
IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 54, NO. 4, APRIL 2008 1561

Low-Density Lattice Codes
Naftali Sommer, Senior Member, IEEE, Meir Feder, Fellow, IEEE, and Ofir Shalvi, Member, IEEE

Abstract—Low-density lattice codes (LDLC) are novel lattice
codes that can be decoded efficiently and approach the capacity of
the additive white Gaussian noise (AWGN) channel. In LDLC a
codeword x is generated directly at the n-dimensional Euclidean
space as a linear transformation of a corresponding integer mes-
sage vector b, i.e., x = GGGb, where HHH = GGG

�1 is restricted to be
sparse. The fact thatHHH is sparse is utilized to develop a linear-time
iterative decoding scheme which attains, as demonstrated by sim-
ulations, good error performance within �0.5 dB from capacity
at block length of n =100,000 symbols. The paper also discusses
convergence results and implementation considerations.

Index Terms—Iterative decoding, lattice codes, lattices, low-den-
sity parity-check (LDPC) code.

I. INTRODUCTION

I F we take a look at the evolution of codes for binary or fi-
nite alphabet channels, it was first shown [1] that channel

capacity can be achieved with long random codewords. Then,
it was found out [2] that capacity can be achieved via a simpler
structure of linear codes. Then, specific families of linear codes
were found that are practical and have good minimum Ham-
ming distance (e.g., convolutional codes, cyclic block codes,
specific cyclic codes such as Bose–Chaudhuri–Hocquenghen
(BCH) and Reed–Solomon codes [4]). Later, capacity achieving
schemes were found, which have special structures that allow
efficient iterative decoding, such as low-density parity-check
(LDPC) codes [5] or turbo codes [6].

If we now take a similar look at continuous alphabet codes
for the additive white Gaussian noise (AWGN) channel, it was
first shown [3] that codes with long random Gaussian codewords
can achieve capacity. Later, it was shown that lattice codes can
also achieve capacity ([7]–[12]). Lattice codes are clearly the
Euclidean space analog of linear codes. Similar to binary codes,
we could expect that specific practical lattice codes will then be
developed. However, there was almost no further progress from
that point. Specific lattice codes that were found were based on
fixed dimensional classical lattices [20] or based on algebraic
error correcting codes [13], [14], and even on LDPC codes [15],

Manuscript received October 29, 2006 ; revised August 30, 2007. The mate-
rial in this paper was presented in part at the IEEE International Symposium on
Information Theory (ISIT), Seattle, WA, July 2006 and in part at the Inaugura-
tion of the UCSD Information Theory and Applications Center, San Diego, CA,
February 2006.

N. Sommer and O. Shalvi are with the Department of Electrical Engineering-
Systems, Tel-Aviv University, Tel-Aviv, Israel. They are also with Anobit Tech-
nologies, Herzlia, Israel.

M. Feder is with the Department of Electrical Engineering-Systems, Tel-Aviv
University, Tel-Aviv, Israel.

Color versions of Figures 3 and 4 in this paper are available online at http://
ieeexplore.ieee.org.

Communicated by T. J. Richardson, Associate Editor for Coding Theory.
Digital Object Identifier 10.1109/TIT.2008.917684

but no significant effort was made in designing lattice codes
directly in the Euclidean space or in finding specific capacity
achieving lattice codes. Practical coding schemes for the AWGN
channel were based on finite alphabet codes.

In [16], “signal codes” were introduced. These are lattice
codes, designed directly in the Euclidean space, where the infor-
mation sequence of integers , is encoded by con-
volving it with a fixed signal pattern , . Signal
codes are clearly analogous to convolutional codes, and in par-
ticular can work at the AWGN channel cutoff rate with simple
sequential decoders. In [17] it is also demonstrated that signal
codes can work near the AWGN channel capacity with more
elaborated bi-directional decoders. Thus, signal codes provided
the first step toward finding effective lattice codes with practical
decoders.

Inspired by LDPC codes and in the quest of finding practical
capacity achieving lattice codes, we propose in this work
low-density lattice codes (LDLC). We show that these codes
can approach the AWGN channel capacity with iterative de-
coders whose complexity is linear in block length. In recent
years several schemes were proposed for using LDPC over
continuous valued channels by either multilevel coding [19] or
by nonbinary alphabet (e.g., [18]). Unlike these LDPC-based
schemes, in LDLC both the encoder and the channel use the
same real algebra which is natural for the continuous-valued
AWGN channel. This feature also simplifies the convergence
analysis of the iterative decoder.

The outline of this paper is as follows. LDLC are first de-
fined in Section II. The iterative decoder is then presented in
Section III, followed by convergence analysis of the decoder
in Section IV. Then, Section V describes how to choose the
LDLC code parameters, and Section VI discusses implemen-
tation considerations. The computational complexity of the de-
coder is then discussed in Section VII, followed by a brief de-
scription of encoding and shaping in Section VIII. Simulation
results are finally presented in Section IX.

II. BASIC DEFINITIONS AND PROPERTIES

A. Lattices and Lattice Codes

An dimensional lattice in is defined as the set of all
linear combinations of a given basis of linearly independent
vectors in with integer coefficients. The matrix , whose
columns are the basis vectors, is called a generator matrix of
the lattice. Every lattice point is therefore of the form ,
where is an -dimensional vector of integers. The Voronoi cell
of a lattice point is defined as the set of all points that are closer
to this point than to any other lattice point. The Voronoi cells of
all lattice points are congruent, and for square the volume of
the Voronoi cell is equal to . In the sequel will be used
to denote both the lattice and its generator matrix.

0018-9448/$25.00 © 2008 IEEE

1562 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 54, NO. 4, APRIL 2008

A lattice code of dimension is defined by a (possibly
shifted) lattice in and a shaping region , where
the codewords are all the lattice points that lie within the
shaping region . Denote the number of these codewords by

. The average transmitted power (per channel use, or per
symbol) is the average energy of all codewords, divided by the
codeword length . The information rate (in bits/symbol) is

. Throughout this paper we shall assume that is
square (i.e.,), but the results are easily extended to the
nonsquare case.

When using a lattice code for the AWGN channel with power
limit and noise variance , the maximal information rate is
limited by the capacity . Poltyrev [21] considered
the AWGN channel without restrictions. If there is no power
restriction, code rate is a meaningless measure, since it can be
increased without limit. Instead, it was suggested in [21] to use
the measure of constellation density, leading to a generalized
definition of the capacity as the maximal possible codeword
density that can be recovered reliably. When applied to lattices,
the generalized capacity implies that there exists a lattice of
high enough dimension that enables transmission with arbi-

trary small error probability, if and only if .
A lattice that achieves the generalized capacity of the AWGN
channel without restrictions, also achieves the channel capacity
of the power constrained AWGN channel, with a properly
chosen spherical shaping region (see also [12]).

In the rest of this work we shall concentrate on the lattice
design and the lattice decoding algorithm, and not on the
shaping region or shaping algorithms. We shall use lattices with

, where analysis and simulations will be carried for
the AWGN channel without restrictions. A capacity achieving
lattice will have small error probability for noise variance
which is close to the theoretical limit .

B. Syndrome and Parity Check Matrix for Lattice Codes

A binary error correcting code is defined by its
binary generator matrix . A binary information vector with
dimension is encoded by , where calculations are
performed in the finite field GF(2). The parity check matrix
is an matrix such that is a codeword if and only
if . The input to the decoder is the noisy codeword

, where is the error sequence and addition is done
in the finite field. The decoder typically starts by calculating the
syndrome which depends only on
the noise sequence and not on the transmitted codeword.

We would now like to extend the definitions of the parity
check matrix and the syndrome to lattice codes. An -dimen-
sional lattice code is defined by its lattice generator matrix

. Every codeword is of the form , where is a vector
of integers. Therefore, is a vector of integers for every
codeword . We define the parity check matrix for the lattice
code as . Given a noisy codeword (where

is the additive noise vector, e.g., AWGN, added by real arith-
metic), we can then define the syndrome as ,
where is the fractional part of , defined as

, where denotes the nearest integer to . The syn-
drome will be zero if and only if is a lattice point, since

will then be a vector of integers with zero fractional part. For
a noisy codeword, the syndrome will equal

and therefore will depend only
on the noise sequence and not on the transmitted codeword, as
desired.

Note that the above definitions of the syndrome and parity
check matrix for lattice codes are consistent with the definitions
of the dual lattice and the dual code[20]: the dual lattice of a
lattice is defined as the lattice with generator matrix

, where for binary codes, the dual code of is defined as
the code whose generator matrix is , the parity check matrix
of .

C. Low-Density Lattice Codes (LDLC)

We shall now turn to the definition of the codes proposed in
this paper—LDLC.

Definition 1 (LDLC): An dimensional LDLC is an -di-
mensional lattice code with a nonsingular lattice generator ma-
trix satisfying , for which the parity check ma-
trix is sparse. The th row degree ,
is defined as the number of nonzero elements in row of ,
and the th column degree , is defined as the
number of nonzero elements in column of .

Note that in binary LDPC codes, the code is completely de-
fined by the locations of the nonzero elements of . In LDLC
there is another degree of freedom since we also have to choose
the values of the nonzero elements of .

Definition 2 (Regular LDLC): An dimensional LDLC is
regular if all the row degrees and column degrees of the parity
check matrix are equal to a common degree .

Definition 3 (Latin Square LDLC): An dimensional regular
LDLC with degree is called “Latin square LDLC” if every row
and column of the parity check matrix has the same nonzero
values, except for a possible change of order and random signs.
The sorted sequence of these values
will be referred to as the generating sequence of the Latin square
LDLC.

For example, the matrix

is a parity check matrix of a Latin square LDLC with lattice
dimension , degree and generating sequence

. This should be further normalized by the constant
in order to have , as re-

quired by Definition 1.
The bipartite graph of an LDLC is defined similarly to LDPC

codes: it is a graph with variable nodes at one side and check
nodes at the other side. Each variable node corresponds to a
single element of the codeword . Each check node cor-
responds to a check equation (a row of). A check equation

SOMMER et al.: LOW-DENSITY LATTICE CODES 1563

Fig. 1. The bipartite graph of an LDLC.

is of the form , where denotes the lo-
cations of the nonzero elements at the appropriate row of ,

are the values of at these locations and the integer at the
right hand side is unknown. An edge connects check node and
variable node if and only if . This edge is assigned
the value . Fig. 1 illustrates the bipartite graph of a Latin
square LDLC with degree . In the figure, every variable node

is also associated with its noisy channel observation .
Finally, a -loop is defined as a loop in the bipartite graph

that consists of edges. A bipartite graph, in general, can only
contain loops with even length. Also, a two-loop, which con-
sists of two parallel edges that originate from the same variable
node to the same check node, is not possible by the definition
of the graph. However, longer loops are certainly possible. For
example, a four-loop exists when two variable nodes are both
connected to the same pair of check nodes.

III. ITERATIVE DECODING FOR THE AWGN CHANNEL

Assume that the codeword was transmitted, where
is a vector of integers. We observe the noisy codeword

, where is a vector of i.i.d Gaussian noise samples with
common variance , and we need to estimate the integer valued
vector . The maximum likelihood (ML) estimator is then

.

Our decoder will not estimate directly the integer vector .
Instead, it will estimate the probability density function (pdf) of
the codeword vector . Furthermore, instead of estimating the

-dimensional pdf of the whole vector , we shall estimate the
one-dimensional marginal pdfs for each of the components

of this vector (conditioned on the whole observation vector).
In Appendix I it is shown that is a weighted sum of
Dirac delta functions:

(1)

where is a lattice point (vector), is its th component, is a
constant independent of and is the Euclidean distance
between and . Direct evaluation of (1) is not practical, so our
decoder will try to estimate (or at least approximate
it) in an iterative manner.

Our decoder will decode to the infinite lattice, thus ignoring
the shaping region boundaries. This approximate decoding
method is no longer exact maximum likelihood decoding, and
is usually denoted “lattice decoding” [12].

