
A Scalable Conflict-free Replicated Set Data Type

Andrei Deftu

1&1 Internet AG

andreideftu@gmail.com

Jan Griebsch

1&1 Internet AG

jan.griebsch@1und1.de

Abstract—Replication of state is the fundamental approach
to achieve scalability and availability. In order to maintain
or restore replica consistency under updates, some form of
synchronization is needed. Conflict-free Replicated Data Types
(CRDTs) ensure eventual consistency, such that replicas converge
to a common state, equivalent to a correct sequential execution
without foreground synchronization.

A particular CRDT is the set data type, which is a perva-
sive abstraction for storing collections of unique elements and
constitutes an important building block for other, more complex
data structures. Since the original specification is not scalable, we
improve it by introducing an efficient algorithm for sending deltas
of updates between replicas and by partitioning a set replica
into disjunctive subsets. We further add support for limited-
lifetime elements, which, in turn, enable simple garbage collection
strategies to address the problem of unbounded database growth.
Lastly, implementation details and evaluation results of a client
library for this data structure are presented.

Keywords-eventual consistency; data replication; distributed
systems

I. INTRODUCTION

The common denominator of current commercial Internet

services (“cloud”) is the promise and the demand to make data

available, from anywhere, at any time, with low latency. Now,

features like throughput, consistency, and fault-tolerance are

necessities, not optimizations, and are included in the design

of any modern distributed data system from the beginning.

One cannot accept delays in database requests of more than a

few hundred milliseconds or downtimes of even a few minutes.

The trend is clear: we need to process more data, quicker, and

without interruptions.
Replication of data has been the pattern to address fault-

tolerance on one hand, while providing the means for achiev-

ing higher scalability and performance on the other hand.

However, it introduces the problem of maintaining or restoring

replica consistency - understood here as replicas behaving

identically to requests - under concurrent updates and fail-

ures. CAP is a well known theorem [1] which states that

any distributed computer system cannot provide simultaneous

guarantees for the aforementioned requirements. The majority

of the current Internet services prefer availability and partition

tolerance, while accepting a weaker form of consistency. The

choice has the advantage of lower latencies for client requests

and higher scalability, but achieving consistency between

replicas still remains an open issue.
One attractive approach is to provide eventual consis-

tency [2], [3], which allows any replica to apply updates lo-

cally, while the operations are later sent asynchronously to all

the others. In this way, all replicas eventually apply all updates,

possibly even in a different order. With this weaker form

of consistency, considered acceptable for some applications,

data remains available when the network is partitioned. The

downside is that a complex background consensus algorithm

for reconciling conflicting updates is generally needed [4],

which makes current approaches ad-hoc and error-prone.

Amazon’s shopping cart constitutes a well-known example

in this sense [5]. Alternatively, several systems execute an

update immediately and later discover that it conflicts with

another [4]. So they roll-back to resolve the conflict.

Conflict-free Replicated Data Types (CRDTs) [6] were

designed specifically to solve this problem by employing a new

type of consistency, strong eventual consistency, as defined

in Section II. Replicas of CRDTs are proved to converge in

a self-stabilising manner without blocking client operations

and without having to deal with consensus, complex conflict

resolution, or roll-backs. However, this model imposes some

mathematical - and, in consequence, semantic - constraints,

that make it unsuited for some data structures or use-cases.

Composites of CRDTs yield the same properties, and thus

basic structures, e.g. counters, shared mutable variables or sets

can be used as building blocks in forming more complex ones,

like maps or graphs. For a practical use-case scenario, consider

how an event tracking mechanism can be implemented in order

to prevent attacks on an Internet service provider. Filters are

used to keep track and to limit the number of events allowed

for a given IP address or account, such as login attempts,

password changes, emails sent, and so on. A replicated counter

can store the number of login attempts from one IP address,

while a replicated set the corresponding unique passwords

tried. Since this case requires high throughput for writes of

runtime data and low latencies for reads, traditional synchro-

nization or conflict resolution are not acceptable. CRDTs are

very attractive, as all updates are persistent and can imme-

diately be applied locally at the source replica. Consistency

is achieved later, during a background asynchronous phase in

which all replicas eventually apply all updates. Furthermore,

the composability nature of CRDTs allows this use case to be

easily extended to a graph-like structure: store relations among

various events and entities, such as account, IP addresses,

aliases, and login attempts in order to better detect malicious

behaviour with heuristic algorithms. Another application of the

CRDTs is cooperative editing [7].

The focus of this paper is an extension of a particular

CRDT: the set data type as defined in [6]. Therein, the authors

2013 IEEE 33rd International Conference on Distributed Computing Systems

1063-6927/13 $26.00 © 2013 IEEE

DOI 10.1109/ICDCS.2013.10

12

2013 IEEE 33rd International Conference on Distributed Computing Systems

1063-6927/13 $26.00 © 2013 IEEE

DOI 10.1109/ICDCS.2013.10

186

2013 IEEE 33rd International Conference on Distributed Computing Systems

1063-6927/13 $26.00 © 2013 IEEE

DOI 10.1109/ICDCS.2013.10

186

define two functionally equivalent synchronizations variants:

The operations-based synchronization distributes and merges

update operations among different replicas, while the state-
based synchronization does the same with complete replica

state(s). Our paper makes the following contributions:

• An improvement to the set type is provided which trans-

mits only incremental state deltas.

• Acknowledging the fact that large data structures cannot

be efficiently stored on just one machine, a partitioning

scheme is often desired. Sets of elements fit well in this

category of structures, being easily partitioned in several

disjunctive subsets and distributed across a cluster of

machines. This solves both the problem of data growth

by achieving higher scalability and the problem of per-

formance bottleneck by sharing the load. Thus, a second

contribution is an extension to the set specification to

support per-replica partitioning capability, or sharding.

• CRDTs usually lead to an increase in database size with

each update operation. Also, we want to add a feature for

limited-lifetime elements: discarding elements older than

a given time value. We discuss an asynchronous garbage

collection mechanism which solves both these issues.

• Finally, these concepts are put into practice through the

implementation and evaluation of a client library.

II. CONFLICT-FREE REPLICATED DATA TYPES

Achieving consistency is one of the hardest problems in

distributed systems. What we ideally want to have is replicas

which are strongly consistent, in the sense that any update

happening at one replica is made instantaneously visible at all

the others. Since this approach implies synchronization after

each update operation, essentially leading to a serial execution,

it is rarely used in practice. Eventual consistency [2], [3] is

a weaker form that moves the synchronization phase out of

the critical path, to the background. In this way, updates can

always be made locally, even if the network is partitioned.

However, it still requires conflict arbitration techniques, such

as a consensus algorithm or roll-backs [4].

