
§3: ALTERNATIVE CHARACTERIZATIONS OF TOPOLOGICAL
SPACES

PETE L. CLARK

0.1. Closed sets. In a topological space (X, τ), define a closed subset to be a
subset whose complement is open. Evidently specifying the open subsets is equiv-
alent to specfying the closed subsets.

The closed subsets of a topological space satsify the following properties:

(CTS1) ∅, X are closed.
(CTS2) Finite unions of closed sets are closed.
(CTS3) Arbitrary intersections of clsoed sets are closed.

Conversely, given such a family of subsets of X, then taking the open sets as the
complements of each element in this family, we get a topology.

0.2. Closure. If S is a subset of a topological space, we define its closure S to be
the intersection of all closed subsets containing S. Since X itself is closed contain-
ing S, this intersection is nonempty, and a moment’s thought reveals it to be the
minimal closed subset containing S.

The following is a simple but ubiquitously useful characterization of closure in
terms of open sets.

Proposition 1. Let X be a topological space, Y ⊂ X and x ∈ X. TFAE:
(i) x ∈ Y .
(ii) For any open set U containing x, U ∩ Y 6= ∅.
Proof: If U is an open set containing x and disjoint from Y , then X \ U is closed,
contains Y and does not contain x, so x ∈ Y . The converse is quite similar, and
we leave it to the reader.

A subset Y of a topological space X is dense if Y = X. For example, both
the rational numbers and the irrational numbers are dense in R; in a discrete space
no proper subset is dense; in an indiscrete space any nonempty subset is dense.

The density d(X) of a topological space is defined to be the minimal cardinal-
ity of a dense subset.1

1This is an example of a cardinal invariant of a topological space, i.e., a mapping which

assigns to each topological space a cardinal number such that homeomorphic spaces get assigned
the same cardinal number. Here we are making use of the fact that any set of cardinal numbers
is well-ordered, which is known to be equivalent to the Axiom of Choice (AC). As in many areas

of modern mathematics, one does not get very far in general topology without assuming AC, and
it will certainly be a default assumption for us.

1



2 PETE L. CLARK

Some simple obervations on density:

a) d(X) ≤ |X.
b) d(X) = 0 iff X = ∅.
c) For every discrete space we have d(X) = |X|.
d) For every indiscrete space we have d(X) = 1.
e) If X is infinite and all singleton sets are closed, then d(X) ≥ ℵ0.

Notice that the converses of c) and d) do not hold. For instance the set Q of
rational numbers with the Euclidean topology is not discrete and has density and
cardinality both equal to ℵ0. Evidently a space X has density 1 iff there exists
x ∈ X such that {x} = X. Such a point is said to be a generic point of X. For
instance the point ◦ in the DVR space {◦, •} is generic.

A topological space X with d(X) ≤ ℵ0 is called separable. Obviously any count-
able spcae is separable, as are many uncountable spaces, e.g. RN for any N ∈ N.

Exercise X.X*: Let X be a Hausdorff topological space.
a) Show that |X| ≤ 22|X|

.
b) For each infinite cardinal κ, exhibit a Hausdorff space X with density κ and
cardinality 22κ

.

Viewing closure as a mapping c from 2X to itself, it satisfies the following proper-
ties, the Kuratowski closure axioms:

(KC1) c(∅) = ∅.
(KC2) For A ∈ 2X , A ⊂ c(A).
(KC3) For A ∈ 2X , c(c(A)) = c(A).
(KC4) For A,B ∈ 2X , c(A ∪B) = c(A) ∪ c(B).

Note that (KC4) implies the following axiom:

(KC5) If B ⊂ A, c(B) ⊂ c(A).

Indeed, c(A) = c((A \B) ∪B) = c(A \B) ∪ c(B).

A function c : 2X → 2X satisfying (KC1)-(KC4) is called an “abstract closure
operator.” Kuratowski noted that any such operator is indeed the closure operator
for a topology on X:

Theorem 2. (Kuratowski) Let X be a set, and let c : 2X → 2X be an operator
satisfying axioms (KC1), (KC2) and (KC4).
a) The subsets A ∈ 2X satisfying A = c(A) obey they axioms (CTS1)-(CTS3) and
hence are the closed subsets for a unique topology τc on X.
b) If c also satisfies (KC3), then closure in τc corresponds to closure with respect
to c: for all A ⊂ X we have A = c(A).