The calculation of is involved since the compo-
nents are not independent random variables (RVs), because
is restricted to be a lattice point. Following [5] we use a “trick”
– we assume that the ’s are independent, but add a condi-
tion that assures that is a lattice point. Specifically, define

. Restricting to be a lattice point is equivalent to re-
stricting . Therefore, instead of calculating
under the assumption that is a lattice point, we can calculate

and assume that the are independent and
identically distributed (i.i.d.) with a continuous pdf (that does
not include Dirac delta functions). It still remains to set ,
the pdf of . Under the i.i.d. assumption, the pdf of the code-
word is . As shown in Appendix II,
the value of is not important at values of which are not
lattice points, but at a lattice point it should be proportional to
the probability of using this lattice point. Since we assume that
all lattice points are used equally likely, must have the
same value at all lattice points. A reasonable choice for
is then to use a uniform distribution such that will be uni-
formly distributed in an -dimensional cube. For an exact ML
decoder (that takes into account the boundaries of the shaping
region), it is enough to choose the range of such that
this cube will contain the shaping region. For our decoder, that
performs lattice decoding, we should set the range of
large enough such that the resulting cube will include all the
lattice points which are likely to be decoded. The derivation of
the iterative decoder shows that this range can be set as large as
needed without affecting the complexity of the decoder.

The derivation in [5] further imposed the tree assumption. In
order to understand the tree assumption, it is useful to define the
tier diagram (also referred to as “the computation tree” [22]),
which is shown in Fig. 2 for a regular LDLC with degree 3.
Each vertical line corresponds to a check equation. The tier 1
nodes of are all the elements that take place in a check
equation with . The tier 2 nodes of are all the elements
that take place in check equations with the tier 1 elements of

, and so on. The tree assumption assumes that all the tree el-
ements are distinct (i.e., no element appears in different tiers or
twice in the same tier). This assumption simplifies the deriva-
tion, but in general, does not hold in practice, so our iterative

1564 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 54, NO. 4, APRIL 2008

Fig. 2. Tier diagram.

algorithm is not guaranteed to converge to the exact solution (1)
(see Section IV).

The detailed derivation of the iterative decoder (using the
above “trick” and the tree assumption) is given in Appendix III.
In Section III-A below, we present the final resulting algorithm.
This iterative algorithm can also be developed using the princi-
ples of the sum-product algorithm, as explained after the algo-
rithm specification.

A. The Iterative Decoding Algorithm

The iterative algorithm is most conveniently represented by
using a message passing scheme over the bipartite graph of the
code, similar to LDPC codes. The basic difference is that in
LDPC codes the messages are scalar values (e.g., the log likeli-
hood ratio of a bit), where for LDLC the messages are real func-
tions over the interval . As in the decoding of LDPC
codes, in each iteration the check nodes send messages to the
variable nodes along the edges of the bipartite graph and vice
versa. The messages sent by the check nodes are periodic ex-
tensions of pdfs. The messages sent by the variable nodes are
pdfs.

LDLC iterative decoding algorithm:
Denote the variable nodes by and
the check nodes by .

• Initialization: each variable node sends to all its check

nodes the message .
• Basic iteration – check node message: Each check node

sends a (different) message to each of the variable nodes
that are connected to it. For a specific check node denote
(without loss of generality) the appropriate check equation
by , where , are
the variable nodes that are connected to this check node
(and is the appropriate row degree of). Denote by

, , the message that was sent to this
check node by variable node in the previous half-iter-
ation. The message that the check node transmits back to
variable node is calculated in three basic steps.

1) The convolution step – all messages, except , are con-
volved (after expanding each by):

(2)

2) The stretching step—The result is stretched by to

3) The periodic extension step—The result is extended to a
periodic function with period :

(3)

The function is the message that is finally sent to
variable node .

• Basic iteration—variable node message: Each variable
node sends a (different) message to each of the check
nodes that are connected to it. For a specific variable
node , assume that it is connected to check nodes

, where is the appropriate column de-
gree of . Denote by , , the message
that was sent from check node to this variable node in
the previous half-iteration. The message that is sent back
to check node is calculated in two basic steps:

1) the product step

2) the normalization step:

This basic iteration is repeated for the desired number of
iterations.

SOMMER et al.: LOW-DENSITY LATTICE CODES 1565

• Final decision: After finishing the iterations, we want to
estimate the integer information vector . First, we esti-
mate the final pdfs of the codeword elements ,

, by calculating the variable node messages at
the last iteration without omitting any check node message
in the product step

.Then, we estimate each by finding the peak of its pdf:
. Finally, we estimate as

. See Appendix III for a possible simplification of
the calculations at the last iteration, and for an alternative
method to estimate .

Instead of developing the algorithm using Gallager’s princi-
ples, we can use the sum-product algorithm [23], used in graph-
ical models [24], for the bipartite graph of the LDLC code, and
get the same decoding procedure. Specifically, assuming that all
dependencies are coming from the constraints represented by
the graph, the check node operation is equivalent to calculating
the pdf of from the pdfs of ,

, given that , and assuming that
are independent. Extracting from the check equation,

we get

Since the pdf of a sum of independent random variables is the
convolution of the corresponding pdfs, (2) and the stretching
step that follows it simply calculate the pdf of , assuming
that the integer at the right hand side of the check equation is
zero. The result is then periodically extended such that a prop-
erly shifted copy exists for every possible value of this (un-
known) integer. The variable node gets such a message from
all the check equations that involve the corresponding variable.
The check node messages and the channel pdf are treated as in-
dependent sources of information on the variable, so they are
multiplied all together.

Note that the periodic extension step at the check nodes is
equivalent to a convolution with an infinite impulse train. With
this observation, the operation of the variable nodes is com-
pletely analogous to that of the check nodes: the variable nodes
multiply the incoming messages by the channel pdf, whereas the
check nodes convolve the incoming messages with an impulse
train, which can be regarded as a generalized “integer pdf”.

In the above formulation, the integer information vector is
recovered from the pdfs of the codeword elements . An alter-
native approach is to calculate the pdf of each integer element

directly as the pdf of the left hand side of the appropriate
check equation. Using the tree assumption, this can be done
by simply calculating the convolution as in (2), but this
time without omitting any pdf, i.e., all the received variable node
messages are convolved. Then, the integer is determined by

.
Fig. 3 shows an example for a regular LDLC with degree

. The figure shows all the signals that are involved in gen-
erating a variable node message for a certain variable node. The

Fig. 3. Signals at variable node.

top signal is the channel Gaussian, centered around the noisy
observation of the variable. The next four signals are the peri-
odically extended pdfs that arrived from the check nodes, and
the bottom signal is the product of all the five signals. It can be
seen that each periodic signal has a different period, according
to the relevant coefficient of . Also, the signals with larger pe-
riod have larger variance. This diversity resolves all the ambi-
guities such that the multiplication result (bottom plot) remains
with a single peak. We expect the iterative algorithm to con-
verge to a solution where a single peak will remain at each pdf,
located at the desired value and narrow enough to estimate the
information.

IV. CONVERGENCE

A. The Gaussian Mixture Model

Interestingly, for LDLC we can come up with a convergence
analysis that in many respects is more specific than the similar
analysis for LDPC codes.

We start by introducing basic claims about Gaussian pdfs.

Denote .

Claim 1 (Convolution of Gaussians): The convolution of
Gaussians with mean values and vari-

ances , respectively, is a Gaussian with mean
and variance .

Proof: See [25].

Claim 2 (Product of Gaussians): Let

be Gaussians with mean values and vari-
ances respectively. Then, the product of these
Gaussians is a scaled Gaussian:

where , , and

Proof: By straightforward mathematical manipulations.

1566 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 54, NO. 4, APRIL 2008

The reason that we are interested in the properties of Gaussian
pdfs lies in the following lemma.

Lemma 1: Each message that is exchanged between the check
nodes and variable nodes in the LDLC decoding algorithm
(i.e., and), at every iteration, can be expressed as
a Gaussian mixture of the form .

Proof: By induction: The initial messages are Gaussians,
and the basic operations of the iterative decoder preserve the
Gaussian mixture nature of Gaussian mixture inputs (convolu-
tion and multiplication preserve the Gaussian nature according
to claims 1 and 2, stretching, expanding and shifting preserve
it by the definition of a Gaussian, and periodic extension
transforms a single Gaussian to a mixture and a mixture to a
mixture).

Convergence analysis should therefore analyze the conver-
gence of the variances, mean values and amplitudes of the
Gaussians in each mixture.

B. Convergence of the Variances

We shall now analyze the behavior of the variances, and start
with the following lemma.

Lemma 2: For both variable node messages and check node
messages, all the Gaussians that take place in the same mixture
have the same variance.

Proof: By induction. The initial variable node messages
are single element mixtures so the claim obviously holds. As-
sume now that all the variable node messages at iteration are
mixtures where all the Gaussians that take place in the same
mixture have the same variance. In the convolution step (2),
each variable node message is first expanded. All Gaussians in
the expanded mixture will still have the same variance, since
the whole mixture is expanded together. Then, expanded
Gaussian mixtures are convolved. In the resulting mixture, each
Gaussian will be the result of convolving single Gaussians,
one from each mixture. According to claim 1, all the Gaussians
in the convolution result will have the same variance, which will
equal the sum of the variances of the expanded messages.
The stretching and periodic extension (3) do not change the
equal variance property, so it holds for the final check node mes-
sages. The variable nodes multiply check node messages.
Each Gaussian in the resulting mixture is a product of
single Gaussians, one from each mixture, and the channel noise
Gaussian. According to claim 2, they will all have the same vari-
ance. The final normalization step does not change the variances
so the equal variance property is kept for the final variable node
messages at iteration .

Until this point we did not impose any restrictions on the
LDLC. From now on, we shall restrict ourselves to Latin square
regular LDLC (see Definition 3). The basic iterative equations
that relate the variances at iteration to the variances at it-
eration are summarized in the following two lemmas.

Lemma 3: For Latin square LDLC, variable node messages
that are sent at the same iteration along edges with the same
absolute value have the same variance.

Proof: See Appendix IV.

Lemma 4: For Latin square LDLC with degree , de-
note the variance of the messages that are sent at iteration
along edges with weight by . The variance values

obey the following recursion:

(4)

for , with initial conditions
.

Proof: See Appendix IV.

For illustration, the recursion for the case is

(5)

The lemmas above are used to prove the following theorem
regarding the convergence of the variances.

Theorem 1: For a Latin square LDLC with degree and gen-
erating sequence , define

. Assume that . Then we have the following.

1) The first variance approaches a constant value of ,
where is the channel noise variance

2) The other variances approach zero

for .
3) The asymptotic convergence rate of all variances is

exponential

for .
4) The zero approaching variances are upper bounded by the

decaying exponential

for and .
Proof: See Appendix IV.

If , the variances may still converge, but convergence
rate may be as slow as , as illustrated in Appendix IV.

Convergence of the variances to zero implies that the Gaus-
sians approach impulses. This is a desired property of the de-
coder, since the exact pdf that we want to calculate is indeed a

SOMMER et al.: LOW-DENSITY LATTICE CODES 1567

weighted sum of impulses (see (1)). It can be seen that by de-
signing a code with , i.e., , one variance
approaches a constant (and not zero). However, all the other
variances approach zero, where all variances converge in an ex-
ponential rate. This will be the preferred mode because the in-
formation can be recovered even if a single variance does not
decay to zero, where exponential convergence is certainly pre-
ferred over slow convergence. Therefore, from now on we
shall restrict our analysis to Latin square LDLC with .

Theorem 1 shows that every iteration, each variable node will
generate messages with variances that approach zero, and
a single message with variance that approaches a constant. The
message with nonzero variance will be transmitted along the
edge with largest weight (i.e.,). However, from the derivation
of Appendix IV it can be seen that the opposite happens for the
check nodes: each check node will generate messages with
variances that approach a constant, and a single message with
variance that approaches zero. The check node message with
zero approaching variance will be transmitted along the edge
with largest weight.

C. Convergence of the Mean Values

The reason that the messages are mixtures and not single
Gaussians lies in the periodic extension step (3) at the check
nodes, and every Gaussian at the output of this step can be re-
lated to a single index of the infinite sum. Therefore, we can
label each Gaussian at iteration with a list of all the indices
that were used in (3) during its creation process in iterations

.

