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Abstract - The intermittency of renewable energy
sources, e.g. wind or solar, as well as forecast uncertainties
in load, price and renewable infeed profiles call for storage
solutions and appropriate control strategies. For the investi-
gations in this paper the energy hub modeling framework is
used, which takes into account multiple energy carriers, dis-
tributed generation, energy storage systems and renewable
energy sources. This paper focuses on the value of energy
storage devices when operating them in combination with
intermittent infeed from renewable energy sources. Since
forecasts never are perfect, a model predictive control (MPC)
strategy is used for keeping the consequences of forecast un-
certainties at acceptable levels. Instead of compensatingfore-
cast uncertainties with fast acting backup generators or bal-
ancing energy, the imbalances can be compensated by means
of storage devices, placed close to locations where uncertain-
ties arise. Monte-Carlo simulations show that major part of
the disturbances can be compensated by means of storage de-
vices without increasing system operation costs significantly.
In cases where storage devices are not sufficient, generator
settings are changed from day-ahead schedule, representing
additional balancing costs.

Keywords - Power system optimization, model pre-
dictive control, energy storage, forecast errors, multi-
carrier energy systems

1 Introduction

THE increasing penetration of distributed generation
(DG) technologies, such as photovoltaics, wind tur-

bines, micro combined heat and power plants (µCHP),
biomass-fired plants and others, leads to new challenges
in operation of power systems. Moreover, the intermit-
tency of local renewable energy sources (RES), e.g., wind
and solar power, as well as the uncertainties in their pre-
dicted available power output, create the need for storage
solutions and appropriate control strategies. Beyond that,
forecast errors in price and load profiles further compli-
cate the establishment of the generation-load balance. So
far, imbalances between production and load are compen-
sated by the grid and fast acting backup generators such
as gas turbines or hydro storage power plants. However,
due to the on-going increase in intermittent sources, day-
ahead planning becomes more demanding. Grid operators
often have to pay high penalties due to re-scheduling be-
cause they cannot meet their projected production pattern
due to inaccurate forecasts. Furthermore, an increasing
number of backup generation units is needed, running on
reduced power or even on idle, to quickly react to output
changes of intermittent sources. Instead of compensating

forecast uncertainties with fast acting backup generators
or balancing energy, as it is often done in current practice,
the imbalances can also be compensated by means of stor-
age devices, placed close to locations where uncertainties
arise. In [1], the benefits of using storage for providing
balancing services for electricity generation systems with
high wind penetration are evaluated. The authors show
that compared with other balancing solutions storage de-
vices save fuel costs and reduce CO2 emissions. In [2],
storage devices are used to balance power fluctuations of
non-dispatchable generators in order to feed power into
the network according to an hourly pre-determined con-
stant profile.

For taking into account distributed generation, stor-
age devices and renewable energy sources, the energy hub
modeling framework [3] is used. Energy hubs are primar-
ily used to describe systems comprising multiple energy
carriers. Increasingly, energy supply is no longer based
only on electricity networks, but other energy carrier net-
works, such as natural gas or heating networks, have to
be taken into account as well. These multi-carrier energy
systems are considered to consist of a number of intercon-
nected energy hubs, which represent the interface between
consumers and power supply infrastructures of different
energy systems.

A two-level control scheme is applied, which is di-
vided into day-ahead planning and on-line dispatch. The
on-line procedure adapts pre-defined generation settings
(determined by the day-ahead planner) to profile changes
appearing within the day. An appropriate on-line control
procedure wherewith system dynamics and forecast un-
certainties can be taken into account is Model Predictive
Control (MPC). By using a predictive approach, fluctua-
tions within energy prices, load profiles and input profiles
from renewable energy sources can be handled in an ap-
propriate way. Applying MPC, storage devices are oper-
ated in an cost-efficient way, wherewith most forecast un-
certainties are balanced by means of storage devices such
that adjustments of backup generators or penalties for bal-
ancing energy are reduced.

The remainder of this paper is organized as follows.
Section 2 describes the modeling framework of storage
devices, energy hubs and energy transmission systems. In
Section 3, the MPC control approach is presented, fol-
lowed by its application to the system, Section 4. Sim-
ulation results, applying the proposed control strategy to
a two-hub system are presented in Section 5. Section 6
concludes this paper and outlines directions for future re-
search.



