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1 Introduction

The introduction of technology into voting systems can bring a number of benefits, such

as improving accessibility, remote voting and efficient, accurate processing of votes. A

voting system which uses electronic technology in any part of processing the votes, from

vote capture and transfer through to vote tallying, is known as an ‘e-voting’ system.

In addition to the undoubted benefits, the introduction of such technology introduces

particular security challenges, some of which are unique to voting systems because of their

specific nature and requirements. The key role that voting systems play in democratic

elections means that such systems must not only be secure and trustworthy, but must

be seen by the electorate to be secure and trustworthy. It is a challenge to reconcile the

secrecy of the ballot with demonstrable correctness of the result.

There are many general challenges involved in running a voting system securely, that

are common to any complex secure system, and any implementation will need to take

account of these. Over and above these, we introduce a particular approach to address-

ing the challenge of demonstrating trustworthiness, around the key idea of ‘end-to-end

verifiability’. This means that every step of the processing of the votes, from vote casting

through to vote tallying, can be independently verified by some agent independent of the

voting system itself. In particular, the output of the system can be checked, and so the

integrity of the election does not need to rely on the trustworthiness or competence of

the system and its programmers, but can be demonstrated independently. ‘Individual

c©2013 Elsevier Inc. All rights reserved. This chapter appears in the Computer and Information
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verification’ of a step is when an individual voter is able to perform some check that their

vote was handled correctly. ‘Universal verifiability’ of a step is when any external party

is able to check that the step has been carried out correctly. Typically, end-to-end veri-

fiability of a system will include both of these kinds of verifiability. Verifiability provides

an assurance that the result of the election is correct and accurate.

This chapter shows how verifiability can be provided within a voting system, by

introducing several verifiable voting schemes that have been proposed. Section 2 first

discusses the many security requirements on voting systems and the relationships between

them. As well as verifiability, requirements include ballot secrecy, integrity, coercion-

resistance and usability among others. These requirements are often in tension, and

part of the challenge of designing an e-voting system is to find ways of reconciling them.

Section 3 then introduces the different kinds of verifiable voting schemes. Cryptographic

mechanisms are used by many schemes in order to achieve particular goals, and this is

the topic of Section 4. A simple example would be to provide the voter with a receipt

of how they voted in order to allow individual verifiability. In order to maintain secrecy

of the ballot (even if the voter wants to prove how she voted, for example to sell the

vote), the receipt could be encrypted to mask the information. The section introduces

more sophisticated cryptographic mechanisms that are used, including: secret sharing

to distribute trust (no individual party has total access to a critical secret such as the

election secret key); zero-knowledge proofs for verification (allowing a check that an

operation on a secret has been done correctly without giving away secret information);

mixnets, to shuffle and decrypt a set of votes so no decrypted vote can be linked to its

original encryption. An overview of several noteworthy schemes are then introduced in

Section 5, and the development of a particular scheme, Prêt à Voter, is introduced in

more detail in Section 6 to illustrate in more detail the considerations that go into the

design of a verifiable e-voting scheme. We consider threats to such schemes in Section 7

before concluding in Section 8.

2 Security Requirements

While e-voting systems often vary widely in design and operation, they generally converge

on a standard set of security requirements. These requirements are difficult to capture
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and there is no consensus as yet on precise definitions. Intuitive definitions of some

important security properties are as follows.

– Ballot secrecy: only the voter should know how she voted.

– Legitimacy: only registered voters may vote.

– Eligibility: a voter may vote at most once and all votes cast are genuine.

– Individual verifiability: the voter should be able to check that her vote is

accurately recorded for tabulation.

– Universal verifiability: the final tally should be verifiable by any third party.

– Accuracy (Integrity): the announced tally should reflect the true count of all

legitimate, cast votes.

– Receipt-freeness: a voter should not be able to prove her vote.

– Coercion resistance: A voting system is coercion resistant if the voter can vote

the way she wants to, even while appearing to cooperate with the coercer.

– Robustness: the system should be able to deliver the correct result even in

the event of certain, suitably defined, levels of failure of corruption.

– Availability: users should be able to access all features of a fully-functioning

system during the election.

2.1 Inter-relationships and conflicts

These properties are not wholly independent. For example, ballot secrecy and anonymity

can be regarded as special cases of confidentiality or privacy; individual and universal

verifiability together imply integrity.

Coercion-resistance is a stronger form of receipt-freeness, which can be described as

the inability of a voter to prove how she voted. For coercion-resistance to hold, the voter

must be able to vote for her chosen candidates even if she appears to cooperate with the

adversary during the whole voting process, from the time before the vote is cast until the

final result is published.

Further explanation and discussion of these properties can be found in [57].
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Observe also that tensions exist between certain properties, most markedly ballot

secrecy and individual verifiability. While the requirement exists for ballot secrecy, it

should also be possible to publicly verify the accuracy of both vote recording and tallying.

It is a challenge to reconcile these two requirements.

2.2 Achieving system security

At a high level, any verifiable supervised scheme can be divided into two parts. At the

front-end, voters interact with the voting client to generate their encrypted votes and

then submit their votes to the voting system. At the back-end, the received votes are

tallied and the election result is announced. Note that voters only need to be involved in

the front-end, while they need not be concerned with the back-end.

2.2.1 Challenges

The privacy, receipt-freeness and integrity properties need to be considered in both the

front-end and the back-end. In the front-end, the voter’s intent should not be leaked, even

if the voter wants to prove it to others. This requires the encrypted vote to be generated

at some supervised and controlled environment, such as a voting booth. Otherwise,

adversaries who see how the encrypted vote is generated will learn the voter’s intent.

Moreover, the receipt should only contain the encrypted vote, but not the plaintext

intent. In the back-end, if each vote is decrypted individually at the end of the tally, the

relationships between the received encrypted votes and the decrypted votes have to be

kept private, e.g., using mixnets. Or the homomorphic property can be used to combine

received encrypted votes so that no individual vote will be decrypted at the end of the

tally.

In the majority of verifiable schemes, the encrypted votes are encoded using encryption

algorithms. Although different key lengths can be carefully selected based on different

Note that the Farnel scheme [2] has introduced another interesting design philosophy for the receipt.

Instead of each voter being provided with a receipt which contains her own encrypted vote, the voter

will be given a random receipt which contains another voter’s vote. Hence the receipt can contain the

plaintext intent. However, because some receipts may not be given to any of the voters and they can be

removed without being detected, Farnel is not fully verifiable, and we do not discuss it further in this

chapter.
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security requirements, this only provides computational privacy. If adversaries have un-

limited computational resources, they are able to decrypt the encrypted votes on the

WBB directly. Therefore, as the computational power increases and better breaking al-

gorithms are introduced, today’s encrypted votes might be decrypted some time later

without using the secret key. For this reason, some researchers advocate the everlast-

ing privacy property which ensures unconditional privacy that does not depend on the

strength of encryption. To achieve this property, the encrypted vote could be encoded

using unconditionally hiding bit commitments instead of encryption.

2.2.2 Compromises

An e-voting system may only satisfy a subset of the desirable security properties. Sim-

ilarly, a system may only partially satisfy a certain property or it may satisfy a weaker

form of the property.

For example, a system may be receipt-free but not coercion-resistant: a coercer may

be able to obtain a voter’s credentials and vote in her place. Therefore, even if the scheme

is receipt-free it is not coercion-resistant. Coercion-resistance is also difficult to achieve

in remote e-voting schemes if the entire voting process is unsupervised, as there is no

sure way to exclude outside influence during voting. A few solutions to the problem

have been devised and are discussed in Section 5.6. However, their implementation is not

straightforward, and in some cases such as for complex voting methods like STV, they

may be computationally infeasible in practice.

If Internet voting is required the voting administrators may have to accept the pos-

sibility of coercion. However, coercion may not be considered a serious threat in the

particular voting community. It is a case of balancing system requirements against the

achievable level of security, recognising and accepting the possible threats.

Absolute ballot secrecy is another strong requirement that is not always possible to

achieve, for example when the outcome of voting is unanimous. Likewise a compromise

may need to be reached between ballot secrecy and for example, introducing human

assistance and/or audio/visual aids for disabled voters. The threat then arises of an

official and/or device “learning” a vote. If legislation demands increased accessibility,

then there is no choice but to implement the (typically) strong safeguards on equipment

that becomes necessary.
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3 Verifiable Voting Schemes

In the literature, although a large number of verifiable voting schemes have been in-

troduced and various techniques have been used in these schemes, many of them share

similar design philosophies. In this section, we review some of the design philosophies for

these verifiable voting schemes. Our focus is verifiable supervised schemes, but we will

also briefly explain verifiable remote voting and its limitations.

3.1 Verifiable supervised schemes

The verifiability property consists of three components: cast-as-intended, recorded-as-

cast and counted-as-recorded. The first two components are related to the front-end,

ensuring that the voter’s encrypted vote is not only correctly generated but also properly

recorded by the election system. The last component is related to the back-end to ensure

that all received encrypted votes are correctly tallied. We now explain how these three

components can be designed in verifiable supervised schemes.

To achieve the cast-as-intended property, the individual voter needs to verify that the

encrypted vote contains her intended vote. One typical strategy is to use the cut-and-

choose method. For example, after an encrypted vote is generated by the voting client,

the voter randomly decides whether to audit it or cast it. Note that if the encrypted vote

is audited, the voter should not be allowed to cast it as her vote. The voter can repeat

the audit process as many times as she like, each time using an independently generated

encrypted vote. After she is satisfied, she requests another encrypted vote and submits

it without auditing. The cut-and-choose method provides probabilistic assurance that

the encrypted vote is correctly generated without cheating on the part of the system.

Another typical strategy requires the voting client to generate a cryptographic proof that

the encryption is correctly performed, and an honest voter will accept the proof if the

encrypted vote is indeed properly generated. This is the approach taken by MarkPledge

discussed in Section 5.4. Different from the cut-and-choose method, this direct audit

gives a much higher assurance that the voting client is honest, and the voter can cast

the vote which has been audited. Auditing is however, normally more complex than the

Note that the voter should not be able to transfer this proof to others. Otherwise, this proof also

proves how this voter has voted.
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cut-and-choose method.