Definition 4 (Label of a Gaussian): The label of a Gaussian
consists of a sequence of triplets of the form , where is
an iteration index, is a check node index and is an integer. The
labels are initialized to the empty sequence. Then, the labels are
updated along each iteration according to the following update
rules.

1) In the periodic extension step (3), each Gaussian in the
output periodic mixture is assigned the label of the specific
Gaussian of that generated it, concatenated with a
single triplet , where is the current iteration index,

is the check node index and is the index in the infinite
sum of (3) that corresponds to this Gaussian.

2) In the convolution step and the product step, each Gaussian
in the output mixture is assigned a label that equals the
concatenation of all the labels of the specific Gaussians in
the input messages that formed this Gaussian.

3) The stretching and normalization steps do not alter the
label of each Gaussian: Each Gaussian in the stretched/
normalized mixture inherits the label of the appropriate
Gaussian in the original mixture.

Definition 5 (A Consistent Gaussian): A Gaussian in a mix-
ture is called “ consistent” if its label contains no con-
tradictions for iterations to , i.e., for every pair of triplets

, such that , if
then . A consistent Gaussian will be simply called
a consistent Gaussian.

We can relate every consistent Gaussian to a unique integer
vector , which holds the integers used in the check
nodes. Since in the periodic extension step (3) the sum is taken
over all integers, a consistent Gaussian exists in each variable
node message for every possible integer valued vector .
We shall see later that this consistent Gaussian corresponds to
the lattice point .

According to Theorem 1, if we choose the nonzero values
of such that , every variable node generates
messages with variances approaching zero and a single message
with variance that approaches a constant. We shall refer to these
messages as “narrow” messages and “wide” messages, respec-
tively. For a given integer valued vector , we shall concentrate
on the consistent Gaussians that relate to in all the vari-
able node messages that are generated in each iteration (a single
Gaussian in each message). The following lemmas summarize
the asymptotic behavior of the mean values of these consistent
Gaussians for the narrow messages.

Lemma 5: For a Latin square LDLC with degree and ,
consider the narrow messages that are sent from a specific
variable node. Consider further a single Gaussian in each mes-
sage, which is the consistent Gaussian that relates to a given
integer vector . Asymptotically, the mean values of these
Gaussians become equal.

Proof: See Appendix V.

Lemma 6: For a Latin square LDLC with dimension , de-
gree and , consider only consistent Gaussians that relate
to a given integer vector and belong to narrow messages. De-
note the common mean value of the such Gaussians that
are sent from variable node at iteration by , and arrange
all these mean values in a column vector of dimension .
Define the error vector , where is the
lattice point that corresponds to . Then, for large , satisfies

(6)

where is derived from by permuting the rows such that
the elements will be placed on the diagonal, dividing each
row by the appropriate diagonal element (or), and then
nullifying the diagonal.

Proof: See Appendix V.

We can now state the following theorem, which describes
the conditions for convergence and the steady-state value of the
mean values of the consistent Gaussians of the narrow variable
node messages.

Theorem 2: For a Latin square LDLC with , the mean
values of the consistent Gaussians of the narrow variable node
messages that relate to a given integer vector are assured to
converge if and only if all the eigenvalues of have magnitude
less than , where is defined in Lemma 6. When this condition
is fulfilled, the mean values converge to the coordinates of the
appropriate lattice point: .

Proof: Immediate from Lemma 6.

1568 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 54, NO. 4, APRIL 2008

Note that without adding random signs to the LDLC nonzero
values, the all-ones vector will be an eigenvector of with

eigenvalue , which may exceed .
Interestingly, recursion (6) is also obeyed by the error of the

Jacobi method for solving systems of sparse linear equations
[26] (see also Section VIII-A), when it is used to solve
(with solution). Therefore, the LDLC decoder can
be viewed as a superposition of Jacobi solvers, one for each
possible value of the integer valued vector .

We shall now turn to the convergence of the mean values of
the wide messages. The asymptotic behavior is summarized in
the following lemma.

Lemma 7: For a Latin square LDLC with dimension and
, consider only consistent Gaussians that relate to a given

integer vector and belong to wide messages. Denote the mean
value of such a Gaussian that is sent from variable node at it-
eration by , and arrange all these mean values in a column
vector of dimension . Define the error vector

. Then, for large , satisfies

(7)

where is the noisy codeword and is an matrix defined
by

if and there exist a row of

for which and
otherwise

(8)
Proof: See Appendix V, where an alternative way to con-

struct from is also presented.

The conditions for convergence and steady-state solution for
the wide messages are described in the following theorem.

Theorem 3: For a Latin square LDLC with , the mean
values of the consistent Gaussians of the wide variable node
messages that relate to a given integer vector are assured to
converge if and only if all the eigenvalues of have magnitude
less than 1, where is defined in Lemma 7. When this condition
is fulfilled, the steady-state solution is

Proof: Immediate from Lemma 7.

Unlike the narrow messages, the mean values of the wide
messages do not converge to the appropriate lattice point co-
ordinates. The steady-state error depends on the difference be-
tween the noisy observation and the lattice point, as well as on

, and it decreases to zero as . Note that the final pdf
of a variable is generated by multiplying all the check node
messages that arrive to the appropriate variable node. of
these messages are wide, and therefore their mean values have
a steady-state error. One message is narrow, so it converges to
an impulse at the lattice point coordinate. Therefore, the final
product will be an impulse at the correct location, where the
wide messages will only affect the magnitude of this impulse.
As long as the mean values errors are not too large (relative to

the width of the wide messages), this should not cause an im-
pulse that corresponds to a wrong lattice point to have larger
amplitude than the correct one. However, for large noise, these
steady-state errors may cause the decoder to deviate from the
ML solution (As explained in Section IV-D).

To summarize the results for the mean values, we considered
the mean values of all the consistent Gaussians that correspond
to a given integer vector . A single Gaussian of this form ex-
ists in each of the variable node messages that are generated
in each iteration. For each variable node, messages are
narrow (have variance that approaches zero) and a single mes-
sage is wide (variance approaches a constant). Under certain
conditions on , the mean values of all the narrow messages
converge to the appropriate coordinate of the lattice point .
Under additional conditions on , the mean values of the wide
messages converge, but the steady-state values contain an error
term.

We analyzed the behavior of consistent Gaussian. It should be
noted that there are many more nonconsistent Gaussians. Fur-
thermore, nonconsistent Gaussians are generated in each iter-
ation for any existing consistent Gaussian. We conjecture that
unless a Gaussian is consistent, or becomes consistent along the
iterations, it fades out, at least at noise conditions where the al-
gorithm converges. The reason is that nonconsistency in the in-
teger values leads to mismatch in the corresponding pdfs, and
so the amplitude of that Gaussian is attenuated.

We considered consistent Gaussians which correspond to a
specific integer vector , but such a set of Gaussians exists for
every possible choice of , i.e., for every lattice point. There-
fore, the narrow messages will converge to a solution that has
an impulse at the appropriate coordinate of every lattice point.
This resembles the exact solution (1), so the key for proper con-
vergence lies in the amplitudes: we would like the consistent
Gaussians of the ML lattice point to have the largest amplitude
for each message.

D. Convergence of the Amplitudes

We shall now analyze the behavior of the amplitudes of con-
sistent Gaussians (as discussed later, this is not enough for com-
plete convergence analysis, but it certainly gives insight to the
nature of the convergence process and its properties). The be-
havior of the amplitudes of consistent Gaussians is summarized
in the following lemma.

Lemma 8: For a Latin square LDLC with dimension , de-
gree and , consider the consistent Gaussians that re-
late to a given integer vector in the variable node messages that
are sent at iteration (one consistent Gaussian per message). De-
note the amplitudes of these Gaussians by , ,
and define the log-amplitude as . Arrange these

log-amplitudes in a column vector , such that element
corresponds to the message that is sent from vari-

able node along an edge with weight . Assume further that
the bipartite graph of the LDLC contains no 4-loops. Then, the
log-amplitudes satisfy the following recursion:

(9)

SOMMER et al.: LOW-DENSITY LATTICE CODES 1569

with initialization . is an matrix which is
all zeros except for exactly “ ”s in each row and each
column. The element of the excitation vector at location

(where and) equals

(10)

where and denote the mean value and variance of the
consistent Gaussian that relates to the integer vector in the
check node message that arrives to variable node at iteration

along an edge with weight . is the noisy channel obser-
vation of variable node , and

Finally, is a constant excitation term that is independent of
the integer vector (i.e., is the same for all consistent Gaus-
sians). Note that an iteration is defined as sending variable node
messages, followed by sending check node messages. The first
iteration (where the variable nodes send the initialization pdf) is
regarded as iteration .

Proof: At the check node, the amplitude of a Gaussian at
the convolution output is the product of the amplitudes of the
corresponding Gaussians in the appropriate variable node mes-
sages. At the variable node, the amplitude of a Gaussian at the
product output is the product of the amplitudes of the corre-
sponding Gaussians in the appropriate check node messages,
multiplied by the Gaussian scaling term, according to claim 2.
Since we assume that the bipartite graph of the LDLC contains
no 4-loops, an amplitude of a variable node message at itera-
tion will therefore equal the product of amplitudes of
Gaussians of variable node messages from iteration , mul-
tiplied by the Gaussian scaling term. This proves (9) and shows
that has “ ”s in every row. However, since each vari-
able node message affects exactly variable node mes-
sages of the next iteration, must also have “ ”s in
every column. The total excitation term corresponds
to the logarithm of the Gaussian scaling term. Each element of
this scaling term results from the product of check node
Gaussians and the channel Gaussian, according to claim 2. This
scaling term sums over all the pairs of Gaussians, and in (10) the
sum is separated to pairs that include the channel Gaussian and
pairs that do not. The total excitation is divided between (10),
which depends on the choice of the integer vector , and ,
which includes all the constant terms that are independent on

(including the normalization operation which is performed at
the variable node).

Since there are exactly “ ”s in each column of the
matrix , it is easy to see that the all-ones vector is an eigen-

vector of , with eigenvalue . If , this eigenvalue
is larger than , meaning that the recursion (9) is nonstable.

It can be seen that the excitation term has two compo-
nents. The first term sums the squared differences between the
mean values of all the possible pairs of received check node
messages (weighted by the inverse product of the appropriate
variances). It therefore measures the mismatch between the in-
coming messages. This mismatch will be small if the mean
values of the consistent Gaussians converge to the coordinates
of a lattice point (any lattice point). The second term sums the
squared differences between the mean values of the incoming
messages and the noisy channel output . This term measures
the mismatch between the incoming messages and the channel
measurement. It will be smallest if the mean values of the con-
sistent Gaussians converge to the coordinates of the ML lattice
point.

The following lemma summarizes some properties of the ex-
citation term .

Lemma 9: For a Latin square LDLC with dimension , de-
gree , and no 4-loops, consider the consistent Gaus-
sians that correspond to a given integer vector . According to
Lemma 8, their amplitudes satisfy recursion (9). The excitation
term of (9), which is defined by (10), satisfies the following
properties:

1) , the th element of , is nonnegative, finite and
bounded for every and every . Moreover, converges
to a finite nonnegative steady-state value as .

2) , where
is the noisy received codeword and is a positive definite
matrix defined by

(11)

where is defined in Lemma 7.
3) For an LDLC with degree , the weighted infinite sum

converges to a finite value.
Proof: See Appendix VI.

The following theorem addresses the question of which con-
sistent Gaussian will have the maximal asymptotic amplitude.
We shall first consider the case of an LDLC with degree

, and then consider the special case of in a separate
theorem.

Theorem 4: For a Latin square LDLC with dimension
, degree , and no 4-loops, consider the

consistent Gaussians that relate to a given integer vector in
the variable node messages that are sent at iteration (one
consistent Gaussian per message). Denote the amplitudes of
these Gaussians by , , and define the
product-of-amplitudes as . Define further

, where is defined by (10) (is well
defined according to Lemma 9). Then, we have the following.

1) The integer vector for which the consistent Gaussians
will have the largest asymptotic product-of-amplitudes

is the one for which is minimized.