2 Modeling Framework

In this section, the mathematical model of multi-
carrier energy systems is presented. Firstly, the storage
model is described. Next, the energy hub which couples
both systems is formalized. Finally, the transmission sys-
tems are described. All equations are defined for time step
k as we consider the optimal operation over multiple time
steps. A discrete time stepk corresponds to the continuous
timekT , whereT is one hour.

2.1 Energy Storage

In the considered system setup, hot water and battery
storage devices are implemented. For both storage devices
the same models are used, but with different parameters. A
storage device is modeled as ideal storage in combination
with a storage interface. The power exchangeMα(k) is
defined as the difference between stored amount of energy
Eα(k) at two consecutive time steps, plus some standby
energy losseṡEstb

α , which must be covered at each time
period (Ėstb

α ≥ 0):

Mα(k) =
Ėα

eα
=

1

eα

dEα

dt
≈

1

eα

∆Eα

∆t

=
1

eα

(
Eα(k)− Eα(k − 1)

∆t
+ Ėstb

α

)

. (1)

The parameterse+α , e−α are the charging and discharging
efficiencies of the storage device, respectively. The sub-
scriptα stands for both storage mediums, heat and elec-
tricity.

The stored energyEα(k) and the power exchange
Mα(k) have to remain within limits, resulting in the fol-
lowing constraints for the storage device:

Mα,min(k) < Mα(k) < Mmax
α (k) (2)

Eα,min(k)− ε(k) < Eα(k) < Emax
α (k) + ε(k) (3)

ε(k) ≥ 0 (4)

Figure 1: Illustration of soft constraints: Storage capacity modeled with-
out soft constraints (green curve) and with soft constraints (red curve).

In order to avoid system infeasibility in cases of high
forecast errors, storage capacity limits are modeled as soft
constraints. Therewith, storage devices are allowed to
shortly violate their optimal operation limits (Fig. 1). This
is reasonable since storage devices always have some re-
serve capacity in reality. When the optimal operation in-
terval is violated, additional costs arise by adding the slack
variables,ε, with an appropriate weighting factor to the
objective function (Sect. 4.3). Doing so, it is guaran-
teed, that the optimal operation limits are only violated if

the secure system operation is endangered. Nevertheless,
storage capacities have to respect some hard limits, which
represent the physical limits of the storage.

2.2 Energy Hub

Energy hubs formalize the modeling of a system con-
sisting of multiple energy carriers. By means of the en-
ergy hub concept, storage of different forms of energy and
conversion between them can be formulated [3]. Figure 2
shows an illustrative example for an energy hub, which
consumes/delivers electricityPH

e and consumes natural
gasPH

g at the input and supplies energy to electricLe and
heat loadsLh. The hub contains aµCHP and a furnace
for energy conversion and a heat and a electric storage for
energy storage. The electricity produced using theµCHP
can either be used for load supply, for filling up the electric
storage or can be, depending on price and load profiles,
fed back to the grid. The heat produced, by bothµCHP
and furnace, is either used to supply the heat load or to fill
up the heat storage. If the produced heat is not sufficient
to cover the heat demand, the storage is used for support.
The coupling provided by theµCHP device increases the
redundancy in supply and offers the opportunity of opti-
mizing the energy supply, e.g., supplying the electric load
viaµCHP which is particularly lucrative at high electricity
import prices.

power supply
networks

loads

energy hub

Le

Lh

H

Pe

H

Pg

H

Figure 2: Example of an energy hub containingµCHP device, furnace,
thermal and electric storage. Hub is connected to electricity and natural
gas power supply networks and supplies electric and thermalloads.

