible. The
OS/400 JVM includes all of these components of a standard JVM:

� Class loader
� Bytecode verifier
� Bytecode interpreter
� Garbage collector

Figure 5-1 shows how Java is integrated on the iSeries server.

Figure 5-1 Java integration on the iSeries server

5.2.2 Java transformer
The iSeries implementation of Java provides a unique component called the Java
transformer. The Java transformer preprocesses Java bytecode that is produced
by any Java compiler on any platform and is contained in a class file, JAR file, or
ZIP file to prepare them to run using the OS/400 JVM.
 Chapter 5. Java overview and iSeries implementation 43

The Java transformer creates an optimized Java program object that is persistent
and associated with the class file, JAR file, or ZIP file. This program object
contains RISC PowerPC 64-bit machine instructions. The optimized program
object is not interpreted by the bytecode interpreter at runtime, but directly runs
when the class is loaded.

No action is required to start the Java transformer. It automatically starts the first
time that a Java class file is run on the system when you use the java command
from the Qshell Interpreter or the RUNJVA command or JAVA command on
iSeries. It is especially important to use the CRTJVAPGM command on JAR files
and ZIP files. Unless the entire JAR file or ZIP file has been optimized using the
CRTJVAPGM command, each individual class is optimized at runtime and the
resulting program objects are temporary.

This boosts performance on most applications that have class files that change
infrequently, as Movex Java does.

Figure 5-2 compares typical Java JVM and Java for iSeries.

Figure 5-2 Typical Java JVM versus Java for iSeries
44 Intentia Movex Java on the iSeries Server: An Implementation Guide

5.2.3 Java garbage collector
Java provides a fully automated memory allocation and de-allocation known as
automatic garbage collection. Unlike most other JVM implementations, the
OS/400 automatic garbage collection is not “stop and copy”, where other threads
stop while garbage collection runs. The OS/400 JVM usually performs garbage
collection asynchronously without having to stop the other threads.

There are two threads associated with garbage collection. They have the next
higher thread numbers after the initial thread with a gap of one hexadecimal
increment. The threads and their functions are:

� Collector garbage collection thread: Locates objects that are no longer
being referenced.

� Finalize garbage collection thread: When an object is collected by the
garbage collection, this garbage collection thread invokes the FINALIZE
method.

Figure 5-3 compares synchronous garbage collection with asynchronous
garbage collection.

Figure 5-3 Synchronous versus asynchronous garbage collection
 Chapter 5. Java overview and iSeries implementation 45

The easiest way to monitor the heap size is to specify *VERBOSEGC in the
RUNJVA command during startup. This parameter takes effect after a restart of
the JVM. The heapsize information output from the JVM is placed in the
QSYSPRT printfile for the MVXJVA job.

Another way to monitor the heap size is through the Server View tool. Click the
Counters link and you see both Heap Total and Heap Free values. You can learn
more about the Server View tool in 7.3, “Server View” on page 103.

5.2.4 Java APIs and iSeries
The Java Core Library APIs, as defined by Sun Microsystems, are packaged as a
separate, no charge, LPP (5722-JV1). They include:

� The java.io APIs are linked to the integrated file system support of OS/400
and provide access to any UNIX or PC style stream file within the integrated
file system.

� The java.net APIs use the standard TCP/IP support that is provided by the
TCP/IP Connectivity Utilities for iSeries (5722-TC1) LPP product.

� The java.sql APIs use the standard Structured Query Language (SQL) Call
Level Interface (CLI) of OS/400 to access the iSeries database.

Java Utilities and iSeries
Most Java Utilities are supported on the iSeries server. They are run from within
the Qshell Interpreter. The Qshell Interpreter is an option of OS/400 (5722-SS1
option 30) that you must install on your iSeries server to run any Java utility on
your system.

5.3 iSeries-specific implementation
This section explains some aspects of the Java implementation that are specific
to the iSeries, such as:

� OS/400 commands that help you perform Java-related functions in a standard
iSeries way with command prompting and online help text

� Qshell Interpreter environment

� Remote AWT support
46 Intentia Movex Java on the iSeries Server: An Implementation Guide

5.3.1 OS/400 Java commands
You can use OS/400 commands to perform certain Java-related functions. Some
commands, such as the Run Java (RUNJVA) command or JAVA command, are
OS/400 equivalents to existing Java Utilities, such as the java command. These
commands are specific to the iSeries implementation:

� Create Java Program (CRTJVAPGM) command
� Change Java Program (CHGJVAPGM) command
� Delete Java Program (DLTJVAPGM) command
� Display Java Program (DSPJVAPGM) command
� Dump Java Virtual Machine (DMPJVM) command

The CRTJVAPGM command
By using the CRTJVAPGM command on a JAR file or ZIP file, it causes all of the
classes that are contained in that file to be optimized. Then the resulting
optimized Java program object becomes persistent. This results in a much better
runtime performance.

You also specify the optimization level of the resulting iSeries Java program. For
OPTIMIZE(*INTERPRET), the resulting Java program interprets the class file
bytecode when it starts. If the class file has not been run through the
CRTJVAPGM command, a persistent service program is created internally the
first time the class is run. It then runs subsequently under the OPTIMIZE (10)
level by default (V5R1M0). This program object is persistent until the class is
deleted or the Delete Java Program (DLTJVAPGM) command is run on it.

The possible values for the OPTIMIZE parameter are:

� *INTERPRET: The Java programs that you create are not optimized. When
you start the program, it interprets the class file bytecode. You can display and
change variables while debugging.

� 10: The Java program contains a transformed version of the class file
bytecode, but has only minimal additional compiler optimization. You can
display and change variables while debugging. This is the default value for the
OPTIMIZE parameter.

� 20: The Java program contains a compiled version of the class file bytecode
and performs additional compiler optimization. You can display variables, but
not change them while debugging.

� 30: The Java program contains a compiled version of the class file bytecode
and has more compiler optimization than optimization level 20. You can
display, but not change variables while debugging. The values that are
presented may not be the current value of the variable.
 Chapter 5. Java overview and iSeries implementation 47

� 40: The Java program contains a compiled version of the class file bytecode
and performs more compiler optimization than optimization level 30. All call
and instruction tracing is disabled.

The ENBPFRCOL parameter allows you to specify whether performance data
should be collected. Make sure you choose the proper value if you want to
analyze the performance of your Java application. The default value of *NONE
disables performance data collection for that class or set of classes. The
possible values for the ENBPFRCOL parameter are:

� *NONE: The collection of performance data is not enabled. No performance
data is to be collected. This is the default for the ENBPFRCOL parameter.

� *ENTRYEXIT: Performance data is collected for procedure entry and exit.

� *FULL: Performance data is collected for procedure entry and exit.
Performance data is also collected before and after calls to external
procedures.

The CHGJVAPGM command
The CHGJVAPGM command changes the attributes of a Java program, which is
attached to either a Java class file or a set of Java programs that are attached to
a JAR file. A file is a JAR file if the file name ends in .jar or .zip.

The CHGJVAPGM command uses these parameters:

� CLSF parameter
� OPTIMIZE parameter
� ENBPFRCOL parameter
� LICOPT parameter

You can use these parameters just as you would with the CRTJVAPGM
command. See “The CRTJVAPGM command” on page 47 for details about each
of these. However, when you use the CHGJVAPGM command, *SAME (the
value does not change) is the default for the OPTIMIZE parameter, ENBPFRCOL
parameter, and LICOPT parameter. In addition, the MERGE parameter specifies
whether you merge Java programs, which are attached to a JAR file, into the
minimum number of Java programs possible. This parameter is ignored if you are
processing a class file.

Note: If your Java program fails to optimize or throws an exception at
optimization level 40, use optimization level 30. The REPLACE parameter
allows you to specify whether an existing iSeries Java program should be
replaced.
48 Intentia Movex Java on the iSeries Server: An Implementation Guide

Note these options:

� *RPL: Specifies that you merge Java programs, which are attached to a JAR
file, only if the Java programs need to be recreated and replaced, because
other Java program attributes are being changed. If no attributes are changed

and no Java programs need to be recreated and changed, merging Java
programs does not occur.

� *YES: You merge all Java programs, which are attached to a JAR file, into the
minimum number of Java programs possible to save space or improve class
loader time.

DLTJVAPGM command
The DLTJVAPGM command deletes an iSeries Java program that is associated
with a Java class file, JAR file, or ZIP file. If no Java program is associated with
the class file that is specified, an informational message (JVAB526) is sent and
command processing continues.

DSPJVAPGM command
The DSPJVAPGM command displays information about the iSeries Java
program that is associated with a Java class file. If no Java program is associated
with the class file that is specified, an error message is sent and the command is
cancelled.

The OUTPUT parameter allows you to specify to where the output should be
directed. Specify * to display the results and *PRINT to send the results to a
spooled file. You can specify the name of a class file, JAR file, or ZIP file.

The DMPJVM command
The DMPJVM command dumps information about the JVM for a specified job.
The information is dumped using the QSYSPRT printer file. The dump includes
formatted information about the class path, garbage collection, and threads
associated with the JVM. The DMPJVM command, in OS/400 V5R1, also lists
the objects that are currently active within the JVM heap. This is especially
important for Intentia consultants to diagnose problems on site.

The RUNJVA (or JAVA) command
The RUNJVA or JAVA command runs the iSeries Java program that is associated
with the Java class that is specified. If no *JVAPGM object is associated with the
class file, one is created and associated permanently with the class file. It is used
for running the class file, rather than for interpreting the bytecode.

If you specify the special value *VERSION on the CLASS parameter instead of a
valid Java class name, the build version information for the JDK and the JVM is
displayed. No Java program is run.
 Chapter 5. Java overview and iSeries implementation 49

You can specify these parameters on the RUNJVA (or JAVA) command:

� PARM: Specifies one or more parameter values that are passed to the Java
program. You can pass a maximum of 200 parameter values.

� CLASSPATH: Specifies the path that is used to locate classes. Directories
are separated by colons. If the special value *ENVVAR is used, the class path
is determined by the environment variable CLASSPATH. You can set the
CLASSPATH environment variable by using the Add Environment Variable
(ADDENVVAR) command, be part of an export directive in the system wide
/etc./profile file, or specify at the user profile level with an export directive that
is contained in the profile file in the home directory of each user.

� CHKPATH: Specifies the level of warnings given for directories in the class
path that have public write authority. A directory in the class path that has
public write authority is a security exposure, because it may contain a class
file with the same name as the one you want to run. The first class file found is
the first class file that is run. The possible values for this parameter are:

– *WARN: A warning message is sent for each directory in the class path
that has public write authority. This is the default value.

– *SECURE: A warning message is sent for each directory in the class path
that has public write authority. If one or more warning messages are sent,
an escape message is sent, and the Java program does not run.

– *IGNORE: Ignores the fact that directories in the class path may have
public write authority. No warning messages are sent.

� OPTIMIZE: Specifies the optimization level of the iSeries Java program that is
created if no Java program is associated with the Java class file. The created
Java program remains associated with the class file after the Java program is
run. You can disable optimization by specifying OPTIMIZE(*INTERPRET) on
the RUNJVA (or JAVA) command. This requires that the classes are
interpreted regardless of the optimization level you set in the associated Java
program object. This is useful if you want to debug a class that was optimized
with an optimization level of 30 or 40.

� PROP: Specifies a list of values to assign to Java properties. Up to 100 Java
properties can have a value assigned.

� GCHINL: Specifies the initial size (in kilobytes) of the garbage collection
heap. This is used to prevent garbage collection from starting on small
programs.

� GCHMAX: Specifies the maximum size (in kilobytes) to which the garbage
collection heap can grow. This prevents runaway programs that consume all
of the available storage. Normally, garbage collection runs as an
asynchronous thread in parallel with other threads. If the maximum size is
reached, all other threads are stopped while garbage collection takes place.
50 Intentia Movex Java on the iSeries Server: An Implementation Guide

� GCFRQ: This parameter is no longer supported. It exists solely for
compatibility with releases earlier than V4R3 of the iSeries.

� GCPTY: This parameter is no longer supported. It exists solely for
compatibility with releases earlier than V4R3 of the iSeries.

� OPTION: Specifies special options that you can use when running the Java
class. The possible values are:

– *NONE: No special options are used when running the Java class.

– *DEBUG: Allows the iSeries debugger to be used for this Java program.

– *VERBOSE: A message is displayed each time a class file is loaded.

– *VERBOSEGC: A message is displayed for each garbage collection
sweep.

– *NOCLASSGC: Unused classes are not reclaimed when garbage
collection runs.
 Chapter 5. Java overview and iSeries implementation 51

52 Intentia Movex Java on the iSeries Server: An Implementation Guide

Chapter 6. Installing Movex Java

This chapter presents an overview over the installation of Movex Java on the
iSeries platform.

6

Note: The hardware and software specifications provided in this chapter are
included for reference purposes only. They are not valid as a certified solution.
For the appropriate and current specifications, refer to the Intentia Wire.
© Copyright IBM Corp. 2002. All rights reserved. 53

6.1 Platform
The Movex Certified Configuration Platform is based on a completely validated
Movex solution that consists of the Movex software, hardware (client, application,
and database server), and bundled software.

The Movex Java-certified configuration is provided through a dedicated
engineering team, under the wings of the Intentia IBM International Competence
Center. It performs ongoing compatibility testing of the components included,
installation validations, performance measurement, and optimization.

The goal is to simplify and package the technical planning required for
implementing Movex and to quickly deliver an efficient Movex implementation. In
this context, it is very important to highlight that certified configuration solutions
have been validated from a functional and performance point of view. This also
means that when a combination ends up on the list of certified configurations, the
given characteristics fit Movex as well as the underlying technologies.

6.1.1 Hardware
The current Movex Certified Configurations include:

� IBM ~ iSeries server
� IBM ~ xSeries server
� Sun Enterprise Servers

For detailed information about models and sample configurations for small (less
than 50 users), medium (between 50 and 150 users), and large (greater than 150
users) installations, refer to the Intentia Wire. On the Wire, look under Intentia
Solution-> Technology-> Hardware.

6.1.2 Software
To install and run Movex Java on the iSeries platform, a number of pre-requisites
must be met. The following sections present a brief overview over the different
software components that must be installed.

For specific software information, see the Intentia Wire.

Licensed programs
The software needed to run Movex Java on an iSeries is divided in different
categories. The following software products are needed as a minimum:
54 Intentia Movex Java on the iSeries Server: An Implementation Guide

Licensed program Version Description

5722-SS1 V5R1 Operating System/400 (Charge)

5722-SS1 Opt 12 V5R1 OS/400 Host Servers (Free)

5722-SS1 Opt 30 V5R1 OS/400 Qshell Interpreter (Free)

5722-JC1 V5R1 AS/400 Toolbox for Java (Free)

5722-JV1 V5R1 AS/400 Developer Kit for Java (Free)

5722-JV1 Opt 5 V5R1 Java Developer Kit 1.3 (Free)

5722-TC1 V5R1 TCP/IP Connectivity Utilities (Free)

The following software products are optional, but strongly recommended:

Licensed program Version Description

5722-WSD V5R1 WebSphere Development Tools (Charge)
(*BASE and Option 21)

5722-JV1 Opt 4 V5R1 Java Developer Kit 1.1.8 (Free)

5722-XE1 V5R1 Client Access Express for Windows (Charge)

5722-XW1 V5R1 Client Access Windows Family Base (Charge)

The following software products are optional, but not required:

Licensed program Version Description

5722-ST1 V5R1 DB2 Query Manager and SQL Developers Kit
for AS/400 (Charge)

5722-PT1 V5R1 Performance Tools for AS/400 (Charge)

Program temporary fixes (PTFs)
In addition to the software products listed in the previous section, PTFs may need
to be applied to the installation. To find current information about which PTFs
need to be applied, refer to the Intentia Wire.

6.2 Installation prerequisites
The following prerequisites must be met:

� All necessary components of the operating system must be installed.

� All necessary PTFs must be applied.

� The system must have TCP/IP configured and be reachable from the network.
 Chapter 6. Installing Movex Java 55

� The / (root) file system must be published to the Windows Network
Neighborhood or at least be accessible from the Windows environment.

� For a new installation, the user QSECOFR must be available for the initial
steps.

� For any upgrade, a proper backup must be taken of both the database and
the application before the installation or upgrade work begins.

� At least one client should be available with Operations Navigator and a 5250
Emulation session should be installed and configured.

� Movex Explorer and Movex OUT should be installed before or during the
installation described in this redbook. (This redbook does not cover those
installations.)

6.3 Installation concepts
The following section offers a brief overview over the physical distribution that will
be used for the installation on an iSeries platform. For more information, refer to
the installation instructions on the Intentia Wire.

6.3.1 iSeries distribution
A normal delivery, distribution targeted for the iSeries platform consists of at least
one tape and one CD. The reason for this is that tape is better suited to carry the
amount of data needed for a Movex Java installation.

In theory, the same build of the application could be used over all available
platforms. However, when it comes to the iSeries server, the creation of Java
programs is done better in one central location than at each installation. Because
of this, the distribution grows from approximately 300 MB to around 5 GB and is
easier to place on a tape. This also makes it possible to prepare this distribution
for the target platform, the iSeries server.

The tape contains some or all of the following components:

Component Save command used
QINSTAPP SAVOBJ
MVXJJVA SAVLIB
Movex_v12 SAV
Movex_v12 /HUM SAV
MVXJDTAMST SAVLIB
56 Intentia Movex Java on the iSeries Server: An Implementation Guide

QINSTAPP is the installation program that enables the use of the operating
system function LODRUN to install from the tape. This program performs the first
steps of the installation. It sets up users and groups, sets some of the system
values, and finally installs the installation utility library MVXCJVA. This library
contains all other functions necessary to install, operate, and maintain Movex
Java on the iSeries platform.

By the help of functions, found in this utility library, the file structure constituting
Movex Java is installed in the IFS of the iSeries machine. On the tape, this part is
found in the component named Movex_v12. If the delivery contains Movex
Human Resources (HUM), that component is placed next on the tape, and the
Demo database (MVXJDTAMST) is placed last, if included.

Note that the delivery database is not placed on the tape as a library, but is
included in the IFS file structure from where it is installed by the help of functions
in the utility library.

The following components are placed on the accompanying CD:

Component Description
MEX_12rs Movex Explorer content
MOM_12rs Movex Out content

Both Movex Explorer and Movex Out are supposed to be installed on a Windows
server in the local network.

6.3.2 Pre-creation of Java programs
The ordinary distribution for the iSeries server contains pre-created Java
programs, as mentioned previously. These programs are created with the
optimization level set to 40 and do not have performance collection enabled. This
means that the programs could not be used for debugging purposes.

On the other hand, platform-specific debugging is seldom needed on site, and
therefore the debug-enabled version of the programs is available only through
the Intentia Modification Center (IMC). In a normal debug scenario, an IMC
representative connects to the installation database from a separate application
server.

6.4 Installation workflow
This section provides an overview of the installation workflow. You can find the
complete installation instructions on the Intentia Wire.
 Chapter 6. Installing Movex Java 57

To ease installation as much as possible, LODRUN, which is a part of the iSeries
server, is used. By simply issuing one single command, you install and execute
the installation program. The installation program then takes you through a
guided tour where necessary user profiles and groups are created and where
some essential system values and other settings are presented.

6.4.1 Base installation
Use this flow to install Movex Java version 12 on an iSeries server on which
Movex Java was not previously installed. Complete these steps:

1. Mount the tape in the proper tape or optical station.

2. Sign on as QSECOFR and enter the LODRUN command. If there are several tape
stations, prompt the command so you can give the right device name:

a. LODRUN creates the proper users and groups that are needed for Movex
Java.

b. LODRUN goes through a number of system values and setup issues to
enable the environment for Movex Java.

c. LODRUN finally installs the Java Utility library MVXCJVA and displays the
main menu, MVXSTART, in the library.

3. Sign off as QSECOFR and sign on as MSRVADM.

4. When prompted, change the password for the user MSRVADM.

5. Enter GO MVXAPP and press Enter.

6. Create the installation directory.

7. Install the Movex Java version. Wait until this installation is finished before you
proceed with the next step.

8. Install the Movex database.

9. If a demo database is desired, install that now by using the Restore Library
(RSTLIB) command.

10.Set authority for the databases.

11.Create a journal environment.

12.Start journaling.

13.Install any required service packs.

Note: The information in the following sections is always overridden by
information provided for a specific version or release. Refer to the Intentia
Wire for the latest instructions. On the Wire, look under Deliverables->
Installation-> Movex Java.
58 Intentia Movex Java on the iSeries Server: An Implementation Guide

14.Install any HUM.

15.Install any service packs for HUM.

16.Install any market modifications.

17.Install any service packs for market modifications.

18.Install any additional languages.

19.Install any customer modifications.

20.Install any service packs for customer modifications.

21.Update Movex Explorer with language, menus, help, and view definitions. You
can find these on the CD that is a part of the delivery.

22.Update Movex OUT with language and OUT definitions. You can find these on
the CD that is a part of the delivery.

23.Set authority for the application.

24.Create the proper environments.

25.Update Movex.properties.

26.Create the runtime environment.

27.Update the start program.

28.Test the installation.

6.4.2 Upgrade installation

Use this procedure to install Movex Java version 12 on an iSeries machine on
which a previous version of Movex Java was already installed.

1. Sign on as QSECOFR.

2. Stop the running version of Movex.

3. Check the service pack level of the database and upgrade the database if
necessary.

4. Rename the existing Utility library MVXCJVA.

5. Mount the tape containing Movex Java Version 12 in the proper tape station.

6. Enter the LODRUN command. If there are several tape stations, make sure to
prompt the command to give the right device name. Use QSECOFR rather
than MSRVADM to allow eventual changes to that user profile to take place.

a. LODRUN checks and changes the users and groups that are needed for
the Movex Java version.

b. LODRUN goes through a number of system values and setup issues to
enable the environment for the Movex Java version.
 Chapter 6. Installing Movex Java 59

c. LODRUN installs the Java Utility library MVXCJVA and displays the main
menu, MVXSTART, in the library.

