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6 p-adic Numbers

Kurt Hensel (1861-1941)
introduced p-adic numbers
to mimic the use of power

series in analysis.

Let p be a prime. Recall that any natural number n can be
written in base p:

n = n0 + n1 · p+ n2 · p2 + · · ·+ nr · pr

for some r > 0 and 0 6 ni < p.

De�nition. A p-adic integer is a formal sum1

a = a0 + a1 · p+ a2 · p2 + · · · =
∞∑
i=0

aip
i

with ai ∈ {0, 1, 2, . . . , p− 1} for all i > 0.

Such a sum is usually not convergent in R of course. The set
of all p-adic integers is denoted by Zp. From the expansion
in base p, we see that natural numbers can be viewed as
p-adic integers with ai = 0 for i bigger than some r. So
N ⊂ Zp.
The operation addition and multiplication are de�ned such
as to extend the operations on N, so they are done with
\carry-over digits". For example take p = 5 and add the
following two 5-adic integers.

a = 1 + 3 · 5 + 4 · 52 + 1 · 53 + · · ·
b = 2 + 2 · 5 + 4 · 52 + 0 · 53 + · · ·

a+ b = 3 + 0 · 5 + (4 + 4 + 1) · 52 + (1 + 0) · 53 + · · ·
= 3 + 0 · 5 + 4 · 52 + (1 + 0 + 1) · 53 + · · ·
= 3 + 0 · 5 + 4 · 52 + 2 · 53 + · · ·

Similarly we do multiplication of 7-adic integers

a = 1 + 2 · 7 + 3 · 72 + · · ·
b = 3 + 2 · 7 + 1 · 72 + · · ·

1 · b = 3 + 2 · 7 + 1 · 72 + · · ·
2 · 7 · b = 6 · 7 + 4 · 72 + · · ·
3 · 72 · b = 2 · 72 + · · ·

ab = 3 + 1 · 7 + 1 · 72 + · · ·

So p-adic numbers look much alike power series and that is why they would often be written
as ab = 3 + 1 · 7 + 1 · 72 + O(73). But note that the above operation are di�erent than for
power series because of the carrying-over.
It is not di�cult, but tedious, to see that these operations satisfy the usual properties (as-
sociativity, commutativity, distributivity) and make the p-adic integers Zp into a ring. The

1In some books you will �nd the notation 0, a0a1a2 . . . which I will never use
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subtraction is also well-de�ned and can be done as we are used to in base p:

a = 3 + 1 · 5 + 2 · 52 + · · ·
b = 4 + 0 · 5 + 2 · 52 + · · ·

a− b = 4 + 0 · 5 + 0 · 52 + · · ·

In particular we must have −1 in Zp, indeed

a = 1 = 1 + 0 · 5 + 0 · 52 + 0 · 53 + · · ·
b = 2 = 2 + 0 · 5 + 0 · 52 + 0 · 53 + · · ·

a− b = −1 = 4 + 4 · 5 + 4 · 52 + 4 · 53 + · · ·

In general, −1 is written as a p-adic integer with all digits ai = p − 1. Since we can now
multiply −1 with any natural number, we �nd that Z ⊂ Zp. Though, not all integers are
written as �nite sums.
Another warning. We de�ned two p-adic integers to be equal if and only if all the coe�cients
are equal. Remember that the same is not true in R, since we have 0.99999 . . . = 1.0000 . . .

6.1 p-adic integers as sequences

To each p-adic integer a = a0 + a1 · p + a2 · p2 + · · · we can associate the sequence of partial
sums:

s1 = a0

s2 = a0 + a1 · p
s3 = a0 + a1 · p+ a2 · p2

.

.

.

.

.

.

sn = a0 + a1 · p+ a2 · p2 + · · ·+ an−1 · pn−1

This sequence of natural numbers (s1, s2, s3, . . . ) satis�es the following de�nition.

De�nition. A sequence (s1, s2, . . . ) is compatible if 0 6 sn < pn for all n and

sm ≡ sn (mod pn) for all m > n.

