
Security Vulnerabilities in Modern Web Browser Architecture

Marin Šilić
Faculty of Electrical Engineering and Computing, University of Zagreb

Unska 3, 10000 Zagreb, Croatia
Phone: +385 1 6129 549

E-mail: marin.silic@fer.hr

Abstract - The Web today has become the most used and
popular platform for application development. In the
beginnings of the Web, applications provided users just
ability to browse and read content. The expansion and
adoption of the new web technologies has led to a significant
increase in development and, more importantly, usage of the
web applications that allow users to create their own content
and impact their life (e.g. e-banking, e-commerce, social
networks). Web 2.0 applications introduced new possibilities
for both users and application developers, but also created
new security concerns. Almost every Internet user uses a web
browser to access any content on the Internet. Each web
application is designed and developed to be executed inside
the web browser. Web browser mediates between users and
applications. In such architecture, malicious applications
could be loaded and executed inside the web browser, making
it a vulnerable point in preserving security. Modern web
applications demand for a new web browser architecture
design that will meet new security requirements arisen with
the Web 2.0. In this paper, we study web browser's
vulnerabilities, analyze popular web browsers architecture
and present how they cope with potential security threats.

I. INTRODUCTION

In its basis, Web was designed for browsing static web
pages and reading content. With the recent technological
improvements, the Web has become a platform for
application development. The turning point was invention
and adoption of AJAX technology which turned from the
old concept of static web pages to the new concept of
creating interactive web applications. AJAX and similar
web application development technologies, often referred
to collectively as Web 2.0 technologies, led to the creation
of variety of numerous worldwide-oriented web
applications. Contemporary web applications like e-
banking, e-commerce, social-networking sites, blogs, and
video-sharing sites provide users not just the ability to
view information and access content, but also the ability to
contribute and create their own content on the Web,
express their creativity and share knowledge and
information with others.

The nature of Web 2.0 applications requires users to
provide their identity and private data like user-names,
passwords, credit card numbers, mailing addresses, social
security numbers, etc. Those applications are designed to
be executed inside the web browser, which is a mediator
between users and applications. Web browser exploits
have bigger impact than ever before, and thus web browser
designers have to pay more attention to security than ever
before. Knowing the security holes in the web browser,
attackers can create malicious web applications in order to
compromise other users’ security.

Many different web applications can be executed
simultaneously within the web browser. Some applications
can have significant reflection on user’s life, while some
can be malicious applications with the only intention to
compromise security. Each application in the browser has
its own security settings that define application's privileges
and rights for the user’s local file system. For example,
web application should be allowed to access local file
system in order to upload a certain file only with user's
explicit approval. On the other hand, browsers have their
local storage where user’s sensitive data like passwords,
cookies, bookmarks, browsing history, temporary files,
and cache are stored. Modern browsers need to assure that
web application can not access that storage, and can only
get private data (e.g. cookies) related to that particular
application.

In order to protect the user, some browsers enforce strict
security policy, which isolates applications inside the
browser by their origin and does not allow subresources
from other origins. Such a restrictive policy would require
architectural restructuring of existing Web. On the other
side, users expect browsers to be compatible with the
existing Web architecture and render their popular
applications. The desirable goal in browser design is to
achieve user’s protection and still to provide compatibility
with existing web applications.

The majority of modern browsers still use the original
monolithic architecture design. Monolithic browser
architecture has many disadvantages that concern client
code execution. Failure caused by one web application
crashes down the entire browser instead of just the
application that caused it. In terms of better user
experience, user should be able to use other opened
applications. From the aspect of security, if the browser as
a vulnerable monolithic structure gets compromised,
attacker could execute his arbitrary code with user's
privileges and rights and cause damage on local machine.
Modern applications require browser architecture that
provides both browser security and compatibility with the
existing Web architecture. That can be achieved with
modular browser architecture where, in contrast to
monolithic one, each application is executed in its own
sandbox with restricted privileges.

Section II explains modular browser architecture and
compares it with the monolithic one. In section III, we
review Google Chrome browser, as an implementation
example of the modular browser architecture. We analyze
how Chrome responds to major threats on browser
security. Section IV describes related browsers based on
modular architecture and compares them with Chrome.
The paper finishes with conclusions in Section V.