7. Sign off as QSECOFR and sign on as MSRVADM.

8. Enter GO MVXAPP and press Enter.

9. Create the installation directory.

10.Install the Movex Java version. Wait until this installation is finished before you
proceed to the next step.

11.Manage the database upgrade according to the database upgrade
description found in the folder databases\db2_400 in the file system.

12.Set authority for the databases.

13.Create a journal environment.

14.Start journaling.

15.Install any required service packs.

16.Install any HUM.

17.Install any service packs for HUM.

18.Install any market modifications.

19.Install any service packs for market modifications.

20.Install any additional languages.

21.Install any customer modifications.

22.Install any service packs for customer modifications.

23.Update Movex Explorer with language, menus, help, and view definitions. You
can find these on the CD that is a part of the delivery.

24.Update Movex Out with language and out definitions. You can find these on
the CD that is a part of the delivery.

25.Set authority for application.

26.Create the proper environments

27.Update Movex.properties.

28.Create the runtime environment.

29.Update the start program.

30.Test the installation.

If the upgrade is done to set up a test environment, while the production
environment is running the previous version, make sure that the production
environment can be started in parallel to the new environment.
60 Intentia Movex Java on the iSeries Server: An Implementation Guide

6.4.3 Installing a service pack

Follow these instructions to install a service pack to the Standard Movex Java
version:

1. Download the service pack from the Intentia Wire.

2. Extract the service pack to the hard disk of the Administrative client.

3. Read the service pack information text file in the service pack folder.

4. Copy the service pack folder into the root folder of the Movex installation using
Windows Explorer.

5. Create the Java programs.

6. Create the common.jar file, if it is included in the service pack.

7. Upgrade the database, if the service pack contains such components.

8. Install upgraded database drivers or upgrades of the utilities, if the service
pack contains such components.

9. Activate the database drivers.

10.Upgrade Movex Explorer, if the service pack contains such components.

11.Upgrade Movex OUT, if the service pack contains such components.

12.Update Movex.properties with new View definition path.

13.Update the start program.

14.Test the installation.

6.5 Movex Java application users and user groups
During the installation, the following users and groups are created. It is very
important that they exist and are set up correctly to have functional access
control in place for the file system. If the user profiles already exist, meaning that
you see a Change User Profile rather then a Create User Profile, press Enter to
make any updates active.

The following users and groups are created:

Note: If this service pack installation is a part of a new installation or an
upgrade, you may return to the instructions now. Otherwise continue with
the following steps.
 Chapter 6. Installing Movex Java 61

User/group Description
MSRVADMS MOVEX - Server Administrators Group
MSRVADM MOVEX - Server Administrator
MDBUSR MOVEX - Database User
MDBREADS MOVEX - Database Access Group

For a more thorough description of the users and groups, refer to Chapter 9,
“Security” on page 117.

6.6 OS/400 system values and other settings for Movex
Java

Movex Java is a highly sophisticated technical application that uses OS/400
security and a runtime system. This means that to have an optimal environment,
the settings in Movex (Movex.properties) must be synchronized with user profiles
and OS/400 system values.

This section describes the basic constructions and settings that are managed by
the Movex installation routines. The installation of Movex Java (LODRUN) takes
you through a number of system values and other settings that need to be
checked and, in some cases, changed. These changes are essential for the
function of the Movex Java version on OS/400.

Recovery information
If you accidentally leave a step without making the proper changes, you can use
option 30 “Check User profiles”. This options is located on the MVXTOOLS menu
in the utility library. This option allows you to go through the steps again after the
first time.

Attention: The affect of some of these changes may conflict with other
applications running in parallel on the system. Be sure to watch for such
conflicts.
62 Intentia Movex Java on the iSeries Server: An Implementation Guide

6.6.1 Work with Relation Database Directory Entries (WRKRDBDIRE)
The WRKRDBDIRE command allows you to note the value that already exists for
the *LOCAL entry or to create a new entry if it does not already exist. Make a
note of this value for later use in the Movex.properties file. An example of the
WRKRDBDIRE command display is shown in Figure 6-1.

Figure 6-1 The WRKRDBDIRE command display

Work with Relational Database Directory Entries

Position to

 Type options, press Enter.
 1=Add 2=Change 4=Remove 5=Display details 6=Print details

 Relational Remote
 Option Database Location Text

 SEIRDPAC *LOCAL

Bottom
 F3=Exit F5=Refresh F6=Print list F12=Cancel
 (C) COPYRIGHT IBM CORP. 1980, 1999.
 Chapter 6. Installing Movex Java 63

A proper entry should look like the example shown on Figure 6-2. Note that the
Type field should be left blank. For the system name, use the system name as
the name of the relational database, if nothing else is decided.

Figure 6-2 The CHGRDBDIRE command display

Change RDB Directory Entry (CHGRDBDIRE)

 Type choices, press Enter.

 Relational database > SEIRDPAC Character value
 Remote location:
 Name or address *LOCAL

 Type *SNA, *IP, *SAME
 Text *BLANK

Bottom
 F3=Exit F4=Prompt F5=Refresh F12=Cancel F13=How to use this display
 F24=More keys
64 Intentia Movex Java on the iSeries Server: An Implementation Guide

6.6.2 Coded character set identifier (WRKSYSVAL QCCSID)
To check or change the system value QCCSID, a WRKSYSVAL QCCSID
command is issued. On the Work with System Values display (Figure 6-3), check
to see that the system value is not 65535. If it is, you have to consider a change.
On new iSeries server, change it to the CCSID of most of the users of the system
as shown on Figure 6-4.

If it is an older iSeries model that is already running applications and databases,
leave the value as is. In this case, after the first installation steps, set a CCSID on
the user profiles of MSRVADM and MDBUSR. This is not a good solution. You
should consider changing the system value, but only with careful planning first.

Figure 6-3 The WRKSYSVAL QCCSID command display

 Work with System Values
System: SEIRDPAC
 Position to Starting characters of system value
 Subset by Type F4 for list

 Type options, press Enter.
 2=Change 5=Display

 System
 Option Value Type Description
 QCCSID *SYSCTL Coded character set identifier

Bottom
 Command
 ===>
 F3=Exit F4=Prompt F5=Refresh F9=Retrieve F11=Display names only
 F12=Cancel
 Chapter 6. Installing Movex Java 65

Figure 6-4 The CHGSYSVAL QCCSID command display

Change System Value

 System value : QCCSID
 Description : Coded character set identifier

 Type choice, press Enter.

 Coded character set
 identifier 37 1-65535

 F3=Exit F5=Refresh F12=Cancel
66 Intentia Movex Java on the iSeries Server: An Implementation Guide

6.6.3 Job message queue full action (WRKSYSVAL QJOBMSGQFL)
To avoid problems with canceled jobs during installation, or other long running
tasks, set the system value for QJOBMSGQFL by using the WRKSYSVAL
command. Figure 6-5 shows an example of the Work with System Values display.

Figure 6-5 The WRKSYSVAL QJOBMSGQFL command display

 Work with System Values
System: SEIRDPAC
 Position to Starting characters of system value
 Subset by Type F4 for list

 Type options, press Enter.
 2=Change 5=Display

 System
 Option Value Type Description
 QJOBMSGQFL *ALC Job message queue full action

Bottom
 Command
 ===>
 F3=Exit F4=Prompt F5=Refresh F9=Retrieve F11=Display names only
 F12=Cancel
 Chapter 6. Installing Movex Java 67

Select option 2 (change) and you see the Change System Value display as
shown in Figure 6-6. Change the value to something other than *NOWRAP,
which is the shipped default value from IBM. Consider using the *WRAP or
*PRTWRAP option.

Figure 6-6 The CHGSYSVAL QJOBMSGQFL command display

Change System Value

 System value : QJOBMSGQFL
 Description : Job message queue full action

 Type choice, press Enter.

 Job message queue full
 action *WRAP *NOWRAP
 *WRAP
 *PRTWRAP

 F3=Exit F5=Refresh F12=Cancel
68 Intentia Movex Java on the iSeries Server: An Implementation Guide

6.6.4 Performance adjustment (WRKSYSVAL QPFRADJ)
To make things easier, set the performance adjustment to be automatic. On the
Work with System Values display shown in Figure 6-7, select option 2 to change
the value.

Figure 6-7 The WRKSYSVAL QPFRADJ command display

 Work with System Values
System: SEIRDPAC
 Position to Starting characters of system value
 Subset by Type F4 for list

 Type options, press Enter.
 2=Change 5=Display

 System
 Option Value Type Description
 QPFRADJ *SYSCTL Performance adjustment

Bottom
 Command
 ===>
 F3=Exit F4=Prompt F5=Refresh F9=Retrieve F11=Display names only
 F12=Cancel
 Chapter 6. Installing Movex Java 69

Then, on the Change System Value display (Figure 6-8), select option 2 for
Performance adjustment. This allows for adjustment at IPL and automatic
adjustment.

Figure 6-8 The CHGSYSVAL QPFRADJ command display

Change System Value

 System value : QPFRADJ
 Description : Performance adjustment

 Type choice, press Enter.

 Performance adjustment 2 0=No adjustment
 1=Adjustment at IPL
 2=Adjustment at IPL and
 automatic adjustment
 3=Automatic adjustment

 F3=Exit F5=Refresh F12=Cancel
70 Intentia Movex Java on the iSeries Server: An Implementation Guide

6.6.5 Changing printer file definition for QPRINT (CHGPRTF QPRINT)
The Max spooled output records parameter, for the system printer file QPRINT,
must be changed to *NOMAX. This helps to avoid hang situations where the
application server fills the log with records.

If you receive the error message CPF7304, type I for “Ignore”. Make a note that
you have to perform this change later. This error message indicates that the
printer file is locked by another process and cannot be changed at this time.
Make an appropriate change as illustrated on Figure 6-9 and Figure 6-10.

Figure 6-9 The CHGPRTF QPRINT command display (Part 1 of 2)

Change Printer File (CHGPRTF)

 Type choices, press Enter.

 File > QPRINT Name, generic*, *ALL
 Library *LIBL Name, *LIBL, *ALL, *ALLUSR...
 Device:
 Printer *JOB Name, *SAME, *JOB, *SYSVAL
 Printer device type *SCS *SAME, *SCS, *IPDS, *LINE...
 Page size:
 Length--lines per page 66 .001-255.000, *SAME
 Width--positions per line . . 132 .001-378.000, *SAME
 Measurement method *ROWCOL *SAME, *ROWCOL, *UOM
 Lines per inch 6 *SAME, 6, 3, 4, 7.5, 7,5...
 Characters per inch 10 *SAME, 10, 5, 12, 13.3, 13...
 Overflow line number 60 1-255, *SAME
 Record format level check . . . *NO *SAME, *YES, *NO
 Text 'description' 'Default spool output print file for OUTQ(*
JOB)'

More...
 F3=Exit F4=Prompt F5=Refresh F10=Additional parameters F12=Cancel
 F13=How to use this display F24=More keys
 Chapter 6. Installing Movex Java 71

Press Page Down to reach the page with the suggested change.

Figure 6-10 The CHGPRTF QPRINT command display (Part 2 of 2)

Change Printer File (CHGPRTF)

 Type choices, press Enter.

 Additional Parameters

 Max spooled output records . . . > *NOMAX 1-999999, *SAME, *NOMAX

Bottom
 F3=Exit F4=Prompt F5=Refresh F10=Additional parameters F12=Cancel
 F13=How to use this display F24=More keys
72 Intentia Movex Java on the iSeries Server: An Implementation Guide

6.6.6 Changing prestart job entry for QSQSRVR (CHGPJE QSQSRVR)
To make sure that the system job for internal SQL transactions to the database
starts, set the Start jobs parameter to *YES on the Change Prestart Job Entry
display (Figure 6-11). This starts the job automatically when the subsystem
starts.

A change can also turn on this job directly. This change is important even if you
plan to use record level access (RLA) as the database access method in the
installation. SQL is still used for some kind of functionality that involves dynamic
retrieval of data from the database.

Figure 6-11 The CHGPJE QSQSRVR command display

Change Prestart Job Entry (CHGPJE)

 Type choices, press Enter.

 Subsystem description > QSYSWRK Name
 Library *LIBL Name, *LIBL, *CURLIB
 Program > QSQSRVR Name
 Library *LIBL Name, *LIBL, *CURLIB
 User profile *SAME Name, *SAME
 Start jobs > *YES *SAME, *YES, *NO
 Initial number of jobs *SAME 1-9999, *SAME
 Threshold *SAME 1-9999, *SAME
 Additional number of jobs . . . *SAME 0-999, *SAME
 Maximum number of jobs *SAME 1-9999, *SAME, *NOMAX

Bottom
 F3=Exit F4=Prompt F5=Refresh F10=Additional parameters F12=Cancel
 F13=How to use this display F24=More keys
 Chapter 6. Installing Movex Java 73

6.6.7 Changing shared storage for default Movex pool
The runtime environment for Movex uses SHRPOOL5 as the default memory
pool. To make this active, define the shared pool. Assign the shared pool a
starting value and make it possible for the automatic performance adjustment to
do the rest the suggested values. If you did not switch on the automatic
adjustment, you have to set better values here.

On the Change Shared Storage Pool display (Figure 6-12), set the Maximum
size % parameter to a value that is less then 100. This value tells how much of
the main storage may be allocated to this pool.

Figure 6-12 The CHGSHRPOOL command display

Change Shared Storage Pool (CHGSHRPOOL)

 Type choices, press Enter.

 Pool identifier > *SHRPOOL5 *MACHINE, *BASE,
*INTERACT...
 Storage size > 256 Number, *SAME, *NOSTG
 Activity level > 1 Number, *SAME
 Paging option > *CALC *SAME, *FIXED, *CALC
 Text 'description' > 'Movex Java'

 Additional Parameters

 Maximum size % > 80 0-100, *SAME, *DFT

Bottom
 F3=Exit F4=Prompt F5=Refresh F10=Additional parameters F12=Cancel
 F13=How to use this display F24=More keys
74 Intentia Movex Java on the iSeries Server: An Implementation Guide

6.6.8 Configuring TPC/IP (GO CFGTCP)
The TCP/IP configuration of the system must be correct to get Movex up and
running. You can do this by selecting option 12 (Change TCP/IP domain
information) on the CFGTCP menu (Figure 6-13).

Figure 6-13 The Configure TCP/IP menu

CFGTCP Configure TCP/IP
System: SEIRDPAC

 Select one of the following:

 1. Work with TCP/IP interfaces
 2. Work with TCP/IP routes
 3. Change TCP/IP attributes
 4. Work with TCP/IP port restrictions
 5. Work with TCP/IP remote system information

 10. Work with TCP/IP host table entries
 11. Merge TCP/IP host table
 12. Change TCP/IP domain information

 20. Configure TCP/IP applications
 21. Configure related tables
 22. Configure point-to-point TCP/IP

 Selection or command
 ===>

 F3=Exit F4=Prompt F9=Retrieve F12=Cancel
 Chapter 6. Installing Movex Java 75

Then you see the Host name and Domain name parameters as illustrated on
Figure 6-14. Verify that the correct names are there.

Figure 6-14 The CHGTCPDMN command display

Then go back to the command line and ping the machine using both the host
name and the domain name together. In this example, you would issue the
command:

PING SEIRDPAC.IRD.INTENTIA.SE

If you receive an answer that the ping is verified, the configuration is OK. In this
example, a remote name server is used to resolve the name.

If the ping test does not produce a good result, you may need to change the Host
name search priority parameter to *LOCAL. In this case, use option 10 (Work
with TCP/IP host table entries) on the CFGTCP menu to set the proper settings
as shown on Figure 6-15.

 Change TCP/IP Domain (CHGTCPDMN)

 Type choices, press Enter.

 Host name 'SEIRDPAC'

 Domain name 'IRD.INTENTIA.SE'

 Host name search priority . . . *REMOTE *REMOTE, *LOCAL, *SAME
 Domain name server:
 Internet address '10.20.20.247'
 '10.20.15.251'

Bottom
 F3=Exit F4=Prompt F5=Refresh F10=Additional parameters F12=Cancel
 F13=How to use this display F24=More keys
76 Intentia Movex Java on the iSeries Server: An Implementation Guide

Figure 6-15 Work with TCP/IP Host Table Entries display

Make sure that one of the entries contains the host and domain names entered in
the TCP/IP domain information.

6.6.9 Installation utility library (MVXCJVA)
An important part of the installation is to download the tools and utilities that are
provided to support the technical aspects and system maintenance of Movex.
The functions are structured on menus related to application and database tasks.

Refer to the Intentia Wire for instructions. On the Wire, look under
Deliverables-> Installation-> Movex Java.

Work with TCP/IP Host Table Entries
System: SEIRDPAC

 Type options, press Enter.
 1=Add 2=Change 4=Remove 5=Display 7=Rename

 Internet Host
 Opt Address Name

 10.20.20.236 SEIRDPAC
 SEIRDPAC.IRD.INTENTIA.SE
 127.0.0.1 LOOPBACK
 LOCALHOST

Bottom
 F3=Exit F5=Refresh F6=Print list F12=Cancel F17=Position to
 Chapter 6. Installing Movex Java 77

6.6.10 Installing an application
The Movex – Application menu (MVXAPP), shown in Figure 6-16, lists several
functional options. These options allow you to:

� Install application class files
� Set object authorities
� Specify runtime environment settings
� Modify Movex.properties
� Pre-creating Java service programs (*SRVPGM)

Figure 6-16 The Movex – Application menu

MVXAPP Movex - Application
System: SEIRDPAC

 Select one of the following:

 1. Create install directory
 10. Install Movex 12.r.s 11. Install SP to Movex

 20. Set authority for application

 30. Create runtime environment

 40. Select Movex.properties
 41. Edit Movex.properties

 50. Create Java programs 51. Create Java programs for SP
 52. Create Java pgm for common 53. Create Java pgm for common in SP

 Selection or command
 ===>

 F3=Exit F4=Prompt F9=Retrieve F12=Cancel
 F13=Information Assistant F16=AS/400 main menu
78 Intentia Movex Java on the iSeries Server: An Implementation Guide

6.6.11 Installing a database
The Movex – Database Setup menu (MVXDB), as shown in Figure 6-17, focuses
Movex database tasks on the DB2 UDB for iSeries. The functions include
handling the installation of different levels of databases (core and market),
service packs, creating logical files, and a number of control functions for the
most common known problems.

Journaling management of the Movex databases is available through this menu.

Figure 6-17 The Movex – Database Setup menu

MVXDB Movex - Database Setup
System: SEIRDPAC

 Select one of the following:

 10. Install database 11. Install SP to database
 15. Install Market database 16. Install SP to Market database
 20. Display installed SP level 25. Install additional languages

 30. Recreate LFs in Market database 35. Check Db for wrong connections

36. Check Db file for no of records 40. Set authority for database
37. Check files with <10% free 38. Reorganize files in database

 50. Install/Update database drivers

 60. Create journal environment
 65. Start journaling
 66. Stop journaling

 Selection or command
 ===>

 F3=Exit F4=Prompt F9=Retrieve F12=Cancel
 F13=Information Assistant F16=AS/400 main menu
 Chapter 6. Installing Movex Java 79

6.6.12 Installing additional languages
Movex core delivery contains U.S. English for all language components. This
means that if any additional language components should be used, they must be
installed using the Install Additional Languages (JINSLN) command. The Install
additional languages command display is shown in Figure 6-18.

Figure 6-18 The Install additional languages (JINSLN) display

6.6.13 Installing Movex Explorer
One difference from earlier versions of Movex is that the Movex Client application
and view definitions, help text, language, and message files use Movex
installation as the transport media for delivery. Intentia R&D has also made the
application (.exe) release independent. This means that only view definitions
(.mvx) need to be updated between releases.

Copy the files in the MEX folder to the files server or clients on which the
installation can start. Refer to the Movex Explorer installation instructions on the
Intentia Wire.

JINSLN/E Install additional languages 5/09/01 15:10:31
 SEIRDPAC

 Language............:
 Version.............: 12rs

 Path to language....: /Movex_12.r.s/languageS_yy/databaseS/db2_400

 Service pack library: MVXJSPAC Library name

 Database library....: MVXJDTA Library name

 Journal library.....: MVXJJRN Library name, *NONE

 F3=End F12=Cancel

80 Intentia Movex Java on the iSeries Server: An Implementation Guide

The Movex Explorer itself is also shipped as an executable file in the MEX folder
of the distribution.

6.6.14 Installing Movex OUT
The same kind of management for Movex Explorer is used for the Movex OUT
product. The points that were discussed in the previous section for Movex
Explorer also apply to Movex OUT.

6.6.15 Setting up Movex.properties
In the Movex.properties files, all runtime settings are stored for a Movex Java
installation. To make a comparison this file is as important to Movex Java as the
library list is for Movex ThisGen. In other words, it is vital that the settings are
correct according to the expected behavior.

The Movex.properties file is a text file located in the runtime environment folder in
the IFS file system. You can edit it by using option 41 (Edit Movex.properties) on
MVXAPP menu in the Movex utilities tools library. You can also edit it by using an
ordinary text editor via Windows Explorer. If you choose this method, note that a
time stamped backup copy is not made automatically.

6.6.16 Setting up the start program
When the Movex.properties file is set according to the specific environment, you
must modify the start program. To simplify the job, Intentia delivers two templates
(one for test and one for production) that you should use to set the library list and
to call the Movex start program (/MvxStarter.class) with the parameters for batch,
autostart jobs, log characteristics, etc.