For the energy hub depicted in Fig. 2, the outputs
L(k) + M(k) and inputsP(k) at time stepk are corre-
lated as follows:

[
Le(k) +Me(k)
Lh(k) +Mh(k)

]

︸ ︷︷ ︸

L(k)+M(k)

=

[
1 ν(k)ηCHP

ge

0 ν(k)ηCHP
gh + (1− ν(k))ηF

gh

]

︸ ︷︷ ︸

C(k)

[
PH
e (k)

PH
g (k)

]

︸ ︷︷ ︸

P(k)

, (5)

whereC(k) describes the coupling and conversion be-
tween the input and output carriers. The converter de-
vices are modeled as coupling factors, composed of the
converter’s steady-state energy efficiency and a dispatch
factor. The parametersηCHP

ge , ηCHP
gh denote the gas-electric

and gas-heat efficiencies of theµCHP andηF
gh defines

the efficiency of the furnace. The dispatch factorν(k)
(0 ≤ ν(k) ≤ 1) determines how the gas is divided be-
tween theµCHP and the furnace. The energy storage de-
vices are modeled as illustrated above. As the dispatch



factor ν(k) is a control variable, different input vectors
can be found to fulfill the output requirements. This re-
flects the degrees of freedom in supply which are used for
optimization.

2.3 Energy Transmission System

Both transmission systems, electricity and gas pipeline
networks, are modeled by nodal power flow and nodal vol-
ume flow equations, respectively. Electric power flows
are formulated as nodal power balances of complex power
using line equations according to [4], [5]. Gas volume
flows are formulated as nodal volume flow balances us-
ing line and compressor equations according to [5]. A gas
pipeline is composed of a compressor element, with pres-
sure amplificationpinc, and a pipeline element. A more
detailed description of the energy transmission network
can be found in [5].

3 Control Strategy

A controller has to be implemented that determines
operational system set-points in such a way that overall
operation costs are minimized while satisfying all sys-
tem constraints. Since storage dynamics have to be coped
with, a multi-time step optimization is required. Further-
more, forecast uncertainties arise which can be handled
by applying a receding horizon control strategy. Model
predictive control (MPC) provides an appropriate control
approach for taking into account both, system dynamics
and forecast uncertainties. As illustrated in Fig. 3, the
whole control procedure is carried out at two levels.

Day-ahead planning: Firstly, a day-ahead planning is
performed. Based on bids and contracts, TSOs
define settings of generation units for the next 24
hours. Thereby, best available forecasts of load pro-
files and renewable infeed profiles are used. The
pre-scheduled generation settings are further re-
ferred to asPG,Sched.

On-line dispatch: Secondly, an on-line control proce-
dure adapts the pre-defined generation settings to
profile changes occurring during the day. MPC is
chosen to perform this on-line control. The MPC
controller works with updated forecast profiles and
determines generation settingsPG,MPC close to
PG,Sched to avoid expensive balancing energy.
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Figure 3: Illustration of two-level control strategy, involving tree op-
timization problems: day-ahead planning (Pre-Scheduler), on-line dis-
patch (MPC) and application to the system (SYS).

3.1 Model Predictive Control

Model Predictive Control (MPC) [6] is a widely used
control strategy. It is an optimization based control strat-
egy which uses an internal model to find those control
inputs that yield the best predicted behavior of the sys-
tem over a prediction horizon with lengthN . It operates
in a receding horizon fashion, i.e. at every time step up-
dated system measurements and forecasts are used to pre-
dict the future behavior of the system. Applying MPC, the
controller is able to anticipate future events and changes,
such as increasing or decreasing energy prices. Further-
more, consequences of forecast uncertainties are mini-
mized thanks to the operation in a receding horizon mode.

Figure 3 illustrates the principle of MPC, showing the
interactions between system and controller. Based on the
current system statex(k), the controller determines con-
trol inputsũ(k) = [ uT(k), . . . ,uT(k + N − 1) ]T, that
yield the best predicted performance of the system over
the nextN time steps. The control variables for the cur-
rent time stepu(k) are applied to the system, which then
proceeds to a new system statex(k + 1). Now, the whole
procedure starts again with updated system measurements
and new forecasts.

4 Application to System

The control strategy explained above is now applied
to multi-carrier energy systems. Variables, objectives and
constraints are formulated for the system depicted below.