The two auditing methods can be illustrated using a simple analogy: consider the

problem of ensuring an intact fortune cookie contains a fortune. Using cut-and-choose,

when given a fortune cookie you can either break it open (but then it cannot be used

later as a fortune cookie) and check it contains a fortune, or you can decide to accept

it. If you choose to break open several and confirm they all contain a fortune, then you

can be confident when you decide to accept one that this one will also contain a fortune.

Alternatively to cut-and-choose, you may use high-tech X-ray equipment to scan a cookie.

If the result confirms the presence of a fortune, you will have very high assurance that

there is a fortune in the cookie. In this way, no cookie needs to be opened, but it needs

more advanced technology than the previous method.

To achieve the recorded-as-cast property, two requirements are necessary. Firstly,

there needs to be an append-only web bulletin board (WBB) that can be read by the

public but can only be appended by authorised parties. Once some information is written

to it, it cannot be altered or removed. In verifiable schemes, after voters submit their

encrypted votes to the election system, all these votes will be published on the WBB.

Secondly, each voter will be provided with a receipt which contains her encrypted vote.

To verify that her vote has been recorded by the election system, the voter can later check

her receipt against the WBB to verify that her vote has been correctly recorded by the

election system. If not, she can use the receipt to support a complaint to the authorities.

Note that this check is optional. But since the attackers do not know which votes will be

checked, if they remove a few votes before they reach the WBB, this cheating behaviour

will be caught with high probability.

The counted-as-recorded property is achieved by designing the tally phase so that its

entire process is publicly verifiable. In other words, no vote can be added, altered or

removed without being detected. For example, if some invalid votes need to be removed

from the tally, it can be verified by the public that all invalid votes have been removed

and no valid vote has been removed. Moreover, the election result is calculated using the

remaining votes in a publicly verifiable way. Mixnets and homomorphic encryption are

two typical techniques used in the tally phase. They not only ensures the counted-as-

recorded property, but also protects ballot secrecy.

A similar notion to verifiability is software independence [53]: a voting system is
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software independent when the result it reports does not depend at all on the correctness

of its software. In other words, an undetected error or deliberate change in the software

cannot cause an undetected error or change to the election result. Hence the software does

not need to be trusted in order to have confidence in the election result, because its output

can be verified for correctness. Since the software is generally the most complex and

intricate element of an e-voting system, obtaining software-independence is an important

counterbalance to over-reliance on the correctness of the software.

3.2 Verifiable remote schemes

The design philosophy for verifiability is similar in both verifiable supervised and remote

voting schemes. However, because voters will cast their votes in an uncontrolled environ-

ment, e.g., via Internet or post, the receipt-freeness property becomes trickier to achieve.

This is because adversaries may observe the voter when she is casting her vote and find

out how she has voted.

In a low coercion environment, i.e., coercion and vote buying are not serious concerns,

the verifiable remote scheme can be directly designed based on a verifiable supervised

scheme, just ignoring the receipt-freeness property. For example, the voter generates her

encrypted vote and then submits it to the election system through a remote channel.

She can still check that her vote is correctly generated, but without the receipt-freeness

protection, she might be coerced to vote the candidate favoured by adversaries. The

Helios system [1] is an example of a verifiable remote scheme designed for a low coercion

environment.

The receipt-freeness property can be achieved in verifiable remote schemes, but there

needs to be an untappable channel between the voter and the election system, and infor-

mation transmitted through this channel is kept private from others. A popular design

principle is to add a registration phase before the election day. This phase is carried out

within some controlled environment, but the voter can participate in it at any convenient

time. Here we briefly explain the design philosophy of the JCJ/Civitas scheme [35, 18];

its technical details will be further explained in Section 5.6. Each voter will register a

credential in the registration phase. In the voting phase, the voter should first encrypt

her credential and her preferred candidate (as well as some zero-knowledge proofs), and

then submit them to the election system. Because adversaries cannot distinguish a fake
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credential from a real one, when the voter is being coerced, she can use a fake credential

to cast a vote. Note that all votes with fake credentials will be removed from the tally in

a publicly verifiable way after mixing. Later, she can cast her vote again using her real

credential when she is not being coerced. However, this type of scheme also has some

limitations. Firstly, voters need to perform complicated cryptographic calculations both

in the registration phase and in the voting phase. Either voters need to use some trusted

device or they need to possess special knowledge to perform these tasks. Secondly, if the

credential is learnt by any other party, e.g., by the voting client or by adversaries using

social engineering, this party can cast another vote at a later time to overwrite the voter’s

vote.

4 Building Blocks

In this section, we briefly describe some building blocks which are commonly used to

build verifiable voting schemes. These include encryption schemes, secret sharing and

threshold techniques, zero knowledge proofs, mixnets and some other useful techniques,

such as blind signature, designated verifier proof, plaintext equivalent test and proxy

re-encryption.

4.1 Encryption schemes

In public key encryption, anyone can encrypt a message using the public key and the

encrypted message can only be decrypted by the party who possesses the corresponding

secret key. Moreover, some schemes also enjoy the additive homomorphic property which

is a very handy feature in verifiable voting schemes. It allows the received encrypted

votes to be aggregated into a single ciphertext. To tally the election result, only this

single ciphertext is decrypted so that no individual vote will be revealed.

4.1.1 RSA cipher

The RSA cipher [54] works as follows: let p and q be two large primes, where n = pq

and φ = (p − 1)(q − 1). We first select a random value e, such that 1 < e < φ and

gcd(e, φ) = 1. Then by applying the extended Euclidean algorithm, we can compute a

value d such that 1 < d < φ and ed ≡ 1 (mod φ). Now, the RSA public key is (n, e) and
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the corresponding secret key is d. To encrypt a plaintext m ∈ Zn, we can compute the

ciphertext as c = me (mod n). To decrypt c, the party who knows the secret key d can

compute cd = med = mkφ+1 = m (mod n). RSA enjoys the multiplicative homomorphic

property. For example, if E(m1) and E(m2) are two RSA ciphertexts with plaintexts m1

and m2, then we have E(m1) · E(m2) = E(m1 ·m2). RSA is a deterministic public-key

encryption scheme, and its security is based on the factoring problem.

4.1.2 ElGamal cipher

The ElGamal cipher [25] works as follows: let p, q be two large primes such that q|p−1. We

denote Gq as the subgroup of Z∗p with order q. Let g be a generator of Gq. The secret key

is an element x ∈ Zq and the corresponding public key is y = gx (mod p). In this chap-

ter, if we apply the ElGamal parameters, we assume all arithmetic to be modulo p where

applicable, unless otherwise stated. To encrypt a plaintext m ∈ Gq, we choose a random

blinding factor r ∈ Zq and compute the ciphertext E(m, r) = (G,M) = (myr, gr). Note

that an ElGamal ciphertext is a pair of values of Gq. To decrypt the ElGamal ciphertext

(G,M), we compute m = G/Mx. ElGamal enjoys the multiplicative homomorphic prop-

erty, and it is a probabilistic public-key encryption scheme, which is semantically secure

if the decision Diffie-Hellman assumption holds in the group Gq.

ElGamal re-encryption: Given an ElGamal ciphertext (G,M) = (myr, gr), a party can

efficiently compute a new ciphertext (G′,M ′) that decrypts to the same plaintext as

(G,M). We denote that the ciphertext (G′,M ′) is a re-encryption of (G,M). To re-

encrypt a ciphertext, the party chooses a value s ∈ Zq uniformly at random and computes

(G′,M ′) = (G ·ys,M ·gs). We note that this does not require the knowledge of the secret

key x, only the public parameters y and g are needed.

Exponential ElGamal cipher: This is a variant of the ElGamal cipher with an additional

parameter h which is also a generator of the group Gq. To encrypt a plaintext m ∈ Zq,

we randomly choose a blinding factor r ∈ Zq and calculate the ciphertext as E(m, r) =

(G,M) = (hmyr, gr). The decryption process is the same as in the ElGamal cipher, but

In deterministic encryption, the same plaintext will always be encrypted to the same ciphertext. In

contrast, the same plaintext can be encrypted to different ciphertexts using probabilistic encryption.
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there is no efficient algorithm to retrieve the plaintext m from hm. Instead, if m is known

to be restricted within some field, we can search the field or use pre-computed lookup

tables to retrieve m.

The exponential ElGamal cipher can be re-encrypted in the same way. But differently

to the ElGamal cipher, it enjoys the additive homomorphic property. For example, if

E(m1) and E(m2) are two exponential ElGamal ciphertexts with plaintexts m1 and m2,

then we have E(m1) · E(m2) = E(m1 +m2) and E(m1)k = E(k ·m1).

4.1.3 Paillier cipher

The Paillier cipher [48] works as follows: let n be an RSA modulus n = pq, where p, q

are large primes. Let g be an integer of order a multiple of n modulo n2. The public key

is (g, n), and the secret key is λ = lcm((p− 1), (q − 1)). To encrypt a message m ∈ Zn,

we randomly choose x ∈ Z∗n and compute the ciphertext c = gmxn (mod n2). To decrypt

c, we compute m = L(cλ mod n2)/L(gλ mod n2) (mod n), where the L-function takes

input values from the set Sn = {u < n2|u = 1 (mod n)} and computes L(u) = (u−1)/n.

Clearly the Paillier cipher also enjoys the additive homomorphic property, but is superior

to the exponential ElGamal cipher in that it is able to retrieve the plaintext directly after

the decryption.

Paillier re-encryption: Given a Paillier ciphertext c = gmxn (mod n2), we can re-

encryption it without knowledge of the secret key λ. Firstly, we randomly select a value

t ∈ Z∗n, and then we calculate c′ = c×tn = gm{tx}n (mod n2). Now, c′ is an re-encryption

of c.

4.2 Secret sharing and threshold techniques

In secret sharing and threshold techniques, the secret information (e.g., the secret key) is

shared among several parties and a quorum of these parties can work together to recover

the information. Their difference is that in secret sharing, there needs to be a trusted

authority to distribute the secret information among all the parties. But in threshold

techniques, no trusted authority is needed, and all parties can work together to generate

the secret information and distribute it among themselves. Here, we review some basic

secret sharing techniques and the threshold ElGamal. Note that the threshold RSA and
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threshold Paillier are also feasible, but they are more complex. Refer to [8, 64, 27, 23]

for their technical details.