You can find the start CL program in the source file STRPGM in the MVXCJVA
utility library. Figure 6-19 shows an example of this program.
 Chapter 6. Installing Movex Java 81

Figure 6-19 Contents of the source file STRPGM

Then you can start Movex Version 12 both in interactive mode and in batch mode
from the Start Movex (STRMVX) display (Figure 6-20). You can add this function
to the normal scheduling facility (WRKJOBSCHE) or other iSeries management.

Work with Members Using PDM SEIRDWS1

 File STRPGM
 Library MVXJJVA Position to

 Type options, press Enter.
 2=Edit 3=Copy 4=Delete 5=Display 6=Print 7=Rename
 8=Display description 9=Save 13=Change text 14=Compile 15=Create
module...

 Opt Member Type Text
 STRMVXTEMP CLP Start program for Movex 12.x - Template
 STRMVXTEST CLP Start program for Movex 12.x - Test

Bottom
 Parameters or command
 ===>
 F3=Exit F4=Prompt F5=Refresh F6=Create
 F9=Retrieve F10=Command entry F23=More options F24=More keys

(C) COPYRIGHT IBM CORP. 1981, 1999.
82 Intentia Movex Java on the iSeries Server: An Implementation Guide

Figure 6-20 The Start Movex (STRMVX) display

6.7 Service packs
Service packs are provided in cases where correction of the software is required.
The delivery strategy is to publish service packs when needed and to make
consolidation levels (also called releases) on a periodic schedule according to
the delivery plan throughout the entire Movex version’s life cycle.

The service pack components are placed in folders with names identical to the
service pack themselves. This makes it easy to add and remove specific
corrections seamlessly.

The naming of service packs is in the format SP12rsSyddnn, where:

� SP=service pack
� 12=version
� r=release
� s=shipment of the day
� S=Movex Standard

Start Movex (STRMVX)

 Type choices, press Enter.

 Environment to start Test, Prod, ..
 Type of start *SBM *SBM, *INT
 Auto start Batch and ASJ? . . . *YES *YES, *NO

Bottom
 F3=Exit F4=Prompt F5=Refresh F12=Cancel F13=How to use this display
 F24=More keys
 Chapter 6. Installing Movex Java 83

� y=year
� dd=week
� nn=day

Adding service packs is done through the Install application SP (JINSAP) and
Install database SP (JINSDB) functions as illustrated on Figure 6-21.

Figure 6-21 The Install application SP (JINSAP) display

JINSAP/E Install application SP 6/06/01 21:22:56
 SEIRDPAC

 Install directory...: /Movex_12.r.s/SP12rsSydddn

 Device..............: TAP01

 Label...............: MVX MVX, HUM, *SEARCH

 Run in batch........: *YES

 F3=End F12=Cancel
84 Intentia Movex Java on the iSeries Server: An Implementation Guide

Chapter 7. Work management

Work management is the method of managing OS/400 system resources to
ensure the efficient running of application software such as Movex Java. This
chapter looks at some techniques that you can apply to manage the Movex Java
workload in an effective manner. You can use these techniques as a framework
that is suitable for many installations. However, keep in mind that there is not one
definitive solution, since the techniques may differ from installation to installation.

This chapter is intended as a practical guide rather than an in-depth discussion of
the benefits of the different options. In many ways, Movex Java work
management is similar to running other applications on an OS/400 system.

The OS/400 concepts are not discussed in detail. For further information, refer to
OS/400 Work Management, SC41-5306.

7

© Copyright IBM Corp. 2002. All rights reserved. 85

7.1 OS/400 work management
This section discusses the topics related to work management of Movex Java
tasks on the iSeries server. These include such tasks as OS/400 memory
management, OS/400 shared pools, IBM-supplied subsystems, Movex
Java-supplied subsystems, Movex Java runtime environment, and Java run
priorities.

7.1.1 OS/400 memory management
On the iSeries server, all of the primary memory (main storage) can be assigned
to logical units called storage pools. The iSeries server comes supplied with two
pre-defined storage pools:

� The machine pool (*MACHINE)
� The base pool (*BASE)

The machine pool is used by the system, and the base pool contains all other
main storage not used by the machine pool or any user-created storage pools.
By default, all IBM-supplied subsystems run in the base pool. During the Movex
Java installation phase, one additional shared memory pool (*SHRPOOL5) is
created. All Movex Java subsystems are routed to this shared pool.

7.1.2 OS/400 shared pools
The OS/400 system has a number of shared pools available (60 excluding the
delivered pools such as base and machine pool). All of these pools can be used
in conjunction with the automatic performance adjuster. In a standard Movex
Java installation, the automatic performance adjuster is turned on.

The available shared pools are *SHRPOOL1 through *SHRPOOL60 and some
specially named entries such as *INTERACT (for the interactive pool),
*MACHINE (for the machine pool), and *BASE (default for system jobs).

Use Operations Navigator or the Work with Shared Pool (WRKSHRPOOL)
command to assign the memory size and the maximum number of jobs allowed.
Remember that for a threaded application such as Movex Java, each thread is
counted for one activity level.

Be sure to add a description that indicates what the pool is being used for, since
this can be invaluable when another person tries to determine where subsystems
are supposed to be allocated.
86 Intentia Movex Java on the iSeries Server: An Implementation Guide

The runtime environment for Movex Java uses *SHRPOOL5 as the default
memory pool. If this share pool is already defined and in use, you can easily
change it to another available memory pool. Figure 7-1 shows the active memory
pools, among them which is *SHRPOOL5. Figure 7-2 shows an example of
Shared 5 Properties window that you would access to check *SHRPOOL5.

Figure 7-1 Active memory pools

Figure 7-2 Shared pool properties
 Chapter 7. Work management 87

You can find more information about the amount of memory required, activity
levels, and automatic performance adjustment in the following publications:

� OS/400 Work Management, SC41-5306
� iSeries Performance Capabilities Reference, SC41-0607
� Chapter 12, “System sizing” on page 177, in this redbook

7.1.3 IBM-supplied subsystems
All jobs in the OS/400 system run in a subsystem. The subsystem controls the
allocation of memory and the number of jobs that can run at any one time. It also
prioritizes the different types of jobs.

Several subsystems are supplied by IBM, and some of these are used in a
standard Movex Java installation. The IBM-supplied subsystems of interest in a
Movex Java installation are described in the following section.

QCTL: The controlling subsystem
This is the subsystem where the system console runs. Tasks that require the
system to be in a restricted state (such as the SAVSYS command) can only be
run from the console. This subsystem is not used as the default, since the
controlling subsystem is set to be the subsystem defined by the system value
QCTLSBSD and the default for this is QBASE. IBM recommends that you
change this value to QCTL. You can do this by using the Restart System Values
window in Operations Navigator (Figure 7-3) or the Work with System Value
(WRKSYSVAL) command.
88 Intentia Movex Java on the iSeries Server: An Implementation Guide

Figure 7-3 Startup program system value

QINTER: The interactive subsystem
The QINTER subsystem is the default subsystem where the interactive 5250
jobs run. This includes dumb (Twinax) terminals, PCs, and IBM Network Stations
running 5250 emulation. Note that Movex Java does not support any 5250
clients. The only way to communicate with the application is with Movex Explorer,
Movex Web Explorer, the e-business application, or through the Server View tool.
The QINTER subsystem may still be used for some for OS/400 work
management tasks.

QSPL: Spooling subsystem
This subsystem traditionally controlled print spooling. It is not used in a Movex
Java installation. All output from Movex Java is managed with the Movex Output
Management product. The native OS/400 printing facilities are not supported in
Movex Java.

QBATCH: The batch subsystem
This subsystem is normally designed for batch processing. It is not used in a
Movex Java installation, except from CL compilations and for creating internal
Java program objects (CRTJVAPGM). All Movex Java-related batch jobs are
managed internally in a separate Java virtual machine (JVM).
 Chapter 7. Work management 89

QSYSWRK: Subsystem monitor
The QSYSWRK subsystem contains jobs that support system functions started
automatically at IPL and when the system comes out of restricted state. One of
the most important Movex Java system jobs (QSQSRVR) runs in this subsystem.
These QSQSRVR system jobs manage the internal SQL JDBC communication
to the Movex database. Even when using the record level access (RLA) as the
standard database access method in the Movex Java installation, some
functionality still uses SQL to dynamically retrieve data from the database.

7.1.4 Movex Java-supplied subsystems
The Movex Java setup can consist of six or more subsystems. The only required
subsystem is MVXJVA. The other ones are used mainly if a multiple JVM setup
is configured. You can learn more about the multiple JVM setup approach 7.2.2,
“Multiple JVM setup” on page 94.

MVXJVA: Supervisor subsystem
The MVXJVA subsystem is the subsystem where the first JVM is started (the
supervisor). If the multiple JVM setup is not configured, this is the only Movex
Java OS/400 subsystem used. All Movex Java subsystems are run in this
OS/400 subsystem.

MVXJVAINT: Interactive subsystem
This OS/400 subsystem is used to serve interactive connections to Movex Java
from the Movex Explorer client in a multiple JVM setup.

MVXJVABCH: Batch job control
This OS/400 subsystem is used for batch job type work in a multiple JVM setup.

MVXJVAMI: API calls
This OS/400 subsystem is used for API calls (MI programs) in a multiple JVM
setup.

MVXJVAASJ: Autostart job subsystem
This subsystem is responsible for running autostart jobs in a Movex Java multiple
JVM setup.

MVXJVACRT: Java program creation
This OS/400 subsystem is used for Movex Java service program compilations for
example when applying new service packs.

Figure 7-4 shows the list of Movex subsystems.
90 Intentia Movex Java on the iSeries Server: An Implementation Guide

Figure 7-4 Active subsystems

7.1.5 Movex Java runtime environment
This section describes the Movex Java runtime environment, including the Movex
job description and Movex class description.

Movex job description
A job description collects a specific set of job-related attributes these are used to
control jobs entering the system. The same job description can be used by
multiple jobs. During the Movex Java installation process, the following job
descriptions are created:

� MVXJVABCH
� MVXJVAINT
� MVXJVACRT
� MVXJVAASJ
� MVXJVA
� MVXJVAMI
 Chapter 7. Work management 91

Movex class description
A class description contains the run attributes that control the run-time
environment of a job. During the Movex Java installation process, the following
class descriptions are created:

� MVXJVABCH
� MVXJVAINT
� MVXJVACRT
� MVXJVAASJ
� MVXJVA
� MVXJVAMI

The class descriptions are set in the corresponding job descriptions.

Movex job priorities
The job run priority is the highest priority at which any thread in the job may run.
Each thread may have its own thread priority that is lower than the job priority.
The run priorities are set in the corresponding class descriptions.

The following run priorities are shipped:

Run priority for class Default value
MVXJVA 20
MVXJVAINT 25
MVXJVAASJ 30
MVXJVACRT 35
MVXJVAMI 35
MVXJVABCH 40

7.1.6 Java run priorities
The initial Java thread runs at the same OS/400 priority as the BCI job that
created it, which runs at the same priority as the job that spawned it. If you start
the JVM interactively with run priority 20, the first thread has the same priority.
When the actual Java main method starts, the initial thread spawns a new thread
whose run priority is lower by a relative amount, usually 5. This results in another
thread with run priority of 26. Figure 7-5 shows the Work with Threads menu.

Java has 10 priorities that range from 1 (MIN_PRIORITY) to 10
(MAX_PRIORITY). The higher the integer value used in the java.lang.thread
setPriority() method, the higher the run priority. The default Java priority of 5 is
the same as NORM_PRIORITY.
92 Intentia Movex Java on the iSeries Server: An Implementation Guide

When you convert Java priorities to OS/400 run priorities, you use this equation:

New OS/400 Thread Priority = (BCI job's run priority + (11 - Java priority))
or (20 + (11-5)

Figure 7-5 Work with Threads display

7.2 JVM setup
There are two ways to set up the Movex Java configuration:

� Single JVM setup
� Multiple JVM setup

As always, it is difficult to describe the optimum solution for each customer case.
This section describes both setup types.

 Work with Threads
System: SEIRDNGT

 Job: QJVACMDSRV User: MSRVADM Number: 011369

 Type options, press Enter.
 3=Hold 4=End 5=Display attributes 6=Release 10=Display call stack
 11=Work with thread locks 14=Work with thread mutexes

 Total Aux Run
 Opt Thread Status CPU I/O Priority
 00000018 JVAW .578 1680 26
 00000215 TIMW .031 109 26
 000001C8 TIMW .253 175 26
 000001A4 TIMW .896 219 26
 0000019B TIMW 2.899 1214 26
 00000191 TIMW .325 232 26
 00000118 TIMW .044 121 26
 000000BA TIMW .083 140 26
 000000A3 JVAW 43.782 37358 20
 00000079 TIMW .946 1671 26

More...
 F3=Exit F5=Refresh F9=Command line F12=Cancel F16=Job menu F17=Top
 F18=Bottom
 Chapter 7. Work management 93

7.2.1 Single JVM setup
By default, the Movex Java system is configured with one single JVM running in
one OS/400 subsystem. This has some advantages, at least when it comes to
work management, since this is the easiest and least complex way to handle the
Movex Java environment. From a performance and tuning perspective, this is not
so good since there are no possibilities to let the different job types, such as
interactive jobs and autostart jobs, run in different memory pools and with
different run priorities.

The single JVM approach is normally OK in reference to small installations and
test environments. Multiple JVM implementation is a more sophisticated way in a
production environment.

Figure 7-6 shows the Work with Movex Java subsystem.

Figure 7-6 Work with Movex Java subsystem

7.2.2 Multiple JVM setup
The multiple JVM setup is really designed for all types of complex environments.
With the multiple JVM setup, you can choose to start the different JVMs in the
same or in different OS/400 subsystems. The different OS/400 subsystems can
run in one single OS/400 storage pool (*SHRPOOL5), or you can route the
OS/400 subsystems in which the JVM runs into different OS/400 storage pools.

The division into different memory pools and OS/400 subsystems may be really
important in complex environments with high loads on the machine. A benefit of
routing the JVMs into different OS/400 subsystems and memory pools is the
ability to control the memory allocation and the run priorities.

Figure 7-7 compares a single JVM setup with a multiple JVM setup.
94 Intentia Movex Java on the iSeries Server: An Implementation Guide

Figure 7-7 Single versus multi JVM configuration

Figure 7-8 shows the list of active Movex Java subsystems.

Figure 7-8 Active Movex Java subsystems

Jobs that would benefit from running in their own memory pools and OS/400
subsystems are:

� Interactive (MVXJVAINT)
� Batch (MVXJVABCH)
� Autojobs (MVXJVAASJ)
 Chapter 7. Work management 95

To change the memory pool for an OS/400 subsystem, you can use the Change
Subsystem Description (CHGSBSD) command (Figure 7-9). Change the
Storage size parameter to a suitable sharepool name.

Figure 7-9 Change Subsystem Description display

7.2.3 Starting multiple JVMs
To start a multiple JVM environment and to have the JVMs to start in different
OS/400 subsystems, you have to set the flag ‘/srvf:0’ when you start the
environment. This is normally done in the ordinary start scripts that are used.
This flag makes the mvx.os.MvxStarter start the supervisor first in its own JVM.
Then it calls for a command script, startsubs.cmd, that handles the subsequent
start of the additional JVMs and subsystems.

Figure 7-10 shows an example of the start script.

Change Subsystem Description (CHGSBSD)

 Type choices, press Enter.

 Subsystem description > MVXJVAASJ Name
 Library > MVXJJVA Name, *LIBL, *CURLIB
 Storage pools:
 Pool identifier 1 1-10, *SAME
 Storage size *SHRPOOLxx Number, *BASE, *NOSTG...
 Activity level Number
 + for more values
 Maximum jobs *SAME 0-1000, *SAME, *NOMAX
 Text 'description' *SAME

Bottom
 F3=Exit F4=Prompt F5=Refresh F10=Additional parameters F12=Cancel
 F13=How to use this display F24=More keys
96 Intentia Movex Java on the iSeries Server: An Implementation Guide

Figure 7-10 Example of the start script

To find this command file, the ordinary system path is used, so the file has to be
placed somewhere in that path. In normal installations, the root is added (that is
env\'environment') for each environment to the system path by changing the
current directory in the start script.

To facilitate an easy setup, the startsubs.cmd file is prepared for each platform
and is delivered as a part of the environment folder of the distribution. To activate
the feature, make sure that the file is copied to its proper location and then
change the start command to send the right flag to the supervisor.

The class path settings must be inherited to the subsequent start of the separate
JVMs because these are treated as separate jobs by the operating system. To
facilitate this, startsubs.cmd must correspond to the starting CL program. This is
done by naming the environment versions.

Figure 7-11 shows the JVM start flow.

IF COND(&Type *EQ '*SBM') THEN(DO)
 IF COND(&AutoStart *EQ '*YES') THEN(DO)
 RUNJVA CLASS(mvx.os.MvxStarter) +
 PARM(+
 '/DPSWVALID:AS400' +
 '/SRVF:0' +
) +
 CLASSPATH(*ENVVAR) +
 OPTIMIZE(40) +
 PROP((os400.runtime.exec.mode SHELL) +
 (java.home +
 '/QIBM/ProdData/Java400/jdk13') +
 (java.version 1.3)) +
 GCHINL(200000) +
 GCHMAX(*NOMAX)
 ENDDO
 Chapter 7. Work management 97

Figure 7-11 JVM start flow

The following actions take place when starting multiple JVMs:

1. The start CL program, STRMVX'envi', contains the setting of the proper path
for each environment to start. The path is written to a Local Data Area (LDA)
named M'envir' and is stored in the utility library MVXCJVA.

2. The start CL program calls mvx.os.MvxStarter that is started in its own JVM
and runs the Movex Supervisor and Movex Server.

3. The mvx.os.MvxStarter then calls the startsubs.cmd file, which by its
placement, corresponds to the version that is started.

4. Depending on the type of Movex Subsystem that is starting, the call for the CL
program STRMVXSUBS is done by using the proper job description. The job
description is then used to connect to the right OS/400 subsystem and to
assign the right values for priorities, timeslice, and so on.

5. The CL program STRMVXSUBS retrieves the saved class path and then calls
mvx.os.MvxStarter to start the proper Movex subsystem in the newly started
JVM.
98 Intentia Movex Java on the iSeries Server: An Implementation Guide

7.2.4 Starting multiple environments
To make it possible to start different versions (environments with different
Movex.properties files), a technique with naming the starting CL programs is
used. This means that the name of the CL program has to be STRMVX'envi',
where 'envi' may be any four alphanumerical characters that make sense.

The same name must be entered as the version in the command file
startsubs.cmd. Note that the variable name version in this context does not mean
version of Movex.

Figure 7-12 shows an example of an environment parameter script.

Figure 7-12 Example of environment parameter script

Depending upon what the environment root is in the start CL program, the
corresponding startsubs.cmd command file must be placed in that catalog as
shown in Figure 7-13.

Figure 7-13 The environment folder

Figure 7-14 shows an example of the startsubs script.

/* Set Environment root Need to be modified! */
 CHGVAR &EnvRoot VALUE('/Movex_v12/environment/envi')
 Chapter 7. Work management 99

Figure 7-14 Example of the startsubs script

If multiple environments are set up (Prod and Test), you must copy the
startsubs.cmd command file between the different Environment root catalogs.
You must also edit the file to correspond to the name of the starting CL program.
In the example above, the startsubs.cmd found in the template folder at
installation time is copied to the test folder when the environments are set up.

7.2.5 Initial setting of heap sizes
The garbage collector execution is based on the initial heap size parameter
GCHINL of the RUNJVA command. In a Movex Java installation, those
statements are located in the server start (CL) program named STRMVXxxxx as
illustrated in Figure 7-15.
100 Intentia Movex Java on the iSeries Server: An Implementation Guide

Figure 7-15 RUNJVA instruction in the STRMVXxxxx program

Movex Java is shipped with the default initial heap size of 200 MB. The initial
heap size parameter is a threshold that triggers a garbage collection cycle. It
does not trigger a garbage collection cycle based on the absolute size of the
heap, but on the amount the heap has grown since the last cycle (or since start
up, if no cycle has yet been run).

If you specify an initial heap size of 200 MB, the first cycle runs after 200 MB of
space is allocated. The garbage collector then frees some of that space for
reuse. Then it waits until another 200 MB is allocated before running again.

If the garbage collector freed 70 MB in the first collection cycle, it does not run
again until the heap size is at least 330 MB. The iSeries garbage collector does
not do heap compaction. That 70 MB of heap is unused until it is needed again
by the JVM.

IF COND(&Type *EQ '*SBM') THEN(DO)
 IF COND(&AutoStart *EQ '*YES') THEN(DO)
 RUNJVA CLASS(mvx.os.MvxStarter) +
 PARM(+
 '/DPSWVALID:AS400' +
 '/SRVF:0' +
) +
 CLASSPATH(*ENVVAR) +
 OPTIMIZE(40) +
 PROP((os400.runtime.exec.mode SHELL) +
 (java.home +
 '/QIBM/ProdData/Java400/jdk13') +
 (java.version 1.3)) +
 GCHINL(200000) +
 GCHMAX(*NOMAX)
 ENDDO

Note: The iSeries definition of initial heap size is different from other
platforms. On other platforms, the initial heap size determines the initial
amount of memory to allocate, and the maximum heap size has more
influence when garbage collector runs. In Movex Java on iSeries, do not
specify the maximum heap size (that is *nomax). The reason is that “normal”
collect is run as an asynchronous thread in parallel with other threads. If the
maximum heap size is reached, all other threads are stopped while collection
takes place. The latter is of cause unacceptable from a performance
viewpoint. This is different from other platforms. Cross-platform tuning tips
may indicate to set the maximum heap size.
 Chapter 7. Work management 101

7.2.6 Garbage collection monitoring and settings
As stated previously, the initial heap size essentially determines the frequency of
garbage collections. You can monitor the time interval between garbage
collections by setting the OPTION parameter of the RUNJVA command to
*VERBOSEBC.