Conflict-free Replicated Data Types (CRDTs) introduce the

concept of Strong Eventual Consistency (SEC) [6]. The idea

is to design data structures, such that all updates have a

deterministic outcome and thus they can be made immediately

persistent. In this way, conflicts are altogether avoided and a

consensus or roll-backs are not longer necessary. There are

two styles for defining CRDTs.

State-based replication. In this approach, each update

operation is executed entirely at the source replica, modifying

its state. Subsequently, every replica occasionally sends its

local state to some other replica, which merges it into its own

state. Convergence is achieved by eventually delivering every

update directly or indirectly to all replicas. There are well

known protocols in the literature that do this in a fault-tolerant

manner, such as gossip or anti-entropy [8], [9].

State-based style uses the concept of semilattice defined

next. A partially ordered set is the pair consisting in a set

together with a binary relation � which establishes an order

between the elements of the set. A least upper bound (LUB)

� is defined as follows: for any elements x, y from the set,

m = x� y is LUB of {x, y} if and only if x � m and y � m
and there is no other m′ � m such that x � m′ and y � m′.
From this definition, it follows that a LUB is: i) commutative:

x � y = y � x, ii) idempotent: x � x = x, iii) associative:

(x� y)� z = x� (y � z). A partially ordered set which has a

LUB is called a join-semilattice [10] (or just semilattice from

now on). An example of semilattice is (2{x,y,z},⊆), where

2{x,y,z} is the power set of {x, y, z} and the LUB is given by

set-union.

In order to be SEC, a state-based object, also called a

Convergent CRDT (CvRDT), needs to fullfill the following

conditions:

• Its payload takes values in a semilattice (S,�).
• Updates monotonically increase the states according to

�.

• The merge operation computes the LUB between the local

and remote states.

An example of state-based object can be one whose payload

is an integer value, � is common the integer order ≤, and

where merge()
def
= max().

Operation-based (op-based) replication. Here, the system

transmits only update operations across replicas, and not whole

states. Applying an update is split in two phases. The first

one, called prepare-update, has no side-effects and its role

is to compute some intermediary results. When it termi-

nates, the system sends the update operation, its parameters,

and possible intermediary results from the first phase to all

replicas, including the source. Here, in the second phase,

called downstream or effect-update, the operation is executed

immediately at source and asynchronously at all other replicas

if a downstream precondition is met1. This second phase

cannot return results and has to execute atomically.

An update u is said to happen-before an update u′ at some

replica, denoted by u → u′, if u has been applied when u′

executes. Two updates are concurrent if no one happens before

the other: u ‖ u′ ⇐⇒ u
→ u′ ∧ u′
→ u. The conditions

for an op-based object, or a Commutative CRDT (CmRDT),

to achieve SEC are:

• Related updates by happened-before, u → u′, are applied

in the same order at all replicas: first u and then u′.
• Concurrent operations, u ‖ u′, commute: executing u

immediately followed by u′ leads to the same state as

executing u′ immediately followed by u. Concurrent

operations may be delivered in any order.

There are common epidemic protocols, such as Bayou’s

anti-entropy [9], which guarantee this causal ordering for

updates delivery.

Interestingly, these two replication styles are equivalent [6]:

any data type that can be implemented as a state-based object

can also be implemented as an op-based object and vice versa.

However, there are trade-offs which should be considered

1An example of such precondition could be to allow the removal of an
element from a replicated set only if it is present in the set at source.

13187187

Specification 1 G-Set (state-based)

1: payload A = ∅
2: update add(e)
3: A := A ∪ {e}
4: query lookup(e) : boolean
5: return e ∈ A
6: compare (S, T) : boolean
7: return S.A ⊆ T.A
8: merge (S, T) : payload
9: return S.A ∪ T.A

Specification 2 2P-Set (state-based)

1: payload A = ∅, R = ∅
2: update add(e)
3: A := A ∪ {e}
4: update remove(e)
5: pre lookup(e)
6: R := R ∪ {e}
7: query lookup(e) : boolean
8: return e ∈ A ∧ e �∈ R
9: compare (S, T) : boolean

10: return S.A ⊆ T.A ∨ S.R ⊆ T.R
11: merge (S, T) : payload
12: let U.A = S.A ∪ T.A
13: let U.R = S.R ∪ T.R
14: return U

for each approach. State-based objects have the advantage of

being simpler to reason about, given that all the information is

captured by their state. Moreover, because this state is trans-

mitted as part of the merge procedure between two replicas,

updates may be lost along the way, applied multiple times, or

in different orders. This also constitutes a disadvantage since

sending whole states is an expensive network operation for

large objects. On the other hand, op-based objects are more

complex to specify since we need to reason about history and

to deliver the updates in a causal-consistent manner according

to happens-before. This puts pressure on the communication

channel which has to be reliable and has to guarantee the same

order of message delivery to all replicas. The advantage comes

in the form of a greater expressive power for type specification,

e.g. there is no merge method which has to compute a LUB,

and smaller payloads.

Examples of current CRDT implementations [11] include:

a) replicated counters: G-Counter, PN-Counter, Non-negative,

b) registers, or mutable shared variables: LWW-Register, MV-

Register, c) sets: G-Set, 2P-Set, U-set, PN-Set, OR-Set, d)

graphs: 2P2P-Graph, Add-only monotonic DAG.

III. EXISTING REPLICATED SET DESIGNS

The set data type is a pervasive abstraction, used either

directly or as a building block in more complex types, such

as maps or graphs. The supported update operations are add
and remove which add and, respectively, remove an element

to and from the set. These operations do not commute and,

therefore, a CRDT set will be only an approximation to the

sequential specification of a set. Many designs for replicated

sets have been proposed [11] and they mainly differ in which

Specification 3 OR-Set (op-based)

1: payload S = ∅
2: query lookup(e) : boolean
3: return ∃u : (e, u) ∈ S
4: update add(e)
5: prepare(e) : tag
6: let α = unique()
7: return α
8: effect(e, α)
9: S := S ∪ {(e, α)}

10: update remove(e)
11: prepare(e) : set
12: pre lookup(e)
13: let R = {(e, u) | ∃u : (e, u) ∈ S}
14: return R
15: effect(R)
16: pre ∀(e, u) ∈ R : add(e, u) has been delivered
17: S := S \R

Specification 4 OR-Set (state-based)

1: payload A = ∅, R = ∅
2: query lookup(e) : boolean
3: return ∃α : (e, α) ∈ A ∧ �β : (a, α, β) ∈ R
4: update add(e)
5: let α = unique()
6: A := A ∪ {(e, α)}
7: update remove(e)
8: pre lookup(e)
9: let β = unique()

10: R := R ∪ {(e, α, β)|∃(e, α) ∈ A}
11: compare (S, T) : boolean
12: return S.A ⊆ T.A ∧ S.R ⊆ T.R
13: merge (S, T) : payload
14: let U.A = S.A ∪ T.A
15: let U.R = S.R ∪ T.R
16: return U

operation takes precedence in a add(e) ‖ remove(e) situation.