II. MULTI-PROCESS BROWSER

As a result of recent break through in the Web

technology utilization contemporary web applications
behave more like complex programs that demand
resources than simple documents for browsing. Most of
current web browser architectures are still monolithic,
usually designed for browsing and rendering static web
pages. Monolithic architectures do not provide enough
isolation between concurrently executed web programs
and execution often ends in misbehavior as a lack of
security, fault-tolerance, memory management or
performance. Early PC operating systems had same
program isolation issues. MS-DOS and MacOS allocated
single address space and programs interfered with each
other, unlike modern operating systems that isolate each
program in its own separate process. Thus, modern
browser should isolate web programs and modularize their
execution assigning each web program to the specific
operating system process within the browser.

A. Monolithic browser architecture

Figure 1 shows monolithic web browser architecture

most common for current web browsers. In that
architecture, all web programs browser components are
placed in a single operating system process. Document
Object Model (DOM) tree is a web page representation
that can be accessed and modified by the script code.
HTML Renderer component parses each page code and
generates DOM tree. JavaScript Engine is responsible for
running script code that manipulates DOM tree.

Figure 1. Modular browser architecture

Monolithic architecture has a lot of disadvantages that

concern user experience, fault-tolerance, accountability,
security, memory management and performance. From
user experience and fault-tolerance point of view, any web
program or browser component that encounters crash,
takes down the complete web browser. Some browsers
with monolithic architecture provide reload feature on

browser start up after the crash. But still, as a result of the
crash user might lose valuable data (e.g. unsaved email
drafts, e-banking transactions, purchase orders) stored as a
JavaScript state in memory. After the browser restarts,
misbehaved application that caused crash might cause the
crash again, in this case reload feature is pointless.
Considering accountability, monolithic architecture
provides resources usage statistics for the entire web
browser. However, web program responsible for a poor
performance of the entire browser can not be identified in
a monolithic architecture. Another disadvantage of
monolithic browser architecture is memory management.
Browser process in OS is a long life process compared to
the life of web programs that are executed in the browser.
Some web program running in the browser might require
lot of memory allocation and contain memory leaks, which
can result in a large and fragmented memory space that is
allocated to the browser process. Once the web program
like that finishes, the memory still remains large and
fragmented. As far as performance is concerned,
monolithic architectures can cause resource demanding
web programs to compete for CPU on with each other.
Also, monolithic architecture can block a browser UI
thread because web program's actions, like executing
synchronous XMLHttpRequest. Both of this causes user-
perceived delays on UI level and lower performance for
the entire browser. Security of monolithic architectures
entirely rely on the browser components logic to
completely isolate different web programs and prevent any
information flow between web objects in different web
programs. However, bugs omitted in browser design or
implementation, leave space for malicious web programs
and attackers to install malware, steal files or access
private data and compromise user’s security.

Despite all its disadvantages, monolithic architecture is
preserved in the majority of web browser because it is
difficult and challenging to isolate web programs in the
browser and still keep browser compatibility. One
approach could be to isolate each web page in the browser,
but this would break many popular applications like sites
that use pop-up windows or embed content in a separate
frame from a different location. Another approach could
be to isolate web programs by their origins. However,
sometimes pages with different origins need to
communicate with each other and sometimes pages with
the same origins are not related at all.

B. Modular browser architecture

Figure 2 presents web programs isolation model,

implemented in Google Chrome web browser, based on
open source Chromium project [1]. The key point in
modular browser design is to isolate web programs, but
provide compatibility with the current Web. Presented
model introduces ideal abstractions: web program and web
program instance.

Web program is a set of connected web pages
containing all their subresources that provide certain
functionality. For example, iGoogle page contains of
parent page, script libraries and images, and gadgets sites
embedded in their frames. Since browsers allow users to
visit multiple instances of the same page, e.g. user can
open two iGoogle pages in different tabs, web program
instance abstraction is introduced.

Web program instance is defined as a set of pages from
a web program that are connected in the browser and
allowed to access and manipulate each others content. Web
program abstraction is realized using site, while web
program instance abstraction is realized using site
instance.

Browsers allow related pages to communicate by
enforcing Same Origin Policy (SOP) [2]. SOP conducts
access control based on the page origin, which includes
protocol, full host name, and port of each page. Pages with
the same origins are grouped together and allowed to
manipulate each others content. Page subresources can be
included from some other origins, but their origin is
considered same as the origin of the enclosing page. If
origins do not match, pages are mainly isolated. Origin
does not provide enough distinction among pages to define
site because web page can change its origin dynamically.
The origin can be changed within a limited range, from
sub-domain to more general domain and only up to the
registry controlled domain name [3], which is the most
general part of the host name before suffix (e.g. .fer.hr can
be changed to .hr). Site is defined as a set of web pages
with origins within the specific origin range, limited with
protocol and registry controlled domain name.

