
A laboratory for the study of 
automating programming* 

by T. E. CHEATHAM, JR. and BEN WEGBREIT 

Harvard University 
Cambridge, Massachusetts 

INTRODUCTION 

We are concerned in this paper with facilities, tools, and 
techniques for automating programming and thus we 
had best commence with discussing what we mean by 
programming. Given a precise specification of some task 
to be accomplished or some abstract object to be con
structed, programming is the activity of producing an 
algorithm or procedure-a program-capable of per
forming the task or constructing a representation of the 
object on some computing system. The initial specifica
tions and the resulting program are both couched in 
some (programming) language-perhaps the same 
language. The process typically involves such activities 
as: choosing efficient representations for data and al
gorithms, taking advantage of known or deduced con
straints on data and algorithms to permit more efficient 
computations, verifying (proving) that the task will be 
accomplished or that the object constructed is, in fact, 
the one desired, demonstrating that certain performance 
criteria are met, and so on. 

The kind of facility currently available which might 
be characterized as contributing to automating pro
gramming is usually called a compiler. It typically trans
lates an algorithm from some higher level (program
ming) language to a lower level ("machine") language, 
attempting to utilize memory and instruction resources 
effectively and, perhaps, reorganizing the computational 
steps, as implied by the higher level language repre
sentation, to move invariant computations out of loops, 
check most likely (or cheapest) arms of conditions first, 
and so on. 

Weare not here concerned with traditional compilers; 
indeed, we will assume the existence of a good compiler. 

* This work was supported in part by the Advanced Research 
Projects Agency under contract F-19628-68-C-0379 and by the 
U.S. Air Force Electronics Systems Division under contract 
F19628-71-6-0173. 

11 

Weare concerned with facilities at a "higher level": 
translating specifications which contain much less com
mitment to particular data and algorithmic representa
tions than is usual with higher level programming lan
guages, and performing rather more drastic reorganiza
tion of representation, implied computational steps, and 
even implied method of computation than is done with 
traditional compilers. We imagine our end product to 
be programs in a higher level language. On the other 
hand, we must note that the line between the kind of 
facility we will describe and a good compiler is very fine 
indeed and we will suggest that certain kinds of trans
formations sometimes made by conventional compilers 
might better be approached with the tools and tech
niques described here. 

The purpose of this paper is to describe a facility 
which we characterize as a laboratory for the study of 
automating programming. We view the laboratory as a 
pilot model of a facility for practical production pro
gramming. The time and expense invested in program
ming today and the lack of confidence that most pro
grams today actually do what they are intended to do 
in all cases is surely dramatic evidence of the value of 
such a facility. The need is particularly acute when the 
task to be accomplished is complex and the resulting 
program is necessarily large. Such situations are pre
cisely those encountered in many research areas of com
puter science as well as in many production systems soft
ware projects. Dealing with this kind of complexity, 
which is to say producing efficient verifiably correct 
program systems satisfying complex requirements is a 
significant, decidedly non-trivial problem. 

The second section of this paper contains a critical 
discussion of a wide variety of work and research areas 
which are related; the third section is devoted to a 
broad general description of the laboratory; the fourth 
section then briefly describes the ECL programming 
system, the intended host for the laboratory; the fifth 

From the collection of the Computer History Museum (www.computerhistory.org)



12 Spring Joint Computer Conference, 1972 

section discusses, in general terms, a variety of program 
au tomation techniques to be employed; the sixth section 
describes the basic components of the initial laboratory ; 
and the seventh section summarizes what we hope to 
accomplish with the laboratory and mentions several 
open problems. 

RELATED WORK 

There is a considerable body of work and a number of 
current research areas which are related to program
ming automation. lVlost of this work does not, at present, 
provide anything like a complete system; much of it 
does provide components of a system for automating pro
gramming and is thus directly related to and sometimes 
directly usable in the laboratory we will describe. 

We have divided the work to be discussed into seven 
different areas: automatic program synthesis, mechan
ical theorem proving, automatic program verification, 
program proof techniques, higher level programming 
languages, equivalence of program schemata, and sys
tem measurement techniques. In each case we are dis
cussing the "vork of several people; the bibliography cites 
the recent work we feel is most relevant. 

A utomatic program synthesis 

The basic idea here is to construct a program to pro
duce certain specified outputs from some specified in
puts, given predicates asserted true of the inputs and 
the outputs as related to the inputs. The basic technique 
is to (mechanically) prove the theorem that there exist 
outputs satisfying the predicate and then to extract a 
program from the proof for constructing the outputs. 
It has been suggested that these techniques can also be 
utilized to transform programs, for example to trans
form a recursive procedure into an equivalent iterative 
procedure using the two stage process of first deducing a 
predicate that characterizes the recursive procedure and 
then synthesizing an equivalent iterative procedure 
which computes the outputs satisfying the predicate 
deduced. 

We view the work in this area to date as primarily of 
theoretical interest and contributing to better mechan
ical theorem proving and proof analysis techniques. It 
is often more convenient to produce an (inefficient) 
algorithm than it is to produce a predicate; the two 
stage process proposed for "improvement" of programs 
is awkward and, we believe, highly inefficient as com
pared with the direct transformation techniques to be 
discussed below. 

111 echanical theorem proving 

The heart of any system for automating program
ming will be a facility for mechanical theorem proving. 
At the present time there are two basically different ap
proaches to mechanical theorem proving and a realiza
tion of both these approaches provide important com
ponents of our laboratory. One approach is to construct 
a theorem prover which will, given enough resources, 
prove any true theorem in the first order predicate calcu
lus with un interpreted constants; the other approach 
is to provide a theorem prover which is subject to con
siderable control (i.e., allO\vs one to employ heuristics 
to control the strategy of proof) and which utilizes in
terpretations of the constants wherever possible for 
efficiency. l\Iechanical theorem provers of the first sort 
are now usually based on the resolution principle. We 
term those of the second sort "programmable theorem 
provers". 