1570 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 54, NO. 4, APRIL 2008

2) The product-of-amplitudes for the consistent Gaussians
that correspond to all other integer vectors will decay to
zero in a super-exponential rate.
Proof: As in Lemma 8, define the log-amplitudes

. Define further . Taking the element-
wise sum of (9), we get:

(12)

with initialization . Note that we ignored the term
. As shown below, we are looking for the vector

that maximizes . Since (12) is a linear difference equation,
and the term is independent of , its effect on is
common to all and is therefore not interesting.

Define now . Substituting in (12), we get

(13)

with initialization , which can be solved to get

(14)

We would now like to compare the amplitudes of consistent
Gaussians with various values of the corresponding integer
vector in order to find the lattice point whose consistent
Gaussians will have largest product-of-amplitudes. From the
definitions of and we then have

(15)

Consider two integer vectors that relate to two lattice points.
Denote the corresponding product-of-amplitudes by and

, respectively, and assume that for these two vectors con-
verges to the values and , respectively. Then, taking into
account that , the asymptotic ratio of the
product-of-amplitudes for these lattice points will be:

(16)

It can be seen that if , the ratio decreases to zero in
a super exponential rate. This shows that the lattice point for
which is minimized will have the largest product-of-ampli-
tudes, where for all other lattice points, the product-of-ampli-
tudes will decay to zero in a super-exponential rate (recall that
the normalization operation at the variable node keeps the sum
of all amplitudes in a message to be 1). This completes the proof
of the theorem.

We now have to find which integer valued vector minimizes
. The analysis is difficult because the weighting factor inside

the sum of (14) performs exponential weighting of the excitation
terms, where the dominant terms are those of the first iterations.
Therefore, we cannot use the asymptotic results of Lemma 9, but
have to analyze the transient behavior. However, the analysis is
simpler for the case of an LDLC with row and column degree of

, so we shall first turn to this simple case (note that for this

case, both the convolution in the check nodes and the product at
the variable nodes involve only a single message).

Theorem 5: For a Latin square LDLC with dimension , de-
gree , and no 4-loops, consider the consis-
tent Gaussians that relate to a given integer vector in the vari-
able node messages that are sent at iteration (one consistent
Gaussian per message). Denote the amplitudes of these Gaus-
sians by , , and define the product-of-ampli-
tudes as . Then:

1) The integer vector for which the consistent Gaussians
will have the largest asymptotic product-of-amplitudes

is the one for which
is minimized, where is defined by (11) and is the
noisy received codeword.

2) The product-of-amplitudes for the consistent Gaussians
that correspond to all other integer vectors will decay to
zero in an exponential rate.
Proof: For (12) becomes

(17)

With solution:

(18)

Denote . is well defined according
to Lemma 9. For large , we then have . There-
fore, for two lattice points with excitation sum terms which
approach , respectively, the ratio of the corresponding
product-of-amplitudes will approach

(19)

If , the ratio decreases to zero exponentially (un-
like the case of where the rate was super-exponential, as
in (16)). This shows that the lattice point for which is min-
imized will have the largest product-of-amplitudes, where for
all other lattice points, the product-of-amplitudes will decay to
zero in an exponential rate (recall that the normalization oper-
ation at the variable node keeps the sum of all amplitudes in a
message to be). This completes the proof of the second part of
the theorem.

We still have to find the vector that minimizes . The basic
difference between the case of and the case of is
that for we need to analyze the transient behavior of the
excitation terms, where for we only need to analyze the
asymptotic behavior, which is much easier to handle.

According to Lemma 9, we have

(20)

where is defined by (11) and is the noisy received code-
word. Therefore, for , the lattice points whose consistent
Gaussians will have largest product-of-amplitudes is the point

SOMMER et al.: LOW-DENSITY LATTICE CODES 1571

for which is minimized. This completes
the proof of the theorem.

For we could find an explicit expression for the “win-
ning” lattice point. As discussed above, we could not find an
explicit expression for , since the result depends on the
transient behavior of the excitation sum term, and not only on
the steady-state value. However, a reasonable conjecture is to as-
sume that that maximizes the steady-state excitation will also
maximize the term that depends on the transient behavior. This
means that a reasonable conjecture is to assume that the “win-
ning” lattice point for will also minimize an expression
of the form (20).

Note that for we can still show that for “weak” noise,
the ML point will have the minimal . To see that, it comes
out from (10) that for zero noise, the ML lattice point will have

for every and , where all other lattice points will
have for at least some and . Therefore, the ML point
will have a minimal excitation term along the transient behavior
so it will surely have the minimal and the best product-of-
amplitudes. As the noise increases, it is difficult to analyze the
transient behavior of , as discussed above.

Note that the ML solution minimizes ,
where the above analysis yields minimization of

. Obviously, for zero noise (i.e.,)
both minimizations will give the correct solution with zero
score. As the noise increases, the solutions may deviate from
one another. Therefore, both minimizations will give the same
solution for “weak” noise but may give different solutions for
“strong” noise.

An example for another decoder that performs this form
of minimization is the linear detector, which calculates

(where denotes the nearest integer to).
This is equivalent to minimizing with

. The linear detector fails to yield the
ML solution if the noise is too strong, due to its inherent noise
amplification, and thus fails to attain channel capacity.

For the LDLC iterative decoder, we would like that the devi-
ation from the ML decoder due to the matrix would be neg-
ligible in the expected range of noise variance. Experimental
results (see Section IX) show that the iterative decoder indeed
converges to the ML solution for noise variance values that ap-
proach channel capacity. However, for quantization or shaping
applications (see Section VIII-B), where the effective noise is
uniformly distributed along the Voronoi cell of the lattice (and
is much stronger than the noise variance at channel capacity) the
iterative decoder fails, and this can be explained by the influence
of the matrix on the minimization, as described above. Note
from (11) that as , approaches a scaled identity matrix,
which means that the minimization criterion approaches the ML
criterion. However, the variances converge as , so as
convergence time approaches infinity.

Until this point, we concentrated only on consistent Gaus-
sians, and checked what lattice point maximizes the product-of-
amplitudes of all the corresponding consistent Gaussians. How-
ever, this approach does not necessarily lead to the lattice point
that will be finally chosen by the decoder, due to three main
reasons.

1) It comes out experimentally that the strongest Gaussian in
each message is not necessarily a consistent Gaussian, but
a Gaussian that started as nonconsistent and became con-
sistent at a certain iteration. Such a Gaussian will finally
converge to the appropriate lattice point, since the conver-
gence of the mean values is independent of initial con-
ditions. The nonconsistency at the first several iterations,
where the mean values are still very noisy, allows these
Gaussians to accumulate stronger amplitudes than the con-
sistent Gaussians (recall that the exponential weighting in
(14) for results in strong dependency on the behavior
at the first iterations).

2) There is an exponential number of Gaussians that start as
nonconsistent and become consistent (with the same in-
teger vector) at a certain iteration, and the final amplitude
of the Gaussians at the lattice point coordinates will be de-
termined by the sum of all these Gaussians.

3) We ignored nonconsistent Gaussians that endlessly remain
nonconsistent. We have not shown it analytically, but it
is reasonable to assume that the excitation terms for such
Gaussians will be weaker than for Gaussians that become
consistent at some point, so their amplitude will fade away
to zero. However, nonconsistent Gaussians are born every
iteration, even at steady state. The “newly-born” noncon-
sistent Gaussians may appear as sidelobes to the main im-
pulse, since it may take several iterations until they are at-
tenuated. Proper choice of the coefficients of may min-
imize this effect, as discussed in Sections III-A and V-A.
However, these Gaussians may be a problem for small
(e.g.,) where the product step at the variable node
does not include enough messages to suppress them.

Note that the first two issues are not a problem for , where
the winning lattice point depends only on the asymptotic be-
havior. The amplitude of a sum of Gaussians that converged
to the same coordinates will still be governed by (18) and the
winning lattice point will still minimize (20). The third issue is
a problem for small , but less problematic for large , as de-
scribed above.

As a result, we cannot regard the convergence analysis of
the consistent Gaussians’ amplitudes as a complete convergence
analysis. However, it can certainly be used as a qualitative anal-
ysis that gives certain insights to the convergence process. Two
main observations are as follows.

1) The narrow variable node messages tend to converge to
single impulses at the coordinates of a single lattice point.
This results from (16), (19), which show that the “nonwin-
ning” consistent Gaussians will have amplitudes that de-
crease to zero relative to the amplitude of the “winning”
consistent Gaussian. This result remains valid for the sum
of nonconsistent Gaussians that became consistent at a cer-
tain point, because it results from the nonstable nature of
the recursion (9), which makes strong Gaussians stronger
in an exponential manner. The single impulse might be ac-
companied by weak “sidelobes” due to newly-born non-
consistent Gaussians.
Interestingly, this form of solution is different from the
exact solution (1), where every lattice point is represented

1572 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 54, NO. 4, APRIL 2008

by an impulse at the appropriate coordinate, with ampli-
tude that depends on the Euclidean distance of the lattice
point from the observation. The iterative decoder’s solu-
tion has a single impulse that corresponds to a single lattice
point, where all other impulses have amplitudes that decay
to zero. This should not be a problem, as long as the ML
point is the remaining point (see discussion above).

2) We have shown that for the strongest consistent
Gaussians relate to that minimizes an expression of the
form . We proposed a conjecture that
this is also true for . We can further widen the con-
jecture to say that the finally decoded (and not only the

that relates to strongest consistent Gaussians) minimizes
such an expression. Such a conjecture can explain why the
iterative decoder works well for decoding near channel ca-
pacity, but fails for quantization or shaping, where the ef-
fective noise variance is much larger.

E. Summary of Convergence Results

The convergence analysis can be summarized as follows. It
was first shown that the variable node messages are Gaussian
mixtures. Therefore, it is sufficient to analyze the sequences of
variances, mean values and relative amplitudes of the Gaussians
in each mixture.

Starting with the variances, it was shown that with proper
choice of the Latin square LDLC generating sequence, each
variable node generates “narrow” messages, whose vari-
ance decreases exponentially to zero, and a single “wide” mes-
sage, whose variance reaches a finite value.

Consistent Gaussians were then defined as Gaussians that
their generation process always involved the same integer at the
same check node. Consistent Gaussians can then be related to
an integer vector or equivalently to the lattice point . It was
then shown that under appropriate conditions on , the mean
values of consistent Gaussians that belong to narrow messages
converge to the coordinates of the appropriate lattice point. The
mean values of wide messages also converge to these coordi-
nates, but with a steady-state error.

Then, the amplitudes of consistent Gaussians were analyzed.
For row and column degree it was shown that the con-
sistent Gaussians with maximal product-of-amplitudes (over all
messages) are those that correspond to an integer vector than
minimizes , where is a positive definite
matrix that depends only on . The product-of-amplitudes for
all other consistent Gaussians decays to zero.

For the analysis is complex and depends on the tran-
sient behavior of the mean values and variances (and not only
on their steady-state values). However, a reasonable conjecture
is to assume that a same form of the criterion for is also
minimized for . This criterion is different from the ML
lattice point, which minimizes , where both criteria
give the same point for weak noise but may give different solu-
tions for strong noise. This may explain the experiments where
the iterative decoder is successful in decoding the ML point for
the AWGN channel near channel capacity, but fails in quantiza-
tion or shaping applications where the effective noise is much

stronger. The convergence results also indicate that the iterative
decoder converges to impulses at the coordinates of a single lat-
tice point.

As explained throughout, analyzing the amplitudes of con-
sistent Gaussians is not sufficient, so these results cannot be re-
garded as a complete convergence analysis. However, the anal-
ysis gave a set of necessary conditions on , and also led to
useful insights to the convergence process.

V. CODE DESIGN

A. Choosing the Generating Sequence

We shall concentrate on Latin square LDLC, since they have
inherent diversity of the nonzero elements in each row and
column, which was shown above to be beneficial. It still re-
mains to choose the LDLC generating sequence .
Assume that the algorithm converged, and each pdf has a peak
at the desired value. When the periodic functions are multi-
plied at a variable node, the correct peaks will then align. We
would like that all the other peaks will be strongly attenuated,
i.e., there will be no other point where the peaks align. This
resembles the definition of the least common multiple (LCM)
of integers: if the periods were integers, we would like to have
their LCM as large as possible. This argument suggests the
sequence , i.e., the
reciprocals of the smallest prime numbers. Since the periods
are , we will get the desired property.
Simulations have shown that increasing beyond with this
choice gave negligible improvement. Also, performance was
improved by adding some “dither” to the sequence, resulting in

.
For , the first elements are used.