4.2.1 Shamir’s secret sharing

Shamir’s secret sharing scheme [63] is the fundamental building block for many other

secret sharing and threshold techniques. It works as follows: if we want to find out the

solution of polynomial f(z) = f0 +f1z+ · · ·+fk−1z
k−1 of degree k−1, we need to find out

every value of (f0, f1, . . . , fk−1). Therefore, we need to find out at least k pairs of (zi,mi)

values such that for each pair, we have f(zi) = mi. Therefore, if we set f0 as the secret

m, we can generate any number of mi, such that m1 = f(1),m2 = f(2), . . . ,mn = f(n).

Given any subset of k of these mi values, we can find out all the coefficients of f(z) by

interpolation. But on the other hand, knowledge of at most k− 1 of these values will not

enable the calculation of f0.

By using the Lagrange interpolation, the polynomial can be written as:

f(z) =
k∑
i=1

(mi

k∏
j=1,j 6=i

z − zj
zi − zj

)

Therefore

m =
k∑
i=1

miLi

where

Li =
k∏

j=1,j 6=i

j

j − i

4.2.2 Verifiable secret sharing

Verifiable secret sharing [24] is based on Shamir’s secret sharing, but it enjoys an ad-

ditional advantage: all parties can verify that the secret has been properly distributed.

The authority first generates the ElGamal secret key x ∈ Zq, where y = gx and then

distributes x among a number of parties using the Shamir’s secret sharing. Let

f(z) = f0 + f1z + · · ·+ fk−1z
k−1

where f0 = x. For i = 0, 1, . . . , k − 1, the authority also computes each Fi = gfi and

makes these values public. Then the authority can destroy the secret information x. At
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this moment, any party can check whether her given secret share is correctly constructed.

Suppose the j-th party has been assigned the share xj. She verifies that

gxj =
k−1∏
l=0

Fj
jl

If the share is properly constructed, the above equation will always hold because

gxj = gf0+f1·j+···+fk−1·jk−1

=
k−1∏
l=0

gfl·j
l

=
k−1∏
l=0

Fj
jl

4.2.3 Threshold ElGamal

The threshold ElGamal [50] works as follows: at the beginning, n parties (P1, P2, . . . , Pn)

need to agree on the ElGamal parameters (p, q, g). Recall that p and q are large primes,

where q|p − 1, and g is a generator of Gq. Then they work together to implement the

following processes:

1. Pi randomly chooses xi ∈ Zq and computes yi = gxi .

2. The public key y is computed as y =
∏n

i=1 yi. Now all parties know the public

key y, but they cannot find out the corresponding secret key x =
∑n

i=1 xi (mod q)

unless they all work together. The next step is how to distribute x to all parties in

a verifiable way that any subset of k parties can recover it.

3. Pi randomly chooses a polynomial fi(z) ∈ Zq(z) of degree at most k − 1 such that

fi(0) = xi. Let

fi(z) = f(i,0) + f(i,1)z + · · ·+ f(i,k−1)z
k−1

where f(i,0) = xi.

4. Pi computes F(i,j) = gf(i,j) for j = 0, 1, . . . , k − 1 and broadcasts (F(i,j))j=1,2,...,k−1.

(Note that F(i,0) = yi is known beforehand.)

5. After every party broadcasts the k−1 values in the previous step, Pi sends sij = fi(j)

and a signature secretly to every other party Pj where j = 1, 2, . . . , n. (Note that

in particular, Pi keeps sii.)

6. Pi verifies that the share sji received from Pj is consistent with the previously

published values by verifying that

gsji =
k−1∏
l=0

F il

(j,l)
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This is because that

gsji = gf(j,0)+f(j,1)i+···+f(j,k−1)i
k−1

=
k−1∏
l=0

gf(j,l)i
l

=
k−1∏
l=0

F il

(j,l)

If this check fails, Pi broadcasts that an error has been found, publishes sji and the

signature, and then stops.

7. Pi computes her share of the secret key as the sum of all shares received in step 5

as

si =
n∑
j=1

sji (mod q)

As follows, Pi signs the public key y. Finally, after all parties have signed y, anyone

can check whether y is agreed among all these parties.

4.3 Zero-knowledge proofs

A zero-knowledge proof allows the prover to prove some fact to the verifier without

revealing the secret details of the fact. According to the definitions in “Handbook of

Applied Cryptography” [38], it should achieve the following three properties:

• Completeness: Given an honest prover and an honest verifier, the protocol will

succeed with overwhelming probability. The definition of overwhelming depends

on the application, but generally implies that the probability of failure is not of

practical significance.

• Soundness: If there exists an expected polynomial-time algorithm with the follow-

ing property: if a dishonest prover can with non-negligible probability successfully

execute the protocol with the honest verifier, then the same algorithm can be used

to extract some knowledge which is essentially equivalent to the honest prover’s

secret.

• Zero-knowledge: There exists an expected polynomial-time algorithm which can

produce, upon input of the assertion to be proven but without interacting with the

real prover, transcripts indistinguishable from those resulting from interaction with

the real prover.
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4.3.1 Interactive proofs and Fiat-Shamir heuristics

Generally speaking, an interactive zero-knowledge proof works as follows:

1. The prover sends a witness to the verifier. The witness works as a commitment in

the protocol.

2. The verifier sends a challenge back to the prover. The challenge could be the

outcome of fair coin toss.

3. The prover sends a response to the verifier. The calculation of the response needs

to take into account the witness, the challenge and the secret.

In the interactive zero-knowledge proof, both the prover and the verifier need to be

present during the execution of the protocol. Sometimes, it will be more convenient if the

prover can generate a transcript of the protocol so that the verifier can verify it at some

later time. By using the Fiat-Shamir heuristic [26], this can be achieved by transferring

an interactive proof into a non-interactive proof. The non-interactive zero-knowledge

proof (NIZKP) normally works as follows:

1. The prover generates a witness.

2. The prover takes the witness as well as some other necessary information as inputs,

and outputs the challenge using some hash function.

3. The prover calculates the response and then sends the transcript which includes

the witness, the challenge and the response to the verifier.

The security of NIZKP, which can be proved using the Random Oracle Model [4],

is based on the fact that the verifier cannot predict the outcome of the hash function.

Otherwise, she can fabricate a proof which will be accepted by the verifier.

In the following paragraphs, we describe several zero-knowledge proofs in the interac-

tive form. They can be transferred into non-interactive zero-knowledge proofs similarly

using the Fiat-Shamir heuristics.

Here, we only illustrate the technique using examples of three-round interactive proofs. Some proofs

may have more rounds, but their concept is similar.
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4.3.2 Schnorr Identification Algorithm

The Schnorr Identification Algorithm [62] is widely used to prove the knowledge of the

ElGamal secret key without revealing it. The basic theory is as follows: suppose p, q are

two large primes where q|p− 1. Let g be a generator of group Gq which is a subgroup of

Z∗p . Suppose x ∈ Zq is the secret key, and y = gx is the corresponding public key. The

prover P can prove that she knows x without disclosing it to the verifier V .

1. P randomly chooses a value c ∈ Zq, and sends w = gc to V .

2. V sends a random challenge e ∈ Zq back to P .

3. P calculates s = c+ xe (mod q), and sends s to V .

4. V checks gs = wye.

Moreover, for an ElGamal ciphertext (G,M) = (myr, gr), the Schnorr Identification

Algorithm also can be used to prove knowledge of its plaintext m without revealing it.

The protocol first proves that P knows the blinding factor r in gr. Because y is a public

parameter, if P knows r, she can retrieve m by calculating m = G/yr. Therefore, the

protocol also proves that P knows the plaintext m.

4.3.3 Chaum-Pedersen protocol

The Chaum-Pedersen protocol [16] is used to prove the equality of discrete logarithm.

Suppose (g, y) is the ElGamal public key pair and the secret key is x = loggy. By

using the Chaum-Pedersen protocol, the prover P can prove to the verifier V that a pair

(m,n) achieves the following property: loggy = logmn = x. We denote such a proof as

CP(g, y,m, n).

1. P randomly chooses a value c ∈ Zq, then he sends U = gc and V = mc to V .

2. V sends a random challenge e ∈ Zq back to P .

3. P calculates s = c+ xe (mod q), and sends s to V .

4. V checks gs = Uye and ms = V ne.
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The Chaum-Pedersen protocol also can be used to prove that an ElGamal ciphertext

(G′,M ′) = (Gys,Mgs) is a re-encryption of (G,M) = (myr, gr) without revealing the

randomisation factor s. The proof is CP(y,G′/G, g,M ′/M) which implies that there

exists a value s such that logy(G
′/G) = logg(M

′/M). Moreover, the Chaum-Pedersen

protocol can be used to prove that an ElGamal ciphertext has been correctly decrypted.

4.3.4 Cramer-Damg̊ard-Schoenmakers protocol

The witness hiding/indistinguishable protocol was introduced by Cramer, Damg̊ard and

Schoenmakers in [20], therefore it is also known as the CDS protocol. It can be used to

prove that a party knows the solution of k out of n problems without revealing which

problems she can solve. This protocol is normally used in verifiable voting schemes to

prove that a ciphertext is an encryption of one value within a subset of different values.

Here, we only introduce the basic theory of the CDS protocol; for its technical details,

please refer to [20].

For example, there exists n different questions Q1, Q2, . . . , Qn. The prover P wants

to prove to the verifier V that she knows the solution of one question. But P does not

want V to find out which solution she knows. P can execute the CDS protocol with V as

follow:

1. Suppose P knows the solution δi of the i-th question Qi, P first randomly selects

ri and calculates the genuine witness ti. P then randomly chooses fake challenges

cj, fake responses sj and uses them to fabricate the witnesses tj, where j 6= i. P

sends all these witnesses (t1, t2, . . . , tn) to V .

2. V randomly selects a challenge c∗ and sends it to P .

3. P calculates ci = c∗−
∑

j 6=i cj. Then she calculates the real response si, using ri, ci

and her knowledge δi. After that, P sends (c1, c2, . . . , cn) and (s1, s2, . . . , sn) to V .

4. V checks that c∗ =
∑n

k=1 ck and for all the questions, each of their proofs is satisfied.