Resolution theorelll provers 

Robinson's 1965 paper introducing the resolution 
principle has been followed by vigorous activity in 
implementing mechanical theorem provers based on this 
principle. lVluch of the activity has been concerned with 
developing strategies for ordering consideration of 
resolvents; at the present time the breadth-first, unit
preference, and set-of-support general strategies have 
been studied and other variations are being considered. 
It is clear that a powerful resolution-principle based 
theorem prover will be an important component of the 
laboratory. 

Prograllllllable theorelll provers 

In the PLANNER system, Hewitt provides a facility 
for programmable theorem proving in the sense that one 
can very easily utilize interpretations of the objects and 
operations entering into a theorem to control the 
strategy of proof, one can make the choice of technique 
used in any particular instance data dependent, and can 
very readily employ any general mechanical theorem 
prover, effectively as a subroutine. The use of a small 
subset of Hewitt's proposed facilities by Winograd 
(called micro-planner by him; see [Winograd 71], [Suss
man 70]) in his program for understanding natural lan
guage gives dramatic evidence of the effectiveness of 
the approach. We thus include a programmable theorem 
prover on the style of Hewitt's and Winograd's as the 
basis for the theorem proving component of our labora
tory. 

From the collection of the Computer History Museum (www.computerhistory.org)



A utomatic program verification 

The work in this area is concerned with mechaniza
tion of what we term "flow chart induction". Given a 
representation of some algorithm as a flow chart with as
signments, conditional branching, and looping, one ap
pends to the boxes of the flow chart predicates asserted 
true of the variables at various points in the computa
tion and, in particular, of the inputs and the outputs. 
The procedure is then to attempt to mechanically dem
onstrate that the whole is consistent and thus that the 
program is correct. 

Again, we view this work as primarily of theoretical 
interest. The theorem proving techniques utilized in 
King's system (see [King]) are particularly interesting, 
however, as they utilize interpretations of the integers 
and operations over the integers; while not general, 
they do provide rather more efficient methods for proofs 
concerning integers than is presently possible with the 
more general resolution-type proof methods which do 
not employ interpretations. 

Program proof techniques 

A number of workers have been concerned with de
veloping proof techniques which are adapted to obtain
ing proofs of various properties of programs. These in
clude some new induction methods-structural induc
tion and flow chart induction-simulation techniques, 
and so on. This work provides a very important basis 
for proving the equivalence of various programs. 

Higher Level Programming Languages 

A considerable amount of work in the development of 
higher level programming languages has been concerned 
with providing languages which are particularly ap
propriate for certain application areas in the sense that 
they free the programmer from having to concern him
self with the kind of detail which is not relevant to the 
application area in which he works. For example, APL 
permits a programmer to deal with arrays and array 
operations and relieves him of concern with the details 
of allocation, accessing, and indexing of the array ele
ments. SNOBOL 4 directly supports algorithms which 
require back tracking, providing the mechanics auto
mati cally and permitting one to write theorem-proving, 
non-deterministic parsing, and such like algorithms very 
easily. SETL provides general finite sets as basic data 
objects plus the usual array of mathematical operations 
and predicates on sets; it thus permits one to utilize 
quite succinct statements of a wide variety of mathe-

Laboratory for Study of Automating Programming 13 

mati cal algorithms and to considerably ease the problem 
of proving that the algorithms have certain properties. 
EeL (which we discuss in some detail in a later section) 
provides a complete programming system with facilities 
which permit one to construct extended language facil
ities such as those provided in APL, SNOBOL 4, and 
SETL, and to carefully provide for efficient data repre
sentation and machine algorithms to host these extended 
language facilities. 

Equivalence of program schemata 

There has been considerable interest recently in 
studying various program schemata and investigating 
their relative power, developing techniques for proving 
their equivalence, and so on. Most of the work to date 
is interpretation independent and while, for example, 
many transformations from recursive specification to 
iterative specification of algorithms have been devel
oped, it is clear that many practical transformations 
cannot be done without employing interpretations. 

The most common use of interpretation dependent 
transformations is in "highly optimizing" compilers. 
There, a very specific, usually ad hoc set of transforma
tions is employed to gain efficiency. Often the transfor
mations are too ad hoc-under certain conditions they 
do not preserve functionality (i.e., don't work correctly). 

System performance measurement techniques 

It is a quite straightforward matter to arrange for 
various probes, monitors, and the like to permit meas
urements of the performance of programs, presuming 
that appropriate test input data sets are available, and 
a considerable amount of work has been done in this 
area. However, there are two further areas which are 
now the subject of investigation which we feel may yield 
important components for our laboratory. These are 
mathematical analysis of algorithms and automatic 
generation of probability distributions for interesting 
system parameters. 

Mathematical analysis of algorithms 

Several people have been working recently in the 
area of developing methodology and techniques for the 
mathematical analysis of algorithms to obtain estimates 
and/ or bounds on certain critical parameters and for 
developing (and proving) optimal algorithms for certain 
functions. We envision the manipulation facilities of the 
laboratory as being readily adaptable to providing 

From the collection of the Computer History Museum (www.computerhistory.org)



14 Spring Joint Computer Conference, 1972 

mechanical assistance in this activity, particularly in 
the area of aiding in the inevitable symbolic algebraic 
manipulation required in carrying out a mathematical 
analysis. 