Sometimes pages with a different origin are connected
and share communication channel. This is the case when a
page opens content in a new window, the opener page
keeps reference on a new window and the opened page can
access the opener using property window.opener. For
example, Gmail chat window opens in a new window
when the conversation starts. Second case is when a page
embeds content from different origin in a separate frame.
For example, iGoogle page contains more gadgets pages in
separate frames. Top window can access its frames using
property windows.frames, and each gadget can access
parent window using property window.parent.
Connections between pages that share a communication
channel are kept as long as the parent browser window is
alive. Even if the user navigates to another page or opens a
new page in a new tab or window references among those
pages are kept. Chromium isolation model defines another
term, browsing instance as a set of connected windows or
frames that keep a reference to each other.

Site instance, the concrete realization of web program
instance abstraction, is defined as a set of connected pages
that belong to the same site within the browsing instance.
All pages from the same browsing instance can reference
each others windows, but only the pages from the same
site instance can access each others DOM contexts. On
figure 2 there are two browsing instances presented. First
browsing instance B1 contains two site instances: Sa and
Sb. Second browsing instance B2 contains site instance Sa.
Site instance Sa contains pages Pa and Pb, while site
instance Sb contains page Pc. Site instance Sa from B1 and
Sa from B2 belong to the same site, but do not reference
each other, although SOP would allow them to
communicate. On the other hand, site instances Sa and Sb
from B1 belong to different sites, they reference each
other, but still are not allowed to manipulate each other
DOM according to the SOP.

Figure 2. Isolation model in Chromium

One approach to accomplish isolation is to assign each

site instance to a one operating system process. In this
case, there would be too many processes allocated for web
browser execution. Another approach is to assign each
browsing instance to a one operating system process.
Chromium manages to isolate web programs and
modularize web browser execution. Each web program is
running in its own operating system process.

In comparison to monolithic architecture, modular
architecture is superior considering user experience, fault-
tolerance, accountability, security, memory management
and performance. Considering user experience and fault-
tolerance, each web program that crashes does not effect
the execution of other running programs. In modular
architecture each program performance can be easily
monitored, thus modular architecture is superior in
accountability. Memory management in modular
architecture is effectively conducted, each program has its
own process and allocated memory, once the program
finishes memory is released and can be assigned to some
other program. The fact that each program has its own
process, assures better performance. Modular architecture
leaves scheduling issues to the OS and web programs can
run in parallel. Security aspects of modular architecture are
presented in Section III.

III. SECURITY OF CHROME

The definition of web program isolation model is used
as a base for modular architecture implementation. This
section presents modular browser architecture
implemented in Google Chrome browser. Furthermore,
this section analyzes security aspects of Chrome’s
architecture.

A. Chrome architecture

Architecture of Chrome [4] browser is given in Figure 3.

Chrome consists of three different modules: rendering
engine, browser kernel and plug-ins. Each of these
modules is isolated in its own operating system process.
Rendering engine converts HTTP responses into rendered
bitmaps, browser kernel interacts with OS, and plug-ins
module is responsible for each plug-in execution.

Figure 3. Chrome architecture

Rendering engine runs in a sandbox with restricted
privileges and no access to OS. Each isolated web program
in the browser is assigned to its own rendering engine.
Rendering engine is responsible for parsing web content,
creating DOM tree representation in memory,
manipulating the DOM tree while executing script
instructions. Also, rendering engine enforces SOP policy
and manipulates directly with untrusted web content.
Historically most of the web browser security
vulnerabilities were detected in the parsing and decoding
tasks. Thus, rendering engine does most of the parsing like
HTML, CSS, XML, JavaScript, regular expressions
parsing and image decoding. To interact with the user and
OS, rendering engine uses simple and restricted browser
kernel APIs.

Browser kernel runs with full user privileges on behalf
of the user. It manages each instance of the rendering
engine and implements browser kernel APIs. Browser
kernel is responsible for storage management, which
includes cookies, bookmarks, passwords, because such
activity requires file system access. Browser kernel is
executing network operations, e.g. downloads the image,
but sends it to rendering engine to decode it. Also, browser
kernel is interacting with OS, handles user inputs and
forwards it to a rendering engine that has a focus. Browser
kernel, keeps the information about granted privileges to
each rendering engine such as list of files that certain
rendering engine may upload.