An alternative approach is a sequence of the form
, where . For this case, every variable node

will receive a single message with period 1 and messages
with period . For small , the period of these mes-
sages will be large and multiplication by the channel Gaussian
will attenuate all the unwanted replicas. The single remaining
replica will attenuate all the unwanted replicas of the message
with period . A convenient choice is , which ensures

that , as required by Theorem 1. As an example,
for the sequence will be .

B. Necessary Conditions on

The Latin square LDLC definition and convergence analysis
imply four necessary conditions on .

1) . This condition is part of the LDLC defi-
nition, which ensures proper density of the lattice points
in . If , it can be easily normalized by
dividing by . Note that practically we can
allow as long as , since

is the gain factor of the transmitted codeword.
For example, if , having is
acceptable, since we have , which
means that the codeword has to be further amplified by

, which is negligible.

SOMMER et al.: LOW-DENSITY LATTICE CODES 1573

Note that normalizing is applicable only if is nonsin-
gular. If is singular, a row and a column should be se-
quentially omitted until becomes full rank. This process
may result in slightly reducing and a slightly different
row and column degrees than originally planned.

2) , where . This guarantees exponential
convergence rate for the variances (Theorem 1). Choosing
a smaller results in faster convergence, but we should not
take too small since the steady-state variance of the wide
variable node messages, as well as the steady-state error
of the mean values of these messages, increases when
decreases, as discussed in Section IV-C. This may result in
deviation of the decoded codeword from the ML codeword,
as discussed in Section IV-D. For the first LDLC generating
sequence of the previous subsection, we have and

for and , respectively, which is a reasonable
trade off. For the second sequence type we have .

3) All the eigenvalues of must have magnitude less than
, where is defined in Theorem 2. This is a necessary

condition for convergence of the mean values of the narrow
messages. Note that adding random signs to the nonzero
elements is essential to fulfill this necessary condition, as
explained in Section IV-C.

4) All the eigenvalues of must have magnitude less than
, where is defined in Theorem 3. This is a necessary

condition for convergence of the mean values of the wide
messages.

Interestingly, it comes out experimentally that for large code-
word length and relatively small degree (e.g., and

), a Latin square LDLC with generating sequence that
satisfies and results in that satisfies all these
four conditions: is nonsingular without any need to omit rows
and columns, without any need for normaliza-
tion, and all eigenvalues of and have magnitude less than
1 (typically, the largest eigenvalue of or has magnitude
from to , almost independently of and the choice of
nonzero locations). Therefore, by simply dividing the first
generating sequence of the previous subsection by its first el-
ement, the constructed meets all the necessary conditions,
where the second type of sequence meets the conditions without
any need for modifications.

C. Construction of for Latin Square LDLC

We shall now present a simple algorithm for constructing a
parity check matrix for a Latin square LDLC. If we look at
the bipartite graph, each variable node and each check node
has edges connected to it, one with every possible weight

. All the edges that have the same weight form
a permutation from the variable nodes to the check nodes (or
vice versa). The proposed algorithm generates random permu-
tations and then searches sequentially and cyclically for 2-loops
(two parallel edges from a variable node to a check node) and
4-loops (two variable nodes that both are connected to a pair of
check nodes). When such a loop is found, a pair is swapped in
one of the permutations such that the loop is removed. A de-
tailed pseudo-code for this algorithm is given in Appendix VII.

VI. DECODER IMPLEMENTATION

For a practical implementation, each pdf should be approxi-
mated by a discrete vector with resolution and finite range.
It is natural to choose a finite range which is symmetric around
the noisy channel observation. This truncation may generate er-
rors if the actual codeword coordinate is located outside this fi-
nite range, i.e., the Gaussian channel noise sample for a specific
coordinate was larger than half the finite range. According to
the Gaussian Q-function, choosing a range of, say, to both
sides of the noisy channel observation will ensure that the error
probability due to pdf truncation will be . Near capacity,

, so . Simulation showed that resolution errors
became negligible for . Each pdf was then stored in a

elements vector, corresponding to a range of size .
At the check node, the pdf that arrives from variable

node is first expanded by (the appropriate coefficient of)
to get . In a discrete implementation with resolution
the pdf is a vector of values , . As described in
Section V, we shall usually use so the expanded pdf will
be shorter than the original pdf. If the expand factor was
an integer, we could simply decimate by . How-
ever, in general it is not an integer so we should use some kind
of interpolation. The pdf is certainly not band limited, and
as the iterations go on it approaches an impulse, so simple in-
terpolation methods (e.g., linear) are not suitable. Suppose that
we need to calculate , where .
A simple interpolation method which showed to be effective is
to average around the desired point, where the averaging
window length is chosen to ensure that every sample of
is used in the interpolation of at least one output point. This en-
sures that an impulse cannot be missed. The interpolation result
is then , where .

The most computationally extensive step at the check nodes
is the calculation the convolution of expanded pdfs.
An efficient method is to calculate the fast Fourier transforms
(FFTs) of all the pdfs, multiply the results and then perform
inverse FFT (IFFT). The resolution of the FFT should be
larger than the expected convolution length, which is roughly

, where denotes the original pdf length.
Appendix VIII shows a way to use FFTs of size , where
is the resolution of the pdf. Usually so FFT com-
plexity is significantly reduced. Practical values are
and , which give an improvement factor of at least
4 in complexity.

Each variable node receives check node messages. The
output variable node message is calculated by generating the
product of input messages and the channel Gaussian.
As the iterations go on, the messages get narrow and may be-
come impulses, with only a single nonzero sample. Quantiza-
tion effects may cause impulses in two messages to be shifted
by one sample. This will result in a zero output (instead of an
impulse). Therefore, it was found useful to widen each check
node message prior to multiplication, such that

, i.e., the message is added to its right shifted
and left shifted (by one sample) versions.

1574 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 54, NO. 4, APRIL 2008

VII. COMPUTATIONAL COMPLEXITY AND

STORAGE REQUIREMENTS

Most of the computational effort is invested in the FFTs and
IFFTs (of length) that each check node performs each it-

eration. The total number of multiplications for iterations is
. As in binary LDPC codes, the com-

putational complexity has the attractive property of being linear
with block length. However, the constant that precedes the linear
term is significantly higher, mainly due to the FFT operations.

The memory requirements are governed by the storage of the
check node and variable node messages, with total memory

of . Compared to binary LDPC, the factor of
significantly increases the required memory. For example, for

, and , the number of storage ele-
ments is of the order of .

VIII. ENCODING AND SHAPING

A. Encoding

The LDLC encoder has to calculate , where is
an integer message vector. Note that unlike , is
not sparse, in general, so the calculation requires computational
complexity and storage of . This is not a desirable prop-
erty because the decoder’s computational complexity is only

. A possible solution is to use the Jacobi method [26] to
solve , which is a system of sparse linear equations.
Using this method, a Latin square LDLC encoder calculates sev-
eral iterations of the form

(21)

with initialization . The matrix is defined in Lemma
6 of Section IV-C. The vector is a permuted and scaled version
of the integer vector , such that the th element of equals the
element of for which the appropriate row of has its largest
magnitude value at the th location. This element is further di-
vided by this largest magnitude element.

A necessary and sufficient condition for convergence to
is that all the eigenvalues of have magnitude less

than 1 [26]. However, it was shown that this is also a necessary
condition for convergence of the LDLC iterative decoder (see
Sections IV-C, V-B), so it is guaranteed to be fulfilled for a
properly designed Latin square LDLC. Since is sparse, this
is an algorithm, both in complexity and storage.

B. Shaping

For practical use with the power constrained AWGN channel,
the encoding operation must be accompanied by shaping, in
order to prevent the transmitted codeword’s power from being
too large. Therefore, instead of mapping the information vector

to the lattice point , it should be mapped to some
other lattice point , such that the lattice points that
are used as codewords belong to a shaping region (e.g., an -di-
mensional sphere). The shaping operation is the mapping of the
integer vector to the integer vector .

As explained in Section II-A, this work concentrates on the
lattice design and the lattice decoding algorithm, and not on the

shaping region or shaping algorithms. Therefore, this section
will only highlight some basic shaping principles and ideas.

A natural shaping scheme for lattice codes is nested lattice
coding [12]. In this scheme, shaping is done by quantizing the
lattice point onto a coarse lattice , where the trans-
mitted codeword is the quantization error, which is uniformly
distributed along the Voronoi cell of the coarse lattice. If the
second moment of this Voronoi cell is close to that of an

-dimensional sphere, the scheme will attain close-to-optimal
shaping gain. Specifically, assume that the information vector
assumes integer values in the range for some
constant integer . Then, we can choose the coarse lattice to
be . The volume of the Voronoi cell for this lattice
is , since we assume (see Section II-A). If the
shape of the Voronoi cell resembles an -dimensional sphere
(as expected from a capacity approaching lattice code), it will
attain optimal shaping gain (compared to uncoded transmission
of the original integer sequence).

The shaping operation will find the coarse lattice point ,
, which is closest to the fine lattice point . The

transmitted codeword will be

where (note that the “inverse shaping” at the de-
coder, i.e., transforming from to , is a simple modulo calcu-
lation:). Finding the closest coarse lattice point

to is equivalent to finding the closest fine lattice point
to the vector . This is exactly the operation of the itera-

tive LDLC decoder, so we could expect that is could be used for
shaping. However, simulations show that the iterative decoding
finds a vector with poor shaping gain. The reason is that for
shaping, the effective noise is much stronger than for decoding,
and the iterative decoder fails to find the nearest lattice point if
the noise is too large (see Section IV-D).

Therefore, an alternative algorithm has to be used for finding
the nearest coarse lattice point. The complexity of finding the
nearest lattice point grows exponentially with the lattice dimen-
sion and is not feasible for large dimensions [27]. However,
unlike decoding, for shaping applications it is not critical to find
the exact nearest lattice point, and approximate algorithms may
be considered (see [16]). A possible method [28] is to perform
QR decomposition on in order to transform to a lattice with
upper triangular generator matrix, and then use sequential de-
coding algorithms (such as the Fano algorithm) to search the
resulting tree. The main disadvantage of this approach is com-
putational complexity and storage of at least . Finding an
efficient shaping scheme for LDLC is certainly a topic for fur-
ther research.

IX. SIMULATION RESULTS

Latin square LDLC with the first generating sequence
of Section V-A (i.e.,

) were simulated for the AWGN
channel at various block lengths. The degree was for

and for all other . For the matrix
was further normalized to get . For all other

, normalizing the generating sequence such that the largest

SOMMER et al.: LOW-DENSITY LATTICE CODES 1575

Fig. 4. Simulation results.

element has magnitude also gave the desired determinant
normalization (see Section V-B). The matrices were gen-
erated using the algorithm of Section V-C. The probability
density function (pdf) resolution was set to with a
total range of , i.e., each pdf was represented by a vector of

elements. High resolution was used since our main
target is to prove the LDLC concept and eliminate degradation
due to implementation considerations. For this reason, the
decoder was used with 200 iterations (though most of the time,
a much smaller number was sufficient).

In all simulations the all-zero codeword was used. Ap-
proaching channel capacity is equivalent to (see
Section II-A), so performance is measured in symbol error
rate (SER), versus the distance of the noise variance from
capacity (in dB). The results are shown in Fig. 4. At SER of

, for we can work as close
as 0.6, 0.8, 1.5, and 3.7 dB from capacity, respectively.

Similar results were obtained for with the
second type of generating sequence of Section V-A, i.e.,

. Results were slightly worse
than for the first generating sequence (by less than 0.1 dB).
Increasing did not give any visible improvement.

We shall now compare these results with the LDPC-based
coding schemes that were described in Section I: LDPC-based
multi-level coding [19], [29], nonbinary alphabet LDPC coding
[18] and LDPC lattice coding [15]. The comparison is summa-
rized in Table I. The table shows the simulation results which are
reported for each scheme in the appropriate reference, including
codeword length , distance from channel capacity and error
performance, measured as either bit error rate (BER), symbol
error rate (SER) or normalized error probability (NEP), as de-
fined in [15]. Note that the schemes of [29] and [18] already in-
clude an inherent shaping operation, so the simulation results for
these schemes already include practical shaping performance.