AutoDlatic synthesis of probability 
distribu tions 

Some recent work by Nemeth (see [Nemeth]) may, 
when it is developed further, provide an interesting and 
valuable component of the laboratory. What he is trying 
to do is to develop algorithms for mechanically generat
ing probability distributions for various parameters 
from a computational schema augmented by given 
probability distributions for input variables and func
tions employed. Use of techniques like his should prove 
far superior to actually carrying· out the computation 
for sample data values. A mixture of mechanical genera
tion of distributions and carrying out portions of a 
computation might, in the earlier stages, provide a 
practical tool. 

All the above work is related and relevant to auto
mating programming, but none, in our opinion, is ade
quate alone. The need .now is to integrate these facili
ties, techniques, and so on into a system-a laboratory 
for the study of automating programming. 

THE APPROACH TO BE TAKEN IN THE 
LABORATORY 

The goal of such a laboratory is a practical, running 
system that will be a significant aid to the construction 
of real-world programs. Automating programming en
tails transferring to the computer those facets of 
programming which are not carried out efficiently by 
humans. It is our contention that the activity most in 
need of such transfer is the optimization (in a very broad 
sense of the word) of programs. The orientation of the 
laboratory and the principal task to which it will be put 
is that of taking an existing program and improving 
upon it. 

That optimization is, indeed, a key problem requires 
little defense. If "program" is taken in a sufficiently 
broad sense, it is easy to produce some algorithm which 
performs any stated task. Given just the right language, 
program synthesis is seldom a significant issue. For 
many problems, the most natural task description is 
precisely a program in an appropriate notation. The use 
of an extensible language makes straightforward the 
definition of such notation. For other problems, it may 
be that a predicate to be satisfied is a better task state
ment, but this too is in some sense a program. The line 
between procedural and non-procedural languages is 

fuzzy at best and it may be erased entirely by the use 
of theorem-proving techniques to transform predicates 
into programs (and conversely). 

As we see the problem, the issue is not arriving at a 
program, but arriving at a good one. In most cases, 
programs obtained from theorem provers applied to 
predicates, from a rough-cut program written as a task 
description, or even from the hands of a good program
mer leave much to be desired. Often, the initial program 
is several orders of magnitude away from desired or 
even acceptable behavior. The larger the program, the 
more likely this is to be the case. The reasons are gen
erally such defects as inefficient representation of data, 
failure to exploit possible constraints, use of inefficient 
or inappropriate control structures, redundant or par
tially redundant computations, inefficient search strat
egies, and failure to exploit features of the intended host 
environment. Recognizing the occurrence of such defects 
and remedying them is the primary goal of the labora
tory. 

ECL AS A BASIS FOR THE LABORATORY 

The ECL programming system and the ELI language 
have been designed to allow rapid construction of large 
complex programs, perhaps followed by modification 
and contraction of the programs to gain efficiency. The 
facilities of ECL permit one to compose, execute, com
pile and debug programs interactively. The ELI lan
guage is an extensible language with facilities for ex
tension on three axes: syntax, data, and operations. 

The ELI language plays four roles in the laboratory: 
(1) it is the language used to construct the various com
ponents of the system; (2) it and its extensions are the 
language used to state algorithms which are to be 
manipulated by the system; (3) it is the target language 
for transformations (i.e., ELI programs are transformed 
into better ELl programs); and (4) it is the host lan
guage for the theorems constituting the data base. * 

The features of ELI and its host system, EeL, which 
are particularly relevant to the laboratory are the fol
lowing: 

(a) Data types (called "modes" in ELl) can be pro
grammer defined usi~g several basic data types 
(e.g., integers, reals, characters, etc.) and, re
cursively, several mode valued functions (e.g., 
construction of homogeneous sequences, non
homogeneous sequences, pointers, etc.). 

* That is, the parts of a theorem (i.e., the conditions, antecedent, 
consequent, and recommendation list as described in the following 
section) are couched in an extension of ELl and "glued together" 
as an ELl procedure by operators defined as extensions; of 
course, the theorems are not "executed" in the usual sense. 

From the collection of the Computer History Museum (www.computerhistory.org)



(b) Procedures can be generic in the sense that a 
given procedure (say that for +) can have a 
number of different bodies or meanings and the 
selection of a particular body or meaning to be 
used is determined by the mode(s) of the argu
ment(s) utilized in some call of the procedure. 
Thus, for example, it is particularly straight
forward to accommodate refinements in represen
tation of some general data type (e.g., sets) with
out doing violence to algorithms defined on it by 
associating a new mode with a refinement and 
defining new versions of operators particularized 
to that mode via the generic mechanism. 

(c) The compile-time, load-time, run-time, and the 
like kinds of restrictions employed in most sys
tems are not present in EeL. In particular, the 
EeL compiler is a program which can be called 
at any time; it is given a program to be compiled 
and a list of variables (free in that program) 
whose values are to be taken as fixed. It then 
converts the program to a form which takes ad
vantage of whatever efficiencies it can from the 
freezing of values. There is no distinction be
tween compiled code and non-compiled (interpre
tive) code insofar as their discernible effect when 
executed. 

(d) EeL provides storage allocation and reclamation 
mechanisms which are quite sensitive to spacej 
time efficiencies. Thus, the so-called "data com
piler" goes to some lengths to utilize memory 
efficiently when allocating a component of a 
complex data structure containing several 
"pieces" . 
The use of both "stack" and "heap" mechanisms 
for allocation and freeing of space is also pro
vided. 