However, V will be unable to distinguish the real proof from the fake proofs.
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4.4 Mixnets

A mixnet is a cryptographic building block implemented by a number of mix servers.

It takes a list of encrypted values as input, and outputs a list of values (encrypted or

decrypted depending on the type of mixnet) corresponding to the input list, but permuted

so the links between individual inputs and outputs are hidden. When the mixnet receives

a number of encrypted values as inputs, each mix server will either partially decrypt (in

a decryption mix) or re-encrypt (in a re-encryption mix) each of the encrypted values

and output the results to the next mix server in a permuted order. Therefore, if there

exists at least one honest mix server, the relationships between the mixnet inputs and

outputs will be kept private. However, the main challenge is how to efficiently prove that

the mixnet has generated the correct outputs without revealing the inputs and outputs

relationships.

In the literature, there are two types of mixnets: decryption mixnets and re-encryption

mixnets. Their difference is that in decryption mixnets, each mix server will partially

decrypt the received encrypted list and the final mixnets outputs are plaintext values.

But in re-encryption mixnets, each mix server re-encrypts the received encrypted list and

the final mixnets outputs are still encrypted values. In general, re-encryption mixnets are

more robust and versatile, because their re-encryption phase and the decryption phase

are separated. And the mix servers only need public information to carry out the re-

encryption phase.

Moreover, there are also two types of methods to verify the correctness of mixnets:

cut-and-choose and efficient proofs. The cut-and-choose method can be used in both de-

cryption mixnets and re-encryption mixnets. For example, we can randomly require half

of the links of the mixnet to be opened in order to check whether the partial decryption or

re-encryption is done properly. However, the challenge is how to design an architecture so

that the opened links still do not reveal the relationships between inputs and outputs—

i.e., there are no chains of opened links that relate inputs to outputs. Another issue is

that if only one value is altered within the mixnets, a single round of the cut-and-choose

method only gives 50% probability to detect the cheating. To increase the probability of

detecting such cheating, we need to run the audit a number of times, but this will make

Normally, this attack does not aim to dramatically change the election result, but to find out how a

voter has voted.
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the verification process expensive. Efficient proofs are more complex and they only work

for re-encryption mixnets. Each mix server generates a transcript proof for the shuffle

she has done. The proof proves that no value is added, removed or altered during the

shuffle and it can be publicly verified. Otherwise, even if a single value is altered, the

proof will fail with overwhelming probability.

In the following paragraphs, we briefly describe two mixnet examples: one decryption

mixnet verified using the cut-and-choose method, and one re-encryption mixnet verified

using the efficient proofs.

4.4.1 Chaum’s mixnet and Randomised Partial Checking

Chaum’s mixnet [12] works as follows: suppose {(K1, K
−1
1 ), (K2, K

−1
2 ), . . . , (Km, K

−1
m )}

are a number of key pairs, where Ki is the public key and K−1
i is the corresponding

secret key (for i = 1, 2, . . . ,m). The public keys are all made public and each secret

key is held by an individual mix server. The mixnet inputs are a list of ciphertexts

L0 = (l01, l02, . . . l0n), where the i-th ciphertext is

l0i = K1(K2(. . . (Km−1(Km(mi, rm), rm−1) . . .), r2), r1)

This ciphertext is commonly known as an onion due to its layered structure. When

receiving the mixnet inputs, the first mix server will use her secret key K−1
1 to decrypt

each of the onions in L0, and she then removes the randomisation values, shuffles the

remaining values and outputs the result list L1 onto the WBB. At this moment, there

should be a value K2(. . . (Km−1(Km(mi, rm), rm−1) . . .), r2) in the list L1. But because of

the shuffle, its index will be changed. As follows, the next mix server downloads the list

L1 from the WBB, decrypts each of the ciphertext using her secret key K−1
2 , removes

the randomisation values, shuffles the remaining values and outputs the result list L2

to the WBB. This process is continued until the ciphertext list is decrypted by all the

mix servers. Finally, the last mix server will output the list Lm which contains all the

plaintexts.

Chaum’s mixnet can be verified using Randomised Partial Checking (RPC) [32]. To

enable this, the mixnet needs to be implemented in a slightly different way. Each mix

server needs to implement two shuffles and every two adjacent mix servers are paired

together, as show in Figure 1. To audit the mixnet, each pair of the mix servers is

verified separately as follows:
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Figure 1: Randomised Partial Checking

1. For the left mix server, the auditor will go down the middle column and randomly

assigns half units L and the other half units R.

2. For units assigned L, the auditor requires the left mix server to reveal the corre-

sponding links in her first shuffle (incoming links).

3. For units assigned R, the auditor requires the left mix server to reveal the corre-

sponding links in her second shuffle (outgoing links).

4. For the right mix server, for exactly half of the inputs she receives, their incoming

links have already been revealed. We denote that these units are in the group G1

and the other units are in the group G2. Then the auditor randomly assigns half

units in G1 and half units in G2 and requires the right mix server to reveal their

outgoing links.

5. In the last shuffle, for the units whose incoming links have not been revealed, the

right mix server is required to revealed their outgoing links.

To open a link, the mix server needs to reveal either the source of the link (for incoming

links) or the destination of the link (for outgoing links) as well as the randomisation value.

Therefore, the auditor who has access to the public key can re-calculate the link using the

revealed information. Thanks to the above architecture, although half of the links have

been audited, the remaining links still ensure that the inputs and outputs relationships
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are kept private if there exists at least one pair of honest mix servers. In other words, a

mixnet input can be outputted at any index with equal probability.

4.4.2 Neff’s mixnet

Neff’s mixnet [42, 44] works as follows: the original inputs for the mixnet are a list of

ElGamal ciphertexts and each ciphertext is accompanied with a zero-knowledge proof to

prove the knowledge of its plaintext. Before the shuffle starts, any input with an invalid

proof will be removed and this process can be publicly verified. After that, the first

mix server downloads the remaining ciphertexts from the WBB (ignores their proofs), re-

encrypts each of the ciphertexts and outputs the results to the WBB in a random order.

Moreover, the mix server also generates an efficient proof to prove that the re-encryption

is correctly performed without revealing the shuffle. Such a proof is also published on

the WBB. Then the following mix servers will implement exactly the same processes in

sequence. Finally, the mixnet outputs are published onto the WBB by the last mix server.

The key contribution of Neff’s mixnet is demonstrating how to construct an efficient

proof. Here, we review the basic ideas. For more technical details, the readers are referred

to [42, 44].

Iterated Logarithmic Multiplication Proof Protocol (ILMPP): suppose the

vectors {Xi}ki=1 and {Yi}ki=1 are publicly known, where xi = loggXi and yi = loggYi are

only known to the prover P . Then P can use ILMPP to prove to the verifier V that∏k
i=1 xi =

∏k
i=1 yi without revealing any of the xi and yi.

The Simple k-Shuffle: suppose the vectors {Xi}ki=1 and {Yi}ki=1 are publicly known,

where xi = loggXi and yi = loggYi are only known to the prover P . In addition, constants

c ∈ Zq and d ∈ Zq are only known to P , and their commitments C = gc and D = gd are

made public. Then P can prove to the verifier V that Y d
i = Xc

π(i) for some permutation

π, without revealing any of the value xi, yi, c, d and π. Note that P actually proves that

yi/c = xπ(i)/d for i = 1, 2, . . . , k. The protocol works as follows:

• V generates a random challenge t ∈ Zq and sends it to P

The proof prevents the adversary from submitting a ciphertext which is related to another ciphertext

by an honest party. Otherwise, the adversary may use this attack to find out the honest party’s plaintext.

21



• P and V publicly compute U = Dt = gdt and W = Ct = gct

• Then, for the public inputs

(X1/U,X2/U, . . . , Xk/U,

k︷ ︸︸ ︷
C,C, . . . , C)

and

(Y1/W, Y2/W, . . . , Yk/W,

k︷ ︸︸ ︷
D,D, . . . , D)

P can use the ILMPP as a subprotocol to prove to V that ck ×
∏k

i=1(xi − dt) =

dk ×
∏k

i=1(yi − ct).

Note that if we divide (cd)k at both sides of the above equation, the equation can be

re-written as:
k∏
i=1

(xi/d− t) =
k∏
i=1

(yi/c− t)

Therefore, because t is a random value chosen by V , P actually proves that for some

permutation π and i = 1, 2, . . . , k, we have yi/c = xπ(i)/d.

ElGamal Shuffle: in a mixnet, if the mix server M is honest, for any output j and

some permutation π, we should always have

(α′j, β
′
j) = (grπ(j)απ(j), y

rπ(j)βπ(j))

To prove the shuffle is correctly performed, M first publishes a commitment C and

a random vector {Tj}ki=1, where c = loggC and ti = loggTj. Then M can generate

Uj = T cπ(j) and prove that this is correctly performed using the simple k-shuffle as a

subprotocol. Finally, M just demonstrates the knowledge of ∆ =
∑k

j=1 rjtj such that

logg

∏k
j=1(α′j)

ui∏k
j=1 α

tic
j

= logy

∏k
j=1(β′j)

ui∏k
j=1 β

tic
j

= ∆c

If the above equation holds, it proves two facts: firstly, the same randomisation value has

been used to re-encrypt both αj and βj. And secondly, because

k∑
j=1

rπ(j)tπ(j)c = ∆c =
k∑
j=1

rjtjc

it proves that the same permutation π has been used both in the simple k-shuffle and the

ElGamal shuffle.

Note that d = 1 in this case.
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4.5 Other useful techniques

Some other techniques are also sometimes used in designing verifiable voting schemes.

Here we review four of them. The blind signature allows the signer to sign a message

without learning the message content. The designated verifier proof is used to prove some

fact to a designated verifier, but the verifier cannot transfer the proof to others. Plaintext

equivalent test can test whether two ciphertexts are containing the same plaintext without

revealing the plaintext. Proxy re-encryption is used to transfer a ciphertext encrypted

under one public key to a ciphertext encrypted under another public key, where the two

ciphertexts are containing the same plaintext.

