
Diagnosing Data Center Behavior Flow by Flow

Ahsan Arefin†, Vishal K. Singh‡, Guofei Jiang‡, Yueping Zhang‡, Cristian Lumezanu‡
†University of Illinois at Urbana-Champaign, ‡NEC Laboratories America

Abstract—Multi-tenant data centers are complex environ-
ments, running thousands of applications that compete for the
same infrastructure resources and whose behavior is guided by
(sometimes) divergent configurations. Small workload changes
or simple operator tasks may yield unpredictable results and
lead to expensive failures and performance degradation. In this
paper, we propose a holistic approach for detecting operational
problems in data centers. Our framework, FlowDiff, collects
information from all entities involved in the operation of a
data center—applications, operators, and infrastructure—and
continually builds behavioral models for the operation. By com-
paring current models with pre-computed, known-to-be-stable
models, FlowDiff is able to detect many operational problems,
ranging from host and network failures to unauthorized access.
FlowDiff also identifies common system operations (e.g., VM
migration, software upgrades) to validate the behavior changes
against planned operator tasks. We show that using passive
measurements on control traffic from programmable switches to
a centralized controller is sufficient to build strong behavior mod-
els; FlowDiff does not require active measurements or expensive
server instrumentation. Our experimental results using NEC data
center testbed, Amazon EC2, and simulations demonstrate that
FlowDiff is effective and robust in detecting anomalous behavior.
FlowDiff scales well with the number of applications running in
the data center and their traffic volume.

I. INTRODUCTION

Effective diagnosis of performance problems and abnormal

behavior is essential for maintaining availability and con-

trolling running costs in large-scale multi-tenant data center

networks. When undetected in time, these problems have

severe financial or availability implications. A recent study

on 41 US-based data centers shows that every minute of

outage costs the providers on average $5,600 [11]. Anecdotal

evidence suggests that the April 2011 outage of their AWS

service cost Amazon around 2 million in revenue loss [10].

The behavior of modern data centers is determined by

actions and events at three different layers: the applications
that run on the data center, the operators that manage it, and

the network infrastructure. Interactions between layers can

have unpredictable effects and lead to performance degradation

or failures across the data center. For example, the afore-

mentioned Amazon outage was caused by an unpredictable

interaction between applications and operators: high-volume

application traffic was mistakenly routed into the low-capacity

internal network due to a routing misconfiguration [8].

Previous work has shown how to diagnose operational

problems caused by unexpected interactions within the same

layer (e.g., between different applications [7], [2], [13], [28]).

However, as applications become more and more complex, and

place different requirements on the infrastructure or operators,

it is necessary to consider interactions between layers as a

potential source of failures. The goal of this paper is to explore

a holistic approach for detecting operational problems in data

centers, where information from applications, operators, and

infrastructure comes together to help detect the problem.

We propose FlowDiff, an automated framework for scalable

and accurate detection of operational problems in large-scale

data centers. Two important decisions underline the design

of FlowDiff. First, FlowDiff frequently models the behavior
of a data center using expressive signatures from three per-

spectives: applications, infrastructure, and operators. To detect

problems, it compares the current behavior with a previously

computed, stable, and correct behavior. Second, FlowDiff uses
network flow information to model data center behavior from

all three perspectives. Since, capturing all network flows is ex-

pensive, FlowDiff uses passive measurements on control traffic

from programmable switches to a centralized controller [25].

Our insight is that control traffic is sufficient to build reliable

behavior models at little cost.

FlowDiff models the behavior of a data center using infras-
tructure, application, and task signatures. The infrastructure

signature captures the physical topology of the network, the

mapping of applications to servers, and baseline performance

parameters (such as link utilization and end-to-end delay).

Application signatures capture the behavior of each application

(e.g., response time distribution, flow statistics) and how

applications interact with each other. Task signatures model

the valid behavioral changes performed by the operator or by

applications (e.g., VM migration, attaching a new server). To

automatically detect problems, FlowDiff compares the current

behavior of the data center with known past good behavior

in terms of application and infrastructure signatures. If it

detects changes, it tries to explain them using known task

signatures; only if no explanation exists, it reports a problem

along with the involved physical components (e.g., servers,

switches, links). Note that, FlowDiff does not try to identify

the root-cause of the problem, rather it provides debugging

information to assist root-cause analyses.

To build correct data center behavior models that capture

all interactions between applications, FlowDiff monitors the

control traffic between the control and data planes of the

network. This requires that the switches in the data cen-

ter be programmable and offer an open control API (e.g.,
OpenFlow [25]). Monitoring the control traffic instead of the

data traffic is sufficient to detect performance-related behav-

ioral changes (e.g., network failures, performance degradation)

because control traffic offers information about changes in

data path performance. For example, in OpenFlow, changes

in utilization of a link, such as the start or end of a flow,
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are announced through control messages (e.g., PacketIn or

FlowRemoved). In addition, the central controller can also

poll flow counters on switches to learn utilization.

Our choice to design FlowDiff for flow-based data cen-

ters [14], [20], where switches are programmable and can

be controlled from a centralized location, is motivated by

the unprecedented scalability and visibility that such an ar-

chitecture promises. Collecting measurements and building

behavior models at a centralized controller eliminates the need

for expensive instrumentation and allows the flexibility to

choose between different levels of visibility to balance scala-

bility in data collection and expressiveness of measurements.

Notwithstanding our choice, the use of the techniques for

problem diagnosis that we propose is not limited to flow-based

data centers: our behavior modeling works with any scalable

monitoring technique (e.g., server logging) that can collect

flow information to build expressive signatures.