(e) EeL provides for multiple concurrent paths and 
permits complete user control over the environ
ment for each concurrent path. In addition to 
permitting strategies such as employing, say, a 
general resolution theorem prover to be applied 
to some difficult theorem in parallel with other 
undertakings, this feature makes it particularly 
straightforward to set up and run some program 
in an environment of ones choosing; for example, 
to gather statistics on its behavior in some 
simulated "real" environment. 

(f) Error conditions (both system detected and 
those defined by user programs) are generally 
handled by setting interrupts and each interrupt 
is, optionally, handled by a user defined pro
cedure. This feature is very helpful in test execu
tion and evaluation of subject programs and per
mits construction of elaborate control mecha-

Laboratory for Study of Automating Programming 15 

nisms when appropriate, as might be the case in 
controlling the behavior of the programmable 
theorem prover. 

There are two extensions of EeL which provide par
ticularly convenient linguistic facilities for stating al
gorithms; these are an extension which permits one to 
deal with sets and set operations* and an extension 
which hosts non-deterministic programs. 

OPERATION OF THE INITIAL LABORATORY 

The laboratory, like EeL, is intended for interactive 
use. A programmer approaches it with a problem 
specification and a set of requirements on how the 
program is to perform. He and the system together 
undertake to produce a program which meets the 
specifications and requirements. The intention is tha~ 
the laboratory be a practical tool for everyday use, i.e., 
that hard, real-world problems with realistic perform
ance requirements be brought to and handled by the 
laboratory. 

The problem specification may be an existing program 
written in ELI, possibly a long-standing production 
program. In this case, the presumption is that its per
formance falls short of that required and that the con
cern is with automating its tuning. Alternatively, the 
specification may be an ELI program written in a very 
liberal extension and constructed solely as a concise 
algorithmic statement of the problem task. There may 
be little expectation that such a program will meet any 
non-trivial performance requirements. Significant im
provements may be needed even to reach the desired 
order of magnitude. Finally, the problem specification 
may be a set of predicates to be satisfied. Here the 
laboratory begins by constructing an initial ELI pro
gram using as its target an extension set' designed for 
this purpose. Again, such a program may be several 
orders of magnitude removed from acceptable per
formance. 

In very general terms, the laboratory is a man
machine system for transforming the initial program to 
an equivalent one which meets the stated requirements. 
The heart of the system is a set of transformations, ac
tually theorems concerning the language, which pre
serve functionality while improving the program. De
ciding whether an arbitrary transformation either pre
serves functionality or improves the program is, of 
course, impossible, but decision procedures for the gen-

* This extension permits us to capture most of the facilities 
proposed for the language SETL. See [Schwartz 70] for a particu
larly cogent argument for providing sets and set operations in a 
higher-level programming language. 

From the collection of the Computer History Museum (www.computerhistory.org)



16 Spring Joint Computer Conference, 1972 

eral case are not needed here. The laboratory will em
ploy specific transformations which under appropriate 
circumstances-i.e., when their enabling predicates 
hold-maintain program equivalence. Constructing 
these transformations and verifying that the validity of 
the enabling predicates do insure functionality will be a 
task assigned to humans who may, of course utilize the 
facilities of the laboratory to prove the validity. While 
the functionality of the transformations may be assured, 
such is not the case for their effectiveness. To obtain a 
sufficiently powerful set of transformations it is neces
sary to include many whose utility is conditional, e.g., 
those which are effective only under circumstances 
which are difficult or impossible to verify analytically, 
or those which optimize performance in one metric at 
thB(perhaps unacceptable) expense of another. In gen
eral, the transformation set will include transformations 
which are mutually exclusive (i.e., only one of some sub
set can be applied) and some which are inverses (i.e., 
applying two or more repeatedly will lead to a loop). 
Hence, choice of which transformations to apply is 
governed specifically by the performance requirements 
demanded of the program and the disparity between 
these and the program at each state of optimization. 

Determining program performance is a crucial issue. 
There are two basic approaches, both of which are used 
in the laboratory. The first is analytic. The system de
rives closed-form expressions for program behavior 
based entirely on a static inspection of program struc
ture and interpretation of the program operations. Then 
given a description of an input data set, e.g., as a set of 
probability distributions for possible input valnes, the 
system can describe the exact program behavior. W'hen
ever such closed form expressions can be obtained, this 
is clearly the best certification of program performance. 
However, at present our analytical techniques are too 
weak for any but the simplest programs. The second ap
proach is that of actually running the program on 
benchmark data sets, data sets provided by the pro
grammer as part of his performance specifications. Be
tween these two extremes lies the spectrum of simula
tion: those portions of the program which can be treated 
analytically are replaced by simulation blocks and the 
rest of the program is run as is. The large area of mixed 
strategy is particularly powerful since it allows one to 
use only partially representative benchmark data sets 
yet extrapolate meaningful results from them by the 
use of analytical techniques. 

The utility of the laboratory will be governed prin
cipally by the specificity of admissible performance 
specifications and the degree to which they can be met 
on the intended machine. Performance specifications 
include the obvious bounds on execution time and 

space. Alternatively, they might be cast in the form: 
as fast or as small as possible. This is, however, only a 
rough cut. Few problems and fewer host machines are 
entirely homogeneous. In real time situations, optimiz
ing total execution time may be far less important then 
attaining a certain minimum for particular sections. 
Similarly, the total space occupied by a program and 
its data is far less important than the distribution of this 
space over several storage devices of various capacities 
and access speeds. Also, the intended host machine may 
be a multiprocessor or provide multiprocessing capa
bilities by means of special processors (e.g., graphics) or 
remote processors (e.g., a network). Partitioning the 
computation among the various processors so that the 
computation load on each is beneath prescribed limits 
is another task of the laboratory. 