Conversely, we can associate to any compatible sequence (s1, s2, s3, . . . ) a unique p-adic in-
teger. So we could have de�ned the p-adic integer also as Zp as the set of all compatible
sequences. In this presentation2 the additions are even easier to de�ne. If a corresponds to
the compatible sequence (sn) and b to the compatible sequence (s′n), then a+ b corresponds
to the sequence (sn + s′n mod pn) and ab corresponds to the sequence (sn · s′n mod pn).
In this notation, it is obvious that Zp forms a ring. We will also write a mod pn for the n-th
partial sum sn of a ∈ Zp.

2often denoted by Zp = lim←−n
Z/pnZ.
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6.2 p-adic units

We would like to know which elements in Zp are units. A p-adic integer a ∈ Zp is called a
p-adic unit if there is a b ∈ Zp such that ab = 1. The set of p-adic units is usually denoted by
Z×p .
It is clear that a = p is not a unit: Whatever b is, the p-adic integer pb will start with a 0 as
the �rst digit. In fact, none of the p-adic integers a = 0+a1 ·p+ · · · with a starting coe�cient
a0 = 0 can be a p-adic unit by the same argument.

Lemma 6.1. The p-adic units Z×p are exactly the p-adic integers a = a0+a1 ·p+ · · · with a0 6= 0.

Proof. It remains to prove that any a with a0 6= 0 is invertible. Consider its partial sums
sn of a. Since the �rst coe�cient is not zero, sn will be coprime to p. So there exists a
0 6 tn < pn such that sn · tn ≡ 1 (mod pn). Now for any m > n, the reduction of tm modulo
pn satis�es tm · sn ≡ tm · sm ≡ 1 (mod pn), so tm ≡ tn (mod pn); meaning that the sequence
(tn) is compatible and so gives a p-adic integer b. By de�nition ab ≡ 1 (mod pn) for all n, so
ab = 1.

As a consequence, we �nd that a
b ∈ Zp for all integers a and b provided that p - b.

Example. Here is how we compute division and in particular inverses of p-adic units by using
long division. We wish to �nd 11

2 in Z5.

3 + 3 · 5 + 2 · 52 + 2 · 53 + 2 · 54 + · · ·
2 + 0 · 5 + · · ·

)
1 + 2 · 5 + 0 · 52 + 0 · 53 + 0 · 54 + · · ·
1 + 1 · 5 + 0 · 52 + 0 · 53 + 0 · 54 + · · ·

1 · 5 + 0 · 52 + 0 · 53 + 0 · 54 + · · ·
1 · 5 + 1 · 52 + 0 · 53 + 0 · 54 + · · ·

4 · 52 + 4 · 53 + 4 · 54 + · · ·
4 · 52 + 0 · 53 + 0 · 54 + · · ·

4 · 53 + 4 · 54 + · · ·
4 · 53 + 0 · 54 + · · ·

4 · 54 + · · ·
4 · 54 + · · ·

0 + · · ·

So we �nd 11
2 = 3 + 3 · 5 + 2 · 52 + 2 · 53 + 2 · 54 + · · · and the 2 will repeat them forever.

In fact it is not hard to see that the p-adic integers which have a period expansion are exactly
those that belong to Q; much like for the decimal digits in R.

6.3 The p-adic numbers

To obtain a �eld from Zp, we need at least to add the element 1
p . In fact that su�ces. We

de�ne a p-adic number to be an expression of the form

a = a−r ·
1

pr
+ a−r+1 ·

1

pr−1
+ · · ·+ a−1 ·

1

p
+ a0 + a1 · p+ a2 · p2 + · · · =

∑
i>−r

ai · pi
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for some r > 0 and ai ∈ {0, 1, 2, . . . , p − 1} for all i > −r. The set of all p-adic number is
denoted by Qp. We endow it with the same addition and multiplication. Then Qp is a �eld

3

with these operations.
Any rational number can be written as x = pr · ab for some r ∈ Z and a, b integers that are
coprime to p. Since pr ∈ Qp and

a
b ∈ Zp ⊂ Qp, we �nd that x ∈ Qp. Hence Q ⊂ Qp.