We bring the following contributions. (1) We provide a

holistic framework to compare data center behavior at two

different points in time by identifying representative and com-

prehensive behavioral components that reflect all aspects of

data center behavior: application, operator, and infrastructure.

By comparing models captured at different points in time,

FlowDiff is able to detect a wide range of problems—from

application failures and unauthorized traffic to network con-

gestion or failure—with high accuracy (Section V-A) and at

reasonable scalability cost (Section V-C). (2) We build stable,

robust, and expressive models for operator, infrastructure,

or application changes using exclusively control traffic from

programmable switches and without active measurements or

server instrumentation (Section V-B).

II. RELATED WORK

Research work on diagnosing enterprises and distributed

systems can be modeling-based or measurement-based.

Modeling-based approaches express the operation of a system

as a set of states and use model-checking [18], [32], [29] or

static analysis [12], [24] to detect sequences of states that lead

to bugs. While such proposals are effective in detecting bugs

in system configuration and protocols (e.g., reachability prob-

lems or loops), they cannot easily find operational problems

caused by unexpected traffic workloads or by mistakes of the

operators. FlowDiff specifically models known operator tasks

and uses the models to filter alarms.

Measurement-based debugging techniques monitor the net-

work traffic and derive models based on the current operation,

configuration, and performance of the system. Sherlock [2],

Orion [7], Magpie [3] and Macroscope [28] install agents in

the network or at the end-hosts, and use measurements to build

application dependency graphs (ADG) or canonical models

that express how various applications or measurements depend

on each other. They use ADGs or profiling to trace back the

root cause of a user-reported problem. Another body of work

relies on instrumenting applications to gather measurements

and detect potential problems [13], [15] or on directly profiling

the end-host stack [33]. FlowDiff also uses network flow
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Fig. 1. Components of FlowDiff and their interactions.

measurements to profile the data center behavior but does so

in a non-intrusive way by taking advantage of the constant

flow of control messages between the switches and the external

controller (e.g., using the OpenFlow protocol). Unlike previous

approaches, which investigate problems caused by interac-

tions between entities at a single layer, FlowDiff considers

interactions between all layers (applications, operators, and

infrastructure) that affect the behavior of a data center.

Several approaches use performance measurements to

model application behavior and employ statistical machine

learning techniques to detect abnormalities. Cohen et al. [9]

and Goldszmidt et al. [16] use a tree-augmented naive (TAN)

bayesian network to learn the probabilistic relationship be-

tween SLA violations and system resource usage and to

identify performance bottlenecks in the system. Bodik et
al. [5] propose a fingerprinting approach to correlate key

performance indicators with system SLA. Jiang et al. [22]

developed an invariant-based method to profile large systems

for management purposes. Unlike FlowDiff, none of these

approaches considers application structure and interactions.

Closer to our approach is Distalyzer [26], a tool that compares

system behaviors extracted from execution logs and infers

associations between system components and performance.

III. FLOWDIFF DESIGN

FlowDiff consists of two major components: modeling
and diagnosing. In the modeling phase, FlowDiff passively

captures control traffic in flow-based networks and builds

signatures for applications (to model application behavior),

infrastructure (to characterize the properties of the underlying

network), and operator tasks (to represent known operational

tasks such as VM migration or data backup). During the di-

agnosing phase, FlowDiff identifies differences in application

and infrastructure signatures captured at different times and

validates them using the learned task signatures.

Figure 1 shows the components of FlowDiff and the inter-

actions among them, where L1 and L2 are logs captured over

two different time intervals. If L1 represents the behavior of

the data center in a stable state and L2 represents the behavior

when a problem is reported, FlowDiff uses a diff function

between L1 and L2 to infer useful debugging information. In

this section, we describe the signature modeling phase as well

as how the measurement logs are collected. In Section IV, we

describe how FlowDiff finds operational problems using diff
in application and infrastructure signatures.

A. Measurement collection

A flow-based network consists of programmable switches

(data plane) managed by a logically centralized controller
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(control plane) using a control protocol, such as Open-

Flow [25]. In a typical operation of an OpenFlow network

(also called reactive deployment), the controller populates the

switch flow tables with forwarding rules as follows. When

the switch does not have a matching rule for an incoming

flow, it notifies the controller via a PacketIn message.

The controller uses a FlowMod message to install a flow

entry on the switch. A flow entry is either a microflow

(matches against a single flow) or contains a wildcard (matches

against multiple flows). Each flow entry is associated with

two timeouts that determine when the entry expires: a soft

timeout, computed from the time of the last matched packet

against the entry, and a hard timeout, counted from the time of

the first matched packet. When the entry expires, the switch

notifies the controller using a FlowRemoved message that

contains, among others, the total number of bytes matched

and the duration of the entry.

We capture PacketIn, FlowMod, and FlowRemoved
messages at the controller and use them to build data center

wide signatures. The granularity of measurements from a

switch depends on three parameters: soft timeout, idle timeout,

and flow table entry format. By tweaking the timeouts and

the flow entry granularity data center operators can balance

the scalability of measurement collection with the visibility

that the measurements provide. In Section VI, we discuss

more about how data center operators can deploy FlowDiff

to maximize its effectiveness.