The possible transformations for obtaining the desired 
performance vary considerably in scope, power, and ef
fectiveness. A sketch of those which currently seem to 
have the greatest payoff may give the flavor of what 
may be accomplished. 

The most straightforward are those for reducing the 
space occupied by data. Any field containing literal 
data restricted to N possible values requires, of course, 
no more than [10g2N] bits. What may not be quite so 
obvious is that with an appropriate programming lan
guage, simply changing declarations is all that is re
quired to control the storage allocated, perform the cod
ing and uncoding on data access, and handle the neces
sary conversions. ELI is such a language; hence, the 
class of transformations is readily obtained. In the case 
of sequences of literal data fields (e.g., character strings), 
further compression can be obtained by block encoding. 
Relations can be represented in a variety of ways and 
changing from one to another often results in significant 
economics. Sparcely populated arrays can be changed 
to lists or hash tables in which the array indices are re
trieval keys. Conversely, the space occupied by pointers 
(e.g., in list structure) can be reduced if linked lists are 
replaced by arrays in which relations are represented by 
small integer array indices occupying only a few bits. 

One candidate for optimization of both time and space 
is sets and set operations. There are a number of par
ticularly efficient representations for sets applicable 
only under certain conditions (e.g., bit vectors when the 
number of elements is fixed and relatively small or lists 
in canonical set order when the generation of new sets is 
carefully controlled) or efficient only when the set opera
tions are circumscribed (e.g., hash tables when the 
operations' are union and intersection but not set com
plement). When such a representation is possible, its 
use will often produce dramatic improvement over 
standard list structure techniques. 

From the collection of the Computer History Museum (www.computerhistory.org)



Transformations for optimizing time are often subtle 
and require sophisticated techniques for manipulating 
program structures. Perhaps the best understood sort is 
the transformation of recursive to iterative programs. 
Even restricting attention to uninterpreted schemas, 
there are several interesting schema classes for which 
the transformation can always be carried out. By ad
joining additional transformations which exploit the 
properties of specific common program operations, a 
very powerful tool for eliminating program recursion 
may be obtained. 

Time can always be saved at the expense of space by 
substituting the definition of a routine for a call on it. 
Where recursion is absent or has been previously re
moved, it is possible to perform repeated back substitu
tion until all calls have been eliminated. While too costly 
in space to be employed everywhere, it is very effective 
if performed on the most frequently executed portions 
of the program. Aside from the obvious virtue of elimi
nating the expense of function call, it has the more sig
nificant virtue of allowing each back substituted de
fining instance to be optimized independently-in the 
context of the text into which it is placed. 

The principal class of time optimizations is the elimi
nation of searches. A few such transformations are sim
ple, e.g., the replacement of association lists by hashed 
structures or balanced trees, and the substitution of ar
rays for lists which are frequently accessed by indexing. 
Searching is, however, not confined to . lists. Structures 
of all sorts-arrays, queues, strings, and so on-are 
frequently searched for an element or set of elements 
having some property. When the density of hits is small, 
blind search is inefficient. An appropriate method is to 
adj oin bookkeeping records to the given structure and 
add bookkeeping code to the program so as to keep track 
of what would be the result of searching. When the in
cremental costs of maintaining the necessary records is 
small compared to the search cost, this often provides a 
significant optimization. Determining what records 
must be kept and how to keep them are non-trivial prob
lems, but ones which appear open to solution at least 
for many significant program classes. 

A related class of program optimizations is based on 
reordering computations in operations on compound 
structures. Any operation on a compound object must 
be defined in terms of primitive operations or its primi
tive components. Given a sequence of operations on 
compound objects, it is usually possible to reorder the 
underlying sequence of primitive operations to reduce 
some computational resources. Galler and Perlis (see 
[Galler 1970]) discuss in detail the problem of saving the 
storage required for temporaries in matrix operations 
and mention that a variation on their technique can be 

Laboratory for Study of Automating Programming 17 

used to minimize time. It appears possible to generalize 
these results to arbitrary data structures. First, recur
sion is eliminated from function definitions. Then each 
compound operator is replaced by its definition until 
only primitive operators appear (i.e., the back substitu
tion optimization mentioned above). Then, program 
loops are merged to carry as many operations as possible 
on each loop. Finally, dependency analysis is used to 
find common sub-expressions and eliminated unneces
sary temporaries. Any number of ad hoc, type de
pendent, transformations can be added to this basic 
framework. The basic technique, that of unwinding 
compound operations and then winding them up again 
in a more optional fashion, is broadly applicable. 

Several sets of transformations are concerned with 
effective utilization of the particular host machine(s). 
These are therefore specific to the environment, but no 
less important than their general cousins. The most 
important is that of partitioning the computation 
among several processors. In so doing, the first step is 
to take a conventional sequential program and trans
form it to a representation which exhibits all the poten
tial parallelism so that sequencing is dictated only by 
data dependency. The next step is to partition the trans
formed program among the available processors in such 
fashion that (1) upper bounds on computational re
sources demanded of each machine are obeyed; (2) 
communication between processors is carried out satis
factorily along the available data paths and (3) the en
tire configuration has the desired performance charac
teristics. Item (2) can be reduced to item (1) by treat
ing each data path as a processor with its own (perhaps 
small) computational bounds. Item (1) is, of course, the 
heart of the matter. The work of Holt, Saint, and 
Shapiro provides a very promising approach to this and 
has already demonstrated some success in certain re
stricted applications (see [Shapiro 69]). 