It can be seen that compared to the other schemes, LDLC have
very good performance, and they offer an attractive tradeoff
between performance and codeword length. Regarding com-
plexity, all the schemes have linear complexity. As described
above, the linear coefficient tends to be higher for LDLC, due

TABLE I
COMPARISON OF CODING SCHEMES

to the FFT operations. However, as the number of information
bits per channel use increases, LDLC complexity becomes com-
parable to the other schemes. Furthermore, we currently inves-
tigate techniques that will reduce the computational complexity
of LDLC decoding, as well as design methodologies for the
parity check matrix, so we hope that LDLC performance and
complexity will further improve.

X. CONCLUSION

LDLC are novel lattice codes that can approach capacity and
be decoded efficiently. Good error performance within dB
from capacity at block length of 100 000 symbols was demon-
strated. Convergence analysis was presented for the iterative de-
coder, which is not complete, but yields necessary conditions
on and significant insight to the convergence process. Code
parameters were chosen from intuitive arguments, so it is rea-
sonable to assume that when the code structure will be more
understood, better parameters could be found, and channel ca-
pacity could be approached even closer.

Multiple-input–multiple-output (MIMO) communication
systems have become popular in recent years. Lattice codes
have been proposed in this context as space–time codes (LAST)
[30]. The concatenation of the lattice encoder and the MIMO
channel generates a lattice. If LDLC are used as lattice codes
and the MIMO configuration is small, the inverse generator
matrix of this concatenated lattice can be assumed to be sparse.
Therefore, the MIMO channel and the LDLC can be jointly
decoded using an LDLC-like decoder. However, even if a Latin
square LDLC is used as the lattice code, the concatenated lattice
is not guaranteed to be equivalent to a Latin square LDLC, and
the necessary conditions for convergence are not guaranteed to
be fulfilled. Therefore, the usage of LDLC for MIMO systems
is a topic for further research.

APPENDIX I
EXACT PDF CALCULATIONS

Given the -dimensional noisy observation of
the transmitted codeword , we would like to calculate
the probability density function (pdf) . We shall start

by calculating . Denote the shaping

region by (will be used to denote both the lattice and its

1576 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 54, NO. 4, APRIL 2008

generator matrix). is a sum of -dimensional
Dirac delta functions, since has nonzero probability only for
the lattice points that lie inside the shaping region. Assuming
further that all codewords are used with equal probability, all
these delta functions have equal weight of . The expres-
sion for is simply the pdf of the i.i.d. Gaussian noise
vector. We therefore get

(22)

where is not a function of and is the squared Eu-
clidean distance between the vectors and in . It can be
seen that the conditional pdf of has a delta function for each
lattice point, located at this lattice point with weight that is pro-
portional to the exponent of the negated squared Euclidean dis-
tance of this lattice point from the noisy observation. The ML
point corresponds to the delta function with largest weight.

As the next step, instead of calculating the -dimensional pdf
of the whole vector , we shall calculate the one-dimensional
marginal pdfs for each of the components of the vector
(conditioned on the whole observation vector)

(23)

This finishes the proof of (1). It can be seen that the condi-
tional pdf of has a delta function for each lattice point, lo-
cated at the projection of this lattice point on the coordinate ,
with weight that is proportional to the exponent of the negated
squared Euclidean distance of this lattice point from the noisy
observation. The ML point will therefore correspond to the delta
function with largest weight in each coordinate. Note, however,
that if several lattice points have the same projection on a spe-
cific coordinate, the weights of the corresponding delta func-
tions will add and may exceed the weight of the ML point.

APPENDIX II
EXTENDING GALLAGER’S TECHNIQUE TO THE

CONTINUOUS CASE

In [5], the derivation of the LDPC iterative decoder was sim-
plified using the following technique: the codeword elements
were assumed i.i.d. and a condition was added to all the proba-
bility calculations, such that only valid codewords were actually
considered. The question is then how to choose the marginal pdf
of the codeword elements. In [5], binary codewords were con-
sidered, and the i.i.d distribution assumed the values “ ” and
“ ” with equal probability. Since we extend the technique to the

continuous case, we have to set the continuous marginal dis-
tribution . It should be set such that , assuming
that is a lattice point, is the same as , assuming
that are i.i.d with marginal pdf , where .
This equals a weighted sum of Dirac delta functions at all
lattice points, where the weight at each lattice point equals the
probability to use this point as a codeword.

Before proceeding, we need the following property of condi-
tional probabilities. For any two continuous valued RV’s ,
we have

(24)

(This property can be easily proved by following the lines of
[25, pp. 159-160], and can also be extended to the infinite sum
case).

Using (24), we now have

(25)

where are independent of .
The result is a weighted sum of Dirac delta functions at all

lattice points, as desired. Now, the weight at each lattice point
should equal the probability to use this point as a codeword.
Therefore, should be chosen such that at each lattice
point, the resulting vector distribution
will have a value that is proportional to the probability to use
this lattice point. At which is not a lattice point, the value of

is not important.

APPENDIX III
DERIVATION OF THE ITERATIVE DECODER

In this appendix we shall derive the LDLC iterative decoder
for a code with dimension , using the tree assumption and Gal-
lager’s trick.

Referring to Fig. 2, assume that there are only 2 tiers. Using
Gallager’s trick we assume that the ’s are i.i.d. We would like
to calculate , where . Due to the tree
assumption, we can do it in two steps:

1) calculate the conditional pdf of the tier 1 variables of ,
conditioned only on the check equations that relate the tier
1 and tier 2 variables;

2) calculate the conditional pdf of itself, conditioned only
on the check equations that relate and its first tier vari-
ables, but using the results of step 1 as the pdfs for the tier
1 variables. Hence, the results will be equivalent to condi-
tioning on all the check equations.

There is a basic difference between the calculation in step 1
and step 2: the condition in step 2 involves all the check equa-
tions that are related to , where in step 1 a single check equa-
tion is always omitted (the one that relates the relevant tier 1
element with itself).

SOMMER et al.: LOW-DENSITY LATTICE CODES 1577

Assume now that there are many tiers, where each tier con-
tains distinct elements of (i.e., each element appears only once
in the resulting tree). We can then start at the farthest tier and
start moving toward . We do it by repeatedly calculating step
1. After reaching tier 1, we use step 2 to finally calculate the
desired conditional pdf for .

This approach suggests an iterative algorithm for the calcu-
lation of for . In this ap-
proach we assume that the resulting tier diagram for each
contains distinct elements for several tiers (larger or equal to
the number of required iterations). We then repeat step 1 sev-
eral times, where the results of the previous iteration are used as
initial pdfs for the next iteration. Finally, we perform step 2 to
calculate the final results.

Note that by conditioning only on part of the check equations
in each iteration, we cannot restrict the result to the shaping re-
gion. This is the reason that the decoder performs lattice de-
coding and not exact ML decoding, as described in Section III.

We shall now turn to derive the basic iteration of the algo-
rithm. For simplicity, we shall start with the final step of the
algorithm (denoted step 2 above). We would like to perform
iterations, so assume that for each there are tiers with a total
of check equations. For every we need to calculate

where is the number of check equations that involve .
denotes the value of the left hand side of

these check equations when is substituted (is a sub-
matrix of that contains only the rows that relate to these check
equations), and relates in the same manner to all the
other check equations. For simplicity of notations, denote the
event by . As explained above, in all
the calculations we assume that all the ’s are independent.

Using (24), we get

(26)
Evaluating the term inside the sum of the numerator, we get

(27)
Evaluating the left term of (27), we get

(28)

where due to the i.i.d. assumption. Evalu-
ating now the right term of (27), we get

(29)
where denotes the th component of and de-
notes the th component of . Note that each element of
is a linear combination of several elements of . Due to the tree

assumption, two such linear combinations have no common ele-
ments, except for itself, which appears in all linear combina-
tions. However, is given, so the i.i.d assumption implies that
all these linear combinations are independent, so (29) is justi-
fied. The condition (i.e.,) does not im-
pact the independence due to the tree assumption.

Substituting (27), (28), (29) back in (26), we get

(30)

where is independent of .
We shall now examine the term inside the sum:

. Denote the linear combination that repre-
sents by

(31)

where , is the set of nonzero coeffi-
cients of the appropriate parity check equation, and is the set
of indices of the appropriate elements (note that the set de-
pends on but we omit the “ ” index for clarity of notations).
Without loss of generality, is assumed to be the coeffi-
cient of . Define , such that

. We then have

(32)

Now, since we assume that the elements of are independent,
the pdf of the linear combination equals the convolution of
the pdfs of its components

(33)

Note that the functions are simply the output
pdfs of the previous iteration.

Define now

(34)

1578 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 54, NO. 4, APRIL 2008

Substituting (32), (34) in (30), we finally get:

(35)

This result can be summarized as follows. For each of the
check equations that involve , the pdfs (previous iteration re-
sults) of the active equation elements, except for itself, are
expanded and convolved, according to (33). The convolution re-
sult is scaled by , the negated coefficient of in this
check equation, according to (34), to yield . Then, a pe-
riodic function with period is generated by adding an
infinite number of shifted versions of the scaled convolution
result, according to the sum term in (35). After repeating this
process for all the check equations that involve , we get

periodic functions, with possibly different periods. We then
multiply all these functions. The multiplication result is further

multiplied by the channel Gaussian pdf term and fi-
nally by , the marginal pdf of under the i.i.d assump-
tion. As discussed in Section III, we assume that is a
uniform distribution with large enough range. This means that

is constant over the valid range of , and can therefore
be omitted from (35) and absorbed in the constant .

As noted above, this result is for the final step (equivalent to
step 2 above), where we determine the pdf of according to
the pdfs of all its tier 1 elements. However, the repeated iteration
step is equivalent to step 1 above. In this step, we assume that

is a tier 1 element of another element, say , and derive the
pdf of that should be used as input to step 2 of (see Fig. 2).
It can be seen that the only difference between step 2 and step 1
is that in step 2 all the check equations that involve are used,
where in step 1 the check equation that involves both and
is ignored (there must be such an equation since is one of the
tier 1 elements of). Therefore, the step 1 iteration is identical
to (35), except that the product does not contain the term that
corresponds to the check equation that combines both and

. Denote

(36)

We then get

(37)

where is the index of the check equation that combines both
and . In principle, a different should be calculated

for each for which is a tier 1 element. However, the cal-
culation is the same for all that share the same check equa-
tion. Therefore, we should calculate once for each check
equation that involves . can be regarded as the index of the
check equation within the set of check equations that involve

.

We can now formulate the iterative decoder. The de-
coder state variables are pdfs of the form , where

. For each , assumes the values ,
where is the number of check equations that involve .
denotes the iteration index. For a regular LDLC with degree

there will be pdfs. The pdfs are initialized by assuming
that is a leaf of the tier diagram. Such a leaf has no tier 1
elements, so . As explained above
for (35), we shall omit the term , resulting in initialization
with the channel noise Gaussian around the noisy observation

. Then, the pdfs are updated in each iteration according to
(37). The variable node messages should be further normalized
in order to get actual pdfs, such that (this
will compensate for the constant). The final pdfs for ,

are then calculated according to (35).
In Section IV, it is shown that under certain conditions, each

variable node receives a single check node message which ap-
proaches an impulse, and several other messages that approach
a Gaussian with nonzero variance. The source of the impulse
message for each variable node is known and depends only on
the relevant coefficient of . If enough iterations are performed,
this observation suggests an alternative to (35) for the final pdf
calculation: instead of multiplying all the incoming messages
altogether, the decoder can simply choose the message that ap-
proaches an impulse.

Finally, we have to estimate the integer valued infor-
mation vector . This can be done by first estimating the
codeword vector from the peaks of the pdfs:

. Finally, we can es-
timate as .

An alternative way to recover the integer valued information
vector is to estimate the pdfs of the elements of the vector .
This can be done at the last check node iteration by convolving
all the incoming variable node messages at each check node,
without omitting any message. These estimates can be regarded
as the pdf estimations of the elements of , without restricting
them to be integers. Denote the estimated pdf for by .
Then, we can estimate by .