7.2.7 Memory pool settings
In a standard Movex Java installation, the system value QPFRADJ is turned ON
(3=Automatic adjustment). This means that the OS/400 handles memory
allocation, activity levels, and so on. For most installations, this is sufficient. If for
some reason you do not want to use the automatic performance adjuster, here
are some basic tips to be aware of:

� Make sure the pool in which the Movex Java JVMs run in is large enough to
hold the size of the total heap. Monitor the heap size during peak time and be
sure the total heap size is smaller than the allocated amount of memory for
the memory pool. If the memory pool is not large enough to hold the heap,
you may encounter bad performance when the garbage collector starts to
clean up objects that are paged out on disk.

� Be sure that the activity level on the share pool is set to a high value because,
in a threaded application like Movex Java, each thread is counted for one
activity level.

� If the Movex Java is the only application running in the machine, you can
change the “minimum percentage of total main storage to allocate” for the
interactive (*INTERACT) and spool (*SPOOL) pools to 1%. These may seem
like small changes, but in a machine with 2 GB of memory and a default value
of 5%, this translates to 100 MB of wasted memory for each pool.

Figure 7-16 shows the subsystem tuning parameters.
102 Intentia Movex Java on the iSeries Server: An Implementation Guide

Figure 7-16 Subsystem tuning parameters

7.3 Server View
The Server View tool provides common work management functions for the
Movex Java environment. Server View should be used for monitoring,
troubleshooting, and performance analyzing of your Movex Java environment.

This section begins with an overview of the Server Views functions and then
explains how to start Server View and work with Movex Java View. You can find
more information in the Server View documentation on the Intentia Wire.

Server View offers the following functions:

� Monitor and control on the physical server and process level.

� Supervisor view that displays servers connected to the supervisor.

� Server View that displays subsystems connected to the server.

� Subsystem view that displays Movex jobs running on the subsystem.
 Chapter 7. Work management 103

� Profiler view that provides performance-related troubleshooting and
optimization of Movex programs.

� Log view that displays the log file generated by Movex jobs and middleware.

� Counters view that contains information about performance and resource
consumption of Movex subsystems.

� Find view that is used to find actual locations of Movex program class files
and display version information of those.

� Run view that runs Movex batch programs.

7.3.1 Starting Server View
When the Server View port is written in the Movex.properties file, you can use
Server View in Internet Explorer.

Complete these steps to start Server View:

1. Open Internet Explorer or Netscape Navigator.

2. Type the address to Server View:

http://hostname:6666/

The Server View is now started, and you can work with the environment as
illustrated in Figure 7-17.

Figure 7-17 Server View main menu
104 Intentia Movex Java on the iSeries Server: An Implementation Guide

7.3.2 Movex Java view
The home view is called the Movex Java view. It contains a list with links directly
to the supervisor, server, and the subsystem view.

For each installation, there is one supervisor. It is possible to connect one or
several servers to the supervisor and one or several subsystems to each server.
In Server View, they are built up and numbered in a sort of tree structure.

Most Movex Java installations have several service ports, usually for test and live
versions of the system. These can be managed and accessed by creating and
using bookmarks or the Favorites feature of a Web browser.
 Chapter 7. Work management 105

106 Intentia Movex Java on the iSeries Server: An Implementation Guide

Chapter 8. Movex OUT and printing

This chapter outlines the Movex OUT solution and the technology behind it.
Movex OUT simplifies and improves information management. Movex OUT
automates the output from Movex, reduces the costs for output, and converts
output into a powerful competitive tool.

Movex Output Management is a connection to fax, e-mail, Portable Document
Format (PDF) publishing, and electronic archives. It offers total control of
everything produced by the business application.

Movex Output Server is the engine for Movex Output Management. It refines raw
output from the Movex Java application server and forwards the processed
output to an appropriate output device. The Movex Output Server intelligently
interprets and processes the configuration specifications on how to handle output
information from the business application. These configuration specifications are
set in Movex Output Tool, the user interface of Movex Output Server.

8

© Copyright IBM Corp. 2002. All rights reserved. 107

8.1 Movex OUT components
This section describes the different components in the Movex OUT solution:

� Movex Dictionary is the set of definitions used by the Movex Output Server
for formatting and distributing the output.

� Movex Output Server is the real-time formatting and distribution engine.
Runs on Microsoft Windows and on most UNIX platforms. By adding optional
modules, you can use a wide variety of output formats and distribution
channels.

� Movex StreamIN (structured flow) is Movex Output Server’s interface module
for receiving input as a continuous data stream in a predefined, non-formatted
data structure (for example, tab-delimited).

� Movex PageOUT provides print-ready output in a variety of formats, including
PostScript, PCL4, PCL5, and Canon CAPSL. In addition, Microsoft Windows
native drivers are supported for other output needs.

� Movex StreamOUT supports output in unformatted, structured data formats
using an easy-to-use designer tool. The StreamOUT output can be saved as
text files further processing by other systems.

� Movex Output Tool is a Windows-based tool for output design and
formatting, entering distribution rules, system configuration, and
maintenance.

� Movex Forms Design is a Windows-based tool for creating electronic forms
that can be used as overlays in Movex Output Tool.

� Movex Output to Fax connects output to Fax software like TOPCALL,
Rightfax, and Zetafax for seamless Fax distribution.

� Movex Output to e-mail provides seamless e-mail integration. Output can be
distributed in text format or as attachments depending on the solution chosen.

� Movex Output to PDF adds Adobe Acrobat PDF formatting capabilities to
Movex Output Server, for further distribution, archiving, and
platform-independent viewing.

� Movex Output to ODBC extends Movex Output Server's scripting
capabilities by adding ODBC command support to access ODBC-compliant
databases.

� Movex Output to RePrint adds, reprinting, backup, basic archive, and
search and retrieval functionality to Movex Output Server using a Microsoft
SQL Server database on Windows platforms.

� Movex RemotePrint adds printer boosting to WAN connections using ISDN,
Point-to-Point, or leased lines with bandwidth problems. Acts as a local server
by handling the graphics locally and is attached by network to central a
108 Intentia Movex Java on the iSeries Server: An Implementation Guide

MOVEX OUT server. There are no attachable module options, and it can only
connect to two printers.

8.2 Movex Out technology
A stream file represents output from Movex Java. This file contains all output data
and information about how the output is to be distributed. Upon completion of the
Movex printout function, the stream file is transferred to the Movex Output Server
using a socket interface. The rest of the job is handled by the Movex Output
Server, which formats and directs the output. Figure 8-1 illustrates the Movex
OUT design.

Figure 8-1 Movex OUT design
 Chapter 8. Movex OUT and printing 109

8.2.1 User’s perspective
The user selects what to produce. This depends on how Movex has been set up
and prompted on how the output is to be distributed. Configuration issues reside
in the program ‘Output Definition. Open’ (MNS205) and to some extent on
‘Output Server Definition. Open’ (MNS204).

Output tracking and monitoring is done by using the function ‘Output. Open’
(MNS206). You can override the settings in ‘Output Definition. Open’ (MNS205)
by ‘Partner Reference. Open’ (CRS945) and ‘Partner Reference – Media. Open’
(CRS949).

8.2.2 Customer’s view
Customizing output without having programming skills is made possible by using
the graphical Movex Output Tool.

Reuse of modifications when upgrading Movex to a new version is easy. Since
the interface between Movex and Movex OUT consists of a structured file,
modifications (assuming no fields are deleted or renamed) work transparently
with different versions of Movex.

8.2.3 Language handling
Constants (labels) are retrieved from the same language files used by Movex
Explorer. Using industry solution-specific files can be configured. The language,
in which the output constants are to be presented, is controlled by the user
settings in Movex and is passed to Movex OUT in the stream file.

8.2.4 Modification directories
Intentia recommends that you store modified project and exporting files in a
directory separated from the standard files. To make this possible, a keyword
(-scandux) is used in the argument file. Enter multiple -scandux lines, and a
classpath type of mechanism is created.

8.2.5 Agent control
Movex controls all directing of output. Technically, keywords are sent from Movex
via the stream file telling the output server where to direct the output. This is
accomplished by using a set of standard queues and an agent enabled feature in
the definition files.
110 Intentia Movex Java on the iSeries Server: An Implementation Guide

8.3 Movex Java printing features
The printing features of Movex Java include:

� Wide Distribution Capabilities

Movex Output Server can deliver the processed data to a large range of
output devices, such as file, PCL printers and PostScript printers, and in such
formats as PDF files, e-mail, EDI, and fax.

� Platform Independent

Movex Output Server is built for a variety of platforms, such as most UNIX
dialects and Windows versions.

� Novell Compatible

Movex Output Server can run in a Novell environment (Bindery or NDS).

� Storage Options

Movex Output Server supports the option to store documents in a Lotus
Notes database.

8.4 Hardware requirements for Windows
The hardware requirements for running the Movex Output Server on Windows
are:

� Computer/processor

System using an Intel Pentium or higher processor.

� Memory

16 MB of memory (RAM) required, 64 MB of memory recommended.

� Hard disk

25 MB of available hard-disk space.

� Operating system

Microsoft Windows NT and 2000.

� Peripheral/miscellaneous

The following networks are supported using native protocols:

– Microsoft Windows NT Server
– Microsoft LAN Manager
– Novell NetWare
– TCP/IP-based networks
– IBM LAN Server
 Chapter 8. Movex OUT and printing 111

8.5 Setup
The following entries in Movex.properties are related to output management:

� mvx.app.common.MvxLang.parentDir specifies where to store output files
on the integrated file system for example:

mvx.app.common.MvxLang.parentDir=/Movex_v12/environment/template/
MovexOutput

� runtime.mvxout.streamservecodepage specifies which codepage to
uncode output data to, for example:

runtime.mvxout.streamservecodepage=UTF8

8.5.1 Setting up Movex Output Server

Movex Output Server is configured using the three files listed in Table 8-1.

Table 8-1 Movex Output Server configuration files

8.6 The mvxarg.arg argument file
This section explains the mvxarg.arg file. Figure 8-2 shows the contents of the
mvxarg.arg file.

File Description

mvxarg.arg. An argument file that determines log levels, where to scan for .dux files,
etc.

movex.dua The platform file used in run time by the server. It contains the setup
for all input and output queues used by the server.

quealias. Contains the mapping information used for translating Movex printer
names to network names.
112 Intentia Movex Java on the iSeries Server: An Implementation Guide

Figure 8-2 Argument file

Table 8-2 explains the keywords of the argument file.

Table 8-2 Argument file keywords.

Row Explanation

-demo Required if running an unlicensed version of the server.

-ll Log level. Values 0 to 10 are valid, where 10 is the highest level of
logging.

-rmlog The name of the produced log file. In this case, it resides in the server’s
working directory.

-wsin A structured log file for current input.

-sprog Allocates memory for scripts, for example, the total number of bytes in
the memory area.

-prn Specifies the path for Overlay files in relation to the working directory.

Drivers These statements point out the locations of the driver files to be used,
which in this case, is a subdirectory to the servers working directory.

-mvxlanginit Controls the order in which constants from Movex language files are
used.

Movex.dua The name of the platform file to be used.

zer.cml Invokes a global script used for initial zero suppressing of numeric data.

-scandux Points out where to look for the .dux files to be loaded. Multiple -scandux
statements are allowed to create a library list function. The server loads
all events not previously loaded found in each directory stated in a
-scandux statement.
 Chapter 8. Movex OUT and printing 113

You can learn more about these parameters and others of the argument file in
the Movex OUT reference manual located on the Intentia Wire.

8.7 The Queue Alias file (quealias)
The Queue Alias file is used to map Movex printer names to the network device
name. The device type (PCL, PostScript, or other) of each printer is also defined
here. The Queue Alias file is shown in Figure 8-3.

Figure 8-3 Quealias example

8.8 Starting the Movex Output server
This section explains how to start the Movex Output server to run as a window.
How to start the server as a service is described in the Movex OUT reference
manual located on the Intentia Wire.

Follow these steps to start the Movex Output Server to run as a window:

1. Open a Command Prompt window.

2. Change the directory to the work directory for the server as shown in
Figure 8-4.

Figure 8-4 Server window (Part 1 of 3)

3. Specify strs.exe -a and the argument file parameter as shown in Figure 8-5.
114 Intentia Movex Java on the iSeries Server: An Implementation Guide

Figure 8-5 Server window (Part 2 of 3)

The server window that is started is shown in Figure 8-6.

Figure 8-6 Server window (Part 3 of 3)

The server now listens for input from Movex via a TCP/IP socket with port
number 20102.
 Chapter 8. Movex OUT and printing 115

116 Intentia Movex Java on the iSeries Server: An Implementation Guide

Chapter 9. Security

This chapter explains the different security aspects when Movex Java is set up to
run on the iSeries server.

9

© Copyright IBM Corp. 2002. All rights reserved. 117

9.1 Movex security model
Movex security is set up to cover all aspects of security, when it comes to
installing and using Movex Java. Figure 9-1 illustrates the Movex security model.

Figure 9-1 Movex security model

The different areas that are covered by the security model are:

� User identification and authentication
� Communication security
� Access control
� Movex authority

User
Access

Internet
Clients

Intranet
Clients

Extranet
Clients

Client
Devices

TCP/IP

TCP/IP

Application
Processes

TCP/IP
Movex

NextGen
Application

Java Security Manager

Hardware
M

D
B

 L
a

ye
r

A
da

pt
er

TCP/IP

M
D

B
 L

ay
e

r

RDBMS

Middleware
Security Services

Hardware

Adapters/Business
Component Interface (BCI)

MDB Layer Database

Access
ControlCommunication Security

Access Control
+

Movex AuthorityCommunication Security
User Identification &

Authentication

TCP/IP

A
da

pt
er

A
d

ap
te

r
A

da
p

te
r

B
C

I

118 Intentia Movex Java on the iSeries Server: An Implementation Guide

9.2 User identification and authentication
Password validation, which is a part of User identification and authentication,
needs to be configured when an installation of Movex Java is performed. This is
different from earlier generations of the Movex application that relied on the
platform that used to handle these issues.

This section offers some basic hints on setting up an installation where all users
who need to access an application are fully authenticated.

9.2.1 Password validation
When Movex Java is started for the first time after installation, the default setting
is that password validation is not done. This is not the recommended setting for a
fully live installation, but it is the smoothest way to get the installation up and
running from the start.

Before you can start to set up password validation, you need to determine where
it should be done. The natural answer is to do it on the application server, but is
that really the best place?

Imagine this scenario. The Movex Explorer is a Windows 32-bit application.
Because of that, there is in most cases, a Windows domain in place that handles
the user identification and authentication for the different clients that are used. If
most of the users in that domain also gain access to the Movex application, it
could be easier for all parts that Movex uses the password validation on
Windows, even if the application server platform is something else. On the other
hand, if not all or most of the users of the Windows domain should be authorized
to use Movex, it may be easier to use password validation on the application
server platform instead.

To activate password validation, you need to perform two steps:

1. Set the settings in the configuration file, Movex.properties. This is the place
where you specify the password validation to take place.

2. Change the start program for the application server so that the application
server starts with the password validation activated.

When you perform these two steps, the passwords are validated for the users
who sign on to Movex through the client interface, Movex Explorer.

Note: Users defined as valid users in the operating system of the application
server are only used for password validation. There are no other links between
the user profile on the server and the user definition in Movex.
 Chapter 9. Security 119

9.2.2 Movex.properties
The entries in the Movex.properties file that specify where the password
validation should take place are presented in the following list:

Property Description

dir.logon.nt.domainController1 Specifies the name of the Windows domain
controller that should be used for password
validation if the password validation flag in
the start program specifies that Windows NT
should be used.

dir.logon.nt.domainController2 Specifies the name of an alternative
Windows domain controller that may be
used to validate the passwords.

dir.logon.nt.group Name of a Windows group that a user
signing on must be a member of to have
their password validated.

dir.logon.as400.server The IP address of the iSeries server where
password validation should be done. If the
password validation flag is set to iSeries in
the start program, this property must be set.

9.2.3 Starting Movex
By sending the following flag with the start request for the Movex application
server, subsequent connection attempts from the Movex Explorer clients require
the passwords entered by the users to be validated according to the setting of
this flag:

/dPSWVALID:<DUMMY|AS400|NT>

Notes:

� The settings in the following sections do not affect whether the user signing
on via Movex Explorer has to enter a password. Movex Explorer always
requires a password to be entered, while the following settings affect
whether and where the entered password should be validated.

� For recovery purposes, where you need to temporarily disable the
password validation, it is enough to start the application server without
password validation switched on.
120 Intentia Movex Java on the iSeries Server: An Implementation Guide

The following values are included in the flag:

DUMMY No validation takes place.

AS400 The iSeries set in Movex.properties is used for password validation.

NT The Windows domain controllers listed in Movex.properties are used
for validation.

9.2.4 Movex user definition
This section describes the basics of the Movex user definition.

‘User. Open’ (MNS150)
The users that should be able to use the Movex system must be defined in the
Movex program ‘User.Open’ (MNS150). Figure 9-2 shows ‘User.Open’, panel B.

Figure 9-2 ‘User. Open’, panel B

Because Movex Java is still synchronized with the previous generation of the
application, some of fields in this program are not valid for a Movex Java
installation.
 Chapter 9. Security 121

For more information about this program, refer to 9.5, “Movex authority system”
on page 146.

Delivered user profiles
At delivery time, some general Movex users are already defined in ‘User. Open’
(MNS150). These are internal profiles, and as such, they do not necessarily need
to be defined for password validation. An exception may be the user
MVXSECOFR that has manager authorities to the Movex functions and, thereby,
overrides all security checks inside the Movex application. Figure 9-3 shows the
delivered user profiles.

Figure 9-3 Delivered user profiles

The different delivered user profiles include:

MOVEX General user of the system, used for such setup purposes as the
autostart jobs.

MVXSECOFR Movex Security Officer has manager rights to all functions and
thereby overrides all security settings.
122 Intentia Movex Java on the iSeries Server: An Implementation Guide

MVXSYSOPR Movex System Operator is the receiver of internal diagnostic
messages from the application.

9.3 Communication security
Because of the layered architecture of the Movex Java application, you must give
extra consideration to communication security. In the case of using an iSeries
server as the installation platform for Movex Java, it is a little easier, because the
application and the database reside in the same machine. Still there are some
areas that need to be handled.

9.3.1 Port allocation schema
Table 9-1 presents all properties in the Movex.properties file that defines the
ports that should be used. Note that these are the default values that will be used
if nothing else is stated.

Table 9-1 All properties of the Movex.properties file

Property T
y
p
e

Description

boot.suervisor.port=6500 I Startup port for Movex Supervisor.

boot.batchdispatcher.port=6800 E Port that specifies where the batch
dispatcher is to be found. This port is
used for the MI program connection,
among other things.

boot.servers.port=6600 I Startup port for a Movex server.

boot.subs.baseport=6100 I Base port for a Movex subsystem
instance.

boot.subs.usrport=200 E Port increment relative to a subsystem’s
base port that will be used by a
subsystem.

boot.kbdserver.port=6060 E Port for connecting a Telnet interface
session to a running JVM.

boot.wm.html.port=6666 E Port for connecting the Server View
interface.

boot.medispatcher.port=9973 E Port for connecting a Movex Explorer
interface session.
 Chapter 9. Security 123

To run multiple environments in the same physical server, use the same port
numbers for all environments, but add x0 000, where x equals 1 to 5 for each port
number configured. This gives you the ability to run up to six parallel
environments in the same system. If you have more environments, you must
develop a more sophisticated approach.

9.3.2 Firewalls
To run communications through firewalls, the used ports must be known so a
proper configuration of the firewall may be made. Of interest in this case is which
ports are used for external connection of clients and other programs.

MI programs
MI program is the Movex term for a kind of API program that is used for
connecting to other applications, such as e-business solutions to the Movex Java
installation. Because these programs must be reached from outside the
application server, you need to keep the following points in mind.

Basics
There are three settings in the Movex.properties file in regard to MI programs.
The most important setting is the MI program entry point, which is the port used
for clients to connect to MI programs in Movex Java. This is the
boot.batchdispatcher.port, for which the default is set to 6800.

boot.meproxy.baseport=7000 I Base port for connecting a Movex
Explorer single port interface session.

boot.meproxy.range=1000 I Range of ports that are available for use
of Movex Explorer single port interface
sessions, relative to the base port.

mvx.app.pgm.EDI.port=7409 I Port for connecting to the EDI server.

boot.dbdispatcher.port=6801 I Port for connecting the Server View to
the dbdispatcher of a remote database
server.

runtime.standAloneDbsPort=9993 I Port for connecting the Movex database
running on a remote JVM.

Property T
y
p
e

Description
124 Intentia Movex Java on the iSeries Server: An Implementation Guide

The others are boot.subs.baseport, determining on which ports the subsystems
will listen, and the boot.subs.usrport, which actually is an increment (relative the
owning subsystem) for the port resolvers used by clients to connect to MI
programs.

For example, the boot.batchdispatcher.port is set to 6800. Movex Java is
configured to have a maximum of 200 subsystems. The
boot.subs.baseport=6100 makes subsystems occupying ports 6100-6299. An
appropriate boot.subs.usrport setting is boot.subs.usrport=200, which makes
ports 6300-6499 occupied by the port resolvers. If you have 201 subsystems
running with these settings, there is a potential port collision on port 6500.