This set of program transformations is only repre
sentative. Others will be added in time as users of the 
laboratory gain practical experience with and under
standing of program transformation. However large 
such a collection, it is only a beginning and its exact 
composition is only a secondary issue. lVlore important 
is the problem of determining which transformations to 
use and where, given a program and a set of performance 
specifications. The first step is to refine the perform
ance measurements so as to determine precisely where 
the specifications are not being met.· Correlating the 
various measurements with program text is straight
forward. 

Given the program text augmented with resource 
utilization statistics, the next task of the laboratory is 
to find places in need of optimization, find one or more 

From the collection of the Computer History Museum (www.computerhistory.org)



18 Spring Joint Computer Conference, 1972 

appropriate transformations, verify whether they are 
applicable and apply them. In choosing places to con
centrate attention the laboratory starts simply by looking 
for the areas with the largest cost relative to that de
sired. Given these obvious starting places, the key prob
lem is tracing back from these when necessary to the 
causes, perhaps at some point far removed in the pro
gram. In this step, and in the choice of transformation 
classes to be attempted, there will be the opportunity 
for explicit guidance by the programmer. If no guidance 
is given, the laboratory will doggedly pursue possible 
hypotheses but the search may be cut dramatically by 
human intervention. 

Even with this assistance, the proposed transforma
tions must be taken as tentative hypotheses to be ex
plored. Few transformations always result in improve
ment. Many optimize one resource at the expense of 
others, while some transformations are of use only for 
certain regions of the data space. Hence, in general, it is 
necessary to continually verify that the transformed 
versions of the program are indeed improvements. 
Again, program analysis coupled with performance 
measurement tools will be employed. 

In summary, the principal functions of the laboratory 
are choosing areas of the program to be optimized, carry
ing out pattern matching to'determine the applicability 
of various transformations, performing these trans
formations, and arranging for explicit· guidance by the 
programmer in this process. The laboratory consists of 
a set of components for carrying out these activities in 
concert. 

COMPONENTS OF THE INITIAL LABORATORY 

As we noted previously the laboratory is, essen
tially, one particular extension of ECL and· that the 
internal representation for programs and data employed 
in ECL will be utilized for programs being manipulated 
(synthesized, transformed, proved to have some prop
erty, and so on). Here we will describe the several com
ponents in the initial laboratory-the several ELI 
programs and/or ECL extensions which together con
stitute the initial laboratory. Before launching into the 
discussion, however, we want to note the influence of 
the work of Hewitt and Winograd on ours; the basic 
components of the laboratory have very much the flavor 
of the linguistic-independent components of Winograd's 
version of Hewitt's PLANNER system. Our discussion 
of the components is quite brief as our intention in this 
paper is to provide an overview of the laboratory and 
the general approach being taken. A detailed discussion 
of the current versions of the components is provided in 
a paper by Spitzen (see [Spitz en 71]). 

Control 

There is a top-level control path* which provides the 
interface between the user and the laboratory. It pro
vides for input of the program to be manipulated and 
the associated performance criteria, if any. It then ar
ranges that the program to be manipulated is put into a 
canonical form and sets up a parallel path which pro
vides the manipulation strategy by calling for the ap
propriate theorem or theorems to be applied. The con
trol path then provides for dialogue between the system 
and the user so that the system can request infor
mation from the user (e.g., verification that certain con
straints hold in general, test data, and the like). 

Programmable theorem prover 

A "theorem" in the sense this term is used in the sys
tem consists of a condition which governs the applica
bility of the theorem, an antecedent, a consequent, 
and a recommendation list. Given some program struc
ture, an instance of substructure matching the ante
cedent can be replaced by an equivalent substructure 
corresponding to the consequence so long as the condi
tion holds. The recommendation list is basically a list of 
predicates which govern the use of other theorems to be 
used in manipulating the structure to match the ante
cedent in applying this one and it is the careful use of 
this "governor" which permits the theorem proving to 
operate in a practicable time frame. Note that in a very 
strong sense theorems are really programs effecting 
transformations which, through the conditions and 
recommendation lists (arbitrary ELI predicates), can 
establish elaborate control and communication arrange
ments. 

Data base 

The theorems which constitute the basis for the trans
formations and manipulations performed by the system 
are housed in a data base. There is a continually grow
ing static component of the data base which includes 
the "standard" theorems. In addition there may be a 
collection of theorems appropriate to certain particular 
investigations with which we will augment the data base 
at appropriate times. There is also a dynamic component 
which varies as a program is being manipulated. For ex
ample, If we commence dealing with the arm "p2~e2" 

* ECL provides multiprogramming; "path" is the ECL ter-
minology for a parallel path of control. ~ 

From the collection of the Computer History Museum (www.computerhistory.org)



of the conditional expression 

[pf=:::}el; p2=}e2; . . .; pn=}en] 

Then we would add the theorem appropriate to "--, PI" 
to the data base and arrange that it be removed when 
we get to the stage of treating the conditional expres
sion as a whole in "higher level" manipulation of the 
program structure containing it. 

The data base is quite large and, as various new 
facilities are added to the system, the data base will 
grow. Its size plus the fact that one wants to be able to 
select appropriate theorems (i.e., in accordance with a 
given recommendation list) from the data base effi
ciently, make it imperative that a certain amount of 
structure be imposed on the data base. Initially this 
structure basically amounts to a collection of "threads" 
through the data base, implemented by a combination 
of list structure, hash, and descriptor coding techniques. 
It is anticipated that getting an efficient structuring of 
the data base as it grows will pose a non-trivial research 
problem which we anticipate being attacked with the 
tools provided by the laboratory itself. 