In this section we give examples of some specifications and

argue that the OR-Set does not present any anomaly as the

others do, which could lead to a counter-intuitive behavior.

G-Set. The most basic CRDT implementation of a set,

Grow-Only Set, allows for add and lookup operations. Both

state-based and op-based versions have a set as payload. To

prove that this is a CmRDT it is easy to see that add(e) is

commutative, being based on a set-union operation between

the payload and {e}. In the state-based approach, as shown in

Specification 1, the partial order on states S and T is given

by S � T ⇐⇒ S ⊆ T . Then, the merge operation defined

as merge(S, T) = S ∪ T computes the LUB in the monotonic

semilattice (S,�). And so, G-Set is also a CvRDT2.

2P-Set. A Two-Phase Set brings the option to remove an

element. However, once an element has been removed, it

cannot be added again to the set. The principle is to use two

G-Sets, one for adding and another for removing (also known

as tombstone set). Removing an element is conditioned by

being present in the set at source. The state-based variant is

shown in Specification 2. The payload consists of set A for

2For proofs on the rest of the constructs, the reader is referred to [11].

14188188

adding and set R for removing. Adding or removing the same

element twice or adding an already removed element has no

effect.

U-Set. If we guarantee that each element in the set is

unique and that an add(e) is delivered before remove(e),
the tombstone set becomes redundant and can be discarded

because the causal delivery criteria is met. This new data

structure is called U-Set.
PN-Set. An alternative solution is to associate with each

element a CRDT counter (initially set to 0) which is increased

when the element is added to the set and decreased when it is

removed. If the counter is negative, it means that the element

is not in the set, and add operation will not have any effect.

Thus a PN-Set has the anomaly that after adding a previously

removed element to an empty set, it remains empty. This may

not always be the intended semantics, despite the fact that PN-

Set converges: it combines two CRDTs, a set and a counter.

OR-Set. The previously described set structures, although

practical, have counter-intuitive behaviors. For example, the

2P-Set does not allow adding an element after it has been

removed, while the PN-Set has the problem showed above.

The Observed-Removed Set, introduced in [11], is closer to the

usual set semantics. The new approach is to uniquely tag each

added element. When removing an element, only associated

tags observed at the source are removed.

Specification 3 describes the usual supported operations for

the op-based variant. The payload is a set of pairs (e, tag).
Method add(e) generates a new unique tag at source in the

prepare-update phase and then sends it to all replicas which

insert it into their payload in the effect-update phase. In this

way, two additions of the same element are distinguished by

their tags, but lookup masks the duplicates. Method remove(e)
gathers all tags associated with e at source and sends them to

all replicas which remove the corresponding pairs from their

local payloads. Because a remove(e) will only remove locally

observed elements, a concurrent add(e) ‖ remove(e) will give

precedence to add(e), in contrast to the 2P-Set.

The state-based approach is presented in Specification 4.

Here the payload contains two sets, A for added elements and

R for removed elements. When adding an element e, like in

the op-based approach, a new unique tag α is generated and

the pair (e, α) is inserted into the A set. The remove operation

again generates a unique tag β, associates it with all matching

pairs from A, and stores the result in the R set. To test if an

element is in the OR-Set, we just need to verify if it is in A
and not in R.

IV. A DELTA-BASED SYNCHRONIZATION ALGORITHM

As seen in Section III, there are different ways of con-

structing a CRDT set data structure. OR-Sets are very intuitive

and do not suffer from the semantics anomalies encountered

in the other set specifications. Our goal is therefore to have

the robustness of state-based OR-Set corroborated with the

transfer efficiency of the op-based one. This section introduces

our first contribution: improvement to the state-based OR-Set

specification to transfer only deltas between replicas instead

Specification 5 OR-Set with delta-based synchronization

1: payload A = ∅, R = ∅, T = []
2: query lookup(e) : boolean
3: return ∃(e, t, r) ∈ A ∧ �(e, t, r, t′, r′) ∈ R
4: update add(e)
5: let r = replica()
6: let t = T [r] + 1
7: A := A ∪ {(e, t, r)}
8: T [r] := t
9: update remove(e)

10: pre lookup(e)
11: let r′ = replica()
12: let t′ = T [r′] + 1
13: R := R ∪ {(e, t, r, t′, r′) | ∃(e, t, r) ∈ A}
14: T [r′] := t′

15: compare (S1, S2) : boolean
16: return S1.A ⊆ S2.A∧S1.R ⊆ S2.R∧S1.T [i] ≤ S2.T [i], ∀i
17: merge (S1, S2) : payload
18: let A′ = {(e, t, r) ∈ S2.A | S1.T [r] < t}
19: let R′ = {(e, t, r, t′, r′) ∈ S2.R | S1.T [r

′] < t′}
20: let P.A = S1.A ∪A′

21: let P.R = S1.R ∪R′

22: let P.T = max(S1.T, S2.T)
23: return P

of full states, called delta-based synchronization (merging)

algorithm3, in Specification 5.

In addition to the original OR-Set, the payload now has

also a timestamp vector T which has as many components as

there are replicas and for which T [r] records the latest known

version of replica r. For this purpose, it is assumed that each

replica has a unique identifier that can be retrieved through

the function replica and that T can be indexed with this

identifier. Adding a new element e at replica r increments the

corresponding component T [r] to obtain t and inserts the tuple

(e, t, r) into set A. Compared to the basic OR-Set, the change

was essentially to split the tag which uniquely identified each

element into the pair (t, r). In this way, the elements still

remain tagged, but now we also have the information about the

partial order of updates occurring at each replica, i.e. we know

that tuple (e, t, r) was added before tuple (e′, t′, r) at replica

r if t < t′. Removing an element uses the same principle.

Being an OR-Set data type, only locally observed elements

at the source are removed. The logical clock corresponding

to the replica is increased again to keep track of this update.

Looking up an element e in the set translates to verifying

if there is an added tuple containing e and does not exist a

corresponding remove tuple. In order to merge, we first send T
to the other side, compute here the missing updates in A′ and

R′, i.e. tuples whose timestamps are greater than the logical

clock, send them back together with the remote T , and finally

append the updates and update the local timestamps.

Therefore, T acts as a version vector [12], which guarantees

the partial order between updates. Also, due to the transitivity

property of the version vectors, each merge(S1, S2) includes

3Synchronization here has the meaning of updates propagation between
replicas, and not that of a consensus required in the case of strong consistency
model.