6.4 The absolute value

In particular, we see from lemma ?? that any prime ` 6= p is invertible in Zp. So we can no
longer detect in Zp if an integer is divisible by `. But we can still do so for p. In fact, we
have that pr divides a = a0 + a1 · p + · · · if and only if ai = 0 for all i < r. Pushing this logic
further we de�ne ordp(a) to be the smallest r such that ar 6= 0. This makes sense now for all
p-adic integers a ∈ Qp not just integers if we allow ordp(a) ∈ Z. We set ordp(0) =∞.

De�nition. We de�ne the absolute value of a p-adic number a 6= 0 by

|a|p = p− ordp(a)

and |0|p = 0.

The smaller the absolute value the more the p-adic number is divisible by p. For example
|p|p = 1

p and |p2|p = 1
p2 .

Lemma 6.2. (i). |a|p > 0, and |a|p = 0 if and only if a = 0.

(ii). |ab|p = |a|p · |b|p.

(iii). |a+ b|p 6 max{|a|p, |b|p} 6 |a|p + |b|p.

Proof. The �rst property is obvious. Let a = ar · pr + ar+1 · pr+1 + · · · and b = bs · ps + bs+1 ·
ps+1 + · · · with ar 6= 0 and bs 6= 0. So ordp(a) = r and ordp(b) = s. Now ab = ar · bsps+r + · · ·
gives that ordp(ab) = r + s = ordp(a) + ordp(b).
Next, suppose that r 6= s. Then a + b will start with arp

r if r < s and with bsp
s if r > s. So

ordp(a+ b) = min{r, s} = min{ordp(a), ordp(b)}.
Finally, if r = s, then ordp(a+ b) might be r, but could be higher4. But we still have ordp(a+
b) > ordp(a) = ordp(b).
Translating these results about ordp to | · |p give the results in the lemma.

A p-adic number a ∈ Qp satis�es |a|p 6 1 if and only if a ∈ Zp. Furthermore |a|p = 1 if and
only if a ∈ Z×p .
Having an absolute value, we can talk about convergence. A sequence x1, x2, . . . of p-adic
numbers converges to x ∈ Qp if |x− xi|p tends to zero in R as n grows.

De�nition. A sequence (xi) of p-adic numbers xi ∈ Qp is said to be a Cauchy sequence if, for
any ε > 0, there exists a N such that |xi − xj |p < ε for all i, j > N .

Proposition 6.3. Any Cauchy sequence in Qp converges.

Proof. Let (xi) be a Cauchy sequence and let n > 1. By taking ε = p−n, we �nd a N such
that |xi − xj |p < p−n for all i, j > N . This inequality just means that the digits of xi and xj
agree at least up to the digit before pn. Hence all elements xi with i > N have the same
digits up to pn. As we let n increase, we �nd a p-adic number a by taking the digits of xi. By
construction |xi − a|p < p−n, so the sequence xi converges to a.

3Cantor's diagonal argument shows that Qp is not countable.
4Example: a = 2 · 5 + 1 · 52 + · · · and b = 3 · 5 + 2 · 52 + · · · .
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6.5 Polynomial equations

Here is the main motivation to consider p-adic numbers. Let f(X) be a polynomial with
integer coe�cients, say f = f0 + f1X + · · ·+ fdX

d. We say that a ∈ Zp is a root of f(X) = 0
if f(a) = f0 + f1 a+ · · ·+ fd a

d = 0.

Lemma 6.4. A polynomial f(X) ∈ Z[X] has a solution in Zp if and only if it has a solution
modulo pn for all n > 1.

Let m > n be two natural numbers. Let x be a root of a polynomial f(X) ∈ Z[X] modulo pm,
i.e. f(x) ≡ 0 (mod pm). Then x is also a root modulo pn. Conversely, let y be a root modulo
pn. Then it may or may not be true that there exists a x such that x ≡ y (mod pn) and x is a
root modulo pm. If so, we say that the root y can be lifted modulo pm and each possible x
is called a lift. For instance a sequence of 0 6 sn < pn is compatible if sm is a lift of sn for all
m > n.