Pattern Matcher 

The process of applying some theorem to some pro
gram structure involves matching the parts of the 
antecedent to acceptable corresponding parts of the 
structure; in general, of course, this will involve calls on 
other theorems to manipulate the structure into an 
appropriate format and/or the verification that certain 
conditions maintain. It is the pattern matcher which 
administers this activity; it will make tentative part
part matches, reject matches or attempt them in new 
ways when subsequent failure to match occurs, and 
so on. 

Backtracking mechanism 

The pattern matcher operates as a non-deterministic 
program in the sense that it makes provisional matches 
which must be "unmatched" and rematched when 
failure occurs to match some subsequent part of the 
antecedent to the program structure being manipulated. 
A backtracking mechanism must therefore be provided 
so that the effects of computations and variable bindings 
can be "undone." The method we use to accomplish 
this is to alter the basic ELI evaluator so that, when 
backtrackable code segments are executed, any change 
to the environment is preceded by recording the appro
priate modification to the environment which will undo 
the change in the event backtracking is required. 

Laboratory for Study of Automating Programming 19 

Measurement techniques 

In addition to the usual facilities for inserting probes 
to provide measures of utilization of various functions 
and data elements provided in EeL and the usual 
ability to obtain measurements by sampling driven by a 
real-time clock there are two measurement components 
in the system which are less usual. Precise delineation 
of potential inefficiencies sometimes requires very exact 
timing data. Unfortunately it is usually impossible to 
get very fine-grained timing from most contemporary 
machines. Hence, the laboratory includes a machine 
language simulator for its host machine, i.e., a program 
which executes machine code interpretively and gathers 
statistics as requested. This permits programs to be 
run unchanged while collecting very precise data on 
the distribution of program execution time and storage 
requirements. This data, combined with that obtained 
by inserting measurement probes into the program 
permits performance measurements to be made to any 
level of detail. The second measurement component is 
an implementation of the "probability distribution 
computer" described by Nemeth. 

GOALS OF THE LABORATORY 

It must be stressed that the laboratory is intended 
for practical use, for the attainment of useful results 
which would be difficult to obtain without its assistance. 
It is the deliberate intention that one be able to ap
proach it with a non-trivial program and obtain with it 
a significantly improved version. Such programs will 
include applications programs, system programs such 
as the ELI compiler, as well as modules of the labora
tory itself. 

It appears that this will be achievable even with the 
simple approaches to be taken in the initial version of 
the laboratory. The use of programmable theorem 
provers and search techniques have made it possible to 
quickly endow the laboratory with considerable ex
pertise, if not deep insight. On large production pro-

" grams (which commonly are so complex that no one 
really understands their exact behavior) the laboratory 
may be expected to make significant improvements by 
more or less· mechanical means. Such mechanical skill 
is precisely what is required to complement the high 
level programmer. Initially, the laboratory will serve 
as a programmer's assistant, suggesting possible areas 
of improvement and carrying out the transformations 
he chooses, but leaving the creative work to him. Even 
at this level the laboratory may serve better than the 
average junior programmer. Further, the initiallabora-

From the collection of the Computer History Museum (www.computerhistory.org)



20 Spring Joint Computer Conference, 1972 

tory will serve as a basis for developing more sophisti
cated control over the choice of transformations to 
be applied. 

A topic which falls out as another application of this 
work is the modification or adaptation of programs. 
Given a program which does a certain job well, it is very 
common that it must be modified to handle a related 
task or work under changed conditions. Usually such 
modifications are done by hand, seldom with entirely 
satisfactory results. Hence, automation of the process is 
attractive. One method which has been occasionally 
proposed for performing this is to construct a system 
which when fed the existing program, deduces how it 
works, and then performs the specified modifications. 
This requires the system to dig the meaning and pur
pose out of the existing program-an operation which 
is difficult at best and perhaps impractically expensive. 
A solution which shows greater promise is to use the 
laboratory to combine man and machine. If programs 
are developed using the laboratory, then for any 
production program, there is an initial program from 
which it was derived. Given a statement of the new task 
to be accomplished, the programmer can make his 
modifications to the relatively transparent and simple 
initial program. This is still hand labor, but at a much 
higher level. Applying the laboratory to the optimiza
tion of the modified program results in a production 
program with the desired properties. This puts creative 
work in adapting a program into the hands of the 
programmer while freeing himJrom the drudge work. 

It is anticipated that as the programmer gains 
experience with the system, he will develop his own set 
of optimization techniques. By making it convenient 
for him to add to the data base these transformations 
along with patterns for recognizing potential situations 
for their applications, we allow a certain degree of 
growth in the expertise of the laboratory. Given a clever 
population of users, the laboratory should grow to some 
considerable level of sophistication, at least in areas of 
interest to that user population. This scenario has, of 
course, its limitations. Merely expanding the data base 
would, in time, cause the system. to flounder in a sea of 
possible but irrelevant transformations. Hence growth 
of the system must ultimately depend on significant 
improvements in global strategies, local heuristics, and 
theorem provers. In particular, the need for specialized 
theorem provers will very likely arise. 

At present, it is not clear how to proceed in these 
directions, nor is this surprising. One of the purposes 
of the laboratory is to gain expertise in program manip
ulation, determine the limitation of current tech
niques, and advance to the point where the real 
problems can be seen clearly. The initial laboratory is 
a first step, but a significant step, in this direction. 