4.5.1 Blind signature

Blind signature [13] is a kind of digital signature in which the message is blinded before

it is signed. Therefore, the signer will not learn the message content. Then the signed

message will be unblinded. At this moment, it is similar to a normal digital signature

and it can be publicly checked against the original message. Blind signature can be

implemented using a number of public key encryption schemes. Here, we only introduce

the simplest one, which is based on RSA encryption (see Section 4.1.1). The signer has

a public key is (n, e) and secret key d. Suppose a party A wants to have a message m

signed using the blind signature. She should execute the protocol with the signer S as

follows:

1. A first randomly chooses a value k which satisfies 0 ≤ k ≤ n− 1 and gcd(n, k) = 1.

2. For the message m, A computes m∗ = mke (mod n) and sends m∗ to S.

3. When receives m∗, S computes s∗ = (m∗)d (mod n) and sends s∗ back to A.

4. A computes s = s∗/k (mod n). Now s is S’s signature on the message m.

4.5.2 Designated verifier proof

Designated verifier proof (DVP) [33] can be used to prove some fact, e.g., an ElGamal re-

encryption is performed correctly, to a designated verifier in a way that the proof cannot

be transferred to others.
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Let (p, q, g) be the ElGamal parameters. Suppose sv is the secret key of the verifier

V , and the corresponding public key is yv = gsv . Denote (G,M) = (myα, gα) be the

original message, and (G′,M ′) = (Gyβ,Mgβ) be a re-encrypted message generated by

the prover P . P can prove to V using DVP that the re-encryption is executed properly,

but V cannot use the same proof to convince others about this fact. The key point of

the proof is to prove that G′/G and M ′/M have the same discrete logarithm β under the

bases g and y, respectively. A non-interactive proof of the DVP is as follows:

1. P chooses k, r, t ∈R Zq.

2. P computes (a, b) = (gk, yk) and d = gryv
t.

3. P computes c = H(a, b, d,G′,M ′) and u = k − β(c+ r) (mod q).

4. P sends (c, r, t, u) to V .

5. V verifies c = H(gu(M ′/M)c+r, yu(G′/G)c+r, gryv
t, G′,M ′).

If P has re-encrypted correctly, the honest V will always accept the proof because:

a = gk = gu+β(c+r) = gugβ(c+r) = gu(M ′/M)c+r

b = yk = yu+β(c+r) = yuyβ(c+r) = yu(G′/G)c+r

Therefore

c = H(a, b, d,G′,M ′) = H(gu(M ′/M)c+r, yu(G′/G)c+r, gryv
t, G′,M ′)

In this protocol, d = gryv
t is a trapdoor commitment. If P does not know the secret

key sv, then t and r have been properly committed and P has to calculate u to ensure

the proof will be accepted by V . Since P knows β, she can find out such u. But because

V knows the secret key sv, she can reform d = gryv
t as d = gr · gsvt = gr+svt, V is able

to generate a fake proof for any (Ḡ, M̄) = (m′yθ, gθ) that (G′,M ′) = (myα+β, gα+β) is

the re-encryption of (Ḡ, M̄). This is because that V can generate any pair (r̄, t̄), where

r + svt ≡ r̄ + sv t̄ (mod q). In this case, V can work as the prover to fabricate a proof.

She first selects (γ̄, δ̄, ū) and computes

c̄ = H(gū(M ′/M̄)γ̄, yū(G′/Ḡ)γ̄, gδ̄, G′,M ′)
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Then V computes r̄ as r̄ = γ̄ − c̄ (mod q), and t̄ to satisfy δ̄ = sv t̄+ r̄ (mod q). As a

result, the verifier will accept (c̄, r̄, t̄, ū) as the proof because

ā = gū(M ′/M̄)c̄+r̄ = gū(M ′/M̄)γ̄

b̄ = yū(G′/Ḡ)c̄+r̄ = yū(G′/Ḡ)γ̄

d̄ = gr̄yv
t̄ = gr̄+sv t̄ = gδ̄

Therefore

c̄ = H(ā, b̄, d̄, G′,M ′) = H(gū(M ′/M̄)γ̄, yū(G′/Ḡ)γ̄, gδ̄, G′,M ′)

4.5.3 Plaintext equivalent test

Suppose (G1,M1) and (G2,M2) are two ElGamal ciphertexts encrypted under the same

public key, where the private key is threshold shared among a set of parties. The plaintext

equivalent test (PET) [31] is a function to check whether the two ciphertexts are contain-

ing the same plaintext, without revealing it. Denote (ε, ζ) = (G1/G2,M1/M2), therefore

if and only if the two ciphertexts contain the same plaintext, (ε, ζ) will represent an en-

cryption of the plaintext integer 1. Each party Pj randomly selects zj ∈ Zq and commits

it using the Pedersen commitment [49]. Then Pj published (εj, ζj) = (εzj , ζzj) with the

Chaum-Pedersen proof that (εj, ζj) is well formed. As follows, all parties jointly decrypt

(γ, δ) = (
∏n

j=1 εj,
∏n

j=1 ζj). If and only if the result plaintext is 1, the two ciphertexts

(G1,M1) and (G2,M2) will contain the same plaintext.

4.5.4 Proxy re-encryption

A proxy re-encryption [30] is a function to transfer an ElGamal encryption from one

encryption key to another encryption key. Let (G1,M1) = (m · yr1, gr) be an ElGamal

encryption of a plaintext m using public key y1, and let x1 be the corresponding secret

key, which is shared among a number of parties using a threshold scheme. A quorum Q of

these parties can transfer (G1,M1) to an ElGamal encryption (G2,M2), which contains the

same plaintext with respect to the public key y2, without revealing m. Firstly, Pj selects

a value δj uniformly at random from Zq, and computes (αj, βj) = (M
−x1jLj
1 y2

δj , gδj). Here

x1j is Pj’s share of the secret key and Lj =
∏

i∈Q
i
i−j . Then (G2,M2) can be computed

as (G2,M2) = (G1

∏
j∈Q αj,

∏
j∈Q βj).
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5 Survey of noteworthy schemes

In this section, we review a number of noteworthy verifiable voting schemes. Our purpose

is not to cover every scheme in the literature, but we try to divide the existing schemes

into several categories and we briefly describe one or two typical schemes in each category.

Hopefully, this will give the readers an overview of various research works in developing

verifiable voting schemes.

5.1 Schemes based on blind signature

Schemes based on blind signature were first introduced by Fujioka, Okamoto and Ohta

in [28], which is normally called the FOO scheme. Although several later papers [46, 47,

45, 11] have introduced various further improvements to the FOO scheme, their election

procedures are similar and the FOO scheme is still widely regarded as the milestone in

this category.

The FOO scheme works as follows: the involved parties are the voters, the adminis-

trator, the counter and the WBB. At first, a certain voter selects her choice v, encrypting

it by bit-commitment {v}k and then by blind signature {{v}k}blind. After that, she sends

it to an administrator. The administrator will only sign the ballot if this voter is eligi-

ble and has not applied the signature before. When the voter receives the signed ballot

{{{v}k}blind}sign from the administrator, she will unblind it {{v}k}sign and send it to

the counter through an anonymous channel. Normally, the anonymous channel is im-

plemented by mixnets. As follows, the counter checks whether the ballot contains the

administrator’s signature. If yes, the counter will put it onto the WBB. Otherwise, she

will reject this ballot. Now, the voter can verify whether her vote {v}k is correctly dis-

played on the WBB. If not, she can complain to a trusted party. Otherwise, she will

send her de-commitment key k to the counter anonymously after some designated time

T . Finally, the counter decrypts each ballot v and publishes them on the WBB.

Schemes based on blind signature ensure voter privacy and allow voters to verify

that their votes are received by the election system. Furthermore, the fairness property

is guaranteed so that no early result can be revealed before the designated time T .

However, they also suffer several drawbacks. One issue is that messages must be sent to

the election authorities twice, which means that voters have to be involved during the
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whole election procedures. Another issue is that voter privacy will be violated if a voter

makes discovers an incorrectly recorded receipt and complains to the authority. Moreover,

if there exists some mixnet for the anonymous channel, then the blind signature technique

is no longer needed to design verifiable voting schemes. Because of these issues, blind

signature schemes have not attracted much recent interest.

5.2 Schemes based on mixnets

Note that the schemes based on mixnets discussed here are early schemes which assume

that voters are able to generate their encrypted votes as well as the necessary proofs.

So they only focus on the tally phase. Many later voter-verifiable schemes also employ

mixnets as building blocks, but they concentrate on a different problem: how to allow

ordinary voters to cast their encrypted votes without special knowledge.

Schemes based on mixnets have been developed along with the mixnets. In the first

mixnet protocol [12], Chaum suggested that the mixnet can be used in voting schemes to

provide voter privacy. And later, many mixnet protocols have used voting as an example

of their application. Here, we describe the scheme introduced by Sako and Kilian in [61],

and many other schemes share similar ideas.

At first, each voter generates an encrypted vote (αi, βi) = (mi · yr, gr) which contains

her choice mi. The voter also generates a Σ-proof (e.g., using the Schnorr Identification

Algorithm) that she knows mi without revealing it. Then she publishes (αi, βi) as well

as the Σ-proof onto the WBB. After receiving all the encrypted votes from every voter, a

set of mix servers will re-encrypt and shuffle these votes in sequence. Finally, the mixnet

outputs will be decrypted in a threshold fashion.

For a particular mix server, suppose the list Lin = {(α1, β1), . . . , (αn, βn)} is her inputs

and the list Lout = {(α′π(1), β
′
π(1)), . . . , (α

′
π(n), β

′
π(n))} is her outputs. To audit this mix

server, she is required to generate another list Lmid = {(α′′σ(1), β
′′
σ(1)), . . . , (α

′′
σ(n), β

′′
σ(n))}

which is also the re-encryption and shuffle of the list Lin. Then the verifier can flip a coin.

If heads, the mix server needs to reveal σ and all the necessary randomisation values to

prove that Lmid is a shuffle of Lin. Otherwise, if tails, the mix server will reveal π ◦ σ−1

and all the necessary randomisation values to prove that Lout is a shuffle of Lmid. It is

clear that such an audit will not reveal the permutation π, and it gives 50% probability

of detecting cheating if one vote has been altered during the shuffle. Moreover, the audit
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can be repeated for several rounds (each round with an independently generated Lmid)

to increase the probability of detecting cheating. Hence it can be verified that no vote

has been added, altered or removed within the mixnet.