Externally accessible ports
The ports needed to be accessible from outside Movex Java for MI programs bbp
= boot.batchdispatcher.port, bsb = boot.subs.baseport, and bsu =
boot.subs.usrport are (above example parameters within parenthesis):

bbp (6800)
bsb + bsu -> bsb + 2 x bsu - 1 (6300 –> 6499)

Single port Movex Explorer
Movex Explorer always connects to the application server through the port
defined in the property boot.medispatcher.port for which the default is 9973. The
application server then dynamically advises a port to use for further
communication. This dynamically advised port cannot always be predicted, and
is, therefore, difficult to define for use through a firewall.

Instead a special communications driver may be used, named Movex Explorer
Single port driver. This solution, which requires more resources on the server,
works by the help of a proxy server built-in to the application server. This means
that all communication between the client and the application server uses the
external port defined by the property boot.medispatcher.port. The proxy server
internally handles the communication through ports defined in the properties
boot.meproxy.baseport and boot.meproxy.range.

Telnet interface
The application server has a built-in Telnet server that may be used to control the
operations. If you plan to use this facility through a firewall, the port defined by
the property boot.kbdserver.port must be allowed.
 Chapter 9. Security 125

Server View interface
The normal tool for surveillance of the Movex Java server is HTML based and
named Server View. By using this tool, you can do most of the administrative
tasks needed for your installation. If this tool is to be used through a firewall, the
port defined by the property boot.wm.html.port must be allowed.

Additional security for Server View
There are two properties that give additional security for the Server View:

boot.wm.html.requireLogon Specifies whether the user attempting to use the
Server View must enter a valid password.

boot.wq.addr Lists the client IP addresses that are allowed to
connect to the Server View port.

9.4 Access control
When you install Movex Java, you must configure the access control security so
that no one gains unauthorized access to the application itself or to the database.

This section offers some basic hints about how to set up the access control. That
is, you can have full control over the different components of the installation from
a management point of view. In practice, the names used for users and groups in
this section may be changed without affecting the functionality of the installation.
Intentia recommends that you use its naming pattern since it is proven to work.

9.4.1 Access control setup considerations
You must set up access control in Movex Java on a platform-dependent basis.
This is because it relies upon mechanisms found in the underlying operating
system in use on the specific platform. Still you can see some common patterns.
The approach is to use the same rules for naming as much as possible to make
the different installations easier to understand.

The basic principle used is Mandatory Access Control (MAC), which means that
the single user cannot change the rights afterwards. Instead all maintenance of
the access control has to be set by one of the appointed management users.

Also an ordinary user of Movex Java does not have any access rights to neither
the application nor the database. All functional access to ordinary users is
granted through the ordinary use of the application.
126 Intentia Movex Java on the iSeries Server: An Implementation Guide

All platforms in use for the moment – OS/400, Windows, and Solaris – offer
basically the same access operations (read, write, and execute rights) with some
minor differences. This means that the same level of security may be reached
regardless of the choice of platform.

There are two different access control models in use, depending upon in which
environment the installation is done. The main difference between these two
models is whether the application and the database reside in the same server
(Centralized model) or they are placed on different servers (Decentralized
model). It is also important to know whether the database management system
(DBMS) shares the authority model with the underlying operating system.

9.4.2 OS/400 platform overview
System security is an integrated function in OS/400. It is implemented at the
instruction level and controls all software functions on the iSeries server. Users
are identified and authenticated by a single security mechanism, at the system
level, for all functions and environments available on an iSeries server. This
includes program execution, database, applications, and all objects on an iSeries
server. It also means that they are all under the same security control.

In OS/400 terminology, an authority is the permission to access an object. The
object owner and the security officer (or other *ALLOBJ users) can grant or
revoke authority to an object. It is important to understand the difference between
authority to an object and authority to the data in the object. Such operations as
moving, renaming, saving, or deleting apply to the object accordingly. It is
possible to have authority for these operations without having access to the data
stored in the object. Likewise, you can have full access (read, write, update,
delete, or execute) to the data in an object without having full authority to
manipulate the entire object.

9.4.3 Scenario description
On the OS/400, the centralized access control model is used. This means that
the same user, MSrvAdm, is used as the owner of both the application and the
database. Also the group MSrvAdms is used as the primary group to grant
manager rights to the application and database for other users if needed.
Figure 9-4 illustrates the scenario.
 Chapter 9. Security 127

Figure 9-4 Access control scenario on OS/400

The main reason for selecting this setup for the OS/400 is the fact that the creator
of objects in the integrated file system (IFS) where the application resides
automatically becomes the owner of the objects. The IFS also supports the
method of authority inheritance of the group settings. By creating the root
directory and setting the authority right for it, all components installed in that
directory automatically inherit the right authority settings.

This means that as long as the user profile MSrvAdm is used when performing
all installation and maintenance, everything is created with the right authority. If
another user, that either has the *ALLOBJ special right or belongs to the
manager group MSrvAdms, is used, that user becomes the owner of the objects
created. This is normally not a problem, since the authority is handled by
inheritance from the overlying folder. To avoid possible problems with this, there
are tools in the Utility library, MVXCJVA, that you may use to set the authorities
correctly.

Movex_11.4.0
cus

Mvx

Mxx

Local Machine (App/Db Server)

Own

R

MSrvAdm

MSrvAdms

ODBC user

Movex user

MUsers

Domain

MSrvAdm

MSrvAdms RWX

MDbUser

RWXMDb ReadODBC user MDb Read

MMexAdm

MMex Users

MMexAdms

R

RWX

Local Machine (Mex Server)

Movex Explorer
 NextGen1

Bin

Document Links

Help

Icon Links

Info

MOutAdm

MOutAdms

Local Machine (Out Server)

RWX

MoveOut

drivers

Filler_files

Init

MovexLng

OutDefinitions

Legend:
R = Read
W = Write
X = Execute
128 Intentia Movex Java on the iSeries Server: An Implementation Guide

Another reason for the centralized model to be used on OS/400 is the fact that
the DBMS (DB2 UDB for iSeries) is a fully integrated part of the operating
system. This makes it possible to use exactly the same access control model for
both the application and the database.

9.4.4 Users and groups
The users and groups used on the OS/400 are created automatically through the
first phase of the installation. Tools are also available in the Utility library,
MVXCJVA, to check the users and groups later.

Table 9-2 shows the different users and groups that are recommended for use,
by platform.

Table 9-2 Recommended users and groups

Users
This section describes the users that are used for the access control. They are all
created as described here during the LODRUN phase of an installation.

Type OS/400 Windows Solaris

MAppAdm User Y Y

MDbAdm User Y

MDbUsr User Y Y Y

MSrvAdm User Y (Y)

MAppAdms Group Y Y

MDbAdms Group Y

MDbReads Group Y Y Y

MSrvAdms Group Y (Y)

Y = Used
(Y) = Optional
 Chapter 9. Security 129

MSrvAdm: Movex Server Administrator
The user MSrvAdm is, in the centralized access control model, the owner of both
the application and the database. The user can also be used in the decentralized
access control model as a general management user, on the Windows domain
level, that has manager rights through the two manager groups – MAppAdms
and MDbAdms (Figure 9-5).

Figure 9-5 Msrvadm Properties

MSrvAdm is the user that normally should be used to perform installation and
maintenance of the Movex Java on the OS/400 platform. If this user is used, no
further actions are required to obtain the right authorities for the application or the
database.
130 Intentia Movex Java on the iSeries Server: An Implementation Guide

As shown in Figure 9-6, the user MSrvAdm belongs to the group MSrvAdms.
This group is also set as the user primary group. All objects created by the user
should be assigned All Access rights for the group.

Figure 9-6 Msrvadm - Groups

Note: If an older version of Movex is installed on the same OS/400, the owner
group of that installation, MOVEX, should not be assigned to the user
MSrvAdm. This is because that group is defining a different access control
model.
 Chapter 9. Security 131

The user MSrvAdm is assigned the system privileges in Figure 9-7 as a
minimum. If desired, you can also assign the system privilege Security
Administration, but that is not necessary.

Figure 9-7 MSrvAdm - Capabilities
132 Intentia Movex Java on the iSeries Server: An Implementation Guide

The user MSrvAdm has the Utility library, MVXCJVA, assigned as Current library
(Figure 9-8).

Figure 9-8 Msrvadm - Jobs: General page

MVXCJVA
 Chapter 9. Security 133

The Initial menu for the user MSrvAdm is MVXSTART in the Utility library,
MVXCJVA (Figure 9-9).

Figure 9-9 Msrvadm - Jobs: Session Startup page

MDbUsr: Movex Database User
The user MDbUsr is used, in both the centralized and the decentralized access
control model, to connect to the database from the application. The name of this
user and the password in use must be set up in the Movex.properties file to give
the application server the ability to connect to the database. The properties are:

dir.con.user The name of the user profile that is used to connect to the
database.

dir.con.password The password of the user profile used to connect to the
database.

If possible, according to the security policies in place for the installation, allow
this user to have a never expiring password. Otherwise routines must be in place
to change this manually on a regular basis.
134 Intentia Movex Java on the iSeries Server: An Implementation Guide

The user MDbUsr is an internal user used to connect to the database from the
application (Figure 9-10).

Figure 9-10 Mdbusr Properties
 Chapter 9. Security 135

The database user MDbUsr does not belong to any groups (Figure 9-11).

Figure 9-11 Mdbusr - Groups
136 Intentia Movex Java on the iSeries Server: An Implementation Guide

The user MDbUsr has no special system privileges (Figure 9-12).

Figure 9-12 Mdbusr - Capabilities: Privileges page
 Chapter 9. Security 137

Under Password expires, select Never for the user MDbUsr to avoid unforeseen
stops in the processing (Figure 9-13). This is only if the security policy of the
installation allows users to have this setting.

Figure 9-13 Mdbusr - Capabilities: Password page
138 Intentia Movex Java on the iSeries Server: An Implementation Guide

Groups
This section describes the groups that are used for access control.

MSrvAdms: Movex Server Administrators group
The group MSrvAdms is used to give manager rights to both the application and
the database in the centralized access control model. This group could also be
used in the decentralized access control model, on Windows, to gather users on
the domain level that should have manager rights through the two local groups
MAppAdms and MDbAdms.

The user MSrvAdm is the only default user that belongs to the group MSrvAdms
(Figure 9-14).

Figure 9-14 Msrvadms Properties
 Chapter 9. Security 139

The manager group MSrvAdms does not have any special system privileges
(Figure 9-15).

Figure 9-15 MSrvAdms - Capabilities

Note: Ordinary users that should be assigned manager rights through the
group MSrvAdms must have this group set as primary group, in the same way
as user MSrvAdm. This means that, if an older version of Movex is installed on
the same iSeries server, the same user profile cannot be assigned manager
rights to both versions. This is due to a conflict in the assignment of groups
between the two different access control models that are in place for these
versions.
140 Intentia Movex Java on the iSeries Server: An Implementation Guide

MDbReads: Movex Database Access group
The group MDbReads is used to give external users read rights to the database
in both the centralized and the decentralized access control model. The
database readers group, MDbReads, does not belong to any groups
(Figure 9-16).

Figure 9-16 Mdbreads Properties
 Chapter 9. Security 141

The group does not have any special system privileges (Figure 9-17).

Figure 9-17 Mdbreads - Capabilities: Privileges page

9.4.5 Authority settings: Application
By setting the right authorities to the root folder of the installation, that authority is
inherited by the lower level components when the installation is done. These
settings are done automatically when the function to create the root folder, found
in the Utility library MVXCJVA, is used.
142 Intentia Movex Java on the iSeries Server: An Implementation Guide

The owner of the file structure is the MSrvAdm user, and the primary group is
MSrvAdms. Both the owner and the primary group have full authorities to the
structure, while the system default group Public is excluded from the structure
(Figure 9-18).

Figure 9-18 Application authority: Root folder

Also note that the MDbUsr user and the MDbReads group do not need any
authority to the application.
 Chapter 9. Security 143

By the inheritance mechanism, the assigned authorities go all the way down to
the lowest level of the structure (Figure 9-19).

Figure 9-19 Application authority: Single class

9.4.6 Authority settings: Database
For the tables in the database, the settings looks a little more complicated. The
owner, MSrvAdm, and the primary group, MSrvAdms, have All authority while the
Movex database user, MDbUsr, has Change authority. The Movex database
access group, MDbReads, has only Use authority because that group should be
used to give external users the ability to read data in the database but not to
update the data (Figure 9-20).
144 Intentia Movex Java on the iSeries Server: An Implementation Guide

Figure 9-20 Database authority

These settings work for the major part of the tables in the database, but for tables
created dynamically in runtime, the Change authority for MDbUsr is not enough.
This is the fact for the tables that constitute the datasets, for example. To manage
these tables, the user MDbUsr needs All authority. When these tables are
created this happens automatically, because MDbUsr becomes the owner of the
files. If the utility to set authority for the database found in the utility library,
MVXCJVA, is used, it takes this into consideration.

Figure 9-21 shows the same information as Figure 9-20, but in the traditional
5250 way. The information shown may vary somewhat in how the groups are
represented. This is because of the fact that users and groups in the OS/400
security context basically are the same thing.
 Chapter 9. Security 145

Figure 9-21 Edit Object Authority display

9.5 Movex authority system
This section describes the built-in authority system of the Movex application. The
major functionality is the same in the Movex Java generation of the application as
in previous generations, with some minor differences.

The Movex authority system is a programmed authority that operates at two
different levels of the functions. It can operate inside a function or outside a
function on a general level.

The programmed authority is built into some functional areas. It works inside
single programs, taking into account the business data in Movex. For example, in
the General Ledger, authority to certain accounts can be restricted to certain
users. Or in Purchasing, the authority to accept purchase requisitions can be
authorized at different monetary values. Functional-related security is not a
concern here.

Edit Object Authority

 Object : MITMAS Owner : MSRVADM
 Library : MVXCDTA Primary group . . . : MSRVADMS
 Object type : *FILE

 Type changes to current authorities, press Enter.

 Object secured by authorization list *NONE

 Object
 User Group Authority
 MSRVADM *ALL
 *GROUP MDBREADS *USE
 MDBUSR *CHANGE
 *GROUP MSRVADMS *ALL
 *PUBLIC *EXCLUDE

Bottom
 F3=Exit F5=Refresh F6=Add new users F10=Grant with reference object
 F11=Display detail object authorities F12=Cancel F17=Top F18=Bottom
 (C) COPYRIGHT IBM CORP. 1980, 2000.
146 Intentia Movex Java on the iSeries Server: An Implementation Guide

The general function authority is an overriding layer of Movex that applies to all
functions. It is independent of the functional area. The Movex authority system is
also independent of the underlying OS/400 security mechanisms. They are used
to define access control security, which is discussed in 9.4, “Access control” on
page 126. This section deals with general function authority.

Figure 9-22 shows an overview of Movex authority.

Figure 9-22 Movex authority overview

Many different components constitute the general function authority system of
Movex. The most central one is the Movex user definition, which is handled within
the program ‘User. Open’ (MNS150). With this definition as the basis, more
detailed information is maintained to define to which companies and divisions a
specific user is authorized, and to specify what authority the user has to specific
 Chapter 9. Security 147

functions within a specific company and division. On top of this, the definitions
may be made using different grouping levels to ease maintenance. Intentia
recommends that you create a plan for the security structure before you start
entering the definitions.

Another part of the authority mechanisms, that is often forgotten, is the ability to
create unique menus for a user or a group of users and then lock these users to
these menus. This is normally the easiest way to get started with the setup of the
authority system.

9.5.1 Movex user definition
This section describes the programs and methods used for user definition in
Movex.

‘User. Open’ (MNS150)
To use the Movex system, each user must be defined in the program ‘User.
Open’ (MNS150). This program contains all the environmental information that is
assigned to each user to set up the correct environment when the user starts a
new session. For some of the values entered, the user then has the ability to
override the settings within the session.

The information to enter in ‘User.Open’ (MNS150) is for the moment larger than
necessary for Movex Java, because this program is still synchronized with older
generations of the Movex system. This may change in a future version of Movex.
148 Intentia Movex Java on the iSeries Server: An Implementation Guide

The first detail panel defines the user to the system. It includes the start values
the user should have for such things as company and division, language, date
format, and others (Figure 9-23).

Figure 9-23 User. Open’ (MNS150), panel E
 Chapter 9. Security 149

On the second panel of the program (Figure 9-24), only the following fields are of
interest for Movex Java:

Field Description

Start menu The name of the start menu assigned to a user must correspond
to a menu file (.tre file) that must exist in the Movex Explorer
installation. If that is the case, this menu is shown to the user.

Menu lock In Movex Java, only Menu lock = 0 has meaning. This setting
means that the user does not have access to the Movex menu
tab. At the same time, if no start menu is stated, or the start
menu stated does not exist as a menu file, the user is only
presented the Process and Favorites menu tabs. Menu lock = 0
also disables the Run command in Movex Explorer for this user.

Figure 9-24 ‘User. Open’ (MNS150), panel F
150 Intentia Movex Java on the iSeries Server: An Implementation Guide

The information on this panel is not used in Movex Java (Figure 9-25).

Figure 9-25 ‘User. Open’ (MNS150), panel G

Grouping users
Users may be grouped to ease maintenance of the authority settings. One user
may belong to no group or to one group. This information is entered in the field
‘User grp func’ on panel E in ‘User. Open’ (MNS150). The group name entered
must first be defined in the same program by entering a user that on the E panel
is specified as ‘User type’ *GRPPRF.

‘Authorization. Specify for Company’ (MNS151)
To gain access to the Movex application, the users must not only be defined
within ‘User. Open’ (MNS150), but they must also be authorized to use the
companies and divisions in question. This authority is specified in the function
‘Authorization. Specify for Company’ (MNS151) that may be reached by selecting
‘User ID’ under Open related on the overview panel of the program ‘User. Open’
(MNS150). Select the proper record in the overview panel and right-click to find
the Open related menu.
 Chapter 9. Security 151

All valid combinations of company and division per user are displayed in the
panel in Figure 9-26.

Figure 9-26 ‘Authorization. Specify for Company’ (MNS151), panel B

There is also the ability to assign a user as authorized to all existing companies
and divisions by selecting 'Upd user id' under Open related on the overview
panel of ‘User. Open’ (MNS150).

Notes:

� This mass update is only done for existing companies and divisions. If a
new company or division is entered afterwards, all users that should be
authorized to that combination must be updated.

� This mass update function should be used with care. The case may be that
not all users should be authorized to all the existing companies or
divisions.
152 Intentia Movex Java on the iSeries Server: An Implementation Guide

Information specified in ‘User. Open’ (MNS150) may be overridden by
information specified in ‘Authorization. Specify for Company’ (MNS151) for the
specific combination of user, company, and division. This could be helpful if one
division is operating under a different date format or another language, for
example (Figure 9-27).

Figure 9-27 ‘Authorization. Specify for Company’ (MNS151), panel E

Tip: Be aware of the difference between creating a new user in ‘User. Open’
(MNS150) by using New record or Copy record. If New record is used, the new
user is automatically authorized to all existing companies and divisions. If
Copy record is used, the new user inherits the authorization from the user that
was copied. This means that it is convenient to have some template users,
with the right authority set, entered in this program and then use Copy record
to add new users to the system.
 Chapter 9. Security 153

9.5.2 Movex general function authority
Movex general function authority works by making an association between a
function and a user, and specifying whether the combination is allowed. The
general function authority is maintained by ‘Function. Connect Authority’
(SES003). You can simplify maintenance of the general function authority by
using function and user groups.

Restricting a user’s access to a specific menu by setting a specially designed
start menu in ‘User. Open’ (MNS150) does not implicitly restrict access to other
functions in the system. For greater power, combine the Start menu information
with Menu lock = 0, which disables the Run command in Movex Explorer. If not,
you must define all authority settings in ‘Function. Connect Authority’ (SES003).

In ‘Function. Connect Authority’ (SES003), you see a list of the entries already
made. At delivery time, there are no entries in this list (Figure 9-28).

Figure 9-28 Function. Connect Authority’ (SES003), panel B

Note: The user MVXSECOFR bypasses all Movex security. This can be useful
if you by mistake “lock yourself out” of ‘Function. Connect Authority’ (SES003).
154 Intentia Movex Java on the iSeries Server: An Implementation Guide

When working at a central level (division Blank), you can view individual
divisions’ entries using the Division field. This does not apply when working at
the division level.

On the E panel (Figure 9-29), you define the specific authority to each
combination of function and user by setting the Funct permitted field to 1 or 0:

1 The user is permitted to use the function.
0 The user is not permitted to use the function.

Figure 9-29 ‘Function. Connect Authority’ (SES003), panel E

If you set the Funct permitted field to 1, you can set the standard options (1 to 9)
to be allowed or disallowed, or use function keys F1 or F24.

The Valid to date field gives the entry a limited time span. After the date has
passed, Movex ignores the entry.

Note: The entries can either disallow a function or allow a function. A value of
1 in the Alv column means that the function is allowed. A value of 0 indicates
that it is not allowed for this specific user.
 Chapter 9. Security 155

Relationship between company and division
When you are maintaining general function authority, your entries apply only to
the company or division in which you are currently working. To maintain another
company or division’s authorities, you must first switch to that company or
division.

Still there is a referential link between a company and its division in the Movex
authority system. Entries made at the company level (division blank) also apply
to any divisions in that company that have no security entries of their own. This
can be thought of as the divisions that have no need for their own security, and
therefore, adhere to company policy.

In this example, as illustrated in Figure 9-30, Company 1 central has some
security entries in ‘Function. Connect Authority’ (SES003). Division A in company
1 has no security entries of its own, and therefore, uses the security entries of its
parent company. That is, it adheres to company policy.