We have finished developing the iterative algorithm. It
can be easily seen that the message passing formulation of
Section III-A actually implements this algorithm.

APPENDIX IV
ASYMPTOTIC BEHAVIOR OF THE VARIANCES RECURSION

A. Proof of Lemma 3 and Lemma 4

We shall now derive the basic iterative equations that relate
the variances at iteration to the variances at iteration for a
Latin square LDLC with dimension , degree and generating
sequence .

Each iteration, every check node generates output mes-
sages, one for each variable node that is connected to it, where
the weights of these connections are . For
each such output message, the check node convolves ex-
panded variable node pdf messages, and then stretches and pe-
riodically extends the result. For a specific check node, denote
the variance of the variable node message that arrives along an

SOMMER et al.: LOW-DENSITY LATTICE CODES 1579

edge with weight by , . Denote the vari-
ance of the message that is sent back to a variable node along
an edge with weight by . From (2), (3), we get

(38)

Then, each variable node generates messages, one for each
check node that is connected to it, where the weights of these

connections are . For each such output
message, the variable node generates the product of check
node messages and the channel noise pdf. For a specific variable
node, denote the variance of the message that is sent back to a
check node along an edge with weight by (this is
the final variance of the iteration). From claim 2, we then get

(39)

From symmetry considerations, it can be seen that all messages
that are sent along edges with the same absolute value of their
weight will have the same variance, since the same variance up-
date occurs for all these messages (both for check node mes-
sages and variable node messages). Therefore, the variance
values are the same for all variable nodes,
where is the variance of the message that is sent along an
edge with weight . This completes the proof of Lemma 3.

Using this symmetry, we can now derive the recursive update
of the variance values . Substituting (38) in
(39), we get

(40)

for , which completes the proof of Lemma 4.

B. Proof of Theorem 1

We would like to analyze the convergence of the nonlinear
recursion (4) for the variances . This recur-
sion is illustrated in (5) for the case . It is assumed that

, where . Define another set of variables

, which obey the following recursion. The
recursion for the first variable is

(41)

where for the recursion is:

with initial conditions .

It can be seen that (41) can be regarded as the approximation
of (4) under the assumptions that and
for .

For illustration, the new recursion for the case is

(42)

It can be seen that in the new recursion, obeys a recur-
sion that is independent of the other variables. From (41), this
recursion can be written as , with initial con-

dition . Since , this is a stable linear recursion
for , which can be solved to get .

For the other variables, it can be seen that all have the same
right hand side in the recursion (41). Since all are initialized
with the same value, it follows that
for all . Substituting back in (41), we get the recursion

, with initial condition . Since ,
this is a stable linear recursion for , which can be solved to
get .

We found an analytic solution for the variables . How-
ever, we are interested in the variances . The following
claim relates the two sets of variables.

Claim 3: For every , the first variables of the two sets
are related by , where for we have

.
Proof: By induction: the initialization of the two sets of

variables obviously satisfies the required relations. Assume now
that the relations are satisfied for iteration , i.e.,
and for , . If we now compare the
right-hand side of the update recursion for to that of

(i.e., (4) to (41)), then the right-hand side for is

smaller, because it has additional positive terms in the denomi-
nators, where the common terms in the denominators are larger
according to the induction assumption. Therefore,

, as required. In the same manner, if we compare the
right-hand side of the update recursion for to that of

for , then the right-hand side for is larger,

because it has additional positive terms, where the common
terms are also larger since their denominators are smaller due
to the induction assumption. Therefore, for

, as required.

Using claim 3 and the analytic results for , we now have

(43)

where for we have:

(44)

1580 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 54, NO. 4, APRIL 2008

We have shown that the first variance is lower bounded by a
positive nonzero constant where the other variances are upper
bounded by a term that decays exponentially to zero. There-
fore, for large we have and for

. It then follows that for large the variances approxi-
mately obey the recursion (41), which was built from the actual
variance recursion (4) under these assumptions. Therefore, for

the variances are not only upper bounded by
an exponentially decaying term, but actually approach such a
term, where the first variance actually approaches the constant

in an exponential rate. This completes the proof of
Theorem 1.

Note that the above analysis only applies if . To il-
lustrate the behavior for , consider the simple case of

. From (4), (5) it can be seen that for this
case, if is independent of , then is independent of
for every , since all the elements will follow the same re-
cursive equations. Substituting this result in the first equation,
we get the single variable recursion with

initialization . This recursion is easily solved to get
or . It can be seen that all the variances

converge to zero, but with slow convergence rate of .

APPENDIX V
ASYMPTOTIC BEHAVIOR OF THE MEAN VALUES RECURSION

A. Proof of Lemma 5 and Lemma 6 (Mean of Narrow
Messages)

Assume a Latin square LDLC with dimension and degree
. We shall now examine the effect of the calculations in the

check nodes and variable nodes on the mean values and de-
rive the resulting recursion. Every iteration, each check node
generates output messages, one for each variable node that
connects to it, where the weights of these connections are

. For each such output message, the check
node convolves expanded variable node pdf messages, and
then stretches and periodically extends the result. We shall con-
centrate on the consistent Gaussians that relate to the same
integer vector (one Gaussian in each message), and analyze
them jointly. For convenience, we shall refer to the mean value
of the relevant consistent Gaussian as the mean of the message.

Consider now a specific check node. Denote the mean value
of the variable node message that arrives at iteration along the
edge with weight by , . Denote the
mean value of the message that is sent back to a variable node
along an edge with weight by . From (2), (3) and claim
1, we get

(45)

where is the appropriate element of that is related to this spe-
cific check equation, which is the only relevant index in the infi-
nite sum of the periodic extension step (3). Note that the check
node operation is equivalent to extracting the value of from

the check equation , assuming all the other
are known. Note also that the coefficients should have a

random sign. To keep notations simple, we assume that al-
ready includes the random sign. Later, when several equations
will be combined together, we should take it into account.

Then, each variable node generates messages, one for each
check node that is connected to it, where the weights of these

connections are . For each such output
message, the variable node generates the product of check
node messages and the channel noise pdf. For a specific variable
node, denote the mean value of the message that arrives from a
check node along an edge with weight by , and the

appropriate variance by . The mean value of the message
that is sent back to a check node along an edge with weight
is , the final mean value of the iteration. From claim 2,
we then get

(46)

where is the channel observation for the variable node and
is the noise variance. Note that , in (46) are
the mean values of check node messages that arrive to the same
variable node from different check nodes, where in (45) they
define the mean values of check node messages that leave the
same check node. However, it is beneficial to keep the notations
simple, and we shall take special care when (46) and (45) are
combined.

It can be seen that the convergence of the mean values is cou-
pled to the convergence of the variances (unlike the recursion
of the variances which was autonomous). However, as the iter-
ations go on, this coupling disappears. To see that, recall from
Theorem 1 that for each check node, the variance of the vari-
able node message that comes along an edge with weight
approaches a finite value, where the variance of all the other
messages approaches zero exponentially. According to (38), the
variance of the check node message is a weighted sum of the
variances of the incoming variable node messages. Therefore,
the variance of the check node message that goes along an edge
with weight will approach zero, since the weighted sum
involves only zero-approaching variances. All the other mes-
sages will have finite variance, since the weighted sum involves
the nonzero-approaching variance. To summarize, each variable
node sends (and each check node receives) “narrow” mes-
sages and a single “wide” message. Each check node sends (and
each variable node receives) “wide” messages and a single
“narrow” message, where the narrow message is sent along the
edge from which the wide message was received (the edge with
weight).

We shall now concentrate on the case where the variable node
generates a narrow message. Then, the sum in the numerator of
(46) has a single term for which , which corresponds
to . The same is true for the sum in the denominator.
Therefore, for large , all the other terms will become negligible
and we get

(47)

SOMMER et al.: LOW-DENSITY LATTICE CODES 1581

where is the mean of the message that comes from the
edge with weight , i.e., the narrow check node message. As
discussed above, of the variable node messages that leave
the same variable node are narrow. From (47) it comes out that
for large , all these narrow messages will have the same
mean value. This completes the proof of Lemma 5.

Now, combining (45) and (47) (where the indices are ar-
ranged again, as discussed above), we get

(48)

where , are the variable nodes that take place in
the check equation for which variable node appears with co-
efficient . is the element of that is related to this check
equation. denotes the mean value of the narrow

messages that leave variable node at iteration . is the
mean value of the narrow messages that were generated at vari-
able node at iteration . Only narrow messages are involved
in (48), because the right hand side of (47) is the mean value
of the narrow check node message that arrived to variable node

, which results from the convolution of narrow vari-
able node messages. Therefore, for large , the mean values of
the narrow messages are decoupled from the mean values of the
wide messages (and also from the variances), and they obey an
autonomous recursion.

The mean values of the narrow messages at iteration can be
arranged in an -element column vector (one mean value
for each variable node). We would like to show that the mean
values converge to the coordinates of the lattice point .
Therefore, it is useful to define the error vector .
Since , we can write (using the same notations as (48))

(49)

Subtracting (49) from (48), we get

(50)

Or, in vector notation

(51)

where is derived from by permuting the rows such that
the elements will be placed on the diagonal, dividing each
row by the appropriate diagonal element (or), and then
nullifying the diagonal. Note that in order to simplify the nota-
tions, we embedded the sign of in and did not write it
implicitly. However, the definition of solves this ambiguity.
This completes the proof of Lemma 6.

B. Proof of Lemma 7 (Mean of Wide Messages)

Recall that each check node receives narrow messages
and a single wide message. The wide message comes along the
edge with weight . Denote the appropriate lattice point by

, and assume that the Gaussians of the narrow variable
node messages have already converged to impulses at the cor-
responding lattice point coordinates (Theorem 2). We can then

substitute in (45) for . The mean value of the
(wide) message that is returned along the edge with weight
() is

(52)

As in the previous section, for convenience of notations we
embed the sign of in itself. The sign ambiguity will be
resolved later.

The meaning of (52) is that the returned mean value is the de-
sired lattice coordinate plus an error term that is proportional to
the error in the incoming wide message. From (38), assuming
that the variance of the incoming wide message has already con-
verged to its steady-state value and the variance of
the incoming narrow messages has already converged to zero,
the variance of this check node message will be

(53)

where . Now, each variable node receives
wide messages and a single narrow message. The mean values
of the wide messages are according to (52) and the variances
are according to (53). The single wide message that this variable
node generates results from the input wide messages and
it is sent along the edge with weight . From (46), the wide
mean value generated at variable node will then be

(54)

Note that the and terms of (52) were replaced by
and , respectively, since for convenience of notations we
denoted by the mean of the message that came to a check
node along the edge with weight . For substitution in (46)
we need to know the exact variable node index that this edge
came from. Therefore, denotes the index of the variable
node that takes place with coefficient in the check equation
where takes place with coefficient .

Rearranging terms, we then get

(55)

Denote now the wide message mean value error by
(where is the lattice point that

corresponds to). Denote by the difference vector between

1582 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 54, NO. 4, APRIL 2008

and the noisy observation , i.e., . Note that if
corresponds to the correct lattice point that was transmitted,
equals the channel noise vector . Subtracting from both
sides of (55), we finally get

(56)

If we now arrange all the errors in a single column vector , we
can write

(57)

where is an matrix defined by

if and there exist a row of

for which and
otherwise

(58)
is well defined, since for a given there can be at most a

single row of for which (note that implies
that is different from all the other elements of the generating
sequence).

As discussed above, we embedded the sign in for conve-
nience of notations, but when several equations are combined
the correct signs should be used. It can be seen that using the
notations of (57) resolves the correct signs of the elements.
This completes the proof of Lemma 7.

An alternative way to construct from is as follows. To
construct the th row of , denote by , , the
index of the element in the th column of with value (i.e.,

). Denote by , , the index of the
element in the th row of with value (i.e.,).
The th row of will be all zeros except for the elements

, , where .