4.1 System setup

The multi-carrier energy system consists of an inte-
grated electricity and natural gas system, interconnecting
two energy hubs to the supply grid (Fig. 4). The hubs and
their loads represent an aggregation of households and are
structured as described in Sect. 2.2. Within the residential
areas, i.e. energy hubs, renewable energy sources, such as
photovoltaic (PV) or wind installations are available, mod-
eled as infeedsR1 andR2. The supply grid is modeled by
electric generatorG1 and gas networkN. The electricity
system is modeled on three voltage levels. The households
are connected to the low voltage level, e.g. 400 V. On the
medium voltage level (e.g. 16 kV), local generation units,
such as waste incineration plants or biomass-fired plants
are placed. GeneratorG1, located at bus4, e.g. 60 kV, rep-
resents the grid , modeled as infinite bus and represents the
slack node of the electricity system. The gas pipeline net-
work is modeled on a single pressure level, whereN sup-
plies all gas demands. The compressorsC12, C13 enable
the gas flow to the hubs. For further information about the
system parameters, refer to [5].

This system setup takes into account the increased
penetration of distributed generation (µCHP and local
generators) and of renewable infeed (wind and PV). Each
household within the hub decides autonomously when to
produce electricity locally viaµCHP, when to store energy
and to feed it back to the grid at a later instant, or when to
consume energy from higher network levels.
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Figure 4: System setup of two energy hubs connected to the supply grid.
Active power is provided by generatorsG1, G2, G3, natural gas by the
adjacent natural gas networkN. Both hubs have renewable infeedsR1

andR2.

4.2 Variables

For modeling the combined electricity and gas net-
work, all system variables are collected in the following
three vectors:
control vector u(k):

u(k) =
[
(PG

e )
T(k) PG

g (k) ν
T
g (k)

]T
, (6)

where

- PG
e (k) denotes the active power generation of all

generators,

- PG
g (k) defines the natural gas import and

- νg(k) describes the dispatch factors at the gas input
junctions.

dynamic x(k) and staticz(k) state vectors:

x(k) =
[
Eh(k),Ee(k)

]T
, (7)

z(k) = [VT(k) θT(k) pT(k) pT
inc(k)

(PH
e )

T(k) (PH
g )

T(k)]T, (8)

where

- V(k) andθ(k) denote the voltage magnitudes and
angles of all electric buses, respectively,

- p(k) denotes the nodal pressures of all gas buses,

- pinc(k) denotes the pressure amplification of both
compressors,

- PH
e (k) andPH

g (k) denote the electric and gas inputs
of the hubs, respectively, and

- Eh(k) andEe(k) denote the energy contents of the
heat and electric storage devices, respectively.

The input profiles from renewable energy sources are
assumed to be non-controllable. Further studies could
consider renewable infeed as control variable, where the
power can be curtailed if only part of it should be fed into
the system. Here, we use bus4, which is the slack node of
the system, to overcome this problem. If e.g. wind power
exceeds system demand including storage capacities, the

exceeding power is fed back to the grid. Therewith, stor-
ages and their maximum needed capacities are released.
Also, load profiles of electricity and heat demand are con-
sidered to be given. Further studies could model these as
control variables as well, to incorporate load management
schemes.

4.3 Objective and Constraints

As mentioned above, the control procedure is carried
out on two levels. This results in three optimization prob-
lems: day-ahead planning, on-line dispatch performed by
the MPC controller, and application to the system.

Day-ahead planning:Firstly, the pre-scheduler runs a
day-ahead optimization which is a multi-period optimiza-
tion performed over 24 hours. The objective of the day-
ahead planner is:

JSched=

24∑

k=1

3∑

iG=1

[qGiG (k)(P
G
e,iG(k))

2 (9)

+ qN(k)PG
g (k)] (10)

+ cε

24∑

k=1

∑

iE∈ΩE

(εiE (k))
2 (11)

where (9) corresponds to the overall costs of electricity
and (10) of natural gas consumption (qGiG andqN define
time varying prices (Fig. 5)). The last term (11) repre-
sents penalties for all storage devicesiE in ΩE when they
are passing their optimal operation limits. The day-ahead
schedule of the generation units is stored inPG,Sched =
[PG,Sched

e,iG
P

G,Sched
g,iG

].

MPC controller: The MPC controller again mini-
mizes overall operation costs, but this time with updated
forecasts of load and renewable infeed profiles.