B. Application Signature

Modeling application signatures is challenging since an

enormous number of applications with widely varying be-

haviors [33] may concurrently run inside a data center. To

organize them in a manageable and scalable way, FlowDiff

groups the applications into application groups: sets of ap-

plication nodes inside the data center that form a connected

communication graph. For example, in a three-tier application,

the web, the application, and the database servers constitute

an application group. However, multiple application groups

may be mistakenly classified as a single one as they connect

to common special-purpose nodes (data center services), e.g.,

network storage or DNS server. To unambiguously identify

the application groups, we use domain knowledge to mark

the special purpose nodes inside the data center. We consider

application nodes connected only via special purpose nodes

to be in separate application groups. Note that FlowDiff

constructs application groups based on the local knowledge,

which may not be expressive globally (e.g., two application

groups can be connected via a node outside of local data

center domain). However, a global knowledge is not required

for diagnosing problems inside the data center.

We propose five signatures that capture application behavior

in time, space (i.e., across the data center), and volume (i.e.,
data transferred) dimensions. Although these signatures do not

reflect all aspects of an application behavior, they capture a

wide range of problem classes, as depicted in Figure 2(b).
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Signature Impact 
Host failure 
Host Performance 
Application failure 
Application Performance 
Network disconnectivity 
Network bottleneck 
Switch Misconfiguration 
Switch Overhead 
Controller overhead 
Switch Failure 
Controller Failure 
Unauthorized Access 

Problem Class 
CG PC CI 
DD PC FS 

FS 

CG PC CI FS 
DD PC FS 
CG PC CI FS 
DD PC FS 
CG PC CI FS 
DD PC FS 
DD PC FS 
CG PC CI FS 
CG PC CI FS 
CG CI FS 

DD 

DD 

DD 

DD 

DD 
DD 

Fig. 2. Application signatures (a) capture application behavior in time, space,
and volume dimensions, and (b) capture a wide range of problems classes.

Connectivity graph (CG) A connectivity graph represents

the communication relationship between the servers where an

application runs. For example, in a three-tier web application,

the connectivity graph includes nodes for the web, application,

and database servers, as well as links between them. We

build CG using the source and destination IP metadata in the

OpenFlow PacketIn messages.

Flow statistics (FS) We use the control traffic measurements

to compute the flow duration, the byte count, and the packet

count of each flow corresponding to each application group.

We also measure max, min, and average flow counts and

volumes per unit of time.

Component interaction (CI) The component interaction

at a node in CG represents the number of flows on each

incoming or outgoing edge of the application node inside

each application group. We normalize the CI value to the total

number of communications to and from the node.

Delay distribution (DD) Given CG and CI, it is still

difficult to identify the causal relationship between flows. As

demonstrated by Chen et al. [7], the delays between dependent

flows are time-invariant and can be used as a reliable indicator

of dependencies. For example, suppose any request from flow

f1 arriving at a certain application node always triggers an

outgoing flow f2. If we measure the delays between all f1’s

and all subsequent f2’s, the most frequent delay value is the

processing time of f1 at the application node. Inspired by

this fact, we use peaks of the delay distribution frequency as

one of the application signatures. FlowDiff identifies certain

anomalies in the data center (e.g., node overload and link

congestion) by detecting changes in these delay peaks.

Partial correlation (PC) Although DD captures the causal

relationship between dependent flows, the strength of the de-

pendency is unknown. To quantify this, we calculate the partial

correlation between adjacent edges for each CG using flow

volume statistics. We divide the logging interval into equal

spaced epoch intervals and, using the PacketIn messages

during each epoch, we measure the flow count for each edge

in the CG and compute the correlation over these time series

data using the Pearson’s coefficient [21].

Signatures may sometimes be unstable. For instance, if

an application node does not use any linear decision logic

across its outgoing flows, the component interaction signature

becomes unstable. We do not use unstable signatures in the
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[1] t1: PacketIn 
[2] t2: PacketOut 
[3] t3: PacketIn 
[4] t4: PacketOut 
[5] t5: PacketIn 
[6] t6: PacketOut 

Controller Log 

1
2 

6 

3 4 
5 

OPenFlow Controller 

sw1 

sw2 

sw3 

Fig. 3. Modeling inter-switch latency and controller response time.

problem detection to avoid false positives in raising debugging

flags. To determine whether a signature is stable, FlowDiff

partitions the log into several time intervals and computes the

application signatures for each interval. If a signature does not

change significantly across all interval, we consider it stable

and use it during problem detection.

C. Infrastructure Signature

We use the infrastructure signature to characterize the

connectivity and performance baseline of the physical data

center infrastructure, composed of physical components (e.g.,
switches, routers, servers) and common service nodes (e.g.,
DNS, NTP, OpenFlow controller).

Physical topology (PT) FlowDiff computes the physical

topology of the network using information from PacketIn
and FlowMod messages. PacketIn messages contain infor-

mation about the ingress port where the corresponding flow

entered the switch, while FlowMod informs us of the output

port. By combining PacketIn and FlowMod information

from all switches that a flow traverses, we can determine

the order of traversal and infer physical connectivity between

them.

Inter-switch latency (ISL) The Inter-switch latency measures

the delay between any two switches in the data center. When a

flow arrives at a switch that has no matching entry in the flow

table, it sends a PacketIn message to the controller. For a

new flow, such reporting is performed by all the switches along

the path. Using the timestamp of the receiving message at the

controller, we infer the inter-switch latency. Figure 3 explains

the process. The latency between sw1 and sw2 is (t3 − t2),
and between sw2 and sw3 is (t5− t4). ti represent the times

when the switches send PacketIn or receive FlowMod
and can be inferred from controller timestamps of the control

messages. Since the individual latency measurements may vary

depending on switch processing times [30], we use a statistical

mean and the standard deviation of the ISL values as the

signature.