Proof. ⇒: If a ∈ Zp is the root of f(X), then the n-th partial sum sn is a solution modulo
pn.
⇐: For each n, let xn be a solution modulo pn. Consider the values of all xn modulo p.
Among the p possible values, at least one of them, say s1, will appear in�nitely many times.
Discard now from the sequence xn all those which are not congruent to s1 modulo p.
Next we consider values of all remaining xn modulo p2. Among the p possible values s1,
s1 + p, s1 + 2 p, . . . , s1 + (p − 1)p at least one, say s2, appears in�nitely many times. Again
we remove from the sequence all xn that are not congruent to s2 modulo p2.
Continuing in this way, we construct inductively a compatible sequence sn. Denote the
corresponding p-adic integer by a. Now f(a) ≡ f(sn) ≡ 0 (mod pn) for all n. So f(a) is a
p-adic integer all of which digits are zero, i.e. f(a) = 0.

Remark. The lemma stays true if we allow the coe�cients of f to be p-adic integers.

Here are a few examples.

Example. We consider the polynomial f(X) = X3−5X2+18X+216 for p = 3. The solutions
modulo 3 are 0 and 2. For p2 = 9, we �nd the solutions 0, 3, 5, and 6. Next there are the
solutions 0, 9, 18, and 23 modulo p3 = 27. But modulo p4 = 81 there is only one solution
namely 77, similar for p5 it is only 239 and then 725 modulo p6. We can illustrate this best in
the picture in �gure ??.
If there exists a 3-adic solution to f(X) = 0, then it has to be congruent to 725 = 2 + 3 + 2 ·
32 + 2 · 33 + 2 · 34 + 2 · 35 modulo 36. In fact, there exists exactly one solution in Z3, namely

−4 = 2 + 1 · 3 + 2 · 32 + 2 · 33 + 2 · 34 + 2 · 35 + 2 · 36 + 2 · 37 + 2 · 38 + 2 · 39 + · · ·

Example. Consider the polynomial f(X) = X7 + X5 + 4X2 + 4 for p = 5. Modulo p there
are three solutions, namely {1, 2, 3}. But modulo all higher powers of p there are each time
only two solution: for p2, we have {7, 18}, the �rst is a lift of 2 modulo p2 and the second is
a lift of 3. The solution 1 can not be lifted modulo p2. For p3, we have {57, 68}, for p4 it is
{182, 443}, then {2057, 1068}, {14557, 1068}, {45807, 32318}, etc. If we write these solutions in
base 5, we quickly see that they are the partial sums of the following two roots of f(X) in
Z5:

2 + 1 · 5 + 2 · 52 + 1 · 53 + 3 · 54 + 4 · 55 + 2 · 56 + 3 · 57 + 0 · 58 + 3 · 59 + · · ·
3 + 3 · 5 + 2 · 52 + 3 · 53 + 1 · 54 + 0 · 55 + 2 · 56 + 1 · 57 + 4 · 58 + 1 · 59 + · · ·

We will see later how one can quickly �nd these 5-adic solutions.
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Figure 1: The lifts modulo powers of 3 of the solutions to X3 − 5X2 + 18X + 216

6.6 Hensel's lemma

For a polynomial f(X) ∈ Zp[X] we write f ′(X) ∈ Zp[X] for its derivative.
The following is a fast method to �nd p-adic solutions of polynomials.

Theorem 6.5 (Hensel's lemma). Let f(X) be a polynomial in Zp. Suppose x0 ∈ Zp is such
that f(x0) ≡ 0 (mod p) but f ′(x0) 6≡ 0 (mod p). Consider the sequence de�ned by

xn+1 = xn −
f(xn)

f ′(xn)
.

Then (xn) converges to a root x ∈ Zp of f with x ≡ x0 (mod p).