JMPC =
N−1∑

l=0

3∑

iG=1

[qGiG(k + l)(PG
e,iG(k + l))2 (12)

+ qN(k + l)PG
g (k + l)] (13)

+ cε

N−1∑

l=0

∑

iE∈ΩE

(εiE (k + l))2 (14)

+ cSched

N−1∑

l=0

∑

PG

(PG,Sched(k + l)−PG,MPC(k + l))2

(15)

The optimal values for the generation units are stored in
PG,MPC = [PG,MPC

e,iG
P

G,MPC
g,iG

]. Compared with the ob-
jective of the pre-scheduler, the MPC controller in ad-
dition minimizes deviations from predefined settings of
the pre-scheduler, (15). This term represents additional
costs for deviations from day-ahead planning, weighted
with cSched. These deviations can either be compensated
by buying balancing energy or by adjusting fast backup
generators. However, the goal of the MPC controller is
to compensate most of these deviations by changing the
settings of the storage devices.



Application to System: Finally, the control settings
are implemented to the system. Thereby, control variables
as defined in (6) are fixed and a power flow calculation is
performed. The system has the exact load and renewable
infeed profiles which leads again to deviations within the
needed supply energy.

JSYS = cε
∑

iE∈ΩE

(εiE (k))
2 (16)

+ cE
∑

iE∈ΩE

(EMPC
iE

(k)−ESYS
iE

(k))2 (17)

+ cMPC

∑

u

(uMPC(k)− uSYS(k))2 (18)

If storages are not able to compensate for all forecast er-
rors, i.e., if the system becomes infeasible, control vari-
ables are not fixed anymore but are allowed to deviate
from the settings defined by the MPC controller. In this
case, an additional term (18) is added to the objective
function. Any deviation from the predefined MPC settings
is penalized by weighting factorcMPC. This term repre-
sents costs for spinning reserves or balancing energy. If
these reserves are still not enough to bring the system to
a feasible operation state, load shedding schemes ought to
be applied.

For all three optimization problems, equality con-
straints are defined by all power flow equations of the elec-
tricity and gas networks as well as by the hub equations
and storage difference equations. Inequality constraints
comprise limits on voltage magnitudes, pressures, changes
in compressor settings, dispatch factors, power limitations
on hub inputs and limits on storage contents and storage
flows (2) - (4).

5 Simulation Results

The proposed control scheme is now applied to the
two-hub system depicted in Fig. 4. In a first simulation,
operation costs for different storage sizes and different
prediction horizon lengths are compared. Secondly, im-
pacts of forecast errors on operation costs are examined.
To solve the optimization problems, the solversnopt
through the Tomlab interface [7] in Matlab (R2008b) is
used.

5.1 Simulation Setup

Both hubs have daily profiles of load demands, energy
prices and renewable infeeds. In this study, price forecasts
are assumed to be perfect, load and renewable infeed fore-
casts contain uncertainties. Loads and renewable infeed
profiles vary more pronounced within the considered time
horizon than prices do, therefore, prices are assumed to
contain no uncertainties. Electricity prices are modeled
on three levels, while gas prices are assumed to be con-
stant during the day. The electric and heat load profiles
as depicted in Fig. 5 are standardized profiles of an ag-
gregation of several households. Occurring uncertainties
are modeled by superimposing a normal distributed error

signal on the basic load profiles. It is assumed that un-
certainties between consecutive time steps are not corre-
lated. However, when modeling a high amount of aggre-
gated households, forecast errors often show a correlation
between successive time steps. In [8], a window model
is presented, which correlates consecutive forecast errors.
Implementing this kind of correlation is subject to further
studies.

In a first simulation setup, forecast uncertainties oc-
curring within load profiles are analyzed. In this setup, PV
installations are available at both hubs. Figure 6 shows the
infeed profiles. These solar curves are assumed to be per-
fect, i.e. pre-scheduler, MPC controller and the system use
the same input curve. The second simulation setup inves-
tigates impacts of forecast uncertainties of renewable in-
feed profiles. For this setup, a wind installations is present
at hubH1. Figure 6 shows the day-ahead forecast used
by the pre-scheduler,RSched

1 , (dotted curve), the updated
wind forecast used by the MPC controller,RMPC

1 , (dashed
curve), and the actual measured wind infeed profile used
by the system,RSYS