Controller response time (CRT) We characterize the Open-

Flow controller using its response time, the duration it spends

processing a PacketIn message. We compute the response

time by taking the difference between the timestamps of

a PacketIn and its corresponding FlowMod message. In

Figure 3, (t2 − t1), (t4 − t3), and (t6 − t5) are controller

response times. Similarly to the ISL signature, we use the

mean and standard deviation of the response time.

S(Migration): 
[#1:*-NFS:2049] = a 
[NFS:2049-#1:*] = b 
[#1:8002-#2:8002] = c 
[#2:8002-#1:8002] = d 
[#2:*-NFS:2049] = e 
[NFS:2049-#2:*]= f 

(b) 
* : any    #: fixed in the sequence 

(a) 

� � � � � ��

� � � � � � ��

� � � � � � � � ��

Fig. 4. (a) Common flows and (b) flow sequences for three different runs of
a VM migration task, derived from captured real-time traces. VM images are
stored in a network file system (NFS). The physical hosts communicate to
NFS via the port 2049. While migrating a VM from host A to host B, A first
updates the image stored with the current VM states at the NFS and sends the
migration request to host B at port 8002. When B accepts the migration, A
starts sending the VM states to B. When the transfer is done, B synchronizes
the VM state with the NFS server.

D. Task Signature

The task signature must capture the sequence of operational

tasks from the collected flows. It is represented by a task time
series, which is a time series of operational tasks occurred in

different points in time. However, identifying the operational

tasks from the application flows (captured via PacketIn)

is challenging because the sequence of application flows

even for a single task may vary due to caching, network

retransmissions, packet reordering, or changes in application

logic. For example, when a virtual machine starts inside a data

center, the sequence of operations in terms of network flows

(such as communication to the DHCP server, DNS server,

NetBios, etc.) varies depending on the configuration of the

virtual machine and its underlying OS (see Figure 4). To

capture all possible flow sequences for an operational task

in a compact form, we build a finite-state automaton using

a supervised learning approach in three stages: (1) finding

common flows across different logs for the same task, (2)

extracting the frequent flow sequences, and (3) building the

task automaton. Figure 5 depicts these three stages.

(1) Finding common flows First, for a specific task T , we

capture multiple logs in different regions of the data center

and find the common flows among them, S(T ). For a task

T , the logs are represented as T1,T2,· · · , Tn and the set of

flows inside the logs are S(T1),S(T2),· · · , S(Tn), respectively,

where n is the number of logs captured. Therefore S(T ) =
∩n
i=1S(Ti). A flow is defined by the source-destination IPs

and ports.

(2) State extraction We now construct T ′
i from Ti (1 ≤

i ≤ n), by removing the flows that do not belong to set

S(T ). For example, Figure 4 shows the common flows S(T )
(Figure 4(a)) and the constructed logs T ′

i for a VM migration

task across three different runs (Figure 4(b)).

Once we generate T ′
i , the state extraction algorithm is

similar to the classic sequential frequent pattern mining al-

gorithm [1]. The goal is to capture the sub-sequence of flows

that are frequent in T ′
i for all 1 ≤ i ≤ n and to consider each

of them in a single state in the automata to reduce the number

of state transition. A sequence is frequent if its support value is

higher than minimum support value (min sup) defined by the

operator. The algorithm runs in several iterations and collects
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Fig. 5. Steps in building Task Signature.

the frequent patterns in increasing length starting from length

1. Frequent patterns of length (i− 1) are used to capture the

frequent patterns of length i. Finally, we perform a pruning to

find the list of all closed frequent pattern [19] sequences in all

T ′
i . The closed frequent pattern reduces the state redundancy

by ensuring that if p1 and p2 are two frequent patterns of any

length, where p1 ∈ p2 and they have the same support value,

then p1 is pruned from the frequent pattern list.

Figure 6(a) illustrates the extraction process. Assume that

we have three extracted logs: T ′
1 = f1f2f3f4f5, T ′

2 =
f3f4f5f1 and T ′

3 = f3f4f5f2f1, where fj represent different

flows, and the min sup is set to 0.6. The number in the paren-

theses (in Figure 6(a)) is the support value associated with

the sequence appeared in the traces. The length-2 sequences

marked with ‘X’ do not pass the threshold and will not be put

into the frequent pattern list for the next step. The extraction

process ends at the length-3 pattern. Thus, the length of the

longest state is three. Finally, if we apply pruning on them.

f3, f4, and f5 at first iteration, and f3f4 and f4f5 at second

iteration will be pruned, because the length-3 sequence f3f4f5
subsumes all of them with the same support value.
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(b) 
Fig. 6. (a) Example of state extraction, and (b) the final task automata out
of the extracted logs.

(3) Building the automaton We sort the extracted frequent

pattern list (or states) of same length according to their support

value. For each T ′
i , we build the automaton using the sorted

states with two rules: 1) for different sets of state, choose the

one with longer length first, and 2) for states of the same set,

choose the more frequent one first (i.e., with higher support

value). Based on these rules, all extracted logs can be precisely

represented by the constructed automata. Using three extracted

logs T ′
1, T ′

2 and T ′
3 for task T (of the previous example), the

final automaton is shown in Figure 6(b).

To build the task signature (i.e, the task time series),

FlowDiff detects operational tasks from the input logs using

the learned task automata. The detection process first checks

whether, at any point of time, a flow (reported by PacketIn)

matches the start state of any task automata previously learned.