To design a verifiable voting scheme based on mixnet, another challenge is how to

verify that all the mixnet outputs have been correctly decrypted. Normally, the secret

key x is shared among a number of tellers in a threshold fashion as described in Section 4.2,

and ciphertexts are threshold decrypted by a quorum of tellers.

5.3 Schemes based on homomorphic encryption

Schemes based on homomorphic encryption were first introduced by Josh Benaloh in

[19, 7, 5]. Later, several improved schemes (e.g., [6, 21, 22, 36, 3]) were developed. These

schemes follow similar election procedures, but they introduce new security properties,

such as the receipt-freeness, and they use more efficient building blocks to replace those

in Benaloh’s schemes. Here, we review a recent scheme introduced by Baudron et al. in

[3].

Suppose the maximum number of voters is M and there are k candidates. Those

candidates will be assigned the values {M0,M1, . . . ,Mk−1} respectively. Suppose also

that a voter wants to vote for the i-th candidate. She first generates a Paillier ciphertext

which encodes M i−1 as well as a proof that her ciphertext is valid. The proof is generated

using the witness hiding protocol (the CDS protocol), and it proves that her plaintext is

within the set {M0,M1, . . . ,Mk−1} without revealing which one it is. Then she submits

both the encrypted vote and the proof to the WBB. When the election closes, any vote

with invalid proof will be removed from the tally. As follows, the remaining encrypted

votes will be multiplied together into a single ciphertext. Thanks to the additive homo-

morphic property, this single ciphertext will encode a value R which is the sum of each

individual plaintext. Moreover, the R value can be considered to contain a set of counters

{M0,M1, . . . ,Mk−1} and each counter records how many votes have been received for the

corresponding candidate. For example, if a voter votes for the i-th candidate, when her

encrypted vote is aggregated into the single ciphertext, the counter M i−1 will add one.

Note that the ciphertext aggregation does not require any secret information, so anyone

can check whether it is done correctly by performing the calculation again. Finally, the

single ciphertext is decrypted in a threshold fashion and the value R is revealed. At this
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moment, if R is divided by Mk−1, the result is the number of votes received by the k-th

candidate. If the remainder of the previous calculation is divided by Mk−2, we get the

number of votes received by the (k − 1)-th candidate, and so on.

Compared with schemes based on mixnets, schemes based on homomorphic encryption

are much simpler in the tallying phase. However, voters’ tasks are more substantial

because the witness hiding proof is more complex than the Schnorr Identification proof.

Moreover, they are not as versatile as the schemes based on mixnets since they lack

the ability to handle information rich elections such as Single Transferable Vote (STV)

elections. Schemes based on mixnets and homomorphic encryption have received much

recent interest in the literature.

5.4 Specific voter-verifiable schemes

In voter-verifiable schemes, voters are not assumed to have special knowledge to generate

their votes as well as to do any necessary proofs themselves. Instead, some novel tech-

niques can help them to generate their verifiable votes, and they can verify that their

votes correctly encode their intent. We review three noteworthy schemes in this category:

the MarkPledge scheme by Neff [43], a scheme using visual cryptography by Chaum [14],

and Scantegrity II [15]

MarkPledge: Suppose there are n candidates {C1, C2, . . . , Cn} and κ is a security

parameter. The MarkPledge scheme works as follows:

1. An authenticated voter in the voting booth will be allowed to use the voting ma-

chine. This voter tells her choice Ci to the voting machine, and meanwhile, she

gives n − 1 challenges {cj}j 6=i to the voting machine, where each challenge is a κ

bits binary. These challenges are supposed to be generated uniformly random, but

if a voter is coerced to vote for the k-th candidate Ck, he can use the value given

by the coercer to replace ck.

2. The voting machine generates this voter’s ballot which can be illustrated as follows:
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1 2 3 κ

C1 0 1 1 0 0 1 · · · 1 0

C2 0 1 0 1 1 0 · · · 1 0

· · · · · · · · · · · · · · ·

Ci 1 1 1 1 0 0 · · · 1 1

· · · · · · · · · · · · · · ·

Cn 1 0 0 1 0 1 · · · 0 1

Denote 0 and 1 as ElGamal ciphertexts with plaintexts 0 and 1 respectively. If

the voting machine is honest, for the i-th candidate Ci, the voting machine generates

κ pairs of ElGamal ciphertexts, where the plaintext is the same in each pair. But

for all other candidates, it generates κ pairs of ElGamal ciphertexts, where the

plaintext is different in each pair.

3. For the ballot generated in the previous step, the voting machine commits all pledges

how each ElGamal ciphertext pair will be opened. Because for all candidates except

the i-th one, the voting machine has already known how their ElGamal ciphertext

pairs will be challenged, it can announce their pledges properly.

4. The voter then sends the challenge ci for the i-th candidate to the voting machine.

ci is also a κ bits binary.

5. For all candidates, the voting machine reveals the ElGamal ciphertext pairs accord-

ing to the challenge values. For example, for any candidate, if the t-th bit of the

challenge is 0, the voting machine opens the left part in the t-th ElGamal ciphertext

pair. Otherwise, it opens the right part.

6. This voter, as well as any party who interested, can verify that whether all opened

plaintexts match what the voting machine has committed (the pledges) in the third

step.

Later, all the received votes will be tallied using mixnets, which is very similar as in

section 5.2. An attractive property of this scheme is that the voter does not need knowl-

edge of cryptography to follow the election procedures. Later, whether the encrypted

vote is correctly generated can be publicly checked via a cryptographic proof, and this
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will not reveal how the voter has voted. Moreover, adversaries are unable to coerce the

voter to vote for a particular candidate. This is because the voter provides a real proof for

her preferred candidate, and decoy proofs are provided for the other candidates; anyone

who checks the proofs will not know which one is real.

If the voter follows the correct election procedures in the MarkPledge scheme, the en-

crypted vote not only can be cast but also can be used to verify that the voting machine

is honest. For a dishonest voting machine, its cheating behaviour can only go without

being detected with probability 2−κ. However, if the voter does not understand the cor-

rect election procedures and reveals the challenge for her preferred candidate before the

encrypted vote is constructed and how to open the ElGamal ciphertext pairs is pledged,

the voting machine can cheat the voter by generating an encrypted vote for a different

candidate. Moreover, the MarkPledge scheme lacks the ability to handle ranked elections

and the size of its encrypted votes is much larger compared with many other schemes.

Chaum’s visual cryptography scheme: To understand this scheme, some basic

knowledge of Visual Cryptography [41] is necessary. There are two pixel symbols as

shown in Figure 2. If we randomly choose one pixel symbol as the top layer and one pixel

symbol as the bottom layer, and superimpose the two layers, the image can be illustrated

in Figure 3. Thus, if the same pixel symbol occupies the same position in both layers,

the image will be part-transparent. Otherwise, it will be opaque.

Figure 2: Two pixel symbols

As shown in Figure 4, Visual Cryptography can be used to convey information if both

layers are superimposed, but given either the top layer or the bottom layer, it contains

no useful information.

Chaum’s visual cryptography scheme works as follows:

1. In the voting booth, an authenticated voter will be allowed to use the voting ma-

chine. She first reveals her choice to the voting machine.

2. The machine then prints a ballot image, similar as shown in Figure 4. In both layers,
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Figure 3: Two pixel symbols are laminated

Figure 4: An application of visual cryptography

the information (θt, θb) is printed as well. If θt and θb are properly decrypted, they

can be used to constructed the pixel symbols in the top layer and in the bottom

layer respectively.

3. The voter checks whether the image contains her choice. If yes, she randomly

chooses one layer to retain as her receipt, and the other layer needs to be destroyed.

4. Suppose this voter chooses to keep the top layer as her receipt. A copy of this layer

will be published onto the WBB as her encrypted vote. Later, the voter can check

whether the vote in her receipt is displayed on the WBB. If not, she can make a

complaint to a trusted party using her receipt.

To tally this vote, the pixel symbols in the top layer and θb will enable the election

authorities to recover the vote choice. The tallying phase is done using Chaum’s mix [12]

and incorporating Randomised Partial Checking [32] to ensure that this phase is done

properly.

Furthermore, the voter can use her receipt to check whether the ballot has been

Note that she should check that the pixel symbols, θt and θb are all matching.
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correctly generated by the voting machine. The voter first sends θt to the election au-

thorities. Then they decode it and generate its corresponding pixel symbols. Finally, the

voter compares the pixel symbols given by the election authorities and the ones printed

on her receipt. As the retained layer is randomly chosen by the voter, this check gives

the voter at least 50% chance to detect the cheating if the voting machine is dishonest.

In Chaum’s scheme, the voting procedures are straightforward and it has the potential

to handle various election methods (e.g., ranked elections). We will show later that its

user interface can be further improved using the Prêt à Voter style ballot forms.

Scantegrity II. This scheme [15] augments existing optical scan voting systems with

voter verifiability. Optical scan systems are already in common use in the U.S.: voters

mark ’bubbles’ on a paper ballot against their choices, and the ballot is read by an optical

scanner, and later tallied. The ballot forms are retained by the system.

Scantegrity II introduces a random secret code (e.g. a 3 character code) with each

bubble. The codes are fixed in advance and pre-committed cryptographically so they

cannot be changed during or after the election. The code is revealed only when that

bubble is marked. This is achieved using invisible ink for the code, and special pens to

mark the bubbles, such that the code is revealed. The voter makes a private note of the

code and ballot serial number, and the ballot form is scanned and retained as before. The

codes received are published against the ballot serial numbers, and the voter can verify if

the published code matches her record. If it does not then she can raise a challenge using

her record of the code—a genuine code from the ballot form is considered as evidence of

casting that vote, since it is extremely unlikely for a voter to guess a genuine code.

Voters can also audit ballot forms using cut-and-choose to check that the codes printed

on them match the pre-committed codes, by revealing all of the codes. Hence voters can

check that ballot forms are correctly formed, and thus verify that their vote has been

captured and recorded correctly.