Plug-ins runs in its own process outside the rendering
engine and browser kernel. Web compatibility requires
plug-ins to run outside the sandbox, plug-ins may require
access to microphone, web cam or local file system. Thus,
plug-ins can not be placed inside rendering engine since
rendering engine runs in a sandbox. Plug-ins could be
placed within the browser kernel, but in this case, crash in
plug-ins would take down the entire browser. However,
bug omitted in plug-in design or implementation could be
exploited to compromise security and arbitrary code with
full user's privileges.

B. Security aspects

System compromise threat refers to malicious arbitrary

code execution with full privileges on behalf of the user.
The majority of browser's vulnerabilities that concern this
threat are detected in rendering engine that can be
compromised. Compromised rendering engine runs within
a Windows sandbox, with Windows restricted security

token, unlike browser kernel that runs with Windows
user's security token [5]. Although Windows sandbox
restricts rendering engine to communicate with OS, there
are potential issues that can be exploited in order to
compromise the system. Sandbox does not perform
security token check if the sandboxed process is accessing
the FAT32 file system. Most of existing devices use NTFS
file system, but some USB devices use FAT32 formatting.
In this scenario, compromised rendering engine could read
and write the content on the USB drive. Also, Windows
sandbox does not perform security token or requires OS
handle when low-level privilege process attempts to open
TCP/IP socket. However, these issues rather concern
Windows sandbox then Chromium architecture. System
can be compromised if the browser kernel gets
compromised. Browser kernel can be tricked from a
compromised rendering engine. While executing APIs, as
a lack of parameters validation, browser kernel can
perform unauthorized network or system task. Another
way how system could get compromised is to exploit
vulnerabilities in vendors’ plug-ins that run outside the
sandbox by default.

Data theft threat refers to the ability to steal local
network or system data. This often happens in case
compromised rendering engine requires uploading or
downloading a file. In Chrome architecture rendering
engine runs in a sandbox and has no direct access to the
local file system. When uploading a file, rendering engine
uses browser kernel API for file upload. Browser kernel
shows the upload file picker window and remembers
which file is selected. This action is considered as a
explicit user authorization to the associated rendering
engine to upload that particular file and that authorization
lasts for the lifetime of the associated rendering engine. In
the next step, browser kernel uploads the file to the site
which instance is running in the associated rendering
engine. Also, when downloading files, rendering engine
uses browser kernel API to download file. Since the
download is initiated by the user, browser kernel is
authorized to download the resource from the download
URL. Some malicious site may include subresources with
URLs that use file scheme. Chrome architecture prevents
rendering engine to issue network tasks, like requesting a
resource from a specified URL. Rendering engine rather
uses browser kernel API to include subresources, then
browser kernel analyzes the resource URL and downloads
the resource. Most of the rendering engines are not
allowed to include subresources from URLs that uses file
scheme. However, local files can be viewed in Chrome
browser, but in a dedicated rendering engine.

Cross domain compromise Code originating from one
fully qualified domain name (FQDN) [6] can execute code
in the context of, or read data from, another FQDN domain
without permission. One such attack is XML eXternal
Entity (XXE) attack, in which the attacker's XML
document, hosted at http://attacker.com/, includes an
external entity from a foreign origin [7]. For example, the
malicious XML document might contain an entity from the
https://bank.com or file:///etc/passwd. If vulnerable to
XXE attacks, the browser will retrieve the content from the
foreign origin and incorporate it into the attacker's
document, making him able to read the content.
Chrome, like many other browsers, uses libXML to parse
XML documents. However, the architecture of Chrome is
designed in such a way that it delegates parsing tasks to a

sand-boxed rendering engine. The rendering engine does
not prevent the content from retrieving URLs from foreign
origins, but passes the requests to the browser kernel. If
the external entity URL was a web URL, browser kernel
serviced the requests. However, if the external entity URL
was from the user's file system (i.e. from the file scheme),
then the browser blocked the request, preventing the
attacker from reading confidential information such as
passwords. Chrome's modular architecture with sand-
boxed rendering engines does not completely defend
against the XXE vulnerability because the attacker is able
to retrieve URLs from foreign web sites. To block such
requests, the browser kernel would need to sacrifice
compatibility with the Web architecture (e.g. ban cross-site
images).