1 , (solid curve)1. The MPC forecast is
generated by superimposing a normal distribution on the
actual measured wind infeed profile (10%,σ = 0.05). The
weighting factorscε = 103, cSched = 103, cE = 10 and
cMPC = 10 are chosen according to the relative impor-
tance of each term.
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Figure 5: Daily profile for electricLe,i and heat loadsLh,i (upper plot),
and prices for electricityqGiG and natural gas consumptionqN (lower
plot).
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5.2 Impact of Storage Capacity

CombiningµCHPs with heat storage devices permits
to supply electric loads viaµCHP, avoiding expensive

1These renewable infeed curves (scaled) are obtained from solar measurements at Mont Soleil, Switzerland and from wind measurements in Germany.



electricity import during peak times. Battery storages al-
low for buffering electric energy from renewable energy
sources and for releasing it at peak times. In general, stor-
age devices enable to store energy at most beneficial time
instants and to release it at instants of optimal usage. For
this, not only a sufficient storage capacity is needed, but
also the possibility to predict loads and renewable infeeds
sufficiently far ahead is necessary. Figure 7 shows the op-
eration costs for different storage sizes and different pre-
diction horizon lengthsN . The solid line delineates the
costs with basic storage sizes, as they are used for the re-
maining simulations (E = [Emin, Emax] = [0.5,3]). In-
creasing the prediction horizon length does not yield es-
sential advantages, since storage capacities are too small.
The dashed (E = [0.5,5]) and dotted (E = [0.5,8]) lines
show the costs for higher storage capacities. Here, in-
creasing the prediction horizon length enables consider-
able costs reductions. The further ahead the future prices,
loads and renewable infeeds are known, the more effi-
ciently the storage devices can be operated. In this simula-
tion, both storage types have the same capacity. However,
only the thermal storage exploits the increased storage ca-
pacity. The maximal storage contents are≈ 7.5 p.u. (per
units) for the heat storage and≈ 7 p.u. for the electricity
storage. Consider that these values depend on the chosen
load, price and renewable infeed profiles.
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Figure 7: Operation costs for different prediction horizon lengths and
different storage capacities.

As can be seen in Fig. 7, high prediction horizon
lengths are only advantageous when storage capacities are
high enough. However, apart from this operational factor,
criteria such as costs of additional storage capacity, avail-
ability of reasonable forecasts and computation times need
to be considered as well. Beyond that, when forecast er-
rors occur, even larger storages are needed. Basically, the
more volatile the disturbances, the less additional storage
capacities are needed to compensate the forecast errors,
since volatile forecast errors partially balance themselves.

5.3 Impact of Forecast Errors of Load Profiles

Next, the impacts of forecast errors of load profiles
on operation costs are examined. For this, the first sim-
ulation setup, where both hubs have solar PVs installed,

is used for illustrating the capability of storage devices to
balance forecast errors. As mentioned above, randomly
distributed disturbances are assumed for the load profiles
of electricity and heat. For analyzing stochastic predic-
tion errors, the Monte-Carlo method provides a powerful
tool [9]. In order to make significant statements, many
simulation runs have to be carried out, resulting in an
extensive computational effort. In the following simula-
tions, 100 simulation runs are carried out and therewith the
mean value and the standard deviation are calculated. In
case of infeasibility, i.e. if storage devices are not able to
balance the forecast errors, the system variables are opti-
mized again, allowed to deviate from MPC-settings, (18).
Figure 8 shows the distribution of operation costs for a
simulation over 24 hours with prediction horizon length
N = 3. A normal distribution of 15%2 is added to each
load profile. The histogram can be approximated with a
normal distribution (red curve). A mean value of 3056.6
m.u. (monetary units) results which is 1.99% higher than
the operation costs without disturbances, 2996.8 m.u. This
increase in the mean value is caused by additional costs
due to slack variables when storage devices are passing
their optimal operational limits as defined in (14). The
standard deviation is 38.19 m.u., corresponding to 1.27%
of the mean value. Thus, deviations of 15% within the
load forecasts can be reduced to 2.54% (2· σ) deviation
within operation costs. This shows that most of the devia-
tions within load profiles can be compensated by means of
storage devices without increasing system operation costs
significantly. Table 1 shows mean values and deviations
within operation costs for different sizes of forecast er-
rors. The mean values are indicated as percentage increase
compared with operation costs without disturbances. De-
viations within operation costs, corresponding to two stan-
dard deviations, are specified with respect to the according
mean values. In general, mean values and standard devia-
tions increase with increasing disturbances.
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Figure 8: Distribution of operation costs for 15% forecast error.