15189189

not only the updates originated at S2 but also those from S3

which were pulled by S2 but not by S1. One limitation of this

approach is that indexing T requires a static mapping from a

global replica identifier to an integer. Dynamic version vector

maintenance using interval tree clocks [13] may alleviate this

problem however.

Delta-based synchronization maintains the CRDT proper-
ties: We consider the partial order (S,�), where � is given by

the compare method in the specification. Both add and remove
methods add elements to the payload and increment T and

therefore advance the state in the partial order. Furthermore,

for any two sets X and Y , it is known that the following holds:

X∪Y = X∪(Y \X). So merge basically computes the union

of the added and, respectively, removed sets using the right-

hand side formula and the maximum of the two timestamp

vectors. Hence we have merge(S1, S2) = S1 � S2 (LUB).

V. SHARDING

The next improvement to the OR-Set is partitioning, or

sharding, a replica into many disjunctive subsets which can be

stored individually on different machines. Each replicated set

can reside in a cluster, as illustrated in Fig. 1. Here Replica 1

is sharded in 3 subsets, Replica 2 is sharded in 2 subsets, while

Replica 3 is stored entirely on one machine. This OR-Set data

type where each replica set is sharded into subsets will be

referred to as Sharded OR-Set (SOR-Set).
In order to coordinate incoming requests for each of the

replicated set, a client entity should be used to forward the

add(e), remove(e), and lookup(e) operations to the corre-

sponding subset. For this purpose, the client can employ any

partitioning function, such as a hash function with uniform

distribution, which maps each element e to a shard. The client

is also responsible for initiating the merge operation between

two clusters to pull the updates from all shards in the remote

cluster and distribute them according to the same hash function

to the shards in the local cluster.

Specification 6 synthesizes the usual state-based operations.

Each replica i of the set is stored in a replica cluster rci. Inside

the cluster rci, the set is partitioned into |rci| subsets, called

replica shards rsji . Therefore, any shard is uniquely identified

by the pair of identifiers (rc, rs). Based on this observation,

instead of using a timestamp vector to keep track of the latest

versions for the replicas as in the previous section, a vector of

timestamp vectors T is used. T has as many components as

there are clusters, while T [rci] has |rci| components, one for

each shard. Like before, each cell T [rc][rs] stores the latest

version of the logical clock of the shard (rc, rs). Since when

�
��

�� ��

�
��

��

��

Fig. 1: Sharding of OR-Sets

Specification 6 SOR-Set with delta-based synchronization

1: payload Aj
i = ∅, Rj

i = ∅, T j
i = [][], ∀j ∈ {1, . . . , |rci|}

2: � rci - Replica cluster i; rsji - Replica shard j of rci
3: query lookupi(e) : boolean
4: let j = hashi(e)
5: return ∃(e, t, rc, rs) ∈ Aj

i ∧�(e, t, rc, rs, t′, rc′, rs′) ∈ Rj
i

6: update addi(e)
7: let j = hashi(e)
8: let rc = rci
9: let rs = rsji

10: let t = T j
i [rc][rs] + 1

11: Aj
i := Aj

i ∪ {(e, t, rc, rs)}
12: T j

i [rc][rs] := t
13: update removei(e)
14: pre lookupi(e)
15: let j = hashi(e)
16: let rc′ = rci
17: let rs′ = rsji
18: let t′ = T j

i [rc
′][rs′] + 1

19: Rj
i := Rj

i ∪ {(e, t, rc, rs, t′, rc′, rs′) | ∃(e, t, rc, rs) ∈ Aj
i}

20: T j
i [rc

′][rs′] := t′

21: compare (rcx, rcy) : boolean
22: let T̃x = version(rcx)
23: let T̃y = version(rcy)
24: return (

⋃
j A

j
x ⊆

⋃
k A

k
y)∧(

⋃
j R

j
x ⊆

⋃
k R

k
y)∧(T̃x ≤ T̃y)

25: ∀j ∈ {1, . . . , |rcx|}; ∀k ∈ {1, . . . , |rcy|}
26: merge (rcx, rcy) : payload
27: let T̃x = version(rcx)
28: let T̃y = version(rcy)
29: ∀j ∈ {1, . . . , |rcy|}
30: let A′ = {(e, t, rc, rs) ∈ Aj

y | T̃x[rc][rs] < t}
31: let R′ = {(e, t, rc, rs, t′, rc′, rs′) ∈ Rj

y

| T̃x[rc
′][rs′] < t′}

32: ∀j ∈ {1, . . . , |rcx|}
33: let Z.Aj

x = Aj
x ∪ {(e, t, rc, rs) ∈ A′ | j = hashx(e)}

34: let Z.Rj
x = Rj

x ∪ {(e, t, rc, rs, t′, rc′, rs′) ∈ R′

| j = hashx(e)}
35: let Z.T j

x = max(T j
x , T̃y)

36: return Z

adding or removing an element from the source replica, it

will be added or, respectively, removed from only one shard

(rc, rs), i.e. the one computed by the hash function, each

update can be uniquely tagged with the tuple (t, rc, rs), where

t is the timestamp generated at (rc, rs).

Returning to the specification, the payload is also dis-

tributed: Aj
i , Rj

i , and T j
i are, respectively, the set of added

and removed elements and the vector of timestamps for shard

rsji . The set operations follow the same principle as before.

Merging the state of a remote replica from cluster rcy into

the local state in cluster rcx is also similar. We just need to

compute a minimum version T̃x first for the whole cluster by

combining the information from all T j
x using version(rcx):

T̃x[rc][rs] =

{
max(

⋃
j∈{1,...,|rcx|} T

j
x [rc][rs]) if rc = rcx,

min(
⋃

j∈{1,...,|rcx|} T
j
x [rc][rs]) otherwise

∀rc = rci, i ∈ {1, . . . , N}; ∀rs = rsji , j ∈ {1, . . . , |rci|}.
We set the minimum from all T j

x component-wise, except

16190190

for T̃x[rcx], where we choose the maximum instead since each

shard in rcx increments its own counter only. We do the same

for cluster rcy .

Some important observations are worth mentioning. First,

the merge operation remains unobtrusive like for all CRDTs:

clients can issue requests to the set while the operation

progresses in the background. Since the minimum version

T̃y is computed first, the remote cluster rcy can meanwhile

process any subsequent updates. They will be pulled with

the next merge. Analogously, because at the end each T j
x is

updated to the maximum between the current one and the

remote one component-wise, the local cluster can in this time

process any incoming client requests. Therefore, both sets can

be updated while the synchronization takes place.