If a match is found, a child thread is created that checks

for the complete match of that automata starting from that

time. The main process then moves into the next flow and

keeps checking for the further match with any start states.

The child process in parallel tries to match the automata by

taking the transitions for the incoming flows. Note that, we

consider a flexible matching of the automata since due to

Internet concurrency the flow sequence of a task signature can

be interleaved with other network traffics. However, we bound

the interleaving threshold by 1 second. If the threshold is over,

the child process checking the existence of a task automata is

terminated. The child processes that arrive at the final state of

any automata during matching are considered successful and

the tasks corresponding to the child processes are added into

the task time series with the stating timestamp.

IV. DIAGNOSIS WITH FLOWDIFF

To detect performance and operational problems in data

center networks, FlowDiff compares application and infras-

tructure signatures taken at different times and validates the

differences against known task signatures. We describe these

two steps below. We consider two controller logs L1 and

L2 collected during two different time intervals [ta, tb] and

[tm, tn]. L1 captures the normal behavior of the data center.

Each log contains a list of events (e.g., PacketIn, FlowMod,

FlowRemoved messages) and their timestamps. FlowDiff

first builds stable application and infrastructure signatures from

the reference log L1 by dividing the log into multiple time

segments. FlowDiff also constructs signatures of L2 in the

interval [tm, tn] to compare against L1.

A. Comparing signatures

Application signatures To compare different application

signatures, we use following approaches:

• To detect changes in scalar application signatures, such as

partial correlation and flow statistics, FlowDiff compares

their values in the two logs (L1 and L2).

• For changes in the connectivity graph of an application,

we use a simple graph matching algorithm, which returns

the list of missing or new edges in the connectivity graph

of L2 compared to that of L1.

• To compare the component interaction signatures, FlowD-

iff performs a χ2 fitness test between the flow count

distributions on each edge at each application node. The

χ2 value is: χ2 =
∑N

i=1
(Oi−Ei)

2

Ei
, where E is the

expected flow count value (from L1), O is the observed

flow count value (from L2), and N is the number of

incoming and outgoing edges at a node. Operators define

the threshold value to determine significant differences.

• We measure the peaks in the delay distribution between

the same adjacent edges in logs L1 and L2. If the

peak value shift is higher that a predetermined threshold,

the server that connects the two edges may experience

performance degradation and FlowDiff raises an alarm.
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Fig. 7. Identifying known and unknown changes using task-time series
generated from Log L2.

Infrastructure signatures We compare changes in the con-

troller response time, inter-switch latency, and physical path

for each application between L1 and L2. FlowDiff raises an

alarm if the latency increases beyond a certain threshold or

if the controller becomes overloaded and potentially causes

increased queuing on switches or packet drops.

B. Validating changes

The goal of this step is to identify if a detected change

is valid or not. Changes identified in the previous sections

are categorized into known and unknown changes in both

application and infrastructure layers. Known changes can

be explained by valid operational tasks defined by the task

signatures (generated from both L1 and L2). For example, VM

migration moves a running VM from one switch to another and

causes a known and expected change in the physical topology.

Unknown changes occur due to unexpected problems such as

the ones listed in Figure 2(b). Figure 7 shows a diagram of

how FlowDiff validates a change in the connectivity graph

signature (an edge from E to X is present in the current log

L2 at timestamp T but not in the baseline log L1).

C. How FlowDiff can help operators

The goal of FlowDiff is to detect operational problems and

notify operators which components (i.e., servers, switches, or

links) are related to the problems. We discuss below how

operators may use FlowDiff information to gain more details

about what causes the operational problems.

To identify the type of problem, we find the dependen-

cies between application and infrastructure signature changes,

which are not validated by the task signatures. Let A be

the dependency matrix, where the rows are associated with

application signatures and the columns with infrastructure

signatures, as shown in Figure 8. Aij is 1 if for a change

in the ith component of the application signature, there is also

a change in the jth component of the infrastructure signature.

Each combination of dependencies between application and

infrastructure signatures (i.e., combination of cells with value

1) represents a type of problem. For example, when congestion

occurs, the delay distribution (DD), partial correlation (PC),

and flow statistics (FS) change along with the inter-switch

latency (ISL) and the corresponding cells in the matrix are 1
(see Figure 8(a)). Figure 8(b) shows the dependency matrix for
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Fig. 8. Example of dependency matrix for congestion and switch failure.

switch failure. All possible interpretations of the dependency

matrix are skipped due to the brevity.

Moreover, while comparison, FlowDiff returns a set of

edges and nodes that are related to each infrastructure and

application signature changes. To localize the operational

problem that triggered these changes, we rank the components

based on the number of changes they are associated with. The

components with higher rank is more likely to be related to

the problem.

V. EVALUATION

In this section, we evaluate FlowDiff from three perspec-

tives: effectiveness, robustness, and scalability. We start by

studying the effectiveness of FlowDiff in identifying problems

under realistic scenarios. Then, we evaluate the robustness and

stability of application and task signatures. Finally, we use

simulations to show how our tool scales when the number of

applications and the size of the data center increase. We use

three experimental setups to evaluate FlowDiff:

Lab data center. We set up a small data center consisting

of 25 physical machines and five virtual machines. The

servers are connected using seven OpenFlow switches (two

hardware-based NEC PF5240 and five software-based running

OpenFlow V1.0) and two D-Link traditional switches. We use

NOX [17] to control the switches. All traffic between any two

servers passes through at least one OpenFlow switch.