The threats that involve session hijacking compromise
the session token by stealing or predicting a valid session
token to gain unauthorized access to the honest web server.
Cross-site scripting (XSS) and cross-domain request
forgery (CSRF) have become the two most scaled attacks
regarding session hijacking. According to The Open Web
Application Security Project (OWASP), those two kind of
attacks have been marked as No2 and No5 top security
risks for web applications for the year 2010 [8]. In short,
XSS exploits the client's trust of the content received from
the server (by just sending text-based attack scripts that
exploit the interpreter in the browser). This allows
attackers to execute scripts in the victim’s browser which
can hijack user sessions, deface web sites, or redirect the
user to malicious sites. A CSRF attack tricks (via image or
script tags) a logged-on victim’s browser to send a forged
HTTP request, including the victim’s session cookie and
any other authentication information, to a vulnerable web
application. This allows the attacker to perform any action
on a vulnerable web server the victim is authorized to use.
Chrome's architecture does not protect an honest web site
if the site contains XSS or CSRF vulnerabilities. Chrome
expects these sites to repair their vulnerabilities. The only
helpful thing Chrome has is support for HttpOnly cookies,
which can be used as a partial mitigation for XSS [9].

User interface compromise threat refers to the ability to
trick the user into making incorrect trust decision, or
directly provide confidential data using script UI
manipulation. Popular attack that manipulates UI is
clickjacking [10]. In clickjacking, attacker loads
subresource from some other origin and places it to be
transparent content in front of the visible content. User
thinks he clicks on the objects he sees, but actually he
clicks on the transparent content. Also, user interface
compromise refers to implementing annoying scripting
actions like hogging the CPU or memory, moving dialogs
faster then user can respond, opening dialogs in endless
loop. From today's perspective, no modern browser
provides enough security restrictions to defend itself from
scripting disruptions. Introduction of any limitations that
are related to window manipulation or disabling pop-ups,
provides less functionality and options for site developers
and lowers compatibility with Web. However, Google
Chrome uses limitations on windows manipulation [11]
with scripting languages such as taking full screen,
specifying screen dimensions and position, hiding URL
bar and status bar.

IV. RELATED ARCHITECTURES OVERVIEW

OP Browser [12] introduces modular architecture that
consists of following browser components: UI, web page,
storage, network and browser kernel. Each component
runs in its own operating system process. Browser kernel
runs with full privileges and behaves like the operating
system micro-kernel. It coordinates the communication
among browser components using message passing
mechanism. Compared to Google Chrome, proposed
architecture provides strong isolation among web sites and
higher level of protection, but makes impossible to
implement some popular web features like inter-frame
communication, file uploads and downloads. These
characteristics make OP browser incompatible with many
popular web sites. OP browser enforces restrictive plug-ins
security policy. Architecture does not allow plug-ins to run
with full privileges in their own process on the whole
browser level. Instead, plug-ins run within the web page
component with restrictive privileges. Plug-ins are allowed
to access the resources that correspond to the origin of the
site whence the plug-in object is embedded. Sandboxing
plug-ins using restrictive policy provides higher
protection, but makes browser less compatible with the
current Web.

Tahoma [13] architecture introduces a new concept for
web application execution. Each web site is running on its
own virtual machine within the protected framework
named browser operating system (BOS). BOS manages
each virtual machine's network and UI tasks. Each virtual
machine manages its own storage, cookies, bookmarks,
history and has no access to the user's local file system.
There is a strict isolation among different running virtual
machines. Tahoma architecture introduces new possibility
for web application execution. Since the web application is
running on virtual machine, web application developer can
deploy application in machine code language. Each web
site owner should create manifest file for his web site. That
manifest file contains information about the site like the
list of URLs site is communicating with or weather the site
uses machine code or standard HTML renderer. When first
visiting the site, user receives site manifest and needs to
approve the site before execution begins. Tahoma
architecture is revolutionary and provides high level of
protection. However, this architecture is completely
incompatible with the current Web and requires current
Web restructuring.