BIBLIOGRAPHY 

E A ASHCROFT (1970) 
M athematicallogic applied to the semantics of computer 
programs 
PhD Thesis Imperial College London 
E A ASHCROFT Z MANNA (1970) 
Formalization of properties oj parallel programs 
Stanford Artificial Intelligence Project Memo AI-110 Stanford 
University 
R M BURSTALL (1970) 
Formal description of program structure and semantics in 
first-order logic 
Machine Intelligence 5 (Eds Meltzer and Michie) 
Edinburgh University Press, 79-98 
R M BURST ALL (1969) 
Proving properties of programs by structural1·nduction 
Comp J 12 1 41-48 
D C COOPER (1966) 
The equivalence of certain computations 
Computer Journal Vol 9 pp 45-52 
R W FLOYD (1967) 
Assigning meanings to programs 
Proceedings of Symposia in Applied Mathematics American 
Mathematical Society Vol 19 19-32 
R W FLOYD (1967) 
Non-deterministic algorithms 
JACM Vol 14 No 4 (Oct.) 
B A GALLER A J PERLIS (1970) 
A view of programming languages 
Chapter 4 Addison-Wesley 
C GREEN (1969b) 
The application of theorem proving to question-answering 
systems 
Ph D Thesis Stanford University Stanford California 
C GREEN B RAPHAEL (1968) 
The use of theorem-proving techm·ques in question-answering 
system'S 
Proc 23rd Nat Conf ACM Thompson Book Company 
Washington DC 
P J HAYES (1969) 
A machine-oriented formulation of the extended junctional 
calculus 
Stanford Artificial Intelligence Project Memo 62 Also appeared 
as Metamathematics Unit Report University of Edinburgh 
Scotland 
C HEWITT (1971) 
Description and theoretical analysis of plannar 
Ph D Thesis MIT January 
C B JONES P LUCAS 
Proving correctness of implementation techniques 
Symposium on Semantics of Algorithmic Languages Lecture 
Notes in Mathematics 188 New York 
D M KAPLAN (1970) 
Proving things about programs 
Proc Princeton Conference on Information Science and System 
D M KAPLAN (1967) 
Correctness of a compiler for algol-like programs 
Stanford Artificial Intelligence Memo No 48 Department of 
Computer Science Stanford University 
J KING (1969) 
A program verifier 
Ph D Thesis Carnegie-Mellon University Pittsburgh Pa 
J KING R W FLOYD (1970) 

From the collection of the Computer History Museum (www.computerhistory.org)



Interpretation oriented theorem prover over integers 
Second Annual ACM Symposium on Theory of Computing 
Northampton Mass (May) pp 169-179 
D C LUCKHAM N J NILSSON (1970) 
Extracting information from resolution proof trees 
Stanford Research Institute Artificial Intelligence Group 
Technical Note 32 
Z MANNA (1969) 
The correctness of programs 
J of Computer and Systems Sciences Vol 3 No 2 119-127 
Z MANNA (1969) 
The correctness of non-deterministic programs 
Stanford Artificial Intelligence Project Memo AI-95 Stanford 
University 
Z MANNA J McCARTHY (1970) 
Properties of programs and partial function logic 
Machine Intelligence 5 (Eds Meltzer and Michie) 
J McCARTHY (1963) 
A basis for a mathematical theory of computation 
Computer programming and formal systems 
(Eds Braffort and Hirschberg) Amsterdam North Holland 
pp 33-70 
J McCARTHY J A PAINTER (1967) 
Correctness of a compiler for arithmetic expressions 
Mathematical Aspects of Computing Science Amer Math Soc 
Providence Rhode Island pp 33-41 
R MILNER 
An algebraic definition of simulation between programs 
Stanford Artificial Intelligence Memo AI-142 
A NEMETH 
Unpublished; to be included in his Ph D Thesis Harvard 
University 
J A PAINTER (1967) 
SemanUc correctness of a compiler for an algol-like language 
Stanford Artificial Intelligence Memo No 44 (March) 
Department of Computer Science Stanford University 
M S PATERSON (1967) 
Equivalence problems in a model of computation 
PhD Thesis Cambridge University 
G ROBINSON L WOS 
Paramodulation and theorem-proving in first-order theories 
with equality 
Machine Intelligence Vol IV Ed by D Michie 

Laboratory for Study of Automating Programming 21 

J ROBINSON (1966) 
A review of automatic theorem proving 
Annual Symposia in Applied Mathematics Vol XIX 
J T SCHWARTZ (1970-71) 
Abstract algorithms and a set-theoretic language for their 
expression 
Preliminary Draft First Part Courant Institute of 
Mathematical Sciences NYU 
J M SPITZEN (1971) 
A tool for experiments in program optimization 
(in preparation) 
R M SHAPIRO H SAINT (1969) 
The representation of algorithms 
Rome Air Development Center Technical Report 69-313 
Volume II September 
H A SIMON (1963) 
Experiments with a heuristic compiler 
JACM (October 1963) 482-506 
J SLAGLE (1967) 
A utomatic theorem proving wUh renameable and semantic 
resolution 
JACM Vol 14 No 4 (October 1967) 687-697 
J SLAGLE (1965) 
Experiments with a deductive question-answering program 
Comm ACM Vol 8 No 12 (December) 792-798 
H R STRONG JR (1970) 
Translating recursion equations into flow charts 
Proceedings Second ACM Symposium on Theory of Computing 
(May) pp 184-197 
G J SUSSMAN T WINOGRAD (1970) 
M icro-plannar reference manual 
MIT AI Memo No 203 (July) 
R J WALDINGER (1969) 
Constructing programs automatically using theorem proving 
PhD Thesis Carnegie-Mellon University (May 1969) 
B WEGBREIT (1971) 
The ECL programming system 
Proc F JCC Vol 39 
R WINOGRAD (1971) 
Procedures as representative for data in a computer program for 
understanding natural language 
Project MAC MIT MAC-TR-:4 February 

From the collection of the Computer History Museum (www.computerhistory.org)



From the collection of the Computer History Museum (www.computerhistory.org)