We deploy the following applications in our data center:

(1) Petstore, a three-tier retail site, (2) Rubis, a three-tier

auction site, (3) Rubbos, a three-tier bulletin board system,

and (4) osCommerce, a two-tier online merchant system. In

addition, we build a custom three-tier application to allow

customization in the application logic (e.g., connection reuse).

We use Tomcat and JBoss as application severs and mySQL as

database server. Standard http client emulators generate traces

with different workload for each of these applications.

Amazon EC2. We deploy four virtual machines on different

regions of Amazon EC2. One of the VMs is a Ubuntu

installation and the other three are Amazon AMI VMs. We

add tcpdump in the machine start up sequence (boot order)

after the networking service starts for logging the flows created

during startup. We use this setup to give an example of how

FlowDiff is able to identify a specific task, VM startup, in a

real world outside-the-lab scenario.

Simulation. To evaluate the scalability of FlowDiff, we sim-

ulate a 320-server network, arranged in a tree topology as

follows. Each rack of 20 servers connects to a top-of-rack

(ToR) switch. Every four ToRs are connected to two aggrega-

tion switch. All eight aggregation switches are connected to

two core switches.
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Fig. 9. Packet loss on a link or utilization increase on a server lead to
increases in the (a) byte count of the flows traversing the link and (b) delays
between incoming and outgoing flows at the server.

A. Effectiveness

FlowDiff identifies both unknown known operational prob-

lems in a data center. First, we run FlowDiff in the wild and

attempt to detect a VM startup operation in the EC2 setup. As

we do not have access to Amazon’s network, we are restricted

to build and evaluate task automata based on the traffic on a

single VM. We choose the VM startup operation because we

can easily collect all the flows that it generates by inserting a

tcpdump command at the beginning of the startup sequence.

For all four VMs, FlowDiff task signatures can successfully

detect a startup event using the generated task automata.

We also perform experiments on the lab data center by

injecting various operational problems and checking whether

and how FlowDiff detects them. Table I shows the list of

problems we introduce. For each problem, the second column

in the table gives the list of signature components that change.

The third column shows the identification of problem type

which can be further diagnosed by operator. FlowDiff detects

successfully each problem.

To illustrate how signatures change when a problem occurs,

consider a four node three-tier application with one web server

connected to two application servers, which are then connected

to one database server. We introduce two types of faults:

• network faults: we inject 1% loss on both links con-

necting the web and application server. This changes the

flow statistics (i.e., byte count) and the latency of the

flows traversing the two edges.

• server faults: we enable logging on the application

server. This increases the request processing time on the

application server and implicitly modifies delay differ-

ence between the incoming and outgoing flows.

Figure 9 presents the CDFs of the byte count of flows in-

coming to the application servers and of the delay distribution

between the outgoing and incoming flows at the application

servers. Intuitively, we expect that introducing loss increases

both the byte count (due to the retransmissions) and the delay

distribution (because flows are delayed due to retransmissions).

Similarly, enabling logging leads to an increase in request

processing and subsequently, an increase in the delay distri-

bution. The results in Figure 9 match our intuition: the flow

statistics (FS) and delay distribution (DD) change significantly

after introducing the problems. By capturing such changes,

FlowDiff can identify the problems that causes them.

B. Robustness

For FlowDiff to correctly detect operational problems in

data centers, it needs to capture both a stable snapshot of

the data center behavior (application signatures) and stable

flow sequences of operational tasks (task automata). Next we

evaluate how well is FlowDiff able to construct stable and

robust application and task automata.

1) Application signatures: To measure the stability of ap-

plication signatures across various workloads or at different

logging times, we use the lab data center experimental setup.

We consider five different application deployment case, de-

scribed in Table II. The server numbers do not have any

particular significance, other than helping us identify the

servers in the testbed. For each case, we run the applications

multiple times, modifying the workloads (by varying the traffic

distribution) and, when possible, the application logic (by

varying the connection reuse parameters). The traffic logging

lasts for 45 minutes for each run. During one run, we ensure

that the data center runs smoothly, without any infrastructure

or application layer modifications. We evaluate the stability of

each application signature component.

Connectivity graph. The variations in workload or applica-

tion setup do not have any impact on the connectivity graphs

captured by FlowDiff. This is because the CG depends on the

internal structure of each application (e.g., what application

components communicate with each other) which is indepen-

dent on the properties of the input traffic.

Delay distribution. The delay distribution between flows

may be affected by the type of input workload and by the

application logic. For example, for each incoming flow, an

application may generate a new outgoing flow or may use an

existing outgoing connection. Because the flow-based switches

send PacketIn messages to the controller only when a new

flow arrives, connection reuse at the application layer results

in incomplete information about dependent flows.
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Fig. 10. The robustness of delay distribution for different workload and
application logic between communication of S2-S3 and S3-S8 for case 5
shown in Table II.

To assess the stability of delay distribution, we use case

5 in Table II, which represents a custom setup of a three-

tier application and gives us flexibility to modify both the
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TABLE I
DEBUGGING WITH FLOWDIFF

ID Problem Introduced Impact on signatures Problem Inference
1 Mis-configure to enable “INFO” mode logging on Tomcat DD Host or Application Problem
2 Emulate loss using tc on the server DD, FS Host network problem, Network congestion
3 High CPU(background process) DD Host or Application Problem
4 Application crash CG, CI Application Failure
5 Host/VM Shutdown CG, CI Host Failure
6 Firewall (port block) CG, CI Host or Application Problem
7 Inject Background traffic using Iperf ISL, FS, PC, DD Network Congestion Problem

TABLE II
CASE STUDIES: ROBUSTNESS OF APPLICATION SIGNATURE.