Example. Consider the previous example f(X) = X7 +X5 +4X2 +4 for p = 5. Let us choose
a = 2, as we have seen that this is a solution modulo p. Then f ′(2) = 544 = 4+3 ·5+52+4 ·53
is not congruent to 0modulo p, therefore the theorem applies. Indeed, here are the �rst few
elements of the sequence:

x1 = 2 + 1 · 5 + 1 · 52 + 2 · 53 + 4 · 54 + 4 · 55 + 2 · 56 + 4 · 57 + 4 · 511 + 1 · 512 + · · ·
x2 = 2 + 1 · 5 + 2 · 52 + 1 · 53 + 2 · 54 + 4 · 55 + 4 · 56 + 2 · 57 + 1 · 58 + 3 · 510 + · · ·
x3 = 2 + 1 · 5 + 2 · 52 + 1 · 53 + 3 · 54 + 4 · 55 + 2 · 56 + 3 · 57 + 4 · 58 + 510 + 3 · 512 + · · ·
x4 = 2 + 1 · 5 + 2 · 52 + 1 · 53 + 3 · 54 + 4 · 55 + 2 · 56 + 3 · 57 + 3 · 59 + 2 · 510 + 2 · 511 + · · ·
x5 = 2 + 1 · 5 + 2 · 52 + 1 · 53 + 3 · 54 + 4 · 55 + 2 · 56 + 3 · 57 + 3 · 59 + 2 · 510 + 2 · 511 + · · ·
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In fact the number of correct digits of an will be equal to 2n as the precision doubles at each
step. (One can see this from the proof below).
If one starts with another x0 the sequence may converge to the other solution given above.
For instance for x = 1, although the condition is not satis�ed at the �rst step because f ′(1) ≡ 0
(mod 5). On the other hand we can certainly not start with x0 = 0 as f ′(0) = 0. With x0 = 25,
the series does not converge at all, it jumps around 5-adic numbers with ord5(xn) = −2:

x1 = 2 · 5−2 + 2 · 5−1 + 2 + 2 · 5 + 55 + · · ·
x2 = 5−2 + 4 · 5−1 + 2 + 3 · 5 + 2 · 53 + 2 · 55 + · · ·
x3 = 3 · 5−2 + 3 · 5−1 + 1 + 2 · 5 + 2 · 53 + 4 · 54 + 4 · 55 + · · ·
x4 = 4 · 5−2 + 3 · 5−1 + 4 · 5 + 3 · 53 + 3 · 54 + 55 + · · ·
x5 = 2 · 5−2 + 2 + 5 + 2 · 52 + 53 + 3 · 54 + 2 · 55 + · · ·
x6 = 5−2 + 3 · 5−1 + 4 + 5 + 4 · 52 + 2 · 53 + 4 · 54 + · · ·

For the proof of the theorem, we will use the following lemma. Note this is nothing else
but the Newton-Raphson method from numerical analysis, but of course translated to the
p-adic absolute value.

Lemma 6.6. Let f(X) be a polynomial in Zp[X] and let 0 < r 6 1. Suppose that a ∈ Zp

satis�es

|f(a)|p < r and f ′(a) 6= 0 and

∣∣∣∣∣ f(a)f ′(a)2

∣∣∣∣∣
p

< r.

Then b = a− f(a)
f ′(a) satis�es

|f(b)|p < r2 and

∣∣∣∣∣ f(b)f ′(b)2

∣∣∣∣∣
p

< r2.

Proof. By hypothesis δ = −f(a)/f ′(a) belongs to Zp. Expanding f(X + Y ) in Y , we get

f(X + Y ) = f(X) + f ′(X) · Y + g(X,Y ) · Y 2
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for some g(X,Y ) ∈ Zp[X,Y ]. Putting X = a and Y = δ and de�ning c = g
(
a, δ) ∈ Zp, we get

f(b) = f(a) + f ′(a) ·

(
− f(a)
f ′(a)

)
+ c

f(a)2

f ′(a)2

= c · f(a) · f(a)
f ′(a)2

and hence

|f(b)|p = |c|p · |f(a)|p ·

∣∣∣∣∣ f(a)f ′(a)2

∣∣∣∣∣
p

< 1 · r · r = r2.