Second, this algorithm is resilient to shard failures in both

local and remote clusters. An unreachable shard in the local

cluster leads to a potential bigger T̃x except for T̃x[rcx]. This

means that not all updates will be fetched. As soon as the

failed shard restores, its lagging timestamp will lead to a

smaller T̃x and the next merge will thus include the missing

updates plus some of the already fetched ones. For the remote

cluster, an unreachable shard has the same consequence:

T j
x := max(T j

x , T̃y) will set smaller values in T j
x [rcy] and

missed updates will be fetched with the next merge after the

shard restores. Optionally, a master-slave replication scheme

can be used to ensure fault-tolerance for any shard.

Sharding maintains the CRDT properties: Consider

a replica state as si = (Ai, Ri, T̃i), where Ai =⋃
j∈{1,...,|rci|} A

j
i and Ri =

⋃
j∈{1,...,|rci|} R

j
i . Thus, a set

is characterized by the contributions of all its subsets. The

partial order is then (S,�), ∀si ∈ S and � given by compare
method. Update operations add and remove advance the state

in the partial order as they both add elements to the set and

increase T̃ . Merge computes the set union between Ax and

Ay and between Rx and Ry , respectively. Also, because each

T j
x is updated with the maximum between T j

x and T̃y , the

newly obtained T̃x will be the maximum between T̃x and T̃y .

Therefore merge computes the LUB.

VI. GARBAGE COLLECTION

As seen in Specification 6, update procedures add tuples

to either A or R sets, which lead to an increase of database

in size. If we want to always have a complete history for a

replica, then the behavior may conform to these requirements.

However, due to space constraints, this assumption is usually

not practical. Hence, this section introduces an automatic

garbage collection mechanism for removing, or expiring, tu-

ples from these sets after a specified time interval. To this

extent, elements are considered to have limited lifetime in the

store, setting that can be decided on a case-by-case basis. For

example, if the set tracks statistics about IP addresses used for

logging into a user account, we may not be interested in IPs

older than one month.

Any (e, t, rc, rs) ∈ A in the SOR-Set will be referred to

as an ADD(e) tuple and any (e, t, rc, rs, t′, rc′, rs′) ∈ R as

an RMV(e) tuple. These tuples are generated either when the

client calls add and remove methods, or through the syn-

chronization process. Lookup semantics states that lookup(e)
should return true if e is in the SOR-Set and false otherwise.

The following theorem on tuples expiration can now be

formulated.

Theorem (Tuples expiration). If, at any given shard, the
tuples corresponding to any element e, ADD(e) and RMV(e),
are expired in the same order in which they were originally
inserted, then the lookup semantics are preserved.

Proof: Let us first consider update operations occurring

at one replica with no synchronization taking place. There

are two cases: i) ADD(e) → RMV (e), meaning ADD(e)
is inserted before RMV(e). The expected return value for

lookup(e) after these operations are executed is evidently false.

If ADD(e) expires first and RMV(e) expires later, then the

semantics does not change. If, however, expiration occurs in

reverse order, there will be a time window when ADD(e) is

present, but RMV(e) not. In this interval, a lookup(e) call

will return true, which will change the expected semantics. ii)

RMV (e) → ADD(e). The proof follows the same rationale.

Consider now the situation when tuples propagate from one

shard to another. Again there are two cases: i) ADD(e) �
RMV (e), which symbolizes that ADD(e) was originally in-

serted at one shard, fetched through replica synchronization

and then a RMV(e) was inserted locally. As soon as the remote

ADD(e) is inserted in the local set, this case reduces to the cor-

responding sequential one from before: ADD(e) → RMV (e)
and both tuples should be expired in the same order in which

were originally inserted. If the RMV(e) is inserted before

ADD(e) reaches the local shard, these updates are concurrent

and ADD(e) wins: lookup(e) will return true as long as

the ADD(e) is not expired, which is what we expect. ii)

RMV (e) � ADD(e). Similarly, the case reduces to the

sequential RMV (e) → ADD(e).
The following changes could be made to the SOR-Set

specification in order to include an automatic, asynchronous

garbage collection while maintaining the lookup semantics.

We associate a time-to-live (TTL) value with each tuple when

it is inserted into the corresponding set through an add or

remove. This value represents the time interval from the

moment it was inserted after which the tuple will expire. In

this way, tuples older than a specified period are considered

to be no longer relevant and can be safely discarded. Data

stores such as Redis [14] or Cassandra [15] offer support for

setting TTL attributes to records and automatic removal for

expired ones. Otherwise, a simple periodic scan-and-remove

process on the database can be used. To ensure that tuples

Fig. 2: Preserving TTL on updates propagation

17191191

corresponding to e expire in the order in which they were

added, first, it is sufficient to stamp them with the same value

TTL(e). Tuples corresponding to different values may be

stamped with different TTLs. Second, as shown in Fig. 2,

when copying the tuples to other shards, their remaining TTL

should be preserved, i.e. the current TTL at the remote replica

is transferred together with the tuple to the local replica. By

doing this, tuples will expire at the local replica in the same

order as they do at the remote one.

We note that it is not a requirement for having the same

physical clock speed on all machines or for having their

clocks periodically synchronized. What is needed is only a

partial order on the tuples expiration as stated by the above

theorem. Preserving the TTLs for tuples when propagating

them across different shards evidently does not imply that there

is a global time point when all copies of one tuple are expired

simultaneously. In fact, copies of the tuples in local cluster

will expire shortly after the original ones in remote cluster

have expired. However, this does not invalidate the lookup

semantics according to the tuples expiration theorem.

Garbage collection maintains the CRDT properties: We

consider first the case when no sharding is used. A new partial

order can be defined by the relation S1 � S2 ⇐⇒ S1 ⊆
S2 ∨ S1 ≡ (S1 ∩ S2). The first term holds when no tuples

are expired and thus either add or remove operation increases

the corresponding set like before. If by the time we apply any

operation, some tuples are expired from S1, then the states

containing old non-expired tuples from before and after the

update are considered equivalent, i.e. any lookup(e) method

on either S1 or S1 ∩ S2 returns the same result. It is easy to

see that, relative to �, the updates always advance the states in

the partial order. Taking sharding into account, we can simply

consider the union of all A and, respectively, R sets in one

cluster as in Specification 6: Si =
⋃

∀j∈{1,...,|rci|} S
j
i , where

S is A or R. From this point, the proof follows the same

rationale as for the SOR-Set.

VII. LIBRARY IMPLEMENTATION

To test these concepts, we implemented a Java client library

for the SOR-Set which can connect to any replica cluster and

provide access to the usual set operations: adding, removing,

looking up an element, or synchronizing with other replica

clusters.

For the database server we used Redis [14], a widely used,

open-source, in-memory, key-value store. Redis data model

is a dictionary that maps keys to values. The keys can be

only strings, while values can be strings, lists, sets, sorted

sets, or hashes. Important Redis features include persistence,

replication, transactions, pipelining, and Lua scripting. In

addition, it has support for associating timeouts with keys:

after the timeout has expired, the key is automatically deleted.