Case List of application groups
1 Rubbis: S25 (client) — S13 (web-server) — S4 (app-server) — S14 (db-server) — S15 (slave-db)

Rubbis: S24 (client) — S12 (web-server)— S10 (app-server) — S20(db-server)
osCommerce: S23 (client) — S7 (web-server) — S10 (app-server) — S20(db-server)

2 Rubbis: S25 (client) — S12 (web-server) — S4 (app-server) — S14 (db-server) — S15 (slave-db)
osCommerce: S23 (client) — S7 (web-server)— S10 (app-server) — S20(db-server)

3 Rubbis: S25 (client) — S12 (web-server) — S4 (app-server) — S14 (db-server) — S15 (slave-db)
Rubbos: S24 (client) — S12 (web-server) — S10 (app-server) — S20(db-server)

4 Rubbis: S25 (client) — S12 (web-server) — S4 (app-server) — S14 (db-server) — S15 (slave-db)
Petstore: S24 (client) — S16 (web-server) — S25 (app-server) — S19(db-server)

5 Custom: S22 (client) — S1 (web-server) — S3 (app-server) — S8 (db-server)
Custom: S21 (client) — S2 (web-server) — S3 (app-server) — S8 (db-server)
Custom: S23 (client) — S5 (web-server) — S11 (app-server) — S18 (db-server)
Custom: S23 (client) — S5 (web-server) — S17 (app-server) — S6 (db-server)

application logic and the input workload, as we show below.

Figure 10 shows DD between flows S2-S3 and S3-S8 for

various workload distributions and connection reuse ratios.

P (x, y) indicates that the workload has a Poisson distribution

with statistical mean x and y across web server to the

application server for S1-S3 and S2-S3. R(m,n) indicates that

m% and n% of connections are reused at the application server

S3 for the database communication of any incoming request

via S1-S3 and S2-S3. We plot the delays with bins of 20ms
along the x-axis. Even with the varying connection reuse (from

10% to 90%) and with different workloads, the peak value

of inter-flow delay persists within [40, 60]ms (60ms is the

ground truth).

Partial correlation. Figure 11 shows the partial correlations

between the dependent flows S13-S4 and S4-S14 for the

application group S25-S13-S4-S14-S15 in cases 1 to 4 (in

Table II). The PC values are stable across the runs and do

not vary with the workload. To check the stability of PC

between the dependent flows when connections are reused,

we use case 5 (see Table II). We partition the log into 10
intervals (1.5 minutes each) and compute the partial correlation

by varying the application logic (i.e., percentage of connection

re-use) and workloads as described above. The results, shown

in Figure 11(b), prove that the partial correlation is relatively

stable even with connection re-use.

Component interaction. Figure 12 shows the change in

the component interaction graph of node S4 in the application

group S25-S13-S4-S14-S15 for cases 1 to 4. The bars repre-

sent the normalized flow count in (blue bars) and out (red bars)

of application server node S4. The values do not vary much

across case studies. We also present the χ2 values considering
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Fig. 11. Change in partial correlation signature between (a) flows S13-S4
and S4-S14 of application group S25-S13-S4-S14-S15 for case 1 to 4, and
(b) flows S2-S3 and S3-S8 in case 5 for different intervals.
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Fig. 12. Change in component interaction graph at application server node
S4 of application group S25-S13-S4-S14-S15 for case 1 to 4.

the values at case 1 as the expected values. In many cases, the

component interaction may not be stable (e.g., non uniform

load balancing at application node S5 in case 5). When this

happens, FlowDiff does not consider component interaction as

part of the normal stable data center signature.

2) Task signatures: For FlowDiff to accurately identify

planned or valid operational changes (i.e., task signatures),

the task automata must be stable. We evaluate the stability

of task automata in the EC2 setup using VM startup as the

operator task. We detect the flows that correspond to VM

startup for each for the four VMs and build the task signatures.

We use 50 runs to ensure that the task automata are stable.
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We compute two types of task automata: with masked IPs and

without masked IPs. Masking the IP addresses allows a task

automata to be more general: instead of matching the startup

task on the same VM from whose flows it was constructed, the

automata would match the task on any VM. We start each VM

several times and try to match the startup operation against the

previously generated task automata.

Table III presents the results. True positives (TP) are those

cases where FlowDiff should find a successful match for

the operational task. False positives (FP) are the runs where

FlowDiff incorrectly finds a match. The second number in each

cell represents how many times we run each experiment by

restarting the corresponding VM. When IPs are not masked,

there are no false positives: FlowDiff never matches to an

incorrect task. However, when we mask IP addresses, the

traces become more general and there are a few cases where

FlowDiff incorrectly finds a match. Ubuntu VM is never

wrongly matched with Amazon AMI VM’s whereas Amazon

AMI VM’s may match with each other (as they have same

base OS). FlowDiff achieves an almost perfect true positive

rate and and very low false positive rate.

We repeated the experiments using five types of tasks on our

lab testbed and obtained similar results. We performed, VM
startup, VM stop, VM migration, mount network storage, and

unmount network storage. All these tasks involve flows to/from

a single host and their task signatures have unique sequences

of connections. We leave experimenting with operator tasks

involving connections to multiple hosts (e.g., update VLAN

or ACL) to future work.