Similar we have
f ′(X + Y ) = f ′(X) + h(X,Y ) · Y

with h(X,Y ) ∈ Zp[X,Y ] and setting c′ = h(a, δ) ∈ Zp gives

f ′(b) = f ′(a) + c′ ·

(
− f(a)
f ′(a)

)

= f ′(a) ·

(
1− c′ · f(a)

f ′(a)2

)

and so

|f ′(b)|p = |f ′(a)|p ·

∣∣∣∣∣1− c′ · f(a)f ′(a)2

∣∣∣∣∣
p

= |f ′(a)|p

because |c′|p · |f(a)/f ′(a)2|p < 1 · r 6 1. Finally, we get∣∣∣∣∣ f(b)f ′(b)2

∣∣∣∣∣
p

=
|c|p · |f(a)|2p
|f ′(a)|4p

< r2.

Proof of theorem ??. Apply the lemma to x0 with r between 1
p and 1. Then |f(x0)|p < r

because f(x0) ≡ 0 (mod p) and |f(x0)/f ′(x0)2|p < r because f ′(x0) 6≡ 0 (mod p). Hence
|f(x1)|p < r2.
Now, we apply repeatedly the previous lemma to xn. So |f(xn)|p < r2

n

shows that f(xn)
converges (quadratically) to 0. We only need to show now that xn forms a Cauchy sequence.
Note �rst that

|xn+1 − xn|p =

∣∣∣∣∣ f(xn)f ′(xn)

∣∣∣∣∣
p

=

∣∣∣∣∣ f(xn)f ′(xn)2

∣∣∣∣∣
p

· |f ′(xn)|p < r2
n

· 1 < rn

and so, for all m > n,

|xm−xn|p 6 |xm−xm−1|p+|xm−1−xm−2|p+· · ·+|xn+1−xn|p < rm−1+rm−2+· · ·+rn =
rm − rn

r − 1

which is arbitrary small as n→∞, because r < 1.

There are plenty of generalisations of Hensel's lemma. For instance one can not only detect
roots, i.e. linear factors, of polynomials, but also factorisations of polynomials. Further the
theory of Newton polygons provide a further tool to study p-adic polynomials (and power
series).
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6.7 Application of Hensel's lemma

Proposition 6.7. Let p be an odd prime. Then there is an element i ∈ Qp with i
2 = −1 if and

only if p ≡ 1 (mod 4).

Proof. If there is such an i ∈ Qp, then it belongs to Zp, because 0 = ordp(−1) = 2 ordp(i).
On the one hand, if p ≡ 3 (mod 4), then −1 is not a square modulo p. Hence there is no
solution to X2 + 1 = 0 modulo p and so there cannot be a p-adic solution either.
On the other hand, if p ≡ 1 (mod 4), then there is a x0 such that x0 is a solution to f(X) =
X2 + 1 = 0 modulo p. Since x0 6≡ 0 (mod 4), we have f ′(x0) 6≡ 0 (mod p). Hensel's lemma
guarantees the existence of a solution to f(X) = 0 in Zp.

Aside: If p ≡ 3 (mod 4), we could consider the p-adic Gaussian integers Zp[i]. This is indeed
very interesting. See the general theory of local �elds.

Example. For p = 5, the two solutions5 i and −i are given by

2 + 1 · 5 + 2 · 52 + 1 · 53 + 3 · 54 + 4 · 55 + 2 · 56 + 3 · 57 + 0 · 58 + 3 · 59 + · · ·
3 + 3 · 5 + 2 · 52 + 3 · 53 + 1 · 54 + 0 · 55 + 2 · 56 + 1 · 57 + 4 · 58 + 1 · 59 + · · ·

These are the two solutions of f(X) = X7+X5+4X2+4 that we have encountered already.
That is no surprise as f(X) = (X2 + 1)(X5 + 4).

Proposition 6.8. LetD be a non-zero integer and let p be an odd prime which does not divide
D. Then there exists a α ∈ Qp with α2 = D if and only if (Dp ) = +1.

The proof is as for the previous proposition. Typically we could denote α = ±
√
D.