Gazelle browser [14] architecture contains browser
kernel and rendering engine process, similar like Google
Chrome. Google Chrome places resources within the same
renderer according to the registry controlled domain name
policy, while Gazelle places resources within the same
renderer according to the SOP. Gazelle architecture
provides stronger isolation that concerns inter-frame
scripting. In case the web page embeds content in a
separate frame, Gazelle places parent and child frame in to
different renderer processes and allows them to
communicate using limited browser kernel API. On the
other side, Google Chrome places the parent and child
frame in the same renderer process, but the communication
among them is restricted according to the SOP. Cross
scripts and style sheets are placed within the same renderer
process both in Chrome and Gazelle. However, because of
the cross-scripting and inter-frame communication
limitations, Gazelle is not quite compatible with the

current Web. For, example, Gazelle does not allow the
frame to change its document.domain property, which is
essential for inter-frame communication before
postMessage event introduction. Also, Gazelle introduces
opaque display policy, which disallows cross-site content
to be transparent and overlap the host site. This policy
enhances the overall browser security and reduces UI
manipulation, but still it is not quite compatible with the
current Web. Gazelle browser tends to protect different
web sites from each other, while Chrome focuses on host
machine's and user's protection.

V. CONCLUSION

In this paper we described the concept of web program
isolation in the browser as a response to new security
challenges and performance demands introduced with the
Web evolution in recent years. We compared the new
modular architecture to the monolithic architecture most
used in current web browsers and showed that modular
architecture is superior.

We reviewed modular architecture implemented in
Google Chrome web browser. We analyzed Chrome’s
behavior concerning the most popular security web
browser threats. We showed that modular architecture of
Chrome mitigates most serious treats that are related to
system compromise and data theft.

However, Chrome’s architecture does not provide the
full protection. Threats that are related to cross-site
attacking, session hijacking and user interface compromise
are not mitigated. We reviewed similar architectures
implemented in OP, Tahoma and Gazelle web browser.
These architectures sacrifice compatibility with the current
Web in order to provide higher level of security that
Chrome.

REFERENCES

 [1] C. Reis and S.D. Gribble, “Isolating web programs in modern
browser architectures”, Proceedings of the 4th ACM
European conference on Computer systems, April 01-03,
2009, Nuremberg, Germany

 [2] Jesse Ruderman, “The Same Origin Policy”,
 http://www.mozilla.org/projects/security/components/s
ame-origin.html, 2001.

 [3] Mozilla, “Public Suffix List”,
 http://publicsuffix.org/, 2007.

 [4] A. Barth, C. Jackson, C. Reis, and Google Chrome Team,
 “The Security Architecture of the Chromium Browser”,

Technical report, Stanford University, 2008.
 http://crypto.stanford.edu/websec/chromium/chromium
-security-architecture.pdf.

 [5] Microsoft: “Restricted Tokens”, February 2010.
 http://msdn.microsoft.com/en-
us/library/aa379316(VS.85).aspx

[6] Indiana University Knowledge Base: “Fully qualified domain
name“, October 2009.

 http://kb.iu.edu/data/aiuv.html
[7] G. Steuck: „XXE (Xml eXternal Entity) attack“,

 October 2002.
 http://www.securiteam.com/securitynews/6D0100A5P
U.html

[8] The Open Web Application Security Project: OWASP Top10
- 2010 rc1, “The Ten Most Critical Web Application
Security Risks”,

 http://www.owasp.org/images/0/0f/OWASP_T10_-
_2010_rc1.pdf

[9] Microsoft: “Mitigating cross-site scripting with HTTP-only
cookies”,

 http://msdn.microsoft.com/en-us/library/ms533046.aspx
[10] M. Balduzzi, M. Egele, E. Kirda, D. Balzarotti, C. Kruegel:

“A Solution for the Automated Detection of Clickjacking
Attacks“, ASIACCS’10, Beijing, China, 2010.

[11] M. Zalewski: “Browser Security Handbook”, 2009.
 http://code.google.com/p/browsersec/wiki/Main
[12] C. Grier, S. Tang, S. T. King: “Secure web browsing with

the OP web browser”, 2008 IEEE Symposium on
Security and Privacy

[13] R. S. Cox, J. G. Hansen, S. D. Gribble, H. M. Levy: “A
Safety-Oriented Platform for Web Applications”, 2006
IEEE Symposium on Security and Privacy

[14] H. J. Wang, C. Griery, A. Moshchukz, S. T. Kingy, P.
Choudhury, H. Venter: “The Multi-Principal OS
Construction of the Gazelle Web Browser“, MSR
Technical Report MSR-TR-2009-16