TABLE III
ACCURACY OF TASK SIGNATURE MATCHING

ID AMI name TP TP FP
(not masked) (masked) (masked)

1 i-3486634d (AMI) 20/20 18/20 1/40
2 i-5d021f3b (AMI) 17/20 14/20 4/40
3 i-c5ebf1a3 (Ubuntu) 5/5 5/5 0/60
4 i-d55066b3 (AMI) 20/20 19/20 7/40

C. Scalability

We next conduct a scalability study of FlowDiff using sim-

ulation. We randomly generate a set of three-tier applications

and randomly place their VMs on the network described at the

beginning of the section. Within an application, every VM in

the same tier communicates with every VM in the next tier. We

construct a traffic pattern according to the measurement study

[4] performed by Benson et al.. In particular, for each com-

municating VM pair, the traffic follows an ON/OFF pattern,

in which both the ON and OFF periods follow log normal

distribution with mean 100ms and standard deviation 30ms.

For more realism, we consider TCP connection reuse, which

is commonly employed in popular protocols such as SQL,

JDBC, HTTP. If connections are reused, multiple flows share

the same TCP connection, and therefore do not trigger multiple

PacketIn requests. In the paper, we use a connection reuse

probability of 0.6 to simulate the effect.
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Fig. 13. Scalability test of FlowDiff: (a) Rate of PacketIn messages for
various applications. (b) The processing time of FlowDiff grows sub-linearly
with the number of applications.

Given the above setup, we first generate traffic with N =
1, 3, 5, . . . , 19 applications and collect the PacketIn mes-

sages. Figure 13(a) shows the number of PacketIn requests

per second for different numbers of applications. We next feed

these traces to FlowDiff and record the processing time. We

repeat 90 times and calculate the mean and variance of the

processing time. As illustrated in Figure 13(b), the processing

time of FlowDiff scales sub-linearly with the number of

applications (or the average number of PacketIn requests

per second at the controller).

Even though, the processing time of FlowDiff scales sub-

linearly with the number of applications and requests, there is

a threshold beyond which the framework becomes too slow to

be useful in detecting problems. Assuming a peak controller

rate of 100K requests/second [6], FlowDiff can process an 100
seconds of log in under one minute, which is reasonable for

an offline analysis tool. However, previous studies show that

controllers in large networks (e.g., >100 switches), with new

flows arriving every 10μs, may have to precess up to 10M
PacketIn messages per second [4]. Under such scenarios,

we have to consider alternative OpenFlow deployment scenar-

ios that reduce the load on the controller while maintaining the

expressivity of the control information captured. We discuss

these deployments in the next section.

VI. DEPLOYMENT CONSIDERATIONS

Deploying FlowDiff at scale requires an efficient and scal-

able OpenFlow deployment. We discuss the suitability of

various decisions in operating OpenFlow networks and how

they affect the functionality of FlowDiff. Previous research [6],

[23], [34] and conversations with operators of OpenFlow-

based networks reveal several approaches to scaling: distribute

controller functionality across multiple machines, proactively

set up rules to avoid triggering control traffic, and use wildcard

rules to reduce the amount of control traffic.

Distributed controller Distributing the controller does not

affect the amount or frequency of control traffic but it sim-

plifies the messages processing task. Using a mechanism

similar to FlowVisor [31], we can can capture control traffic

and synchronize the information captured across controllers.

Network virtualization solutions such as Nicira’s NVP [27] use

a cluster of controllers to manage large-scale network state.

Wildcard rules Wildcard rules reduce the number of control

messages and installed rules because there are fewer new flows
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without a match in the flow table. This limits the granularity

of measurements derived from control packets. For example,

if a wildcard rule covers many input ports of a switch,

the behavioral model constructed from control measurements

would not be able to pinpoint the specific link on which a

failure occurred and would be limited to indicate the collection

of links corresponding to the wildcard rule.

Proactive deployment When operators install rules proac-

tively, new flows at a switch do not trigger PacketIn
because they find a matching rule in the flow table. Further,

if rules have large timeouts, they take long to expire and fire

FlowRemoved messages. Some entries may be set up to not

trigger FlowRemoved when they expire. Although one could

easily trigger control traffic (e.g., by injecting packets that are

not covered by existing rules), this traffic would capture only

infrastructure signatures. Thus, FlowDiff would not be suitable

for OpenFlow operational modes that remove or heavily limit

the amount of control traffic between switches and controller.

Incremental deployment Deploying FlowDiff on a hybrid

data center network where a subset of switches are OpenFlow-

enabled and operate reactively is a more realistic proposal and

may provide a good trade-off between scalability and accuracy.

From conversations with operators, we have learned that

hybrid data center networks where the aggregation switches

are OpenFlow-enabled are already in production. Similar to the

wildcard rules, the granularity of problem detection for hybrid

data centers is limited by the granularity of measurements.

For example, FlowDiff can localize a performance issue on a

path, but not on a link, unless the link is between OpenFlow

switches. In addition, a smaller number of switches would also

limit the amount of control traffic that controllers process and

make the problem detection more amenable.

VII. CONCLUSION

We present FlowDiff, a flow-based data center diagnosis

tool that models data center applications, infrastructure and

operator tasks using network flow logs collected from Open-

Flow controller. FlowDiff is scalable and efficient in flow

monitoring, non-intrusive, easily deployable and usable by the

network operators. FlowDiff effectively constructs application

and infrastructure signatures that capture data center behavior

and compares signature at different points in time to identify

changes that cannot be attributed to normal operator tasks.

Using FlowDiff, we were able to identify a wide range

of behavioral abnormalities related to end-host, network or

application performance problems.
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