Our client communicates with Redis via the Jedis library [16].

The payload for each shard is stored in a separate Re-

dis database, or store, using the schema from Listing 1,

where underlined words represent hard-coded strings and non-

underlined ones are to be replaced with their corresponding

Listing 1 Redis database schema for a SOR-Set shard

1: timestamp:rc:rs → t � Integer string

2: element:rc.rs.id → value→ e
→ add.t→ t
→ add.rc→ rc
→ add.rs→ rs

→ rmv.t→ t′

→ rmv.rc→ rc′

→ rmv.rs→ rs′

� Hash

3: index:rc:rs → [t:rc.rs.id] � List
4: ids:e → rc.rs.id � Set
5: element:next.id → id � Integer string

values.

Each cell of the vector of timestamps, T [rc][rs], is stored at

key timestamp:rc:rs. Instead of using different sets for added

and removed tuples, we combine and store them together

as elements. An element contains: i) the string value e, ii)

information about a adding: timestamp t and ids for the source

replica cluster and shard, (rc, rs), iii) similar information for

removing: t′, rc′, rs′. Each element is stored in the hash at key

element:rc.rs.id, where rc.rs.id represents a global unique

id: rc and rs are the ids which uniquely identifies the source

shard and id is a per-shard counter stored at element:next.id

key which is incremented with each new element insertion.

In Specification 6 of the SOR-Set, the merge method filters

all tuples added or removed after a given timestamp. For this

purpose, an index is kept as a list of element ids sorted by

their timestamp. With each add or remove of an element at

shard (rc, rs), its id is appended to the list index:rc:rs. Since

the index is kept per shard and timestamps at each shard

are monotonically increasing (adding and removing always

increases the local timestamp), index:rc:rs is guaranteed to be

always sorted. Thus, filtering new elements is very efficient.

Adding the same value e multiple times to the set creates a

new element for each operation. A second index stored at ids:e
keeps all the element ids corresponding to value e, needed for

remove(e) and lookup(e) methods.

Add. Listing 2 gives the pseudocode for add operation.

First, the logical clock of the shard and the local id counter

are incremented. incr is an internal Redis command which

increments the number stored at the specified key by one4.

Next, a hash is created to store the new element and its

expiration time is set. Last two lines update the two indices

previously discussed.

Remove. The remove method is described in Listing 3.

Again, removing an element e from an SOR-Set consists in

getting all ADD(e) tuples and tagging them as removed.

Thus, on line 3 all element ids for value e are retrieved

using index ids:e. For each element stored at element:gid, if

it is not yet expired, i.e. the key still exists in the database,

the corresponding fields are populated. Finally, the procedure

updates the expiration period of the element and pushes the

4The rest of Redis commands will not be described as their usage will be
easily deduced from the context.

18192192

Listing 2 Redis SOR-Set: add
1: procedure ADD(e, rc, rs, ttl)
2: t ← incr timestamp:rc:rs
3: id ← incr element:next.id
4: hmset element:rc.rs.id value e

add.t t
add.rc rc
add.rs rs

5: expire element:rc.rs.id ttl
6: lpush index:rc:rs t:rc.rs.id
7: sadd ids:e rc.rs.id

Listing 3 Redis SOR-Set: remove

1: procedure REMOVE(e, rc′, rs′, ttl)
2: t′ ← incr timestamp:rc′:rs′

3: ids ← smembers ids:e
4: for all gid in ids do
5: if exists element:gid then
6: hmset element:gid rmv.t t′

rmv.rc rc′

rmv.rs rs′

7: expire element:gid ttl
8: lpush index:rc′:rs′ t′:gid

new timestamp together with the id to the index list. After

removal, the new timestamp t′ will be ahead of the old one, t,
in this list, which the expected behavior: the remove happened

after the add.

Lookup. The lookup method searches for the existence

of at least one ADD(e) tuple for which there is no cor-

responding RMV (e). If there is such tuple, then element

e is in the set. This is exactly what Listing 4 does. First,

ids for all elements e are retrieved. Next, for each element

(e, t1, rc1, rs1, t
′
1, rc

′
1, rs

′
1), if it is an ADD(e) tuple (t′1 =

null, its removed timestamp is not set) and does not exist any

corresponding RMV (e) tuple (e, t2, rc2, rs2, t
′
2, rc

′
2, rs

′
2),

such that (t1, rc1, rs1) = (t2, rc2, rs2) and t′2
= null, then

true is returned.

Procedures ADD, REMOVE, and LOOKUP execute atomically

and in isolation with other Redis commands on the store.

Merge. The code for last method is given in Listing 5.

For lack of space we present only the main subroutines.

On lines 2 and 3 we compute the minimum versions for

both the local and the remote clusters using the formula

explained in Section V. Based on the local version T̃x,

GETUPDATES fetches the updates from remote cluster rcy .

This is done in 2 steps: first it gets the ids of the updates

using index:rc:rs and then it retrieves the actual elements.

ADDUPDATES distributes these elements to the stores in the

local cluster according to hashx function. Adding an update

element to the store is an operation similar to add, except that

the logical clock is not incremented and the TTLs are the ones

retrieved before. Setting the logical clocks is done at the end in

the UPDATETIMESTAMPS subroutine according to the formula

T j
x := max(T j

x , T̃y), ∀j ∈ {1, . . . , |rcx|}.

Listing 4 Redis SOR-Set: lookup
1: function LOOKUP(e)
2: ids ← smembers ids:e
3: for all gid1 in ids do
4: if exists element:gid1 then
5: (t1, rc1, rs1, t′1) ←

hmget element:gid1 add.t add.rc add.rs rmv.t
6: if t′1 = null then
7: lookup← true
8: for all gid2 in ids do
9: if exists element:gid2 then

10: (, t2, rc2, rs2, t′2, rc′2, rs′2) ←
hgetall element:gid2

11: if (t1, rc1, rs1) = (t2, rc2, rs2) and
t′2 �= null then

12: lookup← false
13: break
14: if lookup = true then
15: return true
16: return false

Listing 5 Redis SOR-Set: merge
1: procedure MERGE(rcx, rcy)
2: T̃x ← VERSION(rcx)
3: T̃y ← VERSION(rcy)
4: updates ← GETUPDATES(rcy , T̃x)
5: ADDUPDATES(rcx, hashx, updates)
6: UPDATETIMESTAMPS(rcx, T̃y)

VIII. EVALUATION

This section presents the results obtained for evaluating the

SOR-Set client library. The test systems are equipped with

Intel Xeon E5520 dual quad core CPUs with HyperThreading

support running at 2.27GHz and with 24GB of RAM, intercon-

nected through 1Gbps network interfaces. For the datastore,

Redis version 2.6.0-rc6 is used.