5.5 Non-crypto schemes

Verifiable voting schemes also can be designed without using cryptography. Here we

describe two interesting examples: one was introduced by Randell and Ryan in [51], and

the other one is the ThreeBallot scheme by Rivest [52].
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Randell & Ryan’s scheme: It is a variant of the Prêt à Voter protocol (we will

describe Prêt à Voter in more detail in the next section.). The ballot form, as shown in

Figure 5, has a perforation down the middle. The left hand side (LHS) lists the candidate

names in a random order, and the candidate ordering varies in different ballots. At the

bottom of the LHS, there is a unique vote identification number (VIN). The voter will

use the right hand side RHS to mark her choice. At the bottom of the RHS, there is a

number to record the order of the candidate names (OCN), but it is overprinted with a

scratch strip, and the same VIN number is printed on top of the scratch strip.

Figure 5: A ballot form example in the Randell & Ryan scheme

In the polling station, an eligible voter will be given a random ballot. To prevent others

from seeing the candidate ordering, each ballot can be distributed within an envelope.

The voter takes the ballot into the voting booth, marks the choice against her preferred

candidate and separates the ballot along the perforation. Then she keeps the LHS as

her receipt and submits the RHS without removing the scratch surface. Note that the

election officials will only accept a ballot if its scratch surface is intact. Later, the VIN

values for all the received ballots are published on the WBB. The voter can use her receipt

to check whether her VIN number has been correctly recorded. To tally the votes, the

election officials first remove the scratch surface of all received ballots. Then for each

vote, its selected candidate can be retrieved using the position of the mark and the OCN

value.

Apart from casting a ballot, the voter can also audit the ballot. The audit checks
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that the OCN value correctly represents the candidate ordering, and this will prevent a

mark against one candidate being counted as a vote for another candidate. The voter

can audit as many ballots as she likes, but she can only use an unaudited ballot to cast

her vote. The reason is that once a ballot has been audited, its scratch surface will be

removed.

The ThreeBallot scheme: A ballot form, as shown in Figure 6, consists of three

parts which can be separated along the perforations between them. In each part, the

candidate names are listed in the canonical order. But a unique value at the bottom of

each part is different. To cast a vote, the voter should proceed row by row through the

ballot form. Each row corresponds to one candidate, and there are three bubbles in each

row, one on each part. To vote for a candidate, the voter must fill in exactly two of the

bubbles on that candidate row and not to vote for a candidate, she must fill in exactly

one of the bubbles. Then the voter inserts her ballot into some trusted machine which

checks whether the ballot is correctly filled in. If yes, the machine prints some marks

(e.g., a red line) on the ballot to prove it is valid. Otherwise, it will reject the ballot.

Suppose the voter has filled in a valid ballot. Then she separates the ballot along the

perforations, and submits all the three parts to the election officials. At this moment,

the voter is allowed to randomly choose one of three parts, make a photocopy of it and

take the photocopy home as her receipt.

Figure 6: A ballot form example in the ThreeBallot scheme

Later, all the received ballot parts will be published on the WBB. The voter can then
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use her receipt to check whether it is correctly displayed. Otherwise, the receipt can be

used as the proof to make a complaint. Note that if any part of the voter’s ballot has

been altered or removed from the WBB, she will have at least 33% probability to detect

the cheating. Finally, the election result is calculated using the recorded ballot parts on

the WBB, and this process can be publicly verified. Suppose there are n voters, and the

candidates A, B and C have received a, b and c marked bubbles respectively. Then the

actual votes received by each voter is calculated by subtracting n from a, b, c respectively.

Because no complicated crypto technique is used in these non-crypto voting schemes,

they are easy to understand and can be used to explain the basic ideas of verifiable voting

schemes to ordinary people without special knowledge. However, they normally require

much stricter assumptions than their crypto counterparts. For example, in Randell &

Ryan’s scheme, for any received ballot, it is important that its scratch strip is not removed

by dishonest election officials before the tally. Otherwise, this ballot will be treated as in-

valid and it will not be included in the tally. In the ThreeBallot scheme, election integrity

relies on the fact that the machine to check the ballot validity is honest. Moreover, the

election officials should not know which part of the ballot has been photocopied as the

receipt. Otherwise, they can replace the other parts without being detected. Therefore,

the non-crypto schemes are normally viewed as academic proposals rather than practical

proposals.

5.6 Remote voting schemes

All verifiable voting schemes introduced above require voters to cast their votes in the

voting booth. However, this is not convenient for voters who are not able to attend the

voting booth on the election day. To solve this issue, several verifiable remote voting

schemes have been introduced. However, because voters are not protected from adver-

saries when they cast their votes, many of these schemes do not ensure the same security

level as the supervised voting schemes. Here, we describe a novel remote voting scheme

that not only achieves end-to-end verifiability, but also provides very high level coer-

cion protection to the voters. Because this scheme was introduced by Juels, Catalano

Apart from the privacy and receipt-freeness properties offered by many supervised voting schemes,

it also provides protection against three other attacks: the randomisation attack, the forced abstention
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and Jakobsson in [35], it is normally referred as the JCJ scheme. This scheme works as

follows:

1. Registration phase: Before the election, every voter needs to register herself in some

controlled environment. Once being authenticated, the voter Vi will be provided

with a credential σi, which is generated by some trusted party. After that, the

election authorities encrypt this credential using the ElGamal encryption as Epk(σi),

where pk is a public key and its corresponding secret key is threshold shared among

a number of tellers. This ciphertext will be published onto the WBB in a list L.

Then the authorities prove to Vi that this process is executed properly using the

DVP protocol. Note that the voter needs to remember her credential σi, and it

could be used in many different elections.

2. Voting phase: suppose Vi wants to vote for the candidate mi, she calculates two

encrypted values as

c
(1)
i = Epk(mi), c

(2)
i = Epk(σi)

Then Vi submits her vote vi = (c
(1)
i , c

(2)
i , δi) to the WBB through an anonymous

channel, where δi is a zero-knowledge proof that Vi knows the plaintexts of both

ciphertexts.

3. Tallying phase: after the election day, election authorities collect all received votes

on the WBB. They first check the proof δi of each vote, and any vote with an invalid

proof will be eliminated immediately. Then for the remaining votes which form a

list L1, the authorities perform the Plaintext Equivalent Test (PET) between every

two votes in L1. This process ensures that if several received votes use the same

credential (either valid or invalid), only the last submitted one will be retained and

the others are removed from the list L1. At this moment, the remaining votes form

a list L2. Then the authorities shuffles the list L2 using mixnets, resulting a list L′2.

As follows, these authorities perform pairwise PET checks between L′2 and L. If

any vote in L′2 cannot be matched with an encrypted credential in L, it means that

this vote contains an invalid credential and it will be removed from L′2. Finally, the

remaining votes form a list L3 and it will be threshold decrypted by a quorum of

tellers to reveal the election result.

attack and the simulation attack.

37



Obelix

Asterix

Idefix

Panoramix

7rJ94K

Figure 7: A Prêt à Voter ballot form

To see why the JCJ scheme has achieved verifiability, the voter can verify that her

encrypted credential Epk(σi) has been included in the list L and her encrypted vote vi has

reached the WBB. Also, it can be verified by the public that the tallying phase is correctly

performed. If adversaries coerce the voter to reveal her credential, she can simply reveal

a fake one. This is because adversaries cannot distinguish a fake credential from a real

one. Moreover, if adversaries use this fake credential to cast a vote, it will be removed

in the tallying phase but they are unable to find out whether their cast vote has been

removed or not.

6 Prêt à Voter

Prêt à Voter [17] was inspired by Chaum’s voting scheme [14], replacing the concep-

tually and technologically rather complex visual cryptography with a simpler device of

permuting the candidate order on each ballot. Each voter is given a ballot form with an

independent permutation of candidates printed down the left hand side, and an encryp-

tion of the permutation is printed on the right hand side.

The voting ceremony is as follows. The voter picks a random ballot form at the polling

station. The ballot forms will be sealed in envelopes for privacy. A typical ballot form

is shown in Figure 7. In the privacy of a booth, the voter marks the chosen candidate

on the right hand side of the form. She then separates the two sides and destroys the

LHS. Exiting the booth, she takes the RHS to be scanned and recorded by the system.

The RHS is validated as cast, for example by digital signing and franking by the officials.

This is retained as a receipt which she can later check against a WBB to verify that her

vote has been correctly registered.

Note that due to the permutation of candidates, the vote cannot be inferred from
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the RHS alone without decrypting the onion, so ensuring ballot privacy. Receipt-freeness

relies on destruction of the LHS, hence elimination of the link between the LHS and RHS

of the ballot.

After voting has ceased, the receipts posted to the WBB pass through a series of

anonymising mixes (see Section 4.4). Decrypted votes are then published on the WBB

for public verification. Ballot generation and tabulation are discussed in the following.

The way in which the vote is encoded in the receipt has a number of important

consequences that distinguish it from previous schemes. Firstly, the voter is not required

to communicate her choice to an encryption device. This sidesteps threats arising from

the possibility of a corrupt device leaking information about votes via side-channels or

subliminal channels. Secondly, ballot auditing is very clean: correct encoding of the vote

follows from correct construction of the ballot form. Thus, ballot auditing is performed

on the ballot forms rather than on the receipts, as would be the case for other verifiable

schemes. Whether a ballot form is correctly constructed is a simple binary decision and is

independent of the vote or indeed the voter. Contrast this with earlier schemes: the voter

inputs a choice and the device produces one or more encryptions of this. Suppose that

the voter chooses to audit this: the encryption is opened and the plaintext is compared

with the claimed input. In the event that the voter claims that the decryption does not

match her input, the difficulty is how to distinguish the two situations: the device is

corrupt and has encrypted the wrong vote; or the voter is mistaken or lying about her

input. A further difficulty is that auditing can undermine ballot privacy. Of course, a

voter who intends to audit can input a dummy vote, but this requires a certain level of

understanding that not all voters may possess.

Another way of phrasing this is that in Prêt à Voter, what is encrypted is not the

vote itself but rather the (randomised) frame of reference in which the vote is encoded.

This can be performed before the ballot form is associated with a vote or voter.

6.1 Evolution of Prêt à Voter

Since its inception, Prêt à Voter has undergone a number of changes and a number

of design options have been identified. We focus here on some of the more important

changes and options. This highlights some of the associated issues and challenges. In
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many cases the driving force behind changes to the system has been to address particular

scenarios or contexts, and the additional perceived threats that may become relevant in

those circumstances. Sometimes enhancements are for practical reasons, for example to

improve efficiency of the scheme or the availability of new cryptographic primitives.