Figure 9-30 Relationship between company and division security

Divisions B and C in company 1 have entries of their own, so the reference back
to the parent company is broken. They do not refer to company-level entries at
all, even for users or functions for which they do not have entries. If a division has
any security of its own, even a single record in ‘Function. Connect Authority’
(SES003), it breaks the reference to company security.

Tip: First decide whether the system should be open or closed. By default, the
system is open. However, by putting an entry with a blank for both function and
user and setting the Funct permitted to 0, the system is closed, and all
functions that should be available must be opened.
156 Intentia Movex Java on the iSeries Server: An Implementation Guide

Company 2 Central and division F in company 2 do not have security. Division G
in company 2 has security entries of its own. These divisional restrictions are not
seen at the company level. The security in the division does not mean Company
2 Central is secured.

Movex authority search priorities
Since it is possible to mix individual entries and group entries, it may be of
interest to know how Movex resolves requests from users to run functions. The
principle is that specific entries are always searched before generic ones are
searched.

Table 9-3 shows the possible combinations of user and function, individual and
group, and the order in which Movex searches for authority records. Whenever a
match is found, the search stops.

Table 9-3 Authority search priorities

The ‘blank’ user or function denotes no entry, which means a global group.

User Function

Level 1 Individual user ID Individual function ID

Level 2 Individual user ID Function group

Level 3 User group Individual function ID

Level 4 User group Function group

Level 5 ‘blank’ Individual function ID

Level 6 ‘blank’ Function group

Level 7 Individual user ID ‘blank’

Level 8 User group ‘blank’

Level 9 ‘blank’ ‘blank’
 Chapter 9. Security 157

158 Intentia Movex Java on the iSeries Server: An Implementation Guide

Chapter 10. Backup and recovery

This chapter covers the basic concepts of Movex Java backup and recovery on
an iSeries server.

10
© Copyright IBM Corp. 2002. All rights reserved. 159

10.1 iSeries backup and recovery overview
Backup and recovery options for Movex Java on an iSeries are managed by
using native OS/400 facilities. OS/400 provides many facilities to save and
restore information on the iSeries server. You can select these from menu
options or use them in user-written programs, depending on the backup
requirements and your operational environment.

Backup and Recovery Media Services/400 (BRMS/400) provides automated
backup and archival operations, and tape management services. For additional
information on BRMS/400, refer to Backup Recovery and Media Services for
iSeries, SC41-5345.

This section discusses some considerations for backup and recovery and
includes some example backup programs for reference. This section does not
develop a full backup and recovery strategy. Nor does it cover all save and
restore scenarios, because each one is unique to the save strategy or reason for
restore. For more information, see Backup and Recovery, SC41-5304.

10.2 Backup types
The best and easiest way to ensure that your backup is complete is to make a
cold backup. That means that you end Movex Java, and there is no other activity
on your system during the backup.

You can use the save-while-active functions. However, to be sure that the backup
is consistent, you still have to end Movex Java for a short while when a
checkpoint is created in the database. Then you can start Movex Java again.

If you do not end Movex Java while you create the checkpoint, you will
experience problems in determining where you should start in a recovery
situation.

You can also use high availability functions to make your downtime even shorter.
Then you will have a second iSeries server with replicated or mirrored data
where you can make your backup when convenient.

10.2.1 Cold backup
You can perform a cold backup in many different ways. This section discusses
the manual approach. An alternative is to use the automated approach, using a
CL program.
160 Intentia Movex Java on the iSeries Server: An Implementation Guide

To perform a cold backup manually, follow these steps:

1. Verify that no users or batch jobs are active in Movex Java. End Movex Java
from the Server View or directly from the WRKACTJOB panel. Wait until
Movex Java has ended.

2. Save the Movex Java libraries to tape with the SAVLIB command:

SAVLIB LIB(MVXxDTA) DEV(TAPxx) ENDOPT(*LEAVE) ACCPTH(*YES)

3. Save the integrated file server (IFS) tree where the Java objects reside with
the SAV command:

SAV DEV('QSYS.LIB/TAPxx.DEVD') OBJ(('/object-path-name')) ENDOPT(*LEAVE)

4. Restart Movex Java with the start program.

10.2.2 Save while active
The save-while-active (SWA) function on the iSeries server is an option on
several of the save commands. It allows you to use the system during all or part
of the backup process, reducing the planned outage time while backups are
being taken. It allows you to modify objects most of the time they are being
saved. In contrast, other save functions provided on the system allow no access
to the objects as they are being saved or only allow the objects to be read as they
are being saved.

There are two ways in which SWA can be used. Each is discussed in the
following sections.

True save-while-active (advanced) method
This method involves actually saving the objects as they are updated. Using this
method, the time-relationship between objects is not maintained. For example,
object A in library A may be saved first, and then some time later, object Z in
library Z is saved.

During the time between A and Z being saved, object Z is updated, losing the
integrity between the two objects. To recover from such a save and maintain the
integrity of the database, it is necessary that, at a minimum, journaling is running
when the save is taken and preferably commitment control is set.

In the event of restoring from the backup, the objects would initially be restored
exactly as they had been saved (including the time differences between objects A
and Z being saved). Then you must back out the updates to a known point of
integrity, using the journal. Clearly this can be a difficult and time consuming
task. If commitment control is included in the application design, it can be easier
so that changes can be backed out to a commitment boundary.
 Chapter 10. Backup and recovery 161

Save after checkpoint (recommended) method
The recommended way to use SWA is to hold the system so that no updates are
done to the database until a checkpoint is established. Then, once the
checkpoint is reached, you can safely allow users back on the system to continue
making updates to the database while it is being saved to tape.

The system performs the save-while-active function by maintaining an image of
the object being saved as it existed at one time. As the object is changed by an
application during the save, the system maintains an original copy of the pages
of the objects that are being changed.

In virtual storage, a page is a fixed-length block that has a virtual address and is
transferred between main storage and auxiliary storage. It can be viewed as if the
system is maintaining two images of an object as it is being saved:

� An image that contains the updates to the object that normal system activity
works with

� A second image is an image of the object from a single point in time, that only
the save-while-active job is using to save the object to the media

The system does not maintain two complete images of the object being saved. It
only maintains two images for the pages of the objects that are being changed as
the save is being performed.

Follow these steps to perform a save after checkpoint backup manually:

1. Verify that no users or batch jobs are active in Movex Java. End Movex Java
from the Server View or from directly from the WRKACTJOB panel. Wait until
Movex Java has ended.

2. Save the Movex environment in the IFS tree with the SAV command:

SAV DEV('QSYS.LIB/TAPxx.DEVD') OBJ(('/env/xxxx’)) ENDOPT(*LEAVE)

3. Save the database by running the SAVLIB command with SAW options:

SAVLIB LIB(MVXxDTAxx) DEV(TAPxx) ENDOPT(*UNLOAD) SAVACT(*SYNCLIB)
SAVACTWAIT (*NOMAX) SAVACTMSGQ(LIBxx/MSGQxx) ACCPTH(*YES)

4. When the checkpoint is reached, you receive a message to the message
queue you defined in the SAVLIB command. Then you can start the Movex
Java environment again.

10.3 Backup schedule
When you decide the backup routines in a project, follow the technical Implex
recommendations. This activity takes place in the Configuration phase of Implex.
See the Implex Operational Handbook, which is available from the Intentia Wire.
162 Intentia Movex Java on the iSeries Server: An Implementation Guide

Consider these recommendations:

� Daily backup: For changes only, SAVCHGOBJ. A typical setting for libraries
containing changed data for a Movex Java version installation is MVXvDTA
(where v is the version, for example, A, B, etc.).

� Weekly backup: For comprehensive backup except for SAVSYS, operating
system, and IBM installed software

� Quarterly backup: For a full system backup

Table 10-1 shows what you need to save in a backup.

Table 10-1 Save contents

Figure 10-1 shows an example of Movex objects in the IFS.

Figure 10-1 Movex objects in IFS -12.4.0

Object Frequency

MVXJDTAxxx – standard DB
HUMJDTAxxx – HUM DB
MMAJDTAxxx – market DB
MVXJJRxxx – journal library
MRPSIMYY – MRP simulation

Daily

MVXJJVA At least weekly (and before and after new SP
installation)

Environment objects in IFS (refer to
Figure 10-1)

Daily

IFS objects (refer to Figure 10-1) At least weekly (and before and after new SP
installation)

J = Movex Java version, MA = Market, YY = simulation version 01 to 20
 Chapter 10. Backup and recovery 163

10.4 Recovery of objects
For the system to automatically re-establish your journaling environment, restore
the objects in this sequence:

1. Journals
2. Based-on physical files
3. Dependent logical files
4. Journal receivers

When these objects are in the same library, the system restores them in the
correct sequence. When these objects are in different libraries, you must restore
them in the correct sequence, or you must manually re-establish your journaling
environment after the restore operation.

If the entire system is not lost, you may need to simply restore an individual
library or file that was inadvertently deleted or has become damaged or corrupt in
some way. You can accomplish this by using the RSTLIB, RSTOBJ, or RST
command for IFS objects. Sometimes it is easier to delete the object that you
want to replace before you overlay it.

Since it is impossible to predict the different scenarios, refer to Backup and
Recovery, SC41-5304.

10.5 Recovery of journaled objects using journaled
changes

You can recover from many types of damage to journaled objects by using
journaled changes. For example, an object is damaged and becomes unusable,
an error in an application program caused records to be improperly updated, or
incorrect data was used to update an object.

In each of these instances, simply restoring a saved version of the object may
result in the loss of a significant amount of data. If you use the Apply Journaled
Changes (APYJRNCHG) command to apply journaled changes, significantly less
data may be lost.

10.6 Recovery after abnormal system end
If the system abnormally ends while you are journaling objects, the system
performs the following actions:

1. Brings all journals, journal receivers, and objects that you are journaling to a
usable and predictable condition during the IPL. This includes any access
164 Intentia Movex Java on the iSeries Server: An Implementation Guide

paths that are being journaled and that are in use at the time the system
abnormally ended.

2. Checks all recently recorded entries in the journal receivers that were
attached to a journal.

3. Places an entry in the journal to indicate that an abnormal system end
occurred. When the system completes the IPL, all entries are available for
processing.

4. Checks that the journal receivers attached to journals can be used for normal
processing of the journal entries. If some of the objects you are journaling
cannot be synchronized with the journal, the system sends a message
(CPF3172) to the history log (QHST) that identifies the journals that could not
be synchronized.

If a journal or a journal receiver is damaged, the system sends a message to
the history log identifying the damage that occurred. CPF3171 indicates that
the journal is damaged, and the message CPF3173 or CPF3174 indicates
that the journal receiver is damaged.

5. Recovers each object that was in use at the time the system ended
abnormally, using the normal system recovery procedures for objects. In
addition, if an object being journaled was opened for output, update, or delete
operations, the system performs the following functions so changes to that
object are not lost:

a. Ensures that the changes appear in the object. Changes that do not
appear in the journal receiver are not in the object.

b. Places an entry in the journal receiver that indicates whether the object
was synchronized with the journal. For database files, if the file cannot be
synchronized with the journal, the system places a message (CPF3175) in
the history log identifying the failure, and you must correct the problem.

For other journaled objects, the system places message CPF700C in the
history log identifying the failure, and you must correct the problem. A
synchronization failure can occur if the data portion of the object is
damaged, a journal receiver required to perform the synchronization is
damaged, or the journal is inoperable.

10.7 Procedure for abnormal system end recovery
Follow these steps after an abnormal system end:

1. Perform a manual IPL.

2. Check the history log to determine if there are any damaged object, objects
that are not synchronized, or any damaged journals or journal receivers.
 Chapter 10. Backup and recovery 165

3. If necessary, recover the damaged journals or journal receivers as described
in “Recovering when a journal is damaged” and “Recovering when a journal
receiver is damaged” in Backup and Recovery, SC41-5304.

4. If there is a damaged object:

a. Delete the object.

b. Restore the object from the latest saved version.

c. Allocate the object so no one else can access it.

d. Restore the needed journal receivers, if they are not online.

e. Use the Apply Journal Changes (APYJRNCHG) command to apply the
changes to the object.

f. Deallocate the object.

5. If an object cannot be synchronized, use the information in the history log and
in the journal to determine why the object cannot be synchronized and how to
proceed with recovery. For example, you may need to use the DFU or a
user-written program to bring a database file to a usable condition.

6. Determine which applications or programs were active, and determine where
to restart the applications from the information in the history log and in the
journal.

If a journaled access path is in use during an abnormal system end, that access
path does not appear on the Edit Rebuild Access Path display. If the
maintenance for the access path is immediate or delayed, the system
automatically recovers the access path during IPL.

A status message appears for each access path whose maintenance is
immediate or delayed as it is being recovered during an IPL. The system places
a message (CPF3123) in the system history log for each access path that is
recovered through the journal during the IPL. This message appears for access
paths that are explicitly journaled and for access paths that are protected by
SMAPP.

10.8 Recovering when a journal is damaged
If a journal becomes damaged, the system sends message CPF8135 to the
system operator and to the job log. Use the Work with Journal (WRKJRN)
command to help you recover a damaged journal. Select option 6 (Recover
damaged journal) on the Work with Journals display to recover a damaged
journal.
166 Intentia Movex Java on the iSeries Server: An Implementation Guide

For a description of the Work with Journals display, see “Work with Journal
(WRKJRN) command options” in Backup and Recovery, SC41-5304, or the
WRKJRN command in the online command help. To view the help, type WRKJRN
on a command line, and press F1. Use the Work with Journals (WRKJRN)
command to recover a damaged journal if you are only journaling physical files
and access paths to this journal. The WRKJRN command performs all the
following steps, except for saving the physical files and logical files. The
WRKJRN command associates the receivers with the recovered journals without
having to delete and restore the receivers.

Complete the following steps to recover a damaged journal without using the
WRKJRN command:

1. Use the ENDJRNAP command (for the following sequence) to end journaling
for:

a. All access paths associated with the journal
b. All physical files associated with the journal
c. All IFS objects
d. All other object types

2. Use the DLTJRN command to delete the damaged journal.

3. Run the Create Journal Receiver (CRTJRNRCV) command. Create a journal
with the same name and in the same library as the damaged journal or
restore the journal from a previously saved version.

4. Enter the Start Journal Physical File (STRJRNPF) command for the physical
files that were journaled.

5. Use the Start Journal Access Path (STRJRNAP) command for access paths
that were journaled.

6. Type the Start Journal (STRJRN) command to journal IFS objects.

7. Use the Start Journal Object (STRJRNOBJ) command to journal other object
types.

8. Save the journaled objects to allow for later recovery.

9. Associate the old journal receivers with the new journal. Follow these steps:

a. Type WRKJRN and press Enter.

b. On the prompt display, enter the name of the journal.

Note: You can restore your journaling environment by deleting and
restoring all the objects that were being journaled. Objects that were
journaled, at the time of their save, automatically begin journaling at
restore time if the journal is online.
 Chapter 10. Backup and recovery 167

c. From the Work with Journal display, select option 9 (Associate receivers).

d. Press F12 to cancel the display.

e. Type the following command:

WRKJRNA JRN(library-name /journal-name)

Press Enter.

f. From the Work with Journal Attributes display, press F15 to display the
receiver directory. If the journal receivers are not reassociated correctly,
perform the following steps. These steps are usually required only if you
have journal receivers that were created before V3R1.

i. Save the journal receiver that was attached to the damaged journal.

ii. Delete it and restore it and any previously attached journal receiver you
need. You must delete and then restore the receiver after the journal is
restored or recreated to associate the journal receiver with the journal.
The journal receiver must be restored newest to oldest.

iii. Use the WRKJRNA command to display the receiver directory again.

Each time a journal is restored, a new receiver chain is started. This happens
because the last journal receiver on the chain that existed prior to the restore
process did not have the newly created receivers as its next receivers.

10.9 Recovering when a journal receiver is damaged
If a journal receiver becomes damaged, the system sends message CPF8136 or
message CPF8137 to the system operator and the job log. To recover from a
damaged receiver, choose one of the following options:

� If the damaged receiver is currently attached to a journal, use the Change
Journal (CHGJRN) command to attach a new receiver and detach the
damaged receiver.

� If the journal receiver is not currently attached to a journal, delete the journal
receiver by using the Delete Journal Receiver (DLTJRNRCV) command and
restore a previously saved copy.

� If the journal receiver was never attached to a journal, delete the receiver and
create it again or restore it.

If the journal receiver is partially damaged, all journal entries, except those in the
damaged portion of the journal receiver, can be viewed using the Display Journal
(DSPJRN) command. Using this list, you can determine how you need to recover
your objects. Applying or removing journal changes cannot be done with a
partially damaged journal receiver.
168 Intentia Movex Java on the iSeries Server: An Implementation Guide

IBM recommends that you use the Work with Journals (WRKJRN) command to
recover a damaged journal receiver.

10.10 High availability solutions
In today’s business environments, customers expect systems to be available
almost 24 hours-a-day, seven days-a-week. One hour of server downtime can
potentially cost a business hundreds of thousands of dollars. Achieving high
availability requires you to implement technologies that sharply reduce the
number and duration of unplanned outages. The iSeries server is the industry
leader in reliability, with a single system delivering an average of 99.9+%
availability.

High availability solutions on platforms other than an iSeries often use a shared
disk pool. The rest of the disks are replicated or mirrored.

The iSeries high availability solution differs in that there are no shared disk pools.
In addition to the high degree of disk protection afforded by RAID-5 and
mirroring, information on the iSeries server can be asynchronously replicated
onto another iSeries using journaling. This system can be physically connected
offsite by high-speed T-1 or T-3 communication lines. This way, the building in
which the primary system is located can theoretically be destroyed by a fire or
natural disaster. Then the alternate site can keep critical business operations
functioning (typically in a degraded performance mode) until the original site can
be restored.

10.11 iSeries high availability solution providers
There are several high availability solution providers for the iSeries server. They
are provided by Independent Software Vendors (ISVs). The main vendors and
their respective Web sites are:

� Lakeview Technology:

http://www.lakeviewtech.com

� Vision Solutions:

http://www.visionsolutions.com

� Data Mirror Corporation:

http://www.datamirror.com
 Chapter 10. Backup and recovery 169

http://www.lakeviewtech.com
http://www.visionsolutions.com
http://www.datamirror.com

170 Intentia Movex Java on the iSeries Server: An Implementation Guide

Chapter 11. Movex Java Utilities

This chapter describes briefly the most important utilities that are available for
you to use in Movex Java. These utilities include:

� Directory Compare
� Foundation Check
� Copy Data
� Log View
� Update Data

11
© Copyright IBM Corp. 2002. All rights reserved. 171

11.1 Directory Compare
The Directory Compare tool compares two directory structures to list all
differences when it comes to content. It is especially helpful in that you have the
ability to ignore file extensions. This makes it possible to compare a source
directory structure to a binary directory structure.

This tool runs independently from the application server.

Figure 11-1 The Directory Compare user interface
172 Intentia Movex Java on the iSeries Server: An Implementation Guide

11.2 Foundation Check
Foundation Check is described in the Quick Guide, which is available from the
Intentia Wire. This tool requires connection to a running application server in
order to function.

Figure 11-2 The Foundation Check user interface
 Chapter 11. Movex Java Utilities 173

11.3 Copy Data
This tool may be used to copy data within a database schema, between different
schemas in the same database, or between different databases. The copy may
be done by selecting individual companies or divisions that should be copied.

This tool runs independently from the application server, but requires an ODBC
data source to be set up for the database server in question.

Figure 11-3 The Copy Data user interface
174 Intentia Movex Java on the iSeries Server: An Implementation Guide

11.4 Log View
The Log View tool is suitable when dump logs are to be read offline from the
Server View. This tool runs independently from the application server.

Figure 11-4 The Log View user interface
 Chapter 11. Movex Java Utilities 175

11.5 Update Data
The Update Data tool can help you manipulate the data in a specific table in the
database. This tool requires a connection to a running application server to
function.

Figure 11-5 The Update Data user interface
176 Intentia Movex Java on the iSeries Server: An Implementation Guide

Chapter 12. System sizing

This chapter covers the basic concepts of the Movex sizing methodology.

12
© Copyright IBM Corp. 2002. All rights reserved. 177

12.1 Defining workload
The Movex Java workload can be defined both in terms of:

� Number of users concurrently logged on to the application
� Business transaction volume

Users are divided into a few main categories depending on the volume of
business transactions they are assumed to complete within one working hour. A
business transaction is defined as a logical unit of work from a user perspective
(entering a journal entry, raising a purchase order, placing a customer order,
etc.).

12.2 Definition of users
The activity level of users having an account in Movex Java varies. User activity
has a major impact on the required CPUs. Main storage requirements are related
to the total number of users that can be connected to the application at the same
time:

� Authorized - Global number of users defined in Movex authorization
database

The number of authorized users represents the maximum number of users
defined in Movex that can access the application at the same time.

� Concurrent - Global number of users connected to Movex application

The actual number of connected (logged on) users represents the maximum
number of users that are concurrently accessing the systems during a
working day. They have interaction with the application, even if it is with
different weight and workload. This number is, in most cases, smaller than the
number of authorized users.

� Low (Infrequent) - Occasional users

An infrequent user is logged on to the system and consumes system
resources. Typically this type of user definition applies to executives and
controllers. These users access the system from time to time. If they are
working during the peak hours, they have the least impact on the memory
resource.

Infrequent users are assumed to produce one business transaction per hour.
178 Intentia Movex Java on the iSeries Server: An Implementation Guide

� Medium (Active) - Regular users

An active user is logged on to the system and consumes system resources.
Typically this type of user accesses the system permanently and is working
with the system on a regular basis. This user definition applies to
accountants, clerks, or office personnel.

Active users are assumed to produce four business transaction per hour.