Forecast error 5% 10% 15%

Increase mean 0.29% 1.16 % 1.99%
Deviation (2· σ) 1.02% 2.02% 2.54%

Table 1: Mean values and standard deviations for different forecaster-
rors.

Storage devices of higher capacities enable better bal-
ancing of forecast errors. Mean values and standard de-
viations increase less. Note that in this simulation, the
pre-scheduler layer has been neglected. When modeling
forecast uncertainties with normal distributions, the MPC
controller has not more accurate forecasts than the pre-

296% of all cases lie within 15% deviation of the original value, corresponding to a standard deviation ofσ = 0.075.



scheduler (when assuming the same size of forecast error).
Regarding appropriateness, the control settings of the pre-
scheduler will be similar to those of the MPC controller,
therefore the pre-scheduler can be neglected.

5.4 Impact of Forecast Errors of Renewable Infeed

Now, the second system setup with wind infeed as re-
newable energy source is considered. At HubH1 a wind
installation with infeed forecasts as shown in Fig. 6 is in-
stalled. Here, the MPC controller has more accurate fore-
casts than the day-ahead planner. Hence, the pre-scheduler
cannot be neglected in this simulation.

Firstly, the pre-scheduler calculates the settings of the
generation units, i.e. three generators and gas import,
based on the day-ahead forecasts (Fig. 6, dotted curve).
Then, the MPC controller updates these setting during the
day using updated wind forecasts (Fig. 6, dashed curve).
The MPC controller tries to determine settings which de-
viate as least as possible from day-ahead schedules (15).
Figure 9 shows the settings of all three generators of the
pre-scheduler (solid curves) and of the MPC controller
(dashed curves). Since actual wind infeed is lower than as-
sumed the day-ahead, more electricity has to be generated
than planned. All generators slightly increase their pro-
duction. Since deviations fromPG,Sched get penalized,
electric storage devices are used to balance the forecast
errors as much as possible. Figure 10 shows the storage
contents defined by the day-ahead planner (solid curves)
and updated by the MPC controller (dashed curves). As
can be seen, storage contents are always operated at their
lower boundaries to support the underestimated planning
of electricity generation.
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Figure 9: Active power generation of all three generators: settings of
day-ahead planner (solid curves) and MPC controller (dashed curves).
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Figure 10: Electric storage devices of both hubs: storage contents de-
fined by the pre-scheduler (solid curves) and by the MPC controller
(dashed curves).

Note, that within the first 7 hours, wind infeed exceeds
system demand and storage capacities. The surplus power
is fed back to the systemPG

e,1 < 0. Alternatively, wind
infeed could be modeled as control variable, trying to run
it at its maximum but having the possibility to curtail it in
cases where the system cannot absorb it anymore.

6 Conclusion and Outlook

We have presented the application of model predictive
control to multi-carrier energy systems including storage
devices, renewable infeeds and forecast uncertainties. It
has been shown that when operating storage devices with a
predictive control approach, major part of the disturbances
can be compensated by storage devices located close to
locations where the uncertainties arise. Therewith, adjust-
ments of fast acting backup generators or penalties for bal-
ancing energy can be reduced. Moreover, we have shown
that high prediction horizon lengths are only advantageous
when storage capacities are high enough. By implement-
ing the MPC controller between the layer of day-ahead
planning and the system layer, operation costs are reduced
by accounting on future events and taking respective mea-
sures early enough, such as storing energy before peak
times, changing the settings of a slow acting power plant,
or starting up an additional power plant.

Future research includes the implementation of more
sophisticated models regarding forecast uncertainties for
renewable infeed profiles and the correlation between suc-
cessive forecast errors. Furthermore, renewable infeed
and system load could be implemented as control vari-
ables, in order to adapt renewable infeed to system load
and for enabling the implementation of load-shedding
schemes, respectively. In addition, ramp rates of gener-
ation units should be taken into account.
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