6.1.1 Tabulation issues

The original versions of Prêt à Voter used RSA decryption mixes. This had the advan-

tage of allowing the receipts to be transformed as they go through the mixes so that they

emerge in the canonical frame of reference. More precisely, the final candidate permu-

tation on the ballot is formed as the product of several permutations, each defined in a

layer of the onion. As a receipt moves through the mix the server reveals the seed value

encrypted at the layer in question, computes the inverse permutation and transforms the

index or vector accordingly. The index/rank vector emerges in the canonical frame or ref-

erence, i.e., in the canonical candidate order. This conveniently removes all information

about the permuted candidate order during the mixing.

The downside of decryption mixes is that they lack robustness and flexibility. Mixing

and tabulation are intertwined: each server must hold a decryption key and the order

of in which votes are decrypted must be pre-determined. Another problem is that the

onions grow in size with the number of mixes and the size of the seed space for each layer.

These considerations led to the introduction of re-encryption mixes and using ElGamal

in place of RSA [58].

With re-encryption mixes, the mixing and decryption phases can be separated. Mix

servers do not require secret keys and their ordering does not need to be pre-determined,

so they can be easily replaced if any one fails. Full mixing of terms in the group is

possible and the onion size is independent of the number of mixes. Perhaps most impor-

tantly, many re-encryption mixes can be run in parallel or sequence. Further, if a mix is

found to be flawed it can be re-run and re-audited fairly easily. As decryption mixes are

deterministic, they cannot be audited or rerun without compromising privacy.

6.1.2 Permutations of the candidate order

A re-encryption mix does not involve (partial) decryption at each stage, so there is no

obvious way to mimic the construction above, i.e., to transform the index/vector while
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preserving the meaning. One possibility is to leave the index/vectors invariant. An

attacker could partition the mix according to the index values with possible privacy

issues, but this is not necessarily a problem if the number of voters greatly outnumbers

the number of voting options. In [58], this is dealt with by restricting to cyclic shifts of

the candidates and exploiting the homomorphic property of ElGamal to absorb the index

into the onion, thereby allowing conventional re-encryption mixes to be used. From a

secrecy point of view this is enough to conceal the choice of a single candidate. It is not

enough to conceal the choice in more elaborate voting methods such as STV. It is also

arguably rather fragile from an integrity point of view: if an adversary has a way to alter

ballots in an undetectable way and he wants to shift votes from one candidate to another

he applies the appropriate shift to the index value.

There have been a number of attempts to go beyond cyclic shifts while employing re-

encryption mixes in Prêt à Voter. Ryan and Teague [59] propose use of affine permutations

of the candidate order whilst retaining receipt-freeness. The set of possible permutations

is defined by a shift and a scaling. This (largely) eliminates the shift attack described

above while only using one pair of onions.

An obvious approach to handling full permutations is to introduce n onions per ballot

(where n is the number of candidates) [66, 60]. However, this becomes computationally in-

tensive as the number of candidates grows. Handling full permutations in a re-encryption

mix in a more elegant way is an ongoing research problem.

6.1.3 Leakage of Ballot Information

In the case of Prêt à Voter although no device actually learns the voter’s choice, there

is still the possibility of a subliminal channel attack: the entity creating the ballot forms

secretly encodes information about the permutation in the ciphertext by, for example,

selecting the randomisation of the encryption in such a way that a secret keyed hash

applied to the onion leaks information about the candidate order. These are known as

kleptographic attacks [67, 37].

A possible counter to such an attack is the use of pseudo-random, rather than pure

random values. Where ballots are created on demand by a device in the booth, the

randomisation factor of the encryption could for example be derived from a signature

applied to a serial number printed on the ballot, or using Verifiable Random Functions
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[39]. Alternatively, we can use a distributed construction of the ballots in such a way that

no single entity knows sensitive information: the final candidate order, the randomisation

factors etc [10, 9].

6.1.4 Coercion

“Classic” Prêt à Voter is vulnerable to certain types of coercion such as randomisation

and “Italian” attacks, particularly with ranked voting methods.

In the randomisation attack, the coercer demands that the voter produces a receipt

with a mark at a pre-specified position, irrespective of which candidate this represents.

This is tricky to counter in any simple way, but if Benaloh challenges are available, the

voter can obtain further receipts until she finds one that allows her to vote as she intends

while satisfying the coercer’s demands. This works quite well for simple elections with

a small number of options on the ballot, but is not feasible for more complex voting

methods such as STV, etc.

6.1.5 Chain-voting

This attack, which is also effective against conventional voting systems, is particularly

virulent in verifiable schemes. An adversary obtains an unused ballot form, marks this

with his chosen candidate and passes it to a voter, who is required to obtain a fresh ballot

at the polling station but to submit the pre-marked form. The coerced voter smuggles

out her unused ballot form, hands it over to the adversary, and so the chain continues.

A possible countermeasure is to use serial numbers on the ballot forms, and for officials

to note the serial number when the ballot form is issued, and to check it before the vote

is cast, similar to the mechanism suggested by Jones [34].

7 Threats to Verifiable Voting Systems

Failure of voters to verify their receipts against the WBB can impact on the integrity of a

system. A possible countermeasure is a Verifiable Encrypted Paper Audit Trail (VEPAT)

mechanism [55] in which hard copies of receipts are stored securely and used to perform

independent checks against the receipts posted to the WBB. Theoretically a VEPAT may

be useful in the event of a dispute but in practice, tracing individual receipts in a large
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election could prove difficult.

In the “Italian” attack, an adversary may demand that the voter fill in the ballot

in a very specific way that serves, with high probability as a unique identifier for that

ballot. This is potentially very effective where there is a large number of options on the

ballot, e.g., STV with a significant number of candidates. Such attacks are particularly

problematic in verifiable schemes in which decrypted ballots are publicly posted. counter-

measures such as lazy decryption [29], can mitigate this by avoiding revealing full ballots

at any stage of the tabulation process, but they are computationally intensive and do not

eliminate all leakage.

7.1 Authentication of receipts

With receipted schemes, anti-faking mechanisms are important both to prevent dishonest

voters from discrediting an election and from a dishonest system cheating voters. Digital

signatures or franking applied to receipts are possibilities but, especially with the former,

can be difficult for voters to verify without easily accessible technology.

Ryan discusses more easily human-verifiable methods such as special printing or pa-

per [56]. In practice both digital signatures and anti-counterfeiting may be necessary:

digital signatures to verify ballot construction, anti-counterfeiting to protect the system

against fraudulent ballot receipts. Possible mechanisms, practical implementation and

associated issues are an important research questions.

7.2 Use of Cryptography

Modern cryptography appears to be perfectly suited to solving the apparent conflict be-

tween verifiability and privacy in voting systems but there are obstacles to its deployment.

Establishing understanding and trust in the mechanisms and guarantees provided by

cryptographic systems is not straightforward. In addition, proper implementation of cryp-

tography can be complicated and problematic. As the privacy afforded by cryptographic

means is usually computational, there may be concerns about the long-term privacy of

votes. Schemes have been devised however, to provide everlasting privacy [65, 40].

An encryption-free, paper-based voting system, conceptually similar to [51] has been

described in Section 5.5. The relative simplicity of the system, together with its similarity

to lottery card games may be helpful in gaining voter confidence and trust.
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8 Conclusion

Conducting elections in a way that ensures that the outcome is demonstrably correct

while at the same time ensuring that all ballots remain secret has been a challenge at the

very foundations of democracy from the outset. The history of democracy is a constant

battle between those who seek to guarantee the integrity of elections and those who

seek to to undermine and corrupt the outcome. Many technologies have been applied to

address this challenge, especially in the US, but none has been wholly successful. More

recently, as described in this chapter, cryptographers and security experts have turned

their attention to the problem. In many ways this presents a unique and especially

demanding challenge: there is no “god’s eye” view to tell us what the correct outcome

of an election should be, and consequently a voting system can fail in a non-manifest

fashion. This is in contrast to most other critical systems, for example Internet banking,

avionics etc. to which voting is sometimes compared. Such comparisons are misleading

however, precisely because in these applications failures are manifest and, in the case of

banking at least, usually correctable.

A number of cryptographically based schemes have emerged in the last few years

which hold out the promise of fully verifiable elections: where the outcome can be proved

correct with minimal trust assumptions. In this chapter we have outlined some of the

most notable and promising of these schemes, along with the cryptographic primitives

required in their construction. Several of these schemes have been implemented and even

trialled. For example the Scantegrity II scheme has been used in municipal elections in

Takoma Park in the US and Prêt à Voter is currently being adapted for use in the State

of Victoria in Australia.

Despite the significant advances in verifiable voting, we have yet to see significant

deployment of such schemes. An interesting question then is: why has there been so

little uptake to date? It appears that the main obstacle is the use of cryptography,

which many stake-holders regard with suspicion. Thus, the major challenge now is to

present these schemes in a way that convince the stake-holders of the security properties

they afford. It is true that the concepts underlying “modern cryptography” are subtle

and the arguments showing that verifiable schemes indeed achieve the claimed security

properties are quite sophisticated, so it is unreasonable to expect the average voter to

follow all the details. But then, people routinely use cryptography for Internet shopping
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etc without understanding all the intricacies. It is to be hoped therefore that, properly

presented and after a period of informed debate, verifiable schemes will find their place

in supporting democracy. It would seem sensible to deploy such schemes initially for less

critical elections: officials of student bodies, professional societies etc., before deployment

in real, binding political elections.

Verifiable voting systems remain an active area of research and doubtless there are

further breakthroughs to be made. Various challenges and open questions remain, aside

from the previously mentioned challenge of overcoming the natural aversion to cryptog-

raphy. A prime example is how to perform systematic analysis of a voting system as a

socio-technical system, i.e., a system comprising not only technical components such as

the cryptographic algorithms and protocols, but also humans and procedures etc.

In this chapter we have focussed on polling station/supervised elections. There is

considerable interest in remote, in particular Internet voting. Here the challenges are even

more daunting than for supervised voting and, in particular, there is no way to ensure

that a coercer does not interact with the voter. Some elegant theoretical approaches to

countering coercion in the remote context have been proposed, but it seems fair to say

that none are sufficiently simple and understandable to be effective in practice.
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