The purpose of the first benchmark is to measure how the

average time needed to merge two replicated sets changes

as the database size increases. Test configuration includes

16 Redis instances running on one machine representing

Replica A, each instance storing one shard of the set. For

Replica B another machine with identical configuration is

used. The client library is deployed on a third machine. The

methodology for measuring is: add 1 million 32-byte uniform

randomly generated elements to Replica A, measure the time

for merging into Replica B using a pool of 16 threads, and

then repeat the process.

Results are presented in Fig. 3. Here are also included the

average timings for each subroutine of the merge procedure

described in Listing 5 relevant to these measurements: getting

the element ids, fetching the actual elements from the remote

cluster, and adding the elements to the local cluster. The

first observation is that delta-based synchronization algorithm

scales well with the database size, showing a synchronization

cost which is constant per update and per million set elements.

Since the number of updates between each merge operation

is constant, the timings are also relatively constant. Thus, the

19193193

��

��

��

��

��

���

�	 �	
	 ��	 ��	 ��	 ��	 ��	 �	

��
��
��
��
�
��
��

���
�
��
��
���
��
��
	
��
��
��
��

��� �������!���"����"��#��$%&'$��

(������
(�����������!���"��

�����������

Fig. 3: Delta-based synchronization

������

������

������

������

������

������

��	���

��	���

	
 ���
 �
 ���
 	�

�
��

��
��

��
��

��
��

���
��

��
��

����������� �������!���"��#$%&#��

��
'��(�)

%�����

Fig. 4: Throughput for set operations

merge procedure has a time complexity proportional to the

number of updates, i.e. delta size, and not to the database size.

Second, from this plot the average throughput for merging can

be computed to 125,000 update elements per second.

The second benchmark measures the average throughput of

all the basic set operations. For this purpose, a machine with

16 Redis servers acting as a replica cluster is used. The client

library is deployed on another machine to perform the test: add

1 million 32-byte uniform randomly generated elements to the

set, look them up, remove them, and then repeat the process

with more elements. The drop in throughput in Fig. 4 can have

one of two causes: either the operations have time complexity

proportional to the database size, or Redis incurs performance

penalty as its database increases. Listings 2, 3, and 4 show

that only O(1) Redis operations are used, assuming that

same values are not inserted in the set. This a reasonable

assumption since 10 million elements are generated, each

chosen with the same probability from a 28×32 space, and

thus leading to a low chance of collision. Therefore, updating

the indices is on average a constant operation: ids:e contains

only one id and lpush index:rc:rs is constant. The decline

in performance may be attributed to Redis’ management of its

internal structures, such as the global hash table which stores

all the keys. As the database size increases, Redis has to adjust

the capacity of this hash, making a simple get operation on

any key costly. This is not visible in Fig. 3 because the timings

are dominated there by client operations.

The reason why a better throughput is obtained for merge

has two causes. First, each of add, lookup, and remove is

implemented using Lua scripts for which Redis guarantees

to execute in an atomic way. This is needed to ensure that

updating the elements and the indices in the database does not

interleave with other Redis commands. Second, fetching the

elements and distributing the updates in the merge procedure

are done using pipelines: sending multiple Redis commands

without waiting for a reply from the server, thus saving

the round-trip-time of each request. Unfortunately, the same

technique cannot be used for the other procedures because

both add and remove increment a counter to generate the

id for each element, while lookup must first fetch all ids of

one element. This means we have to wait for a reply from

Redis before calling the subsequent commands, i.e. basic set

operations contain synchronous calls to Redis which make

them unsuitable for pipelining. This is not considered to

be a problem since these procedures are independent and

are usually issued by different clients, as opposed to the

subroutines of one merge call.

IX. COMPARISON WITH PREVIOUS WORK

The fundamental principles on database replication are laid

out in [17] and a number of techniques are discussed there

to achieve consistency. The traditional strong consistency
approach imposes a global total order on updates to serial-

ize them [18]. This conflicts with availability and partition-

tolerance [1] and leads to performance and scalability bottle-

necks. Sequential consistency is another model, weaker than

strong consistency, but undecidable in practice [19]. A survey

on other models is presented in [20].

Techniques for achieving eventual consistency for large-

scale distributed systems have been an active focus point

in recent research. This is mostly due to the explosion of

Internet-based and peer-to-peer services. However, the origins

of the principles behind CRDTs can be found in the apparent

unrelated area of file systems. The state-based approach was

introduced for register-like objects, where the only operation

is assignment. It is widely used in NFS [21] and AFS [22]

file systems and in key-value stores such as Amazon’s Dy-

namo [5]. The mathematical foundations were laid by Baquero

and Moura [23] and later extended by Shapiro and Preguiça in

their work on Treedoc [7] in order to support the operation-

based approach, thus coining the term of CRDT. Examples

of implementations for this second approach are found in

Bayou’s anti-entropy protocol [9] and the IceCube cooperative

system [24]. Later, a formal definition and rigorous system

model for CRDT were published in [11] and [6]. These are

the first works to engage a comprehensive and systematic study

on CRDTs.

Several designs of replicated sets have been proposed, but

many of them present anomalies. Amazon’s Dynamo shopping

cart [5] uses registers in its implementation. It takes the union

of concurrent assignments, multiple values are later reduced

to a single one. The problem is that a removed element can

reappear. In a 2P-Set [25], adding an element after it has

been removed has not effect. Furthermore, this design imposes

20194194

synchronization for reclaiming the tombstones. In Section III

we gave more examples for replicated sets and concluded that

the OR-Set behaves intuitively.

X. CONCLUSIONS

Achieving consistency in large-scale distributed systems is

not an easy task. To make things more difficult, designers need

to also ensure high-throughput, low-latencies accesses to the

databases. However, building reliable distributed systems de-

mands trade-offs between consistency and availability as stated

by the CAP theorem [1]. Eventual consistency is a technique of

compromise, widely adopted, but lacking a rigorous theoretical

foundation which makes current approaches ad-hoc and error-

prone [5].
The concept of CRDTs defines replicated data types that

have mathematical properties conferring them a form of even-

tual consistency, strong eventual consistency. This model can

be described from two equivalent perspectives: a) state-based:

object replicas apply updates locally and later exchange and

merge their states, and b) operation-based: update operations

are distributed among replicas over a reliable broadcast com-

munication channel. Both approaches guarantee convergence

towards a common state without application-level conflict res-

olutions, roll-backs, or consensus among replicas [4]. Because

this model imposes strong constraints on the type specification,

it is not universal though.
In this paper we focused on designs for conflict-free

replicated sets and gave number of practical examples. We

introduced two improvements to the original OR-Set specifi-

cation: an algorithm for efficient delta-based synchronization

and an extension for replica sharding. Lastly, we proposed

a garbage collection mechanism to support lifetime-limited

elements and to alleviate the problem of unbounded database

growth. On the practical side, to the authors’ knowledge,

this is the first implementation of a CRDT in the sense of

the system model described in this chapter. Proof-of-concept

examples exists [26], [27], but they focus only on testing the

specifications for CRDTs locally and in-memory, without a

real database store support.
Based on this type, more complex structures can be built.