Proof: a) Call a set c-closed if A = c(A). By (KC1) the empty set is c-closed; by
(KC2) X is c-closed. By (KC2) finite unions of c-closed sets are closed. Now let
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{Aα}α∈I be a family of c−closed sets, and put A = ∩Aα. Then for all α, A ⊂ Aα,
so by (KC5), c(A) ⊂ c(Aα) for all α, so

c(A) ⊂ ∩ c(Aα) = ∩Aα = A.

Thus the c-closed sets satisfy (CTS1)-(CTS3), so that the family τc of complements
of c-closed sets form a topology on X.

Now assume (KC3); we wish to show that for all A ⊂ X, c(A) = A. We have
A = ∩C=c(C)⊃AC, the intersection extending over all closed subsets containing A.
By (KC3), c(A) = c(c(A)) is a closed subset containing A we have A ⊂ c(A). Con-
versely, since A ⊂ ∩CC, c(A) ⊂ ∩Cc(C) = ∩CC = A. So c(A) = A.

Remark: Later we will see an interesting example of an operator which satisfies
(KC1), (KC2), (KC4) but not necessarily (KC3): the sequential closure.

The following result characterizes continuous functions in terms of closure.

Theorem 3. (Hausdorff) Let f : X → Y be a map of topological spaces. TFAE:
(a) f is continuous.
(b) For every subset S of X, f(S) ⊂ f(S).

Proof: Suppose f is continuous, S is a subset of X and A = A ⊃ f(S). If x ∈ X
is such that f(x) ∈ Y \ A, then, since f is continuous and Y \ A is open in Y ,
f−1(Y \ A) is an open subset of X containing x and disjoint from S. Therefore x
is not in the closure of S.

Conversely, if f is not continuous, then there exists some open V ⊂ Y such that
U := f−1(V ) is not open in X. Thus, there exists a point x ∈ U such that every
open set containing x meets S := X \U . Thus x ∈ S but f(x) is in V hence not in
Y \ V , which is a closed set containing f(S).

If x ∈ Y and U is an open set containing x, then A := X \ U

0.3. Interior operator. The dual notion to closure is the interior of a subset
A in a topological space: A◦ is equal to the union of all open subsets of A. In
particular a subset is open iff it is equal to its interior. We have

A◦ = X \X \A,

and applying this formula we can mimic the discussion of the previous subsection
in terms of axioms for an “abstract interior operator” A 7→ i(A), which one could
take to be the basic notion for a topological space. But this is so similar to the
characterization using the closure operator as to be essentially redundant.

0.4. Boundary operator. For a subset A of a topological space, one defines the
boundary2

∂A = A \A◦ = A ∩X \A.

Evidently ∂A is a closed subset of A, and, since A = A∪∂A, A is closed iff A ⊃ ∂A.
A set has empty boundary iff it is both open and closed, a notion which is impor-
tant in connectedness and in dimension theory.

2Alternate terminology: frontier.
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Example: Let X be the real line, A = (−∞, 0) and B = [0,∞). Then ∂A =
∂B = {0}, and

∂(A ∪B) = ∂R = ∅ 6= {0} = (∂A) ∪ (∂B);
∂(A ∩B) = ∂∅ = ∅ 6= {0} = (∂A) ∩ (∂B).

Thus the boundary operator is not as well-behaved as either the closure or inte-
rior operators. According to Willard, p. 28: “It is possible, but unrewarding, to
characterize a topology completely by its frontier [boundary] operation.”

0.5. Neighborhoods. Let x be a point of a topological space, and let N be a
subset of X. We say that N is a neighborhood of x if x ∈ N◦. Open sets are
characterized as being neighborhoods of each point they contain.

Let Nx be the family of all neighborhoods of x. It satisfies the following nice
properties:

(NS1) N ∈ Nx =⇒ x ∈ N .
(NS2) N, N ′ ∈ Nx =⇒ N ∩N ′ ∈ Nx.
(NS3) N ∈ Nx, N ′ ⊃ N =⇒ N ′ ∈ Nx.
(NS4) For N ∈ Nx, there exists U ∈ Nx, U ⊂ N , such that y ∈ V =⇒ V ∈ Ny.

Suppose we are given a set X and a function which assigns to each x ∈ X a
family N (x) of subsets of X satisfying (NS1)-(NS3). Then the collection of subsets
U such that x ∈ U =⇒ U ∈ N (x) form a topology on X. If we moreover impose
(NS4), then N (x) = Nx for all x.