APPENDIX VI
ASYMPTOTIC BEHAVIOR OF THE AMPLITUDES RECURSION

A. Proof of Lemma 9

From (10), is clearly nonnegative. From Sections IV-B,
IV-C (and the appropriate appendices) it comes out that for con-
sistent Gaussians, the mean values and variances of the mes-
sages have a finite bounded value and converge to a finite steady-
state value. The excitation term depends on these mean
values and variances according to (10), so it is also finite and
bounded, and it converges to a steady-state value, where cau-
tion should be taken for the case of a zero approaching vari-
ance. Note that at most a single variance in (10) may approach
zero (as explained in Section IV-B, a single narrow check node
message is used for the generation of narrow variable node mes-
sages, and only wide check node messages are used for the gen-
eration of wide variable node messages). The zero approaching
variance corresponds to the message that arrives along an edge
with weight , so assume that approaches zero and all

other variances approach a nonzero value. Then, also ap-

proaches zero and we have to show that the term , which is

a quotient of zero approaching terms, approaches a finite value.
Substituting for , we get

(59)

Therefore, converges to a finite steady-state value, and has
a finite value for every and . This completes the first part of
the proof.

We would now like to show that can be
expressed in the form . Every variable
node sends narrow messages and a single wide message.
We shall start by calculating that corresponds to a narrow
message. For this case, check node messages take place
in the sums of (10), from which a single message is narrow and

are wide. The narrow message arrives along the edge with
weight , and has variance . Substituting in (10),
and using (59), we get

(60)
Denote . The mean values of the narrow check node
messages converge to the appropriate lattice point coordinates,
i.e., . From Theorem 3, the mean value of the wide
variable node message that originates from variable node con-
verges to , where denotes the vector of error terms.
The mean value of a wide check node message that arrives to
node along an edge with weight can be seen to approach

, where denotes the index of the
variable node that takes place with coefficient in the check
equation where takes place with coefficient . For conve-
nience of notations, we shall assume that already includes the
sign (this sign ambiguity will be resolved later). The variance
of the wide variable node messages converges to ,
so the variance of the wide check node message that arrives
to node along an edge with weight can be seen to ap-

proach . Substituting in (60), and denoting
, we get

(61)

SOMMER et al.: LOW-DENSITY LATTICE CODES 1583

Summing over all the narrow messages that leave variable node
, we get

(62)
To complete the calculation of the contribution of node to the
excitation term, we still have to calculate that corresponds
to a wide message. Substituting ,

, in (10), we get

(63)

Starting with the first term, we have

(64)

where is defined in Theorem 3 and denotes the th
element of the vector . Note that using solves the sign
ambiguity that results from embedding the sign of in
for convenience of notations, as discussed above. Turning now
to the second term of (63)

(65)

where we have substituted , as comes out
from Lemma 7. Again, using resolves the sign ambiguity of

, as discussed above.
Substituting (64) and (65) back in (63), summing the result

with (62), and rearranging terms, the total contribution of vari-
able node to the asymptotic excitation sum term is

(66)

Summing over all the variable nodes, the total asymptotic exci-
tation sum term is

(67)

Substituting (see Theorem 3), we finally
get

(68)

where

(69)

From (10) it can be seen that is positive for every
nonzero . Therefore, is positive definite. This completes the
second part of the proof.

Since is finite and bounded, there exists such that
for all and . We then have

Therefore, for the infinite sum will have a finite steady-
state value. This completes the proof of Lemma 9.

APPENDIX VII
GENERATION OF A PARITY CHECK MATRIX FOR LDLC

In the following pseudocode description, the element of
a matrix is denoted by and the th column of a matrix
is denoted by .

Input: block length , degree ,

nonzero elements .

Output: a Latin square LDLC parity check matrix

with generating sequence .

Initialization:

choose random permutations on .
Arrange the permutations in an matrix

1584 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 54, NO. 4, APRIL 2008

such that each row holds a permutation.

; # column index

; # number of consecutive
columns without loops

loop removal:
while

;
if exists such that

a 2-loop was found at column
;

else
if there is no 2-loop, look for a 4-loop
if exists such that and have

two or more common elements
a 4-loop was found at column c

for which
the first common element appears in column ;

end
end
if

a permutation should be modified to
remove loop
choose a random integer ;
swap locations and in
permutation ;

;
else

no loop was found at column
;

end
increase column index

;
if

;

end
end

Finally, build from the permutations
initialize H as an zero matrix;
for

for
;

end
end

APPENDIX VIII
REDUCING THE COMPLEXITY OF THE FFT CALCULATIONS

FFT calculation can be made simpler by using the fact that the
convolution is followed by the following steps: the convolution
result is stretched to and then period-

ically extended to (see (3)). It
can be seen that the stretching and periodic extension steps can
be exchanged, and the convolution result can be first peri-
odically extended with period to
and then stretched to . Now, the infinite

sum can be written as a convolution with a sequence of Dirac
impulses:

(70)

Therefore, the Fourier transform of will equal the Fourier
transform of multiplied by the Fourier transform of the
impulse sequence, which is itself an impulse sequence. The FFT
of will therefore have several nonzero values, separated
by sequences of zeros. These nonzero values will equal the FFT
of after decimation. To ensure an integer decimation rate,
we should choose the pdf resolution such that an interval with
range (the period of) will contain an integer number of
samples, i.e., should be an integer. Also, we should choose

(the number of samples in) to correspond to a range
which equals an integer, i.e., should be an integer.
Then, we can calculate the (size) FFT of and then deci-
mate by . The result will give samples which correspond
to a single period (with range 1) of .

However, instead of calculating an FFT of length and im-
mediately decimating, we can directly calculate the decimated
FFT. Denote the expanded pdf at the convolution input by ,

(where the expanded pdf is zero padded to
length). To generate directly the decimated result, we can first
calculate the (size) FFT of each group of samples which are
generated by decimating by . Then, the desired
decimated result is the FFT (of size) of the sequence of first
samples of each FFT of size . However, the first sample of an
FFT is simply the sum of its inputs. Therefore, we should only
calculate the sequence (of length) ,

and then calculate the FFT (of length)
of the result. This is done for all the expanded pdfs. Then,
such results are multiplied, and an IFFT (of length) gives
a single period of .

With this method, instead of calculating FFTs and IFFTs
of size larger than , we calculate FFTs and IFFTs of size

.
In order to generate the final check node message, we should

stretch to . This can be done by in-
terpolating a single period of using interpolation methods
similar to those that were used in Section VI for expanding the
variable node pdfs.

ACKNOWLEDGMENT

Support and interesting discussions with Ehud Weinstein are
gratefully acknowledged. The authors also like to thank the
anonymous reviewers for their thorough review and valuable
comments.

REFERENCES

[1] C. E. Shannon, “A mathematical theory of communication,” Bell Syst.
Tech. J., vol. 27, pp. 379, 623–423, 656, Jul.–Oct. 1948.

[2] P. Elias, “Coding for noisy channels,” IRE Conv. Rec., vol. 3, pt. 4, pp.
37–46, Mar. 1955.

[3] C. E. Shannon, “Probability of error for optimal codes in a Gaussian
channel,” Bell Syst. Tech. J., vol. 38, pp. 611–656, 1959.

[4] R. E. Blahut, Theory and Practice of Error Control Codes. Reading,
MA: Addison-Wesley, 1983.

SOMMER et al.: LOW-DENSITY LATTICE CODES 1585

[5] R. G. Gallager, Low-Density Parity-Check Codes. Cambridge, MA:
MIT Press, 1963.

[6] C. Berrou, A. Glavieux, and P. Thitimajshima, “Near Shannon limit
error-correcting coding and decoding: Turbo codes,” in Proc. IEEE Int.
Conf. Commun., 1993, pp. 1064–1070.

[7] R. de Buda, “The upper error bound of a new near-optimal code,” IEEE
Trans. Inf. Theory, vol. IT-21, pp. 441–445, Jul. 1975.

[8] R. de Buda, “Some optimal codes have structure,” IEEE J. Sel. Areas
Commun., vol. 7, pp. 893–899, Aug. 1989.

[9] T. Linder, C. Schlegel, and K. Zeger, “Corrected proof of de Buda’s
theorem,” IEEE Trans. Inf. Theory, pp. 1735–1737, Sep. 1993.

[10] H. A. Loeliger, “Averaging bounds for lattices and linear codes,” IEEE
Trans. Inf. Theory, vol. 43, pp. 1767–1773, Nov. 1997.

[11] R. Urbanke and B. Rimoldi, “Lattice codes can achieve capacity on the
AWGN channel,” IEEE Trans. Inf. Theory, pp. 273–278, Jan. 1998.

[12] U. Erez and R. Zamir, “Achieving 1/2 log(1 + SNR) on the AWGN
channel with lattice encoding and decoding,” IEEE Trans. Inf. Theory,
vol. 50, pp. 2293–2314, Oct. 2004.

[13] A. R. Calderbank and N. J. A. Sloane, “New trellis codes based on
lattices and cosets,” IEEE Trans. Inf. Theory, vol. IT-33, pp. 177–195,
Mar. 1987.

[14] G. D. Forney Jr., “Coset codes–Part I: Introduction and geometrical
classification,” IEEE Trans. Inf. Theory, vol. 34, pp. 1123–1151, Sep.
1988.

[15] M. R. Sadeghi, A. H. Banihashemi, and D. Panario, “Low-density
parity-check lattices: Construction and decoding analysis,” IEEE
Trans. Inf. Theory, vol. 52, no. 10, pp. 4481–4495, Oct. 2006.

[16] O. Shalvi, N. Sommer, and M. Feder, “Signal codes,” in Proc. Inf.
Theory Workshop, 2003, pp. 332–336.

[17] O. Shalvi, N. Sommer, and M. Feder, Signal Codes, to be published.
[18] A. Bennatan and D. Burshtein, “Design and analysis of nonbinary

LDPC codes for arbitrary discrete-memoryless channels,” IEEE Trans.
Inf. Theory, vol. 52, pp. 549–583, Feb. 2006.

[19] J. Hou, P. H. Siegel, L. B. Milstein, and H. D. Pfister, “Capacity ap-
proaching bandwidth efficient coded modulation schemes based on
low density parity check codes,” IEEE Trans. Inf. Theory, vol. 49, pp.
2141–2155, Sep. 2003.

[20] J. H. Conway and N. J. Sloane, Sphere Packings, Lattices and
Groups. New York: Springer, 1988.

[21] G. Poltyrev, “On coding without restrictions for the AWGN channel,”
IEEE Trans. Inf. Theory, vol. 40, pp. 409–417, Mar. 1994.

[22] N. Wiberg, “Codes and Decoding on General Graphs,” Doctoral, Dep.
Elec. Eng., Linköping Univ., Linköping, Sweden, 1996.

[23] F. R. Kschischang, B. J. Frey, and H. A. Loeliger, “Factor graphs
and the sum-product algorithm,” IEEE Trans. Inf. Theory, vol. 47, pp.
498–519, Feb. 2001.

[24] J. Pearl, Probabilistic Reasoning in Intelligent Systems, Second
Printing ed. San Mateo, CA: Morgan Kaufmann, 1988.

[25] A. Papoulis, Probability, Random Variables and Stochastic Processes,
second ed. New York: McGraw-Hill, 1984.

[26] Y. Saad, Iterative Methods for Sparse Linear Systems, 2nd ed. New
York: Society for Industrial and Applied Mathematic (SIAM), 2003.

[27] E. Agrell, T. Eriksson, A. Vardy, and K. Zeger, “Closest point search in
lattices,” IEEE Trans. Inf. Theory, vol. 48, pp. 2201–2214, Aug. 2002.

[28] N. Sommer, M. Feder, and O. Shalvi, “Closest point search in lattices
using sequential decoding,” in Proc. Int. Symp. Inf. Theory (ISIT), 2005,
pp. 1053–1057.

[29] H. S. Cronie, “Superposition coding for power and bandwidth efficient
communication over the Gaussian channel,” in Proc. Int. Symp. Inf.
Theory (ISIT), 2007.

[30] H. El Gamal, G. Caire, and M. Damen, “Lattice coding and decoding
achieve the optimal diversity-multiplexing tradeoff of MIMO chan-
nels,” IEEE Trans. Inf. Theory, vol. 50, pp. 968–985, Jun. 2004.