� High (Hyperactive) - Intensive users

A hyperactive user is logged on to the system and consumes system
resources. Typically this type of user accesses the system permanently and
works intensively with the system on a regular basis. This type of user
definition applies to the telesales environment and data entry work.

Hyperactive users are assumed to produce 20 business transaction per hour.

12.3 Calculating activity from a number of authorized
users

In the case where there is no information on the number of users associated to
each category in the previous section, the following assumptions are relevant:

� Authorized N/A
� Concurrent 80% of authorized
� Low 25% of logged on
� Medium 65% of logged on
� High 10% of logged on
� Total N/A

12.4 Calculating transaction volumes
Transaction volumes are calculated by adding the following transaction types
and, from those numbers, assuming a certain peak load.

Transaction types
There are three transaction types:

� Online transactions: The transaction workload is created by users who
interactively connect to the Movex Java application server. The transactions
are calculated based on the user types/activity described earlier.

� Batch transactions: These transactions are generated in batch by online
transaction workload. Batch transaction workload is generated during the
normal OLTP processing and it refers to ad-hoc batch and reporting.
 Chapter 12. System sizing 179

� Scheduled batch transactions: These transactions are generated out of the
normal OLTP processing. It refers to special scheduled activities as payroll
runs, General Ledger imports, etc.

Peak workload
Peak hours are the hours where the maximum number of concurrent (logged on)
Movex users impose the maximum load to the Movex Java application. It can
also be when large amounts of batch transactions are being processed.

12.5 Sizing methodology
All sizings (that is hardware requirement estimates) are derived from the
expected number of transactions to be produced in a specific case. The expected
peak and daily load expressed in transaction numbers are calculated based on
such data as:

� The expected number of users
� Background workload
� Peak transaction rate and time combined with experience based assumptions

on user activity

Next, those numbers are used to calculate minimum hardware requirements for
the load in question.

Generally, processor requirement calculations are based on benchmarks using a
mix of typical Movex Java business transactions. During benchmark testing, the
amount of CPU time (note, not clock time) consumed to process a fixed number
of transactions is determined for a specific processor type. When scaling up
(comparing throughput for different iSeries configurations), parallels are drawn
from earlier benchmarks to calculate the capability for the configuration in
question.

This “cost” combined with the expected number of transactions per time unit is
then used to pinpoint how much CPU power is needed. Calculation of main
storage and disk arm requirements is done in a similar way. Finally, this is
mapped to the current list of iSeries models.

12.6 The Quick Sizer
To provide user number-based sizing, a tool for internal use is provided. You can
obtain instructions on how to use this tool by sending an empty mail message to:

mailto: IRD-Movex-Sizing-Request@Intentia.com
180 Intentia Movex Java on the iSeries Server: An Implementation Guide

mailto: IRD-Movex-Sizing-Request@Intentia.com

Figure 12-1 illustrates a user sizing request.

Figure 12-1 A 200 user sizing request

Figure 12-2 shows the reply from Quick Sizer.
 Chapter 12. System sizing 181

Figure 12-2 Reply from Quick Sizer
182 Intentia Movex Java on the iSeries Server: An Implementation Guide

Glossary

access path Describes the order in which records
are to be retrieved and presented to the application
program. Records in a physical or logical file can be
retrieved using an arrival sequence access path or a
keyed sequence access path. For logical files, you
can also select and omit records based on the value
of one or more fields in each record.

Admin client An ordinary PC that is setup to serve
the application server with graphic capabilities for
administrative purposes. Most of the installation and
maintenance issues are done from this client.

American National Standard Code for
Information Interchange (ASCII) The code
developed by the American National Standards
Institute for information exchange among data
processing systems, data communications systems,
and associated equipment. The ASCII character set
consists of 7-bit control characters and symbolic
characters, plus one parity bit.

American National Standards Institute (ANSI) A
voluntary, nonprofit organization of U.S. business
and industry groups formed in 1918 for the
development of trade and communication
standards. ANSI is the American representative of
the International Standards Organization and has
developed recommendations for the use of
programming languages including FORTRAN, C,
and COBOL.

ANSI See American National Standards Institute.

API See application programming interface.

application Represents a major functional
management area in an enterprise, in the
Component Repository. For each Application, a set
of Components Groups is connected.
© Copyright IBM Corp. 2002. All rights reserved.
application component Represents the basic
building block for configuration of a user-specific
application, in the Component Repository. The
behavior of a component is exposed by its methods.
Components can be configured to meet specific
customer requirements, for example, operations to
be carried out, choice of workflow, and data fields to
expose. An Application Component consists of a
Business Component, Documentation Component,
and Education Component. A Business Component
conforms to the notion of a business object, a
representation of a real world artifact, for example,
customer, item, warehouse, budget, order etc.
Business Components, in turn, often use
finer-grained components to contribute to their
responsibility.

application programming interface (API) A set
of rules for program interaction with the purpose that
programs using the API can communicate with other
programs using the same API. It is an interface
between the application program and the underlying
system, for example functions for network
management. An API consists of a number of
formalized calls that the application program can use
to reach the system functions.

application server See Movex application server.

ASCII See American National Standard Code for
Information Interchange.

ASP See auxiliary storage pool.

authority In OS/400 terminology, the permission to
access an object.

autostart jobs Batch jobs doing repetitive work or
one-time initialization work that is associated with a
particular subsystem. The autostart jobs associated
with a subsystem are automatically started each
time the subsystem is started.
 183

auxiliary storage pool (ASP) One or more
storage units defined from the disk units or disk unit
subsystems that make up auxiliary storage. ASPs
provide a means of placing certain objects on
specific disk units to prevent the loss of data due to
disk media failures on other disk units.

Backup and Recovery Media Services/400
(BRMS/400) Provides automated backup and
archival operations, and tape management services.

BRMS/400 See Backup and Recovery Media
Services/400.

bytecode Intermediate code that is generated by
the Java compiler. The code must be interpreted or
translated to run on a specific platform or processor.

bytecode interpreter Generally included in JVM.
The bytecode interpreter is responsible for reading
the bytecode and for carrying out the operations that
they specify. The bytecode is interpreted on the fly
as the Java application steps from one instruction to
the next. As new versions of the JDK are introduced,
the overall performance of the bytecode interpreter
improves, because of the new algorithms that are
being developed.

bytecode verifier Generally included in JVM. The
bytecode verifier performs extensive checks before
running a Java program to ensure that the Java
bytecode has not been altered and that it still
conform to Java security specifications. This
involves such checks as type matching. For
example, when an arithmetic operation code is
encountered, the bytecode verifier checks that all
the operands involved in the operation are of the
integer type. If the bytecode does not pass the
verifier checks, the JVM throws a runtime exception
and the program is terminated. It is especially
important to perform extensive checks in an open
network environment where someone could run an
applet from an unknown source.

C++ An object-oriented programming language
developed at AT&T Bell Laboratories during the
early 1980s. C++ is a hybrid language whose
object-oriented features were grafted upon an
existing language. It is the most widely spread
object-oriented programming language. C++ is
available on most hardware platforms UNIX,
DOS, OS/2, Windows, and VMS.

CCSID Coded character set identifier. A way to tell
with what encoding data is stored in a database
table.

class loader Generally included in JVM. The class
loader is capable of dynamically locating and
loading the various classes that the application
uses. This is a powerful feature, because it allows
programmers to develop applications or applets that
consist of many classes that can be provided by
several different vendors. As the acceptance of Java
grows in the entire industry, many companies are
developing standard, ready-to-use software
components or Java beans that greatly simplify the
job of application developers.

COM See Component Object Model.

component group Consists of a group of
components, in the component repository. A
component group is used to refine navigation within
Movex. A component group generally defines and
describes a set of components.

Component Object Model (COM) From
Microsoft, COM defines how objects interact within
an application or between applications. A
component object conforms to this model,
implementing and using the interfaces that want to
access.

component repository The Movex internal
organization and architecture. The component
repository serves as the basis for the mapping of
Movex application components to business
processes in the Enterprise Process Manager
(EPM).
184 Intentia Movex Java on the iSeries Server: An Implementation Guide

database management system (DBMS) A
system that has a set of tables describing the data it
manages. The DBMS controls the access to the data
stored within it. The DBMS also has transaction
management and data recovery functions to protect
data integrity.

DBMS See database management system.

EBCDIC See Extended Binary Coded Decimal
Interchange Code.

encapsulation A technique in which data is
packed together with its corresponding procedures.
In object-oriented technology, the mechanism for
encapsulation is the object. It is the process of hiding
all of the details of an object that do not contribute to
its essential characteristics. Typically, the structure
of an object is hidden, as well as the implementation
of its methods. The terms encapsulation and
information hiding are usually interchangeable.
Encapsulation is one of the fundamental elements in
the object model. Encapsulation also involves
methods that make it more abstract than data hiding
and information hiding.

Enterprise Process Manager (EPM) A fully
integrated process-mapping tool, which manages
process design and application configuration. The
tool is used to design new processes or redesign
current ones. It is also possible to map
responsibilities to the processes. Enterprise
Process Manager consists of the Enterprise
Reference Model (ERM).

Enterprise Reference Model (ERM) A repository
of business processes used as a reference when
improving current processes and designing new
ones. See also Enterprise Process Manager.

EPM See Enterprise Process Manager.

ERM See Enterprise Process Model.

Extended Binary Coded Decimal Interchange
Code (EBCDIC) A character presentation (not
equal to ASCII) used in IBM mainframe computers.
An EBCDIC character is encoded using one byte of
storage. The EBCDIC character set is an IBM
standard that is most commonly found on mainframe
computers.

garbage collector Generally included in JVM. The
garbage collector provides fully automated memory
allocation and de-allocation, which is unlike C++,
where the programmer is responsible for allocating
memory to store new objects and freeing unused
memory when objects are being discarded. The
garbage collector solves one of the main problems
found in many C++ applications, which is known as
memory leaks. This is one of the most difficult bugs
to deal with when developing C++ applications, and
often C++ applications fail with an “out of memory”
error because of poor memory management. In
Java, the JVM allocates the memory needed when a
new object is created, while a background task,
running in a separate thread, continuously scans the
memory and de-allocates space that objects
(without an active reference in any of the running
classes) occupy. The garbage collector is key to both
the performance and the reliability of Java programs.

hard link In a file system, an actual path to an
existing object. A hard link is established by creating
a directory entry. A hard link cannot cross file
systems. Contrast with symbolic link.

history files Used when performing Movex
archiving from transaction files on data that is
considered by business functions to be used for
historical data or statistics reasons. The transfer to
the history files is often a task done on a scheduled
basis and initiated by a user or a weekly, monthly, or
other routine.

Implex The Intentia implementation method
developed specifically for the implementation and
management of all activities within an
implementation project of the Enterprise Application
Movex.

index See logical file.
 Glossary 185

inheritance A mechanism where classes can use
the methods and variables defined in all classes
above on their branch of the class hierarchy. A
relationship among classes, where one class shares
the structure or behavior defined in one (single
inheritance) or more (multiple inheritance) other
classes. Inheritance defines a kind of hierarchy
among classes in which a subclass inherits from one
or more superclasses; a subclass typically
augments or redefines the existing structure and
behavior of its superclass. A new class is specified
by enlarging an existing class from which the new
class is inheriting properties. When regarding a
class, it is not possible to determine any differences
between attributes and methods from the current
class and from the classes from which the current
class has inherited. Inheritance is used to divide
specifications in a natural way to obtain well-defined
and well-structured classes. Inheritance between
classes is used to describe that a class is a
specialization of another class. General properties
can be described in a class and then inherited by
subclasses. Programming by inheritance allows you
to define new objects by describing how they differ
from existing objects. Inheritance allows the formal
definition of commonality to be expressed for a set of
objects. Inheritance is the ability to create a new
class based on an existing class by defining the
differences from the existing class. Inheritance is
valid among classes, not among objects. A hierarchy
is created when inheritance is used. The possibility
to create polymorphism, through dynamic binding, is
connected to the inheritance mechanism.

inlining Includes a piece of code in another
sequence rather than performing a branch or a call
to a subroutine and dynamic dead code elimination.

Internet Worldwide constellation of servers,
applications, and information available to a desktop
client through a phone line or other type of
remote access.

JAR (Java ARchive) file A file format that is used
for aggregating many files into one.

Java An object-oriented programming language for
portable interpretive code that supports interaction
among remote objects. Java was developed and
specified by Sun Microsystems, Incorporated.

Java applet A small computer program that is
written in Java and runs inside of a Java-compatible
browser or appletviewer.

Java application See Java applet.

Java ARchive file See JAR file.

Java bean In Java, a portable,
platform-independent reusable component model.

Java Database Connectivity (JDBC) An API for
Java for connecting to and using databases. The
standard way to access Java databases, as set by
Sun Microsystems. Allows you to use any JDBC
driver database.

Java Development Kit (JDK) Software that Sun
Microsystems distributes for Java developers. This
software includes the Java interpreter, Java classes,
and Java development tools. The development tools
include a compiler, debugger, disassembler,
appletviewer, stub file generator, and documentation
generator.

Java Native Interface (JNI) Generally included in
JVM. You can view the JNI as the “glue” code that
allows a Java program to start a method that is
written in a language other than Java. Usually, the
supported languages are C or C++. This interface
allows for interoperation between Java applications
and legacy applications. However, by using native
methods you lose portability. By construction, native
methods are written to a specific execution
environment and are platform-dependent. As soon
as a Java application uses code that is written in a
different language, the entire application becomes
platform-dependent. If portability is important to you,
do not use JNI.
186 Intentia Movex Java on the iSeries Server: An Implementation Guide

Java transformer A component of the iSeries
implementation of Java. The Java transformer
preprocesses Java bytecode that is produced by any
Java compiler on any platform and contained in a
class file, JAR file, or ZIP file to prepare them to run
using the OS/400 JVM. The Java transformer
creates an optimized Java program object that is
persistent and is associated with the class file, JAR
file, or ZIP file.

Java virtual machine (JVM) The part of the Java
Runtime Environment (JRE) that is responsible for
interpreting Java bytecodes.

JDBC See Java Database Connectivity.

JDK See Java Development Kit.

JNI See Java Native Interface.

Just-In-Time (JIT) compiler Often tightly
integrated with the bytecode interpreter. It performs
additional tasks such as setting aside, in memory,
the real instructions that correspond to the bytecode.
Any further reference to a bytecode that was
executed once results in the execution of the
corresponding real machine instruction that already
exists. JIT compilers also perform code optimization
functions to further improve performance. Such
functions as inlining are becoming common. In fact,
sophisticated compiler optimizing techniques are
being implemented in JIT compilers.

JVM See Java virtual machine.

LDA See local data area.

local data area (LDA) A method to temporarily
store session-unique runtime data used through out
in Movex.

logical file Provides a different view of the physical
data. It allows data to be retrieved in a sequence
other than that specified in the physical file. It also
allows field (or column) subsetting, record selection,
joining multiple database files, and so on. Logical
files in Movex are used to access the records stored
in physical files. These files contain all key
information. Besides the keys (sorting), select or
omit definitions are also partly entered. Because of
this additional selection, only certain records can be
selected or omitted. This allows for optimal
processing of online inquiries, among other things.

master table Contains general data that is used in
most parts of all business functions. Examples are
Customer master, Items master, Supplier master,
etc.

MI program The Movex term for a kind of API
program that is used for connection of other
applications, such as e-business solutions to the
Movex Java installation. These programs must be
reached from the outside the application server.

Movex Database Connection Optimizer A
database connection technology where the
database access is designed as encapsulated
container objects for persistent data rather than as in
other technologies, where persistent data is treated
as entity beans. Movex Database Connection
Optimizer, where all the transaction handling is
managed in the database (single or distributed),
releases the middleware from coordination problems
in the runtime clusters of each JVM.

Movex Explorer The user interface available for
Movex version 10 and later versions. The container
window in Movex Explorer contains the tree view,
and possibly the list view or detail view. The window
is divided into a left and a right pane. The left pane
holds the tree view, while the right pane holds the
windows containing different functionality in Movex.
 Glossary 187

Movex Intelligent Object Reuse A proprietary
intelligent tuning algorithm for all types of object
reuse units in the runtime version Movex Java
technology and architecture. All object instances in
the runtime version of Movex Java, are reused in the
architecture and middleware.

Movex Java Super Dispatcher An advanced
dispatcher that can be used to dedicate special
types of workload to a specific Java virtual machine
or server.

object-oriented programming (OOP) A method
of implementation in which programs are organized
as cooperative collections of objects, each of which
represents an instance of some class, and whose
classes are all members of a class hierarchy united
via inheritance relationships. In such programs,
classes are generally viewed as static, where
objects typically have a much more dynamic nature,
which is encouraged by the existence of dynamic
binding and polymorphism. Implementation of a
design in an object-oriented programming language,
where the objects defined in the analysis and design
are directly translated into program code.

OOP See object-oriented programming.

physical file Consists of records (rows) with a
predefined layout of data fields (columns). Physical
files can have a keyed index included in its definition
that allows the retrieval of information in a
pre-defined sequence. Physical files in Movex only
contain data and never key definitions. Because of
this, access to physical data is always sequential.
Data is processed via a logical file with a
corresponding access path. This concept has been
chosen to make changes and extensions of unique
key definitions simpler.

polymorphism The ability to hide different
implementations behind a common interface,
simplifying the communications among objects. For
example, defining a unique print method for each
kind of document in the system would allow any
document to be printed by sending the message
print, without concern for how that method was
actually carried out for a given document. A concept
in type theory, according to which a name (such as
a variable declaration) may denote objects of many
different classes that are related by some common
superclass. Any object denoted by this name can
respond to some common set of operations in
different ways. Objects with different internal
representation can communicate in the same way. It
allows a common protocol to be used when
communicating with objects from the same type of
hierarchy. The ability to put objects of a common
base type in a single array or collection, and then
use the common protocol defined in the base class
to communicate with the individual object. (The term
polymorphism is borrowed from biology and means
“many forms”.) Polymorphism requires inheritance.
It simplifies a programmer's task by generalizing
communication syntax, which lets you treat objects
of a different type in a similar fashion. That is,
polymorphism uses inheritance to express
commonality in the form of a communication
protocol for sending messages to objects of similar
(but not exactly matching) type. It is the ability of
similar objects to respond to the same message in
different ways. The term describes that a method
can be performed on objects of different types but
with different implementations for each type.

portability Allows the same application to run on
different operating systems and hardware platforms.

RDBMS Acronym for relational database
management system.
188 Intentia Movex Java on the iSeries Server: An Implementation Guide

reflection A function found in a JVM. Reflection in
Java refers to the ability of a Java class to reflect
upon itself (to “look inside itself”). The reflection
technique allows a Java program to inspect and
manipulate any Java class. This is the technique that
the Java beans “introspection” mechanism uses to
determine the properties, events, and methods that
a bean supports. You can use reflection to query and
set the values of fields, start methods, or create new
objects. Java does not allow methods to pass
directly as data values, but the reflection technique
makes it possible for methods that pass by name to
start indirectly.

reuse The process of locating, understanding, and
incorporating existing knowledge, design, and
components into a new system. Should occur at all
levels of system development analysis, design,
implementation, testing, documentation, and user
training.

scalability Allows software, architecture, network,
or hardware growth that will support software as it
grows in size or resource requirements. The ability
to reach higher levels of performance by adding
microprocessors.

serialization The ability to write the complete state
of an object (including any object to which it refers)
to an output stream, and then to recreate that object
at a later time by reading its serialized state from an
input stream. This technique is used as the basis for
transferring objects through cut-and-paste and
between a client and a server or vice versa for
remote method invocation (RMI). It can also be used
by Java beans to provide preinitialized serialized
objects rather than a simple class file. This
technique is also used as an easy way to save users
preferences and application states. Serialization
includes information about the class version.
Obviously, an early version of a class may not be
able to de-serialize a serialized instance that was
created by a newer version of the same class.

Server View tool Provides common work
management functions for Movex Java environment.
Server View should be used monitor, troubleshoot,
and performance analyze the Movex Java
environment.

SQL See Structured Query Language.

Structured Query Language (SQL) The
standardized query language used in all relational
databases.

subclass A class that is a special case of another
case. For example, Fox is a special case of Mammal.
A class that inherits from one or more classes (which
are called its immediate superclasses).

superclass A class that is higher in the class
hierarchy than another class. For example, Mammal
is a superclass of Fox. The class from which another
class inherits (which is called its immediate
subclass), and identifies the user or terminal for
which you accessed this window.

system file Contains data that has a connection to
the runtime environment or usage of system like
functions such as users, access control lists,
authority, etc. Usage characteristics are similar to
master tables, but with distention, since there is no
direct connection to functional entities.

tables See physical file.

transaction file Used to store data in or between
business functions. Data in these files is used and
change intensive.
 Glossary 189

Unicode A character standard (ISO/IEC 10646)
that will substitute ASCII. Unicode is a character
encoding that uses a uniform 16-bit code for each
language. This allows the representation of every
character in every written language of the world that
is likely to be used in computer communication,
including the logographic symbols of Chinese,
Japanese, and Korean. Unicode was developed by a
consortium of computer industry companies and is
documented in the book The Unicode Standard by
Addison-Wesley. Unicode is used in Windows NT. A
Unicode character is encoded using two bytes of
storage. Unicode is not available in Windows 95
browser. Communicates with the Web server for
Movex data.

view See logical file.

work files Used for temporary storage for data that
are being processed in order to feed a specific
business function. Generally work files should be
empty when the system in backup or offline mode.
190 Intentia Movex Java on the iSeries Server: An Implementation Guide

Related publications

The publications listed in this section are considered particularly suitable for a
more detailed discussion of the topics covered in this redbook.

IBM Redbooks
For information on ordering the following publication, see “How to get IBM
Redbooks” on page 192.