Example. Since ( 13
101 ) = +1, there are two elements α = ±

√
13 in Q101 with α

2 = 13. First we
have to �nd solutions modulo p by running through all values. We �nd that 35 and 66 are
square roots of 13 modulo 101. Then Hensel's lemma helps us to �nd the further 101-adic
digits of

√
13:

66 + 54 · 101 + 47 · 1012 + 6 · 1013 + 33 · 1014 + 60 · 1015 + 41 · 1016 + · · ·
35 + 46 · 101 + 53 · 1012 + 94 · 1013 + 67 · 1014 + 40 · 1015 + 59 · 1016 + · · ·

Theorem 6.9. All p− 1-st roots of unity ζ, i.e. satisfying ζp−1 = 1, belong to Zp.

Proof. Consider f(X) = Xp−1 − 1. For each choice of x0 = 1, 2, . . . , p− 1, we �nd one ζ using
Hensel's lemma.

If p is odd, once can show conversely that these are all roots of unity in Qp.

Example. Here are the 6-th roots of unity in Z7:

1

2 + 4 · 7 + 6 · 72 + 3 · 73 + 2 · 75 + 6 · 76 + 2 · 77 + 4 · 78 + 3 · 79 + · · ·
3 + 4 · 7 + 6 · 72 + 3 · 73 + 2 · 75 + 6 · 76 + 2 · 77 + 4 · 78 + 3 · 79 + · · ·
4 + 2 · 7 + 3 · 73 + 6 · 74 + 4 · 75 + 4 · 77 + 2 · 78 + 3 · 79 + · · ·
5 + 2 · 7 + 3 · 73 + 6 · 74 + 4 · 75 + 4 · 77 + 2 · 78 + 3 · 79 + · · ·

−1 =6 + 6 · 7 + 6 · 72 + 6 · 73 + 6 · 74 + 6 · 75 + 6 · 76 + 6 · 77 + 6 · 78 + 6 · 79 + · · ·
5But we have no way of deciding \which is which". . .
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Theorem 6.10. Let n > 1 and suppose p is odd. If ζ is a p− 1-st root of unity congruent to a
primitive element modulo p, then g = ζ · (1 + p) mod pn is a primitive element modulo pn.

Proof. Take k > 0 with gk ≡ 1 (mod pn). Because 1 ≡ gk ≡ ζk (mod p) and ζ is a primitive
root modulo p, we must have that k is divisible by p − 1. Start the proof by induction on n
that pn−1 divides k with n = 1, which is clear. By induction k is divisible by pn−2. Now

1 ≡ gk = (1 + p)k = 1 + kp+

(
k

2

)
p2 +

(
k

3

)
p3 + · · ·+ pk (mod pn)

But for j > 2, the term
(
k
j

)
pj = k

j p
j
(
k−1
j−1
)
is divisible by pn. So kp ≡ 0 (mod pn) gives

pn−1 | k.

6.8 The Hasse principle

Let f(X1, X2, . . . , Xn) = 0 be a polynomial equation with coe�cients in Z. If we �nd an
integer m such that the equation has no solution modulo m, then there is no solution
(x1, x, . . . xn) with xi ∈ Z.
Suppose now, we have shown that, for all primes p, there is a solution with xi ∈ Zp. Then
there will be a solution modulo all integers m. Does this mean that there is a solution in Z ?
Not necessarily: The equation x2 + y2 + 5 z2 = −1 has a solution in Zp for all p. But since
there is no solution in R, there can not have a solution in integer either. Here is the �rst
positive result.

Theorem 6.11 (Hasse-Minkowski). Let f(X1, X2, . . . , Xn) =
∑

i6j aijXiXj be a quadratic form
with coe�cients aij ∈ Z. Suppose f has a solution in Zp for all p and a solution in R, then it
also has a solution Z.

See Serre's \Cours d'arithm�etique" for a proof. However, Selmer found that the equation
3x3 + 4y3 + 5z3 = 0 has a solution in R and Qp for all p, but none in Q. To prove that this
equation has no solution one has to do work hard. It won't su�ce to look modulo m.
To check that an equation has solutions in Zp for all primes p it is su�cient to �nd good
solutions modulo p for all p. For su�ciently large p this is automatic by a theorem by Dwork
(in the case of one equation) and Deligne (for systems of equations) on the so-called Weil
conjecture. So in a �nite number of computational steps one can determine if an equation
has solutions modulo all integers m > 1.