Maps can be implemented as sets of registers and graphs can

include two sets: one for vertices and another for edges.

REFERENCES

[1] S. Gilbert and N. Lynch, “Brewer’s conjecture and the feasibility of
consistent, available, partition-tolerant web services,” SIGACT News,
vol. 33, no. 2, pp. 51–59, Jun. 2002.

[2] W. Vogels, “Eventually consistent,” ACM Queue, vol. 6, no. 6, pp. 14–
19, 2008.

[3] Y. Saito and M. Shapiro, “Optimistic replication,” ACM Comput. Surv.,
vol. 37, no. 1, pp. 42–81, Mar. 2005.

[4] D. B. Terry, M. M. Theimer, K. Petersen, A. J. Demers, M. J. Spreitzer,
and C. H. Hauser, “Managing update conflicts in bayou, a weakly
connected replicated storage system,” in Proceedings of the fifteenth
ACM symposium on Operating systems principles, ser. SOSP ’95. New
York, NY, USA: ACM, 1995, pp. 172–182.

[5] G. DeCandia, D. Hastorun, M. Jampani, G. Kakulapati, A. Lakshman,
A. Pilchin, S. Sivasubramanian, P. Vosshall, and W. Vogels, “Dynamo:
amazon’s highly available key-value store,” in Proceedings of twenty-first
ACM SIGOPS symposium on Operating systems principles, ser. SOSP
’07. New York, NY, USA: ACM, 2007, pp. 205–220.

[6] M. Shapiro, N. Preguiça, C. Baquero, and M. Zawirski, “Conflict-
free replicated data types,” in Proceedings of the 13th international
conference on Stabilization, safety, and security of distributed systems,
ser. SSS’11. Berlin, Heidelberg: Springer-Verlag, 2011, pp. 386–400.

[7] N. Preguica, J. M. Marques, M. Shapiro, and M. Letia, “A commutative
replicated data type for cooperative editing,” in Proceedings of the 2009
29th IEEE International Conference on Distributed Computing Systems,
ser. ICDCS ’09. Washington, DC, USA: IEEE Computer Society, 2009,
pp. 395–403.

[8] A. Demers, D. Greene, C. Hauser, W. Irish, J. Larson, S. Shenker,
H. Sturgis, D. Swinehart, and D. Terry, “Epidemic algorithms for
replicated database maintenance,” in Proceedings of the sixth annual
ACM Symposium on Principles of distributed computing, ser. PODC
’87. New York, NY, USA: ACM, 1987, pp. 1–12.

[9] K. Petersen, M. J. Spreitzer, D. B. Terry, M. M. Theimer, and A. J.
Demers, “Flexible update propagation for weakly consistent replication,”
in Proceedings of the sixteenth ACM symposium on Operating systems
principles, ser. SOSP ’97. New York, NY, USA: ACM, 1997, pp.
288–301.

[10] B. A. Davey and H. A. Priestley, Introduction to Lattices and Order.
Cambridge University Press, 1990.

[11] M. Shapiro, N. Preguiça, C. Baquero, and M. Zawirski, “A compre-
hensive study of Convergent and Commutative Replicated Data Types,”
INRIA, Research Report RR-7506, Jan. 2011.

[12] D. S. Parker, G. J. Popek, G. Rudisin, A. Stoughton, B. J. Walker,
E. Walton, J. M. Chow, D. Edwards, S. Kiser, and C. Kline, “Detection
of mutual inconsistency in distributed systems,” IEEE Trans. Softw. Eng.,
vol. 9, no. 3, pp. 240–247, May 1983.

[13] P. S. Almeida, C. Baquero, and V. Fonte, “Interval tree clocks,” in
Proceedings of the 12th International Conference on Principles of
Distributed Systems, ser. OPODIS ’08. Berlin, Heidelberg: Springer-
Verlag, 2008, pp. 259–274.

[14] “Redis,” http://www.redis.io, [A key-value store].
[15] “Apache Cassandra,” http://cassandra.apache.org, [A distributed struc-

tured key-value store].
[16] “Jedis,” https://github.com/xetorthio/jedis.
[17] B. G. Lindsay, “Notes on distributed databases,” IBM Research Labo-

ratory, San Jose, NY, USA, IBM Research Report RJ2571(33471), Jul.
1979.

[18] L. Lamport, “Time, clocks, and the ordering of events in a distributed
system,” Commun. ACM, vol. 21, no. 7, pp. 558–565, Jul. 1978.

[19] S. Qadeer, “Verifying sequential consistency on shared-memory mul-
tiprocessors by model checking,” IEEE Trans. Parallel Distrib. Syst.,
vol. 14, no. 8, pp. 730–741, Aug. 2003.

[20] D. Mosberger, “Memory consistency models,” SIGOPS Oper. Syst. Rev.,
vol. 27, no. 1, pp. 18–26, Jan. 1993.

[21] R. Sandberg, D. Goldberg, S. Kleiman, D. Walsh, and B. Lyon, “Design
and implementation or the sun network filesystem,” 1985.

[22] J. H. Howard, M. L. Kazar, S. G. Menees, D. A. Nichols, M. Satya-
narayanan, R. N. Sidebotham, and M. J. West, “Scale and performance
in a distributed file system,” ACM Trans. Comput. Syst., vol. 6, no. 1,
pp. 51–81, Feb. 1988.

[23] C. Baquero and F. Moura, “Specification of convergent abstract data
types for autonomous mobile computing,” Departamento de Informática,
Universidade do Minho, Tech. Rep., Oct. 1997.

[24] N. Preguiça, M. Shapiro, and C. Matheson, “Semantics-based recon-
ciliation for collaborative and mobile environments,” in COOPIS, ser.
Lecture notes in computer science, D. C. S. e. a. Robert Meersman,
Zahir Tari, Ed., vol. 2888. Catania, Sicily, Italie: Springer, 2003, pp.
38–55.

[25] G. T. Wuu and A. J. Bernstein, “Efficient solutions to the replicated
log and dictionary problems,” in Proceedings of the third annual ACM
symposium on Principles of distributed computing, ser. PODC ’84. New
York, NY, USA: ACM, 1984, pp. 233–242.

[26] “GitHub ericmoritz repository,” https://github.com/ericmoritz/crdt.
[27] “GitHub dominictarr repository,” https://github.com/dominictarr/crdt.

21195195