� Intentia Movex ThisGen Implementation for AS/400, SG24-5403

Other resources
These publications are also relevant as further information sources:

� OS/400 Work Management, SC41-5306

� Backup and Recovery, SC41-5304

� Backup Recovery and Media Services for iSeries, SC41-5345

� Operational Handbook, Intentia’s Implex document

Referenced Web sites
The following Web sites are also relevant as further information sources:

� Intentia Web site

http://www.intentia.com

� Intentia Wire: You can find the most current Movex Java information on the
Intentia Wire. This is an Intentia intranet site that is available only to Intentia
representatives and requires a user ID and password. If you do not have
access to the Intentia Wire, contact your local Intentia office.

http://www.intentia.com

� Lakeview Technology:

http://www.lakeviewtech.com
© Copyright IBM Corp. 2002. All rights reserved. 191

http://www.lakeviewtech.com
http://www.intentia.com
http://www.intentia.com

� Vision Solutions:

http://www.visionsolutions.com

� Data Mirror Corporation:

http://www.datamirror.com

How to get IBM Redbooks
You can order hardcopy Redbooks, as well as view, download, or search for
Redbooks at the following Web site:

ibm.com/redbooks

You can also download additional materials (code samples or diskette/CD-ROM
images) from that site.

IBM Redbooks collections
Redbooks are also available on CD-ROMs. Click the CD-ROMs button on the
Redbooks Web site for information about all the CD-ROMs offered, as well as
updates and formats.
192 Intentia Movex Java on the iSeries Server: An Implementation Guide192 Intentia Movex Java on the iSeries Server: An Implementation Guide

http://www.redbooks.ibm.com/
http://www.ibm.com/redbooks/
http://www.ibm.com/redbooks/
http://www.visionsolutions.com
http://www.datamirror.com

Index

Symbols
*BASE 86
*INTERACT 86
*MACHINE 86
*SHRPOOL1 86
*SHRPOOL5 86
*SHRPOOL60 86
*VERBOSEBC 102
‘Authorization. Specify for Company’ (MNS151)
151
‘Function. Connect Authority’ (SES003) 154
‘User. Open’ (MNS150) 148

Numerics
5722-JV1 42
5722-PT1 55
5722-SS1 42
5722-ST1 55
5722-TC1 42
5722-WSD 55
5722-XE1 55
5722-XW1 55

A
Abstract Windowing Toolkit (AWT) 42
access control 126
access path 28
activity from a number of authorized users 179
Add Environment Variable (ADDENVVAR) com-
mand 50
American National Standard Code for Information
Interchange (ASCII) 28
application 7
application architecture 13
application component 7
Application menu MVXAPP 78
application tier 17
architecture of Movex 13
ASCII (American National Standard Code for Infor-
mation Interchange) 28
authorized user activity 179
automatic garbage collection 45
© Copyright IBM Corp. 2002. All rights reserved.
AWT (Abstract Windowing Toolkit) 42

B
backup 160
batch subsystem 89
binopt (Business Logic) 22
boot.meproxy.range 125
BQM (Business Quality Messaging) 20
BRMS/400 160, 184
Business Components Layer 20
Business Logic (binopt) 22
business performance measurement (BPM) 5
Business Quality Messaging (BQM) 20
bytecode interpreter 38, 40
bytecode verifier 38–39

C
Call Level Interface (CLI) 46
CCSID 33, 65
Change Java Program (CHGJVAPGM) command
47–48
Change Prestart Job Entry (CHGPJE) command
73
Change Printer File (CHGPRTF) command 71
class description for Movex 92
class loader 38–39
CLI (Call Level Interface) 46
client/server implementation 12
coded character set identifier 65
cold backup 160
collector garbage collection thread 45
communication security 123
companies 10
Component Configurator 3
component group 7
configurability 14
Control 19
controlling subsystem 88
Core Library APIs 42
Core Services 19
Create Java Program (CRTJVAPGM) command
44, 47
CRS945 110
 193

CRS949 110
customer modification 25
customer relationship management (CRM) 5

D
Database Connection Optimizer 22
database connection pooling 22
database journaling 32
database structure 31
database tier 18
DB2 UDB for iSeries 28
DB2 UDB SQL access 34
Delete Java Program (DLTJVAPGM) command 47,
49
deployment dimension 10
directory compare 172
Display Java Program (DSPJVAPGM) command
47, 49
divisions 10
Dump Java Virtual Machine (DMPJVM) command
47, 49

E
EBCDIC 34
e-collaboration application suite 6
encapsulation 14
Enterprise Application Movex 1
Enterprise Process Designer 3
Enterprise Process Manager (EPM) 3, 9
Enterprise Reference Model (ERM) 10
enterprise resource planning (ERP) 5
EPM (Enterprise Process Manager) 3
ERM (Enterprise Reference Model) 10

F
field name 10
file system structure 23
finalize garbage collection thread 45
firewall 124
foundation check 173
Foundation class 19

G
garbage collection

monitoring 102
settings 102

garbage collector 38, 40, 45

GCFRQ 51
GCHINL 50, 100
GCHMAX 50
GCPTY 51
generic code 20
GO CFGTCP 75

H
hard link 30
heap size 100
history file 32
HUM (Movex Human Resources) 57

I
IBM-supplied subsystem 88
IFS (integrated file system) 29
implementing Movex 3
Implex 3, 10
inheritance mechanism 14, 20
Install Additional Languages (JINSLN) command
80
installation

base installation 58
coded character set identifier 65
concepts 56
install Movex Explorer 80
MEX_12rs 57
MOM_12rs 57
Movex Java application users and user groups
61
Movex.properties 81
MVXDB 79
MvxStarter.class 81
OS/400 system values 62
performance adjustment 69
prerequisites 55
QCCSID 65
QJOBMSGQFL 67
QPFRADJ 69
recovery information 62
service pack 61
upgrade installation 59

installation utility library 77
MVXCJVA 77

installation workflow 57
integrated file system (IFS) 29
Intelligent Object Reuse 21
Intentia
194 Intentia Movex Java on the iSeries Server: An Implementation Guide

history 2
Movex Java 1
solution 2
vision 4

Intentia IBM International Competence Center 54
interactive pool 86
interactive subsystem 89
iSeries

directory structure 30
distribution 56
integrated file system (IFS) 29
library 28
logical file 28
physical file 28

iSeries command
CHGPJE 73
CHGPRTF 71
CRTJVAPGM 44
GO CFGTCP 75
LODRUN 58
RUNJVA 44
WRKRDBDIRE 63
WRKSHRPOOL 86
WRKSYSVAL 65

iSeries Developer Kit for Java 42
iSeries IFS

hard and soft links 30
iSeries directory structure 30
NFS 29
QDLS 29
QFileSvr.400 29, 31
QLANSrv 29
QNetWare 29
QNTC 29
QOpenSys 29
QOPT 29
QSYS.LIB 29
root file system 29
soft link 30
symbolic link 30

iSeries integrated file system (IFS) 29

J
JAR (Java ARchive) file 39
Java ARchive (JAR) file 39
Java Development Kit (JDK) 37
Java garbage collector 45
Java native interface (JNI) 38, 40

Java on the iSeries server 42
Java platform 38
Java run priorities 92
Java transformer 43
Java virtual machine (JVM) 38
java.io APIs 46
java.net APIs 46
java.sql APIs 46
JINSLN command 80
JIT compiler 41
JNI (Java native interface) 40
job priorities for Movex 92
journaling 32
Just-In-Time (JIT) compiler 41
JVM setup 93

L
layered architecture 16
library 28
LODRUN 58
logical deployment dimension 10
logical file 28, 32

M
machine pool 86
main key 32
market modification 25
master table 31
MAX_PRIORITY 92
MDB server tier 18
memory leak 40
memory pool settings 102
MI program 124
middle-tier DB server tier 18
MIN_PRIORITY 92
MNS150 121
MNS204 110
MNS205 110
MNS206 110
Movex 3, 6

architecture 13
class description 92
development 25
job priorities 92

Movex Certified Configuration Platform 54
Movex component repository 7

definition 2
introduction 3
 Index 195

Movex database server tier 18
Movex Dictionary 108
Movex Explorer 11
Movex Explorer Single port driver 125
Movex Forms Design 108
Movex HUM 25
Movex Human Resources (HUM) 57
Movex Java 1

configuration using JVM setup 93
Database Connection Optimizer 22
database structure 31
deployment options on iSeries 11
implementation scenarios 25
Intelligent Object Reuse 21
journaling on the database 32
logical file 32
object model 18
overview 5
package structure 22
physical file 31
portability 15
runtime environment 91
scalability 15
Super Dispatcher 12, 21
technical innovations 21

Movex Java view 105
Movex job description 91
Movex OUT components 108

Movex Dictionary 108
Movex Forms Design 108
Movex Output Server 108
Movex Output to e-mail 108
Movex Output to Fax 108
Movex Output to ODBC 108
Movex Output to PDF 108
Movex Output to RePrint 108
Movex Output Tool 108
Movex PageOUT 108
Movex RemotePrint 108
Movex StreamIN 108
Movex StreamOUT 108

Movex Output Management 107
Movex Output Server 107–108
Movex Output to e-mail 108
Movex Output to Fax 108
Movex Output to ODBC 108
Movex Output to PDF 108
Movex Output to RePrint 108
Movex Output Tool 108

Movex pool 74
Movex RemotePrint 108
Movex runtime 25
Movex security model 118
Movex server administrator 130
Movex StreamIN 108
Movex StreamOUT 108
Movex supplied subsystems 90

API calls subsystem 90
autostart job subsystem 90
batch job control subsystem 90
interactive subsystem 90
Java program creation subsystem 90
MVXJVA 90
MVXJVAASJ 90
MVXJVABCH 90
MVXJVACRT 90
MVXJVAINT 90
MVXJVAMI 90
supervisor subsystem 90

Movex ThisGen 32
Movex Web Explorer 11
Movex WebShop 34
Movex.properties 35
Movex_v12 57
MovexCore 22
MSRVADM 60
MUC (Multi Unit Coordination) 10
MUC company 11
Multi Unit Coordination (MUC) 10
multi-dimensional e-collaboration application suite
6
multiple JVM setup 90, 93–94
multi-site installation 11
mvx.app.pgm 25
mvx.app.pgm.customer 25
mvx.os.MvxStarter 96
MVXAPP Application menu 78
mvxarg.arg 112
MVXCJVA 60, 77
MVXDB 79
MVXJDTAMST 57
MVXJVA 90–92
MVXJVAASJ 92
MVXJVABCH 91–92
MVXJVACRT 91–92
MVXJVAINT 90–92
MVXJVAMI 91–92
MVXRLA 34
196 Intentia Movex Java on the iSeries Server: An Implementation Guide

N
national language support (NLS) 11, 33
native I/O 34
native OS/400 facilities 160
NLS (national language support) 33
NORM_PRIORITY 92
n-tier architecture 16

application tier 17
database tier 18
Movex database server tier 18
presentation tier 17

O
object model 18
object orientation 14
OPTIMIZE 50
OS/400 Java commands 47
OS/400 memory management 86
OS/400 shared pools 86

P
package structure 22
partner relationship management (PRM) 5
performance adjustment 69
physical file 28, 31
polymorphism 14
port allocation schema 123
portability 15
prepared statement pool 22
presentation tier 17
professional services 3
program temporary fix (PTF) 55
PROP 50
PTF (program temporary fix) 55

Q
QBATCH 89
QCCSID 65
QCTL 88
QFileSvr.400 31
QINSTAPP 57
QINTER 89
QJOBMSGQFL 67
QPFRADJ 69
QPRINT 71
QSPL 89
QSQSRVR 73, 90

QSYS 28
QSYSWRK 90
quealias 114
queue alias file 114
Quick Sizer 180

R
record level access (RLA) 34
recovery 160
Redbooks Web site 192

Contact us xiii
reflection 41
remote method invocation (RMI) 41
reusability 14
Run Java (RUNJVA) command 44, 47, 49
run priority 92

S
save after checkpoint (recommended) method 162
save while active 161
scalability 15
serialization 41
Server View 103
server-centric implementation 12
service pack 83
setup start program 81
single JVM setup 93
single port MEX 125
single-site installation 11
sizing 177
sizing methodology 180
soft link 30
spooling subsystem 89
Standard Extension library APIs 42
Standard Methods 19
standard Movex runtime 25
starting multiple JVMs 96
starting the Server View 104
startsubs.cmd 96
storage pool 86
subclass 14
subsystem monitor 90
super class 14
Super Dispatcher 12, 21
supply chain planning and execution (SCP&E) 5
symbolic link 30
system file 31
system printer file 71
 Index 197

system sizing 177

T
Technology Independent Machine Interface (TIMI)
42
Telnet interface 125
TIMI (Technology Independent Machine Interface)
42
transaction file 32
transaction volume 179
true save-while-active (advanced) method 161

U
Unicode 33
Unicode Worldwide Character Standard 28, 33
user authentication 119
user identification 119
users, definitions of 178

W
work file 32
work management 85
Work with Relational Database Directory Entries
(WRKRDBDIRE) command 63
Work with Shared Pool (WRKSHRPOOL) command
86
Work with System Values (WRKSYSVAL) com-
mand 65
workload 178
198 Intentia Movex Java on the iSeries Server: An Implementation Guide

(0.2”spine)
0.17”<->0.473”

90<->249 pages

Intentia M
ovex Java on the IBM

 ~
 iSeries Server

®

SG24-6545-00 ISBN 0738424617

INTERNATIONAL
TECHNICAL
SUPPORT
ORGANIZATION

BUILDING TECHNICAL
INFORMATION BASED ON
PRACTICAL EXPERIENCE

IBM Redbooks are developed by
the IBM International Technical
Support Organization. Experts
from IBM, Customers and
Partners from around the world
create timely technical
information based on realistic
scenarios. Specific
recommendations are provided
to help you implement IT
solutions more effectively in
your environment.

For more information:
ibm.com/redbooks

Intentia Movex Java on the
IBM iSeries Server
An Implementation Guide

Overview of Movex
Java on the iSeries
server

Movex Java on
iSeries installation
and configuration

Operational tips and
techniques

The Intentia Movex Java solution improves Intentia
customers’ business processes. It offers of an optimum set of
knowledge, tools, methods, and functionality for a successful
configuration and implementation of Movex. This IBM
Redbook provides a detailed guide that explains specific tasks
associated with implementing Movex Java on the IBM
~ iSeries server. It is based on a collection of
knowledge gathered by the architects and developers behind
Movex Java, and by the Intentia professionals who have
implemented Movex Java at customer sites.

This redbook is designed to assist Movex Java customers,
Movex Java consultants, business partners, and IBM
technical and service representatives. It targets these
professionals who are directly involved with implementing a
total business solution consisting of the Movex Java solution,
the iSeries, the DB2 for iSeries database, and supplemental
solution products.

Back cover

	Front cover
	Contents
	Notices
	Trademarks

	Preface
	The team that wrote this redbook
	Become a published author
	Comments welcome

	Chapter 1. Introduction to Intentia and Movex Java
	1.1 Intentia’s history
	1.2 The Intentia solution
	1.3 Introduction to Movex Java
	1.4 Why Movex
	1.5 Conclusion

	Chapter 2. Movex Java overview
	2.1 Movex: A multi-dimensional e-collaboration application suite
	2.2 Movex component repository
	2.3 Enterprise Process Manager
	2.4 Implex
	2.5 Logical deployment dimensions
	2.6 Deployment options for Movex Java on iSeries
	2.6.1 Server-centric implementation
	2.6.2 Client/server implementations

	Chapter 3. Application architecture
	3.1 Configurability
	3.2 Object orientation
	3.3 Portability
	3.4 Scalability
	3.5 Layered architecture
	3.6 N-tier architecture
	3.6.1 Presentation tier
	3.6.2 Application tier
	3.6.3 Movex database (MDB) server tier and database tier

	3.7 Object model
	3.7.1 Foundation classes
	3.7.2 Base Component classes
	3.7.3 Business Components classes

	3.8 Technical innovations in the Movex Java architecture
	3.8.1 Super Dispatcher technology
	3.8.2 High performance JDBC driver
	3.8.3 Intelligent Object Reuse
	3.8.4 Database Connection Optimizer

	3.9 Movex Java package structure
	3.9.1 File system structure overview
	3.9.2 Movex Java implementation scenarios

	Chapter 4. Database architecture
	4.1 Database representation
	4.1.1 Terminology
	4.1.2 Accessing the database and IFS

	4.2 Movex database structure
	4.2.1 Physical files in Movex
	4.2.2 Logical files in Movex

	4.3 Journaling on the Movex Java database
	4.4 Unicode
	4.5 Database access methods used by Movex Java application
	4.5.1 Record level access
	4.5.2 SQL
	4.5.3 Database related settings in the Movex.properties

	Chapter 5. Java overview and iSeries implementation
	5.1 Java platform
	5.1.1 Java virtual machine
	5.1.2 Java APIs

	5.2 Java on the iSeries server
	5.2.1 iSeries Java virtual machine
	5.2.2 Java transformer
	5.2.3 Java garbage collector
	5.2.4 Java APIs and iSeries

	5.3 iSeries-specific implementation
	5.3.1 OS/400 Java commands

	Chapter 6. Installing Movex Java
	6.1 Platform
	6.1.1 Hardware
	6.1.2 Software

	6.2 Installation prerequisites
	6.3 Installation concepts
	6.3.1 iSeries distribution
	6.3.2 Pre-creation of Java programs

	6.4 Installation workflow
	6.4.1 Base installation
	6.4.2 Upgrade installation
	6.4.3 Installing a service pack

	6.5 Movex Java application users and user groups
	6.6 OS/400 system values and other settings for Movex Java
	6.6.1 Work with Relation Database Directory Entries (WRKRDBDIRE)
	6.6.2 Coded character set identifier (WRKSYSVAL QCCSID)
	6.6.3 Job message queue full action (WRKSYSVAL QJOBMSGQFL)
	6.6.4 Performance adjustment (WRKSYSVAL QPFRADJ)
	6.6.5 Changing printer file definition for QPRINT (CHGPRTF QPRINT)
	6.6.6 Changing prestart job entry for QSQSRVR (CHGPJE QSQSRVR)
	6.6.7 Changing shared storage for default Movex pool
	6.6.8 Configuring TPC/IP (GO CFGTCP)
	6.6.9 Installation utility library (MVXCJVA)
	6.6.10 Installing an application
	6.6.11 Installing a database
	6.6.12 Installing additional languages
	6.6.13 Installing Movex Explorer
	6.6.14 Installing Movex OUT
	6.6.15 Setting up Movex.properties
	6.6.16 Setting up the start program

	6.7 Service packs

	Chapter 7. Work management
	7.1 OS/400 work management
	7.1.1 OS/400 memory management
	7.1.2 OS/400 shared pools
	7.1.3 IBM-supplied subsystems
	7.1.4 Movex Java-supplied subsystems
	7.1.5 Movex Java runtime environment
	7.1.6 Java run priorities

	7.2 JVM setup
	7.2.1 Single JVM setup
	7.2.2 Multiple JVM setup
	7.2.3 Starting multiple JVMs
	7.2.4 Starting multiple environments
	7.2.5 Initial setting of heap sizes
	7.2.6 Garbage collection monitoring and settings
	7.2.7 Memory pool settings

	7.3 Server View
	7.3.1 Starting Server View
	7.3.2 Movex Java view

	Chapter 8. Movex OUT and printing
	8.1 Movex OUT components
	8.2 Movex Out technology
	8.2.1 User’s perspective
	8.2.2 Customer’s view
	8.2.3 Language handling
	8.2.4 Modification directories
	8.2.5 Agent control

	8.3 Movex Java printing features
	8.4 Hardware requirements for Windows
	8.5 Setup
	8.5.1 Setting up Movex Output Server

	8.6 The mvxarg.arg argument file
	8.7 The Queue Alias file (quealias)
	8.8 Starting the Movex Output server

	Chapter 9. Security
	9.1 Movex security model
	9.2 User identification and authentication
	9.2.1 Password validation
	9.2.2 Movex.properties
	9.2.3 Starting Movex
	9.2.4 Movex user definition

	9.3 Communication security
	9.3.1 Port allocation schema
	9.3.2 Firewalls

	9.4 Access control
	9.4.1 Access control setup considerations
	9.4.2 OS/400 platform overview
	9.4.3 Scenario description
	9.4.4 Users and groups
	9.4.5 Authority settings: Application
	9.4.6 Authority settings: Database

	9.5 Movex authority system
	9.5.1 Movex user definition
	9.5.2 Movex general function authority

	Chapter 10. Backup and recovery
	10.1 iSeries backup and recovery overview
	10.2 Backup types
	10.2.1 Cold backup
	10.2.2 Save while active

	10.3 Backup schedule
	10.4 Recovery of objects
	10.5 Recovery of journaled objects using journaled changes
	10.6 Recovery after abnormal system end
	10.7 Procedure for abnormal system end recovery
	10.8 Recovering when a journal is damaged
	10.9 Recovering when a journal receiver is damaged
	10.10 High availability solutions
	10.11 iSeries high availability solution providers

	Chapter 11. Movex Java Utilities
	11.1 Directory Compare
	11.2 Foundation Check
	11.3 Copy Data
	11.4 Log View
	11.5 Update Data

	Chapter 12. System sizing
	12.1 Defining workload
	12.2 Definition of users
	12.3 Calculating activity from a number of authorized users
	12.4 Calculating transaction volumes
	12.5 Sizing methodology
	12.6 The Quick Sizer

	Glossary
	Related publications
	IBM Redbooks
	Other resources

	Referenced Web sites
	How to get IBM Redbooks
	IBM Redbooks collections

	Index
	Back cover

